A-gonalities of curves and the existence of infinitely many points of degree d

Maarten Derickx ${ }^{1}$

${ }^{1}$ Universität Bayreuth
Algorithms in number theory and arithmetic geometry 02-08-2017

Let $M, N, d \in \mathbb{N}$ such that $M \mid N$

Question

Does there exist a number field K with $[K: \mathbb{Q}]=d$ and an elliptic curve E / K such that $E(K)_{\text {tors }} \cong \mathbb{Z} / M \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$?

Definition/Notation

- $Y_{1}(M, N) / \mathbb{Z}[1 / N]$ is the curve parametrizing triples (E, P, Q) of elliptic curve, with independent points of order M and N.
- $X_{1}(M, N) / \mathbb{Z}[1 / N]$ is its projectivisation.

Question

Does the curve $Y_{1}(M, N)_{\mathbb{Q}}$ contain a point of degree d over \mathbb{Q} ?

Question

Does the curve $Y_{1}(M, N)_{\mathbb{Q}}$ contain ∞ many points of degree d over \mathbb{Q} ?

Mazur's torsion theorem ($\mathrm{d}=1$)

Theorem (Mazur)

If E / \mathbb{Q} is an elliptic curve then $E(\mathbb{Q})_{\text {tors }}$ is isomorphic to one of the following groups:

- $\mathbb{Z} / N \mathbb{Z}$ for $1 \leq N \leq 10$ or $N=12$
- $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 N \mathbb{Z}$ for $1 \leq N \leq 4$

And each of these groups occurs for infinitely many non isomorphic elliptic curves.

Merel

Definition

A group G is an elliptic torsion group of degree d if $G \cong E(K)_{\text {tors }}$ for some elliptic curve E / K with $\mathbb{Q} \subseteq K,[K: \mathbb{Q}]=d$. The set of all isomorphism classes of such groups is denoted by $\Phi(d)$.

Theorem (Uniform Boundedness Conjecture)

$$
\Phi(d) \text { is finite for all } d
$$

What is known for torsion groups

Definition

Let $\Phi^{\infty}(d)$ denote the set of $\mathbb{Z} / M \mathbb{Z} \times \mathbb{Z} / N \mathbb{Z}$ for which $X_{1}(M, N)$ has infinitely many places of degree d over \mathbb{Q}.

- $\Phi^{\infty}(d) \subseteq \Phi(d)$
- $\Phi^{\infty}(1)=\Phi(1)=$ known (Mazur)
- $\Phi^{\infty}(2)=\Phi(2)=$ known (Kenku,Momose,Kamienny)
- $\Phi^{\infty}(3), \Phi^{\infty}(4)=$ known (Jeon,Kim,Park,Schweizer)
- $\Phi^{\infty}(3) \neq \Phi(3)$ (Najman)
- $\Phi(3)=k n o w n$ (D.,Etropolski, Hoeij, Morrow, Zureick-Brown)
- The cyclic groups in $\Phi^{\infty}(d)$ are known for $d \leq 8$ (D., Hoeij)
- $\Phi^{\infty}(5)$ and $\Phi^{\infty}(6)$ are known (D., Sutherland)

When has $Y_{1}(N) \infty$ many places of degree d

$j \in \mathbb{Q}\left(X_{1}(N)\right)$ is a function of degree $\left[\mathrm{PSL}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right] \geq \frac{3}{\pi^{2}} N^{2}$, hence $Y_{1}(N)$ has ∞ many places of degree $\left[\mathrm{PSL}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]$.

Theorem (Abramovich)

$$
\operatorname{gon}_{\mathbb{C}}\left(X_{1}(N)\right) \geq \frac{7}{800}\left[\operatorname{PSL}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right] \quad\left(\geq \frac{7}{800} \frac{3}{\pi^{2}} N^{2}\right)
$$

Theorem (Frey, (quick corollary of Faltings))

Let K be a number field and C / K be a curve, if C contains ∞ many places of degree d over K then

$$
d \geq \operatorname{gon}_{K}(C) / 2
$$

Corollary

If $d<\frac{7}{1600} \frac{3}{\pi^{2}} N^{2} \leq \operatorname{gon}_{\mathbb{C}}\left(X_{1}(N)\right) / 2 \leq$ gon $_{\mathbb{Q}}\left(X_{1}(N)\right) / 2$ then $X_{1}(N)$ contains only finitely many places of deg d.

