CIRCUMBILLIARD GEOMETRY

DOMINIQUE LAURAIN

ABSTRACT. Mathematical billiards are at crossroads of various research works, but mainly covered in dynamicals systems. Dan Reznik found geometric invariants for the inner elliptic billiard. We propose a parametrization of a 3-orbit, a "circumbilliard", using euclidean plane geometry.

1. INTRODUCTION

In this note we present analytical and geometrical results about 3-orbits in an elliptic billiard. They are deduced from Dan Reznik [1] observations in the flavor of plane euclidean geometry. In physical or optical terms, we restrict the results to "specular reflection" on the ellipse, a perfect elastic reflection inducing a Snell law.

2. Definition in triangle geometry

We define a *circumbilliard* as a not oriented 3-orbit ABC in an elliptical billiard.

Points A,B,C are reflections points of a modelized blue "ball" on the elliptic boundary.

FIGURE 1. Circumbilliard for an ellipse.

The 3-orbit ABC is choosen as the *reference triangle* in triangle geometry. Common notation is used for triangle vertices (A,B,C) and triangle edge lengths (a = BC, b = CA, c = AB).

The ellipse is named *circumbilliard* by analogy with the ABC *circumcircle*, the unique circle going through A,B and C.

Point of view is changed versus representing orbits in a fixed ellipse : here we set a triangle ABC, and draw the ellipse centered at Mittenpunkt X_9 .

3. PARAMETRIZATION

One invariant for n-orbits in elliptic billiards is total length of the orbit, an extremal value (*Lemma 2.3* in [2]) .For a 3-orbit ABC it is twice the semi-perimeter s.

Another invariant discovered by Dan Reznik is the ratio between inradius and circumradius, or equivalently the sum of cosines at internal angles at A,B and C vertices (*Theorem 1* in [2]))

We use these invariants to find ABC edges lengths parametrization.

Theorem 3.1. Edges lengths of a 3-orbits ABC can be defined as :

$$a = \frac{2(1-t)s}{k-2t+2}$$
$$b = \frac{(kt-t^2+k+1-w)s}{(1+t)(k-2t+2)}$$
$$c = \frac{(kt-t^2+k+1+w)s}{(1+t)(k-2t+2)}$$

with

$$w = \pm \sqrt{(1 - t^2)(h^2 - (t - k)^2)}$$
$$h = \sqrt{1 - 2k}$$

and parameter t in [k - h, k + h] is cosine internal angle A.

Proof. We use Ravi substitution : a = y + z, b = z + x, c = x + y to compute some geometric values for triangle ABC. The next formulas are from triangle geometry.

Formula for semi-perimeter :

$$s = \frac{1}{2}(a+b+c) = x+y+z$$

Formula for circumradius :

$$R = \frac{abc}{4S} = \frac{(x+y)(x+z)(y+z)}{4S}$$

where S is ABC area.

Inradius :

$$r = \frac{S}{s} = \frac{2S}{x + y + z}$$

Ratio between inradius and circumradius :

$$k = \frac{r}{R} = \frac{4xyz}{(x+y)(x+z)(y+z)} = k$$

Cosines of internal angles using cosines law :

$$\cos(A) = \frac{b^2 + c^2 - a^2}{2bc} = \frac{x^2 + x(y+z) - yz}{(x+y)(x+z)} = t$$
$$\cos(B) = \frac{c^2 + a^2 - b^2}{2ca} = \frac{y^2 + y(z+x) - zx}{(y+z)(y+x)}$$
$$\cos(C) = \frac{a^2 + b^2 - c^2}{2ab} = \frac{z^2 + z(x+y) - xy}{(z+x)(z+y)}$$

Adding all cosines and factoring :

$$\cos(A) + \cos(B) + \cos(C) = \frac{x^2(y+z) + y^2(z+x) + z^2(x+y) + 6xyz}{(x+y)(x+z)(y+z)}$$

or

$$\cos(A) + \cos(B) + \cos(C) = 1 + \frac{4xyz}{(x+y)(x+z)(y+z)} = 1 + k$$

From previous formulas we deduce variables x, y, z are roots of :

