{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# Vaidya-Lifshitz solution"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This Jupyter/SageMath \n",
"worksheet implements some computations of the article\n",
"- I. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon: *Analytic black branes in \n",
" Lifshitz-like backgrounds and thermalization*,\n",
" [arXiv:1601.06046](http://arxiv.org/abs/1601.06046)\n",
"\n",
"These computations are based on [SageManifolds](http://sagemanifolds.obspm.fr) (v0.9).\n",
"\n",
"The worksheet file (ipynb format) can be downloaded from [here](https://cloud.sagemath.com/projects/3edbca82-97d6-41b3-9b6f-d83ea06fc1e9/files/Vaidya-Lifshitz.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we set up the notebook to display mathematical objects using LaTeX formatting:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%display latex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Spacetime manifold and coordinates\n",
"\n",
"Let us declare the spacetime $M$ as a 5-dimensional manifold:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"M = Manifold(5, 'M')\n",
"print M"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We introduce coordinates of Eddington-Finkelstein type:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Chart (M, (v, x, y1, y2, r))"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X. = M.chart('v x y1:y_1 y2:y_2 r')\n",
"X"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The metric tensor:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"g = -e^(2*nu*r)*f(v, r) dv*dv + e^(nu*r) dv*dr + e^(2*nu*r) dx*dx + e^(2*r) dy1*dy1 + e^(2*r) dy2*dy2 + e^(nu*r) dr*dv"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g = M.lorentzian_metric('g')\n",
"nu = var('nu', latex_name=r'\\nu', domain='real')\n",
"ff = function('f')(v, r)\n",
"g[0,0] = -exp(2*nu*r)*ff\n",
"g[0,4] = exp(nu*r)\n",
"g[1,1] = exp(2*nu*r)\n",
"g[2,2] = exp(2*r)\n",
"g[3,3] = exp(2*r)\n",
"g.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The non-vanishing components of $g$:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"g_v,v = -e^(2*nu*r)*f(v, r) \n",
"g_v,r = e^(nu*r) \n",
"g_x,x = e^(2*nu*r) \n",
"g_y1,y1 = e^(2*r) \n",
"g_y2,y2 = e^(2*r) \n",
"g_r,v = e^(nu*r) "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g.display_comp()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A matrix view of the components:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[-e^(2*nu*r)*f(v, r) 0 0 0 e^(nu*r)]\n",
"[ 0 e^(2*nu*r) 0 0 0]\n",
"[ 0 0 e^(2*r) 0 0]\n",
"[ 0 0 0 e^(2*r) 0]\n",
"[ e^(nu*r) 0 0 0 0]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g[:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Curvature\n",
"\n",
"The Riemann tensor is"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensor field Riem(g) of type (1,3) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"Riem = g.riemann()\n",
"print Riem"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some component, e.g. $\\mathrm{Riem}^0_{\\ \\, 004}$:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-nu^2*e^(nu*r)*f(v, r) - 3/2*nu*e^(nu*r)*d(f)/dr - 1/2*e^(nu*r)*d^2(f)/dr^2"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Riem[0,0,0,4]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Ricci tensor:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Field of symmetric bilinear forms Ric(g) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"Ric = g.ricci()\n",
