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P R I M E S

What is Riemann’s Hypothesis?

Prime numbers are beautiful, mysterious, and beguiling mathematical
objects. The mathematician Bernhard Riemann made a celebrated con-
jecture about primes in 1859, the so-called Riemann Hypothesis, which
remains to be one of the most important unsolved problems in mathe-
matics. Through the deep insights of the authors, this book introduces
primes and explains the Riemann Hypothesis.

Students with minimal mathematical background and scholars alike
will enjoy this comprehensive discussion of primes. The first part of the
book will inspire the curiosity of a general reader with an accessible
explanation of the key ideas. The exposition of these ideas is generously
illuminated by computational graphics that exhibit the key concepts
and phenomena in enticing detail. Readers with more mathematical
experience will then go deeper into the structure of primes and see how
the Riemann Hypothesis relates to Fourier analysis using the vocabu-
lary of spectra. Readers with a strong mathematical background will be
able to connect these ideas to historical formulations of the Riemann
Hypothesis.

Barry Mazur is Gerhard Gade University Professor of Mathematics at
Harvard University. He is the author of Imagining Numbers (particularly
the square root of minus fifteen) and coeditor, with Apostolos Doxiadis,
of Circles Disturbed: The Interplay of Mathematics and Narrative.

William Stein is Professor of Mathematics at the University of
Washington. Author of Elementary Number Theory: Primes, Congru-
ences, and Secrets: A Computational Approach, he is also the founder
of the Sage mathematical software project.
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Preface

The Riemann Hypothesis is one of the great unsolved problems of mathe-
matics, and the reward of $1,000,000 of Clay Mathematics Institute prize money
awaits the person who solves it. But – with or without money – its resolution is
crucial for our understanding of the nature of numbers.

There are several full-length books recently published, written for a general
audience, that have the Riemann Hypothesis as their main topic. A reader of
these books will get a fairly rich picture of the personalities engaged in the pur-
suit, and of related mathematical and historical issues.1

This is not the mission of the book that you now hold in your hands. We
aim – instead – to explain, in as direct a manner as possible and with the least
mathematical background required, what this problem is all about and why it
is so important. For even before anyone proves this hypothesis to be true (or
false!), just getting familiar with it, and with some of the ideas behind it, is
exciting. Moreover, this hypothesis is of crucial importance in a wide range of
mathematical fields; for example, it is a confidence-booster for computational
mathematics: even if the Riemann Hypothesis is never proved, assuming its
truth (and that of closely related hypotheses) gives us an excellent sense of how
long certain computer programs will take to run, which, in some cases, gives us
the assurance we need to initiate a computation that might take weeks or even
months to complete.

Here is how the Princeton mathematician Peter Sarnak describes the broad
impact the Riemann Hypothesis has had2:

“The Riemann hypothesis is the central problem and it implies many,
many things. One thing that makes it rather unusual in mathematics
today is that there must be over five hundred papers – somebody should

1 See, e.g., The Music of the Primes by Marcus du Sautoy (2003) and Prime Obsession: Bern-
hard Riemann and the Greatest Unsolved Problem in Mathematics by John Derbyshire
(2003).

2 See page 222 of The Riemann hypothesis: the greatest unsolved problem in mathematics
by Karl Sabbagh (2002).

vii
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viii Preface

Figure 0.1. Peter Sarnak

go and count – which start ‘Assume the Riemann hypothesis3,’ and the
conclusion is fantastic. And those [conclusions] would then become
theorems . . . With this one solution you would have proven five hundred
theorems or more at once.”

So, what is the Riemann Hypothesis? Below is a first description of what it is
about. The task of our book is to develop the following boxed paragraph into
a fuller explanation and to convince you of the importance and beauty of the
mathematics it represents. We will be offering, throughout our book, a number
of different – but equivalent – ways of precisely formulating this hypothesis (we
display these in boxes). When we say that two mathematical statements are
“equivalent” we mean that, given the present state of mathematical knowledge,
we can prove that if either one of those statements is true, then the other is true.
The endnotes will guide the reader to the relevant mathematical literature.

What sort of Hypothesis is the Riemann Hypothesis?

Consider the seemingly innocuous series of questions:! How many prime numbers (2, 3, 5, 7, 11, 13, 17, . . .) are there less than
100?! How many less than 10,000?! How many less than 1,000,000?

More generally, how many primes are there less than any given number
X ?

3 Technically, a generalized version of the Riemann hypothesis (see Chapter 38 below).
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Preface ix

Figure 0.2. Raoul Bott (1923–2005)

Riemann proposed, a century and half ago, a strikingly simple-to-describe
“very good approximation” to the number of primes less than a given number
X . We now see that if we could prove this Hypothesis of Riemann we would
have the key to a wealth of powerful mathematics. Mathematicians are eager
to find that key.

The mathematician Raoul Bott – in giving advice to a student – once said that
whenever one reads a mathematics book or article, or goes to a math lecture,
one should aim to come home with something very specific (it can be small,
but should be specific) that has application to a wider class of mathematical
problems than was the focus of the text or lecture. If we were to suggest some
possible specific items to come home with, after reading our book, three key
phrases – prime numbers, square-root accurate, and spectrum – would head
the list. As for words of encouragement to think hard about the first of these, i.e.,
prime numbers, we can do no better than to quote a paragraph of Don Zagier’s
classic 12-page exposition, The First 50 Million Prime Numbers:

“There are two facts about the distribution of prime numbers of which I
hope to convince you so overwhelmingly that they will be permanently
engraved in your hearts. The first is that, [they are] the most arbitrary
and ornery objects studied by mathematicians: they grow like weeds
among the natural numbers, seeming to obey no other law than that of
chance, and nobody can predict where the next one will sprout. The sec-
ond fact is even more astonishing, for it states just the opposite: that the

William Stein
 Page ix: The picture of Raoul is mis-positioned and splits the box. This makes no sense. Why not interchange the pic of Raoul and the blue box below it?   Even better, get both boxes on the same page, or at the very least have a "(continued on the next page)"parenthetical assertion in the box on page viii?
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x Preface

Figure 0.3. Don Zagier

prime numbers exhibit stunning regularity, that there are laws govern-
ing their behavior, and that they obey these laws with almost military
precision.”

Mathematics is flourishing. Each year sees new exciting initiatives that
extend and sharpen the applications of our subject, new directions for deep
exploration – and finer understanding – of classical as well as very contempo-
rary mathematical domains. We are aided in such explorations by the develop-
ment of more and more powerful tools. We see resolutions of centrally impor-
tant questions. And through all of this, we are treated to surprises and dramatic
changes of viewpoint; in short: marvels.

And what an array of wonderful techniques allow mathematicians to do
their work: framing definitions; producing constructions; formulating analogies
relating disparate concepts, and disparate mathematical fields; posing conjec-
tures, that cleanly shape a possible way forward; and, the keystone: providing
unassailable proofs of what is asserted, the idea of doing such a thing being
itself one of the great glories of mathematics.

Number theory has its share of this bounty. Along with all these modes of
theoretical work, number theory also offers the pure joy of numerical experi-
mentation, which – when it is going well – allows you to witness the intricacy of
numbers and profound inter-relations that cry out for explanation. It is strik-
ing how little you actually have to know in order to appreciate the revelations
offered by numerical exploration.

Our book is meant to be an introduction to these pleasures. We take an
experimental view of the fundamental ideas of the subject buttressed by
numerical computations, often displayed as graphs. As a result, our book is
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Preface xi

profusely illustrated, containing 131 figures, diagrams, and pictures that
accompany the text.4

There are few mathematical equations in Part I. This first portion of our book
is intended for readers who are generally interested in, or curious about, math-
ematical ideas, but who may not have studied any advanced topics. Part I is
devoted to conveying the essence of the Riemann Hypothesis and explaining
why it is so intensely pursued. It requires a minimum of mathematical knowl-
edge, and does not, for example, use calculus, although it would be helpful to
know – or to learn on the run – the meaning of the concept of function. Given
its mission, Part I is meant to be complete, in that it has a beginning, middle,
and end. We hope that our readers who only read Part I will have enjoyed the
excitement of this important piece of mathematics.

Part II is for readers who have taken at least one class in calculus, possibly a
long time ago. It is meant as a general preparation for the type of Fourier anal-
ysis that will occur in the later parts. The notion of spectrum is key.

Part III is for readers who wish to see, more vividly, the link between the
placement of prime numbers and (what we call there) the Riemann spectrum.

Part IV requires some familiarity with complex analytic functions, and
returns to Riemann’s original viewpoint. In particular it relates the “Riemann
spectrum” that we discuss in Part III to the nontrivial zeroes of the Riemann
zeta function. We also provide a brief sketch of the more standard route taken
by published expositions of the Riemann Hypothesis.

The end-notes are meant to link the text to references, but also to provide
more technical commentary with an increasing dependence on mathemati-
cal background in the later chapters. References to the end notes will be in
brackets.

We wrote our book over the past decade, but devoted only one week to it
each year (a week in August). At the end of our work-week for the book, each
year, we put our draft (mistakes and all) on line to get response from readers.5

We therefore accumulated much important feedback, corrections, and requests
from readers.6 We thank them infinitely.

4 We created the figures using the free SageMath software (see http://www.sagemath
.org). Complete source code is available, which can be used to recreate every dia-
gram in this book (see http://wstein.org/rh). More adventurous readers can try
to experiment with the parameters for the ranges of data illustrated, so as to get an
even more vivid sense of how the numbers “behave.” We hope that readers become
inspired to carry out numerical experimentation, which is becoming easier as mathe-
matical software advances.

5 See http://library.fora.tv/2014/04/25/Riemann_Hypothesis_The_
Million_Dollar_Challenge which is a lecture – and Q & A – about the composition
of this book.

6 Including Dan Asimov, Bret Benesh, Keren Binyaminov, Harald Bögeholz, Louis-
Philippe Chiasson, Keith Conrad, Karl-Dieter Crisman, Nicola Dunn, Thomas Egense,
Bill Gosper, Andrew Granville, Shaun Griffith, Michael J. Gruber, Robert Harron, William
R. Hearst III, David Jao, Fredrik Johansson, Jim Markovitch, David Mumford, James
Propp, Andrew Solomon, Dennis Stein, and Chris Swenson.
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1
Thoughts About Numbers:
Ancient, Medieval, and Modern

If we are to believe the ancient Greek philosopher Aristotle, the early Pythagore-
ans thought that the principles governing Number are “the principles of all
things,” the concept of Number being more basic than earth, air, fire, or water,
which were according to ancient tradition the four building blocks of matter. To
think about Number is to get close to the architecture of “what is.”

So, how far along are we in our thoughts about numbers?

Figure 1.1. René Descartes (1596–1650)

The French philosopher and mathematician René Descartes, almost four
centuries ago, expressed the hope that there soon would be “almost noth-
ing more to discover in geometry.” Contemporary physicists dream of a final

3
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4 Primes: What is Riemann’s Hypothesis?

Figure 1.2. Don Quixote and “his” Dulcinea del Toboso

theory.1 But despite its venerability and its great power and beauty, the pure
mathematics of numbers may still be in the infancy of its development,
with depths to be explored as endless as the human soul, and never a final
theory.

Numbers are obstreperous things. Don Quixote encountered this when he
requested that the “bachelor” compose a poem to his lady Dulcinea del Toboso,
the first letters of each line spelling out her name. The “bachelor” found2

“a great difficulty in their composition because the number of letters in
her name was 17, and if he made four Castilian stanzas of four octo-
syllabic lines each, there would be one letter too many, and if he made
the stanzas of five octosyllabic lines each, the ones called décimas or
redondillas, there would be three letters too few…”

“It must fit in, however you do it,” pleaded Quixote, not willing to grant the
imperviousness of the number 17 to division.

Seventeen is indeed a prime number: there is no way of factoring it as the
product of smaller numbers, and this accounts – people tell us – for its occur-
rence in some phenomena of nature, as when the seventeen-year cicadas all
emerged to celebrate a “reunion” of some sort in our fields and valleys.

Prime numbers, despite their primary position in our modern understand-
ing of numbers, were not specifically doted over in the ancient literature before
Euclid, at least not in the literature that has been preserved. Primes are men-
tioned as a class of numbers in the writings of Philolaus (a predecessor of Plato);

1 See Weinberg’s book Dreams of a Final Theory: The Search for the Fundamental Laws of
Nature, by Steven Weinberg (New York: Pantheon Books, 1992).

2 See Chapter IV of the Second Part of the Ingenious Gentleman Don Quixote of La
Mancha.
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Thoughts About Numbers 5

Figure 1.3. Cicadas emerge every 17 years

they are not mentioned specifically in the Platonic dialogues, which is surpris-
ing given the intense interest Plato had in mathematical developments; and
they make an occasional appearance in the writings of Aristotle, which is not
surprising, given Aristotle’s emphasis on the distinction between the composite
and the incomposite. “The incomposite is prior to the composite,” writes Aris-
totle in Book 13 of the Metaphysics.

Prime numbers do occur, in earnest, in Euclid’s Elements!

Figure 1.4. Euclid

There is an extraordinary wealth of established truths about whole numbers;
these truths provoke sheer awe for the beautiful complexity of prime num-
bers. But each of the important new discoveries we make gives rise to a further
richness of questions, educated guesses, heuristics, expectations, and unsolved
problems.
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2 What are Prime Numbers?

Primes as atoms. To begin from the beginning, think of the operation of multi-
plication as a bond that ties numbers together: the equation 2 × 3 = 6 invites
us to imagine the number 6 as (a molecule, if you wish) built out of its smaller
constituents 2 and 3. Reversing the procedure, if we start with a whole number,
say 6 again, we may try to factor it (that is, express it as a product of smaller
whole numbers) and, of course, we would eventually, if not immediately, come
up with 6 = 2 × 3 and discover that 2 and 3 factor no further; the numbers 2
and 3, then, are the indecomposable entities (atoms, if you wish) that comprise
our number.

Figure 2.1. The number 6 = 2 × 3

By definition, a prime number (colloquially, a prime) is a whole number,
bigger than 1, that cannot be factored into a product of two smaller whole num-
bers. So, 2 and 3 are the first two prime numbers. The next number along the
line, 4, is not prime, for 4 = 2 × 2; the number after that, 5, is. Primes are, multi-
plicatively speaking, the building blocks from which all numbers can be made.
A fundamental theorem of arithmetic tells us that any number (bigger than 1)
can be factored as a product of primes, and the factorization is unique except
for rearranging the order of the primes.

For example, if you try to factor 12 as a product of two smaller numbers –
ignoring the order of the factors – there are two ways to begin to do this:

12 = 2 × 6 and 12 = 3 × 4

6
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What are Prime Numbers? 7

But neither of these ways is a full factorization of 12, for both 6 and 4 are
not prime, so can be themselves factored, and in each case after changing the
ordering of the factors we arrive at:

12 = 2 × 2 × 3.

If you try to factor the number 300, there are many ways to begin:

300 = 30 × 10 or 300 = 6 × 50

and there are various other starting possibilities. But if you continue the factor-
ization (“climbing down” any one of the possible “factoring trees”) to the bot-
tom, where every factor is a prime number as in Figure 2.2, you always end up
with the same collection of prime numbers1:

300 = 22 × 3 × 52.

Figure 2.2. Factor trees that illustrate the factorization of 300 as a product of
primes.

Figure 2.3. Factorization tree for the product of the primes up to 29.

The Riemann Hypothesis probes the question: how intimately can we
know prime numbers, those atoms of multiplication? Prime numbers are an

1 See Section 1.1 of Stein’s Elementary Number Theory: Primes, Congruences, and Secrets
(2008) athttp://wstein.org/ent/ for a proof of the “fundamental theorem of arith-
metic”, which asserts that every positive whole number factors uniquely as a product of
primes.
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8 Primes: What is Riemann’s Hypothesis?

important part of our daily lives. For example, often when we visit a website
and purchase something online, prime numbers having hundreds of decimal
digits are used to keep our bank transactions private. This ubiquitous use to
which giant primes are put depends upon a very simple principle: it is much
easier to multiply numbers together than to factor them. If you had to factor,
say, the number 391 you might scratch your head for a few minutes before dis-
covering that 391 is 17 × 23. But if you had to multiply 17 by 23 you would do
it straightaway. Offer two primes, say, P and Q each with a few hundred dig-
its, to your computing machine and ask it to multiply them together: you will
get their product N = P × Q with its hundreds of digits in about a microsec-
ond. But present that number N to any current desktop computer, and ask it to
factor N , and the computer will (almost certainly) fail to do the task. See [1] and
[2].

The safety of much encryption depends upon this “guaranteed” failure!2

If we were latter-day number-phenomenologists we might revel in the dis-
covery and proof that

p = 243,112,609 − 1 = 3164702693 . . . . . . (millions of digits) . . . . . . 6697152511

is a prime number, this number having 12,978,189 digits! This prime, which
was discovered on August 23, 2008 by the GIMPS project,3 is the first prime ever
found with more than ten million digits, though it is not the largest prime cur-
rently known.

Now 243,112,609 − 1 is quite a hefty number! Suppose someone came up to you
saying “surely p = 243,112,609 − 1 is the largest prime number!” (which it is not).
How might you convince that person that he or she is wrong without explicitly
exhibiting a larger prime? [3]

Here is a neat – and, we hope, convincing – strategy to show there are prime
numbers larger than p = 243,112,609 − 1. Imagine forming the following humon-
gous number: let M be the product of all prime numbers up to and includ-
ing p = 243,11,2609 − 1. Now go one further than M by taking the next number
N = M + 1.

OK, even though this number N is wildly large, it is either a prime number
itself – which would mean that there would indeed be a prime number larger
than p = 243,112,609 − 1, namely N ; or in any event it is surely divisible by some
prime number, call it P.

Here, now, is a way of seeing that this P is bigger than p: Since every prime
number smaller than or equal to p divides M , these prime numbers cannot
divide N = M + 1 (since they divide M evenly, if you tried to divide N = M + 1
by any of them you would get a remainder of 1). So, since P does divide N it
must not be any of the smaller prime numbers: P is therefore a prime number
bigger than p = 243,112,609 − 1.

2 Nobody has ever published a proof that there is no fast way to factor integers. This is an
article of “faith” among some cryptographers.

3 The GIMPS project website is http://www.mersenne.org/.
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What are Prime Numbers? 9

This strategy, by the way, is not very new: it is, in fact, well over two thou-
sand years old, since it already occurred in Euclid’s Elements. The Greeks did
know that there are infinitely many prime numbers and they showed it via the
same method as we showed that our p = 243,112,609 − 1 is not the largest prime
number.

Here is the argument again, given very succinctly: Given primes p1, . . . , pm,
let n = p1 p2 · · · pm + 1. Then n is divisible by some prime not equal to any pi,
so there are more than m primes.

You can think of this strategy as a simple game that you can play. Start with
the bag of prime numbers that contains just the two primes 2 and 3. Now each
“move” of the game consists of multiplying together all the primes you have
in your bag to get a number M , then adding 1 to M to get the larger number
N = M + 1, then factoring N into prime number factors, and then including
all those new prime numbers in your bag. Euclid’s proof gives us that we will –
with each move of this game – be finding more prime numbers: the contents of
the bag will increase. After, say, a million moves our bag will be guaranteed to
contain more than a million prime numbers.

For example, starting the game with your bag containing only one prime
number 2, here is how your bag grows with successive moves of the game:

{2}
{2, 3}
{2, 3, 7}
{2, 3, 7, 43}
{2, 3, 7, 43, 13, 139}
{2, 3, 7, 43, 13, 139, 3263443}
{2, 3, 7, 43, 13, 139, 3263443, 547, 607, 1033, 31051}
{2, 3, 7, 43, 13, 139, 3263443, 547, 607, 1033, 31051, 29881, 67003,

9119521, 6212157481}
etc.4

Though there are infinitely many primes, explicitly finding large primes is a
major challenge. In the 1990s, the Electronic Frontier Foundation http://www
.eff.org/awards/coop offered a $100,000 cash reward to the first group to
find a prime with at least 10,000,000 decimal digits (the group that found the
record prime p above won this prize5), and offers another $150,000 cash prize
to the first group to find a prime with at least 100,000,000 decimal digits.

The number p = 243,112,609 − 1 was for a time the largest prime known, where
by “know” we mean that we know it so explicitly that we can compute things

4 The sequence of prime numbers we find by this procedure is discussed in more detail
with references in the Online Encyclopedia of Integer Sequences http://oeis.org/
A126263.