(1) x + y + z - s = 0(2) k(x + y)(x + z)(y + z) - 4xyz = 0

(3)
$$x^{2} + xy + xz - yz - t(x+y)(x+z) = 0$$

We choose the couple of first and third equations, expressing y and z from x,k,s and t. Putting back expression into second equation we get :

$$x = \frac{ks}{k - 2t + 2}$$

The first and third equations give sum and product of y and z :

$$\sigma = y + z = s - x = \frac{2(1-t)s}{k-2t+2}$$
$$\mu = yz = \frac{1-t)x(x+y+z)}{1+t} = \frac{(1-t)ks^2}{(1+t)(k-2t+2)}$$

Hence y,z are roots of the binomial equation : $U^2 - \sigma U + \mu = 0$.

$$y = \frac{(1 - t^2 + w)s}{(1 + t)(k - 2t + 2)}$$
$$z = \frac{(1 - t^2 - w)s}{(1 + t)(k - 2t + 2)}$$

with

$$w^{2} = (1 - t^{2})(1 - 2k - (t - k)^{2})$$

Substituting x,y,z into a,b,c we get a,b,c parametrization in k,s,t.

The common part in a,b,c parametrization $(\frac{s}{k-2t+2})$ is a scaling factor very useful in trilinear coordinates computations. Changing sign of w is simply swapping b and c or equivalenty reflecting the 3-orbit on minor axis.

4. Equation in Trilinear Coordinates

Something is missing in the definition of the *circumbilliard ellipse* because we need five points, no three aligned, to define an ellipse and here we have only three of them : A,B,C.

Dan Reznik found two more points which are on the ellipe for all 3-orbits, points X_{88} (isogonal conjugate of X_{44}) and X_{100} (Feuerbach anticomplement point):

$$X_{88} = \frac{1}{b+c-2a} : \frac{1}{c+a-2b} : \frac{1}{a+b-2c}$$
$$X_{100} = \frac{1}{b-c} : \frac{1}{c-a} : \frac{1}{a-b}$$

Property for these points : the sum of denominators of trilinear coordinates is 0.

These points are sometimes not well defined (for example, for isosceles ABC), that's why, we prefer the reflection of B and C with respect to Mittenpunkt X_9 center of the ellipse in the proof of the next theorem.

Theorem 4.1. Circumbilliard ellipse (Φ) is locus of points $M = \alpha : \beta : \gamma$ whose trilinear coordinates are satisfying equation :

$$\alpha\beta + \alpha\gamma + \beta\gamma = 0$$

which is the isogonal conjugate of the line (Φ^*) with equation

$$\alpha + \beta + \gamma = 0$$

Proof. Computing trilinear coordinates of B, and C reflections with respect to Mittenpunkt we get :

$$D = 2(-a+b+c)b : (a+b-c)(a-b-c) : 2(a+b-c)b$$
$$E = 2(-a+b+c)c : 2(a-b+c)c : (a-b+c)(a-b-c)$$

Isogonal conjugates of these points are :

$$D^* = \frac{1}{(-a+b+c)b} : \frac{2}{(a+b-c)(a-b-c)} : \frac{1}{(a+b-c)b}$$
$$E^* = \frac{1}{(-a+b+c)c} : \frac{1}{(a-b+c)c} : \frac{2}{(a-b+c)(a-b-c)}$$

Trilinear coordinates $\alpha : \beta : \gamma$ of D^* and E^* are satisfying the line equation $\alpha + \beta + \gamma = 0$. Moreover these two points are distinct when the ellipse is not a circle $(k < \frac{1}{2})$ because the squared distance is not 0:

$$(D^*E^*)^2 = (1-2k)\left(\frac{2(k+4)(1-t)s}{4k^2t - 6kt^2 + 5k^2 - 4kt + 12t^2 + 10k - 8t - 4}\right)^2$$

The ABC circumcircle has equation :

$$a\beta\gamma + b\gamma\alpha + c\alpha\beta = 0$$

The isogonal conjugate of a line is an ellipse through A,B,C if and only if the line doesn't intersect the ABC circumcircle ([3]).

