CoCalc Public FilesSampleProject / Madsen_sample_project_draft_v4.htmlOpen with one click!
Authors: Thomas Isola, Martin Madsen
Views : 57
Description: Jupyter html version of SampleProject/Madsen_sample_project_draft_v4.ipynb
Compute Environment: Ubuntu 18.04 (Deprecated)
(File too big to render with math typesetting.)

Predicting Water and Power Usage for the city of Los Angeles, California

An example project for PHY178/CSC171

M. J. Madsen

I present here an example final project. This project is not intended to be a carbon-copy template for your project, but rather it should give you and idea of the general shape and style of work that I am looking for. Note that I am following the general outline and instructions for this sample project.

In [61]:
## Library Imports

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.covariance import EmpiricalCovariance
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA 
from time import process_time
import seaborn as sns

Preliminary Data Exploration

I am using data from the city of Los Angeles originally found from this website.

The dataset has four columns of interest:

  1. The month in which the data was recorded
  2. The zip code (geographical location) for the data
  3. The water use for that zip code (measured in HCF)
  4. The power use for that zip code (measure in kWh)

The raw data has another column (Value Date) that we will not be using. I first examine the raw data.

In [2]:
dfv1 = pd.read_csv("Water_and_Electric_Usage_from_2005_-_2013.csv")
Text Date Value Date Zip Code Water Use Power Use
0 Mar_2008 Mar-08 90230\n(33.99506171100046, -118.39500957899969) 16.70 396
1 Jul_2011 Jul-11 90272\n(34.04886156900045, -118.53572692799969) 35.73 1013

Before moving forward, there are some obvious data cleaning steps that need to be taken. I change the date from text to a datetime object and extract the 5-digit zip code from the Zip Code column. Finally, I drop the unneeded columns from the dataframe.

In [3]:
dfv1['Date'] = pd.to_datetime(dfv1["Text Date"], format="%b_%Y")
dfv1['Zip'] = dfv1['Zip Code'].str.extract("(.*)\n", expand=True).astype('int')
dfv2 = dfv1.drop(['Text Date', 'Value Date','Zip Code'],axis=1)
Water Use Power Use Date Zip
0 16.70 396 2008-03-01 90230
1 35.73 1013 2011-07-01 90272

The goal of this project is to predict the water and power use. I plot the totals for each date.

In [4]:
dfsum = dfv2.groupby('Date').sum()

f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(dfsum['Date'], dfsum['Water Use'], marker='o', linestyle='', ms=8)
ax1.set_ylabel('Water Use (HCF)')

ax2.plot(dfsum['Date'], dfsum['Power Use'], marker='o', linestyle='', ms=8)
ax2.set_ylabel('Power Use (kWh)')

Data Cleaning

There is an extra point at the end that is separated from the rest of the dataset. I look specifically for times after Jan 1, 2013.

In [5]:
dfsum[dfsum['Date'] > pd.Timestamp('2013-01-01')]
Date Water Use Power Use Zip
90 2013-02-01 1349.45 54265 13136208
91 2013-03-01 1640.86 55289 13136208
92 2013-04-01 1788.75 52367 13136208
93 2013-05-01 2037.96 57791 13136208
94 2013-06-01 2112.38 62299 13136208
95 2013-12-01 1398.03 64430 13136208

There are missing data points between July 2013 and November 2013. I cut the data off at June 30, 2013.

In [6]:
dfv3 = dfv2[dfv2['Date']<pd.Timestamp('2013-07-01')]
dfsum = dfv3.groupby('Date').sum()

Before moving forward, it looks like there was a major change in water usage around the mid-point of 2012. However, when I look at the data grouped by zip code, I see that the drop is due to a change in the number of reported zip codes that happened in the middle of 2012.

In [7]:
# Group data by zip code
groups = dfv3.groupby('Zip')

# Plot
f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)

ax1.margins(0.05) # Optional, just adds 5% padding to the autoscaling
# The next step is to cycle through the groups (based on our categories) and plot each one on the same axis.
for name, group in groups:
    ax1.plot(group['Date'], group['Water Use'], marker='o', linestyle='', ms=8, label=name)

ax1.set_ylabel('Water Use')

ax2.margins(0.05) # Optional, just adds 5% padding to the autoscaling
# The next step is to cycle through the groups (based on our categories) and plot each one on the same axis.
for name, group in groups:
    ax2.plot(group['Date'], group['Power Use'], marker='o', linestyle='', ms=8, label=name)
ax2.set_ylabel('Power Use')

Because my fits will be by zip code, this should not be an issue. However, there are a handfull of possible outliers in the water use data.

