CH2 EXERCISES
Exercise 1. Prove that the empty set is a subset of every set
Proof. For BC Se€Set,BENB=0CS |

Exercise 2. Prove the set of all algebraic numbers are countable.
Hint: For Zg arz® = 0,N € N, there are only finitely many equations with

n+Z|ak|:N

Proof. Write A for the algebraic numbers. Since each algebraic number is deter-
mined by its (finite) integral coefficients, then for some n we have inclusions

A ZIX] = Z" a an 12"+ .. ag = (ag, o Gn_1)
Since Q C A, the algebraic numbers are countably infinite. ([l
Exercise 3. Prove that there exist real numbers which are not algebraic.

Lemma 1 (Gelfond-Schneider Thm). a # 0,1,3 € Q,a” is transcendental.

Exercise 4. Is the set of all irrational real numbers countable?

Proof. Note there is an inclusion R/Q <» R\ Q of irrational numbers with rational
multiple exactly 1. If R/Q is countable, R is a countable union of countable
sets {zq}qeq and therefore countable, which we know to be untrue. Therefore
R/Q is uncountable. Since ((R/Q) C R\ Q, the irrational numbers must also be
uncountable. O

Exercise 5. Construct a bounded set of real numbers with exactly three limit points.

P700’. FOI' n e N7
lef lef — lef —n +
AO = {1/TL},A] = {nn }7A2 = { n }

n

Let A be the union of Ay, A, As, then A C (—1,1) and its limit points are exactly
{+£1,0}. O

Exercise 6. Let E' be the set of all limit points of a set E. Prove that E' is closed.
Prove that E, E have the same limit points. Do E,E’ always have the same limit
points? For any limit point £ € E', we have £ : N¢)NE' C E';#£ 0

Exercise 7. Ay, As, As, ... subsets of a metric space.

(a) For B, def U™ A;, show B, =J" A;
(b) For B Cl:CfUZ A;, show B C |JA;
Show this inclusion can be proper.
(a) Considern =2:A; U Ay
Exercise 8. Are points of each open set E C R? limit points? For closed sets?
For x € E,3U, C E, its limit points would be £ : N({) N E\ {{} # 0.

Exercise 9. Let E denote the interior of E.



(a) Prove E open
(b) Prove E open zﬁé‘ =F
(¢) For G open, G C E, prove G C E
(d) Prove (_LOZ')C = Ec
(e) Do E,E always have the same interiors?
(f) Do E, E always have the same closures?
(a) By definition, A is open if for each point p, AN (p) C A, and the interior of
A is exactly such a set.
(b)
Exercise 10. Let X be infinite. For p,q € X, define

def |1 p#q
d(p, q) Zf{o pfq

Prove this is a metric. What are its open, closed and compact subsets?

Proof. x =y <= d(x,y) = 0 so positive definite; if z # y,y # ¢+ = d(x,y) =
d(y,z) so it’s symmetric. To show the triangle inequality holds, break the right-
hand side into cases:

2 pF#Frandr#gqg
dp,r) +d(r,q) =41 p=r#qorp#r=gq
0 p=r=q

Then for g, r, p pairwise distinct the sum (RHS) is always greater. Otherwise both
sides equal 1 (or 0 if all terms equal).

Neighborhoods can’t have zero radius, therefore N(p) = {q : d(p,q) = 0}
{p},N(p) N A C {p} so no limit points, i.e., A = A. Since p € A = N(p)

(o)

A, A=A, and all subsets are clopen.
Let U be a cover of A. If A is a finite subset with n elements, we can finitely
cover A with {Uy € U : x1, € Ug}ji<j<n , i.e., (finite) open sets each containing

Nl

a point of A. Otherwise, for uncountable A, consider the cover U/ %' {U; = z;}.
Any finite subcovering contains only finite points of A.
Thus, finite sets are compact and infinite sets noncompact. ([l

Exercise 11. For xz,y € R, define
e dy 4 (z —y)?

o d o/ |z — y|
o dy < |22 — |
def

L] d4: |$72y|

def _|z—y|
° dy = 1+[z—y]

Which are metrics? Immediately, dy isn’t symmetric [d(1,4) = 7 # 2 = d(4,1)]
and dg isn’t positive definite [let y = —xJ. Then of the remaining three we check
whether or not we have the triangle inequality d(x, z) + d(z,y) — d(x,y) > 0:
o (3— 2P+ (=) — (r—y)? = 2+ 4P+ 22 — 2a(w+y) 2 — g — 2y =
24— (r+y)?+(x+y) -2y
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|z — 2| |z — vl
1+|z—2 1+]|z—y|

Exercise 12 (Exercise 12). Prove K 1/ {0} U {1/n}nen is compact directly from
definition.