Substituting α with $-\beta - \gamma$, the circumcircle intersects the line D^*E^* with equation $\alpha + \beta + \gamma = 0$ if only if it exists one real root β of equation :

$$c\beta^2 + (-a+b+c)\beta\gamma + b\gamma^2 = 0$$

The squared discriminant of this binominal equation is γ^2 times Δ :

$$\Delta = a^2 - 2ab + b^2 - 2ac - 2bc + c^2 = \frac{-4k(k+4)(1-t)s^2}{(k-2t+2)^2(1+t)}$$

is always negative, and there is no real root.

The isogonal conjugate of the line D^*E^* is the circumbilliard ellipse with equation : $\alpha\beta + \alpha\gamma + \beta\gamma = 0$.

FIGURE 2. Isogonal conjugation

We can choose many couple of points (P^*,Q^*) instead of (D^*,E^*) to define the line (Φ^*) .

A simple choice is $P^* = 1 : -2 : 1$ and $Q^* = 1 : 1 : -2$ with :

$$(P^*Q^*)^2 = \frac{36(1-2k)k^2(1-t)^2s^2}{(4kt-2t^2-5k+2)^2(k-2t+2)^2}$$

The line (Φ^*) is the center line $X_{44}X_{513}$ and triangle centers on that line have isogonal conjugates on the ellipse (Φ) : triangle centers X_{88} , X_{100} , X_{190} , X_{651} , X_{162} , X_{660} , X_{662} , X_{673} , X_{799} , X_{823} , X_{897} , X_{31002} and so on.

5. Ellipse axis

It is easy to compute the two intersection points of a line : $l = l_a : l_b : l_c$ equation $l_a \alpha + l_b \beta + l_c \gamma = 0$ with the ellipse equation $\alpha \beta + \alpha \gamma + \beta \gamma = 0$. We set a generic point P = 0 : (1 - m)c : mb on the BC line and intersect

we set a generic point P = 0: (1 - m)c: mb on the BC line and intersecting X_9P with the ellipse to get two points M_i and M_j .

FIGURE 3. Axis

We maximize or minimize function $q_{ij}(m) = (M_i M_j)^2$ the squared distance between M_i and M_j to get the optimal values for $m : m = m_1$ for major axis $M_1 M_2$ and $m = m_2$ for minor axis $M_3 M_4$.

$$m = \frac{-c(a^2 + b^2 + c^2 + ab - 2ac - 2bc) \pm \Delta}{(a^2 + b^2 + c^2 - 2ab - 2ac - 2bc)(b - c)}$$
 with
$$\Delta^2 = (a^3 + b^3 + c^3 - a^2b - ab^2 - a^2c - b^2c - ac^2 - bc^2 + 3abc)abc$$

Using parametrization we deduce formulas for squared major and minor lengths :

$$p^{2} = (X_{9}M_{1})^{2} = \frac{4(1+h)s^{2}}{(3-h)(3+h)^{2}}$$
$$q^{2} = (X_{9}M_{3})^{2} = \frac{4(1-h)s^{2}}{(3+h)(3-h)^{2}}$$

and focal distance : $f = \frac{4\sqrt{hs}}{9-h^2}$.

6. CARTESIAN COORDINATES

Drawings have been done previously with the following layout : BC segment is set horizontal, A is drawn up BC and incenter X_1 is set at cartesian plane origin point with (0,0) as cartesian coordinates.

It is convenient for dynamics in elliptic billiard to choose another layout where the center of ellipse X_9 is at (0,0) and major, minor axis are horizontal and vertical. The 3-orbits are then drawn as triangles ABC inscribed in the fixed ellipse.

