Ch2 Exercises

Exercise 1. Prove that the empty set is a subset of every set
Proof. For $B \subseteq S \in \mathbf{S e t}, B^{c} \cap B=\emptyset \subseteq S$
Exercise 2. Prove the set of all algebraic numbers are countable.
Hint: For $\sum_{0}^{n} a_{k} z^{k}=0, N \in \mathbf{N}$, there are only finitely many equations with

$$
n+\sum\left|a_{k}\right|=N
$$

Proof. Write A for the algebraic numbers. Since each algebraic number is determined by its (finite) integral coefficients, then for some n we have inclusions

$$
A \hookrightarrow \mathbf{Z}[X] \hookrightarrow \mathbf{Z}^{n}, a \mapsto a_{n-1} x^{n-1}+\ldots+a_{0} \mapsto\left(a_{0}, \ldots, a_{n-1}\right)
$$

Since $\mathbf{Q} \subset \mathbf{A}$, the algebraic numbers are countably infinite.
Exercise 3. Prove that there exist real numbers which are not algebraic.
Lemma 1 (Gelfond-Schneider Thm). $\alpha \neq 0,1, \beta \notin \mathbf{Q}, \alpha^{\beta}$ is transcendental.
Exercise 4. Is the set of all irrational real numbers countable?
Proof. Note there is an inclusion $\mathbf{R} / \mathbf{Q} \stackrel{\iota}{\hookrightarrow} \mathbf{R} \backslash \mathbf{Q}$ of irrational numbers with rational multiple exactly 1 . If \mathbf{R} / \mathbf{Q} is countable, \mathbf{R} is a countable union of countable sets $\{x q\}_{q \in \mathbf{Q}}$ and therefore countable, which we know to be untrue. Therefore \mathbf{R} / \mathbf{Q} is uncountable. Since $\iota(\mathbf{R} / \mathbf{Q}) \subset \mathbf{R} \backslash \mathbf{Q}$, the irrational numbers must also be uncountable.

Exercise 5. Construct a bounded set of real numbers with exactly three limit points.
Proof. For $n \in \mathbf{N}$,

$$
A_{0} \stackrel{\text { def }}{=}\{1 / n\}, A_{1} \stackrel{\text { def }}{=}\left\{\frac{n-1}{n}\right\}, A_{2} \stackrel{\text { def }}{=}\left\{\frac{-n+1}{n}\right\}
$$

Let A be the union of A_{0}, A_{1}, A_{2}, then $A \subset(-1,1)$ and its limit points are exactly $\{ \pm 1,0\}$.

Exercise 6. Let E^{\prime} be the set of all limit points of a set E. Prove that E^{\prime} is closed. Prove that E, \bar{E} have the same limit points. Do E, E^{\prime} always have the same limit points? For any limit point $\ell \in E^{\prime}$, we have $\ell: N(\ell) \cap E^{\prime} \subseteq E^{\prime} ; \neq \emptyset$
Exercise 7. $A_{1}, A_{2}, A_{3}, \ldots$ subsets of a metric space.
(a) For $B_{n} \stackrel{\text { def }}{=} \bigcup^{n} A_{i}$, show $\bar{B}_{n}=\bigcup^{n} \bar{A}_{i}$
(b) For $B \stackrel{\text { def }}{=} \bigcup^{\mathbf{Z}} A_{i}$, show $\bar{B} \subset \bigcup \bar{A}_{i}$

Show this inclusion can be proper.
(a) Consider $n=2: \bar{A}_{1} \cup \bar{A}_{2}$

Exercise 8. Are points of each open set $E \subseteq \mathbf{R}^{2}$ limit points? For closed sets?
For $x \in E, \exists U_{x} \subset E$, its limit points would be $\ell: N(\ell) \cap E \backslash\{\ell\} \neq \emptyset$.
Exercise 9. Let $\stackrel{\circ}{E}$ denote the interior of E.
(a) Prove $\stackrel{\circ}{E}$ open
(b) Prove E open iff $\stackrel{\circ}{E}=E$
(c) For G open, $G \subseteq E$, prove $G \subseteq \stackrel{\circ}{E}$
(d) Prove $(\stackrel{\circ}{E})^{c}=\bar{E}^{c}$
(e) Do E, \bar{E} always have the same interiors?
(f) Do $E, \stackrel{\circ}{E}$ always have the same closures?
(a) By definition, A is open if for each point $p, \exists N(p) \subseteq A$, and the interior of A is exactly such a set.
(b)

