Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Jupyter notebook Lifshitz_black_brane_warped.ipynb

Project: Lifshitz BH
Views: 112
Kernel: SageMath 6.10

Black branes in Lifshitz-like wraped backgrounds

This Jupyter/SageMath worksheet implements some computations of the article

  • I. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon: ??, in preparation

These computations are based on SageManifolds (v0.9)

The worksheet file (ipynb format) can be downloaded from ??.

First we set up the notebook to display mathematical objects using LaTeX formatting:

%display latex

Metric

Let us declare the spacetime MM as a 5-dimensional manifold:

M = Manifold(5, 'M') print M
5-dimensional differentiable manifold M

We introduce a the Poincaré-type coordinate system on MM:

X.<t,x,y1,y2,z> = M.chart(r't x y1:y_1 y2:y_2 z:(0,+oo)') X

Let us consider the following Lifshitz-symmetric metric, parametrized by some real numbers ν\nu and cc, and the blackening function f(z)f(z):

g = M.lorentzian_metric('g') var('nu', latex_name=r'\nu', domain='real') var('c', domain='real') ff = function('f')(z) b(z) = exp(c*z^2/2) # b(z)=1 ## for checks g[0,0] = - b(z)*ff/z^2 g[1,1] = b(z)/z^2 g[2,2] = b(z)*z^(-2/nu) g[3,3] = b(z)*z^(-2/nu) g[4,4] = b(z)/z^2/ff g.display()

A matrix view of the metric components:

g[:]
g.display_comp()

Curvature

The Riemann tensor is

Riem = g.riemann() print Riem
Tensor field Riem(g) of type (1,3) on the 5-dimensional differentiable manifold M
#Riem.display_comp(only_nonredundant=True) Riem[0,1,0,1]

The Ricci tensor:

Ric = g.ricci() print Ric
Field of symmetric bilinear forms Ric(g) on the 5-dimensional differentiable manifold M
Ric.display()
Ric.display_comp()

The Ricci scalar:

Rscal = g.ricci_scalar() print Rscal
Scalar field r(g) on the 5-dimensional differentiable manifold M
Rscal.display()

Source model

Let us consider a model based on the following action, involving a dilaton scalar field ϕ\phi and a Maxwell 2-form FF:

S=(R(g)+Λ12mϕmϕ14eλϕFmnFmn)gd5x(1)S = \int \left( R(g) + \Lambda - \frac{1}{2} \nabla_m \phi \nabla^m \phi - \frac{1}{4} e^{\lambda\phi} F_{mn} F^{mn} \right) \sqrt{-g} \, \mathrm{d}^5 x \qquad\qquad \mbox{(1)}

where R(g)R(g) is the Ricci scalar of metric gg, Λ\Lambda is the cosmological constant and λ\lambda is the dilatonic coupling constant.

The dilaton scalar field

We consider the following ansatz for the dilaton scalar field ϕ\phi: ϕ=1λ(lnμ4νlnz), \phi = \frac{1}{\lambda} \left( \ln\mu - \frac{4}{\nu}\ln z\right), where μ\mu is a constant.

var('mu', latex_name=r'\mu', domain='real') var('lamb', latex_name=r'\lambda', domain='real') phi = M.scalar_field({X: (ln(mu) - 4/nu*ln(z))/lamb}, name='phi', latex_name=r'\phi') phi.display()

The 1-form dϕ\mathrm{d}\phi is

dphi = phi.differential() print dphi
1-form dphi on the 5-dimensional differentiable manifold M
dphi.display()
dphi[:] # all the components in the default frame

The 2-form field

We consider the following ansatz for FF: F=12qdy1dy2, F = \frac{1}{2} q \, \mathrm{d}y_1\wedge \mathrm{d}y_2, where qq is a constant.

Let us first get the 1-forms dy1\mathrm{d}y_1 and dy2\mathrm{d}y_2:

X.coframe()
dy1 = X.coframe()[2] dy2 = X.coframe()[3] print dy1 print dy2 dy1, dy2
1-form dy1 on the 5-dimensional differentiable manifold M 1-form dy2 on the 5-dimensional differentiable manifold M

Then we can form FF according to the above ansatz:

var('q', domain='real') F = q/2 * dy1.wedge(dy2) F.set_name('F') print F F.display()
2-form F on the 5-dimensional differentiable manifold M

By construction, the 2-form FF is closed (since qq is constant):

print xder(F)
3-form dF on the 5-dimensional differentiable manifold M
xder(F).display()

Let us evaluate the square FmnFmnF_{mn} F^{mn} of FF:

Fu = F.up(g) print Fu Fu.display()
Tensor field of type (2,0) on the 5-dimensional differentiable manifold M
F2 = F['_{mn}']*Fu['^{mn}'] # using LaTeX notations to denote contraction print F2 F2.display()
Scalar field on the 5-dimensional differentiable manifold M