"print Ric"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Ric(g) = (2*(nu^2 + nu)*e^(2*nu*r)*f(v, r)^2 + (2*nu + 1)*e^(2*nu*r)*f(v, r)*d(f)/dr - 1/2*(nu + 2)*e^(nu*r)*d(f)/dv + 1/2*e^(2*nu*r)*f(v, r)*d^2(f)/dr^2) dv*dv + (-2*(nu^2 + nu)*e^(nu*r)*f(v, r) - (2*nu + 1)*e^(nu*r)*d(f)/dr - 1/2*e^(nu*r)*d^2(f)/dr^2) dv*dr + (-2*(nu^2 + nu)*e^(2*nu*r)*f(v, r) - nu*e^(2*nu*r)*d(f)/dr) dx*dx + (-2*(nu + 1)*e^(2*r)*f(v, r) - e^(2*r)*d(f)/dr) dy1*dy1 + (-2*(nu + 1)*e^(2*r)*f(v, r) - e^(2*r)*d(f)/dr) dy2*dy2 + (-2*(nu^2 + nu)*e^(nu*r)*f(v, r) - (2*nu + 1)*e^(nu*r)*d(f)/dr - 1/2*e^(nu*r)*d^2(f)/dr^2) dr*dv + (2*nu - 2) dr*dr"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ric.display()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Ric(g)_v,v = 2*(nu^2 + nu)*e^(2*nu*r)*f(v, r)^2 + (2*nu + 1)*e^(2*nu*r)*f(v, r)*d(f)/dr - 1/2*(nu + 2)*e^(nu*r)*d(f)/dv + 1/2*e^(2*nu*r)*f(v, r)*d^2(f)/dr^2 \n",
"Ric(g)_v,r = -2*(nu^2 + nu)*e^(nu*r)*f(v, r) - (2*nu + 1)*e^(nu*r)*d(f)/dr - 1/2*e^(nu*r)*d^2(f)/dr^2 \n",
"Ric(g)_x,x = -2*(nu^2 + nu)*e^(2*nu*r)*f(v, r) - nu*e^(2*nu*r)*d(f)/dr \n",
"Ric(g)_y1,y1 = -2*(nu + 1)*e^(2*r)*f(v, r) - e^(2*r)*d(f)/dr \n",
"Ric(g)_y2,y2 = -2*(nu + 1)*e^(2*r)*f(v, r) - e^(2*r)*d(f)/dr \n",
"Ric(g)_r,v = -2*(nu^2 + nu)*e^(nu*r)*f(v, r) - (2*nu + 1)*e^(nu*r)*d(f)/dr - 1/2*e^(nu*r)*d^2(f)/dr^2 \n",
"Ric(g)_r,r = 2*nu - 2 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ric.display_comp()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Ricci scalar:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field r(g) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"Rscal = g.ricci_scalar()\n",
"print Rscal"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"r(g): M --> R\n",
" (v, x, y1, y2, r) |--> -2*(3*nu^2 + 4*nu + 3)*f(v, r) - (5*nu + 4)*d(f)/dr - d^2(f)/dr^2"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Rscal.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Source model\n",
"Let us consider a model based on the following action, involving a dilaton scalar field $\\phi$ and a Maxwell 2-form $F$:\n",
"\n",
"$$ S = \\int \\left( R(g) + \\Lambda - \\frac{1}{2} \\nabla_m \\phi \\nabla^m \\phi - \\frac{1}{4} e^{\\lambda\\phi} F_{mn} F^{mn} + 8\\pi \\mathcal{L}_{\\rm shell} \\right) \\sqrt{-g} \\, \\mathrm{d}^5 x \\qquad\\qquad \\mbox{(1)}$$\n",
"\n",
"where $R(g)$ is the Ricci scalar of metric $g$, $\\Lambda$ is the cosmological constant, $\\lambda$ is the dilatonic coupling constant and $\\mathcal{L}_{\\rm shell}$ is the Lagrangian of some infalling shell of massless matter."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The dilaton scalar field\n",
"\n",
"We consider the following ansatz for the dilaton scalar field $\\phi$:\n",
"$$ \\phi = \\frac{1}{\\lambda} \\left( 4 r + \\ln\\mu \\right),$$\n",
"where $\\mu$ is a constant. "
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"phi: M --> R\n",
" (v, x, y1, y2, r) |--> (4*r + log(mu))/lamb"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('mu', latex_name=r'\\mu', domain='real')\n",
"var('lamb', latex_name=r'\\lambda', domain='real')\n",
"phi = M.scalar_field({X: (4*r + ln(mu))/lamb}, \n",
" name='phi', latex_name=r'\\phi')\n",
"phi.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The 1-form $\\mathrm{d}\\phi$ is"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1-form dphi on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"dphi = phi.differential()\n",
"print dphi"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"dphi = 4/lamb dr"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dphi.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The components of $\\mathrm{d}\\phi$ is the default frame of $M$ are"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[0, 0, 0, 0, 4/lamb]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dphi[:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The 2-form field\n",
"\n",
"We consider the following ansatz for $F$:\n",
"$$ F = \\frac{1}{2} q \\, \\mathrm{d}y_1\\wedge \\mathrm{d}y_2, $$\n",
"where $q$ is a constant. \n",
"\n",
"Let us first get the 1-forms $\\mathrm{d}y_1$ and $\\mathrm{d}y_2$:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Coordinate coframe (M, (dv,dx,dy1,dy2,dr))"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.coframe()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1-form dy1 on the 5-dimensional differentiable manifold M\n",