Exercise 10. Let X be infinite. For $p, q \in X$, define

$$
d(p, q) \stackrel{\text { def }}{=} \begin{cases}1 & p \neq q \\ 0 & p=q\end{cases}
$$

Prove this is a metric. What are its open, closed and compact subsets?
Proof. $x=y \Longleftrightarrow d(x, y)=0$ so positive definite; if $x \neq y, y \neq x \Longrightarrow d(x, y)=$ $d(y, x)$ so it's symmetric. To show the triangle inequality holds, break the righthand side into cases:

$$
d(p, r)+d(r, q)= \begin{cases}2 & p \neq r \text { and } r \neq q \\ 1 & p=r \neq q \text { or } p \neq r=q \\ 0 & p=r=q\end{cases}
$$

Then for q, r, p pairwise distinct the sum (RHS) is always greater. Otherwise both sides equal 1 (or 0 if all terms equal).

Neighborhoods can't have zero radius, therefore $N(p)=\{q: d(p, q)=0\}=$ $\{p\}, N(p) \cap A \subseteq\{p\}$ so no limit points, i.e., $A=\bar{A}$. Since $p \in A \Longrightarrow N(p) \subseteq$ $A, A=\stackrel{\circ}{A}$, and all subsets are clopen.

Let \mathcal{U} be a cover of A. If A is a finite subset with n elements, we can finitely cover A with $\left\{U_{k} \in \mathcal{U}: x_{k} \in U_{k}\right\}_{j: 1 \leq j \leq n}$, i.e., (finite) open sets each containing a point of A. Otherwise, for uncountable A, consider the cover $\mathcal{U}^{\prime} \stackrel{\text { def }}{=}\left\{U_{j}=x_{j}\right\}$. Any finite subcovering contains only finite points of A.

Thus, finite sets are compact and infinite sets noncompact.
Exercise 11. For $x, y \in \mathbf{R}$, define

- $d_{1} \stackrel{\text { def }}{=}(x-y)^{2}$
- $d_{2} \stackrel{\text { def }}{=} \sqrt{|x-y|}$
- $d_{3} \stackrel{\text { def }}{=}\left|x^{2}-y^{2}\right|$
- $d_{4} \stackrel{\text { def }}{=}|x-2 y|$
- $d_{5} \stackrel{\text { def }}{=} \frac{|x-y|}{1+|x-y|}$

Which are metrics? Immediately, d_{4} isn't symmetric $[d(1,4)=7 \neq 2=d(4,1)]$ and d_{3} isn't positive definite [let $y=-x$]. Then of the remaining three we check whether or not we have the triangle inequality $d(x, z)+d(z, y)-d(x, y) \geq 0$:

$$
\begin{aligned}
& \text { - }(x-z)^{2}+(z-y)^{2}-(x-y)^{2}=x^{2}+y^{2}+2 z^{2}-2 z(x+y)-x^{2}-y^{2}-2 x y= \\
& z^{2}+(z-(x+y))^{2}+(x+y)-2 x y
\end{aligned}
$$

.

$$
\begin{gathered}
\sqrt{|x-z|}+\sqrt{|z-y|}=\frac{|x-z|-|z-y|}{\sqrt{|x-z|}-\sqrt{|z-y|}} \\
\frac{|x-z|}{1+|x-z|}+\frac{|z-y|}{1+|z-y|}
\end{gathered}
$$

Exercise 12 (Exercise 12). Prove $K \stackrel{\text { def }}{=}\{0\} \cup\{1 / n\}_{n \in \mathbf{N}}$ is compact directly from definition.

Proof. Let U be a open cover of K. For each $x_{n} \in K, \exists U_{n} \in U: x_{n} \in U_{n}$. Define $U_{0}: 0 \in U_{0}$ to be the open set containing 0 . For each $\delta>0, \exists m \in \mathbf{N}$: $\left\{\frac{1}{m}, \frac{1}{m+1}, \ldots\right\} \subset U_{0} \cap N_{\delta}$. Thus, there are finitely many $U_{n}: n<m$ which, in addition to U_{0}, cover K.

