SageManifolds is a package under development for the modern computer algebra system Sage, implementing differential geometry and tensor calculus. SageManifolds deals with real differentiable manifolds of arbitrary dimension. The basic objects are tensor fields and not tensor components in a given vector frame or coordinate chart. In other words, various charts and frames can be introduced on the manifold and a given tensor field can have representations in each of them. For more details, see http://sagemanifolds.obspm.fr/.

open subset 'U' of the 2-dimensional manifold 'M'

chart (U, (x, y))

y

<type 'sage.symbolic.expression.Expression'>

point 'S' on 2-dimensional manifold 'M'

open subset 'V' of the 2-dimensional manifold 'M'

chart (V, (u, v))

point 'N' on 2-dimensional manifold 'M'

[chart (U, (x, y)), chart (V, (u, v))]

coordinate change from chart (W, (x, y)) to chart (W, (u, v))

[chart (W, (x, y)), chart (W, (u, v))]

(u/(u^2 + v^2), v/(u^2 + v^2))

[2-dimensional manifold 'M', open subset 'U' of the 2-dimensional manifold 'M', open subset 'V' of the 2-dimensional manifold 'M', open subset 'W' of the 2-dimensional manifold 'M']

False

False

[chart (U, (x, y)), chart (V, (u, v)), chart (W, (x, y)), chart (W, (u, v))]

tangent space at point 'p' on 2-dimensional manifold 'M'

scalar field 'f' on the 2-dimensional manifold 'M'