Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 24
#Mini-project: Euler's line reset
<function reset at 0x7fc9193df050>
#Part 1 #Center of mass of a triangle #//Imput:? #//Output:? def center_of_mass(z1,z2,z3):# triangle ABC: C(z3),B(z2),A(z1);format:z=a+b*I m23=(z3+z2)/2 #Find the midpoint of AB # Use the remark from Lecture notes to calculate the center of mass cm=z1+(2/3)*(m23-z1) return [cm.real(),cm.imag()]
#Example #Triangle ABC; A(u,v),B(a,0),C(0,0) var('u v a');assume(u,'real');assume(v,'real');assume(a,'real');
(u, v, a)
center_of_mass(u+v*I,a+0*I,0+0*I)
[1/3*a + 1/3*u, 1/3*v]
#Useful command: solving system of two linear equations #solve? #Example sol=solve([2.3*x-3.*y+1.1==0.0,x+y-2.5==0.0],x,y,solution_dict=true);sol
[{y: 137/106, x: 64/53}]
[sol[0][x],sol[0][y]] #This is how you can access the solution values and make a list of these values
[64/53, 137/106]
#Useful function: line_eq(z,S) returns the lhs of the equation a*(x-x0)+b(y-y0)=0 of the line passing through a point z=x0+i*y0 and having normal [a,b] def line_eq(z,n): return n[0]*(x-z.real())+n[1]*(y-z.imag())
var('x y')
(x, y)
#Example line_eq(3+2*I,[3,-2])
3*x - 2*y - 5
#Orthocenter def orthocenter(z1,z2,z3): #left hand sides of eqs of two heights of the triangle s23=z3-z2; n1=[s23.real(),s23.imag()]#encode coordinates of a normal of the height from point z1 expr1=line_eq(z1,n1) # lhs of eq of height from vertex z1 s13=z3-z1; n2=[s13.real(),s13.imag()] #encode coordinated of a normal of the height from point z2 expr2=line_eq(z2,n2) # lhs of eq of height from vertex z2 sol=solve([expr1==0,expr2==0],x,y,solution_dict=True) #Orthocenter coordinates return [sol[0][x], sol[0][y]]
pt1=5+3*I;pt2=4+0*I;pt3=0+0*I
O=orthocenter(pt1,pt2,pt3);O
[5, -5/3]
#Center of circumscribed circle def bisector_cross(z1,z2,z3): m23=(z3+z2)/2 s23=z3-z2; n1=[s23.real(),s23.imag()] #Normal to bicector erected from the midpoint of the side connecting z3 and z2 expr1=line_eq(m23,n1) m13=(z1+z3)/2 s13=z3-z1;n2=[s13.real(),s13.imag()] #Normal to bicector erected from the midpoint of the side connecting z3 and z1 expr2=line_eq(m13,n2) sol=solve([expr1==0,expr2==0],x,y,solution_dict=True)#Coordinates of the bisector intersection return [sol[0][x], sol[0][y]]
#Part 2. #(a) Show manually that the three special points of the triangle ABC with A=pt1, B=pt2, C=pt3,lie on a line
#C=bisector_cross(pt1,pt2,pt3);C
#M=center_of_mass(pt1,pt2,pt3);M
#H=orthocenter(pt1,pt2,pt3);H
#(b) Prove that the special points of the triangle ABC with A=u+I*v, B=a, C=0+0*I,lie on a line
var('u v a');assume(u,'real');assume(v,'real');assume(a,'real');
(u, v, a)
A=u+I*v; B=a+I*0; C=0+0*I
Find the center of mass,cm, the orthocenter,oc, and the bisector intercection,bc
cm=? oc=? bc=?
[1/3*a + 1/3*u, 1/3*v] [u, (a*u - u^2)/v] [1/2*a, -1/2*(a*u - u^2 - v^2)/v]
var('x y')
(x, y)
#Line through two points, cm and oc z=? #convert the center of mass into complex number S=[oc[0]-cm[0],oc[1]-cm[1]]#Find a direction vector of the line n=[?,?]# Find a normal to the line euler=line_eq(?,?);euler #lhs of the line equation
-1/9*(a - 2*u)*(v - 3*y) + 1/9*(a + u - 3*x)*(v - 3*(a*u - u^2)/v)
test=euler.subs(x=?,y=?)# Check if the line passes through the intersection of bisectors
test.expand()
0
#Part 3: Plotting # Use command 'point' to plot the three points # Use command 'line' to plot Euler's line # Use command polygon2d for plotting the triangle ABC. Choose any coordinates for the vertices provided the vertices do not lie on a line. #Show all three plots in one figure. Add legend to the line if you want.
