A-gonalities of curves and the existence of infinitely many points of degree *d*

Maarten Derickx¹

¹Universität Bayreuth

Algorithms in number theory and arithmetic geometry 02-08-2017

Question

Does there exist a number field K with $[K : \mathbb{Q}] = d$ and an elliptic curve E/K such that $E(K)_{tors} \cong \mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$?

Definition/Notation

- Y₁(M, N)/Z[1/N] is the curve parametrizing triples (E, P, Q) of elliptic curve, with independent points of order M and N.
- $X_1(M, N)/\mathbb{Z}[1/N]$ is its projectivisation.

Question

Does the curve $Y_1(M, N)_{\mathbb{Q}}$ contain a point of degree d over \mathbb{Q} ?

Question

Does the curve $Y_1(M, N)_{\mathbb{Q}}$ contain ∞ many points of degree d over \mathbb{Q} ?

Theorem (Mazur)

If E/\mathbb{Q} is an elliptic curve then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups:

- $\mathbb{Z}/N\mathbb{Z}$ for $1 \le N \le 10$ or N = 12
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$ for $1 \le N \le 4$

And each of these groups occurs for infinitely many non isomorphic elliptic curves.

Definition

A group *G* is an *elliptic torsion group* of degree *d* if $G \cong E(K)_{tors}$ for some elliptic curve E/K with $\mathbb{Q} \subseteq K$, $[K : \mathbb{Q}] = d$. The set of all isomorphism classes of such groups is denoted by $\Phi(d)$.

Theorem (Uniform Boundedness Conjecture)

 $\Phi(d)$ is finite for all d.

Definition

Let $\Phi^{\infty}(d)$ denote the set of $\mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ for which $X_1(M, N)$ has infinitely many places of degree d over \mathbb{Q} .

•
$$\Phi^{\infty}(d) \subseteq \Phi(d)$$

•
$$\Phi^{\infty}(1) = \Phi(1) = known$$
 (Mazur)

- $\Phi^{\infty}(2) = \Phi(2) = known$ (Kenku, Momose, Kamienny)
- $\Phi^{\infty}(3), \Phi^{\infty}(4) = known$ (Jeon,Kim,Park,Schweizer)
- $\Phi^{\infty}(3) \neq \Phi(3)$ (Najman)
- $\Phi(3) = known$ (D., Etropolski, Hoeij, Morrow, Zureick-Brown)
- The cyclic groups in $\Phi^{\infty}(d)$ are known for $d \leq 8$ (D., Hoeij)
- $\Phi^{\infty}(5)$ and $\Phi^{\infty}(6)$ are known (D., Sutherland)

When has $Y_1(N) \infty$ many places of degree d

 $j \in \mathbb{Q}(X_1(N))$ is a function of degree $[PSL_2(\mathbb{Z}) : \Gamma_1(N)] \ge \frac{3}{\pi^2}N^2$, hence $Y_1(N)$ has ∞ many places of degree $[PSL_2(\mathbb{Z}) : \Gamma_1(N)]$.

Theorem (Abramovich)

$$\operatorname{gon}_{\mathbb{C}}(X_1(N)) \ge \frac{7}{800}[\operatorname{PSL}_2(\mathbb{Z}):\Gamma_1(N)] \qquad (\ge \frac{7}{800}\frac{3}{\pi^2}N^2)$$

Theorem (Frey, (quick corollary of Faltings))

Let K be a number field and C/K be a curve, if C contains ∞ many places of degree d over K then

 $d \ge \operatorname{gon}_{\mathcal{K}}(\mathcal{C})/2$

Corollary

If $d < \frac{7}{1600} \frac{3}{\pi^2} N^2 \leq \text{gon}_{\mathbb{C}}(X_1(N))/2 \leq \text{gon}_{\mathbb{Q}}(X_1(N))/2$ then $X_1(N)$ contains only finitely many places of deg d.

For $X_1(M, N)$ one has upper and lower bounds quadratic in MN.

M. Derickx

A-gonalities and degree d points

Two reasons for the existence of ∞ many places of degree *d* on a curve *X* over a number field *K*

Consider $u: X^{(d)} \to \operatorname{Pic}^{d} X$ and define $W_{d}^{0}(X) := u(X^{(d)})$.

Suppose $X(K) \neq \emptyset$ then one has that $\#X^{(d)}(K)$ is infinite if and only if at least one of the following two conditions holds.