5 See http://www.eff.org/press/archives/2009/10/14-0. Also the 46th
Mersenne prime was declared by Time Magazine to be one of the top 50 best “inven-
tions” of 2008: http://www.time.com/time/specials/packages/article/0,
28804,1852747_1854195_1854157,00.html.
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10 Primes: What is Riemann’s Hypothesis?

about it. For example, the last two digits of p are both 1 and the sum of the digits
of p is 58,416,637. Of course p is not the largest prime number since there are
infinitely many primes, e.g., the next prime q after p is a prime. But there is no
known way to efficiently compute anything interesting about q. For example,
what is the last digit of q in its decimal expansion?
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3 “Named” Prime Numbers

Prime numbers come in all sorts of shapes, some more convenient to deal with
than others. For example, the number we have been talking about,

p = 243,112,609 − 1,

is given to us, by its very notation, in a striking form; i.e., one less than a power
of 2. It is no accident that the largest “currently known” prime number has such
a form. This is because there are special techniques we can draw on to show
primality of a number, if it is one less than a power of 2 and – of course – if
it also happens to be prime. The primes of that form have a name, Mersenne
Primes, as do the primes that are one more than a power of 2, those being called
Fermat Primes. [4]

Here are two exercises that you might try to do, if this is your first encounter
with primes that differ from a power of 2 by 1:

1. Show that if a number of the form M = 2n − 1 is prime, then the exponent n
is also prime. [Hint: This is equivalent to proving that if n is composite, then
2n − 1 is also composite.] For example: 22 − 1 = 3, 23 − 1 = 7 are primes, but
24 − 1 = 15 is not. So Mersenne primes are numbers that are! of the form 2prime number − 1, and! are themselves prime numbers.

2. Show that if a number of the form F = 2n + 1 is prime, then the exponent n
is a power of two. For example: 22 + 1 = 5 is prime, but 23 + 1 = 9 is not. So
Fermat primes are numbers that are! of the form 2power of two + 1, and! are themselves prime numbers.

11
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12 Primes: What is Riemann’s Hypothesis?

Not all numbers of the form 2prime number − 1 or of the form 2power of two + 1 are
prime. We currently know only finitely many primes of either of these forms.
How we have come to know what we know is an interesting tale. See, for
example, http://www.mersenne.org/.
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4 Sieves

Eratosthenes, the mathematician from Cyrene (and later, librarian at Alexan-
dria) explained how to sift the prime numbers from the series of all numbers:
in the sequence of numbers,

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26,

for example, start by circling the 2 and crossing out all the other multiples of 2.
Next, go back to the beginning of our sequence of numbers and circle the first
number that is neither circled nor crossed out (that would be, of course, the 3),
then cross out all the other multiples of 3. This gives the pattern: go back again
to the beginning of our sequence of numbers and circle the first number that is
neither circled nor crossed out; then cross out all of its other multiples. Repeat
this pattern until all the numbers in our sequence are either circled, or crossed
out, the circled ones being the primes.

In Figures 4.1–4.4 we use the primes 2, 3, 5, and finally 7 to sieve out the
primes up to 100, where instead of crossing out multiples we grey them out,
and instead of circling primes we color their box red.

Since all the even numbers greater than two are eliminated as being com-
posite numbers and not primes they appear as gray in Figure 4.1, but none of
the odd numbers are eliminated so they still appear in white boxes.

Looking at Figure 4.3, we see that for all but three numbers (49, 77, and 91)
up to 100 we have (after sieving by 2,3, and 5) determined which are primes and
which composite.

13
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14 Primes: What is Riemann’s Hypothesis?

Figure 4.1. Using the prime 2 to sieve for primes up to 100

Figure 4.2. Using the primes 2 and 3 to sieve for primes up to 100

Figure 4.3. Using the primes 2, 3, and 5 to sieve for primes up to 100
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Sieves 15

Figure 4.4. Using the primes 2, 3, 5, and 7 to sieve for primes up to 100

Finally, we see in Figure 4.4 that sieving by 2, 3, 5, and 7 determines all
primes up to 100. See [5] for more about explicitly enumerating primes using a
computer.
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5
Questions About Primes that
any Person Might Ask

We become quickly stymied when we ask quite elementary questions about the
spacing of the infinite series of prime numbers.

For example, are there infinitely many pairs of primes whose difference is 2?
The sequence of primes seems to be rich in such pairs

5 − 3 = 2, 7 − 5 = 2, 13 − 11 = 2, 19 − 17 = 2,

and we know that there are loads more such pairs1 but the answer to our
question, are there infinitely many?, is not known. The conjecture that there
are infinitely many such pairs of primes (“twin primes” as they are called)
is known as the Twin Primes Conjecture. Are there infinitely many pairs of
primes whose difference is 4, 6? Answer: equally unknown. Nevertheless there
is very exciting recent work in this direction, specifically, Yitang Zhang proved
that there are infinitely many pairs of primes that differ by no more than
7 × 107. For a brief account of Zhang’s work, see the Wikipedia entry http://
en.wikipedia.org/wiki/Yitang_Zhang. Many exciting results have fol-
lowed Zhang’s breakthrough; we know now, thanks to results2 of James May-
nard and others, that there are infinitely many pairs of primes that differ by no
more than 246.

1 For example, according to http://oeis.org/A007508 there are 10,304,185,697,298
such pairs less than 10,000,000,000,000,000.

2 See https://www.simonsfoundation.org/quanta/20131119-together-and-
alone-closing-the-prime-gap/ and for further work http://michaelnielsen
.org/polymath1/index.php?title=Bounded_gaps_between_primes.

16
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Questions About Primes 17

Is every even number greater than 2 a sum of two primes? Answer: unknown.
Are there infinitely many primes which are 1 more than a perfect square? Answer:
unknown.

Figure 5.1. Yitang Zhang

Remember the Mersenne prime p = 243,112,609 − 1 from Chapter 3 and how
we proved – by pure thought – that there must be a prime P larger than p? Sup-
pose, though, someone asked us whether there was a Mersenne Prime larger
than this p: that is, is there a prime number of the form

2some prime number − 1

bigger than p = 243,112,609 − 1? Answer: For many years we did not know;
however, in 2013 Curtis Cooper discovered the even bigger Mersenne prime
257,885,161 − 1, with a whopping 17,425,170 digits! Again we can ask if there is
a Mersenne prime larger than Cooper’s. Answer: we do not know. It is possible
that there are infinitely many Mersenne primes but we’re far from being able to
answer such questions.

Is there some neat formula giving the next prime? More specifically, if I give
you a number N, say N = one million, and ask you for the first number after N
that is prime, is there a method that answers that question without, in some form
or other, running through each of the successive odd numbers after N rejecting
the nonprimes until the first prime is encountered? Answer: unknown.

One can think of many ways of “getting at” some understanding of the place-
ment of prime numbers among all numbers. Up to this point we have been
mainly just counting them, trying to answer the question “how many primes
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18 Primes: What is Riemann’s Hypothesis?

Figure 5.2. Marin Mersenne (1588–1648)

are there up to X ?” and we have begun to get some feel for the numbers behind
this question, and especially for the current “best guesses” about estimates.

What is wonderful about this subject is that people attracted to it can-
not resist asking questions that lead to interesting, and sometimes surprising
numerical experiments. Moreover, given our current state of knowledge, many
of the questions that come to mind are still unapproachable: we don’t yet know
enough about numbers to answer them. But asking interesting questions about
the mathematics that you are studying is a high art, and is probably a necessary
skill to acquire, in order to get the most enjoyment – and understanding – from
mathematics. So, we offer this challenge to you:

Come up with with your own question about primes that! is interesting to you,! is not a question whose answer is known to you,! is not a question that you’ve seen before; or at least not exactly,! is a question about which you can begin to make numerical investigations.

If you are having trouble coming up with a question, read on for more examples
that provide further motivation.
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6
Further Questions
About Primes

In celebration of Yitang Zhang’s recent result, let us consider more of the
numerics regarding gaps between one prime and the next, rather than the tally
of all primes. Of course, it is no fun at all to try to guess how many pairs of
primes p, q there are with gap q − p equal to a fixed odd number, since the dif-
ference of two odd numbers is even, as in Chapter 5. The fun, though, begins
in earnest if you ask for pairs of primes with difference equal to 2 (these being
called twin primes) for it has long been guessed that there are infinitely many
such pairs of primes, but no one has been able to prove this yet.

As of 2014, the largest known twin primes are

3756801695685 · 2666669 ± 1.

These enormous primes, which were found in 2011, have 200,700 digits each.1

Similarly, it is interesting to consider primes p and q with difference 4, or
8, or – in fact – any even number 2k. That is, people have guessed that there
are infinitely many pairs of primes with difference 4, with difference 6, etc. but
none of these guesses have yet been proved.

So, define

Gapk(X )

to be the number of pairs of consecutive primes (p, q) with q < X that have “gap
k” (i.e., such that their difference q − p is k). Here p is a prime, q > p is a prime,
and there are no primes between p and q. For example, Gap2(10) = 2, since the
pairs (3, 5) and (5, 7) are the pairs less than 10 with gap 2, and Gap4(10) = 0
because despite 3 and 7 being separated by 4, they are not consecutive primes.

1 See http://primes.utm.edu/largest.html#twin for the top ten largest known
twin primes.

19
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20 Primes: What is Riemann’s Hypothesis?

See Table 6.1 for various values of Gapk(X ) and Figure 6.1 for the distribution
of prime gaps for X = 107.

Table 6.1. Values of Gapk(X )

X Gap2(X ) Gap4(X ) Gap6(X ) Gap8(X ) Gap100(X ) Gap246(X )

10 2 0 0 0 0 0
102 8 7 7 1 0 0
103 35 40 44 15 0 0
104 205 202 299 101 0 0
105 1224 1215 1940 773 0 0
106 8169 8143 13549 5569 2 0
107 58980 58621 99987 42352 36 0
108 440312 440257 768752 334180 878 0

The recent results of Zhang as sharpened by Maynard (and others) we men-
tioned above tell us that for at least one even number k among the even num-
bers k ≤ 246, Gapk(X ) goes to infinity as X goes to infinity. One expects that this
happens for all even numbers k. We expect this as well, of course, for Gap246(X )

despite what might be misconstrued as discouragement by the above data.

Figure 6.1. Frequency histogram showing the distribution of prime gaps of size
≤ 50 for all primes up to 107. Six is the most popular gap in this data.

Figure 6.2. Plots of Gapk(X ) for k = 2, 4, 6, 8. Which wins?
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Further Questions About Primes 21

Here is yet another question that deals with the spacing of prime numbers
that we do not know the answer to:

Racing Gap 2, Gap 4, Gap 6, and Gap 8 against each other:

Challenge: As X tends to infinity which of Gap2(X ), Gap4(X ), Gap6(X ), or
Gap8(X ) do you think will grow faster? How much would you bet on the
truth of your guess? [6]

Here is a curious question that you can easily begin to check out for small num-
bers. We know, of course, that the even numbers and the odd numbers are nicely
and simply distributed: after every odd number comes an even number, after
every even, an odd. There are an equal number of positive odd numbers and
positive even numbers less than any given odd number, and there may be noth-
ing else of interest to say about the matter. Things change considerably, though,
if we focus our concentration on multiplicatively even numbers and multiplica-
tively odd numbers.

A multiplicatively even number is one that can be expressed as a product
of an even number of primes; and a multiplicatively odd number is one that
can be expressed as a product of an odd number of primes. So, any prime is
multiplicatively odd, the number 4 = 2 · 2 is multiplicatively even, and so is
6 = 2 · 3, 9 = 3 · 3, and 10 = 2 · 5; but 12 = 2 · 2 · 3 is multiplicatively odd. Below
we list the numbers up to 25, and underline and bold the multiplicatively odd
numbers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 6.2 gives some data:

Table 6.2. Count of multiplicatively odd and even positive numbers
≤ X

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m. odd 0 1 2 2 3 3 4 5 5 5 6 7 8 8 8 8
m. even 1 1 1 2 2 3 3 3 4 5 5 5 5 6 7 8

Now looking at this data, a natural, and simple, question to ask about the
concept of multiplicative oddness and evenness is:

Is there some X ≥ 2 for which there are more multiplicatively even numbers less
than or equal to X than multiplicatively odd ones?

Each plot in Figure 6.3 gives the number of multiplicatively even numbers
between 2 and X minus the number of multiplicatively odd numbers between
2 and X , for X equal to 10, 100, 1000, 10000, 100000, and 1000000. The above
question asks whether these graphs would, for sufficiently large X , ever cross
the X -axis.
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22 Primes: What is Riemann’s Hypothesis?

Figure 6.3. Racing Multiplicatively Even and Odd Numbers.

A negative response to this question – i.e., a proof that any plot as drawn in
Figure 6.3 never crosses the X -axis – would imply the Riemann Hypothesis! In
contrast to the list of previous questions, the answer to this question is known2:
alas, there is such an X . In 1960, Lehman showed that for X = 906,400,000 there
are 708 more multiplicatively even numbers up to X than multiplicatively odd
numbers (Tanaka found in 1980 that the smallest X such that there are more
multiplicative even than odd numbers is X = 906,150,257).

These are questions that have been asked about primes (and we could
give bushels more3), questions expressible in simple vocabulary, that we can’t
answer today. We have been studying numbers for over two millennia and yet
we are indeed in the infancy of our understanding.

We’ll continue our discussion by returning to the simplest counting question
about prime numbers.

2 For more details, see P. Borwein, “Sign changes in sums of the Liouville Function” and
the nice short paper of Norbert Wiener “Notes on Polya’s and Turan’s hypothesis con-
cerning Liouville’s factor” (page 765 of volume II of Wiener’s Collected Works); see also:
G. Pólya “Verschiedene Bemerkungen zur Zahlentheorie,” Jahresbericht der Deutschen
Mathematiker-Vereinigung, 28 (1919) 31–40.

3 See, e.g., Richard Guy’s book Unsolved Problems in Number Theory (2004).
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7 How Many Primes are There?

Figure 7.1. Sieving primes up to 200

Slow as we are to understand primes, at the very least we can try to count
them. You can see that there are 10 primes less than 30, so you might encap-
sulate this by saying that the chances that a number less than 30 is prime is 1
in 3. This frequency does not persist, though; here is some more data: There
are 25 primes less than 100 (so 1 in 4 numbers up to 100 are prime), there
are 168 primes less than a thousand (so we might say that among the num-
bers less than a thousand the chances that one of them is prime is roughly 1
in 6).

23
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Figure 7.2. Graph of the proportion of primes up to X for each integer X ≤ 100

Figure 7.3. Proportion of primes for X up to 1,000

Figure 7.4. Proportion of primes for X up to 10,000

24
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Figure 7.5. Sieving by removing multiples of 2 up to 100

There are 78,498 primes less than a million (so we might say that the chances
that a random choice among the first million numbers is prime have dropped
to roughly 1 in 13).

There are 455,052,512 primes less than ten billion; i.e., 10,000,000,000 (so we
might say that the chances are down to roughly 1 in 22).

Primes, then, seem to be thinning out. We return to the sifting process we
carried out earlier, and take a look at a few graphs, to get a sense of why that
might be so. There are a 100 numbers less than or equal to 100, a thousand
numbers less than or equal to 1000, etc.: the graph in Figure 7.5 that looks like a
regular staircase, each step the same length as each riser, climbing up at, so to
speak, a 45 degree angle, counts all numbers up to and including X .

Following Eratosthenes, we have sifted those numbers, to pan for primes.
Our first move was to throw out roughly half the numbers (the even ones!) after
the number 2. The cross-hatched bar graph in this figure that is, with one hic-
cup, a regular staircase climbing at a smaller angle, each step twice the length
of each riser, illustrates the numbers that are left after one pass through Eratos-
thenes’ sieve, which includes, of course, all the primes. So, the chances that a
number bigger than 2 is prime is at most 1 in 2. Our second move was to throw
out a good bunch of numbers bigger than 3. So, the chances that a number big-
ger than 3 is prime is going to be even less. And so it goes: with each move in
our sieving process, we are winnowing the field more extensively, reducing the
chances that the later numbers are prime.

The red curve in these figures actually counts the primes: it is the beguil-
ingly irregular staircase of primes. Its height above any number X on the hori-
zontal line records the number of primes less than or equal to X , the accumu-
lation of primes up to X . Refer to this number as π (X ). So π (2) = 1, π (3) = 2,

Figure 7.6. Sieving for primes up to 1000
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Figure 7.7. Sieving out multiples of 2 and 3

Figure 7.8. Sieving out multiples of 2, 3, 5, and 7

Figure 7.9. Staircase of primes up to 25

Figure 7.10. Staircase of primes up to 100
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π (30) = 10; of course, we could plot a few more values of π (X ), like
π (ten billion) = 455, 052, 512.

Let us accompany Eratosthenes for a few further steps in his sieving pro-
cess. Figure 7.7 contains a graph of all whole numbers up to 100 after we have
removed the even numbers greater than 2, and the multiples of 3 greater than
3 itself.

From this graph you can see that if you go “out a way” the likelihood that
a number is a prime is less than 1 in 3. Figure 7.8 contains a graph of what
Eratosthenes sieve looks like up to 100 after sifting 2, 3, 5, and 7.

This data may begin to suggest to you that as you go further and further out
on the number line the percentage of prime numbers among all whole num-
bers tends towards 0% (it does).

To get a sense of how the primes accumulate, we will take a look at the stair-
case of primes for X = 25 and X = 100 in Figures 7.9 and 7.10.
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8
Prime Numbers Viewed from
a Distance

The striking thing about these figures is that as the numbers get large enough,
the jagged accumulation of primes, those quintessentially discrete entities,
becomes smoother and smoother to the eye. How strange and wonderful to
watch, as our viewpoint zooms out to larger ranges of numbers, the accumula-
tion of primes taking on such a smooth and elegant shape.

But don’t be fooled by the seemingly smooth shape of the curve in the last
figure above: it is just as faithful a reproduction of the staircase of primes as the
typographer’s art can render, for there are thousands of tiny steps and risers in
this curve, all hidden by the thickness of the print of the drawn curve in the fig-
ure. It is already something of a miracle that we can approximately describe the
build-up of primes, somehow, using a smooth curve. But what smooth curve?

That last question is not rhetorical. If you draw a curve with chalk on
the blackboard, this can signify a myriad of smooth (mathematical) curves

Figure 8.1. Staircases of primes up to 1,000

28
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Figure 8.2. Staircases of primes up to 10,000

Figure 8.3. Primes up to 100,000

all encompassed within the thickness of the chalk-line, all – if you wish –
reasonable approximations of one another. So, there are many smooth curves
that fit the chalk-curve. With this warning, but very much fortified by the data of
Figure 8.3, let us ask: what is a smooth curve that is a reasonable approximation
to the staircase of primes?
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9 Pure and Applied Mathematics

Mathematicians seems to agree that, loosely speaking, there are two types of
mathematics: pure and applied. Usually – when we judge whether a piece of
mathematics is pure or applied – this distinction turns on whether or not the
math has application to the “outside world,” i.e., that world where bridges are
built, where economic models are fashioned, where computers churn away on
the Internet (for only then do we unabashedly call it applied math), or whether
the piece of mathematics will find an important place within the context of
mathematical theory (and then we label it pure). Of course, there is a great
overlap (as we will see later, Fourier analysis plays a major role both in data
compression and in pure mathematics).

Moreover, many questions in mathematics are “hustlers” in the sense that,
at first view, what is being requested is that some simple task be done (e.g.,
the question raised in this book, to find a smooth curve that is a reasonable
approximation to the staircase of primes). And only as things develop is it dis-
covered that there are payoffs in many unexpected directions, some of these
payoffs being genuinely applied (i.e., to the practical world), some of these pay-
offs being pure (allowing us to strike behind the mask of the mere appearance
of the mathematical situation, and get at the hidden fundamentals that actu-
ally govern the phenomena), and some of these payoffs defying such simple
classification, insofar as they provide powerful techniques in other branches of
mathematics. The Riemann Hypothesis – even in its current unsolved state –
has already shown itself to have all three types of payoff.

The particular issue before us is, in our opinion, twofold, both applied,
and pure: can we curve-fit the “staircase of primes” by a well approximating
smooth curve given by a simple analytic formula? The story behind this alone
is marvelous, has a cornucopia of applications, and we will be telling it below.

30
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Pure and Applied Mathematics 31

But our curiosity here is driven by a question that is pure, and less amenable
to precise formulation: are there mathematical concepts at the root of, and
more basic than (and “prior to,” to borrow Aristotle’s use of the phrase) prime
numbers – concepts that account for the apparent complexity of the nature of
primes?
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10 A Probabilistic First Guess

Figure 10.1. Gauss

The search for such approximating curves began, in fact, two centuries ago
when Carl Friedrich Gauss defined a certain beautiful curve that, experimen-
tally, seemed to be an exceptionally good fit for the staircase of primes.

Let us denote Gauss’s curve G(X ); it has an elegant simple formula compre-
hensible to anyone who has had a tiny bit of calculus. If you make believe that
the chances that a number X is a prime is inversely proportional to the number
of digits of X you might well hit upon Gauss’s curve. That is,

G(X ) is roughly proportional to
X

the number of digits of X
.

32
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Figure 10.2. Plot of π (X ) and Gauss’s smooth curve G(X )

But to describe Gauss’s guess precisely we need to discuss the natural loga-
rithm1 “log(X )” which is an elegant smooth function of a real number X that is
roughly proportional to the number of digits of the whole number part of X .

Figure 10.3. Plot of the natural logarithm log(X )

Euler’s famous constant e = 2.71828182 . . . , which is the limit of the
sequence

(
1 + 1

2

)2

,

(
1 + 1

3

)3

,

(
1 + 1

4

)4

, . . . ,

is used in the definition of log:

A = log(X ) is the number A for which eA = X .