Outlier Detection

I utilize the Mahalanobis distance to see how far from the average of the data the potential outliers are.

In [8]:
# Measure the mahalanobis distance.
X=dfv3[['Water Use']].values
emp_cov = EmpiricalCovariance().fit(X)
mahal_dist = np.sqrt(emp_cov.mahalanobis(X))

# Visualize the results
plt.ylabel('Mahalanobis Distance')
<matplotlib.text.Text at 0x7f3e7c6c1160>

There are about 8 points that stand out as being very far from the rest of the 12,000 points (over 15 standard deviations). All of the points occur in two short time periods in the same zip code.

In [9]:
dfv3["M_dist"] = mahal_dist
/projects/anaconda3/lib/python3.5/site-packages/ipykernel/ SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation:
  if __name__ == '__main__':
Water Use Power Use Date Zip M_dist
683 2512.2 0 2008-03-01 91350 18.930970
10991 2407.0 0 2008-04-01 91350 18.121215
8 2694.8 0 2008-05-01 91350 20.336495
4406 3231.6 0 2009-07-01 91350 24.468400
10328 3235.6 0 2009-08-01 91350 24.499190
12452 3110.4 0 2009-09-01 91350 23.535489
7301 3202.4 0 2009-10-01 91350 24.243640
3227 3074.8 0 2009-11-01 91350 23.261465

There may have been something unusual happening during those time periods. I drop these points from the dataset as error outliers.

In [10]:
dfv4 = dfv3[dfv3["M_dist"]<15].drop('M_dist',axis=1).reset_index(drop=True)
Water Use Power Use Date Zip
0 16.70 396 2008-03-01 90230
1 35.73 1013 2011-07-01 90272

Data Enrichment

There is a definite month/year periodicity in the data. I add month and year data features to the model. I visualize the data to and see that the periodicity is clearly visible in both the water use and the power use data.

In [11]:
dfv4['Month'] = dfv4['Date'].apply(lambda x: x.month)
dfv4['Year'] = dfv4['Date'].apply(lambda x: x.year)

dfsum = dfv4.groupby('Month').sum()

f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(dfsum['Month'], dfsum['Water Use'], marker='o', linestyle='', ms=8)
ax1.set_ylabel('Water Use (HCF)')

ax2.plot(dfsum['Month'], dfsum['Power Use'], marker='o', linestyle='', ms=8)
ax2.set_ylabel('Power Use (kWh)')

Both the water and the power usage go up in the summer months, which makes sense. There is also a power spike in January that may be related to heating on cold days.

Enriching Data with other Datasets

I hypothesize that the water and power useage depends on the following additional factors: 1) Population of each zip code 2) Economic status of each zip code (weath distribution) 3) Weather data

I join the original dataset with three additonal datasets to add these features.

Adding Population Data

The population data was retrieved from the US Census Bureau.

The dataset includes information about the population, the land area, and the total area for each zip code. There are a number of other columns of data that I will not use. I convert the zip code column (ZCTA5) to an integer in order to match the datatype of my power/water usage dataframe zip code.

In [12]:
dfzip = pd.read_csv("zcta_county_rel_10.txt",dtype={'ZCTA5':'object'})
dfzip['ZCTA5'] = dfzip['ZCTA5'].astype(int)
0 601 72 1 72001 18465 7695 165132671 164333375 18570 7744 ... 173777444 172725651 99.43 99.37 98.61 98.6 94.77 94.71 95.03 95.14
1 601 72 141 72141 105 49 2326414 2326414 18570 7744 ... 298027589 294039825 0.57 0.63 1.39 1.4 0.32 0.35 0.78 0.79

2 rows × 24 columns

Because the data in this set are intended to merge other datasets, there are multiple entries for each zip code. The "Z" columns are totals for each zip code, so I only need one of them - I use the max aggregation. I cut the unneeded columns, keeping only the zip code, population, total area, and land area columns.

In [13]:
dfzipgroups = (dfzip[['ZCTA5','ZPOP','ZAREA','ZAREALAND']].groupby("ZCTA5").max())
0 601 18570 167459085 166659789
1 602 41520 83734431 79288158

To get a sense of the dataset, I look at the relationship between the land area and the population.