We shall also need the tensor Fmn:=FmpFn p\mathcal{F}_{mn} := F_{mp} F_n^{\ \, p}:

FF = F['_mp'] * F.up(g,1)['^p_n'] print FF FF.display()
Tensor field of type (0,2) on the 5-dimensional differentiable manifold M

The tensor field F\mathcal{F} is symmetric:

FF == FF.symmetrize()

Therefore, from now on, we set

FF = FF.symmetrize()

Einstein equation

Let us first introduce the cosmological constant:

var('Lamb', latex_name=r'\Lambda', domain='real')

From the action (1), the field equation for the metric gg is Rmn+Λ3g12mϕnϕ12eλϕFmpFn p+112eλϕFrsFrsgmn=0 R_{mn} + \frac{\Lambda}{3} \, g - \frac{1}{2}\partial_m\phi \partial_n\phi -\frac{1}{2} e^{\lambda\phi} F_{mp} F^{\ \, p}_n + \frac{1}{12} e^{\lambda\phi} F_{rs} F^{rs} \, g_{mn} = 0 We write it as

EE == 0

with EE defined by

EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) - 1/2*exp(lamb*phi)*FF \ + 1/12*exp(lamb*phi)*F2*g EE.set_name('E') print EE
Field of symmetric bilinear forms E on the 5-dimensional differentiable manifold M
EE.display_comp(only_nonredundant=True)

We note that EE==0 leads to 4 independent equations:

eq1 = EE[0,0]*24*nu*z^2/f(z)*exp(c*z^2/2) eq1
eq2 = EE[1,1]*24*nu*z^2*exp(c*z^2/2) eq2
eq3 = EE[2,2]*12*nu^2*z^(2/nu)*exp(c*z^2/2) eq3
eq4 = EE[4,4]*2*lamb^2*nu^2*z^2*f(z)*exp(c*z^2/2) eq4

Dilaton field equation

First we evaluate mmϕ\nabla_m \nabla^m \phi:

nab = g.connection() print nab nab
Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M
box_phi = nab(nab(phi).up(g)).trace() print box_phi box_phi.display()
Scalar field on the 5-dimensional differentiable manifold M

From the action (1), the field equation for ϕ\phi is mmϕ=λ4eλϕFmnFmn \nabla_m \nabla^m \phi = \frac{\lambda}{4} e^{\lambda\phi} F_{mn} F^{mn} We write it as

DE == 0

with DE defined by

DE = box_phi - lamb/4*exp(lamb*phi) * F2 print DE
Scalar field on the 5-dimensional differentiable manifold M
DE.display()

Hence the dilaton field equation provides a fifth equation:

eq5 = DE.coord_function()*lamb*nu^2*exp(c*z^2)/2 eq5

Maxwell equation

From the action (1), the field equation for FF is m(eλϕFmn)=0 \nabla_m \left( e^{\lambda\phi} F^{mn} \right)= 0 We write it as

ME == 0

with ME defined by

ME = nab(exp(lamb*phi)*Fu).trace(0,2) print ME ME.display()
Vector field on the 5-dimensional differentiable manifold M

We get identically zero; hence the Maxwell equation do not provide any further equation.

The solution

The Einstein equation + the dilaton field equation yields a system of 5 equations (eq1, eq2, eq3, eq4, eq5).

Let us show that a solution is obtained for ν=2\nu=2 and ν=4\nu=4 with the following specific form of the blackening function:

f(z)=1mz2/ν+2,f(z) = 1 - m z^{2/\nu+2},

where mm is a constant.

To this aim, we declare

var('m', domain='real') fm(z) = 1 - m*z^(2/nu+2) fm

and substitute this function for f(z)f(z) in all the equations:

eq1m = eq1.expr().substitute_function(f, fm).simplify_full() eq1m
eq2m = eq2.expr().substitute_function(f, fm).simplify_full() eq2m
eq3m = eq3.expr().substitute_function(f, fm).simplify_full() eq3m
eq4m = eq4.expr().substitute_function(f, fm).simplify_full() eq4m
eq5m = eq5.expr().substitute_function(f, fm).simplify_full() eq5m
eqs = [eq1m, eq2m, eq3m, eq4m, eq5m]

Solution for ν=2\nu = 2

neqs = [eq.subs(nu=2).simplify_full() for eq in eqs] [eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, c)

In the above solutions, rir_i, with ii an integer, stands for an arbitrary parameter.

The solutions for c=0c=0 are those already obtained for b(z)=1b(z)=1. But there are no solution with c0c\not = 0 and c=constc={\rm const}.

Solution for ν=4\nu=4

neqs = [eq.subs(nu=4).simplify_full() for eq in eqs] [eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, c)

In the above solutions, rir_i, with ii an integer, stands for an arbitrary parameter.

The solutions for c=0c=0 are those already obtained for b(z)=1b(z)=1. But there are no solution with c0c\not = 0 and c=constc={\rm const}.