Before electronic calculators, logarithms were frequently used to speed up
calculations, since logarithms translate difficult multiplication problems into
easier addition problems which can be done mechanically. Such calculations
use that the logarithm of a product is the sum of the logarithms of the factors;
that is,

log(XY ) = log(X ) + log(Y ).

1 In advanced mathematics, “common” logarithms are sufficiently uncommon that “log”
almost always denotes natural log and the notation ln(X ) is not used.
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Figure 10.4. A slide rule computes 2X by using that log(2X ) = log(2) + log(X )

In Figure 10.4 the numbers printed (on each of the slidable pieces of the rule)
are spaced according to their logarithms, so that when one slides the rule
arranging it so that the printed number X on one piece lines up with the printed
number 1 on the other, we get that for every number Y printed on the first piece,
the printed number on the other piece that is aligned with it is the product XY ;
in effect the “slide” adds log(X ) to log(Y ) giving log(XY ).

Figure 10.5. A Letter of Gauss

In 1791, when Gauss was 14 years old, he received a book that contained
logarithms of numbers up to 7 digits and a table of primes up to 10,009. Years
later, in a letter written in 1849 (see Figure 10.5), Gauss claimed that as early
as 1792 or 1793 he had already observed that the density of prime numbers
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over intervals of numbers of a given rough magnitude X seemed to average
1/ log(X ).

Very very roughly speaking, this means that the number of primes up to X is
approximately X divided by twice the number of digits of X . For example, the
number of primes less than 99 should be roughly

99
2 × 2

= 24.75 ≈ 25,

which is pretty amazing, since the correct number of primes up to 99 is 25. The
number of primes up to 999 should be roughly

999
2 × 3

= 166.5 ≈ 167,

which is again close, since there are 168 primes up to 1000. The number of
primes up to 999,999 should be roughly

999999
2 × 6

= 83333.25 ≈ 83,333,

which is close to the correct count of 78,498.
Gauss guessed that the expected number of primes up to X is approximated

by the area under the graph of 1/ log(X ) from 2 to X (see Figure 10.6). The area
under 1/ log(X ) up to X = 999,999 is 78,626.43 . . . , which is remarkably close
to the correct count 78,498 of the primes up to 999,999.

Figure 10.6. The expected tally of the number of primes ≤ X is approximated by
the area underneath the graph of 1/ log(X ) from 1 to X .

Gauss was an inveterate computer: he wrote in his 1849 letter that there are
216,745 prime numbers less than three million. This is wrong: the actual num-
ber of these primes is 216,816. Gauss’s curve G(X ) predicted that there would
be 216,970 primes – a miss, Gauss thought, by

225 = 216970 − 216745.

But actually he was closer than he thought: the prediction of the curve G(X )

missed by a mere 154 = 216970 − 216816. Gauss’s computation brings up two
queries: will this spectacular “good fit” continue for arbitrarily large numbers?
and, the (evidently prior) question: what counts as a good fit?
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11
What is a “Good
Approximation”?

If you are trying to estimate a number, say, around ten thousand, and you get it
right to within a hundred, let us celebrate this kind of accuracy by saying that
you have made an approximation with square-root error (

√
10,000 = 100). Of

course, we should really use the more clumsy phrase “an approximation with at
worst square-root error.” Sometimes we’ll simply refer to such approximations
as good approximations. If you are trying to estimate a number in the millions,
and you get it right to within a thousand, let’s agree that – again – you have
made an approximation with square-root error (

√
1,000,000 = 1,000). Again, for

short, call this a good approximation. So, when Gauss thought his curve missed
by 226 in estimating the number of primes less than three million, it was well
within the margin we have given for a “good approximation.”

More generally, if you are trying to estimate a number that has D digits and
you get it almost right, but with an error that has no more than, roughly, half
that many digits, let us say, again, that you have made an approximation with
square-root error or synonymously, a good approximation.

This rough account almost suffices for what we will be discussing below, but
to be more precise, the specific gauge of accuracy that will be important to us is
not for a mere single estimate of a single error term,

Error term = Exact value − Our “good approximation”

but rather for infinite sequences of estimates of error terms. Generally, if you
are interested in a numerical quantity q(X ) that depends on the real number
parameter X (e.g., q(X ) could be π (X ), “the number of primes < X ”) and if
you have an explicit candidate “approximation,” qapprox(X ), to this quantity, let
us say that qapprox(X ) is essentially a square-root accurate approximation to
q(X ) if for any given exponent greater than 0.5 (you choose it: 0.501, 0.5001,

36
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0.50001, . . . for example) and for large enough X – where the phrase “large
enough” depends on your choice of exponent – the error term – i.e., the dif-
ference between qapprox(X ) and the true quantity, q(X ), is, in absolute value,
less than X raised to that exponent (e.g. < X 0.501, < X 0.5001, etc.). Readers who
know calculus and wish to have a technical formulation of this definition of
good approximation might turn to the endnote [7] for a precise statement.

If you found the above confusing, don’t worry: again, a square-root accurate
approximation is one in which at least roughly half the digits are correct.

Remark 11.1

To get a feel for how basic the notion of approximation to data being square
root close to the true values of the data is – and how it represents the “gold
standard” of accuracy for approximations, consider this fable.

Imagine that the devil had the idea of saddling a large committee of peo-
ple with the task of finding values of π (X ) for various large numbers X . This
he did in the following manner, having already worked out which numbers
are prime himself. Since the devil is, as everyone knows, in the details, he
has made no mistakes: his work is entirely correct. He gives each commit-
tee member a copy of the list of all prime numbers between 1 and one of the
large numbers X in which he was interested. Now each committee member
would count the number of primes by doing nothing more than considering
each number, in turn, on their list and tallying them up, much like a can-
vasser counting votes; the committee members needn’t even know that these
numbers are prime, they just think of these numbers as items on their list.
But since they are human, they will indeed be making mistakes, say 1% of
the time. Assume further that it is just as likely for them to make the mistake
of undercounting or overcounting. If many people are engaged in such pur-
suit, some of them might over-count π (X ); some of them might under-count
it. The average error (over-counted or undercounted) would be proportional
to

√
X .

In the next chapter we’ll view these under-counts and over-counts as anal-
ogous to a random walk.
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12
Square Root Error and
Random Walks

To take a random walk along a (straight) east–west path you would start at your
home base, but every minute, say, take a step along the path, each step being of
the same length, but randomly either east or west. After X minutes, how far are
you from your home base?

The answer to this cannot be a specific number, precisely because you’re
making a random decision that affects that number for each of the X minutes
of your journey. It is more reasonable to ask a statistical version of that question.
Namely, if you took many random walks X minutes long, then – on the average –
how far would you be from your home base? The answer, as is illustrated by the
figures below, is that the average distance you will find yourself from home base
after (sufficiently many of) these excursions is proportional to

√
X . (In fact, the

average is equal to
√

2
π

·
√

X .)
To connect this with the committee members’ histories of errors, described

in the fable in Chapter 11, imagine every error (under-count or over-count by
1) the committee member makes, as a “step” East for under-count and West
for over-count. Then if such errors were made, at a constant frequency over
the duration of time spent counting, and if the over- and under-counts were
equally likely and random, then one can model the committee members’ com-
putational accuracy by a random walk. It would be – in the terminology we have
already discussed – no better than square-root accurate; it would be subject to
square-root error.

To get a real sense of how constrained random walks are by this “square-
root law,” here are a few numerical experiments of random walks. The left-
hand squiggly (blue) graphs in Figures 12.1–12.4 below are computer-obtained
random walk trials (three, ten, a hundred, and a thousand random walks). The
blue curve in the right-hand graphs of those four figures is the average distance
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Figure 12.1. Three Random Walks

Figure 12.2. Ten Random Walks

Figure 12.3. One Hundred Random Walks

Figure 12.4. One Thousand Random Walks

from home-base of the corresponding (three, ten, a hundred, and a thousand)
random walks. The red curve in each figure below is the graph of the quantity√

2
π

·
√

X over the X -axis. As the number of random walks increases, the red
curve better and better approximates the average distance.
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13
What is Riemann’s Hypothesis?
(First Formulation)

Recall from Chapter 10 that a rough guess for an approximation to π (X ), the
number of primes < X , is given by the function X/ log(X ). Recall, as well, that
a refinement of that guess, offered by Gauss, stems from this curious thought:
the “probability” that a number N is a prime is proportional to the reciprocal
of its number of digits; more precisely, the probability is 1/ log(N ). This would
lead us to guess that the approximate value of π (X ) would be the area of the
region from 2 to X under the graph of 1/ log(X ), a quantity sometimes referred
to as Li(X ). “Li” (pronounced Li, so the same as “lie” in “lie down”) is short for
logarithmic integral, because the area of the region from 2 to X under 1/ log(X )

is (by definition) the integral
∫ X

2 1/ log(t )dt .
Figure 13.1 contains a graph of the three functions Li(X ), π (X ), and X/ log X

for X ≤ 200. But data, no matter how impressive, may be deceiving (as we
learned in Chapter 6). If you think that the three graphs never cross for all large

Figure 13.1. Plots of Li(X ) (top), π (X ) (in the middle), and X/ log(X ) (bottom)
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values of X , and that we have the simple relationship X/ log(X ) < π (X ) < Li(X )

for large X , read http://en.wikipedia.org/wiki/Skewes’_number.
It is a major challenge to evaluate π (X ) for large values of X . For example, let

X = 1024. Then (see [8]) we have:

π (X ) = 18,435,599,767,349,200,867,866

Li(X ) = 18,435,599,767,366,347,775,143.10580 . . .

X/(log(X ) − 1) = 18,429,088,896,563,917,716,962.93869 . . .

Li(X ) − π (X ) = 17,146,907,277.105803 . . .

√
X · log(X ) = 55,262,042,231,857.096416 . . .

Note that several of the left-most digits of π (X ) and Li(X ) are the same (as indi-
cated in red), a point we will return to on page 48.

More fancifully, we can think of the error in this approximation to π (X ), i.e.,
|Li(X ) − π (X )|, (the absolute value) of the difference between Li(X ) and π (X ),
as (approximately) the result of a walk having roughly X steps where you move
by the following rule: go east by a distance of 1/ log N feet if N is not a prime
and west by a distance of 1 − 1

log N feet if N is a prime. Your distance, then, from
home base after X steps is approximately | Li(X ) − π (X )| feet.

We have no idea if this picture of things resembles a truly random walk but at
least it makes it reasonable to ask the question: is Li(X ) essentially a square root
approximation to π (X )? Our first formulation of Riemann’s Hypothesis says
yes:

The Riemann Hypothesis (first formulation)

For any real number X the number of prime numbers less than X is approx-
imately Li(X ) and this approximation is essentially square root accurate (see
[9]).

William Stein
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14
The Mystery Moves to
the Error Term

Let’s think of what happens when you have a mysterious quantity (say, a func-
tion of a real number X ) you wish to understand. Suppose you manage to
approximate that quantity by an easy to understand expression – which we’ll
call the “dominant term” – that is also simple to compute, but only approxi-
mates your mysterious quantity. The approximation is not exact; it has a pos-
sible error, which happily is significantly smaller than the size of the dominant
term. “Dominant” here just means exactly that: it is of size significantly larger
than the error of approximation.

Mysterious quantity(X ) = Simple, but dominant quantity(X ) + Error(X ).

If all you are after is a general estimate of size your job is done. You might declare
victory and ignore Error(X ) as being – in size – negligible. But if you are inter-
ested in the deep structure of your mysterious quantity perhaps all you have
done is to manage to transport most questions about it to Error(X ). In conclu-
sion, Error(X ) is now your new mysterious quantity.

Returning to the issue of π (X ) (our mysterious quantity) and Li(X ) (our dom-
inant term) the first formulation of the Riemann Hypothesis (as in Chapter
13 above) puts the spotlight on the Error term |Li(X ) − π (X )|, which therefore
deserves our scrutiny, since – after all – we’re not interested in merely counting
the primes: we want to understand as much as we can of their structure.

To get a feel for this error term, we shall smooth it out a bit, and look at a few
of its graphs.

42
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15 Cesàro Smoothing

Often when you hop in a car and reset the trip counter, the car will display
information about your trip. For instance, it might show you the average speed
up until now during your trip; this number is “sticky”, changing much less errat-
ically than your actual speed, and you might use it to make a rough estimate of
how long until you will reach your destination. Your car is computing the Cesàro
smoothing of your speed. We can use this same idea to better understand the
behavior of other things, such as the sums appearing in the previous chapter.

Figure 15.1. The dashboard of the 2013 Camaro SS car that one of us was driving
during the writing of this chapter

Suppose you are trying to say something intelligent about the behavior of a
certain quantity that varies with time in what seems to be a somewhat erratic,
volatile pattern. Call the quantity f (t ) and think of it as a function defined for
positive real values of “time” t . The first natural impulse might be to take some

43
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44 Primes: What is Riemann’s Hypothesis?

Figure 15.2. The red plot is the Cesàro smoothing of the blue plot

sort of “average value”1 of f (t ) over a time interval, say from 0 to T . This would
indeed be an intelligent thing to do if this average stabilized and depended rela-
tively little on the interval of time over which one is computing this average, e.g.,
if that interval were large enough. Sometimes, of course, these averages them-
selves are relatively sensitive to the times T that are chosen, and don’t stabilize.
In such a case, it usually pays to consider all these averages as your chosen T
varies, as a function (of T ) in its own right2. This new function F (T ), called the
Cesàro Smoothing of the function f (t ), is a good indicator of certain eventual
trends of the original function f (t ) that is less visible directly from the func-
tion f (t ). The effect of passing from f (t ) to F (T ) is to “smooth out” some of
the volatile local behavior of the original function, as can be seen in the figure
below.

1 For readers who know Calculus: that average would be 1
T

∫ T
0 f (t )dt .

2 For readers who know calculus: this is

F (T ) := 1
T

∫ T

0
f (t )dt .
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16 A View of |Li(X ) − π(X )|

Returning to our mysterious error term, consider Figure 16.1 where the volatile
blue curve in the middle is Li(X ) − π (X ), its Cesàro smoothing is the red rel-
atively smooth curve on the bottom, and the curve on the top is the graph of√

2
π

·
√

X/ log(X ) over the range of X ≤ 250,000.
Data such as this graph can be revealing and misleading at the same time.

For example, the volatile blue graph (of Li(X ) − π (X )) seems to be roughly sand-
wiched between two rising functions, but this will not continue for all val-
ues of X . The Cambridge University mathematician, John Edensor Littlewood
(see Figure 16.2), proved in 1914 that there exists a real number X for which
the quantity Li(X ) − π (X ) vanishes, and then for slightly larger X crosses over
into negative values. This theorem attracted lots of attention at the time (and
continues to do so) because of the inaccessibility of achieving good estimates
(upper or lower bounds) for the first such number. That “first” X for which

Figure 16.1. Li(X ) − π (X ) (blue middle), its Cesàro smoothing (red bottom), and√
2
π ·

√
X/ log(X ) (top), all for X ≤ 250,000

45
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46 Primes: What is Riemann’s Hypothesis?

Figure 16.2. John Edensor Littlewood (1885–1977)

Li(X ) = π (X ) is called Skewes Number in honor of the South African mathe-
matician (a student of Littlewood) Stanley Skewes, who (in 1933) gave the first –
fearfully large – upper bound for that number (conditional on RH!). Despite
a steady stream of subsequent improvements, we currently can only locate
Skewes Number as being in the range:

1014 ≤ Skewes Number < 10317,

and it is proven that at some values of X fairly close to the upper bound 10317

π (X ) is greater than Li(X ). So the trend suggested in Figure 16.1 will not con-
tinue indefinitely.
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17 The Prime Number Theorem

Take a look at Figure 13.1 again. All three functions, Li(X ), π (X ) and X/ log(X )

are “going to infinity with X ” (this means that for any real number R, for all
sufficiently large X , the values of these functions at X exceed R).

Are these functions “going to infinity” at the same rate?
To answer such a question, we have to know what we mean by going to infin-

ity at the same rate. So, here’s a definition. Two functions, A(X ) and B(X ), that
each go to infinity will be said to go to infinity at the same rate if their ratio

A(X )/B(X )

tends to 1 as X goes to infinity.
If for example two functions, A(X ) and B(X ) that take positive whole number

values, have the same number of digits for large X and if, for any number you
give us, say: a million (or a billion, or a trillion) and if X is large enough, then the
“leftmost” million (or billion, or trillion) digits of A(X ) and B(X ) are the same,
then A(X ) and B(X ) go to infinity at the same rate. For example,

A(X )

B(X )
= 281067597183743525105611755423

281067597161361511527766294585
= 1.00000000007963213762060 . . .

While we’re defining things, let us say that two functions, A(X ) and B(X ), that
each go to infinity go to infinity at similar rates if there are two positive con-
stants c and C such that for X sufficiently large the ratio

A(X )/B(X )

is greater than c and smaller than C.

47
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Figure 17.1. The polynomials A(X ) = 2X2 + 3X − 5 (bottom) and B(X ) = 3X2 −
2X + 1 (top) go to infinity at similar rates

For example, two polynomials in X with positive leading coefficient go to
infinity at the same rate if and only if they have the same degrees and the same
leading coefficient; they go to infinity at similar rates if they have the same
degree. See Figures 17.1 and 17.2.

Now a theorem from elementary calculus tells us that the ratio of Li(X ) to
X/ log(X ) tends to 1 as X gets larger and larger. That is – using the definition
we’ve just introduced – Li(X ) and X/ log(X ) go to infinity at the same rate (see
[10]).

Recall (on page 41 above in Chapter 13) that if X = 1024, the left-most twelve
digits of π (X ) and Li(X ) are the same: both numbers start 18,435,599,767,3 . . . .
Well, that’s a good start. Can we guarantee that for X large enough, the “left-
most” million (or billion, or trillion) digits of π (X ) and Li(X ) are the same, i.e.,
that these two functions go to infinity at the same rate?

The Riemann Hypothesis, as we have just formulated it, would tell us that
the difference between Li(X ) and π (X ) is pretty small in comparison with the
size of X . This information would imply (but would be much more precise
information than) the statement that the ratio Li(X )/π (X ) tends to 1, i.e., that
Li(X ) and π (X ) go to infinity at the same rate.

Figure 17.2. The polynomials A(X ) = X2 + 3X − 5 (top) and B(X ) = X2 − 2X + 1
(bottom) go to infinity at the same rate
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Figure 17.3. From Riemann’s 1859 manuscript

This last statement gives, of course, a far less precise relationship between
Li(X ) and π (X ) than the Riemann Hypothesis (once it is proved!) would give
us. The advantage, though, of the less precise statement is that it is currently
known to be true, and – in fact – has been known for over a century. It goes
under the name of

The Prime Number Theorem: Li(X ) and π (X ) go to infinity at the same rate.

Since Li(X ) and X/ log(X ) go to infinity at the same rate, we could equally well
have expressed the “same” theorem by saying:

The Prime Number Theorem: X/ log(X ) and π (X ) go to infinity at the same
rate.

This fact is a very hard-won piece of mathematics! It was proved in 1896 inde-
pendently by Jacques Hadamard and Charles de la Vallée Poussin.

A milestone in the history leading up to the proof of the Prime Number
Theorem is the earlier work of Pafnuty Lvovich Chebyshev (see http://en
.wikipedia.org/wiki/Chebyshev_function) showing that (to use the
terminology we introduced) X/ log(X ) and π (X ) go to infinity at similar rates.

The elusive Riemann Hypothesis, however, is much deeper than the Prime
Number Theorem, and takes its origin from some awe-inspiring, difficult to
interpret, lines in Bernhard Riemann’s magnificent 8-page paper, “On the num-
ber of primes less than a given magnitude,” published in 1859 (see [11]).

Figure 17.4. Bernhard Riemann (1826–1866)
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50 Primes: What is Riemann’s Hypothesis?

Riemann’s hypothesis, as it is currently interpreted, turns up as relevant, as a
key, again and again in different parts of the subject: if you accept it as hypoth-
esis you have an immensely powerful tool at your disposal: a mathematical
magnifying glass that sharpens our focus on number theory. But it also has a
wonderful protean quality – there are many ways of formulating it, any of these
formulations being provably equivalent to any of the others.

The Riemann Hypothesis remains unproved to this day, and therefore is
“only a hypothesis,” as Osiander said of Copernicus’s theory, but one for which
we have overwhelming theoretical and numerical evidence in its support. It
is the kind of conjecture that contemporary Dutch mathematician Frans Oort
might label a suffusing conjecture in that it has unusually broad implications:
many, many results are now known to follow, if the conjecture, familiarly known
as RH, is true. A proof of RH would, therefore, fall into the applied category,
given our discussion above in Chapter 9. But however you classify RH, it is a
central concern in mathematics to find its proof (or, a counter-example!). RH is
one of the weightiest statements in all of mathematics.
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18
The Information Contained in
the Staircase of Primes

We have borrowed the phrase “staircase of primes” from the popular book The
Music of the Primes by Marcus du Sautoy, for we feel that it captures the sense
that there is a deeply hidden architecture to the graphs that compile the num-
ber of primes (up to N) and also because – in a bit – we will be tinkering with
this carpentry. Before we do so, though, let us review in Figure 18.1 what this
staircase looks like, for different ranges.
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Figure 18.1. The Staircase of Primes

The mystery of this staircase is that the information contained within it
is – in effect – the full story of where the primes are placed. This story seems
to elude any simple description. Can we “tinker with” this staircase without
destroying this valuable information?
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19
Tinkering with the Carpentry
of the Staircase of Primes

For starters, notice that all the risers of this staircase (Figure 18.1 above) have
unit length. That is, they contain no numerical information except for their
placement on the x-axis. So, we could distort our staircase by changing (in
any way we please) the height of each riser; and as long as we haven’t brought
new risers into – or old risers out of – existence, and have not modified their
position over the x-axis, we have retained all the information of our original
staircase.