Exercise 13. Construct a compact set of reals whose limit points are countable. Something like Cantor set?

$$
f(x) \stackrel{\text { def }}{=} \begin{cases}1 / r & x \in \mathbf{Q} \\ 0 & x \notin \mathbf{Q}\end{cases}
$$

Exercise 14 (14). Give an example of an open cover of $(0,1)$ without finite subcover.

Proof. Let $U \stackrel{\text { def }}{=}\left\{\left(\frac{1}{n}, 1\right)\right\}_{n \in \mathbf{N}}$. Then for any $x \in(0,1), \exists M \in \mathbf{N}: x<1 \Longrightarrow \frac{1}{M}<$ x. So U is a cover of $(0,1)$. However for any finite subset $U^{\prime} \stackrel{\text { def }}{=}\left\{\left(\frac{1}{n}, 1\right)\right\}_{n: 1 \leq n \leq k}$ of U with $k<M, \frac{1}{M} \notin U^{\prime}$. Therefore $(0,1)$ is not compact.

Exercise 15 (15). Show that Thm 2.36 and its Corollary become false if compact is replaced with either closed or bounded.

Exercise 16 (16). $E \stackrel{\text { def }}{=}\left\{p \in \mathbf{Q}: p^{2} \in(2,3)\right\}$. Show E is closed and bounded in \mathbf{Q}, but not compact. Is E open?

Proof. $1^{2}<p^{2}<2^{2} \Longrightarrow E \subset(1,2)$, so E bounded.
Assume E is not closed, and note $\mathbf{Q} \backslash E=u b(E) \cup l b(E)$. Say E has a limit point $\ell \in u b(E):(\ell-\delta, \ell+\delta) \cap E \neq \emptyset$. Then for some $\ell^{\prime} \in u b(E): \ell>\ell^{\prime}$, set $\delta=\ell-\ell^{\prime}>0$. Then we have $(\ell-\delta, \ell+\delta)=\left(\ell^{\prime}, 2 \ell-\ell^{\prime}\right)$ and $\left(\ell^{\prime}, 2 \ell-\ell^{\prime}\right) \cap E \neq \emptyset$, which is impossible since $\ell^{\prime}>p \in E$. A similar argument follows for $\ell \in l b(E)$, thus E is closed.

The cover $U \stackrel{\text { def }}{=}\left\{\left(0, r-\frac{1}{n}\right): n \in \mathbf{N}, r^{2} \in(2,3)\right\}$ has no finite subcover, so E is not compact.

Exercise 17. Decimal expansions on the unit interval with only 4's and 7's

$$
E \stackrel{\text { def }}{=}\left\{\sum a_{k} 10^{-k}: a_{k} \in\{4,7\}\right\}
$$

Is E countable?dense?compact?perfect?
Proof. There are really two cases here: series including eventually zero terms like $0.44=0.44 \overline{0}$, and nonterminating series without zeros after the decimal point.

To determine cardinality, we map into sets of known cardinality. In the case including terminating series, E is in surjection with binary decimals covering the
unit interval $\sum a_{k} 10^{-k} \mapsto \sum b_{k} 2^{-k}$, otherwise there is a bijection in the latter case. So E is uncountable either way.
E is not dense in the unit interval because there are no terms of E in the interval $(0.5,0.6)$.

We first show E is perfect. Assume contrary, then there exists $\ell \notin E: N_{\epsilon}(\ell) \cap E \neq$ \emptyset. Then ℓ has a decimal expansion with digits which aren't 4,7 , or in certain cases, 0 [for example, 0.404]. If the first such digit occurs at $k=n$, then for any $s \in E,|\ell-s|>10^{-m-1}$. Therefore ℓ cannot be a limit point, and E is perfect.

Since E is perfect, it contains its limit points and is therefore closed. Either $(0.4,0.7)$ or $(0 . \overline{4}, 0 . \overline{7})=\left(\frac{4}{9}, \frac{7}{9}\right)$ is a bound for E, and since E is closed and bounded, E is compact.

