Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Project: University
Views: 114
import numpy as np T = 1600 #in Kelvin #variable will be listed in order in arrays ie. [a,b,c,d] #values from A.9 Rbar = 8.31451 #universal gas constant nu = np.array([1,1,2], dtype=float) h_form = np.array([0,0,90291], dtype=float) deltah = np.array([41904,44267,43319], dtype=float) sbar = np.array([244.139,260.434,265.019],dtype=float) g = (h_form+deltah)-T*(sbar) DeltaG = (nu[2]*g[2])-(nu[1]*g[1])-(nu[0]*g[0]) K = e**(-DeltaG/(Rbar*T)) print(ln(K))
-10.546697881173996
%typeset_mode True #in this problem, Sum of nu_i = 0 %var x ntot = 2 gamm_2(x) = x gamm_1(x) = (1-x)/2 gamm_0(x) = (1-x)/2 roots = solve([K == gamm_2**nu[2]/(gamm_1**nu[1]*gamm_0**nu[0])],x,solution_dict=True) roots = [s[x] for s in roots] num_roots = map(n, roots) holder = [] for roots in num_roots: if roots >= 0: holder.append(roots) x = holder print ('x=', x) print('Equilibrium composition is the following:') pretty_print('yN2, yO2, yNO', (gamm_0(x[0]),gamm_1(x[0]),gamm_2(x[0])))
('x=', [0.00255665363707503]) Equilibrium composition is the following:
yN2, yO2, yNO (0.498721673181462\displaystyle 0.498721673181462, 0.498721673181462\displaystyle 0.498721673181462, 0.00255665363707503\displaystyle 0.00255665363707503)
K_conc10 = ln(gamm_2(.1)**nu[2]/((gamm_1(.1)**nu[1])*(gamm_0(.1)**nu[0]))) pretty_print('ln(K) when NO is at 10 percent concentration=', K_conc10) lin_int_T = (K_conc10-(-3.781))/(-2.217-(-3.781))*(200)+2800 pretty_print('Using Table A.11, find the temperature that corresponds, which is equal to', lin_int_T, 'K')
ln(K) when NO is at 10% concentration= 3.00815479355255\displaystyle -3.00815479355255
Using Table A.11, find the temperature that corresponds, which is equal to 2898.82931028740\displaystyle 2898.82931028740 K
P0 = 100 T0 = 298.15 P=500 T=1600 %var x1,x2,x3 #number of moles incorporating dissociation reactions nH20(x1,x2,x3) = 9 nO2(x1,x2,x3) = (2*12.5)+x1 -x2 -2*x3 nN2(x1,x2,x3) = (141) -x2 -x3 nCO2(x1,x2,x3) = 8-2*x1 nCO(x1,x2,x3) = 2*x1 nNO(x1,x2,x3) = 2*x2 nNO2(x1,x2,x3) = 2*x3 ntot(x1,x2,x3) = nCO2 +nH20 + nN2 + nO2 + nCO + nNO + nNO2 #Equilibrium constant at 1600K from A.11 K1 = e^(-21.656) K2 = e^(-10.547) K3 = e^(-20.126) #mole fractions yA1 = nCO2/ntot yC1 = nCO/ntot yD1 = nO2/ntot yA2 = nN2/ntot yB2 = nO2/ntot yC2 = nNO/ntot yA3 = nN2/ntot yB3 = nO2/ntot yC3 = nNO2/ntot #nu values vA1 = 2 vC1 = 2 vD1 = 1 vA2 = 1 vB2 = 1 vC2 = 2 vA3 = 1 vB3 = 2 vC3 = 2 f1(x1,x2,x3)= (yC1^vC1*yD1^vD1) / (yA1^vA1)*(P/P0)^(vC1+vD1-vA1)-K1 f2(x1,x2,x3)= (yC2^vC2) / (yA2^vA2*yB2^vB2)*(P/P0)^(vC2-vB2-vA2)-K2 f3(x1,x2,x3)= (yC3^vC3) / (yA3^vA3*yB3^vB3)*(P/P0)^(vC3-vB3-vA3)-K3 solutions = solve([f1, f2,f3],x1,x2,x3,solution_dict=True,to_poly_solve=True) pretty_print(solutions)