A more drastic-sounding thing we could do is to judiciously add new steps
to our staircase. At present, we have a step at each prime number p, and no
step anywhere else. Suppose we built a staircase with a new step not only at
x = p for p each prime number but also at x = 1 and x = pn where pn runs
through all powers of prime numbers as well. Such a staircase would have,
indeed, many more steps than our original staircase had, but, nevertheless,
would retain much of the quality of the old staircase: namely it contains within
it the full story of the placement of primes and their powers.

A final thing we can do is to perform a distortion of the x-axis (elon-
gating or shortening it, as we wish) in any specific way, as long as we can
perform the inverse process, and “undistort” it if we wish. Clearly such an
operation may have mangled the staircase, but hasn’t destroyed information
irretrievably.

We shall perform all three of these kinds of operations eventually, and will
see some great surprises as a result. But for now, we will perform distortions
only of the first two types. We are about to build a new staircase that retains the
precious information we need, but is constructed according to the following
architectural plan.
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Figure 19.1. The newly constructed staircase that counts prime powers

! We first build a staircase that has a new step precisely at x = 1, and x = pn

for every prime power pn with n ≥ 1. That is, there will be a new step at x =
1, 2, 3, 4, 5, 7, 8, 9, 11, . . .! Our staircase starts on the ground at x = 0 and the height of the riser of the
step at x = 1 will be log(2π ). The length of the riser of the step at x = pn will
not be 1 (as was the length of all risers in the old staircase of primes) but
rather: the step at x = pn will have the height of its riser equal to log p. So
for the first few steps listed in the previous item, the risers will be of length
log(2π ), log 2, log 3, log 2, log 5, log 7, log 2, log 3, log 11, . . . Since log(p) > 1,
these vertical dimensions lead to a steeper ascent but no great loss of
information.

Although we are not quite done with our architectural work, Figure 19.1
shows what our new staircase looks like, so far.

Notice that this new staircase looks, from afar, as if it were nicely approximated
by the 45 degree straight line, i.e., by the simple function X . In fact, we have –
by this new architecture – a second equivalent way of formulating Riemann’s
hypothesis. For this, let ψ (X ) denote the function of X whose graph is depicted
in Figure 19.1 (see [12]).

The Riemann Hypothesis (second formulation)

This new staircase is essentially square root close to the 45 degree straight line;
i.e., the function ψ (X ) is essentially square root close to the function f (X ) =
X . See Figure 19.2.

Do not worry if you do not understand why our first and second formulations
of Riemann’s Hypothesis are equivalent. Our aim, in offering the second for-
mulation – a way of phrasing Riemann’s guess that mathematicians know to
be equivalent to the first one – is to celebrate the variety of equivalent ways
we have to express Riemann’s proposed answers to the question “How many

William Stein


William Stein


William Stein


William Stein
“length” —> “height”

William Stein
“length” —> “height”



Trim: 6in × 9in Top: 0.373in Gutter: 0.498in

CUUS2308-01 CUUS2308/Mazur 978 1 107 10192 0 July 1, 2015 7:33

Tinkering with the Staircase of Primes 55

Figure 19.2. The newly constructed staircase is close to the 45 degree line

primes are there?”, and to point out that some formulations would reveal a
startling simplicity – not immediately apparent – to the behavior of prime num-
bers, no matter how erratic primes initially appear to us to be. After all, what
could be simpler than a 45 degree straight line?
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20

What do Computer Music Files,
Data Compression, and Prime
Numbers have to do with Each
Other?

Sounds of all sorts – and in particular the sounds of music – travel as vibrations
of air molecules at roughly 768 miles per hour. These vibrations – fluctuations
of pressure – are often represented, or “pictured,” by a graph where the hori-
zontal axis corresponds to time, and the vertical axis corresponds to pressure
at that time. The very purest of sounds – a single sustained note – would look
something like this (called a “sine wave”) when pictured (see Figure 20.1), so
that if you fixed your position somewhere and measured air pressure due to
this sound at that position, the peaks correspond to the times when the vary-
ing air pressure is maximal or minimal and the zeroes to the times when it is
normal pressure.

You’ll notice that there are two features to the graph in Figure 20.1.

1. The height of the peaks of this sine wave: This height is referred to as the
amplitude and corresponds to the loudness of the sound.

2. The number of peaks per second: This number is referred to as the frequency
and corresponds to the pitch of the sound.

Figure 20.1. Graph of a sine wave

56
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Figure 20.2. Graph of two sine waves with different frequencies

Figure 20.3. Graph of sum of the two sine waves with different frequencies

Of course, music is rarely – perhaps never – just given by a single pure sus-
tained note and nothing else. A next most simple example of a sound would be
a simple chord (say a C and an E played together on some electronic instru-
ment that could approximate pure notes). Its graph would be just the sum of
the graphs of each of the pure notes (see Figures 20.2 and 20.3).

So the picture of the changing frequencies of this chord would be already a
pretty complicated configuration. What we have described in these graphs are
two sine waves (our C and our E) when they are played in phase (meaning they
start at the same time) but we could also “delay” the onset of the E note and
play them with some different phase relationship, for example, as illustrated in
Figures 20.4 and 20.5.

So, all you need to reconstruct the chord graphed above is to know five
numbers:

Figure 20.4. Graph of two “sine” waves with different phases
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Figure 20.5. Graph of the sum of the two “sine” waves with different frequencies
and phases

Figure 20.6. Graph of sampling of a sound wave

! the two frequencies – the collection of frequencies that make up the sound is
called the spectrum of the sound,! the two amplitudes of each of these two frequencies,! the phase between them.

Now suppose you came across such a sound as pictured in Figure 20.5 and
wanted to “record it.” Well, one way would be to sample the amplitude of the
sound at many different times, as for example in Figure 20.6.

Then, fill in the rest of the points to obtain Figure 20.7.
But this sampling would take an enormous amount of storage space, at least

compared to storing five numbers, as explained above! Current audio compact
discs do their sampling 44,100 times a second to get a reasonable quality of
sound.

Figure 20.7. Graph obtained from Figure 20.6 by filling in the rest of the points
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Figure 20.8. Jean Baptiste Joseph Fourier (1768–1830)

Another way is to simply record the five numbers: the spectrum, amplitudes,
and phase. Surprisingly, this seems to be roughly the way our ear processes such
a sound when we hear it.1

Even in this simplest of examples (our pure chord: the pure note C played
simultaneously with pure note E) the efficiency of data compression that is the
immediate bonus of analyzing the picture of the chords as built just with the
five numbers giving spectrum, amplitudes, and phase is staggering.

This type of analysis, in general, is called Fourier Analysis and is one of the
glorious chapters of mathematics. One way of picturing spectrum and ampli-
tudes of a sound is by a bar graph which might be called the spectral picture of
the sound, the horizontal axis depicting frequency and the vertical one depict-
ing amplitude: the height of a bar at any frequency is proportional to the ampli-
tude of that frequency “in” the sound.

So our CE chord would have the spectral picture in Figure 20.9.

Figure 20.9. Spectral picture of a CE chord

1 We recommend downloading Dave Benson’s marvelous book Music: A Mathe-
matical Offering from https://homepages.abdn.ac.uk/mth192/pages/html/
maths-music.html. This is free, and gives a beautiful account of the superb mech-
anism of hearing, and of the mathematics of music.
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Figure 20.10. Graph of sawtooth wave

This spectral picture ignores the phase but is nevertheless a very good por-
trait of the sound. The spectral picture of a graph gets us to think of that graph
as “built up by the superposition of a bunch of pure waves,” and if the graph
is complicated enough we may very well need infinitely many pure waves to
build it up! Fourier analysis is a mathematical theory that allows us to start
with any graph – we are thinking here of graphs that picture sounds, but any
graph will do – and actually compute its spectral picture (and even keep track of
phases).

The operation that starts with a graph and goes to its spectral picture that
records the frequencies, amplitudes, and phases of the pure sine waves that,
together, compose the graph is called the Fourier transform and nowadays
there are very fast procedures for getting accurate Fourier transforms (meaning
accurate spectral pictures including information about phases) by computer
[13].

The theory behind this operation (Fourier transform giving us a spectral
analysis of a graph) is quite beautiful, but equally impressive is how – given
the power of modern computation – you can immediately perform this opera-
tion for yourself to get a sense of how different wave-sounds can be constructed
from the superposition of pure tones.

The sawtooth wave in Figure 20.10 has a spectral picture, its Fourier trans-
form, given in Figure 20.11.

Suppose you have a complicated sound wave, say as in Figure 20.12, and you
want to record it. Standard audio CDs record their data by intensive sampling
as we mentioned. In contrast, current MP3 audio compression technology uses
Fourier transforms plus sophisticated algorithms based on knowledge of which

Figure 20.11. The Spectrum of the sawtooth wave has a spike of height 1/k at
each integer k
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Figure 20.12. A Complicated sound wave

frequencies the human ear can hear. With this, MP3 technology manages to get
a compression factor of 8–12 with little perceived loss in quality, so that you
can fit your entire music collection on your phone, instead of just a few of your
favorite CDs.
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21 The Word “Spectrum”

It is worth noting how often this word appears in scientific literature, with an
array of different uses and meanings. It comes from Latin where its meaning is
“image,” or “appearance,” related to the verb meaning to look (the older form
being specere and the later form spectare). In most of its meanings, nowadays,
it has to do with some procedure, an analysis, allowing one to see clearly the
constituent parts of something to be analyzed, these constituent parts often
organized in some continuous scale, such as in the discussion of the previous
chapter.
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The Oxford Dictionary lists, as one of its many uses:

Used to classify something, or suggest that it can be classified, in terms of
its position on a scale between two extreme or opposite points.

This works well for the color spectrum, as initiated by Newton (as in the fig-
ure above, sunlight is separated by a prism into a rainbow continuum of col-
ors): an analysis of white light into its components. Or in mass spectrometry,
where beams of ions are separated (analyzed) according to their mass/charge
ratio and the mass spectrum is recorded on a photographic plate or film. Or in
the recording of the various component frequencies, with their corresponding
intensities of some audible phenomenon.

In mathematics the word has found its use in many different fields, the most
basic use occurring in Fourier analysis, which has as its goal the aim of either
analyzing a function f (t ) as being comprised of simpler (specifically: sine and
cosine) functions, or synthesizing such a function by combining simpler func-
tions to produce it. The understanding here and in the previous chapter, is that
an analysis of f (t ) as built up of simpler functions is meant to provide a sig-
nificantly clearer image of the constitution of f (t ). If, to take a very particular
example, the simpler functions that are needed for the synthesis of f (t ) are of
the form a cos(θt ) (for a some real number which is the amplitude or size of the
peaks of this periodic function) – and if f (t ) is given as the limit of

a1 cos(θ1t ) + a2 cos(θ2t ) + a3cos(θ3t ) . . .

for a sequence of real numbers θ1, θ2, θ3, . . . (i.e., these simpler functions are
functions of periods 2π

θ1
, 2π

θ2
, 2π

θ3
, . . . ) it is natural to call these θi the spectrum

of f (t ). This will eventually show up in our discussion below of trigonometric
sums and the Riemann spectrum.
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Spectra and Trigonometric
Sums

As we saw in Chapter 20, a pure tone can be represented by a periodic sine
wave – a function of time f (t ) – the equation of which might be:

f (t ) = a · cos(b + θt ).

Figure 22.1. Plot of the periodic sine wave f (t) = 2 · cos(1 + t/2)

The θ determines the frequency of the periodic wave, the larger θ is the
higher the “pitch.” The coefficient a determines the envelope of size of the peri-
odic wave, and we call it the amplitude of the periodic wave.

Sometimes we encounter functions F (t ) that are not pure tones, but that
can be expressed as (or we might say “decomposed into”) a finite sum of pure
tones, for example three of them:

F (t ) = a1 · cos(b1 + θ1t ) + a2 · cos(b2 + θ2t ) + a3 · cos(b3 + θ3t )

We refer to such functions F (t ) as in Figure 22.2 as finite trigonometric
sums, because – well – they are. In this example, there are three frequencies
involved – i.e., θ1, θ2, θ3 – and we say that the spectrum of F (t ) is the set of these

64
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Figure 22.2. Plot of the sum 5 cos (−t − 2) + 2 cos (t/2 + 1) + 3 cos (2t + 4)

frequencies, i.e.,

The spectrum of F (t ) = {θ1, θ2, θ3}.

More generally we might consider a sum of any finite number of pure cosine
waves – or in a moment we’ll also see some infinite ones as well. Again, for
these more general trigonometric sums, their spectrum will denote the set of
frequencies that compose them.
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23
The Spectrum and the Staircase
of Primes

Figure 23.1. The Staircase of primes

In view of the amazing data-compression virtues of Fourier analysis, it isn’t
unnatural to ask these questions:! Is there a way of using Fourier analysis to better understand the complicated

picture of the staircase of primes?! Does this staircase of primes (or, perhaps, some tinkered version of the stair-
case that contains the same basic information) have a spectrum?! If such a spectrum exists, can we compute it conveniently, just as we have
done for the saw-tooth wave above, or for the major third CE chord?! Assuming the spectrum exists, and is computable, will our understanding of
this spectrum allow us to reproduce all the pertinent information about the
placement of primes among all whole numbers, elegantly and faithfully?! And here is a most important question: will that spectrum show us order and
organization lurking within the staircase that we would otherwise be blind
to?

Strangely enough, it is towards questions like these that Riemann’s Hypothesis
takes us. We began with the simple question about primes: how to count them,
and are led to ask for profound, and hidden, regularities in structure.
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24 To our Readers of Part I

The statement of the Riemann Hypothesis – admittedly as elusive as before –
has, at least, been expressed elegantly and more simply, given our new stair-
case that approximates (conjecturally with essential square root accuracy) a
45 degree straight line.

We have offered two equivalent formulations of the Riemann Hypothesis,
both having to do with the manner in which the prime numbers are situated
among all whole numbers.

In doing this, we hope that we have convinced you that – in the words
of Don Zagier – primes seem to obey no other law than that of chance and
yet exhibit stunning regularity. This is the end of Part I of our book, and is
largely the end of our main mission, to explain – in elementary terms – what is
Riemann’s Hypothesis?

For readers who have at some point studied Differential Calculus, in Part II
we shall discuss Fourier analysis, a fundamental tool that will be used in Part III
where we show how Riemann’s hypothesis provides a key to some deeper struc-
ture of the prime numbers, and to the nature of the laws that they obey. We
will – if not explain – at least hint at how the above series of questions have
been answered so far, and how the Riemann Hypothesis offers a surprise for
the last question in this series.
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25

How Calculus Manages to
Find the Slopes of Graphs that
have no Slopes

Differential Calculus, initially the creation of Newton and Leibniz in the 1680s,
acquaints us with slopes of graphs of functions of a real variable. So, to discuss
this we should say a word about what a function is, and what its graph is.

A function (let us refer to it in this discussion as f ) is often described as
a kind of machine that for any specific input numerical value a will give, as
output, a well-defined numerical value.

This “output number” is denoted f (a) and is called the “value” of the func-
tion f at a. For example, the machine that adds 1 to any number can be thought
of as the function f whose value at any a is given by the equation f (a) = a + 1.
Often we choose a letter – say, X – to stand for a “general number” and we

Figure 25.1. Isaac Newton and Gottfried Leibniz created Calculus
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Figure 25.2. Graph of the function f (a) = a + 1

denote the function f by the symbol f (X ) so that this symbolization allows
to “substitute for X any specific number a” to get its value f (a).

The graph of a function provides a vivid visual representation of the function
in the Euclidean plane where over every point a on the x-axis you plot a point
above it of “height” equal to the value of the function at a, i.e., f (a). In Cartesian
coordinates, then, you are plotting points (a, f (a)) in the plane where a runs
through all real numbers.

In this book we will very often be talking about “graphs” when we are also
specifically interested in the functions – of which they are the graphs. We will
use these words almost synonymously since we like to adopt a very visual atti-
tude towards the behavior of the functions that interest us.

Figure 25.3 illustrates a function (blue), the slope at a point (green straight
line), and the derivative (red) of the function; the red derivative is the function
whose value at a point is the slope of the blue function at that point. Differential
Calculus explains to us how to calculate slopes of graphs, and finally, shows us
the power that we then have to answer problems we could not answer if we
couldn’t compute those slopes.

Figure 25.3. Calculus

Usually, in elementary Calculus classes we are called upon to compute
slopes only of smooth graphs, i.e., graphs that actually have slopes at each of
their points, such as in the illustration just above. What could Calculus possibly
do if confronted with a graph that has jumps, such as in Figure 25.4:

f (x) =
{

1 x ≤ 3

2 x > 3.
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Figure 25.4. The graph of the function f (x) above that jumps – it is 1 up to 3 and
then 2 after that point

(Note that for purely aesthetic reasons, we draw a vertical line at the point
where the jump occurs, though technically that vertical line is not part of the
graph of the function.)

The most comfortable way to deal with the graph of such a function is to just
approximate it by a differentiable function as in Figure 25.5.

Figure 25.5. A picture of a smooth graph approximating the graph that is 1 up to
some point x and then 2 after that point, the smooth graph being flat mostly

Then take the derivative of that smooth function. Of course, this is just an
approximation, so we might try to make a better approximation, which we do
in each successive graph starting with Figure 25.6 below.

Figure 25.6. A picture of the derivative of a smooth approximation to a function
that jumps

Note that – as you would expect – in the range where the initial function
is constant, its derivative is zero. In the subsequent figures, our initial function
will be nonconstant for smaller and smaller intervals about the origin. Note also
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Figure 25.7. Second picture of the derivative of a smooth approximation to a func-
tion that jumps

Figure 25.8. Third picture of the derivative of a smooth approximation to a func-
tion that jumps

that, in our series of pictures below, we will be successively rescaling the y-axis;
all our initial functions have the value 1 for “large” negative numbers and the
value 2 for large positive numbers.

Notice what is happening: as the approximation gets better and better, the
derivative will be zero mostly, with a blip at the point of discontinuity, and the
blip will get higher and higher. In each of these pictures, for any interval of real
numbers [a, b] the total area under the red graph over that interval is equal to

the height of the blue graph at x = b
minus

the height of the blue graph at x = a.

This is a manifestation of one of the fundamental facts of life of Calculus relat-
ing a function to its derivative:

Given any real-valued function F (x) – that has a derivative – for any inter-
val of real numbers [a, b] the total signed1 area between the graph and
the horizontal axis of the derivative of F (x) over that interval is equal to
F (b) − F (a).

What happens if we take the series of figures 25.6–25.9, etc., to the limit? This is
quite curious:

1 When F (x) < 0 we count that area as negative.
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Figure 25.9. Fourth picture of the derivative of a smooth approximation to a func-
tion that jumps

! the series of red graphs: these are getting thinner and thinner and higher and
higher: can we make any sense of what the red graph might mean in the limit
(even though the only picture of it that we have at present makes it infinitely
thin and infinitely high)?! the series of blue graphs: these are happily looking more and more like the
tame Figure 25.4.

Each of our red graphs is the derivative of the corresponding blue graph. It is
tempting to think of the limit of the red graphs – whatever we might construe
this to be – as standing for the derivative of the limit of the blue graphs, i.e., of
the graph in Figure 25.4.

Well, the temptation is so great that, in fact, mathematicians and physicists
of the early twentieth century struggled to give a meaning to things like the limit
of the red graphs – such things were initially called generalized functions which
might be considered the derivative of the limit of the blue graphs, i.e., of the
graph of Figure 25.4.

Of course, to achieve progress in mathematics, all the concepts that play a
role in the theory have to be unambiguously defined, and it took a while before
generalized functions such as the limit of our series of red graphs had been rig-
orously introduced.

But many of the great moments in the development of mathematics occur
when mathematicians – requiring some concept not yet formalized – work with
the concept tentatively, dismissing – if need be – mental tortures, in hopes that
the experience they acquire by working with the concept will eventually help to
put that concept on sure footing. For example, early mathematicians (Newton,
Leibniz) – in replacing approximate speeds by instantaneous velocities by pass-
ing to limits – had to wait a while before later mathematicians (e.g., Weierstrass)
gave a rigorous foundation for what they were doing.

Karl Weierstrass, who worked during the latter part of the nineteenth cen-
tury, was known as the “father of modern analysis.” He oversaw one of the glori-
ous moments of rigorization of concepts that were long in use, but never before
systematically organized. He, and other analysts of the time, were interested
in providing a rigorous language to talk about functions and more specifically
continuous functions and smooth (i.e., differentiable) functions. They wished



Trim: 6in × 9in Top: 0.373in Gutter: 0.498in

CUUS2308-01 CUUS2308/Mazur 978 1 107 10192 0 July 1, 2015 7:33

76 Primes: What is Riemann’s Hypothesis?

Figure 25.10. Karl Weierstrass (1815–1897) and Laurent Schwartz (1915–2002)

to have a firm understanding of limits (i.e., of sequences of numbers, or of
functions).