Proof. Let U be a open cover of K. For each z, € K,3U, € U : z, € U,.
Define Uy : 0 € Uy to be the open set containing 0. For each § > 0,3dm € N :

%, ﬁ,} C Uy N Ns. Thus, there are finitely many U, : n < m which, in
addition to Uy, cover K. (I
Exercise 13. Construct a compact set of reals whose limit points are countable.
Something like Cantor set?

def 1/r z€Q
e

Exercise 14 (14). Give an example of an open cover of (0,1) without finite sub-
cover.

Proof. Let U < {(£,1)},en. Then for any z € (0,1),IM e N:z <1 = L <

x. So U is a cover of (0,1). However for any finite subset U’ & {(£,1)}ni1<n<k of
U with k < M, 5; € U’. Therefore (0,1) is not compact. O

Exercise 15 (15). Show that Thm 2.36 and its Corollary become false if compact
is replaced with either closed or bounded.

Exercise 16 (16). FE 1 {peQ:p? € (2,3)}. Show E is closed and bounded in
Q, but not compact. Is E open?

Proof. 12 < p? <22 = E C (1,2), so E bounded.

Assume E is not closed, and note Q \ E = ub(E) UIb(E). Say E has a limit
point £ € ub(E) : (( —§,£+ ) N E # (. Then for some ¢ € ub(E) : £ > ¢, set
§=0—10 >0. Then we have (£ — 6,0+ 6) = (¢/,20 — ') and (¢',20 — ') N E # (),
which is impossible since ¢ > p € E. A similar argument follows for ¢ € [b(E),
thus E is closed.

The cover U &' {(0,7 — 1) :n e N,r? € (2,3)} has no finite subcover, so E is
not compact. (I

Exercise 17. Decimal expansions on the unit interval with only 4’s and 7’s
E d:ef{z apl0~ : ap € {477}}
Is E countable?dense?compact?perfect?

Proof. There are really two cases here: series including eventually zero terms like
0.44 = 0.440, and nonterminating series without zeros after the decimal point.

To determine cardinality, we map into sets of known cardinality. In the case
including terminating series, F is in surjection with binary decimals covering the



unit interval Y ax107% +— " b,27%, otherwise there is a bijection in the latter case.
So FE is uncountable either way.

FE is not dense in the unit interval because there are no terms of E in the interval
(0.5,0.6).

We first show F is perfect. Assume contrary, then there exists £ € F : N.({)NE #
(). Then ¢ has a decimal expansion with digits which aren’t 4,7, or in certain
cases, 0 [for example, 0.404]. If the first such digit occurs at k = n, then for any
s € B, | —s| >10~™~1, Therefore ¢ cannot be a limit point, and E is perfect.

Since FE is perfect, it contains its limit points and is therefore closed. Either
(0.4,0.7) or (0.4,0.7) = (4, %) is a bound for F, and since E is closed and bounded,
FE is compact. ([l

Exercise 18 (18). Is there a nonempty perfect set in R which contains no rational
number? Assume there is such a set P, then for q € Q,e > 0, the intersection

Ne(g) N (P\ {q})

must be empty.
Since P is nonempty, we havep € P :p € (p—¢,p+¢€). We show that any open
interval (a,b) contains rational points. [WTS open segment has rationals]

Exercise 19 (19). Prove:
(a) Disjoint closed sets A, B in a metric space X are separated
(b) Prove the same for disjoint open sets.
(¢) For somep € X, A def {q : d(p,q) < 6},B def {q : d(p,q) > 6}. A, B are
separated.
(d) Every connected metric space with at least two points is uncountable.
(a) For disjoint closed sets, ANB=0,A=A B=DB. Then ANB =10
(b) For disjoint open subsets A, B, AU B also open

Exercise 20 (20). Are closures and interiors of connected sets connected?

Exercise 21 (21). Let A, B C R* be separated subsets. Then for a € A,b € B,t €
R, define
p(t) = (1 —t)a+1tb, A, = p~'(A), By = p~"(B)
Prove
(a) Ao, By are separated subsets.
(b) 3to € (0,1) : p(t,) € AUB
(c) Every convex subset of R* is connected.