- 1) $u(K) : X^{(d)}(K) \to \operatorname{Pic}^d X(K)$ is not injective. In this case there is a fiber of *u* isomorphic to \mathbb{P}^r with r > 0.
- 2) $\#W_d^0(K) = \infty$. In this case there exists a translate of a positive rank abelian variety $A + x \subseteq W_d^0$ (Faltings).

Remark: If $\#Pic^0X(K) < \infty$ then $gon_K X$ is the smallest degree for which X has infinitely many places of degree d over K.

Degree d = 7,8: The (m, mn) for which it is not known if $X_1(m, mn)$ has infinitely many points of degree *d* all have $\operatorname{rk} J_1(m, mn)(\mathbb{Q}(\zeta_m)) = 0$. For these (m, mn) it hence suffices to proof $\operatorname{gon}_{\mathbb{Q}}(X_1(m, mn)) > 8$. The main problem is getting good enough gonality lowerbounds. Marc-Paul Noordman can do $X_1(2, 2n)$ with *n*-odd for d = 7, 8 using reduction modulo 2, and studying gonalities under bad reduction.

Degree d = 9: a new issue arrises: The rank of $J_1(37)(\mathbb{Q})$ is 1 and $\operatorname{gon}_{\mathbb{Q}} X_1(37) = 18$. Need to show that W_9^0 does not contain a translate of $J_0^+(37)$.

Formall immersions and A-gonality

Let *X*, *Y* be Noetherian schemes, $\phi : X \rightarrow Y$, $x \in X$ and $y = \phi(x)$.

Definition

$$\phi$$
 is a *formal immersion* at x if $\widehat{\phi^*}: \widehat{\mathcal{O}_{Y,y}} o \widehat{\mathcal{O}_{X,x}}$ is surjective.

Remark: $\widehat{\phi^*}$ is surjective iff $k(y) \cong k(x)$ and $\mathfrak{m}_y/\mathfrak{m}_y^2 \twoheadrightarrow \mathfrak{m}_x/\mathfrak{m}_x^2$.

Let *C* be a curve over a field *K*, $x \in C(K)$, *J* its Jacobian, $t: J \to A$ a map of Abelian varieties, and $f_{x,d}: C^{(d)} \to J$ given by $D \to \mathcal{O}_C(D-dx)$.

Definition

The *A*-gonality (or *t*-gonality) of *C* is the smallest *d* such that $t \circ f_{x,d} : C^{(d)} \to A$ is not a formal immersion at some $y \in C^{(d)}(K)$.

Lemma

Define $W_d^0 := f_{x,d}(C^{(d)})$, if W_d^0 contains a translate of $A' \subseteq \ker t$ then $\operatorname{gon}_A(C) \leq d$.

J-gonality agrees with the gonality

Let *C* be a curve over a field *K*, $x \in C(K)$, and $t : J \to A$. Define: $V := t^* H^0(A, \Omega^1_A) \subset H^0(J, \Omega^1_J) = H^0(C, \Omega^1_C).$

Lemma

Let $D \in C^{(d)}(K)$ then $t \circ f_{x,d}$ is a formal immersion at D if and only if $V \to H^0(C, \Omega^1_C/\Omega^1_C(-D))$ is surjective.

Proposition

$$\operatorname{gon}_J(C) = \operatorname{gon}_K(C)$$

Proof.

If J = A and $t = \operatorname{Id}_J$ then $V = H^0(C, \Omega^1_C)$. Taking global sections of $\Omega^1_C(-D) \to \Omega^1_C \to \Omega^1_C / \Omega^1_C(-D)$ gives: $0 \to H^0(\Omega^1_C(-D)) \to H^0(\Omega^1_C) \to H^0(\Omega^1_C / \Omega^1_C(-D)) \to H^0(\mathcal{O}_C(D))^{\vee} \to H^0(\mathcal{O}_C)^{\vee} \to 0$

Generalized Hamming weight

Let *n* be an integer and $n = \sum_{i=0}^{k} \sum_{j=0}^{m_i} b_{i,j}$ be a partition partition of *n*.

Definition (Generalized Hamming Weight / GHW)

Let $v = (v_{i,j}) \in \mathbb{F}_p^n \cong \bigoplus_{i=0}^k \bigoplus_{j=0}^{m_i} \mathbb{F}_p^{b_{i,j}}$, then the GHW of x is $h_b(v) = \sum_{i=0}^k \sum_{j=0}^{l_i} b_{i,j}$ where l_i is the largest j for which $v_{i,j} \neq 0$. l_i is called the multiplicity of v at i.

