\( % theorem \newenvironment{pf}{\textbf{Proof.}}{\rule{1ex}{1ex}} \newtheorem{qu}{Question} \newtheorem{thm}{Theorem} \newtheorem{rmk}{Remark} \newtheorem{go}{Goal} \newtheorem{df}{Definition} \newtheorem{prop}{Proposition} \newtheorem{mot}{Motivation} \newtheorem{ex}{Example} \lstnewenvironment{code}{}{} \newcommand{\nc}{\newcommand} %% env \nc{\env}[2]{ \begin{#1} #2 \end{#1} } \nc{\arr}[2]{ \begin{array}{#1} #2 \end{array} } \nc{\arrb}[2]{ \left\{ \begin{array}{#1} #2 \end{array} \right. } \nc{FTC}[3]{ \left[#3\right]^{#2}_{#1} } \nc{\bracs}[1]{ \left[#1\right] } \nc{\brac}[1]{ \left(#1\right) } \nc{\bracp}[1]{ \left\{#1\right\} } \nc{\intd}[4]{\int^{#2}_{#1}\left(#3\right) #4} % shortcut \nc{\Lra}{\Leftrightarrow} \nc{\Ra}{\Rightarrow} \nc{\La}{\Leftarrow} \nc{\C}{\mathbb{C}} \nc{\R}{\mathbb{R}} \nc{\Fc}{\mathcal{C}} \nc{\bds}{\boldsymbol} \nc{\ds}{\displaystyle} % begin end \nc{\bit}{\begin{itemize}} \nc{\eit}{\end{itemize}} \nc{\bcode}{\begin{code}} \nc{\ecode}{\end{code}} \nc{\bsage}{\begin{sageblock}} \nc{\esage}{\end{sageblock}} %pic \nc{\pic}{\includegraphics} \nc{\svg}{\includesvg} \nc{\pica}{\includegraphics[width=100px,height=100px]} \nc{\picb}{\includegraphics[width=150px,height=150px]} \nc{\vs}{\vspace} \nc{\tbf}{\textbf} %arrow \nc{\upa}{\nearrow} \nc{\downa}{\searrow} \nc{\upw}{\rcurvearrowright} \nc{\downw}{\curvearrowright} \)

MA441- LEC 4 - 1.6 Calculating limits using the limit Laws

Goal

  • Limit Laws and their restrictions

Limit Laws 1-5

Suppose \(c\) is a constant and the limits \[\lim_{x\to a} f(x)~and~\lim_{x\to a} g(x)\] exist. Then

  1. \(\displaystyle\lim_{x\to a} [f(x)+g(x)]=\lim_{x\to a} f(x)+\lim_{x\to a} g(x)\)

  2. \(\displaystyle\lim_{x\to a} [f(x)-g(x)]=\lim_{x\to a} f(x)-\lim_{x\to a} g(x)\)

  3. \(\displaystyle\lim_{x\to a} [ c\cdot g(x)]=c \cdot \lim_{x\to a} g(x)\)

  4. \(\displaystyle\lim_{x\to a} [f(x) \cdot g(x)]=\lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)\)

  5. \(\displaystyle\lim_{x\to a} \frac{f(x)}{g(x)}=\frac{\ds \lim_{x\to a} f(x)}{\ds \lim_{x\to a} g(x)}~if~\lim_{x\to a} g(x)\neq0\)

Remark

Do not forget \(\displaystyle\lim_{x\to a} g(x)\neq0\) for law 5.


\[\displaystyle\lim_{x\to a} \frac{f(x)}{g(x)}=\frac{\ds \lim_{x\to a} f(x)}{\ds \lim_{x\to a} g(x)}~if~\lim_{x\to a} g(x)\neq0\]


One-sided limits also have similar rules.

Example 1

Using the Limit Laws and the graphs of \(f\) and \(g\) to evaluate the following limits, if they exists. If it does not exists, check the infinite limits.

  • \(\displaystyle\lim_{x\to -2} [f(x)+5g(x)]\), \(\displaystyle\lim_{x\to 1} [f(x)g(x)]\)
  • \(\displaystyle\lim_{x\to 2^-} \frac{f(x)}{g(x)},~\lim_{x\to 2^+} \frac{f(x)}{g(x)}\)

For (c).

Since \(\lim_{x\to 2} f(x)\approx 1.5\neq0\) and \( \lim_{x\to 2} g(x)=0\),

it may give an infinite limit. So we need to check one-sided limits.


If \( x ~< 2 \) and \( x \) is very close to \(2\), \(f(x)~>0,~g(x)<0\).

\[ \lim_{x\to 2^-} \frac{f(x)}{g(x)}=-\infty \]


If \(x>2\) and \(x\) is very close to \( 2\), \(f(x)>0,~g(x)>0\). \[ \lim_{x\to 2^+} \frac{f(x)}{g(x)}=+\infty \]

Example 2.

Let \(\displaystyle\lim_{x\to 1^-} f(x)=2,~\lim_{x\to 1^+} f(x)=-1\) \(,~\lim_{x\to 1^-} g(x)=-3, ~\lim_{x\to 1^+} g(x)=0\).


Find \[\displaystyle\lim_{x\to 1} [f(x)+g(x)]\]

Limit Laws 6-11

6. \(\displaystyle\lim_{x\to a} [f(x)]^n=[\lim_{x\to a} f(x)]^n\) when \(n\) is a positive integer.
7. \(\displaystyle\lim_{x\to a} c=c\)
8. \(\displaystyle\lim_{x\to a} x=a\)
9. \(\displaystyle\lim_{x\to a} x^n =a^n\) when \(n\) is a positive integer.
10. \(\displaystyle\lim_{x\to a} \sqrt[n]{x}=\sqrt[n]{a}\) when \(n\) is a positive integer.
[ If \(n\) is even, we assume \(a>0\)]

11. \(\displaystyle\lim_{x\to a} \sqrt[n]{f(x)}=\sqrt[n]{\lim_{x\to a} f(x)}\) when \(n\) is a positive integer.
[ If \(n\) is even, we assume \(\lim_{x\to a} f(x) ~>0\)]

Direct substitution Property

Let \(f\) is a polynomial or a rational function or radical function.

If a is in the interior of domain of \(f\),

\[ \lim_ {x\to a} f(x)=f(a) \]

If \(a\) is in the boundary of the domain,

\[ \lim_ {x\to a^{\pm}} f(x)=f(a) \] depending on the side of boundary.

(Namely, \(f(x)\) is continuous on the domain.)


Ex. \(f(x)=\sqrt{x}\) and \(Domain(f)=[0,\infty)\)


\[ \lim_ {x\to a}f(x)=f(0)=0,~for~a>0\]

\[ \lim_ {x\to 0^{+}}f(x)=f(0)=0\]

Example 3

\[ \lim_ {x\to 5} (2x^2-3x+4) \]

\[ \lim_ {x\to -2} \frac{x^3+2x^2-1}{5-3x} \]

Limit doesn't depends on finite many values.

If \( f(x)=g(x) \) when \( x\neq a\), then

\[ \lim_ {x \to a} f(x)=\lim_{x\to a} g(x) \]

if the limits exist.


Example 4.

\[ \lim_ {h\to 0} \frac{(3+h)^2-9}{h} \]

Example 5.

\[ \lim_ {t\to 0} \frac{\sqrt{t^2+9}-3}{t^2} \]