FIGURE 4. Triangle geometry layout

We will morph drawing using a translation and a rotation. Translation vector from $(X_1, X_9) = (x_t, y_t)$ with :

$$x_t = \frac{2(h^2t - 5t + 4)s}{(h^2 + 4t - 5)(9 - h^2)} \sqrt{\frac{4h^2 - (h^2 + 2t - 1)^2}{1 - t^2}}$$
$$y_t = \frac{2(h^2t + 2t^2 - 5t + 2)(1 - h^2)s}{(h^2 + 4t - 5)(9 - h^2)} \sqrt{\frac{1}{1 - t^2}}$$

Cosine and sine of rotation angle $\theta_t = \theta$ are computed using edge lengths triangle $P_1 X_9 P_2$:

$$\cos \theta_t = \frac{1+h}{2} \sqrt{\frac{2h-h^2-2t+1}{2h(1-t)}}$$
$$\sin \theta_t = \frac{1-h}{2} \sqrt{\frac{2h+h^2+2t-1}{2h(1-t)}}$$

Ellipse equation in cartesian coordinates is given from p^2 and q^2 formulas

(1)
$$(3+h)(1-h)x^2 + (3-h)(1+h)y^2 = \frac{f^2(1-h^2)(9-h^2)}{4h}$$

FIGURE 5. Cartesian coordinates layout

Using ellipse equation (1) we can deduce the squared cartesian coordinates x^2 and y^2 for any point M on the ellipse such as $(X_9M)^2 = x^2 + y^2$. For A,B,C vertices we get :

$$\begin{aligned} x_A^2 &= \frac{(h^2 + 2h + 2t - 1)(1+h)^2 s^2}{2(3+h)^2 h(1+t)} \\ y_A^2 &= \frac{(-h^2 + 2h - 2t + 1)(1-h)^2 s^2}{2(3-h)^2 h(1+t)} \\ x_B^2 &= \frac{(u+v-2(h^2 + 2h - 3)w)(1+h)^2 s^2}{2(h^2 + 4t - 5)^2(3+h)^2 h} \\ y_B^2 &= \frac{(-u+v+2(h^2 - 2h - 3)w)(1-h)^2 s^2}{2(h^2 + 4t - 5)^2(3-h)^2 h} \\ x_C^2 &= \frac{(u+v+2(h^2 + 2h - 3)w)(1+h)^2 s^2}{2(h^2 + 4t - 5)^2(3+h)^2 h} \\ y_C^2 &= \frac{(-u+v-2(h^2 - 2h - 3)w)(1-h)^2 s^2}{2(h^2 + 4t - 5)^2(3-h)^2 h} \end{aligned}$$

with

$$u = 2h^{4}t + 4h^{2}t^{2} - 8h^{2}t + 20t^{2} - 26t + 8$$
$$v = 4(h^{2} + 2t - 7)h(t - 1)$$

8

:

7. TRIANGLE CENTERS

We use homogenous barycentric coordinates to get parametrization of cartesian coordinates of a triangle center. Homogenous barycentric coordinates for $M = \alpha : \beta : \gamma$ are $(\frac{a\alpha}{n}, \frac{b\beta}{n}, \frac{c\gamma}{n})$ with $n = a\alpha + b\beta + c\gamma$. As an example we compute cartesian coordinates (x_I, y_I) of ABC incenter

As an example we compute cartesian coordinates (x_I, y_I) of ABC incenter $I = X_1$ whose locus is drawn as the blue ellipse figure 5.

The subject was dealt by Olga Paris-Romaskevich in [4] teasing for use of *complex reflection*. Ronaldo Garcia added explicit cartesian coordinates equation of the locus in [5].

