\qquad

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 7 questions for a total of 8 points.

1. (Lorentz contraction) In relativity theory, the length of an object, say a rocket, appears to an observer to depend on the speed at which the object is traveling with respect to the observer. If the observer measures the rocket's length as L_{0} at rest, then at speed v, the length will appear to be

$$
L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

This equation is the Lorentz contraction formula. Here, c is the speed of light in a vacuum, which is about $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$.
(a) (4 points) What happens to L as v increases?

Solution: As v increase, the value of L will approach zero. This means that the observable length of the rocket will seem to go to zero.
(b) (4 points) Find $\lim _{v \rightarrow c^{-}} L$.
\qquad
(c) Why was the left-hand limit needed in the limit?

Solution: The significance of the left-hand limit is that there is no known particle - let alone rocket - that can travel faster than the speed of light. Therefore, you can only approach c from numbers below it, i.e. from the left.
2. Let $f(x)=\sqrt{x+1}$. Find the largest $\delta>0$ such that $f(x) \in(2-\varepsilon, 2+\varepsilon)$, when $\varepsilon=0.1$.

Solution: Since we are given that $\varepsilon=0.1$, we know that $\sqrt{x+1} \in(2-0.1,2+0.1)$ or in the interval $(1.9,2.1)$. Using this information, which is an epsilon-band around 2 , we can find a punctured delta interval, that should be centered at 3, to correspond to this epsilon-band. Begin by solving for the lower epsilon value and the lower epsilon value.

$$
\begin{aligned}
& \text { Lower } x \text {-value } \\
& \sqrt{x+1}=1.9 \\
& x+1=3.61 \\
& x=2.61
\end{aligned}
$$

$$
\begin{aligned}
& \text { Upper } x \text {-value } \\
& \begin{aligned}
\sqrt{x+1} & =2.1 \\
x+1 & =4.41 \\
x & =3.41
\end{aligned}
\end{aligned}
$$

This means we have a the punctured delta interval of $(2.61,3) \cup(3,3.41)$. The distance between the two intervals gives two delta values $\delta_{1}=0.39, \delta_{2}=0.41$. To ensure the values stay within the given epsilon-band, we need to choose the minimum of the two. So, we say choose $\delta=0.39$.
3. Use epsilon-delta proofs of a limit to prove that $\lim _{x \rightarrow-11} \frac{x^{2}+6 x+5}{x+5}=-10$.

Solution: Proof. Given $\varepsilon>0$, choose $\delta=\boxed{\varepsilon}$, such that if $0<|x+11|<\delta$, then

$$
\left|\frac{x^{2}+6 x+5}{x+5}+10\right|=\left|\frac{(x+5)(x+1)}{(x+5)}+10\right|=|x+1+10|=|x+11|<\varepsilon .
$$

Therefore, when $\delta=\varepsilon$, if $0<|x+11|<\delta$, then $\left|\frac{x^{2}+6 x+5}{x+5}+10\right|<\varepsilon$.
4. Consider the function $g(x)=\left\{\begin{array}{ll}0, & x \leq 0 \\ \sin \left(\frac{1}{x}\right), & x>0\end{array}\right.$.
(a) Does $\lim _{x \rightarrow 0^{+}} g(x)$ exist? If so, what is it? If not, why not?

Solution: No, the limit as x approaches zero from the right does not exist because the function $\sin (1 / x)$ oscillates between -1 and 1 .
(b) Does $\lim _{x \rightarrow 0^{-}} g(x)$ exist? If so, what is it? If not, why not?

Solution: Yes, the limit as x approaches zero from the left does exist because the function is just $y=0$, for all values to the left of zero, but not at $x=0$.
(c) Does $\lim _{x \rightarrow 0} g(x)$ exist? If so, what is it? If not, why not?

Solution: No, since the left and right limits are not equal, this limit does not exist.
5. Graph a function that meets the following criteria:

- $\lim _{x \rightarrow-\infty} h(x)=-\infty$,
- $\lim _{x \rightarrow-1^{+}} h(x)=2$,
- $h(3)=0$,
- $\lim _{x \rightarrow-1^{-}} h(x)=-3$,
- $\lim _{x \rightarrow 3} h(x)=4$,
- $\lim _{x \rightarrow \infty} h(x)=-1$.

Solution: This is one particular example. There are many that would work.

6. Each of the following statements are false. Find a counterexample to each of the statements. Your counterexample may take many different forms, i.e. you may come up with an equation, provide a graph, or give a detailed explanation.
(a) For any function $f(x), \lim _{x \rightarrow c} f(x)=f(c)$.

Solution: This is only true for continuous functions. An example could be $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$. We know, from class, that this limit is 1 , but $\frac{\sin (0)}{0}$ is indeterminate.
(b) $\lim _{x \rightarrow \infty} \sin (x)=0$ because $\frac{-1+1}{2}=0$.

Solution: As $x \rightarrow \infty$ the value of $\sin (x)$ never approaches a single value. It alternates between -1 and 1 . This means that the limit does not exist.
(c) All limits of the form $\infty-\infty$ must go to zero.

Solution: Counterexample: $\lim _{x \rightarrow \infty}(\sqrt{x}-x)$ has the indeterminate form $\infty-\infty$, but the actual limit value is $-\infty$.
(d) If $\lim _{x \rightarrow c} f(x)=L_{1}$ and $\lim _{x \rightarrow L_{1}} g(x)=L_{2}$, then $\lim _{x \rightarrow c}(g \circ f)(x)=L_{2}$.

Solution: I'm still thinking about this one...
7. Calculate the following limits using algebra.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{3}+5 x^{2}-14 x}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{3}+5 x^{2}-14 x} & =\frac{(x-2)(x-2)}{x(x+7)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x-2}{x(x+7)} \\
& =\frac{2-2}{2(2+7)} \\
& =0
\end{aligned}
$$

(b) $\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x} \cdot \frac{1+\sqrt{x}}{1+\sqrt{x}} & =\lim _{x \rightarrow 1} \frac{1-x}{(1-x)(1+\sqrt{x})} \\
& =\lim _{x \rightarrow 1} \frac{1}{1+\sqrt{x}} \\
& =\frac{1}{1+\sqrt{1}} \\
& =\frac{1}{2}
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{x^{7}-11 x^{3}-5 x-2}{3 x-2 x^{2}-17 x^{11}+12}$

Solution: Since this is a rational functions where the power of the denominator is larger than the numerator, this limit goes to zero.
(d) $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{2 x}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (7 x)}{2 x} & =\lim _{x \rightarrow 0} \frac{7 \sin (7 x)}{7 \cdot(2 x)} \\
& =\lim _{x \rightarrow 0} \frac{7 \sin (7 x)}{2 \cdot(7 x)} \\
& =\frac{7}{2} \lim _{x \rightarrow 0} \frac{\sin (7 x)}{(7 x)} \\
& =\frac{7}{2} \cdot 1 \\
& =\frac{7}{2}
\end{aligned}
$$

(e) $\lim _{x \rightarrow 0} \frac{3 e^{x}-3}{3 e^{2 x}+9 e^{x}-12}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3 e^{x}-3}{3 e^{2 x}+9 e^{x}-12} & =\lim _{x \rightarrow 0} \frac{3\left(e^{x}-1\right)}{3\left(e^{x}+4\right)\left(e^{x}-1\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\left(e^{x}+4\right)} \\
& =\frac{1}{e^{0}+4} \\
& =\frac{1}{5}
\end{aligned}
$$