var('a') var('b') var('c')
a b c
pt_plot=point(a,size=30,color='red',figsize=[4,4],legend_label=a) pt_plot=point(b,size=30,color='green',figsize=[4,4],legend_label=b) pt_plot=point(c,size=30,color='blue',figsize=[4,4],legend_label=c) triangle=polygon2d([[z1.real(),z1.imag()],[z2.real(),z2.imag()],[z2.real(),z2.imag()]],fill=False) d=line([a,b,c],color='red',legend_label='Eulers line') show(pt_plot+pt_plot1+pt_plot2+triangle+d) pt1=5+4*I; pt2=4+3*I; pt3=3+2*I plotting_euler(pt1,pt2,pt3) plotting_euler(4+2*I,5+3*I,1+4*I)
Error in lines 4-4 Traceback (most recent call last): File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1191, in execute flags=compile_flags), namespace, locals) File "", line 1, in <module> NameError: name 'z1' is not defined
#Mini-project: Euler's line reset
<function reset at 0x7fc9193df050>
#Part 1 #Center of mass of a triangle #//Imput:? #//Output:? def center_of_mass(z1,z2,z3):# triangle ABC: C(z3),B(z2),A(z1);format:z=a+b*I m23=? #Find the midpoint of AB # Use the remark from Lecture notes to calculate the center of mass cm=z1+(2/3)*(?) return [cm.real(),cm.imag()]
#Example #Triangle ABC; A(u,v),B(a,0),C(0,0) var('u v a');assume(u,'real');assume(v,'real');assume(a,'real');
(u, v, a)
center_of_mass(u+v*I,a+0*I,0+0*I)
[1/3*a + 1/3*u, 1/3*v]
#Useful command: solving system of two linear equations #solve? #Example sol=solve([2.3*x-3.*y+1.1==0.0,x+y-2.5==0.0],x,y,solution_dict=true);sol
[{y: 137/106, x: 64/53}]
[sol[0][x],sol[0][y]] #This is how you can access the solution values and make a list of these values
[64/53, 137/106]
#Useful function: line_eq(z,S) returns the lhs of the equation a*(x-x0)+b(y-y0)=0 of the line passing through a point z=x0+i*y0 and having normal [a,b] def line_eq(z,n): return n[0]*(x-z.real())+n[1]*(y-z.imag())
#Example line_eq(3+2*I,[3,-2])
3*x + 2*y - 13
#Orthocenter def orthocenter(z1,z2,z3): #left hand sides of eqs of two heights of the triangle s23=z3-z2 n1=[?,?]#encode coordinates of a normal of the height from point z1 expr1=line_eq(?,?)# lhs of eq of height from vertex z1 s13=z3-z1; n2=[?,?]#encode coordinated of a normal of the height from point z2 expr2=line_eq(?,?)# lhs of eq of height from vertex z2 sol=solve([expr1==0,expr2==0],x,y,solution_dict=True)#Orthocenter coordinates return [sol[0][x], sol[0][y]]
pt1=5+3*I;pt2=4+0*I;pt3=0+0*I
O=orthocenter(pt1,pt2,pt3);O
[5, -5/3]
#Center of circumscribed circle def bisector_cross(z1,z2,z3): m23=(z3+z2)/2 s23=z3-z2; n1=? #Normal to bicector erected from the midpoint of the side connecting z3 and z2 expr1=line_eq(m23,n1) m13=(z1+z3)/2 s13=z3-z1;n2=?#Normal to bicector erected from the midpoint of the side connecting z3 and z1 expr2=line_eq(m13,n2) sol=solve([expr1==0,expr2==0],x,y,solution_dict=True)#Coordinates of the bisector intersection return [sol[0][x], sol[0][y]]
#Part 2. #(a) Show manually that the three special points of the triangle ABC with A=pt1, B=pt2, C=pt3,lie on a line
#C=bisector_cross(pt1,pt2,pt3);C
#M=center_of_mass(pt1,pt2,pt3);M
#H=orthocenter(pt1,pt2,pt3);H
#(b) Prove that the special points of the triangle ABC with A=u+I*v, B=a, C=0+0*I,lie on a line
var('u v a');assume(u,'real');assume(v,'real');assume(a,'real');
(u, v, a)
A=u+I*v; B=a+I*0; C=0+0*I
Find the center of mass,cm, the orthocenter,oc, and the bisector intercection,bc
cm=? oc=? bc=?
[1/3*a + 1/3*u, 1/3*v] [u, (a*u - u^2)/v] [1/2*a, -1/2*(a*u - u^2 - v^2)/v]
var('x y')
(x, y)
#Line through two points, cm and oc z=? #convert the center of mass into complex number S=[oc[0]-cm[0],oc[1]-cm[1]]#Find a direction vector of the line n=[?,?]# Find a normal to the line euler=line_eq(?,?);euler #lhs of the line equation
-1/9*(a - 2*u)*(v - 3*y) + 1/9*(a + u - 3*x)*(v - 3*(a*u - u^2)/v)
test=euler.subs(x=?,y=?)# Check if the line passes through the intersection of bisectors
test.expand()
0
#Part 3: Plotting # Use command 'point' to plot the three points # Use command 'line' to plot Euler's line # Use command polygon2d for plotting the triangle ABC. Choose any coordinates for the vertices provided the vertices do not lie on a line. #Show all three plots in one figure. Add legend to the line if you want. ︠ff98d647-1c69-4b61-ba0b-547243d8d404︠