%display latex

# Can only change r for now. Changing p and n won't do anything
r = 3
p = 1
n = 2


We'll be looking at the Complex reflection group $G(3,1,2)$ which are the $2 \times 2$ matrices with entries in $\mathbb{C}$ such that the entires are in $\left\{0, 1, \zeta, \zeta^2\right\}$ where $\zeta$ is a cube root of unity. In addition each row and each column must have at most one non-zero entry. In particular the group will have the following set of elements: $\left\{ \begin{pmatrix}\zeta^i & 0 \\ 0 & \zeta^j\end{pmatrix}, \begin{pmatrix}0 & \zeta^i \\ \zeta^j & 0\end{pmatrix} \;|\; i,j \in \right\}$

According to wikipedia, this should have $18 ( = 2^{3 * 2 * (2-1)/2})$ elements and should have $3$ order $2$ reflections and $4$ order $3$ pseudo-reflections.

Note that a pseudo-reflections are the matrices $M$ such that the eigenvalues of $M$ contain exactly one $1$.

K = CyclotomicField(r)
zeta = K.gen()
z = [zeta]
for i in range(1,r):
z.append(z^(i+1))
G = [matrix(K,[[i,0],[0,j]]) for i in z for j in z] + [matrix(K,[[0,i],[j,0]]) for i in z for j in z]
for M in G:
M.set_immutable()
one = matrix(K,[[1,0],[0,1]])
print "Number of elements:"
ordG = len(G)
ordG

Number of elements:
$18$
refs = []
for M in G:
if M.eigenvalues().count(1) == 1:
refs.append(M)
print "Number of reflections:"
len(refs)

Number of reflections:
$7$
refsNum = {}
for i in range(2,r+1):
refsNum[i] = []
for M in refs:
for i in range(1,r+1):
if M^i == one:
refsNum[i].append(M)
print "Reflections by order:"
refsNum

Reflections by order:
$\left\{2 : \left[\left(\begin{array}{rr} 0 & \zeta_{3} \\ -\zeta_{3} - 1 & 0 \end{array}\right), \left(\begin{array}{rr} 0 & -\zeta_{3} - 1 \\ \zeta_{3} & 0 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)\right], 3 : \left[\left(\begin{array}{rr} \zeta_{3} & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} -\zeta_{3} - 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & \zeta_{3} \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & -\zeta_{3} - 1 \end{array}\right)\right]\right\}$
SS = Subsets(refs,2)
genSets = []
for i,j in SS:
if len(MatrixGroup(i,j)) == ordG:
genSets.append((i,j))
print "Number of generating sets:"
len(genSets)

Number of generating sets:
$12$
def toNorm(mat,z):
norm = ''
if mat == 0:
norm = '-'
x = mat
y = mat
else:
x = mat
y = mat
norm += toOrder(x,z)
norm += toOrder(y,z)
return norm

def toOrder(x,z):
i = 0
while True:
if x == z^i:
return str(i)
i+=1
print "All possible generating sets:"
genSets

All possible generating sets:
$\left[\left(\left(\begin{array}{rr} \zeta_{3} & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 0 & \zeta_{3} \\ -\zeta_{3} - 1 & 0 \end{array}\right)\right), \left(\left(\begin{array}{rr} 0 & -\zeta_{3} - 1 \\ \zeta_{3} & 0 \end{array}\right), \left(\begin{array}{rr} \zeta_{3} & 0 \\ 0 & 1 \end{array}\right)\right), \left(\left(\begin{array}{rr} \zeta_{3} & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)\right), \left(\left(\begin{array}{rr} 0 & \zeta_{3} \\ -\zeta_{3} - 1 & 0 \end{array}\right), \left(\begin{array}{rr} -\zeta_{3} - 1 & 0 \\ 0 & 1 \end{array}\right)\right), \left(\left(\begin{array}{rr} 0 & -\zeta_{3} - 1 \\ \zeta_{3} & 0 \end{array}\right), \left(\begin{array}{rr} -\zeta_{3} - 1 & 0 \\ 0 & 1 \end{array}\right)\right), \left(\left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} -\zeta_{3} - 1 & 0 \\ 0 & 1 \end{array}\right)\right), \left(\left(\begin{array}{rr} 1 & 0 \\ 0 & \zeta_{3} \end{array}\right), \left(\begin{array}{rr} 0 & \zeta_{3} \\ -\zeta_{3} - 1 & 0 \end{array}\right)\right), \left(\left(\begin{array}{rr} 0 & -\zeta_{3} - 1 \\ \zeta_{3} & 0 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & \zeta_{3} \end{array}\right)\right), \left(\left(\begin{array}{rr} 1 & 0 \\ 0 & \zeta_{3} \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)\right), \left(\left(\begin{array}{rr} 1 & 0 \\ 0 & -\zeta_{3} - 1 \end{array}\right), \left(\begin{array}{rr} 0 & \zeta_{3} \\ -\zeta_{3} - 1 & 0 \end{array}\right)\right), \left(\left(\begin{array}{rr} 1 & 0 \\ 0 & -\zeta_{3} - 1 \end{array}\right), \left(\begin{array}{rr} 0 & -\zeta_{3} - 1 \\ \zeta_{3} & 0 \end{array}\right)\right), \left(\left(\begin{array}{rr} 1 & 0 \\ 0 & -\zeta_{3} - 1 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)\right)\right]$
S = genSets
Snormed = []
for i in S:
Snormed.append(toNorm(i,zeta))
DEdges = []
for i in G:
for e in S:
j = i * e
DEdges.append((toNorm(i,zeta),toNorm(j,zeta),toNorm(e,zeta)))
D = DiGraph(DEdges)
print "We're using the following generating set:"
S

We're using the following generating set:
$\left(\left(\begin{array}{rr} \zeta_{3} & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 0 & \zeta_{3} \\ -\zeta_{3} - 1 & 0 \end{array}\right)\right)$
R = rainbow(2)
edge_colors={}
for i in range(2):
edge_colors[R[i]] = []
for u,v,e in D.edges():
for i in range(2):
if e == Snormed[i]:
edge_colors[R[i]].append((u,v,e))
D.plot(edge_colors=edge_colors,edge_labels=False) 