For $X_{1}(M, N)$ one has upper and lower bounds quadratic in $M N$.

Two reasons for the existence of ∞ many places of degree d on a curve X over a number field K

Consider $u: X^{(d)} \rightarrow \operatorname{Pic}^{d} X$ and define $W_{d}^{0}(X):=u\left(X^{(d)}\right)$.
Suppose $X(K) \neq \emptyset$ then one has that $\# X^{(d)}(K)$ is infinite if and only if at least one of the following two condtitions holds.

1) $u(K): X^{(d)}(K) \rightarrow \operatorname{Pic}^{d} X(K)$ is not injective. In this case there is a fiber of u isomorphic to \mathbb{P}^{r} with $r>0$.
2) $\# W_{d}^{0}(K)=\infty$. In this case there exists a translate of a positive rank abelian variety $A+x \subseteq W_{d}^{0}$ (Faltings).
Remark: If $\# \operatorname{Pic}^{0} X(K)<\infty$ then gon ${ }_{K} X$ is the smallest degree for which X has infinitely many places of degree d over K.

Difficulties in determining $\Phi^{\infty}(d)$ for $d>6$

Degree $\mathbf{d}=\mathbf{7 , 8}$: The $(m, m n)$ for which it is not known if $X_{1}(m, m n)$ has infinitely many points of degree d all have $\operatorname{rk} J_{1}(m, m n)\left(\mathbb{Q}\left(\zeta_{m}\right)\right)=0$.
For these $(m, m n)$ it hence suffices to proof $\mathrm{gon}_{\mathbb{Q}}\left(X_{1}(m, m n)\right)>8$. The main problem is getting good enough gonality lowerbounds. Marc-Paul Noordman can do $X_{1}(2,2 n)$ with n-odd for $d=7,8$ using reduction modulo 2 , and studying gonalities under bad reduction.

Degree d=9: a new issue arrises:
The rank of $J_{1}(37)(\mathbb{Q})$ is 1 and $\operatorname{gon}_{\mathbb{Q}} X_{1}(37)=18$.
Need to show that W_{9}^{0} does not contain a translate of $J_{0}^{+}(37)$.

Formall immersions and A-gonality

Let X, Y be Noetherian schemes, $\phi: X \rightarrow Y, x \in X$ and $y=\phi(x)$.

Definition

ϕ is a formal immersion at x if $\widehat{\phi^{*}}: \widehat{\mathcal{O}_{Y, y}} \rightarrow \widehat{\mathcal{O}_{X, X}}$ is surjective.
Remark: $\widehat{\phi^{*}}$ is surjective iff $k(y) \cong k(x)$ and $\mathfrak{m}_{y} / \mathfrak{m}_{y}^{2} \rightarrow \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$.
Let C be a curve over a field $K, x \in C(K), J$ its Jacobian, $t: J \rightarrow A$ a map of Abelian varieties, and $f_{x, d}: C^{(d)} \rightarrow J$ given by $D \rightarrow \mathcal{O}_{C}(D-d x)$.

Definition

The A-gonality (or t-gonality) of C is the smallest d such that $t \circ f_{x, d}: C^{(d)} \rightarrow A$ is not a formal immersion at some $y \in C^{(d)}(K)$.

Lemma

Define $W_{d}^{0}:=f_{x, d}\left(C^{(d)}\right)$, if W_{d}^{0} contains a translate of $A^{\prime} \subseteq \operatorname{ker} t$ then $\operatorname{gon}_{A}(C) \leq d$.

