Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 715
1
\documentclass[openany]{book}
2
3
%\documentclass[11pt,draft]{article} % uncomment this and comment out the above line for *fast* typesetting (no images)
4
5
\usepackage{soul}
6
7
\usepackage{float}
8
\usepackage{tikz}
9
10
\usepackage{wrapfig}
11
12
\usepackage{color}
13
\definecolor{dblackcolor}{rgb}{0.0,0.0,0.0}
14
\definecolor{dbluecolor}{rgb}{.01,.02,0.7}
15
\definecolor{dredcolor}{rgb}{0.8,0,0}
16
\definecolor{dgraycolor}{rgb}{0.30,0.3,0.30}
17
\usepackage{listings}
18
\lstdefinelanguage{Sage}[]{Python}
19
{morekeywords={True,False,sage,singular},
20
sensitive=true}
21
\lstset{frame=none,
22
showtabs=False,
23
showspaces=False,
24
showstringspaces=False,
25
commentstyle={\ttfamily\color{dredcolor}},
26
keywordstyle={\ttfamily\color{dbluecolor}\bfseries},
27
stringstyle ={\ttfamily\color{dgraycolor}\bfseries},
28
language = Sage,
29
basicstyle={\scriptsize \ttfamily},
30
aboveskip=.3em,
31
belowskip=.1em
32
}
33
34
35
\usepackage{fancybox}
36
\usepackage{graphicx}
37
\usepackage{amsmath}
38
\usepackage{amsfonts}
39
\usepackage{amssymb}
40
\usepackage{amsthm}
41
42
\usepackage{url}
43
44
\usepackage{makeidx}\makeindex
45
46
\DeclareMathOperator{\Gap}{Gap}
47
\DeclareMathOperator{\Li}{Li}
48
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png}
49
50
\newcommand{\mycaption}[1]{\begin{quote}{\bf Figure: } \large #1\end{quote}}
51
52
\newcommand{\ill}[3]{%
53
\begin{figure}[H]%
54
\vspace{-2ex}
55
\centering%
56
\includegraphics[width=#2\textwidth]{illustrations/#1}%
57
\caption{#3}%
58
\vspace{-2ex}
59
\end{figure}}
60
61
\newcommand{\illtwo}[4]{%
62
\begin{figure}[H]\centering%
63
\includegraphics[width=#3\textwidth]{illustrations/#1}$\qquad$\includegraphics[width=#3\textwidth]{illustrations/#2}%
64
\caption{#4}%
65
\end{figure}}
66
67
\newcommand{\illthree}[5]{%
68
\begin{figure}[H]%
69
\centering%
70
\includegraphics[width=#4\textwidth]{illustrations/#1}$\qquad$\includegraphics[width=#4\textwidth]{illustrations/#2}$\qquad$\includegraphics[width=#4\textwidth]{illustrations/#3}%
71
\caption{#5}%
72
\end{figure}}
73
74
%%%% Theoremstyles
75
\theoremstyle{plain}
76
\newtheorem{theorem}{Theorem}[chapter]
77
\newtheorem{proposition}[theorem]{Proposition}
78
\newtheorem{corollary}[theorem]{Corollary}
79
\newtheorem{claim}[theorem]{Claim}
80
\newtheorem{lemma}[theorem]{Lemma}
81
\newtheorem{hypothesis}[theorem]{Hypothesis}
82
\newtheorem{conjecture}[theorem]{Conjecture}
83
84
\theoremstyle{definition}
85
\newtheorem{definition}[theorem]{Definition}
86
\newtheorem{question}[theorem]{Question}
87
\newtheorem{problem}[theorem]{Problem}
88
\newtheorem{alg}[theorem]{Algorithm}
89
\newtheorem{openproblem}[theorem]{Open Problem}
90
91
%\theoremstyle{remark}
92
\newtheorem{goal}[theorem]{Goal}
93
\newtheorem{remark}[theorem]{Remark}
94
\newtheorem{remarks}[theorem]{Remarks}
95
\newtheorem{example}[theorem]{Example}
96
\newtheorem{exercise}[theorem]{Exercise}
97
98
99
100
%\hoffset=-0.05\textwidth
101
%\textwidth = 1.1\textwidth
102
%\voffset=-0.05\textheight
103
%\textheight = 1.1\textheight
104
%
105
% Set equal margins on book style
106
\setlength{\oddsidemargin}{53pt}
107
\setlength{\evensidemargin}{53pt}
108
\setlength{\marginparwidth}{57pt}
109
\setlength{\footskip}{30pt}
110
111
% Dutch style of paragraph formatting, i.e. no indents.