For Weierstrass and his companions, even though the functions they worked
with needn’t be smooth, or continuous, at the very least, the functions they
studied had well-defined – and usually finite – values. But our “limit of red
graphs” is not so easily formalized as the concepts that occupied the efforts
of Weierstrass.

Happily however, this general process of approximating discontinuous func-
tions more and more exactly by smooth functions, and taking their derivatives
to get the blip-functions as we have just seen in the red graphs above was
eventually given a mathematically rigorous foundation; notably, by the French
mathematician, Laurent Schwartz who provided a beautiful theory that we will
not go into here, that made perfect sense of “generalized functions” such as our
limit of the series of red graphs, and that allows mathematicians to work with
these concepts with ease. These “generalized functions” are called distributions
in Schwartz’s theory [14].
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26

Distributions: Sharpening our
Approximating Functions even
if we have to Let them Shoot
Out to Infinity

The curious limit of the red graphs of the previous section, which you might
be tempted to think of as a “blip-function” that vanishes for t nonzero and is
somehow “infinite” (whatever that means) at 0 is an example of a generalized
function (in the sense of the earlier mathematicians) or a distribution in the
sense of Laurent Schwartz.

This particular limit of the red graphs also goes by another name (it is offi-
cially called a Dirac δ-function (see [15]), the adjective “Dirac” being in honor
of the physicist who first worked with this concept, the “δ” being the sym-
bol he assigned to these objects). The noun “function” should be in quotation
marks for, properly speaking, the Dirac δ-function is not – as we have explained
above – a bona fide function but rather a distribution.

Now may be a good time to summarize what the major difference is between
honest functions and generalized functions or distributions.

Figure 26.1. Paul Adrien Maurice Dirac (1902–1984)

77
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∫ b

a
f(t)dt.

Figure 26.2. This figure illustrates
∫ ∞
−∞ f (x)dx, which is the signed area between

the graph of f (x) and the x-axis, where area below the x-axis (yellow) counts nega-
tive, and area above (grey) is positive

An honest (by which we mean integrable) function of a real variable f (t )

possesses two “features.”! It has values. That is, at any real number t , e.g., t = 2 or t = 0 or t = π etc.,
our function has a definite real number value ( f (2) or f (0) or f (π ) etc.) and
if we know all those values we know the function.! It has areas under its graph. If we are given any interval of real numbers,
say the interval between a and b, we can talk unambiguously about the area
“under” the graph of the function f (t ) over the interval between a and b.
That is, in the terminology of Integral Calculus, we can talk of the integral of
f (t ) from a to b. And in the notation of Calculus, this – thanks to Leibniz – is
elegantly denoted

∫ b

a
f (t )dt .

In contrast, a generalized function or distribution! may not have “definite values” at all real numbers if it is not an honest func-
tion. Nevertheless,! It has well-defined areas under portions of its “graph.” If we are given any
interval of real numbers, say the (open) interval between a and b, we can still
talk unambiguously about the area “under” the graph of the generalized func-
tion D(t ) over the interval between a and b and we will denote this – extending
what we do in ordinary calculus – by the symbol

∫ b

a
D(t )dt .

This description is important to bear in mind and it gives us a handy way of
thinking about “generalized functions” (i.e., distributions) as opposed to func-
tions: when we consider an (integrable) function of a real variable, f (t ), we
may invoke its value at every real number and for every interval [a, b] we may

William Stein


William Stein


William Stein
“Integral Calculus” —> “integral calculus”

William Stein
“Calculus” —> “calculus”
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consider the quantity
∫ b

a f (t )dt . BUT when we are given a generalized func-
tion D(t ) we only have at our disposal the latter quantities. In fact, a gener-
alized function of a real variable D(t ) is (formally) nothing more than a rule
that assigns to any finite interval (a, b] (a ≤ b) a quantity that we might denote∫ b

a D(t )dt and that behaves as if it were the integral of a function and in particu-
lar – for three real numbers a ≤ b ≤ c we have the additivity relation

∫ c

a
D(t )dt =

∫ b

a
D(t )dt +

∫ c

b
D(t )dt .

SO, any honest function integrable over finite intervals clearly is a distribution
(forget about its values!) but . . . there are many more generalized functions, and
including them in our sights gives us a very important tool.

It is natural to talk, as well, of Cauchy sequences, and limits, of distributions.
We’ll say that such a sequence D1(t ), D2(t ), D3(t ), . . . is a Cauchy sequence if
for every interval [a, b] the quantities

∫ b

a
D1(t )dt ,

∫ b

a
D2(t )dt ,

∫ b

a
D3(t )dt , . . .

form a Cauchy sequence of real numbers (so for any ε > 0 eventually all terms
in the sequence of real numbers are within ε of each other). Now, any Cauchy
sequence of distributions converges to a limiting distribution D(t ) which is
defined by the rule that for every interval [a, b],

∫ b

a
D(t )dt = lim

i→∞

∫ b

a
Di(t )dt .

If, by the way, you have an infinite sequence – say – of honest, continuous,
functions that converges uniformly to a limit (which will again be a continu-
ous function) then that sequence certainly converges – in the above sense –
to the same limit when these functions are viewed as generalized functions.
BUT, there are many important occasions where your sequence of honest con-
tinuous functions doesn’t have that convergence property and yet when these
continuous functions are viewed as generalized functions they do converge
to some generalized function as a limit. We will see this soon when we get
back to the “sequence of the red graphs.” This sequence does converge (in the
above sense) to the Dirac δ-function when these red graphs are thought of as a
sequence of generalized functions.

The integral notation for distribution is very useful, and allows us the flexi-
bility to define, for nice enough – and honest – functions c(t ) useful expressions
such as

∫ b

a
c(t )D(t ).

For example, the Dirac δ-function we have been discussing (i.e., the limit of the
red graphs of Chapter 25) is an honest function away from t = 3 and – in fact –
is the “trivial function” zero away from 3. And at 3, we may say that it has the
“value” infinity, in honor of it being the limit of blip functions getting taller and
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∫ b

a
c(t)D(t).

Figure 26.3. The Dirac δ-“function” (actually distribution), where we draw a ver-
tical arrow to illustrate the delta function with support at a given point

taller at 3. The feature that pins it down as a distribution is given by its behavior
relative to the second feature above, the area of its graph over the open interval
(a, b) between a and b:! If 3 is not in the open interval spanned by a and b, then the “area under the

graph of our Dirac δ-function” over the interval (a, b) is 0.! If 3 is in the open interval (a, b), then the “area under the graph of our Dirac
δ-function” is 1 – in notation

∫ b

a
δ = 1.

We sometimes summarize the fact that these areas vanish so long as 3 is not
included in the interval we are considering by saying that the support of this
δ-function is “at 3.”

Once you’re happy with this Dirac δ-function, you’ll also be happy with a
Dirac δ-function – call it δx – with support concentrated at any specific real
number x. This δx vanishes for t ̸= x and intuitively speaking, has an infinite
blip at t = x.

So, the original delta-function we were discussing, i.e., δ(t ) would be
denoted δ3(t ).

A question: If you’ve never seen distributions before, but know the Riemann
integral, can you guess at what the definition of

∫ b
a c(t )D(t ) is, and can you for-

mulate hypotheses on c(t ) that would allow you to endow this expression with
a definite meaning?

A second question: If you have not seen distributions before, and have
answered the first question above, let c(t ) be an honest function for which your
definition of

∫ b

a
c(t )D(t )
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Figure 26.4. The staircase function that is 0 for t ≤ 0, 1 for 0 < t ≤ 1 and 3 for
1 < t ≤ 2 has derivative δ0 + 2δ1

applies. Now let x be a real number. Can you use your definition to compute
∫ +∞

−∞
c(t )δx(t )?

The answer to this second question, by the way, is:
∫ +∞

−∞ c(t )δx(t ) = c(x). This
will be useful in the later sections!

The theory of distributions gives a partial answer to the following funny
question:

How in the world can you “take the derivative” of a function F (t ) that
doesn’t have a derivative?

The short answer to this question is that this derivative F ′(t ) which doesn’t exist
as a function may exist as a distribution. What then is the integral of that distri-
bution? Well, it is given by the original function!

∫ b

a
F ′(t )dt = F (b) − F (a).

Let us practice this with simple staircase functions. For example, what is the
derivative – in the sense of the theory of distributions – of the function in
Figure 26.4? Answer δ0 + 2δ1.

We’ll be dealing with much more complicated staircase functions in the next
chapter, but the general principles discussed here will nicely apply there [16].



Trim: 6in × 9in Top: 0.373in Gutter: 0.498in

CUUS2308-01 CUUS2308/Mazur 978 1 107 10192 0 July 1, 2015 7:33

27
Fourier Transforms:
Second Visit

In Chapter 20 above we wrote:

The operation that starts with a graph and goes to its spectral picture that
records the frequencies, amplitudes, and phases of the pure sine waves
that, together, compose the graph is called the Fourier transform.

Now let’s take a closer look at this operation Fourier transform.
We will focus our discussion on an even function f (t ) of a real variable t .

“Even” means that its graph is symmetric about the y-axis; that is, f (−t ) =
f (t ). See Figure 27.1.

When we get to apply this discussion to the staircase of primes π (t ) or the
tinkered staircase of primes ψ (t ), both of which being defined only for posi-
tive values of t , then we would “lose little information” in our quest to under-
stand them if we simply “symmetrized their graphs” by defining their values on
negative numbers −t via the formulas π (−t ) = π (t ) and ψ (−t ) = ψ (t ) thereby
turning each of them into even functions.

The idea behind the Fourier transform is to express f (t ) as made up out of
sine and cosine wave functions. Since we have agreed to consider only even

Figure 27.1. The graph of an even function is symmetrical about the y-axis

82
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Figure 27.2. Even extension of the staircase of primes

functions, we can dispense with the sine waves – they won’t appear in our
Fourier analysis – and ask how to reconstruct f (t ) as a sum (with coefficients)
of cosine functions (if only finitely many frequencies occur in the spectrum of
our function) or more generally, as an integral if the spectrum is more elabo-
rate. For this work, we need a little machine that tells us, for each real number
θ , whether or not θ is in the spectrum of f (t ), and if so, what the amplitude is of
the cosine function cos(θt ) that occurs in the Fourier expansion of f (t ) – this
amplitude answers the awkwardly phrased question:

How much cos(θt ) “occurs in” f (t )?

We will denote this amplitude by f̂ (θ ), and refer to it as the Fourier trans-
form of f (t ). The spectrum, then, of f (t ) is the set of all frequencies θ where
the amplitude is nonzero.

Now in certain easy circumstances – specifically, if
∫ +∞

−∞ | f (t )|dt (exists,
and) is finite – Integral Calculus provides us with an easy construction of that
machine (see Figure 27.3); namely:

f̂ (θ ) =
∫ +∞

−∞
f (t ) cos(−θt )dt .

This concise machine manages to “pick out” just the part of f (t ) that has fre-
quency θ ! It provides for us the analysis part of the Fourier analysis of our func-
tion f (t ).

But there is a synthesis part to our work as well, for we can reconstruct
f (t ) from its Fourier transform, by a process intriguingly similar to the

Figure 27.3. The Fourier transform machine, which transforms f (t) into f̂ (θ )

William Stein


William Stein
“Integral Calculus” —> “integral calculus”
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analysis part; namely: if
∫ +∞

−∞ | f̂ (θ )|dθ (exists, and) is finite, we retrieve f (t ) by
the integral

f (t ) = 1
2π

∫ +∞

−∞
f̂ (θ ) cos(θt )dθ .

We are not so lucky to have
∫ +∞

−∞ | f (t )|dt finite when we try our hand at a Fourier
analysis of the staircase of primes, but we’ll work around this!
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28
What is the Fourier Transform
of a Delta Function?

Consider the δ-function that we denoted δ(t ) (or δ0(t )). This is also the “gener-
alized function” that we thought of as the “limit of the red graphs” in Chapter 26
above. Even though δ(t ) is a distribution and not a bona fide function, it is sym-
metric about the origin, and also

∫ +∞

−∞
|δ(t )|dt

exists, and is finite (its value is, in fact, 1). All this means that, appropriately
understood, the discussion of the previous section applies, and we can feed
this delta-function into our Fourier Transform Machine (Figure 27.3) to see
what frequencies and amplitudes arise in our attempt to express – whatever
this means! – the delta-function as a sum, or an integral, of cosine functions.

So what is the Fourier transform, δ̂0(θ ), of the delta-function?
Well, the general formula would give us:

δ̂0(θ ) =
∫ +∞

−∞
cos(−θt )δ0(t )dt

and as we mentioned in section 18, for any nice function c(t ) we have that the
integral of the product of c(t ) by the distribution δx(t ) is given by the value of
the function c(t ) at t = x. So:

δ̂0(θ ) =
∫ +∞

−∞
cos(−θt )δ0(t )dt = cos(0) = 1.

In other words, the Fourier transform of δ0(t ) is the constant function

δ̂0(θ ) = 1.

85
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Figure 28.1. The sum (δx(t) + δ−x(t))/2, where we draw vertical arrows to illus-
trate the Dirac delta functions

One can think of this colloquially as saying that the delta-function is a perfect
example of white noise in that every frequency occurs in its Fourier analysis and
they all occur in equal amounts.

To generalize this computation, let us consider for any real number x the
symmetrized delta-function with support at x and −x, given by

dx(t ) = (δx(t ) + δ−x(t ))/2

in Figure 28.1.
What is the Fourier transform of this dx(t )? The answer is given by making

the same computation as we’ve just made:

d̂x(θ ) = 1
2

(∫ +∞

−∞
cos(−θt )δx(t )dt +

∫ +∞

−∞
cos(−θt )δ−x(t )dt

)

= 1
2

(
cos(−θx) + cos(+θx)

)

= cos(xθ )

To summarize this in ridiculous (!) colloquial terms: for any frequency θ the
amount of cos(θt ) you need to build up the generalized function (δx(t ) +
δ−x(t ))/2 is cos(xθ ).

So far, so good, but remember that the theory of the Fourier transform has –
like much of mathematics – two parts: an analysis part and a synthesis part.
We’ve just performed the analysis part of the theory for these symmetrized delta
functions (δx(t ) + δ−x(t ))/2.

Can we synthesize them – i.e., build them up again – from their Fourier
transforms?

We’ll leave this, at least for now, as a question for you.
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29 Trigonometric Series

Given our interest in the ideas of Fourier, it is not surprising that we’ll want to
deal with things like

F (θ ) =
∞∑

k=1

ak cos(sk · θ )

where the sk are real numbers tending (strictly monotonically) to infinity. These
we’ll just call trigonometric series without asking whether they converge in any
sense for all values of θ , or even for any value of θ . The sk’s that occur in such a
trigonometric series we will call the spectral values or for short, the spectrum
of the series, and the ak’s the (corresponding) amplitudes. We repeat that we
impose no convergence requirements at all. But we also think of these things as
providing “cutoff” finite trigonometric sums, which we think of as functions of
two variables, θ and C (the “cutoff”) where

F (θ ,C) :=
∑

sk≤C

ak cos(sk · θ ).

These functions F (θ ,C) are finite trigonometric series and therefore “honest
functions” having finite values everywhere.

Recall, as in Chapter 28, that for any real number x, we considered the sym-
metrized delta-function with support at x and −x, given by

dx(t ) = (δx(t ) + δ−x(t ))/2,

and noted that the Fourier transform of this dx(t ) is

d̂x(θ ) = cos(xθ ).

87
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Figure 29.1. The sum (δx(t) + δ−x(t))/2, where we draw vertical arrows to illus-
trate the Dirac delta functions

It follows, of course, that a cutoff finite trigonometric series, F (θ ,C) associ-
ated to an infinite trigonometric series

F (θ ) =
∞∑

k=1

ak cos(sk · θ )

is the Fourier transform of the distribution

D(t ,C) :=
∑

sk≤C

akdsk
(t ).

Given the discreteness of the set of spectral values sk (k = 1, 2, . . . ) we can con-
sider the infinite sum

D(t ) :=
∞∑

k=1

akdsk
(t ),

viewed as distribution playing the role of the “inverse Fourier transform” of our
trigonometric series F (t ).

Definition 29.1

Say that a trigonometric series F (θ ) has a spike at the real number θ = τ ∈
R if the set of absolute values |F (τ,C)| as C ranges through positive number
cutoffs is unbounded. A real number τ ∈ R is, in contrast, a non-spike if those
values admit a finite upper bound.

In the chapters that follow we will be exhibiting graphs of trigonometric func-
tions, cutoff at various values of C, that (in our opinion) strongly hint that as
C goes to infinity, one gets convergence to certain (discrete) sequences of very
interesting spike values. To be sure, no finite computation, exhibited by a graph,
can prove that this is in fact the case. But on the one hand, the vividness of those
spikes is in itself worth experiencing, and on the other hand, given RH, there is
justification that the strong hints are not misleading; for some theoretical back-
ground see the endnotes.

William Stein
This blue box is not legible, especially in the mathematical  notation.  It’s almost the only instances of this blue box formal definition in the whole book, and I don't think we need these blue boxes.  Get rid of the blue box and just have a paragraph that says “Say that …upper bound”, i.e., exactly the content of the box above without “Definition 29.1”. 
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30 A Sneak Preview of Part III

In this chapter, as a striking illustration of the type of phenomena that will be
studied in Part III, we will consider two infinite trigonometric sums – that seem
to be related one to the other in that the frequencies of the terms in the one
trigonometric sum give the spike values of the other, and vice versa: the fre-
quencies of the other give the spike values of the one: a kind of duality as in the
theory of Fourier transforms. We show this duality by exhibiting the graphs of
more and more accurate finite approximations (cutoffs) of these infinite sums.
More specifically,

1. The first infinite trigonometric sum F (t ) is a sum1 of pure cosine waves with
frequencies given by logarithms of powers of primes and with amplitudes
given by the formula

F (t ) := −
∑

pn

log(p)

pn/2
cos(t log(pn))

the summation being over all powers pn of all prime numbers p.
The graphs of longer and longer finite truncations of these trigonometric

sums, as you will see, have “higher and higher peaks” concentrated more
and more accurately at a certain infinite discrete set of real numbers that
we will be referring to as the Riemann spectrum, indicated in our pictures
below (Figures 30.2–30.5) by the series of vertical red lines.

1 Here we make use of the Greek symbol
∑

as a shorthand way of expressing a sum of
many terms. We are not requesting this sum to converge.
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Figure 30.1. Plot of f (t)

2. In contrast, the second infinite trigonometric sum H (t ) is a sum of pure
cosine waves with frequencies given by what we have dubbed above the Rie-
mann spectrum and with amplitudes all equal to 1.

H (s) := 1 +
∑

θ

cos(θ log(s)).

These graphs will have “higher and higher peaks” concentrated more and
more accurately at the logarithms of powers of primes indicated in our pic-
tures below (see Figure 30.6) by the series of vertical blue spikes.

That the series of blue lines (i.e., the logarithms of powers of primes) in our pic-
tures below determines – via the trigonometric sums we describe – the series
of red lines (i.e., what we are calling the spectrum) and conversely is a conse-
quence of the Riemann Hypothesis.

1. Viewing the Riemann spectrum as the spike values of a trigonometric
series with frequencies equal to (logs of ) powers of the primes:
To get warmed up, let’s plot the positive values of the following sum of
(co-)sine waves:

f (t ) = − log(2)

21/2
cos(t log(2)) − log(3)

31/2
cos(t log(3))

− log(2)

41/2
cos(t log(4)) − log(5)

51/2
cos(t log(5))

Look at the peaks of this graph. There is nothing very impressive about them,
you might think; but wait, for f (t ) is just a very “early” piece of the infinite
trigonometric sum F (t ) described above.

Let us truncate the infinite sum F (t ) taking only finitely many terms, by
choosing various “cutoff values” C and forming the finite sums

F≤C (t ) := −
∑

pn≤C

log(p)

pn/2
cos(t log(pn))

and plotting their positive values. Figures 30.2–30.5 show what we get for a
few values of C.
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In each of the graphs, we have indicated by red vertical arrows the real
numbers that give the values of the Riemann spectrum that we will be dis-
cussing. These numbers at the red vertical arrows in Figures 30.2–30.5,

θ1, θ2, θ3, . . .

are spike values – as described in Chapter 29 – of the infinite trigonometric
series

−
∑

pn<C

log(p)

pn/2
cos(t log(pn)).