Rewrite as p(t) = a+t(b—a). On the closed unit interval, p(t) deforms a into
b and vice-versa.

Exercise 22 (22). A metric space is separable if it contains a countable dense
subset. Prove R¥ is separable. TBD:Show cart product of intervals interior Ng(x) C
Rk

For x = (x1,..,x;) € R¥E &4 {(@,9))ija<ij<k € QF : qi,q; € Q}, the
cartesian product of open intervals, we will show Ns(x)NE is an open subset of QF
and RF is thus separable.
For each 0 > 0,3dn € N :1/n < 6. Then By /,(x) C Bs(z).

Exercise 23 (23). Prove that every separable metric space has a countable base.



Exercise 24 (24). Let X be a metric space in which every infinite subset has a
limit point. Prove X 1is separable.

Exercise 25 (25). Prove every compact metric space K has countable base, and
that K is therefore separable.

Exercise 26 (26). Let X be a metric space in which every infinite subset has a
limit point. Prove X is compact.

Exercise 27 (27). For E C R* uncountable and P its condensation points, prove
P is perfect and PN E at most countable.

Exercise 28 (28). Prove that every closed set in a separable metric space is the
union of a (perhaps empty) perfect set and an at most countable set. (corollary:
every countable closed subset of R¥ has isolated points) hint: ex27

Exercise 29 (29). Prove that open sets in R are the union of at most countable
intervals. Define a relation on U C R as follows: Vx,y € Ujx ~y <= there is a
closed interval of U with endpoints x,y. This relation is reflexive and symmetric,
and for x ~ z,z ~ 1y, the union of closed segments is again in U.

Exercise 30 (30). Imitate the proof of Thm 2.43 to obtain the following result:
IfRF = UT® Fo, where each F, is a closed subset then at least one F,, has nonempty
mnterior.

Equivalent statement: If G, is a dense open subset of R"™, then ()" Gn, # 0 (in
fact, dense in R™).



DEFINITIONS AND RESULTS

limit point We say € is a limit point of E if there exists {q:q # {} C ENN,({)
closure The closure A of A C X is A plus its limit points.
compact A subset S C X is compact if each cover {U;}; admits a finite subindexing
{Ui}sci, i.e., a finite subcover.
perfect A subset is perfect if it is closed and each point is a limit point.
dense A is dense in X if for any other subset B, BN A # ().
condensation point A point p such that |N,.(p) N E| =¢
separate A, B are separated if ANB =0 and ANB = ()
connected S is connected if it is not the disjoint union of separable sets.
base A collection of open subsets {V,} such that every open set is some union
UVa.
We want to show there exists a nontrivial open subset of Q¥ interior to every open
subset of R¥.

Assuming Euclidean metric, set § = %e and define A def (9,...,0) € RF.

N
d($7$+A)=\/Z (lfi—(ﬁﬂﬁ-ngﬁ) ZEENe(i’?)
By the archimidean property of R, there exists M € N, M > 1:

vn vn

726<1 :>M_1<72€
n n

Therefore, we have the open subset E C QF:

E dzeka N 1_[(33Z —d,x;+6) C H(a:, — 0,2, +0) C Ne(z)
i=1 i=1

Moreover for (M~1,..., M~1) € N.(0), so E is nonempty. [show N.(z) C U(x)]

WTS (countable) rationals in any real open set. Any real open set is the disjoint
product of at most countable open intervals. Since R = (0,1), it suffices to prove
this on the unit interval. Let (a,b) C (0,1). Then 0 < & <b—a <1,M € N.

From this we can showb— M=t >a,a+ M1 <b = a+M 't —-b+ M1t <
b—a,—(b—a)+2 For any z € (a,b),x —a,b—xz > 0,20 +b—a > 0 WTS
36 > 0: Ns(x) N U, # emptyset

THINGS WHICH ARE ACTUALLY WRONG

Let U, L be the open upper and open lower halves of R¥, i.e., given x = (x1,...,2,,), (0, ...

r1>0 = =x€U

RF, {2 <0 = 2¢L . Then for 6 > 0,(%0,0,...,0) € N.(0)N (A C
r1=0 = a€UUL

U)N,.(0)N (B C L),0 € UnN L therefore by definition (UN L) N (UNL) = 0.

We will show these definitions are equivalent.

,0) €