Exercise 18 (18). Is there a nonempty perfect set in \mathbf{R} which contains no rational number? Assume there is such a set P, then for $q \in \mathbf{Q}, \epsilon>0$, the intersection

$$
N_{\epsilon}(q) \cap(P \backslash\{q\})
$$

must be empty.
Since P is nonempty, we have $p \in P: p \in(p-\epsilon, p+\epsilon)$. We show that any open interval (a, b) contains rational points. [WTS open segment has rationals]

Exercise 19 (19). Prove:
(a) Disjoint closed sets A, B in a metric space X are separated
(b) Prove the same for disjoint open sets.
(c) For some $p \in X, A \stackrel{\text { def }}{=}\{q: d(p, q)<\delta\}, B \stackrel{\text { def }}{=}\{q: d(p, q)>\delta\}$. A, B are separated.
(d) Every connected metric space with at least two points is uncountable.
(a) For disjoint closed sets, $A \cap B=\emptyset, A=\bar{A}, B=\bar{B}$. Then $\bar{A} \cap \bar{B}=\emptyset$
(b) For disjoint open subsets $A, B, A \cup B$ also open

Exercise 20 (20). Are closures and interiors of connected sets connected?
Exercise 21 (21). Let $A, B \subset \mathbf{R}^{k}$ be separated subsets. Then for $a \in A, b \in B, t \in$ \mathbf{R}, define

$$
p(t)=(1-t) a+t b, A_{o}=p^{-1}(A), B_{0}=p^{-1}(B)
$$

Prove
(a) A_{0}, B_{0} are separated subsets.
(b) $\exists t_{0} \in(0,1): p\left(t_{o}\right) \notin A \cup B$
(c) Every convex subset of \mathbf{R}^{k} is connected.

Rewrite as $p(t)=a+t(b-a)$. On the closed unit interval, $p(t)$ deforms a into b and vice-versa.

Exercise 22 (22). A metric space is separable if it contains a countable dense subset. Prove \mathbf{R}^{k} is separable. TBD:Show cart product of intervals interior $N_{\delta}(x) \subset$ \mathbf{R}^{k}

For $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}, E \stackrel{\text { def }}{=}\left\{\left(q_{i}, q_{j}\right)_{i, j: 1 \leq i, j \leq k} \subseteq \mathbf{Q}^{k}: q_{i}, q_{j} \in \mathbf{Q}\right\}$, the cartesian product of open intervals, we will show $\bar{N}_{\delta}(x) \cap E$ is an open subset of \mathbf{Q}^{k} and \mathbf{R}^{k} is thus separable.
For each $\delta>0, \exists n \in \mathbf{N}: 1 / n<\delta$. Then $B_{1 / n}(x) \subset B_{\delta}(x)$.
Exercise 23 (23). Prove that every separable metric space has a countable base.

Exercise 24 (24). Let X be a metric space in which every infinite subset has a limit point. Prove X is separable.

Exercise 25 (25). Prove every compact metric space K has countable base, and that K is therefore separable.
Exercise 26 (26). Let X be a metric space in which every infinite subset has a limit point. Prove X is compact.

Exercise 27 (27). For $E \subseteq \mathbf{R}^{k}$ uncountable and P its condensation points, prove P is perfect and $P^{c} \cap E$ at most countable.
Exercise 28 (28). Prove that every closed set in a separable metric space is the union of a (perhaps empty) perfect set and an at most countable set. (corollary: every countable closed subset of \mathbf{R}^{k} has isolated points) hint: ex27
Exercise 29 (29). Prove that open sets in \mathbf{R} are the union of at most countable intervals. Define a relation on $U \subseteq \mathbf{R}$ as follows: $\forall x, y \in U, x \sim y \Longleftrightarrow$ there is a closed interval of U with endpoints x, y. This relation is reflexive and symmetric, and for $x \sim z, z \sim y$, the union of closed segments is again in U.
Exercise 30 (30). Imitate the proof of Thm 2.43 to obtain the following result: If $\mathbf{R}^{k}=\bigcup_{1}^{\infty} F_{n}$, where each F_{n} is a closed subset then at least one F_{n} has nonempty interior.
Equivalent statement: If G_{n} is a dense open subset of \mathbf{R}^{n}, then $\bigcap_{1}^{\infty} G_{n} \neq \emptyset$ (in fact, dense in \mathbf{R}^{n}).