They constitute what we are calling the Riemann spectrum and are key to
the staircase of primes [17].! The sum with pn ≤ C = 5

In Figure 30.2 we plot the function f (t ) displayed above; it consists of the
sum of the first four terms of our infinite sum, and doesn’t yet show very
much “structure”:

Figure 30.2. Plot of −
∑

pn≤5
log(p)

pn/2 cos(t log(pn)) with arrows pointing to the spec-
trum of the primes

! The sum with pn ≤ C = 20
Something, (don’t you agree?) is already beginning to happen in the graph
in Figure 30.3:

Figure 30.3. Plot of −
∑

pn≤20
log(p)

pn/2 cos(t log(pn)) with arrows pointing to the
spectrum of the primes

! The sum with pn ≤ C = 50
Note that the high peaks in Figure 30.4 seem to be lining up more accu-
rately with the vertical red lines. Note also that the y-axis has been
rescaled.
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Figure 30.4. Plot of −
∑

pn≤50
log(p)

pn/2 cos(t log(pn)) with arrows pointing to the
spectrum of the primes! The sum with pn ≤ C = 500

Here, the peaks are even sharper, and note that again they are higher; that
is, we have rescaled the y-axis.

We will pay attention to:! how the spikes “play out” as we take the sums of longer and longer pieces
of the infinite sum of cosine waves above, given by larger and larger cutoffs
C,! how this spectrum of red lines more closely matches the high peaks of the
graphs of the positive values of these finite sums,! how these peaks are climbing higher and higher,! what relationship these peaks have to the Fourier analysis of the staircase
of primes,! and, equally importantly, what these mysterious red lines signify.

2. Towards (logs of ) powers of the primes, starting from the Riemann
spectrum:
Here we will be making use of the series of numbers

θ1, θ2, θ3, . . .

comprising what we called the spectrum. We consider the infinite trigono-
metric series

G(t ) := 1 + cos(θ1t ) + cos(θ2t ) + cos(θ3t ) + · · ·

Figure 30.5. Plot of −
∑

pn≤500
log(p)

pn/2 cos(t log(pn)) with arrows pointing to the
spectrum of the primes
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Figure 30.6. Illustration of −
∑1000

i=1 cos(log(s)θi), where θ1 ∼ 14.13, . . . are the first
1000 contributions to the spectrum. The red dots are at the prime powers pn, whose
size is proportional to log(p)

or, using the
∑

notation,

G(t ) := 1 +
∑

θ

cos(θt )

where the summation is over the spectrum, θ = θ1, θ2, θ3, . . . . Again we will
consider finite cutoffs C of this infinite trigonometric sum (on a logarithmic
scale),

H≤C (s) := 1 +
∑

i≤C

cos(log(s)θi)

and to see the spikes in H≤1000(s) consider Figure 30.6.

This passage – thanks to the Riemann Hypothesis – from spectrum to prime
powers and back again via consideration of the “high peaks” in the graphs of
the appropriate trigonometric sums provides a kind of visual duality emphasiz-
ing, for us, that the information inherent in the wild spacing of prime powers, is
somehow “packaged” in the Riemann spectrum, and reciprocally, the informa-
tion given in that series of mysterious numbers is obtainable from the sequence
of prime powers.
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31 On Losing no Information

To manage to repackage the “same” data in various ways – where each way
brings out some features that would be kept in the shadows if the data were
packaged in some different way – is a high art, in mathematics. In a sense every
mathematical equation does this, for the “equal sign” in the middle of the equa-
tion tells us that even though the two sides of the equation may seem different,
or have different shapes, they are nonetheless “the same data.” For example,
the equation

log(XY ) = log(X ) + log(Y )

which we encountered earlier in Chapter 10, is just two ways of looking at
the same thing, yet it was the basis for much manual calculation for several
centuries.

Now, the problem we have been concentrating on, in this book, has been – in
effect – to understand the pattern, if we can call it that, given by the placement
of prime numbers among the natural line-up of all whole numbers.

There are, of course, many ways for us to present this basic pattern. Our ini-
tial strategy was to focus attention on the staircase of primes which gives us
a vivid portrait, if you wish, of the order of appearance of primes among all
numbers.

As we have already hinted in the previous sections, however, there are var-
ious ways open to us to tinker with – and significantly modify – our staircase
without losing the essential information it contains. Of course, there is always

Figure 31.1. Prime numbers up to 37
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Figure 31.2. Prime numbers up to 37

the danger of modifying things in such a way that “retrieval” of the original data
becomes difficult. Moreover, we had better remember every change we have
made if we are to have any hope of retrieving the original data!

With this in mind, let us go back to Chapter 18 (discussing the staircase
of primes) and Chapter 19, where we tinkered with the original staircase of
primes – alias: the graph of π (X ) – to get ψ (X ) whose risers look – from
afar – as if they approximated the 45 degree staircase.

At this point we’ll do some further carpentry on ψ (X ) without destroying the
valuable information it contains. We will be replacing ψ (X ) by a generalized
function, i.e., a distribution, which we denote '(t ) that has support at all posi-
tive integral multiples of logs of prime numbers, and is zero on the complement
of that discrete set. Recall that by definition, a discrete subset S of real numbers
is the support of a function, or of a distribution, if the function vanishes on the
complement of S and doesn’t vanish on the complement of any proper subset
of S.

Given the mission of our book, it may be less important for us to elaborate on
the construction of '(t ) than it is (a) to note that '(t ) contains all the valuable
information that ψ (X ) has and (b) to pay close attention to the spike values of
the trigonometric series that is the Fourier transform of '(t ).

For the definition of the distribution '(t ) see the end-note [18].
A distribution that has a discrete set of real numbers as its support – as '(t )

does – we sometimes like to call spike distributions since the pictures of func-
tions approximating it tend to look like a series of spikes.

We have then before us a spike distribution with support at integral multi-
ples of logarithms of prime numbers, and this generalized function retains the
essential information about the placement of prime numbers among all whole
numbers, and will be playing a major role in our story: knowledge of the place-
ment of the “blips” constituting this distribution (its support), being at integral
multiples of logs of prime numbers, would allow us to reconstruct the posi-
tion of the prime numbers among all numbers. Of course there are many other
ways to package this vital information, so we must explain our motivation for
subjecting our poor initial staircase to the particular series of brutal acts of dis-
tortion that we described, which ends up with the distribution '(t ).
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32
Going from the Primes to the
Riemann Spectrum

We discussed the nature of the Fourier transform of (symmetrized) δ-functions
in Chapter 28. In particular, recall the “spike function”

dx(t ) = (δx(t ) + δ−x(t ))/2

that has support at the points x and −x. We mentioned that its Fourier trans-
form, d̂x(θ ), is equal to cos(xθ ) (and gave some hints about why this may be
true).

Our next goal is to work with the much more interesting “spike function”

'(t ) = e−t/2( ′(t ),

which was one of the generalized functions that we engineered in Chapter 31,
and that has support at all nonnegative integral multiples of logarithms of
prime numbers.

As with any function – or generalized function – defined for non-negative
values of t , we can “symmetrize it” (about the t -axis) which means that we can
define it on negative real numbers by the equation

'(−t ) = '(t ).

Let us make that convention, thereby turning '(t ) into an even generalized
function, as illustrated in Figure 32.1. (An even function on the real line is a
function that takes the same value on any real number and its negative as in
the formula above.)

We may want to think of '(t ) as a limit of this sequence of distributions,

'(t ) = lim
C→∞

'≤C (t )

99
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100 Primes: What is Riemann’s Hypothesis?

Figure 32.1. '(t) is a sum of Dirac delta functions at the logarithms of prime pow-
ers pn weighted by p−n/2 log(p) (and log(2π ) at 0)

where '≤C (t ) is the following finite linear combination of (symmetrized) δ-
functions dx(t ):

'≤C (t ) := 2
∑

prime powers pn≤C

p−n/2 log(p)dn log(p)(t ).

Since the Fourier transform of dx(t ) is cos(xθ ), the Fourier transform of each
dn log(p)(t ) is cos(n log(p)θ ), so the Fourier transform of '≤C (t ) is

'̂≤C (θ ) := 2
∑

prime powers pn≤C

p−n/2 log(p) cos(n log(p)θ ).

So, following the discussion in Chapter 29 above, we are dealing with the cutoffs
at finite points C of the trigonometric series1

'̂(θ ) := 2
∑

prime powers pn

p−n/2 log(p) cos(n log(p)θ ).

For example, when C = 3, we have the rather severe cutoff of these trigono-
metric series: '̂≤3(θ ) takes account only of the primes p = 2 and p = 3:

'̂≤3(θ ) = 2√
2

log(2) cos(log(2)θ ) + 2√
3

log(3) cos(log(3)θ ),

which we plot in Figure 32.2.
We will be interested in the values of θ that correspond to higher and higher

peaks of our trigonometric series '̂≤C (θ ) as C → ∞. For example, the value of θ

that provides the first peak of '̂′
≤3(θ ) such that |'̂′

≤3(θ )| > 2 is

θ = 14.135375354 . . . .

So in Figure 32.2 we begin this exploration by plotting '̂≤3(θ ), together with its
derivative, highlighting the zeroes of the derivative.

1 The trigonometric series in the text – whose spectral values are the logarithms of prime
powers – may also be written as

∞∑

m=2

)(m)m−s +
∞∑

m=2

)(m)m−s̄

for s = 1
2 + iθ , where )(m) is the von-Mangoldt function.
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Figure 32.2. Plot of '̂≤3(θ )

Figure 32.3. Plot of '̂≤3(θ ) in blue and its derivative in grey

As we shall see in subsequent figures of this chapter, there seems to be an
eventual convergence of the values of θ that correspond to higher and higher
peaks, the red dots in the figure above, as C tends to ∞. These “limit” θ-values
we now insert as the endpoints of red vertical lines into Figure 32.4 comparing
them with the red dots for our humble cutoff C = 3.

Figure 32.4. '̂≤3(θ )
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102 Primes: What is Riemann’s Hypothesis?

Figure 32.5. Plot of '̂≤C(θ ) for C = 5 and 10

We give a further sample of graphs for a few higher cutoff values C (intro-
ducing a few more primes into the game!).

Figures 32.5–32.7 contain graphs of various cutoffs of '̂≤C (θ ). As C increases
a sequence of spikes down emerge which we indicate with red vertical arrows.

Given the numerical-experimental approach we have been adopting in
this book, it is a particularly fortunate (and to us: surprising) thing that the
convergence to those vertical red lines can already be illustrated using such
small cutoff values C. One might almost imagine making hand computa-
tions that exhibit this phenomenon! Following in this spirit, see David Mum-
ford’s blog post http://www.dam.brown.edu/people/mumford/blog/
2014/RiemannZeta.html.

To continue:

Figure 32.6. Plot of '̂≤C(θ ) for C = 10 and 100

Figure 32.7. Plot of '̂≤C(θ ) for C = 200 and 500

For a theoretical discussion of these spikes, see endnote [19].
The θ-coordinates of these spikes seem to be vaguely clustered about a dis-

crete set of positive real numbers. These “spikes” are our first glimpse of a
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certain infinite set of positive real numbers

θ1, θ2, θ3, . . .

which constitute the Riemann spectrum of the primes. If the Riemann
Hypothesis holds, these numbers would be the key to the placement of primes
on the number line.

By tabulating these peaks we compute – at least very approximately – . . .

θ1 = 14.134725 . . .

θ2 = 21.022039 . . .

θ3 = 25.010857 . . .

θ4 = 30.424876 . . .

θ5 = 32.935061 . . .

θ6 = 37.586178 . . .

Riemann defined this sequence of numbers in his 1859 article in a manner
somewhat different from the treatment we have given. In that article these θi

appear as the “imaginary parts of the nontrivial zeroes of his zeta function;” we
will discuss this briefly in Part IV, Chapter 37 below.
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33 How Many θi’s are there?

The Riemann spectrum, θ1, θ2, θ3, . . . clearly deserves to be well understood!
What do we know about this sequence of positive real numbers?

Just as we did with the prime numbers before, we can count these numbers
θ1 = 14.1347 . . . , θ2 = 21.0220 . . . , etc., and form the staircase of Figure 33.1,
with a step up at θ1, a step up at θ2, etc.

Again, just as with the staircase of primes, we might hope that as we plot
this staircase from a distance as in Figures 33.2 and 33.3 that it will look like a
beautiful smooth curve.

In fact, we know, conditional on RH, the staircase of real numbers
θ1, θ2, θ3, . . . is very closely approximated by the curve

T
2π

log
T

2πe
,

(the error term being bounded by a constant times log T ).

Figure 33.1. The staircase of the Riemann spectrum

104
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Figure 33.2. The staircase of the Riemann spectrum and the curve T
2π log T

2πe

Figure 33.3. The staircase of the Riemann spectrum looks like a smooth curve

Nowadays, these mysterious numbers θi, these spectral lines for the stair-
case of primes, are known in great abundance and to great accuracy. Here is the
smallest one, θ1, given with over 1,000 digits of its decimal expansion:

14.1347251417346937904572519835624702707842571156992431756855674601
499634298092567649490103931715610127792029715487974367661426914698
822545825053632394471377804133812372059705496219558658602005555667
258360107737002054109826615075427805174425913062544819786510723049
387256297383215774203952157256748093321400349904680343462673144209
203773854871413783173563969953654281130796805314916885290678208229
804926433866673462332007875876179200560486805435680144442465106559
756866590322868651054485944432062407272703209427452221304874872092
412385141835146054279015244783383542545334400448793680676169730081
90007313938549837362150130451672668389200391762851232128542205239
691334258322753351640601697635275637589695376749203361272092599917
304270756830879511844534891800863008264831251691127106829105237596
179774318151707135453167754951538289378490364747097270199484855322
092535743579092261252477365955180169752334612139773160053541259267
474557258778014726098308089786007125320875093959979666606753783812
14891908864977277554420656532052405

and if, by any chance, you wish to peruse the first 2,001,052 of these θi’s calcu-
lated to an accuracy within 3 · 10−9, consult Andrew Odlyzko’s tables:

http://www.dtc.umn.edu/~odlyzko/zeta_tables
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34
Further Questions About the
Riemann Spectrum

Since people have already computed1 the first 10 trillion θ ’s and have never
found one with multiplicity > 1, it is generally expected that the multiplicity of
all the θ ’s in the Riemann spectrum is 1.

But, independent of that expectation, our convention in what follows will be
that we count each of the elements in the Riemann spectrum repeated as many
times as their multiplicity. So, if it so happens that θn occurs with multiplicity
two, we view the Riemann spectrum as being the series of numbers

θ1, θ2, . . . , θn−1, θn, θn, θn+1, . . .

It has been conjectured that there are no infinite arithmetic progressions
among these numbers. More broadly, one might expect that there is no visi-
ble correlation between the θi’s and translation, i.e., that the distribution of θi’s
modulo any positive number T is random, as in Figure 34.1.

Figure 34.1. Frequency histogram of Odlyzko’s computation of the Riemann spec-
trum modulo 2π (left) and modulo 1 (right)

1 See http://numbers.computation.free.fr/Constants/constants.html for
details.
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Further Questions About the Riemann Spectrum 107

In analogy with the discussion of prime gaps in Chapter 6, we might com-
pute pair correlation functions and the statistics of gaps between successive
θ ’s in the Riemann spectrum (see http://www.baruch.cuny.edu/math/
Riemann_Hypothesis/zeta.zero.spacing.pdf). This study was begun
by H. L. Montgmery and F. J. Dyson. As Dyson noticed, the distributions one
gets from the Riemann spectrum bears a similarity to the distributions of eigen-
values of a random unitary matrix.2 This has given rise to what is know as the
random matrix heuristics, a powerful source of conjectures for number theory
and other branches of mathematics.

Here is a histogram of the distribution of differences θi+1 − θi:

Figure 34.2. Frequency histogram of the first 99,999 gaps in the Riemann spectrum

2 Any connection of the Riemann spectrum to eigenvalues of matrices would indeed be
exciting for our understanding of the Riemann Hypothesis, in view of what is known as
the Hilbert-Pólya Conjecture (see http://en.wikipedia.org/wiki/Hilbert%E2
%80%93P%C3%B3lya_conjecture).

William Stein


William Stein
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35
Going from the Riemann
Spectrum to the Primes

To justify the name Riemann spectrum of primes we will investigate graphically
whether in an analogous manner we can use this spectrum to get information
about the placement of prime numbers. We might ask, for example, if there
is a trigonometric function with frequencies given by this collection of real
numbers,

θ1, θ2, θ3, . . .

Figure 35.1. Illustration of −
∑1000

i=1 cos(log(s)θi), where θ1 ∼ 14.13, . . . are the first
1000 contributions to the Riemann spectrum. The red dots are at the prime powers
pn, whose size is proportional to log(p)

108
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Figure 35.2. Illustration of −
∑1000

i=1 cos(log(s)θi) in the neighborhood of a twin
prime. Notice how the two primes 29 and 31 are separated out by the Fourier series,
and how the prime powers 33 and 25 also appear

that somehow pinpoints the prime powers, just as our functions

'̂(θ )≤C = 2
∑

prime powers pn≤C

p−m/2 log(p) cos(n log(p)θ )

for large C pinpoint the spectrum (as discussed in the previous two
chapters).

To start the return game, consider this sequence of trigonometric functions
that have (zero and) the θi as spectrum

GC (x) := 1 +
∑

i<C

cos(θi · x).

Figure 35.3. Fourier series from 1, 000 to 1, 030 using 15,000 of the numbers θi.
Note the twin primes 1,019 and 1,021 and that 1,024 = 210
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110 Primes: What is Riemann’s Hypothesis?

As we’ll see presently it is best to view these functions on a logarithmic scale
so we will make the substitution of variables x = log(s) and write

HC (s) := GC (log(s)) = 1 +
∑

i<C

cos(θi · log(s)).

The theoretical story behind the phenomena that we will see graphically in this
chapter is a manifestation of Riemann’s explicit formula. For modern text refer-
ences that discuss this general subject, see endnote [20].
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36
How to Build π(X ) Knowing the
Spectrum (Riemann’s Way)

We have been dealing in Part III of our book with '(t ) a distribution that –
we said – contains all the essential information about the placement of primes
among numbers. We have given a clean restatement of Riemann’s hypothe-
sis, the third restatement so far, in term of this '(t ). But '(t ) was the effect
of a series of recalibrations and reconfigurings of the original untampered-
with staircase of primes. A test of whether we have strayed from our original
problem – to understand this staircase – would be whether we can return to the
original staircase, and “reconstruct it” so to speak, solely from the information
of '(t ) – or equivalently, assuming the Riemann Hypothesis as formulated in
Chapter 19 – can we construct the staircase of primes π (X ) solely from knowl-
edge of the sequence of real numbers θ1, θ2, θ3, . . . ?

The answer to this is yes (given the Riemann Hypothesis), and is discussed
very beautifully by Bernhard Riemann himself in his famous 1859 article.

Bernhard Riemann used the spectrum of the prime numbers to provide an
exact analytic formula that analyzes and/or synthesizes the staircase of primes.
This formula is motivated by Fourier’s analysis of functions as constituted out
of cosines. Recall from Chapter 13 that Gauss’s guess is Li(X ) =

∫ X
2 dt/log(t ). To

continue this discussion, we do need some familiarity with complex numbers,
for the definition of Riemann’s exact formula requires extending the definition
of the function Li(X ) to make sense for complex numbers X = a + bi. In fact,
more naturally, one might work with the path integral li(X ) :=

∫ X
0 dt/log(t ).

Riemann begins his discussion (see Figure 36.1) by defining

R(X ) =
∞∑

n=1

µ(n)

n
li(X

1
n ) = lim

N→∞
R(N )(X ) := lim

N→∞

N∑

n=1

µ(n)

n
li(X

1
n ),

113
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114 Primes: What is Riemann’s Hypothesis?

Figure 36.1. Riemann defining R(X ) in his manuscript

where R(N )(X ) denotes the truncated sum, which one can compute as an
approximation.

In all the discussion of this section the order of summation is important.
For such considerations and issues regarding actual computation we refer to
Riesel-Gohl (see http://wstein.org/rh/rg.pdf).

Here µ(n) is the Moebius function which is defined by

µ(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
if n is a square-free positive integer with an
even number of distinct prime factors,

−1
if n is a square-free positive integer with an odd
number of distinct prime factors,

0 if n is not square-free.

See Figure 36.2 for a plot of the Moebius function.
In Chapter 17 we encountered the Prime Number Theorem, which asserts

that X/ log(X ) and Li(X ) are both approximations for π (X ), in the sense that
both go to infinity at the same rate. That is, the ratio of any two of these three
functions tends to 1 as X goes to ∞. Our first formulation of the Riemann
Hypothesis (see page 41) was that Li(X ) is an essentially square root accu-
rate approximation of π (X ). Figures 36.3–36.4 illustrate that Riemann’s func-
tion R(X ) appears to be an even better approximation to π (X ) than anything
we have seen before.

Think of Riemann’s smooth curve R(X ) as the fundamental approximation
to π (X ). Riemann offered much more than just a (conjecturally) better approx-
imation to π (X ) in his wonderful 1859 article (see Figure 36.5). He found a way

Figure 36.2. The blue dots plot the values of the Moebius function µ(n), which is
only defined at integers

William Stein
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Building π(X ) Knowing the Spectrum 115

Figure 36.3. Comparisons of Li(X ) (top), π (X ) (middle), and R(X ) (bottom, com-
puted using 100 terms)

Figure 36.4. Closeup comparison of Li(X ) (top), π (X ) (middle), and R(X ) (bottom,
computed using 100 terms)

to construct what looks vaguely like a Fourier series, but with sin(X ) replaced
by R(X ) and its spectrum the θi, which conjecturally equals π (X ) (with a slight
correction if the number X is itself a prime).