"1-form dy2 on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"(1-form dy1 on the 5-dimensional differentiable manifold M,\n",
" 1-form dy2 on the 5-dimensional differentiable manifold M)"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dy1 = X.coframe()[2]\n",
"dy2 = X.coframe()[3]\n",
"print dy1\n",
"print dy2\n",
"dy1, dy2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then we can form $F$ according to the above ansatz:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2-form F on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"F = 1/2*q dy1/\\dy2"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('q', domain='real')\n",
"F = q/2 * dy1.wedge(dy2)\n",
"F.set_name('F')\n",
"print F\n",
"F.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By construction, the 2-form $F$ is closed (since $q$ is constant):"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"dF = 0"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xder(F).display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us evaluate the square $F_{mn} F^{mn}$ of $F$:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"M --> R\n",
"(v, x, y1, y2, r) |--> 1/2*q^2*e^(-4*r)"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Fu = F.up(g)\n",
"F2 = F['_{mn}']*Fu['^{mn}'] # using LaTeX notations to denote contraction\n",
"print F2\n",
"F2.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We shall also need the tensor $\\mathcal{F}_{mn} := F_{mp} F_n^{\\ \\, p}$:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensor field of type (0,2) on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/4*q^2*e^(-2*r) dy1*dy1 + 1/4*q^2*e^(-2*r) dy2*dy2"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FF = F['_mp'] * F.up(g,1)['^p_n']\n",
"print FF\n",
"FF.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The tensor field $\\mathcal{F}$ is symmetric:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"True"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"FF == FF.symmetrize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Therefore, from now on, we set"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"FF = FF.symmetrize()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The infalling shell of massless particles\n",
"\n",
"Energy-momentum tensor of the infalling shell:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"T = T00(v, r) dv*dv"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dv = X.coframe()[0]\n",
"T = function('T00', latex_name='T_{00}')(v,r)*dv*dv\n",
"T.set_name('T')\n",
"T.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Einstein equation\n",
"\n",
"Let us first introduce (minus twice) the cosmological constant:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"Lamb"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"var('Lamb', latex_name=r'\\Lambda', domain='real')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the action (1), the field equation for the metric $g$ is\n",
"$$ R_{mn} + \\frac{\\Lambda}{3} \\, g - \\frac{1}{2}\\partial_m\\phi \\partial_n\\phi -\\frac{1}{2} e^{\\lambda\\phi} F_{mp} F^{\\ \\, p}_n + \\frac{1}{12} e^{\\lambda\\phi} F_{rs} F^{rs} \\, g_{mn} - 8\\pi T_{mn} = 0 \n",
"$$\n",
"We write it as\n",
"\n",
" EE == 0\n",
"\n",
"with `EE` defined by"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tensor field E of type (0,2) on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) - 1/2*exp(lamb*phi)*FF \\\n",
" + 1/12*exp(lamb*phi)*F2*g -8*pi*T\n",
"EE.set_name('E')\n",
"print EE"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"E_v,v = 2*(nu^2 + nu)*e^(2*nu*r)*f(v, r)^2 + (2*nu + 1)*e^(2*nu*r)*f(v, r)*d(f)/dr - 1/24*(mu*q^2 + 8*Lamb)*e^(2*nu*r)*f(v, r) - 1/2*(nu + 2)*e^(nu*r)*d(f)/dv + 1/2*e^(2*nu*r)*f(v, r)*d^2(f)/dr^2 - 8*pi*T00(v, r) \n",