DEFINITIONS AND RESULTS

limit point We say ℓ is a limit point of E if there exists $\{q: q \neq \ell\} \subset E \cap N_{r}(\ell)$
closure The closure $\bar{A} \overline{\text { of } A \subseteq X}$ is A plus its limit points.
compact A subset $S \subseteq X$ is compact if each cover $\left\{U_{i}\right\}_{I}$ admits a finite subindexing $\left\{U_{i}\right\}_{J \subseteq I}$, i.e., a finite subcover.
perfect A subset is perfect if it is closed and each point is a limit point.
dense A is dense in X if for any other subset $B, B \cap \bar{A} \neq \emptyset$.
condensation point A point puch that $\left|N_{r}(p) \cap E\right|=\mathfrak{c}$
separate A, B are separated if $A \cap \bar{B}=\emptyset$ and $\bar{A} \cap B=\emptyset$
connected S is connected if it is not the disjoint union of separable sets.
base A collection of open subsets $\left\{V_{a}\right\}$ such that every open set is some union $\bigcup V_{a}$.
We want to show there exists a nontrivial open subset of \mathbf{Q}^{k} interior to every open subset of \mathbf{R}^{k}.
Assuming Euclidean metric, set $\delta=\frac{\sqrt{n}}{n^{2}} \epsilon$ and define $\Delta \stackrel{\text { def }}{=}(\delta, \ldots, \delta) \in \mathbf{R}^{k}$.

$$
d(x, x+\Delta)=\sqrt{\sum\left(x_{i}-\left(x_{i}+\frac{\sqrt{n}}{n^{2}} \epsilon\right)\right)^{2}}=\frac{\epsilon}{n} \in N_{\epsilon}(x)
$$

By the archimidean property of \mathbf{R}, there exists $M \in \mathbf{N}, M>1$:

$$
\frac{\sqrt{n}}{n^{2}} \epsilon<1 \Longrightarrow M^{-1}<\frac{\sqrt{n}}{n^{2}} \epsilon
$$

Therefore, we have the open subset $E \subset \mathbf{Q}^{k}$:

$$
E \stackrel{\text { def }}{=} \mathbf{Q}^{k} \cap \prod_{i=1}^{n}\left(x_{i}-\delta, x_{i}+\delta\right) \subset \prod_{i=1}^{n}\left(x_{i}-\delta, x_{i}+\delta\right) \subset N_{\epsilon}(x)
$$

Moreover for $\left(M^{-1}, \ldots, M^{-1}\right) \in N_{\epsilon}(0)$, so E is nonempty. [show $N_{\epsilon}(x) \subset U(x)$]
WTS (countable) rationals in any real open set. Any real open set is the disjoint product of at most countable open intervals. Since $\mathbf{R} \cong(0,1)$, it suffices to prove this on the unit interval. Let $(a, b) \subset(0,1)$. Then $0<\frac{1}{M}<b-a<1, M \in \mathbf{N}$.

From this we can show $b-M^{-1}>a, a+M^{-1}<b \Longrightarrow a+M^{-1}-b+M^{-1}<$ $b-a,-(b-a)+2$ For any $x \in(a, b), x-a, b-x>0,2 x+b-a>0$ WTS $\exists \delta>0: N_{\delta}(x) \cap U_{x} \neq$ emptyset

THINGS WHICH ARE ACTUALLY WRONG

Let U, L be the open upper and open lower halves of \mathbf{R}^{k}, i.e., given $x=\left(x_{1}, \ldots, x_{n}\right),(0, \ldots, 0) \in$
$\mathbf{R}^{k},\left\{\begin{array}{ll}x_{1}>0 \Longrightarrow & x \in U \\ x_{1}<0 \Longrightarrow & x \in L \\ x_{1}=0 \Longrightarrow & x \notin U \cup L\end{array}\right.$. Then for $\delta>0,(\pm \delta, 0, \ldots, 0) \in N_{r}(0) \cap(A \subset$
$U) N_{r}(0) \cap(B \subset L), 0 \in \bar{U} \cap \bar{L}$ therefore by definition $(U \cap \bar{L}) \cap(\bar{U} \cap L)=\emptyset$.
We will show these definitions are equivalent.