In this manner, Riemann gave an infinite sequence of improved guesses,
beginning with R0(X ) (see equation (18) of Riesel-Gohl at http://wstein
.org/rh/rg.pdf) a modification of R(X ) that takes account of the pole
and the trivial zeroes of the Riemann zeta-function, and then considered a
sequence:

R0(X ), R1(X ), R2(X ), R3(X ), . . .

and he hypothesized that one and all of them were all essentially square root
approximations to π (X ), and that the sequence of these better and better
approximations converge to give an exact formula for π (X ).

Thus not only did Riemann provide a “fundamental” (that is, a smooth curve
that is astoundingly close to π (X )) but he viewed this as just a starting point, for

Figure 36.5. Riemann’s analytic formula for π (X )

William Stein
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Figure 36.6. The function R1 approximating the staircase of primes up to 100

he gave the recipe for providing an infinite sequence of corrective terms – call
them Riemann’s harmonics; we will denote the first of these “harmonics” C1(X ),
the second C2(X ), etc. Riemann gets his first corrected curve, R1(X ), from R0(X )

by adding this first harmonic to the fundamental,

R1(X ) = R0(X ) + C1(X ),

he gets the second by correcting R1(X ) by adding the second harmonic

R2(X ) = R1(X ) + C2(X ),

and so on

R3(X ) = R2(X ) + C3(X ),

and in the limit provides us with an exact fit.

Figure 36.7. The function R10 approximating the staircase of primes up to 100
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Figure 36.8. The function R25 approximating the staircase of primes up to 100

The Riemann Hypothesis, if true, would tell us that these correction terms
C1(X ),C2(X ),C3(X ), . . . are all square-root small.

The elegance of Riemann’s treatment of this problem is that the correc-
tive terms Ck(X ) are all modeled on the fundamental R(X ) and are completely
described if you know the sequence of real numbers θ1, θ2, θ3, . . . of the last
section.

Assuming the Riemann Hypothesis, the Riemann correction terms Ck(X ) are
defined to be

Ck(X ) = −R(X
1
2 +iθk ) − R(X

1
2 −iθk ),

where θ1 = 14.134725 . . . , θ2 = 21.022039 . . . , etc., is the spectrum of the prime
numbers [21].

Figure 36.9. The function R50 approximating the staircase of primes up to 100
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Figure 36.10. The function R50 approximating the staircase of primes up to 500

Figure 36.11. The function Li(X ) (top, green), the function R50(X ) (in blue), and
the staircase of primes on the interval from 350 to 400

In sum, Riemann provided an extraordinary recipe that allows us to work out
the harmonics,

C1(X ), C2(X ), C3(X ), . . .

without our having to consult, or compute with, the actual staircase of primes.
As with Fourier’s modus operandi where both fundamental and all harmonics
are modeled on the sine wave, but appropriately calibrated, Riemann fashioned
his higher harmonics, modeling them all on a single function, namely R(X ).

The convergence of Rk(X ) to π (X ) is strikingly illustrated in the plots in Fig-
ures 36.6–36.11 of Rk for various values of k.



Trim: 6in × 9in Top: 0.373in Gutter: 0.498in

CUUS2308-01 CUUS2308/Mazur 978 1 107 10192 0 July 1, 2015 7:33

37

As Riemann Envisioned it, the
Zeta Function Relates the
Staircase of Primes to its
Riemann Spectrum

In the previous chapters we have described – using Riemann’s Hypothesis – how
to obtain the spectrum

θ1, θ2, θ3, . . .

from the staircase of primes, and hinted at how to go back. Roughly speaking,
we were performing “Fourier transformations” to make this transit. But Rie-
mann, on the very first page of his 1859 memoir, construes the relationship we
have been discussing, between spectrum and staircase, in an even more pro-
found way.

To talk about this extraordinary insight of Riemann, one would need to do
two things that might seem remote from our topic, given our discussion so far.! We will discuss a key idea that Leonhard Euler had (circa 1740).! To follow the evolution of this idea in the hands of Riemann, we would have

to assume familiarity with basic complex analysis.

We will say only a few words here about this, in hopes of giving at least a shred
of a hint of how marvelous Riemann’s idea is. We will be drawing, at this point,
on some further mathematical background. For readers who wish to pursue the
themes we discuss, here is a list of sources, that are our favorites among those
meant to be read by a somewhat broader audience than people very advanced
in the subject. We list them in order of “required background.”

1. John Derbyshire’s Prime Obsession: Bernhard Riemann and the Greatest
Unsolved Problem in Mathematics (2003). We have already mentioned this
book in our foreword, but feel that it is so good, that it is worth a second
mention here.

119
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2. The Wikipedia entry for Riemann’s Zeta Function (http://en.wikipedia
.org/wiki/Riemann_zeta_function). It is difficult to summarize who
wrote this, but we feel that it is a gift to the community in its clarity. Thanks
authors!

3. Enrico Bombieri’s article [22]. To comprehend all ten pages of this excel-
lent and fairly thorough account may require significant background, but
try your hand at it; no matter where you stop, you will have seen good things
in what you have read.

Leonhard Euler’s idea (≃1740): As readers of Jacob Bernoulli’s Ars Conjectandi
(or of the works of John Wallis) know, there was in the early 18th century already
a rich mathematical theory of finite sums of (non-negative k-th powers) of con-
secutive integers. This sum,

Sk(N ) = 1k + 2k + 3k + · · · + (N − 1)k,

is a polynomial in N of degree k + 1 with no constant term, a leading term equal
to 1

k+1 Nk+1, and a famous linear term. The coefficient of the linear term of the
polynomial Sk(N ) is the Bernoulli number Bk:

S1(N ) = 1 + 2 + 3 + · · · + (N − 1) = N (N − 1)

2
= N2

2
− 1

2
· N,

S2(N ) = 12 + 22 + 32 + · · · + (N − 1)2 = N3

3
+ · · · − 1

6
· N,

S3(N ) = 13 + 23 + 33 + · · · + (N − 1)3 = N4

4
+ · · · − 0 · N,

S4(N ) = 14 + 24 + 34 + · · · + (N − 1)4 = N5

5
+ · · · − 1

30
· N,

etc. For odd integers k > 1 this linear term vanishes. For even integers 2k the
Bernoulli number B2k is the rational number given by the coefficient of x2k

(2k)! in
the power series expansion

x
ex − 1

= 1 − x
2

+
∞∑

k=1

(−1)k+1B2k
x2k

(2k)!
.

So

B2 = 1
6
, B4 = 1

30
, B6 = 1

42
, B8 = 1

30
,

and to convince you that the numerator of these numbers is not always 1, here
are a few more:

B10 = 5
66

, B12 = 691
2730

, B14 = 7
6
.

If you turn attention to sums of negative k-th powers of consecutive integers,
then when k = −1,

S−1(N ) = 1
1

+ 1
2

+ 1
3

+ · · · + 1
N
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tends to infinity like log(N ), but for k < −1 we are facing the sum of recip-
rocals of powers (of exponent > 1) of consecutive whole numbers, and Sk(N )

converges. This is the first appearance of the zeta function ζ (s) for arguments
s = 2, 3, 4, . . . So let us denote these limits by notation that has been standard,
after Riemann:

ζ (s) := 1
1s

+ 1
2s

+ 1
3s

+ · · ·

The striking reformulation that Euler discovered was the expression of this infi-
nite sum as an infinite product of factors associated to the prime numbers:

ζ (s) =
∑

n

1
ns

=
∏

p prime

1
1 − p−s

,

where the infinite sum on the left and the infinite product on the right both
converge (and are equal) if s > 1. He also evaluated these sums at even positive
integers, where – surprise – the Bernoulli numbers come in again; and they and
π combine to yield the values of the zeta function at even positive integers:

ζ (2) = 1
12

+ 1
22

+ · · · = π2/6 ≃ 1.65 . . .

ζ (4) = 1
14

+ 1
24

+ · · · = π4/90 ≃ 1.0823 . . .

and, in general,

ζ (2n) = 1
12n

+ 1
22n

+ · · · = (−1)n+1B2nπ2n · 22n−1

(2n)!
.

A side note to Euler’s formulas comes from the fact (only known much later)
that no power of π is rational: do you see how to use this to give a proof that
there are infinitely many primes, combining Euler’s infinite product expansion
displayed above with the formula for ζ (2), or with the formula for ζ (4), or, in
fact, for the formulas for ζ (2n) for any n you choose?

Pafnuty Lvovich Chebyshev’s idea (≃1845): The second moment in the history
of evolution of this function ζ (s) is when Chebyshev used the same formula as
above in the extended range where s is allowed now to be a real variable – not
just an integer – greater than 1. Making use of this extension of the range of
definition of Euler’s sum of reciprocals of powers of consecutive whole num-
bers, Chebyshev could prove that for large x the ratio of π (x) and x/ log(x) is
bounded above and below by two explicitly given constants. He also proved that
there exists a prime number in the interval bounded by n and 2n for any posi-
tive integer n (this was called Bertrand’s postulate; see http://en.wikipedia
.org/wiki/Proof_of_Bertrand%27s_postulate).

Riemann’s idea (1859): It is in the third step of the evolution of ζ (s) that some-
thing quite surprising happens. Riemann extended the range of Chebyshev’s
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sum of reciprocals of positive real powers of consecutive whole numbers allow-
ing the argument s to range over the entire complex plane s (avoiding s = 1).
Now this is a more mysterious extension of Euler’s function, and it is deeper in
two ways:! The formula

ζ (s) := 1
1s

+ 1
2s

+ 1
3s

+ · · ·

does converge when the real part of the exponent s is greater than 1 (i.e.,
this allows us to use the same formula, as Chebyshev had done, for the right
half plane in the complex plane determined by the condition s = x + iy with
x > 1 but not beyond this). You can’t simply use the same formula for the
extension.! So you must face the fact that if you wish to “extend” a function beyond the
natural range in which its defining formula makes sense, there may be many
ways of doing it.

To appreciate the second point, the theory of a complex variable is essential.
The uniqueness (but not yet the existence) of Riemann’s extension of ζ (s) to the
entire complex plane is guaranteed by the phenomenon referred to as analytic
continuation. If you are given a function on any infinite subset X of the complex
plane that contains a limit point, and if you are looking for a function on the
entire complex plane1 that is differentiable in the sense of complex analysis,
there may be no functions at all that have that property, but if there is one,
that function is unique. But Riemann succeeded: he was indeed able to extend
Euler’s function to the entire complex plane except for the point s = 1, thereby
defining what we now call Riemann’s zeta function.

Those ubiquitous Bernoulli numbers reappear yet again as values of this
extended zeta function at negative integers:

ζ (−n) = −Bn+1/(n + 1)

so since the Bernoulli numbers indexed by odd integers > 1 all vanish, the
extended zeta function ζ (s) actually vanishes at all even negative integers.

The even integers −2,−4, −6, . . . are often called the trivial zeroes of the
Riemann zeta function. There are indeed other zeroes of the zeta function, and
those other zeroes could – in no way – be dubbed “trivial,” as we shall shortly
see.

It is time to consider these facts:

1. Riemann’s zeta function codes the placement of prime powers among
all numbers. The key here is to take the logarithm and then the deriva-
tive of ζ (s) (this boils down to forming dζ

ds (s)/ζ (s)). Assuming that the real

1 or to any connected open subset that contains X .
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part of s is > 1, taking the logarithm of ζ (s) – using Euler’s infinite product
formulation – gives us

log ζ (s) =
∑

p prime

− log (1 − p−s),

and we can do this term-by-term, since the real part of s is > 1. Then taking
the derivative gives us:

dζ

ds
(s)/ζ (s) = −

∞∑

n=1

)(n)n−s

where

)(n) :=
{

log(p) when n = pk for p a prime number and k > 0, and

0 if n is not a power of a prime number.

In particular, )(n) “records” the placement of prime powers.
2. You know lots about an analytic function if you know its zeroes and poles.

For example for polynomials, or even rational functions: if someone told you
that a certain rational function f (s) vanishes to order 1 at 0 and at ∞; and
that it has a double pole at s = 2 and at all other points has finite nonzero
values, then you can immediate say that this mystery function is a nonzero
constant times s/(s − 2)2.

Knowing the zeroes and poles (in the complex plane) alone of the
Riemann zeta function doesn’t entirely pin it down – you have to know more
about its behavior at infinity since – for example, multiplying a function by
ez doesn’t change the structure of its zeroes and poles in the finite plane.
But a complete understanding of the zeroes and poles of ζ (s) will give all
the information you need to pin down the placement of primes among all
numbers.

So here is the score:! As for poles, ζ (s) has only one pole. It is at s = 1 and is of order 1 (a “simple
pole”).! As for zeroes, we have already mentioned the trivial zeroes (at negative
even integers), but ζ (s) also has infinitely many nontrivial zeroes. These
nontrivial zeroes are known to lie in the vertical strip

0 < real part of s < 1.

And here is yet another equivalent statement of Riemann’s Hypothesis – this
being the formulation closest to the one given in his 1859 memoir:

The Riemann Hypothesis (fourth formulation)

All the nontrivial zeroes of ζ (s) lie on the vertical line in the complex plane
consisting of the complex numbers with real part equal to 1/2. These zeroes

William Stein
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are none other than 1
2 + iθ1,

1
2 + iθ2,

1
2 + iθ3, . . . , where θ1, θ2, θ3, . . . comprise

the spectrum of primes we talked about in the earlier chapters.

The “ 1
2 ” that appears in this formula is directly related to the fact –

correspondingly conditional on RH – that π (X ) is “square-root accurately”
approximated by Li(X ). That is, the error term is bounded by X

1
2 +ϵ . It has been

conjectured that all the zeroes of ζ (s) are simple zeroes.
Here is how Riemann phrased RH:

“One now finds indeed approximately this number of real roots within
these limits, and it is very probable that all roots are real. Certainly one
would wish for a stricter proof here; I have meanwhile temporarily put
aside the search for this after some futile attempts, as it appears unnec-
essary for the next objective of my investigation.”

In the above quotation, Riemann’s roots are the θi’s and the statement that they
are “real” is equivalent to RH.

The zeta function, then, is the vise, that so elegantly clamps together infor-
mation about the placement of primes and their spectrum!

That a simple geometric property of these zeroes (lying on a line!) is directly
equivalent to such profound (and more difficult to express) regularities among
prime numbers suggests that these zeroes and the parade of Riemann’s correc-
tions governed by them – when we truly comprehend their message – may have
lots more to teach us, may eventually allow us a more powerful understanding
of arithmetic. This infinite collection of complex numbers, i.e., the nontrivial
zeroes of the Riemann zeta function, plays a role with respect to π (X ) rather
like the role the spectrum of the Hydrogen atom plays in Fourier’s theory. Are
the primes themselves no more than an epiphenomenon, behind which there
lies, still veiled from us, a yet-to-be-discovered, yet-to-be-hypothesized, pro-
found conceptual key to their perplexing orneriness? Are the many innocently
posed, yet unanswered, phenomenological questions about numbers – such as
in the ones listed earlier – waiting for our discovery of this deeper level of arith-
metic? Or for layers deeper still? Are we, in fact, just at the beginning?

These are not completely idle thoughts, for a tantalizing analogy relates
the number theory we have been discussing to an already established branch
of mathematics – due, largely, to the work of Alexander Grothendieck, and
Pierre Deligne – where the corresponding analogue of Riemann’s hypothesis
has indeed been proved . . . .
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Companions to the
Zeta Function

Our book, so far, has been exclusively about Riemann’s ζ (s) and its zeroes. We
have been discussing how (the placement of) the zeroes of ζ (s) in the complex
plane contains the information needed to understand (the placement of) the
primes in the set of all whole numbers; and conversely.

It would be wrong – we think – if we don’t even mention that ζ (s) fits into
a broad family of similar functions that connect to other problems in number
theory.

For example – instead of the ordinary integers – consider the Gaussian inte-
gers. This is the collection of numbers

{a + bi}

where i =
√

−1 and a, b are ordinary integers. We can add and multiply two
such numbers and get another of the same form. The only “units” among the
Gaussian integers (i.e., numbers whose inverse is again a Gaussian integer) are
the four numbers ±1, ±i and if we multiply any Gaussian integer a + bi by any
of these four units, we get the collection {a + bi, −a − bi, −b + ai, b − ai}. We
measure the size of a Gaussian integer by the square of its distance to the origin,
i.e.,

|a + bi|2 = a2 + b2.

This size function is called the norm of the Gaussian integer a + bi and can also
be thought of as the product of a + bi and its “conjugate” a − bi. Note that the
norm is a nice multiplicative function on the set of Gaussian integers, in that
the norm of a product of two Gaussian integers is the product of the norms of
each of them.

125
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We have a natural notion of prime Gaussian integer, i.e., one with a > 0 and
b ≥ 0 that cannot be factored as the product of two Gaussian integers of smaller
size. Given what we have just discussed, can you prove that if a Gaussian inte-
ger is a prime Gaussian integer, then its size must either be an ordinary prime
number, or the square of an ordinary prime number?

Figure 38.1 contains a plot of the first few Gaussian primes as they display
themselves amongst complex numbers:

Figure 38.1. Gaussian primes with coordinates up to 10

Figure 38.2 plots a much larger number of Gaussian primes:

Figure 38.2. Gaussian primes with coordinates up to 100

William Stein
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Figures 38.3–38.6 plot the number of Gaussian primes up to each norm:

Figure 38.3. Staircase of Gaussian primes of norm up to 14

Figure 38.4. Staircase of Gaussian primes of norm up to 100

The natural question to ask, then, is: how are the Gaussian prime num-
bers distributed? Can one provide as close an estimate to their distribution
and structure, as one has for ordinary primes? The answer, here is yes: there
is a companion theory, with an analogue to the Riemann zeta function playing
a role similar to the prototype ζ (s). And, it seems as if its “nontrivial zeroes”
behave similarly: as far as things have been computed, they all have the prop-
erty that their real part is equal to 1

2 . That is, we have a companion to the
Riemann Hypothesis.

This is just the beginning of a much larger story related to what has
been come to be called the “Grand Riemann Hypotheses” and connects to
analogous problems, some of them actually solved, that give some measure
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Figure 38.5. Staircase of Gaussian primes of norm up to 1000

Figure 38.6. Staircase of Gaussian primes of norm up to 10000

of evidence for the truth of these hypotheses. For example, for any system of
polynomials in a fixed number of variables (with integer coefficients, say) and
for each prime number p there are “zeta-type” functions that contain all the
information needed to count the number of simultaneous solutions in finite
fields of characteristic p. That such counts can be well-approximated with a
neatly small error term is related to the placement of the zeroes of these “zeta-
type” functions. There is then an analogous “Riemann Hypothesis” that pre-
scribes precise conditions on the real parts of their zeroes – this prescription
being called the “Riemann Hypothesis for function fields.” Now the beauty of
this analogous hypothesis is that it has, in fact, been proved!

Is this yet another reason to believe the Grand Riemann Hypothesis?
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Endnotes

[1] How not to factor the numerator of a Bernoulli number:
As mentioned in Chapter 37, the coefficient Bk of the linear term of the
polynomial

Sk(n) = 1k + 2k + 3k + · · · + (n − 1)k

is (up to sign) the k-th Bernoulli number. These numbers are rational
numbers and, putting them in lowest terms, their numerators play a role
in certain problems, and their denominators in others. (This is an amaz-
ing story, which we can’t go into here!)

One of us (Barry Mazur) in the recent article How can we
construct abelian Galois extensions of basic number fields? (see
http://www.ams.org/journals/bull/2011-48-02/S0273-
0979-2011-01326-X/) found himself dealing (for various reasons)
with the fraction −B200/400, where B200 is the two-hundredth Bernoulli
number. The numerator of this fraction is quite large: it is – hold your
breath –

389 · 691 · 5370056528687 times this 204-digit number:

N := 345269032939215803146410928173696740406844815684239672101
299206421451944591925694154456527606766236010874972724155
570842527652727868776362959519620872735612200601036506871
681124610986596878180738901486527

and he incorrectly asserted that it was prime. Happily, Bartosz Naskrȩcki
spotted this error: our 204-digit N is not prime.

How did he know this? By using the most basic test in the repertoire
of tests that we have available to check to see whether a number is prime:
we’ll call it the “Fermat 2-test.” We’ll first give a general explanation of this
type of test before we show how N fails the Fermat 2-test.

The starting idea behind this test is the famous result known as Fer-
mat’s Little Theorem where the “little” is meant to alliteratively distinguish
it from you-know-what.

129
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Theorem 39.1 (Fermat’s Little Theorem)

If p is a prime number, and a is any number relatively prime to p then ap−1 − 1
is divisible by p.

A good exercise is to try to prove this, and a one-word hint that might lead
you to one of the many proofs of it is induction.1

Now we are going to use this as a criterion, by – in effect – restating it in
what logicians would call its contrapositive:

Theorem 39.2 (The Fermat a-test)

If M is a positive integer, and a is any number relatively prime to M such that
aM−1 − 1 is not divisible by M, then M is not a prime.