"E_v,r = -2*(nu^2 + nu)*e^(nu*r)*f(v, r) - (2*nu + 1)*e^(nu*r)*d(f)/dr + 1/24*(mu*q^2 + 8*Lamb)*e^(nu*r) - 1/2*e^(nu*r)*d^2(f)/dr^2 \n",
"E_x,x = -2*(nu^2 + nu)*e^(2*nu*r)*f(v, r) - nu*e^(2*nu*r)*d(f)/dr + 1/24*(mu*q^2 + 8*Lamb)*e^(2*nu*r) \n",
"E_y1,y1 = -2*(nu + 1)*e^(2*r)*f(v, r) - 1/12*(mu*q^2 - 4*Lamb)*e^(2*r) - e^(2*r)*d(f)/dr \n",
"E_y2,y2 = -2*(nu + 1)*e^(2*r)*f(v, r) - 1/12*(mu*q^2 - 4*Lamb)*e^(2*r) - e^(2*r)*d(f)/dr \n",
"E_r,v = -2*(nu^2 + nu)*e^(nu*r)*f(v, r) - (2*nu + 1)*e^(nu*r)*d(f)/dr + 1/24*(mu*q^2 + 8*Lamb)*e^(nu*r) - 1/2*e^(nu*r)*d^2(f)/dr^2 \n",
"E_r,r = 2*(lamb^2*nu - lamb^2 - 4)/lamb^2 "
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EE.display_comp(only_nonredundant=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We note that `EE==0` leads to 5 independent equations:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"2*(nu^2 + nu)*e^(2*nu*r)*f(v, r)^2 + (2*nu + 1)*e^(2*nu*r)*f(v, r)*d(f)/dr - 1/24*(mu*q^2 + 8*Lamb)*e^(2*nu*r)*f(v, r) - 1/2*(nu + 2)*e^(nu*r)*d(f)/dv + 1/2*e^(2*nu*r)*f(v, r)*d^2(f)/dr^2 - 8*pi*T00(v, r)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq1 = EE[0,0]\n",
"eq1"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/24*mu*q^2 - 2*(nu^2 + nu)*f(v, r) - (2*nu + 1)*d(f)/dr + 1/3*Lamb - 1/2*d^2(f)/dr^2"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq2 = EE[0,4]/exp(nu*r)\n",
"eq2"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/24*mu*q^2 - 2*(nu^2 + nu)*f(v, r) - nu*d(f)/dr + 1/3*Lamb"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq3 = EE[1,1]/exp(2*nu*r)\n",
"eq3"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/12*mu*q^2 - 2*(nu + 1)*f(v, r) + 1/3*Lamb - d(f)/dr"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq4 = EE[2,2]/exp(2*r)\n",
"eq4"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"lamb^2*nu - lamb^2 - 4"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq5 = EE[4,4]*lamb^2/2\n",
"eq5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dilaton field equation\n",
"\n",
"First we evaluate $\\nabla_m \\nabla^m \\phi$:"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nab = g.connection()\n",
"print nab\n",
"nab"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"M --> R\n",
"(v, x, y1, y2, r) |--> 4*(2*(nu + 1)*f(v, r) + d(f)/dr)/lamb"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"box_phi = nab(nab(phi).up(g)).trace()\n",
"print box_phi\n",
"box_phi.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the action (1), the field equation for $\\phi$ is \n",
"$$ \\nabla_m \\nabla^m \\phi = \\frac{\\lambda}{4} e^{\\lambda\\phi} F_{mn} F^{mn}$$\n",
"We write it as\n",
"\n",
" DE == 0\n",
" \n",
"with `DE` defined by"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scalar field on the 5-dimensional differentiable manifold M\n"
]
}
],
"source": [
"DE = box_phi - lamb/4*exp(lamb*phi) * F2\n",
"print DE"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"M --> R\n",
"(v, x, y1, y2, r) |--> -1/8*(lamb^2*mu*q^2 - 64*(nu + 1)*f(v, r) - 32*d(f)/dr)/lamb"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DE.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence the dilaton field equation provides a 6th equation:"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-lamb^2*mu*q^2 + 64*(nu + 1)*f(v, r) + 32*d(f)/dr"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq6 = DE.coord_function()*8*lamb\n",
"eq6"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Maxwell equation\n",
"\n",
"From the action (1), the field equation for $F$ is \n",
"$$ \\nabla_m \\left( e^{\\lambda\\phi} F^{mn} \\right)= 0 $$\n",
"We write it as\n",
"\n",
" ME == 0\n",
" \n",
"with `ME` defined by"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vector field on the 5-dimensional differentiable manifold M\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"0"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ME = nab(exp(lamb*phi)*Fu).trace(0,2)\n",