- Let b_{triv} be the partition with k = n and both m_i and $b_{i,j}$ constant 1.
- *h*_{btriv} is the classical Hamming weight
- $h_{b_{triv}}(v) \le h_b(v)$ for all $v \in \mathbb{F}_p^n$ and all partition partitions *b*.

Generalized Hamming weight and gonalities

Let C/\mathbb{F}_p be a curve and $D = \sum_{i=0}^{k} m_i D_i$ be an effective divisor of degree *n* and let b_i denote degree of the field of definition of D_i .

Taking the negative parts of the Laurent expansions at the D_i gives a map $H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(D)) \to \mathbb{F}_p^n \cong H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(D)/\mathcal{O}_{\mathcal{C}}).$

Write $n = \sum_{i=0}^{k} \sum_{j=0}^{m_i} b_i$.

The degree function on $H^0(C, \mathcal{O}_C(D))$ agrees with the generalized Hamming weight on \mathbb{F}_p^n with respect to the above partition partition. And the GHW multiplicity agrees with the pole multiplicity.

Lemma

Let D be an effective divisor bigger then all effective divisors of degree d, then gon(C) = d' for some $d' \le d$ if and only if the image of $H^0(C, \mathcal{O}_C(D)) \to \mathbb{F}_p^n$

is a generalized geometric linear code with minimum distance d'.

Generalized Hamming weight and A-gonalites

Let C/\mathbb{F}_p be a curve, $x \in C(K)$, and $t : J \to A$. Define: $V := t^* H^0(A, \Omega^1_A) \subset H^0(J, \Omega^1_J) = H^0(C, \Omega^1_C).$

Let *D* be an effecitve divisor of degree *n*, and define the degree of an $f: H^0(C, \Omega^1/\Omega(-D)) \to \mathbb{F}_p$ to be the degree of the smallest divisor $E \leq D$ such that *f* factors via $H^0(C, \Omega^1/\Omega(-D)) \to H^0(C, \Omega^1/\Omega(-E))$.

This degree function is a GHW on $\mathbb{F}_p^n \cong H^0(C, \Omega^1/\Omega(-D))^{\vee}$.

Lemma

Let D be an effective divisor bigger then all effective divisors of degree d, then $\operatorname{gon}_A(C) = d'$ for some $d' \leq d$ if and only if the image of $(H^0(C, \Omega^1/\Omega^1(-D))/V)^{\vee} \to H^0(C, \Omega^1/\Omega^1(-D))^{\vee} = \mathbb{F}_p^n$ is a generalized geometric linear code with minimum distance d'.

Remark: The above lemma is even useful for computing $\text{gon}_{\mathbb{F}_p}(C)$ since it avoids the need of computing $H^0(C, \mathcal{O}_C(D))$.

Computing minimum distances

Let *n* be an integer, $n = \sum_{i=0}^{k} \sum_{j=0}^{m_i} b_{i,j}$ a partition partition of *n*, and $V \subseteq \bigoplus_{i=0}^{k} \bigoplus_{j=0}^{m_i} \mathbb{F}_p^{b_{i,j}}$ a linear subspace.

Goal: given an interger *d* decide wether $\text{mdist}(V) := \min_{v \in V \setminus \{0\}} h_b(v) \ge d$ **Approach:** Enumerate $w_{d'}(v) := \{v \in V | h_b(v) = d'\}$ for all $d \le d'$.

Define $I = \{(i, j) | 0 \le i \le k, 0 \le j \le m_i\}$ and given $J \subseteq I$ define $v|_J := (v_x)_{x \in J}$ and $h_I(v) = h_b(v|_J)$.

Naïve enumeration: Define piv(V) the subset of (i, j)'s such that $\mathbb{F}_p^{b_{i,j}}$ contains pivot column of a basis for *V*. First enumerate all *v* such that $h_{piv(V)}(v) \leq d'$ and return only those with $h_b(v) = d'$.

Remark: Determining mdist(V) is an NP-complete problem, however sometimes one can do better then Naïve enumeration.