Well, Naskrȩcki computed 2N−1 − 1 (for the 204-digit N above) and saw
that it is not divisible2 by N . Ergo, our N fails the Fermat 2-test so is not
prime.

But then, given that it is so “easy” to see that N is not prime, a natural
question to ask is: what, in fact, is its prime factorization? This – it turns
out – isn’t so easy to determine; Naskrȩcki devoted 24 hours of computer
time setting standard factorization algorithms on the task, and that was
not sufficient time to resolve the issue. The factorization of the numer-
ators of general Bernoulli numbers is the subject of a very interesting
web site of Samuel Wagstaff (http://homes.cerias.purdue.edu/
~ssw/bernoulli). Linked to this web page one finds (http://homes
.cerias.purdue.edu/~ssw/bernoulli/composite) which gives a
list of composite numbers whose factorizations have resisted all attempts
to date. The two-hundredth Bernoulli number is 12th on the list.

The page http://en.wikipedia.org/wiki/Integer_
factorization_records lists record challenge factorization, and
one challenge that was completed in 2009 involves a difficult-to-factor
number with 232 digits; its factorization was completed by a large team
of researchers and took around 2000 years of CPU time. This convinced
us that with sufficient motivation it would be possible to factor N , and so
we asked some leaders in the field to try. They succeeded!

1 Here’s the proof:
(N + 1)p ≡ N p + 1 ≡ (N + 1) mod p,

where the first equality is the binomial theorem and the second equality is induction.
2 The number 2N−1 − 1 has a residue after division by N of 33345811005959530251539

69739282790317394606677381970645616725285996925 66100005682927273357926209
57159782739813115005451450864072425835484898 56511276369297079926933540281
9507605691622173717318335512037457.
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Factorisation of B200
by Bill Hart on 4 Aug 05, 2012 at 07:24pm
We are happy to announce the factorization of the numerator of
the 200th Bernoulli number:

N = 389 · 691 · 5370056528687 · c204

c204 = p90 · p115

p90 = 149474329044343594528784250333645983079497454292

= 838248852612270757617561057674257880592603

p115 = 230988849487852221315416645031371036732923661613

= 619208811597595398791184043153272314198502348476

= 2629703896050377709

The factorization of the 204-digit composite was made possible
with the help of many people:! William Stein and Barry Mazur challenged us to factor this

number.! Sam Wagstaff maintains a table of factorizations of numera-
tors of Bernoulli numbers at http://homes.cerias.purdue
.edu/~ssw/bernoulli/bnum. According to this table, the
200th Bernoulli number is the 2nd smallest index with unfac-
tored numerator (the first being the 188th Bernoulli number).! Cyril Bouvier tried to factor the c204 by ECM up to 60-digit
level, using the TALC cluster at Inria Nancy - Grand Est.! yoyo@home tried to factor the c204 by ECM up to 65-digit
level, using the help of many volunteers of the distributed
computing platform http://www.rechenkraft.net/yoyo/.
After ECM was unsuccessful, we decided to factor the c204 by
GNFS.! Many people at the Mersenne forum helped for the polyno-
mial selection. The best polynomial was found by Shi Bai,
using his implementation of Kleinjung’s algorithm in CADO-
NFS: http://www.mersenneforum.org/showthread.php?
p=298264#post298264. Sieving was performed by many
volunteers using NFS@home, thanks to Greg Childers. See
http://escatter11.fullerton.edu/nfs for more details
about NFS@home. This factorization showed that such a dis-
tributed effort might be feasible for a new record GNFS factor-
ization, in particular for the polynomial selection. This was the
largest GNFS factorization performed by NFS@home to date,
the second largest being 21040 + 1 at 183.7 digits.! Two independent runs of the filtering and linear algebra were
done: one by Greg Childers with msieve (http://www.boo
.net/~jasonp/qs.html) using a 48-core cluster made avail-
able by Bill Hart, and one by Emmanuel Thomé and Paul
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Zimmermann with CADO-NFS (http://cado-nfs.gforge
.inria.fr/), using the Grid 5000 platform.! The first linear algebra run to complete was the one with
CADO-NFS, thus we decided to stop the other run.

Bill Hart

We verify the factorization above in SageMath as follows:

sage: p90 = 14947432904434359452878425033364598307949745429
28382\48852612270757617561057674257880592603
sage: p115 = 2309888494878522213154166450313710367329236616
13619\2088115975953987911840431532723141985023484762629703
896050377709
sage: c204 = p90 * p115
sage: 389 * 691 * 5370056528687 * c204 == -numerator(bernoulli(200))
True
sage: is_prime(p90), is_prime(p115), is_prime(c204)
(True, True, False) .

[2] Given an integer n, there are many algorithms available for trying to
write n as a product of prime numbers. First we can apply trial divi-
sion, where we simply divide n by each prime 2, 3, 5, 7, 11, 13, . . . in turn,
and see what small prime factors we find (up to a few digits). After using
this method to eliminate as many primes as we have patience to elimi-
nate, we typically next turn to a technique called Lenstra’s elliptic curve
method, which allows us to check n for divisibility by bigger primes (e.g.,
around 10–15 digits). Once we’ve exhausted our patience using the ellip-
tic curve method, we would next hit our number with something called
the quadratic sieve, which works well for factoring numbers of the form
n = pq, with p and q primes of roughly equal size, and n having less than
100 digits (say, though the 100 depends greatly on the implementation).
All of the above algorithms – and then some – are implemented in Sage-
Math, and used by default when you type factor(n) into SageMath. Try
typing factor(some number, verbose=8) to see for yourself.

If the quadratic sieve fails, a final recourse is to run the number field
sieve algorithm, possibly on a supercomputer. To give a sense of how pow-
erful (or powerless, depending on perspective!) the number field sieve is,
a record-setting factorization of a general number using this algorithm
is the factorization of a 232 digit number called RSA-768 (see https://
eprint.iacr.org/2010/006.pdf):

n = 12301866845301177551304949583849627207728535695953347921973
22452151726400507263657518745202199786469389956474942774063845
92519255732630345373154826850791702612214291346167042921431160
2221240479274737794080665351419597459856902143413

which factors as pq, where

p = 33478071698956898786044169848212690817704794983713768568912
431388982883793878002287614711652531743087737814467999489
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and

q = 36746043666799590428244633799627952632279158164343087642676
032283815739666511279233373417143396810270092798736308917.

We encourage you to try to factor n in SageMath, and see that it fails. Sage-
Math does not yet include an implementation of the number field sieve
algorithm, though there are some free implementations currently avail-
able (see http://www.boo.net/~jasonp/qs.html).

[3] We can use SageMath (at http://sagemath.org) to quickly compute
the “hefty number” p = 243,112,609 − 1. Simply type p = 2ˆ43112609 -
1 to instantly compute p. In what sense have we computed p? Internally, p
is now stored in base 2 in the computer’s memory; given the special form
of p it is not surprising that it took little time to compute. Much more chal-
lenging is to compute all the base 10 digits of p, which takes a few seconds:
d = str(p). Now type d[-50:] to see the last 50 digits of p. To compute
the sum 58416637 of the digits of p type sum(p.digits()).

[4] In contrast to the situation with factorization, testing integers of this
size (e.g., the primes p and q) for primality is relatively easy. There
are fast algorithms that can tell whether or not any random thousand
digit number is prime in a fraction of second. Try for yourself using
the SageMath command is_prime. For example, if p and q are as in
endnote 2, then is_prime(p) and is_prime(q) quickly output True
and is_prime(p*q) outputs False. However, if you type factor(p*q,
verbose=8) you can watch as SageMath tries forever and fails to factor
pq.

[5] In Sage, the function prime_range enumerates primes in a
range, e.g., prime_range(50) outputs the primes up to 50 and
prime_range(50,100) outputs the primes between 50 and 100.
Typing prime_range(10ˆ8) in SageMath enumerates the primes up to
a hundred million in around a second. You can also enumerate primes
up to a billion by typing v=prime_range(10ˆ9), but this will use a
large amount of memory, so be careful not to crash your computer if you
try this. Notice that there are π (109) = 50,847,534 primes up to a billion
by then typing len(v). You can also compute π (109) directly, without
enumerating all primes, using the command prime_pi(10ˆ9). This is
much faster since it uses some clever counting tricks to find the number
of primes without actually listing them all.

In Chapter 19 we tinkered with the staircase of primes by first
counting both primes and prime powers. There are comparatively
few prime powers that are not prime. Up to 108, only 1,405 of the
5,762,860 prime powers are not themselves primes. To see this, first enter
a = prime_pi(10ˆ8); pp = len(prime_powers(10ˆ8)). Typing
(a, pp, pp-a) then outputs the triple (5761455, 5762860, 1405).

[6] Hardy and Littlewood give a nice conjectural answer to such questions
about gaps between primes. See Problem A8 of Guy’s book Unsolved
Problems in Number Theory (2004). Note that Guy’s book discusses count-
ing the number Pk(X ) of pairs of primes up to X that differ by a fixed even
number k; we have Pk(X ) ≥ Gapk(X ), since for Pk(X ) there is no require-
ment that the pairs of primes be consecutive.
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[7] If f (x) and g(x) are real-valued functions of a real variable x such that
for any ϵ > 0 both of them take their values between x1−ϵ and x1+ϵ for x
sufficiently large, then say that f (x) and g(x) are good approximations of
one another if, for any positive ϵ the absolute values of their difference is
less than x

1
2 +ϵ for x sufficiently large. The functions Li(X ) and R(X ) of are

good approximations of one another.
[8] This computation of π (X ) was done by David J. Platt in 2012, and is

the largest value of π (X ) ever computed. See http://arxiv.org/abs/
1203.5712 for more details.

[9] In fact, the Riemann Hypothesis is equivalent to | Li(X ) − π (X )| ≤√
X log(X ) for all X ≥ 2.01. See Section 1.4.1 of Crandall-Pomerance’s

book Prime numbers, a computational perspective.
[10] For a proof of this here’s a hint. Compute the difference between the

derivatives of Li(x) and of x/ log x. The answer is 1/ log2
(x). So you must

show that the ratio of
∫ X

2 dx/ log2
(x) to Li(x) =

∫ X
2 dx/ log(x) tends to zero

as x goes to infinity, and this is a good Calculus exercise.
[11] See http://www.maths.tcd.ie/pub/HistMath/People/Riemann/

Zeta/ for for the original German version and an English translation.
[12] We have

ψ (X ) =
∑

pn≤X

log p

where the summation is over prime powers pn that are ≤ X .
[13] See http://en.wikipedia.org/wiki/Fast_Fourier_transform.
[14] http://en.wikipedia.org/wiki/Distribution_

%28mathematics%29 contains a more formal definition and treat-
ment of distributions. Here is Schwartz’s explanation for his choice of the
word distribution:

“Why did we choose the name distribution? Because, if µ is a mea-
sure, i.e., a particular kind of distribution, it can be considered as a
distribution of electric charges in the universe. Distributions give
more general types of electric charges, for example dipoles and
magnetic distributions. If we consider the dipole placed at the point
a having magnetic moment M , we easily see that it is defined by the
distribution −DMδ(a). These objects occur in physics. Deny’s thesis,
which he defended shortly after, introduced electric distributions
of finite energy, the only ones which really occur in practice; these
objects really are distributions, and do not correspond to measures.
Thus, distributions have two very different aspects: they are a gen-
eralization of the notion of function, and a generalization of the
notion of distribution of electric charges in space. […] Both these
interpretations of distributions are currently used.”

[15] David Mumford suggested that we offer the following paragraph from
http://en.wikipedia.org/wiki/Dirac_delta_function on the
Dirac delta function:

An infinitesimal formula for an infinitely tall, unit impulse delta
function (infinitesimal version of Cauchy distribution) explicitly
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appears in an 1827 text of Augustin Louis Cauchy. Siméon Denis
Poisson considered the issue in connection with the study of wave
propagation as did Gustav Kirchhoff somewhat later. Kirchhoff and
Hermann von Helmholtz also introduced the unit impulse as a limit
of Gaussians, which also corresponded to Lord Kelvin’s notion of
a point heat source. At the end of the 19th century, Oliver Heavi-
side used formal Fourier series to manipulate the unit impulse. The
Dirac delta function as such was introduced as a “convenient nota-
tion” by Paul Dirac in his influential 1930 book Principles of Quan-
tum Mechanics. He called it the “delta function” since he used it as a
continuous analogue of the discrete Kronecker delta.

[16] As discussed in http://en.wikipedia.org/wiki/Distribution_
%28mathematics%29, “generalized functions” were introduced by Sergei
Sobolev in the 1930s, then later independently introduced in the late
1940s by Laurent Schwartz, who developed a comprehensive theory of
distributions.

[17] If the Riemann Hypothesis holds they are precisely the imaginary parts of
the “nontrivial” zeroes of the Riemann zeta function.

[18] The construction of '(t ) from ψ (X ):
Succinctly, for positive real numbers t ,

'(t ) := e−t/2( ′(t ),

where ((t ) = ψ (et ) (see Figure 39.2), and ( ′ is the derivative of ((t ),
viewed as a distribution. We extend this function to all real arguments t
by requiring '(t ) to be an even function of t , i.e., '(−t ) = '(t ). But, to
review this in a more leisurely pace,

1. Distort the X -axis of our staircase by replacing the variable X by et to
get the function

((t ) := ψ (et ).

Figure 39.1. ( ′(t) is a (weighted) sum of Dirac delta functions at the logarithms
of prime powers pn weighted by log(p) (and by log(2π ) at 0). The taller the arrow,
the larger the weight.
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Figure 39.2. Illustration of the staircase ψ (X ) constructed in Chapter 19 that
counts weighted prime powers.

No harm is done by this for we can retrieve our original ψ (X ) as

ψ (X ) = ((log(X )).

Our distorted staircase has risers at (0 and) all positive integral multi-
ples of logs of prime numbers.

2. Now we’ll do something that might seem a bit more brutal: take the
derivative of this distorted staircase ((t ). This derivative ( ′(t ) is a gen-
eralized function with support at all nonnegative integral multiples of
logs of prime numbers.

3. Now – for normalization purposes – multiply ( ′(t ) by the function e−t/2

which has no effect whatsoever on the support.

In summary: The generalized function that resulted from the above
carpentry:

'(t ) = e−t/2( ′(t ),

retains the information we want (the placement of primes) even if in a
slightly different format.

[19] A version of the Riemann–von Mangoldt explicit formula gives some
theoretical affirmation of the phenomena we are seeing here. We thank
Andrew Granville for a discussion about this.

Figure 39.3. Andrew Granville
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Even though the present endnote is not the place to give anything like a
full account, we can’t resist setting down a few of Granville’s comments
that might be helpful to people who wish to go further. (This discussion
can be modified to analyze what happens unconditionally, but we will be
assuming the Riemann Hypothesis below.) The function '̂≤C (θ ) that we
are graphing in this chapter can be written as:

'̂≤C (θ ) =
∑

n≤C

)(n)n−w

where w = 1
2 + iθ . This function, in turn, may be written (by Perron’s for-

mula) as

1
2π i

lim
T →∞

∫ s=σo+iT

s=σo−iT

∑

n

)(n)n−w
(

C
n

)s ds
s

= 1
2π i

lim
T →∞

∫ s=σo+iT

s=σo−iT

∑

n

)(n)n−w−sCs ds
s

= − 1
2π i

lim
T →∞

∫ s=σo+iT

s=σo−iT

(
ζ ′

ζ

)
(w + s)

Cs

s
ds.

Here, we assume that σo is sufficiently large and C is not a prime power.
One proceeds, as is standard in the derivation of Explicit Formulae, by

moving the line of integration to the left, picking up residues along the
way. Fix the value of w = 1

2 + iθ and consider

Kw(s,C) := 1
2π i

(
ζ ′

ζ

)
(w + s)

Cs

s
,

which has poles at

s = 0, 1 − w, and ρ − w,

for every zero ρ of ζ (s). We distinguish five cases, giving descriptive names
to each:

1. Singular pole: s = 1 − w.
2. Trivial poles: s = ρ − w with ρ a trivial zero of ζ (s).
3. Oscillatory poles: s = ρ − w = i(γ − θ ) ̸= 0 with ρ = 1/2 + iγ ( ̸= w) a

nontrivial zero of ζ (s). (Recall that we are assuming the Riemann
Hypothesis, and our variable w = 1

2 + iθ runs through complex num-
bers of real part equal to 1

2 . So, in this case, s is purely imaginary.)
4. Elementary pole: s = 0 when w is not a nontrivial zero of ζ (s) – i.e.,

when 0 = s ̸= ρ − w for any nontrivial zero ρ.
5. Double pole: s = 0 when w is a nontrivial zero of ζ (s) – i.e., when 0 =

s = ρ − w for some nontrivial zero ρ. This, when it occurs, is indeed
a double pole, and the residue is given by m · log C + ϵ. Here m is the
multiplicity of the zero ρ (which we expect always – or at least usually –
to be equal to 1) and ϵ is a constant (depending on ρ, but not on C).
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The standard technique for the “Explicit formula” will provide us with a
formula for our function of interest '̂≤C (θ ). The formula has terms result-
ing from the residues of each of the first three types of poles, and of the
Elementary or the Double pole – whichever exists. Here is the shape of the
formula, given with terminology that is meant to be evocative:

(1) '̂≤C (θ ) = Sing≤C (θ ) + Triv≤C (θ ) + Osc≤C (θ ) + Elem≤C (θ )

Or:

(2) '̂≤C (θ ) = Sing≤C (θ ) + Triv≤C (θ ) + Osc≤C (θ ) + Double≤C (θ ),

the first if w is not a nontrivial zero of ζ (s) and the second if it is.
The good news is that the functions Sing≤C (θ ), Triv≤C (θ ) (and also

Elem≤C (θ ) when it exists) are smooth (easily describable) functions of the
two variables C and θ ; for us, this means that they are not that related to
the essential information-laden discontinuous structure of '̂≤C (θ ). Let us
bunch these three contributions together and call the sum Smooth(C, θ ),
and rewrite the above two formulae as:

(1) '̂≤C (θ ) = Smooth(C, θ ) + Osc≤C (θ )

Or:

(2) '̂≤C (θ ) = Smooth(C, θ ) + Osc≤C (θ ) + m · log C + ϵ,

depending upon whether or not w is a nontrivial zero of ζ (s).
We now focus our attention on the Oscillatory term, Osc≤C (θ ), approx-

imating it by a truncation:

Oscw(C, X ) := 2
∑

|γ |<X

ei log C·(γ−θ )

i(γ − θ )
.

Here if a zero has multiplicity m, then we count it m times in the sum.
Also, in this formula we have relegated the “θ” to the status of a subscript
(i.e., w = 1

2 + iθ) since we are keeping it constant, and we view the two
variables X and C as linked in that we want the cutoff “X ” to be sufficiently
large, say X ≫ C2, so that the error term can be controlled.

At this point, we can perform a “multiplicative version” of a Cesàro
summation – i.e., the operator F (c) 0→ (CésF )(C) :=

∫ C
1 F (c)dc/c. This

has the effect of forcing the oscillatory term to be bounded as C tends to
infinity.

This implies that for any fixed θ ,! Cés'̂≤C (θ ) is bounded independent of C if θ is not the imaginary part of
a nontrivial zero of ζ (s) and! Cés'̂≤C (θ ) grows as m

2 · (log C)2 + O(log C) if θ is the imaginary part of
a nontrivial zero of ζ (s) of multiplicity m,

giving a theoretical confirmation of the striking feature of the graphs of
our Chapter 32.
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[20] A reference for this is:

[I-K]: H. Iwaniec; E. Kowalski, Analytic Number Theory, American Math-
ematical Society Colloquium Publications 53 (2004).
(See also the bibliography there.)

Many ways of seeing the explicit relationship are given in Chapter 5 of [I-
K]. For example, consider Exercise 5 on page 109.

∑

ρ

φ̂(ρ) = −
∑

n≥1

)(n)φ(n) + I(φ),

where! φ is any smooth complex-valued function on [1, +∞) with compact
support,! φ̂ is its Mellin transform:

φ̂(s) :=
∫ ∞

0
φ(x)xs−1dx,! the last term on the right, I(φ), is just

I(φ) :=
∫ ∞

1
(1 − 1

x3 − x
)φ(x)dx

(coming from the pole at s = 1 and the “trivial zeroes”).! The more serious summation on the left hand side of the equation is
over the nontrivial zeroes ρ, noting that if ρ is a nontrivial zero so is ρ̄.

Of course, this “explicit formulation” is not immediately applicable to the
graphs we are constructing since we cannot naively take φ̂ to be a function
forcing the left hand side to be GC (x).

See also Exercise 7 on page 112, which discusses the sums

x −
∑

|θ |≤C

x
1
2 +iθ − 1
1
2 + iθ

.

[21] You may well ask how we propose to order these correction terms if RH
is false. Order them in terms of (the absolute value of) their imaginary
part, and in the unlikely situation that there is more than one zero with
the same imaginary part, order zeroes of the same imaginary part by their
real parts, going from right to left.

[22] Bombieri, The Riemann Hypothesis, available at http://www.claymath
.org/sites/default/files/official_problem_description
.pdf.
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