In [14]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f3e74bedcf8>

There is an interesting anti-correlation here. But perhaps that isn't too surprising, as larger population densities will have more zip codes associated with them, so most of the data would be in small land area, large populations.

Now I merge this will the resource use database, keeping only the columns that I need after the join.

In [15]:
dfv5 = pd.merge(dfv4,dfzipgroups,left_on="Zip",right_on="ZCTA5")
print("{} rows lost in data merge.".format(len(dfv4.index)-len(dfv5.index)))
950 rows lost in data merge.
Water Use Power Use Date Zip Month Year ZPOP ZAREA ZAREALAND
0 16.70 396 2008-03-01 90230 3 2008 31766 11785759 11672688
1 17.59 407 2005-12-01 90230 12 2005 31766 11785759 11672688

There were a number of rows lost in the merge- these were zip codes that were not in the US Census database.

I graph the new inputs to see how the Water and Power use depend on them.

In [16]:
f, (ax1, ax2) = plt.subplots(2, 3, sharey=True)
ax1[0].plot(dfv5['ZPOP'], dfv5['Water Use'], marker='o', linestyle='', ms=8)
ax1[0].set_ylabel('Water Use (HCF)')
ax2[0].plot(dfv5['ZPOP'], dfv5['Power Use'], marker='o', linestyle='', ms=8)
ax2[0].set_ylabel('Power Use (kWh)')

ax1[1].plot(dfv5['ZAREA'], dfv5['Water Use'], marker='o', linestyle='', ms=8)
ax2[1].plot(dfv5['ZAREA'], dfv5['Power Use'], marker='o', linestyle='', ms=8)

ax1[2].plot(dfv5['ZAREALAND'], dfv5['Water Use'], marker='o', linestyle='', ms=8)
ax2[2].plot(dfv5['ZAREALAND'], dfv5['Power Use'], marker='o', linestyle='', ms=8)
ax2[2].set_xlabel('Land Area')


It looks like the power use is more strongly correlation with the census and land area data.

Adding Economic Data

I add the economic data which is based on IRS tax records:

This dataset has the following variables I am interested in:

  • Nreturns: number of filed tax returns
  • AGI: adjusted gross income (in thousands of \$)
  • SW: Salary and Wages (in thousands of \$)
  • EIC: total earned income tax credit (in thousands of \$)

However, the dataset is originally an Excel spreadsheet with multiple sheet names. I created a short function to retrieve the tax data I want.

In [17]:
def getTaxYear(year):
    # This function reads in a single sheet from the Excel document, then returns it as a dataframe.
    dftemp = pd.read_excel("allCAtaxdata2005-2013.xlsx",sheetname='{}'.format(year),thousands=",",na_values=["*","*              ",".","-"])
    dftemp['Zip Code'] = dftemp['Zip Code'].astype('int')
    dftemp['Year'] = year
    return dftemp

dftaxes = pd.concat([getTaxYear(x) for x in range(2005,2014)])
# Drop NaNs from data

Zip Code Nreturns AGI SW EIC Year
0 90001 17313 406784 358687.0 16162.0 2005
1 90002 14712 331533 294916.0 16130.0 2005

I visualize the economic data in the following plot.

In [18]:
dfgroup = dftaxes.groupby('Year').sum()

plt.ylabel('IRS Data (1000$)')
<matplotlib.text.Text at 0x7f3e74ac0860>

I merge the IRS dataset with the population and usage dataset.

In [19]:
dfv6 = pd.merge(dfv5,dftaxes,how="inner",left_on=["Zip","Year"],right_on=["Zip Code","Year"])
print("{} rows lost in data merge.".format(len(dfv5.index)-len(dfv6.index)))
dfv6.drop('Zip Code',axis=1,inplace=True)
190 rows lost in data merge.
Water Use Power Use Date Zip Month Year ZPOP ZAREA ZAREALAND Nreturns AGI SW EIC
0 16.70 396 2008-03-01 90230 3 2008 31766 11785759 11672688 15572 1008925 765127.0 3537.0
1 20.95 368 2008-07-01 90230 7 2008 31766 11785759 11672688 15572 1008925 765127.0 3537.0

There is an additional data loss in this merge. However, I still have most of my original dataset.

In [20]:
print("Remaining data (from original dataset): {0:.1f}%".format(float(len(dfv6.index))/(len(dfv1.index))*100))
Remaining data (from original dataset): 90.7%

I visualize the combined dataset.