J-gonality agrees with the gonality

Let C be a curve over a field $K, x \in C(K)$, and $t: J \rightarrow A$. Define:

$$
V:=t^{*} H^{0}\left(A, \Omega_{A}^{1}\right) \subset H^{0}\left(J, \Omega_{J}^{1}\right)=H^{0}\left(C, \Omega_{C}^{1}\right) .
$$

Lemma

Let $D \in C^{(d)}(K)$ then $t \circ f_{x, d}$ is a formal immersion at D if and only if $V \rightarrow H^{0}\left(C, \Omega_{C}^{1} / \Omega_{C}^{1}(-D)\right)$ is surjective.

Proposition

$$
\operatorname{gon}_{J}(C)=\operatorname{gon}_{K}(C)
$$

Proof.

If $J=A$ and $t=\operatorname{ld}_{J}$ then $V=H^{0}\left(C, \Omega_{C}^{1}\right)$.
Taking global sections of $\Omega_{C}^{1}(-D) \rightarrow \Omega_{C}^{1} \rightarrow \Omega_{C}^{1} / \Omega_{C}^{1}(-D)$ gives:

$$
\begin{gathered}
0 \rightarrow H^{0}\left(\Omega_{C}^{1}(-D)\right) \rightarrow H^{0}\left(\Omega_{C}^{1}\right) \rightarrow H^{0}\left(\Omega_{C}^{1} / \Omega_{C}^{1}(-D)\right) \rightarrow \\
\rightarrow H^{0}\left(\mathcal{O}_{C}(D)\right)^{\vee} \rightarrow H^{0}\left(\mathcal{O}_{C}\right)^{\vee} \rightarrow 0
\end{gathered}
$$

Generalized Hamming weight

Let n be an integer and $n=\sum_{i=0}^{k} \sum_{j=0}^{m_{i}} b_{i, j}$ be a partition partition of n.

Definition (Generalized Hamming Weight / GHW)

Let $v=\left(v_{i, j}\right) \in \mathbb{F}_{p}^{n} \cong \bigoplus_{i=0}^{k} \bigoplus_{j=0}^{m_{i}} \mathbb{F}_{p}^{b_{i, j}}$, then the GHW of x is

$$
h_{b}(v)=\sum_{i=0}^{k} \sum_{j=0}^{l_{i}} b_{i, j}
$$

where l_{i} is the largest j for which $v_{i, j} \neq 0$. l_{i} is called the multiplicity of v at i.

- Let $b_{t r i v}$ be the partition with $k=n$ and both m_{i} and $b_{i, j}$ constant 1 .
- $h_{b_{\text {triv }}}$ is the classical Hamming weight
- $h_{b_{\text {triv }}}(v) \leq h_{b}(v)$ for all $v \in \mathbb{F}_{p}^{n}$ and all partition partitions b.

Generalized Hamming weight and gonalities

Let C / \mathbb{F}_{p} be a curve and $D=\sum_{i=0}^{k} m_{i} D_{i}$ be an effective divisor of degree n and let b_{i} denote degree of the field of definition of D_{i}.

Taking the negative parts of the Laurent expansions at the D_{i} gives a $\operatorname{map} H^{0}\left(C, \mathcal{O}_{C}(D)\right) \rightarrow \mathbb{F}_{p}^{n} \cong H^{0}\left(C, \mathcal{O}_{C}(D) / \mathcal{O}_{C}\right)$.

Write $n=\sum_{i=0}^{k} \sum_{j=0}^{m_{i}} b_{i}$.
The degree function on $H^{0}\left(C, \mathcal{O}_{C}(D)\right)$ agrees with the generalized Hamming weight on \mathbb{F}_{p}^{n} with respect to the above partition partition. And the GHW multiplicity agrees with the pole multiplicity.

Lemma

Let D be an effective divisor bigger then all effective divisors of degree d, then $\operatorname{gon}(C)=d^{\prime}$ for some $d^{\prime} \leq d$ if and only if the image of

$$
H^{0}\left(C, \overline{\mathcal{O}_{C}}(D)\right) \rightarrow \mathbb{F}_{p}^{n}
$$

is a generalized geometric linear code with minimum distance $d^{\prime \prime}$.