"print ME\n",
"ME.display()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We get identically zero. Hence the Maxwell equation does not bring another equation to be solved."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Summary\n",
"\n",
"We have 6 equations to solve:"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"2*(nu^2 + nu)*e^(2*nu*r)*f(v, r)^2 + (2*nu + 1)*e^(2*nu*r)*f(v, r)*d(f)/dr - 1/24*(mu*q^2 + 8*Lamb)*e^(2*nu*r)*f(v, r) - 1/2*(nu + 2)*e^(nu*r)*d(f)/dv + 1/2*e^(2*nu*r)*f(v, r)*d^2(f)/dr^2 - 8*pi*T00(v, r)"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/24*mu*q^2 - 2*(nu^2 + nu)*f(v, r) - (2*nu + 1)*d(f)/dr + 1/3*Lamb - 1/2*d^2(f)/dr^2"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/24*mu*q^2 - 2*(nu^2 + nu)*f(v, r) - nu*d(f)/dr + 1/3*Lamb"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/12*mu*q^2 - 2*(nu + 1)*f(v, r) + 1/3*Lamb - d(f)/dr"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"lamb^2*nu - lamb^2 - 4"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
""
],
"text/plain": [
"-lamb^2*mu*q^2 + 64*(nu + 1)*f(v, r) + 32*d(f)/dr"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"eqs = [eq1, eq2, eq3, eq4, eq5, eq6]\n",
"for eq in eqs:\n",
" pretty_print(eq)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solutions\n",
"\n",
"Let us show that solutions exists for $\\nu=2$ and $\\nu=4$ with the following specific form of the blackening function:\n",
"\n",
"$$ f(v,r) = 1 - m(v) e^{-(2\\nu +2)r} $$\n",
" \n",
"To this aim, we declare"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"(v, r) |--> -e^(-2*(nu + 1)*r)*m(v) + 1"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fm(v,r) = 1 - function('m')(v)*exp(-(2*nu+2)*r)\n",
"fm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"and substitute this function for $f(v,r)$ in all the equations:"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/24*(192*pi*T00(v, r)*e^(nu*r + 2*r) - (mu*q^2 - 48*nu^2 + 8*Lamb - 48*nu)*e^(nu*r)*m(v) + (mu*q^2 - 48*nu^2 + 8*Lamb - 48*nu)*e^(3*nu*r + 2*r) - 12*(nu + 2)*D[0](m)(v))*e^(-nu*r - 2*r)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq1m = eq1.expr().substitute_function(f, fm).simplify_full()\n",
"eq1m"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-8*pi*T00(v, r)*e^(nu*r + 2*r) + 1/24*(mu*q^2 - 48*nu^2 + 8*Lamb - 48*nu)*e^(nu*r)*m(v) - 1/24*(mu*q^2 - 48*nu^2 + 8*Lamb - 48*nu)*e^(3*nu*r + 2*r) + 1/2*(nu + 2)*D[0](m)(v)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq1m = (eq1m * exp(nu*r+2*r)).simplify_full()\n",
"eq1m"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that in this expression $D[0](m)(v)$ stands for $\\mathrm{d}m/\\mathrm{d}v$."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/24*mu*q^2 - 2*nu^2 + 1/3*Lamb - 2*nu"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq2m = eq2.expr().substitute_function(f, fm).simplify_full()\n",
"eq2m"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"1/24*mu*q^2 - 2*nu^2 + 1/3*Lamb - 2*nu"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq3m = eq3.expr().substitute_function(f, fm).simplify_full()\n",
"eq3m"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-1/12*mu*q^2 + 1/3*Lamb - 2*nu - 2"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq4m = eq4.expr().substitute_function(f, fm).simplify_full()\n",
"eq4m"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"lamb^2*nu - lamb^2 - 4"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq5m = eq5.expr().substitute_function(f, fm).simplify_full()\n",
"eq5m"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-lamb^2*mu*q^2 + 64*nu + 64"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq6m = eq6.expr().substitute_function(f, fm).simplify_full()\n",
"eq6m"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"eqs = [eq1m, eq2m, eq3m, eq4m, eq5m, eq6m]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Solution for $\\nu = 2$"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[-8*pi*T00(v, r)*e^(4*r) + 1/24*(mu*q^2 + 8*Lamb - 288)*e^(2*r)*m(v) - 1/24*(mu*q^2 + 8*Lamb - 288)*e^(8*r) + 2*D[0](m)(v) == 0,\n",
