{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "# Equatorial geodesics in Kerr spacetime" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "%display latex" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "The spacetime manifold and Boyer-Lindquist coordinates:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 2, "metadata": { }, "output_type": "execute_result" } ], "source": [ "M = Manifold(4, 'M')\n", "X. = M.chart(r\"t r:(0,+oo) th:(0,pi):\\theta ph:(0,2*pi):\\phi\")\n", "X" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "The spacetime metric:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 3, "metadata": { }, "output_type": "execute_result" } ], "source": [ "g = M.lorentzian_metric('g')\n", "var('m, a', domain='real')\n", "rho2 = r^2 + (a*cos(th))^2\n", "Delta = r^2 -2*m*r + a^2\n", "g[0,0] = -(1-2*m*r/rho2)\n", "g[0,3] = -2*a*m*r*sin(th)^2/rho2\n", "g[1,1], g[2,2] = rho2/Delta, rho2\n", "g[3,3] = (r^2+a^2+2*m*r*(a*sin(th))^2/rho2)*sin(th)^2\n", "g.display()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 4, "metadata": { }, "output_type": "execute_result" } ], "source": [ "u = M.vector_field('u')\n", "var('eps', latex_name=r'\\varepsilon')\n", "var('ell', latex_name=r'\\ell')\n", "u[0] = ((r^2 + a^2*(1+2*m/r))*eps - 2*a*m/r*ell)/Delta\n", "u[1] = sqrt(eps^2 - 1 + 2*m/r - (ell^2-a^2*(eps^2-1))/r^2 \n", " + 2*m/r^3*(ell-a*eps)^2)\n", "u[3] = (2*a*m/r*eps + (1-2*m/r)*ell)/Delta\n", "u.display_comp()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 5, "metadata": { }, "output_type": "execute_result" } ], "source": [ "norm = g(u,u)\n", "norm.coord_function()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Value of $g(u,u)$ in the equatorial plane ($\\theta=\\frac{\\pi}{2}$):" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 6, "metadata": { }, "output_type": "execute_result" } ], "source": [ "norm.coord_function()(t,r,pi/2,ph)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 4-dimensional differentiable manifold M\n" ] } ], "source": [ "nabla = g.connection()\n", "print(nabla)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "The 4-acceleration vector $a = \\nabla_{u}\\, u$:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 8, "metadata": { }, "output_type": "execute_result" } ], "source": [ "Du = nabla(u)\n", "a = u.contract(0, Du, 1)\n", "a.set_name('a')\n", "a.display_comp()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Values of the 4-acceleration in the equatorial plane ($\\theta=\\frac{\\pi}{2}$):" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 9, "metadata": { }, "output_type": "execute_result" } ], "source": [ "a[0](t,r,pi/2,ph)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 10, "metadata": { }, "output_type": "execute_result" } ], "source": [ "a[1](t,r,pi/2,ph)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 11, "metadata": { }, "output_type": "execute_result" } ], "source": [ "a[2](t,r,pi/2,ph)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 12, "metadata": { }, "output_type": "execute_result" } ], "source": [ "a[3](t,r,pi/2,ph)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "The (non-zero and non-redundant) Christoffel symbols in Boyer-Lindquist coordinates:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "" ] }, "execution_count": 13, "metadata": { }, "output_type": "execute_result" } ], "source": [ "g.christoffel_symbols_display()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] } ], "metadata": { "kernelspec": { "display_name": "SageMath (stable)", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 0 }