[{x1:1.1014254923×1009,x2:0.305450129042,x3:183.0}\displaystyle \left\{x_{1} : -1.1014254923 \times 10^{-09}, x_{2} : -0.305450129042, x_{3} : 183.0\right\}, {x1:1.1014254923×1009,x2:0.307965711896,x3:183.0}\displaystyle \left\{x_{1} : -1.1014254923 \times 10^{-09}, x_{2} : 0.307965711896, x_{3} : 183.0\right\}, {x1:1.1014254923×1009,x2:0.305450129042,x3:183.0}\displaystyle \left\{x_{1} : 1.1014254923 \times 10^{-09}, x_{2} : -0.305450129042, x_{3} : 183.0\right\}, {x1:1.1014254923×1009,x2:0.307965711896,x3:183.0}\displaystyle \left\{x_{1} : 1.1014254923 \times 10^{-09}, x_{2} : 0.307965711896, x_{3} : 183.0\right\}, {x1:1.11049643899×1009,x2:0.305450129042,x3:183.0}\displaystyle \left\{x_{1} : -1.11049643899 \times 10^{-09}, x_{2} : -0.305450129042, x_{3} : 183.0\right\}, {x1:1.11049643899×1009,x2:0.307965711896,x3:183.0}\displaystyle \left\{x_{1} : -1.11049643899 \times 10^{-09}, x_{2} : 0.307965711896, x_{3} : 183.0\right\}, {x1:1.11049643776×1009,x2:0.305450129042,x3:183.0}\displaystyle \left\{x_{1} : 1.11049643776 \times 10^{-09}, x_{2} : -0.305450129042, x_{3} : 183.0\right\}, {x1:1.11049643776×1009,x2:0.307965711896,x3:183.0}\displaystyle \left\{x_{1} : 1.11049643776 \times 10^{-09}, x_{2} : 0.307965711896, x_{3} : 183.0\right\}, {x1:341,x2:0,x3:158}\displaystyle \left\{x_{1} : -341, x_{2} : 0, x_{3} : -158\right\}]
pretty_print('f1',f1) pretty_print('f2',f2) pretty_print('f3',f3)
f1 (x1,x2,x3)  5(x1x22x3+25.0000000000000)x12(x1x3+183.000000000000)(x14)23.93476409623126×1010\displaystyle \left( x_{1}, x_{2}, x_{3} \right) \ {\mapsto} \ \frac{5 \, {\left(x_{1} - x_{2} - 2 \, x_{3} + 25.0000000000000\right)} x_{1}^{2}}{{\left(x_{1} - x_{3} + 183.000000000000\right)} {\left(x_{1} - 4\right)}^{2}} - 3.93476409623126 \times 10^{-10}
f2 (x1,x2,x3)  4x22(x1x22x3+25.0000000000000)(x2+x3141)0.0000262721792989793\displaystyle \left( x_{1}, x_{2}, x_{3} \right) \ {\mapsto} \ -\frac{4 \, x_{2}^{2}}{{\left(x_{1} - x_{2} - 2 \, x_{3} + 25.0000000000000\right)} {\left(x_{2} + x_{3} - 141\right)}} - 0.0000262721792989793
f3 (x1,x2,x3)  4(x1x3+183.000000000000)x325(x1x22x3+25.0000000000000)2(x2+x3141)1.81714363504325×109\displaystyle \left( x_{1}, x_{2}, x_{3} \right) \ {\mapsto} \ -\frac{4 \, {\left(x_{1} - x_{3} + 183.000000000000\right)} x_{3}^{2}}{5 \, {\left(x_{1} - x_{2} - 2 \, x_{3} + 25.0000000000000\right)}^{2} {\left(x_{2} + x_{3} - 141\right)}} - 1.81714363504325 \times 10^{-9}
# substituting the solutions in the fn equations gives very low values. That's good, I guess …
for sol in solutions: print f1.subs(sol)(x1,x2,x3), f2.subs(sol)(x1,x2,x3), f3.subs(sol)(x1,x2,x3) 37eebf48-8f86-4318-92a8-6a95caf49e46
Error in lines 1-2 Traceback (most recent call last): File "/projects/sage/sage-6.10/local/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 904, in execute exec compile(block+'\n', '', 'single') in namespace, locals File "", line 2, in <module> File "sage/symbolic/expression.pyx", line 4811, in sage.symbolic.expression.Expression.substitute (/projects/sage/sage-6.10/src/build/cythonized/sage/symbolic/expression.cpp:27729) self._gobj.subs_map(smap, 0)) ValueError: power::eval(): division by zero