Generalized Hamming weight and A-gonalites

Let C / \mathbb{F}_{p} be a curve, $x \in C(K)$, and $t: J \rightarrow A$. Define:

$$
V:=t^{*} H^{0}\left(A, \Omega_{A}^{1}\right) \subset H^{0}\left(J, \Omega_{J}^{1}\right)=H^{0}\left(C, \Omega_{C}^{1}\right)
$$

Let D be an effecitve divisor of degree n, and define the degree of an $f: H^{0}\left(C, \Omega^{1} / \Omega(-D)\right) \rightarrow \mathbb{F}_{p}$ to be the degree of the smallest divisor $E \leq D$ such that f factors via $H^{0}\left(C, \Omega^{1} / \Omega(-D)\right) \rightarrow H^{0}\left(C, \Omega^{1} / \Omega(-E)\right)$.
This degree function is a GHW on $\mathbb{F}_{p}^{n} \cong H^{0}\left(C, \Omega^{1} / \Omega(-D)\right)^{\vee}$.

Lemma

Let D be an effective divisor bigger then all effective divisors of degree d, then $\operatorname{gon}_{A}(C)=d^{\prime}$ for some $d^{\prime} \leq d$ if and only if the image of $\left(H^{0}\left(C, \Omega^{1} / \Omega^{1}(-D)\right) / V\right)^{\vee} \rightarrow H^{0}\left(C, \Omega^{1} / \Omega^{1}(-D)\right)^{\vee}=\mathbb{F}_{p}^{n}$
is a generalized geometric linear code with minimum distance d^{\prime}.
Remark: The above lemma is even useful for computing gon $_{\mathbb{F}_{p}}(C)$ since it avoids the need of computing $H^{0}\left(C, \mathcal{O}_{C}(D)\right)$.

Computing minimum distances

Let n be an integer, $n=\sum_{i=0}^{k} \sum_{j=0}^{m_{i}} b_{i, j}$ a partition partition of n, and $V \subseteq \bigoplus_{i=0}^{k} \bigoplus_{j=0}^{m_{i}} \mathbb{F}_{p}^{b_{i, j}}$ a linear subspace.

Goal: given an interger d decide wether

$$
\operatorname{mdist}(V):=\min _{v \in V \backslash\{0\}} h_{b}(v) \geq d
$$

Approach: Enumerate $w_{d^{\prime}}(v):=\left\{v \in V \mid h_{b}(v)=d^{\prime}\right\}$ for all $d \leq d^{\prime}$.
Define $I=\left\{(i, j) \mid 0 \leq i \leq k, 0 \leq j \leq m_{i}\right\}$ and given $J \subseteq I$ define $\left.v\right|_{J}:=\left(v_{x}\right)_{x \in J}$ and $h_{l}(v)=h_{b}\left(\left.v\right|_{J}\right)$.

Naïve enumeration: Define $\operatorname{piv}(V)$ the subset of (i, j) 's such that $\mathbb{F}_{p}^{b_{i, j}}$ contains pivot column of a basis for V. First enumerate all v such that $h_{\operatorname{piv}(V)}(v) \leq d^{\prime}$ and return only those with $h_{b}(v)=d^{\prime}$.

Remark: Determining mdist (V) is an NP-complete problem, however sometimes one can do better then Naïve enumeration.

Brouwer-Zimmerman for Generalized Hamming Weights

Main Idea: Suppose we can write $h_{b}=\sum_{x=0}^{r} h_{x}$ with $h_{x} \geq 0$, and let $\sum d_{x}=d$ be a partition of d.
If $v \in V$, then either $h_{b}(v) \geq d$ or there is an x such that $h_{x}(v)<d_{x}$. If the enumrations of the $h_{x}<d_{x}$ are faster then the naive enumeration of $h_{b}(v)<d$, then this gives an improvement.

Example

I one writes $\{0 \ldots k\}=\coprod_{x=0}^{r} I_{x}$ then $h_{b}=\sum h_{l_{x}}$. If furthermore the maps $V \rightarrow \bigoplus_{i \in l_{x}} \bigoplus_{j=0}^{m_{i}} \mathbb{F}_{p}^{b_{i, j}}$ are injective and $r>1$, then the enumeration problems $h_{I_{x}}<d / r$ are often easier then $h_{b}<d$.

