I think there are two definition about convex, one for functions and one for sets. The first question is talking about "functions" are convex; while the second and the third questions are talking about sets.

Before we start, here is some background. Suppose u and v are two points in a space (this includes lines for 1 d , planes for 2 d , and spaces for 3 d). Let $0 \leq t \leq 1$. The formula $w=t u+(1-t) v$ is a point w on the line between u and v, with the property that

$$
|w-u|:|w-v|=1-t: t
$$

For example, $u=(1,2), v=(4,1)$, and $t=\frac{2}{3}$. Then

$$
w=t u+(1-t) v=\left(\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 4, \frac{2}{3} \cdot 2+\frac{1}{3} \cdot 1\right)=\left(2, \frac{5}{3}\right)
$$

In particular, when $t=\frac{1}{2}, w$ is the middle point.

Question 1 Starting with the first question. A function f is called convex if it has the property

$$
f(w) \leq t f(u)+(1-t) f(v)
$$

for all u, v, t, and $w=t u+(1-t) v$. This basically means the function is having a mouth facing up. For example, $f(x)=x^{2}$ is a parabola, which is convex; in
contrast, $f(x)=-x^{2}$ has the mouth facing down, so it is not convex. Also, a function like $f(x)=\sin x$ is oscilating, so it is not convex either.

For the first question, you need to prove that

$$
F(t u+(1-t) v) \leq t F(u)+(1-t) F(v)
$$

for all possible u and v. To do this, you may use the fact that $f_{1}, f_{2}, \ldots, f_{m}$ are all convex. Example of the proof is provided below.

Proof. Let $u, v \in \mathbb{R}^{n}$. Then

$$
f_{i}(t u+(1-t) v) \leq t f_{i}(u)+(1-t) f_{i}(v)
$$

for all i, since f_{i} 's are convex. Also, taking the maximum preserve the inequality, so ...

Question 2 and 3 A set X is called convex if for any two point $u, v \in X$, $t u+(1-t) v, 0 \leq t \leq 1$, is also a point in X. This is a formal definition, but intuitively what it mean is as follow: for any two points $x, y \in X$, the segment connecting u and v is also lying in X. For example, a disc is convex; however, a circle is not, since circle does not contain the inner part.