In [21]:
# Plot usage vs Adjusted Gross Income
f, (ax1, ax2) = plt.subplots(2, 2, sharey=True)

ax1[0].scatter(dfv6['AGI'],dfv6['Water Use'])
ax1[0].set_ylabel("Water Use")

ax2[0].scatter(dfv6['AGI'],dfv6['Power Use'])
ax2[0].set_ylabel("Power Use")
ax2[0].set_xlabel("Adjusted Gross Income")

ax1[1].scatter(dfv6['EIC'],dfv6['Water Use'])
ax2[1].scatter(dfv6['EIC'],dfv6['Power Use'])
ax2[1].set_xlabel("Earned Income Credit")
(0, 46370.0)

Again, there aren't strong correlations here, but the correlations that exist may improve the model. I am also interested in how closely this IRS dataset tracks the US Census dataset. The number of tax returns in a zip code should be close to the number of people living in that area. I plot the number of returns versus the census population to check this correlation.

In [22]:
#We'll use a different tool to plot the data now that we know how to group the data by a category. This will help us make better combined plots later on.
groups = dfv6.groupby('Year')

# Plot
trainfig, ax = plt.subplots()
#ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling
# The next step is to cycle through the groups (based on our categories) and plot each one on the same axis.
colors = iter(, 1, len(groups))))
for name, group in groups:
ax.set_ylabel('N Returns')
ax.set_xlabel('2010 Cenus Population')
<matplotlib.text.Text at 0x7f3e76862780>

The correlation is as expected. Howver, there is also a trend based on the year which probably corresponds to the growth and decline in populations.

Adding Weather Data

I add historical weather data to my input features. This dataset comes from:

The dataset has the following variables:

  • AWND: average wind speed (m/s)
  • CLDD: cooling degree days
  • HTDD: heating degree days
  • PRCP: preciptiation (cm)
  • TSUN: daily total sunshine
  • TAVG: Average daily temperature (celsius) [Not Used]

The weather data is essentially the same for all of the zip codes in this dataset- they are all in the city of Los Angeles. Any small variation in the rain or temperature will be negligible because I only have the average over the full month of data.

In [23]:
weatherdf = pd.read_csv("LAX_weather.csv",parse_dates=[2])
weatherdf.fillna(0.0, inplace=True)
weatherdf.drop(['STATION', 'NAME','DATE'],axis=1, inplace=True)
0 3.2 4.8 135.2 174.5 14.1 0.0 2005-01-01
1 3.5 0.0 106.5 176.6 14.5 0.0 2005-02-01
In [24]:
# Plot weather data
f, (ax1, ax2) = plt.subplots(2, 3, sharex=True)




I merge this last dataset with my other features.

In [25]:
dfv7 = pd.merge(dfv6, weatherdf, on='Date')
print("{} rows lost in data merge.".format(len(dfv6.index)-len(dfv7.index)))
0 rows lost in data merge.
0 16.70 396 2008-03-01 90230 3 2008 31766 11785759 11672688 15572 1008925 765127.0 3537.0 3.2 6.7 91.5 0.8 15.6
1 30.18 970 2008-03-01 90272 3 2008 22986 60557886 59133992 11165 3569670 1750980.0 355.0 3.2 6.7 91.5 0.8 15.6

There were weather data for all of the existing rows, so there wasn't any data lost in this step. I visualize the weather data and the water/power use data together to look for correlations.

In [26]:
# Plot usage vs Adjusted Gross Income
f, (ax1, ax2) = plt.subplots(2, 2, sharey=True)

ax1[0].scatter(dfv7['TAVG'],dfv7['Water Use'])
ax1[0].set_ylabel("Water Use")

ax2[0].scatter(dfv7['TAVG'],dfv7['Power Use'])
ax2[0].set_ylabel("Power Use")
ax2[0].set_xlabel("Average Temp")

ax1[1].scatter(dfv7['PRCP'],dfv7['Water Use'])
ax2[1].scatter(dfv7['PRCP'],dfv7['Power Use'])
(0, 224.19999999999999)

It certainly looks like there are correlations here - at least between the Water Use/Precepitation and the Power Use/Average Temp datasets.

Data Transformations

Categorical Data Transformation

I have three columns that are categorical in nature: Zip, Month, and Year. The other columns are continuous variables. I re-define these three variables as dummy variables.