The example can only work if the codimension of $V \subseteq \mathbb{F}_{p}^{n}$ is $\geq n / 2$. Enumerating the v with $h_{b}(v) \leq d$ and $v_{(i, l)} \neq 0$ is easy if $\sum_{j=0}^{l} b_{i, j} \sim d$. Can use the example after forcing enough of the $v_{(i, j)}$ to be zero.

Example: $X_{1}(37)$

The image of J_{0}^{+}in $J_{1}(37)$ is the unique simple sub-abelian variety of rank >0. The image of J_{0}^{+}is contained in the kernel of

$$
t:=\langle 2\rangle-1: J_{1}(37) \rightarrow J_{1}(37)
$$

$V:=t^{*} H^{0}\left(J_{1}(37)_{\mathbb{F}_{2}}, \Omega^{1}\right)$ is 38 dimensional, genus of $X_{1}(37)$ is 40.
Points in $X_{1}(37)\left(\overline{\mathbb{F}_{2}}\right)$

degree	1	2	3	4	5	6	7	8	9
\#points/degree	18	0	0	0	0	21	18	0	39

Initial divisor is of degree $765=9 \cdot 18+6 \cdot 21+7 \cdot 18+9 \cdot 39$. Initial code is of dimension $765-38=727$. Enumeration of the vectors with at least one degree ≥ 6 point in the support is fast. Code without $d \geq 6$ points is of dimension $9 \cdot 18-38=124$. Enumeration of the vectors with at a pole of order ≥ 4 at one of the \mathbb{F}_{2} points reduces it to a code of dimension 3 $\cdot 18-38=16$. Can use Brouwer-Zimmerman with 3 partitions to reduce to enumerating vectors of restricted weight $\leq\lfloor 9 / 3\rfloor=3$ in this 16 code.

How I hoped this talk would end:

The image of J_{0}^{+}in $J_{1}(37)$ is the unique simple sub-abelian variety of rank >0. The image of J_{0}^{+}is contained in the kernel of

$$
t:=\langle 2\rangle-1: J_{1}(37) \rightarrow J_{1}(37)
$$

Proposition

One has: $\quad \operatorname{gon}_{t_{\mathbb{Q}}}\left(X_{1}(37)_{\mathbb{Q}}\right) \geq \operatorname{gon}_{t_{\mathbb{F}_{2}}}\left(X_{1}(37)_{\mathbb{F}_{2}}\right)>9$

Theorem

The number of points of degree ≤ 9 over \mathbb{Q} in $X_{1}(37)(\overline{\mathbb{Q}})$ is finite.

How it actually ends:

The image of $J_{0}^{+}(37)$ in $J_{1}(37)$ is the unique simple sub-abelian variety of rank >0. The image of $J_{0}^{+}(37)$ is contained in the kernel of

$$
t:=\langle 2\rangle-1: J_{1}(37) \rightarrow J_{1}(37) .
$$

Proposition

One has: $\quad \operatorname{gon}_{t_{\mathbb{Q}}}\left(X_{1}(37)_{\mathbb{Q}}\right) \geq \operatorname{gon}_{\operatorname{tF}_{\mathbb{F}_{2}}}\left(X_{1}(37)_{\mathbb{F}_{2}}\right)=9$
However there is only one \mathbb{F}_{2} point where the composition

$$
X_{1}(37)_{\mathbb{F}_{2}}^{(d)} \rightarrow J_{1}(37) \xrightarrow{t} J_{1}(37)
$$

is not a formal immersion while $\# J_{0}^{+}\left(\mathbb{F}_{2}\right)=5$ so one still gets:

Theorem

$W_{9}^{0}\left(X_{1}(37)_{\mathbb{F}_{2}}\right)$ does not contain a translate of $J_{0}^{+}(37)_{\mathbb{F}_{2}}$.

Corollary

The number of points of degree ≤ 9 over \mathbb{Q} in $X_{1}(37)(\overline{\mathbb{Q}})$ is finite.