" 1/24*mu*q^2 + 1/3*Lamb - 12 == 0,\n",
" 1/24*mu*q^2 + 1/3*Lamb - 12 == 0,\n",
" -1/12*mu*q^2 + 1/3*Lamb - 6 == 0,\n",
" lamb^2 - 4 == 0,\n",
" -lamb^2*mu*q^2 + 192 == 0]"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neqs = [eq.subs(nu=2).simplify_full() for eq in eqs]\n",
"[eq == 0 for eq in neqs]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us first search for a solution of all the equations but the first one:"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[1/24*mu*q^2 + 1/3*Lamb - 12 == 0,\n",
" 1/24*mu*q^2 + 1/3*Lamb - 12 == 0,\n",
" -1/12*mu*q^2 + 1/3*Lamb - 6 == 0,\n",
" lamb^2 - 4 == 0,\n",
" -lamb^2*mu*q^2 + 192 == 0]"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eqs2 = eqs[1:] # we skip eq1m\n",
"neqs = [eq.subs(nu=2).simplify_full() for eq in eqs2]\n",
"[eq == 0 for eq in neqs]"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[[lamb == -2, mu == 48/r1^2, Lamb == 30, q == r1], [lamb == 2, mu == 48/r2^2, Lamb == 30, q == r2]]"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we substitute the found solution in the first equation:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-8*pi*T00(v, r)*e^(4*r) + 2*D[0](m)(v)"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq = eq1m.subs({nu:2, Lamb:30, lamb:2, mu:48/q^2})\n",
"eq"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence, for any choice of $m(v)$, we get a solution with \n",
"$$\n",
"\\Lambda=30,\\quad \\lambda = \\pm 2, \\quad\\mu = \\frac{48}{q^2} \n",
"$$\n",
"and\n",
"$$\n",
" T_{00}(\\nu,r) = \\frac{1}{4\\pi e^{4 r}} \\frac{\\mathrm{d}m}{\\mathrm{d}v}\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Solution for $\\nu=4$"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[-8*pi*T00(v, r)*e^(6*r) + 1/24*(mu*q^2 + 8*Lamb - 960)*e^(4*r)*m(v) - 1/24*(mu*q^2 + 8*Lamb - 960)*e^(14*r) + 3*D[0](m)(v) == 0,\n",
" 1/24*mu*q^2 + 1/3*Lamb - 40 == 0,\n",
" 1/24*mu*q^2 + 1/3*Lamb - 40 == 0,\n",
" -1/12*mu*q^2 + 1/3*Lamb - 10 == 0,\n",
" 3*lamb^2 - 4 == 0,\n",
" -lamb^2*mu*q^2 + 320 == 0]"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neqs = [eq.subs(nu=4).simplify_full() for eq in eqs]\n",
"[eq == 0 for eq in neqs]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us first search for a solution of all the equations but the first one:"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[1/24*mu*q^2 + 1/3*Lamb - 40 == 0,\n",
" 1/24*mu*q^2 + 1/3*Lamb - 40 == 0,\n",
" -1/12*mu*q^2 + 1/3*Lamb - 10 == 0,\n",
" 3*lamb^2 - 4 == 0,\n",
" -lamb^2*mu*q^2 + 320 == 0]"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eqs2 = eqs[1:] # we skip eq1m\n",
"neqs = [eq.subs(nu=4).simplify_full() for eq in eqs2]\n",
"[eq == 0 for eq in neqs]"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"[[lamb == 2/3*sqrt(3), mu == 240/r3^2, Lamb == 90, q == r3], [lamb == -2/3*sqrt(3), mu == 240/r4^2, Lamb == 90, q == r4]]"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we substitute the found solution in the first equation:"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
"-8*pi*T00(v, r)*e^(6*r) + 3*D[0](m)(v)"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq = eq1m.subs({nu:4, Lamb:90, lamb:2/sqrt(3), mu:240/q^2})\n",
"eq"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence, for any choice of $m(v)$, we get a solution with \n",
"$$\n",
"\\Lambda=90,\\quad \\lambda = \\pm \\frac{2}{\\sqrt{3}}, \\quad\\mu = \\frac{240}{q^2} \n",
"$$\n",
"and\n",
"$$\n",
" T_{00}(\\nu,r) = \\frac{3}{8\\pi e^{6 r}} \\frac{\\mathrm{d}m}{\\mathrm{d}v}\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 6.10",
"language": "",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
},
"name": "Vaidya-Lifshitz.ipynb"
},
"nbformat": 4,
"nbformat_minor": 0
}