libs/ratpoints.pyx:156: # Set the height bound:
libs/mwrank/mwrank.pyx:338: The Silverman height bound for this elliptic curve.
libs/mwrank/mwrank.pyx:365: The Cremona-Prickett-Siksek height bound for this elliptic curve.
libs/mwrank/mwrank.pyx:401: A height bound for this elliptic curve.
libs/mwrank/mwrank.pyx:409: Cremona_Prickett-Siksek height bounds.
libs/mwrank/mwrank.pyx:1021: - ``firstlim`` (int, default 20) -- naive height bound on
libs/mwrank/mwrank.pyx:1026: - ``secondlim`` (int, default 8) -- naive height bound on
libs/mwrank/interface.py:701: Return the Cremona-Prickett-Siksek height bound. This is a
libs/mwrank/interface.py:724: Return the Silverman height bound. This is a floating point
rings/arith.py:53: A height bound may be specified to indicate the maximum coefficient
rings/arith.py:57: only possible minimal polynomial satisfying the height bound, or no
rings/arith.py:238: raise NotImplementedError("proof and height bound only implemented for real and complex numbers")
schemes/elliptic_curves/height.py:1941: print "height bound in [%s, %s]" % (mu, mu*eps)
schemes/elliptic_curves/ell_number_field.py:2113: It can happen that no points are found if the height bounds
schemes/elliptic_curves/heegner.py:6542: verbose("Heegner height bound = %s"%h)
schemes/elliptic_curves/heegner.py:6688: verbose("Heegner height bound = %s"%h)
schemes/elliptic_curves/ell_rational_field.py:2222: Return the Cremona-Prickett-Siksek height bound. This is a
schemes/elliptic_curves/ell_rational_field.py:2263: Return the Silverman height bound. This is a positive real
schemes/projective/projective_morphism.py:2188: is determined by the height bound `B`. Then apply the the LLL algorithm to determine if the lift
schemes/projective/projective_morphism.py:2199: - ``B`` - a positive integer - the height bound for a rational preperiodic point. (optional)
matrix/matrix_cyclo_dense.pyx:1674: verbose("using height bound %s"%height_bound, level=echelon_verbose_level)