In [27]:
zipdummy = pd.get_dummies(dfv7['Zip'],prefix='Z')
monthdummy = pd.get_dummies(dfv7['Month'],prefix='M')
yeardummy = pd.get_dummies(dfv7['Year'],prefix='Y')

dfv8 = dfv7.join(zipdummy).join(monthdummy).join(yeardummy)
Water Use Power Use ZPOP ZAREA ZAREALAND Nreturns AGI SW EIC AWND ... M_12 Y_2005 Y_2006 Y_2007 Y_2008 Y_2009 Y_2010 Y_2011 Y_2012 Y_2013
0 16.70 396 31766 11785759 11672688 15572 1008925 765127.0 3537.0 3.2 ... 0 0 0 0 1 0 0 0 0 0
1 30.18 970 22986 60557886 59133992 11165 3569670 1750980.0 355.0 3.2 ... 0 0 0 0 1 0 0 0 0 0

2 rows × 169 columns

Data test/training split

I split my data into 80% training and 20% testing data sets. I do this before doing any further data transformations in order to avoid "data snooping".

In [28]:
train, test = train_test_split(dfv8, test_size=0.2, random_state=23)

Data Scaling

Almost all of my data columns are on different scales. I regularize the non-categorical data before fitting. Because only some of the columns need to be regularized, I split the data, regularize part of it, then re-join the training dataset. I do the same transformation to the test dataset.

In [29]:
# Fit the scaler
std_scaler = StandardScaler().fit(train.ix[:,2:14])

# Apply the transformation to the train and test datasets
train_std = pd.DataFrame(std_scaler.transform(train.ix[:,2:14]),columns=train.columns[2:14])
test_std = pd.DataFrame(std_scaler.transform(test.ix[:,2:14]),columns=test.columns[2:14])

# Recombine the scaled datasets


I now separate out the features and the targets.

In [30]:
train_features = train_scaled.ix[:,2:].values
test_features = test_scaled.ix[:,2:].values

water_target = train_scaled['Water Use'].values
water_actual = test_scaled['Water Use'].values

power_target = train_scaled['Power Use'].values
power_actual = test_scaled['Power Use'].values


I tested reducing the dimensionality of the features using the PCA. However, this did not improve either the model performance or the time it takes to fit the models. So I will not be using PCA for this analysis.

Model Testing

My first model is to simply use the "prior year" data in order to predict the usage. I am using the Root-Mean-Square (RMS) as my metric for model performance. The RMS value gives me an estimate of the prediction error in the same units as the Water/Power use data.

In [188]:
dfoffset = dfv4
dfoffset['Prior Year'] = dfoffset['Year'].apply(lambda year: year - 1)

df_new = dfv4.merge(dfoffset, left_on=['Prior Year', 'Month','Zip'], right_on=['Year','Month','Zip'],suffixes=['','_Prior'])
df_new.drop(['Year_Prior','Prior Year_Prior','Prior Year'],inplace=True,axis=1)
print("{} rows lost in data merge.".format(len(dfv4.index)-len(df_new.index)))
1748 rows lost in data merge.
In [189]:
print("Water RMS Error: {0:.3f} for 'Last-year' Model".format( np.sqrt(np.mean( (df_new['Water Use'].values - df_new['Water Use_Prior'].values)**2)) ))
print("Power RMS Error: {0:.3f} for 'Last-year' Model".format( np.sqrt(np.mean( (df_new['Power Use'].values - df_new['Power Use_Prior'].values)**2)) ))
Water RMS Error: 62.052 for 'Last-year' Model
Power RMS Error: 139.855 for 'Last-year' Model

Linear Regression

I next create a baseline predictive model using a linear regression using the same metrics

In [31]:
def fitAndPlot(train_features, test_features, model, **extraArgs):

    # Create linear regression objects for water and power
    water_model= model(**extraArgs)
    power_model= model(**extraArgs)
    # Timing
    start = process_time()
    # Fit the data,water_target),power_target)
    fit_time = process_time() - start
    start = process_time()
    # Get the predictions
    wpredictions = water_model.predict(test_features)
    ppredictions = power_model.predict(test_features)
    predict_time = process_time() - start

    # Plot the actuals and the predictions
    f, (ax1, ax2) = plt.subplots(2, 1)

    ax1.scatter(water_actual, wpredictions, color='black')
    ax1.set_ylabel('Water Model Predictions')
    #Plot the slope=1 line for reference
    X=np.linspace(ax1.get_xlim()[0], ax1.get_xlim()[1], 100)

    ax2.scatter(power_actual, ppredictions, color='black')
    ax2.set_ylabel('Power Model Predictions')
    #Plot the slope=1 line for reference
    X=np.linspace(ax2.get_xlim()[0], ax2.get_xlim()[1], 100)

