Does an odd perfect number exist ?

Hafsa ELIBRAHIMI

Claim that M is an odd perfect number
The prime factor decomposition of M is

$$
M=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} p_{3}{ }^{\alpha_{3}} \ldots . p_{r}{ }_{r}^{\alpha_{r}}
$$

where $p_{1}, p_{2}, p_{3}, \ldots, p_{r}$ are prime numbers
and $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots ., \alpha_{r}$ are natural numbers

Since M is an odd perfect number
Then $\quad M=1+K$
where K is the sum of all the divisors of M except 1 and M itself

We know that M is odd and 1 is odd
Thus K must be even (because odd + even = odd)
On the other hand, $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots ., \mathrm{p}_{\mathrm{r}} \neq 2$
(because M is odd)
Therefore, all the terms that constitute K are odd

Let H be the number of terms that constitute K must be even

Thus H is even (in order to have K even for example $5+3+1+7=16$ even)

We know that the number of divisors of M is
$\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right) \times\left(\alpha_{3}+1\right) \ldots \times\left(\alpha_{r}+1\right)$
Then $\mathrm{H}=\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right) \times\left(\alpha_{3}+1\right) \ldots \times\left(\alpha_{r}+1\right)-2$ (we remove 1 and M itself)

Since H is even and 2 is even
$\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right) \times\left(\alpha_{3}+1\right) \ldots \times\left(\alpha_{r}+1\right)$ must be even
(because odd - odd = even)
We conclude that :
At least one of ($\alpha_{i}+1$)must be even
Since 1 is odd then α_{i} must be odd
$>$ If an odd perfect number exist than he must have at least one odd exponent in his prime factor decomposition In contrast, if $\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right) \times\left(\alpha_{3}+1\right) \ldots \times\left(\alpha_{r}+1\right)$ is odd then all α_{i} are even (because 1 is odd)

Thus, the number can't be a perfect number For example :
$9=3^{2}$ can't be a perfect number
$9765625=5^{10}$ can't be a perfect number