Incenter has constant coordinates : $\alpha = \beta = \gamma = 1$. From them we get barycentric coordinates with respect to A,B,C points :

$$k_A = \frac{1+h^2}{3+h^2}$$

$$k_B = \frac{3 - h^2 - h\sqrt{-h^2 + 2h^2 + 3}}{9 - h^4}$$
$$k_C = \frac{3 - h^2 + h\sqrt{-h^2 + 2h^2 + 3}}{9 - h^4}$$

and

$$x_I = k_A x_A + k_B x_B + k_C x_C$$
$$y_I = k_A y_A + k_B y_B + k_C y_C$$

Usually these cartesian coordinates don't have simple closed form. Signs of A,B,C cartesian coordinates are troublesome too because depending on t interval values range.

If we already know that geometric locus is a conic, it is easier. For an ellipse, we plug into cartesian coordinates formulas five values of t between k - h and k + h to get five points and then deduce ellipse equation.

$$\frac{x^2}{l^2} + \frac{y^2}{m^2} = 1$$

Cheating here a little because I_1 (for t = k - h) and I_2 (for t = k + h) are on minor and major axis we get easily :

$$l^{2} = \frac{16(1+h)h^{2}s^{2}}{(3+h)^{2}(3-h)^{3}}$$

$$m^{2} = \frac{16(1-h)h^{2}s^{2}}{(3+h)^{3}(3-h)^{2}}$$

from plugging $t = k \pm h$ in $x_A^2(t)$, $y_A^2(t)$, $x_B^2(t)$, $y_B^2(t)$, $x_C^2(t)$, $y_C^2(t)$, square rooting and evaluating $x_I(t)$ and $y_I(t)$.

From l^2 and m^2 , we compute local distance : $4s(\sqrt{\frac{2h}{9-h^2}})^3$ which is one of result of [5].

8. Other formulas

From ellipse equation and squared distance formula

$$(X_9A)^2 = \frac{-(a^4 + b^4 + c^4 - 2(a^2 + 2bc)(b^2 + c^2) + 6b^2c^2)bc}{(a^2 + b^2 + c^2 - 2(ab + bc + ca))^2}$$
$$= \frac{-2(h^4 + 4h^2t - 6h^2 - 12t - 3)s^2}{(h+3)^2(h-3)^2(1+t)} = q$$

we can deduce parameter t :

$$t = -\frac{2(h^4 - 6h^2 - 3)s^2 + (h+3)^2(h-3)^2q}{8(h^2 - 3)s^2 + (h+3)^2(h-3)^2q}$$

Squared distance from X_9 to B and C can be computed by permuting a,b,c cyclically in $(X_9A)^2$ formula or replacing $t = \cos A$ with :

$$\cos B = \frac{4(t+1)(t-1)^2 - (h^2 + 2t - 3)w}{2(t-1)((h^2 + 2t - 3)(t+1) - w)}$$

or

$$\cos C = \frac{4(t+1)(t-1)^2 + (h^2 + 2t - 3)w}{2(t-1)((h^2 + 2t - 3)(t+1) + w)}$$

9. Future work

We will compute radius of curvature, intersection point of A angle bissector with major axis, generalize the Ptolemy-Alhazen circle inner reflection problem to an ellipse and deal with n-orbits.

References

- [1] D. Reznik, R. Garcia, J. Koiller. Can the elliptic billiard still surprise us? arXiv:1911.01515.
- [2] A. Akopyan, R. Schwartz, S. Tabachnikov. Billiards in ellipses revisited. arXiv:2001.02934.
- [3] Wolfram Mathworld. http://mathworld.wolfram.com/IsogonalConjugate.html Isogonal conjugate.
- [4] Olga Romaskevich On the incenters of triangular orbits in elliptic billiard. arXiv:1304.7588.
- [5] Ronaldo A. Garcia. Centers of inscribed circles in triangular orbits of an elliptic billiar. arXiv:1607.00179.

MATHEMATICS HOBBYIST, AT HIS HOME, TOULOUSE, FRANCE *Email address:* dominique.laurain31@orange.fr