CoCalc Public Filessupport / 2015-01-15-d3.sagewsOpen in with one click!
Authors: Harald Schilly, ℏal Snyder, William A. Stein
Description: Jupyter notebook support/2015-06-04-141749-bokeh.ipynb
import graphics; graphics.graph_to_d3_jsonable?
File: /projects/4a5f0542-5873-4eed-a85c-a18c706e8bcd/.sagemathcloud/ Signature : graphics.graph_to_d3_jsonable(G, vertex_labels=False, edge_labels=False, vertex_partition=[], edge_partition=[], force_spring_layout=False, charge=-120, link_distance=30, link_strength=1.5, gravity=0.04, vertex_size=7, edge_thickness=4, width=None, height=None, **kwds) Docstring : Display a graph in SageMathCloud using the D3 visualization library. INPUT: * "G" -- the graph * "vertex_labels" (boolean) -- Whether to display vertex labels (set to "False" by default). * "edge_labels" (boolean) -- Whether to display edge labels (set to "False" by default). * "vertex_partition" -- a list of lists representing a partition of the vertex set. Vertices are then colored in the graph according to the partition. Set to "[]" by default. * "edge_partition" -- same as "vertex_partition", with edges instead. Set to "[]" by default. * "force_spring_layout" -- whether to take sage's position into account if there is one (see "()" and "()"), or to compute a spring layout. Set to "False" by default. * "vertex_size" -- The size of a vertex' circle. Set to 7 by default. * "edge_thickness" -- Thickness of an edge. Set to "4" by default. * "charge" -- the vertices' charge. Defines how they repulse each other. See for more information. Set to "-120" by default. * "link_distance" -- See Layout for more information. Set to "30" by default. * "link_strength" -- See Layout for more information. Set to "1.5" by default. * "gravity" -- See Layout for more information. Set to "0.04" by default. EXAMPLES: show(graphs.RandomTree(50), d3=True) show(graphs.PetersenGraph(), d3=True, vertex_partition=g.coloring()) show(graphs.DodecahedralGraph(), d3=True, force_spring_layout=True) show(graphs.DodecahedralGraph(), d3=True) g = digraphs.DeBruijn(2,2) g.allow_multiple_edges(True) g.add_edge("10","10","a") g.add_edge("10","10","b") g.add_edge("10","10","c") g.add_edge("10","10","d") g.add_edge("01","11","1") show(g, d3=True, vertex_labels=True,edge_labels=True, link_distance=200,gravity=.05,charge=-500, edge_partition=[[("11","12","2"),("21","21","a")]], edge_thickness=4)
File: /projects/4a5f0542-5873-4eed-a85c-a18c706e8bcd/.sagemathcloud/ Signature : show(obj, svg=True, d3=True, **kwds) Docstring : Show a 2d or 3d graphics object, animation, or matplotlib figure, or show an expression typeset nicely using LaTeX. * display: (default: True); if True, use display math for expression (big and centered). * svg: (default: True); if True, show 2d plots using svg (otherwise use png) * d3: (default: True); if True, show graphs (vertices and edges) using an interactive D3 viewer for the many options for this viewer, type 'import graphics; graphics.graph_to_d3_jsonable?' If false, graphs are converted to plots and displayed as usual. * renderer: (default: 'webgl'); for 3d graphics * 'webgl' (fastest) using hardware accelerated 3d; * 'canvas' (slower) using a 2d canvas, but may work better with transparency; * 'tachyon' -- a ray traced static image. * spin: (default: False); spins 3d plot, with number determining speed (requires mouse over plot) * events: if given, {'click':foo, 'mousemove':bar}; each time the user clicks, the function foo is called with a 2-tuple (x,y) where they clicked. Similarly for mousemove. This works for Sage 2d graphics and matplotlib figures. For animations, there are two options: - ``delay`` - (default: 20) delay in hundredths of a second between frames - ``iterations`` - integer (default: 0); number of iterations of animation. If 0, loop forever. EXAMPLES: Here's an example that illustrates creating a clickable image with events: @interact def f0(fun=x*sin(x^2), mousemove='', click='(0,0)'): click = sage_eval(click) g = plot(fun, (x,0,5), zorder=0) + point(click, color='red', pointsize=100, zorder=10) ymax = g.ymax(); ymin = g.ymin() m = fun.derivative(x)(x=click[0]) b = fun(x=click[0]) - m*click[0] g += plot(m*x + b, (click[0]-1,click[0]+1), color='red', zorder=10) def h(p): f0.mousemove = p def c(p): f0(click=p) show(g, events={'click':c, 'mousemove':h}, svg=True, gridlines='major', ymin=ymin, ymax=ymax)
g=graphs.RandomLobster(9,.6,3) show(g, width=300, height=300)
d3-based renderer not yet implemented
d3-based renderer not yet implemented
D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } ) show(D)
d3-based renderer not yet implemented