M. Derickx

Brouwer-Zimmerman for Generalized Hamming Weights

Main Idea: Suppose we can write $h_b = \sum_{x=0}^r h_x$ with $h_x \ge 0$, and let $\sum d_x = d$ be a partition of d.

If $v \in V$, then either $h_b(v) \ge d$ or there is an x such that $h_x(v) < d_x$. If the enumrations of the $h_x < d_x$ are faster then the naive enumeration of $h_b(v) < d$, then this gives an improvement.

Example

I one writes $\{0 \dots k\} = \coprod_{x=0}^{r} I_x$ then $h_b = \sum h_{l_x}$. If furthermore the maps $V \to \bigoplus_{i \in I_x} \bigoplus_{j=0}^{m_i} \mathbb{F}_p^{b_{i,j}}$ are injective and r > 1, then the enumeration problems $h_{l_x} < d/r$ are often easier then $h_b < d$.

The example can only work if the codimension of $V \subseteq \mathbb{F}_{\rho}^{n}$ is $\geq n/2$. Enumerating the *v* with $h_{b}(v) \leq d$ and $v_{(i,l)} \neq 0$ is easy if $\sum_{j=0}^{l} b_{i,j} \sim d$. Can use the example after forcing enough of the $v_{(i,j)}$ to be zero.

Example: $X_1(37)$

The image of J_0^+ in $J_1(37)$ is the unique simple sub-abelian variety of rank > 0. The image of J_0^+ is contained in the kernel of $t := \langle 2 \rangle - 1 : J_1(37) \rightarrow J_1(37).$

 $V := t^* H^0(J_1(37)_{\mathbb{F}_2}, \Omega^1)$ is 38 dimensional, genus of $X_1(37)$ is 40.

Points in $X_1(37)(\overline{\mathbb{F}_2})$									
degree	1	2	3	4	5	6	7	8	9
#points/degree	18	0	0	0	0	21	18	0	39

Initial divisor is of degree $765 = 9 \cdot 18 + 6 \cdot 21 + 7 \cdot 18 + 9 \cdot 39$. Initial code is of dimension 765 - 38 = 727. Enumeration of the vectors with at least one degree ≥ 6 point in the support is fast. Code without $d \geq 6$ points is of dimension $9 \cdot 18 - 38 = 124$. Enumeration of the vectors with at a pole of order ≥ 4 at one of the \mathbb{F}_2 points reduces it to a code of dimension $3 \cdot 18 - 38 = 16$. Can use Brouwer-Zimmerman with 3 partitions to reduce to enumerating vectors of restricted weight $\leq \lfloor 9/3 \rfloor = 3$ in this 16 code. The image of J_0^+ in $J_1(37)$ is the unique simple sub-abelian variety of rank > 0. The image of J_0^+ is contained in the kernel of $t := \langle 2 \rangle - 1 : J_1(37) \rightarrow J_1(37).$

Proposition

One has:
$$\operatorname{gon}_{t_{\mathbb{Q}}}(X_1(37)_{\mathbb{Q}}) \geq \operatorname{gon}_{t_{\mathbb{F}_2}}(X_1(37)_{\mathbb{F}_2}) > 9$$

Theorem

The number of points of degree \leq 9 over \mathbb{Q} in $X_1(37)(\overline{\mathbb{Q}})$ is finite.

How it actually ends:

The image of $J_0^+(37)$ in $J_1(37)$ is the unique simple sub-abelian variety of rank > 0. The image of $J_0^+(37)$ is contained in the kernel of $t := \langle 2 \rangle - 1 : J_1(37) \rightarrow J_1(37)$.

Proposition

One has:
$$\operatorname{gon}_{t_{\mathbb{Q}}}(X_1(37)_{\mathbb{Q}}) \ge \operatorname{gon}_{t_{\mathbb{F}_2}}(X_1(37)_{\mathbb{F}_2}) = 9$$

However there is only one \mathbb{F}_2 point where the composition $X_1(37)_{\mathbb{F}_2}^{(d)} \to J_1(37) \xrightarrow{t} J_1(37)$

is not a formal immersion while $\#J_0^+(\mathbb{F}_2) = 5$ so one still gets:

Theorem

 $W_9^0(X_1(37)_{\mathbb{F}_2})$ does not contain a translate of $J_0^+(37)_{\mathbb{F}_2}$.

Corollary

The number of points of degree ≤ 9 over \mathbb{Q} in $X_1(37)(\overline{\mathbb{Q}})$ is finite.