112
\setlength{\parskip}{1.3ex plus 0.2ex minus 0.2ex}
113
\setlength{\parindent}{0pt}
114
115
\setcounter{tocdepth}{0}
116
117
%\textheight = 9 in
118
%\oddsidemargin = 0.0 in
119
%\evensidemargin = 0.0 in
120
%\topmargin = 0.0 in
121
%\headheight = 0.0 in
122
%\headsep = 0.0 in
123
%\parskip = 0.2in
124
%\parindent = 0.0in
125
126
127
\def\GL{\mathrm{GL}}
128
\def\PGL{\mathrm{PGL}}
129
\def\PSL{\mathrm{PSL}}
130
\def\GSP{\mathrm{GSP}}
131
\def\Z{\mathrm{Z}}
132
\def\Q{\mathrm{Q}}
133
\def\Gal{\mathrm{Gal}}
134
\def\Hom{\mathrm{Hom}}
135
\def\Ind{\mathrm{Ind}}
136
\def\End{\mathrm{End}}
137
\def\Aut{\mathrm{Aut}}
138
\def\loc{\mathrm{loc}}
139
\def\glob{\mathrm{glob}}
140
\def\Kbar{{\bar K}}
141
\def\D{{\mathcal D}}
142
\def\L{{\mathcal L}}
143
\def\R{{\mathcal R}}
144
\def\G{{\mathcal G}}
145
\def\W{{\mathcal W}}
146
\def\H{{\mathcal H}}
147
\def\OH{{\mathcal OH}}
148
149
150
151
\newcommand{\RH}{Riemann Hypothesis\index{Riemann Hypothesis}}
152
153
154
\title{\Huge What is Riemann's Hypothesis?\\
155
March 25, 2012 Draft\\
156
{\Large This is still VERY VERY Rough and Incomplete!}}
157
\date{}
158
\author{\Large Barry Mazur \and \Large William Stein \and \vspace{20ex}\\
159
%\begin{center}
160
%A formula that counts the prime numbers ...
161
%\includegraphics[width=.65\textwidth]{illustrations/Rk_50_2_100}
162
%... built out of their spectrum:
163
% cover = use fractal trace with params 0.3 -0.1 0 0
164
\includegraphics[width=\textwidth]{illustrations/cover}
165
%$$
166
%f(t) = -\sum_{\text{prime powers }p^n}{\frac{\log(p)}{p^{n/2}}}\cos(t\log(p^n))
167
%$$
168
%\end{center}
169
}
170
171
\usepackage{notes2bib}
172
\bibliographystyle{amsplain}
173
174
\usepackage{hyperref}
175
176
177
\newcommand{\todo}[1]{\par\vspace{1em}{\small---------\\{{\bf To be done:} #1}\\-----------}\par\vspace{1em}}
178
179
\begin{document}
180
181
[35] A version of the Riemann von Mangoldt explicit formula gives some theoretical affirmation of the phenomena we are seeing here. We thank Andrew Granville for a discussion about this. Even though the present endnote is not the place to give anything like a full account, we can't resist setting down a few of Granville's comments that might be helpful to people who wish to go further. (This discussion can be modified to analyze what happens unconditionally, but we will be assuming the Riemann Hypothesis below.) The function ${\hat \Phi}_{\le C}(\theta)$ that we are graphing in this chapter can be written as:
182
$${\hat \Phi}_{\le C}(\theta)= \sum_{n\le C}\Lambda(n)n^{-w}$$ where $w = {\frac{1}{2}}+i\theta$. This function, in turn, may be written (by Perron's formula) as
183
\begin{align*}
184
&{\frac{1}{2\pi i }}\lim_{T \to \infty}\int_{s=\sigma_o-iT}^{s=\sigma_o-iT}\sum_{n}\Lambda(n)n^{-w}\left({\frac {C}{n}}\right)^{s}{\frac{ds}{s}}\\
185
&= {\frac{1}{2\pi i }}\lim_{T \to \infty}\int_{s=\sigma_o-iT}^{s=\sigma_o-iT}\sum_{n}\Lambda(n)n^{-w-s}C^{s}{\frac{ds}{s}}\\
186
&= -{\frac{1}{2\pi i }}\lim_{T \to \infty}\int_{s=\sigma_o-iT}^{s=\sigma_o-iT}\left({\frac{\zeta'}{\zeta}}\right)(w+s){\frac{C^{s}}{s}}ds. \end{align*}
187
188
Here, we assume that $\sigma_o$ is sufficiently large and $C$ is not a prime power.
189
190
One proceeds, as is standard in the derivation of Explicit Formulae, by moving the line of integration to the left, picking up residues along the way. Fix the value of $w= {\frac{1}{2}}+i\theta$ and consider $ -{\frac{1}{2\pi i }}$ times the integrand,
191
$$K_w(s,C):=\ \ {\frac{1}{2\pi i }}\left(\frac{\zeta'}{\zeta}\right)(w+s){\frac{C^{s}}{s}},$$ which has poles at $$s= 0, \ \ \ 1-w,\ \ \ {\rm and }\ \ \ \rho-w, $$ for $\rho$ a zero of $\zeta(s)$.
192
We distinguish four cases, giving descriptive names to each:
193
194
\begin{itemize} \item {\it Singular pole:} $s= 1-w$.