    # Get the RMS values
    print("Water RMS Error: {0:.3f} for {1}".format( np.sqrt(np.mean((wpredictions - water_actual) ** 2)),model.__name__))
    print("Power RMS Error: {0:.3f} for {1}".format( np.sqrt(np.mean((ppredictions - power_actual) ** 2)),model.__name__))
    print("Fit Time: {} seconds".format(fit_time))
    print("Predict Time: {} seconds".format(predict_time))
    return (water_model, power_model)

water_model,power_model = fitAndPlot(train_features, test_features,LinearRegression)
Water RMS Error: 44.844 for LinearRegression
Power RMS Error: 85.875 for LinearRegression
Fit Time: 1.3261661869999983 seconds
Predict Time: 0.01653146099999958 seconds

The linear regression model is already performing better than the 'last year' model. I follow this with further regression models.

Random Forest Regression

I next apply the random forest regression using the same train/test data.

In [32]:
water_model,power_model = fitAndPlot(train_features,test_features, RandomForestRegressor, n_estimators=300, min_samples_leaf=10,random_state=32)
Water RMS Error: 32.742 for RandomForestRegressor
Power RMS Error: 66.054 for RandomForestRegressor
Fit Time: 82.216455096 seconds
Predict Time: 0.30887336899999696 seconds

The random forest has better performance than the linear model, though it took significantly longer.

Adaboost Regression

I look at two other models. First, the Adaboost ensemble method using the Decision Tree Regressor as the base model.

In [59]:
water_model2,power_model2 = fitAndPlot(train_features, test_features, AdaBoostRegressor, base_estimator=DecisionTreeRegressor(min_samples_leaf=10), n_estimators=300,random_state=32,loss='square')
Water RMS Error: 31.656 for AdaBoostRegressor
Power RMS Error: 57.677 for AdaBoostRegressor
Fit Time: 74.75545528799921 seconds
Predict Time: 0.4766953270009253 seconds

The performance and timing are both slightly better than the Random forest model. One final model:

Gradient Boosting Regressor

In [36]:
water_model3,power_model3 = fitAndPlot(train_features, test_features, GradientBoostingRegressor,min_samples_leaf=10, n_estimators=500,random_state=32,max_depth=200,verbose=1)
      Iter       Train Loss   Remaining Time 
         1        9026.1864            5.67m
         2        7532.4162            5.65m
         3        6313.0380            5.65m
         4        5318.0338            5.74m
         5        4502.7267            5.72m
         6        3838.5703            5.78m
         7        3295.1466            5.66m
         8        2843.7231            5.65m
         9        2476.8513            5.72m
        10        2171.9484            5.71m
        20         879.0091            5.94m
        30         584.7577            6.20m
        40         440.3867            6.37m
        50         333.8454            6.53m
        60         262.5081            6.76m
        70         208.6896            6.76m
        80         167.7968            6.71m
        90         138.7181            6.69m
       100         116.2387            6.59m
       200          22.5917            5.50m
       300           5.2009            3.83m
       400           1.5141            1.97m
       500           0.5305            0.00s
      Iter       Train Loss   Remaining Time 
         1       72742.7815            3.30m
         2       59565.0999            3.37m
         3       48890.1988            3.48m
         4       40206.0674            3.48m
         5       33137.9319            3.52m
         6       27406.6225            3.55m
         7       22723.0439            3.53m
         8       18899.7597            3.52m
         9       15794.2527            3.56m
        10       13260.4569            3.69m
        20        3323.1769            3.83m
        30        1711.0881            4.23m
        40        1234.3053            4.42m
        50         984.0259            4.96m
        60         797.3781            5.32m
        70         651.6153            5.83m
        80         538.6646            6.00m
        90         451.1444            6.03m
       100         384.7462            6.10m
       200         108.3785            5.43m
       300          38.9381            3.91m
       400          17.0833            1.99m
       500           9.3090            0.00s
Water RMS Error: 34.926 for GradientBoostingRegressor
Power RMS Error: 47.818 for GradientBoostingRegressor
Fit Time: 1173.0020852920002 seconds
Predict Time: 0.5419542839999849 seconds