195
\item {\it Trivial poles:} $s= \rho-w$ with $\rho$ a trivial zero of $\zeta(s)$.
196
\item {\it Oscillatory poles:} $s= \rho-w = i(\gamma-\theta) \ne 0$ with $\rho(\ne w)$ a nontrivial zero of $\zeta(s)$. (Recall that we are assuming the Riemann Hypothesis, and our variable $w= {\frac{1}{2}}+i\theta$ runs through complex numbers of real part equal to ${\frac{1}{2}}$. So, in this case, $s$ is purely imaginary.)
197
\item {\it Elementary pole:} $s=0$ when $ w$ is not a nontrivial zero of $\zeta(s)$---i.e., when $0=s\ne\rho-w$ for any nontrivial zero $\rho$.
198
\item {\it Double pole:} $s=0$ when $ w$ is a nontrivial zero of $\zeta(s)$---i.e., when $0=s=\rho-w$ for some nontrivial zero $\rho$. This, when it occurs, is indeed a double pole, and the residue is given by $m\cdot \log C +\epsilon$. Here $m$ is the multiplicity of the zero $\rho$ (which we expect always---or at least usually---to be equal to $1$) and $\epsilon$ is a constant (depending on $\rho$, but not on $C$).
199
\end{itemize}
200
201
The standard technique for the ``Explicit formula'' will provide us with a formula for our function of interest ${\hat \Phi}_{\le C}(\theta)$. The formula has terms resulting from the residues of each of the first three types of poles, and of the {\it Elementary} or the {\it Double} pole---whichever exists. Here is the shape of the formula, given with terminology that is meant to be evocative:
202
203
204
205
$$ {\bf(1)}\ \ \ {\hat \Phi}_{\le C}(\theta) = {\it Sing}_{\le C}(\theta) + {\it Triv}_{\le C}(\theta) + {\it Osc}_{\le C}(\theta) + {\it Elem}_{\le C}(\theta)$$
206
207
Or:
208
209
$${\bf(2)}\ \ \ {\hat \Phi}_{\le C}(\theta) = {\it Sing}_{\le C}(\theta) + {\it Triv}_{\le C}(\theta) + {\it Osc}_{\le C}(\theta) + {\it Double}_{\le C}(\theta),$$
210
211
\noindent the first if $w$ is not a nontrivial zero and the second if it is.
212
213
The good news is that the functions ${\it Sing}_{\le C}(\theta), {\it Triv}_{\le C}(\theta)$ (and also ${\it Elem}_{\le C}(\theta)$ when it exists) are smooth (easily describable) functions of the two variables $C$ and $\theta$; for us, this means so they are not that related to the essential information-laden {\it discontinuous} structure of $ {\hat \Phi}_{\le C}(\theta)$. Let us bunch these three contributions together and call the sum ${\it Smooth}(C,\theta)$, and rewrite the above two formulae as:
214
$$ {\bf(1)}\ \ \ {\hat \Phi}_{\le C}(\theta) ={\it Smooth}(C,\theta) + {\it Osc}_{\le C}(\theta) $$
215
216
Or:
217
218
$${\bf(2)}\ \ \ {\hat \Phi}_{\le C}(\theta) = {\it Smooth}(C,\theta)+ {\it Osc}_{\le C}(\theta) + m\cdot \log C +\epsilon,$$
219
220
depending upon whether or not $w$ is a nontrivial zero of $\zeta(s)$.
221
222
223
We now focus our attention on the Oscillatory term, ${\it Osc}_{\le C}(\theta) $, approximating it by a truncation: $$Osc_w(C,X):= 2\sum_{|\gamma| <
224
X} {{\frac{e^{i\log C\cdot (\gamma-\theta)}}{i(\gamma-\theta)}}}.$$ In this formula we have relegated the ``$\theta$" to the status of a subscript (i.e., $w = {\frac{1}{2}} +i\theta$) since we are keeping it constant, and we view the two variables $X$ and $C$ as linked in that we want the cutoff ``$X$" to be sufficiently large, say $X \gg C^2$, so that the error term can be controlled.
225
226
At this point, recall from our discussion in this chapter that we are also performing a C{\'e}saro summation ---i.e., applying the operator $F(c) \mapsto$ ({\it C{\'e}s}$F)(C):= \int_1^CF(c) dc/c.$
227
This has the effect of forcing the oscillatory term to be bounded as $C$ tends to infinity.
228
229
This implies that for any fixed $\theta$, \begin{itemize} \item ${\hat \Phi}_{\le C}(\theta)$ is bounded independent of $C$ if $\theta$ is not the imaginary part of a nontrivial zero of $\zeta(s)$ and
230
\item ${\hat \Phi}_{\le C}(\theta)$ grows as $m\cdot \log C +O(1)$ if $\theta$ is the imaginary part of a nontrivial zero of $\zeta(s)$ of multiplicity $m$, \end{itemize} giving a theoretical confirmation of the striking feature of the graphs of our Chapter~\ref{ch:prime-to-spectrum}.
231
\end{document}
232
233