CoCalc Shared Filesjulia-1.ipynbOpen in CoCalc with one click!
Authors: Harald Schilly, ℏal Snyder
Views : 289

Julia 1.0 Kernel in CoCalc

In [1]:
1+1+1+23
26
In [2]:
VERSION
v"1.0.5"
In [3]:
ENV["JULIA_DEPOT_PATH"]
"/home/user/.julia:/ext/julia/depot/"
In [ ]:
Pkg.installed()
In [ ]:
using Pkg for (k, v) in Pkg.installed() println(k, ":::", (if nothing == v "N/A" else v end)) end
In [ ]:
using Printf
In [ ]:
s = 0 for i = [1 2 5 100 -1 5] s = s + i @printf("i = %4d → s = %4d\n", i, s) end
In [ ]:
[sin(3.14), sin(3.141), sin(3.142)]
In [ ]:
println("Hello", 99) x = 10 println("Interpolation $(5 + x)") @printf("pi = %.7f\n", float(pi))
In [ ]:
Printf.@printf("%f %F %f %F\n", Inf, Inf, NaN, NaN)
In [ ]:
using CSV
In [ ]:
using DataFrames
In [ ]:
#using Gadfly
In [ ]:
using Nemo

In [5]:
using Statistics
In [6]:
Statistics.median([8 9 8 6 87 6 7 6 5.1 4 5 4 3 4 3 3 3 3 ])
5.05
In [7]:
using LinearAlgebra
In [8]:
m1 = [ 1 2 -3 3 -1 1 1.0 1 1] q1, r1 = LinearAlgebra.qr(m1)
LinearAlgebra.QRCompactWY{Float64,Array{Float64,2}} Q factor: 3×3 LinearAlgebra.QRCompactWYQ{Float64,Array{Float64,2}}: -0.301511 0.816497 -0.492366 -0.904534 -0.408248 -0.123091 -0.301511 0.408248 0.86164 R factor: 3×3 Array{Float64,2}: -3.31662 2.22045e-16 -0.301511 0.0 2.44949 -2.44949 0.0 0.0 2.21565
In [9]:
q1 * r1
3×3 Array{Float64,2}: 1.0 2.0 -3.0 3.0 -1.0 1.0 1.0 1.0 1.0

In [ ]:
using DifferentialEquations α=1 β=1 u₀=1/2 f(t,u) = α*u g(t,u) = β*u dt = 1//2^(4) tspan = (0.0,1.0) prob = SDEProblem(f,g,u₀,(0.0,1.0)) sol = solve(prob,EM(),dt=dt) using Plots plot(sol)
In [ ]:
using DifferentialEquations f(x) = sin(2π.*x[:,1]).*cos(2π.*x[:,2]) gD(x) = sin(2π.*x[:,1]).*cos(2π.*x[:,2])/(8π*π) dx = 1//2^(5) mesh = notime_squaremesh([0 1 0 1],dx,:dirichlet) prob = PoissonProblem(f,mesh,gD=gD) sol = solve(prob) using Plots plot(sol)
In [ ]:
using GLM

In [10]:
using PyPlot x = range(0, stop = 4*pi, length=1000) y = sin.(3*x + 1.5*cos.(2*x)) plot(x, y, color="red", linewidth=2.0, linestyle="--")
┌ Info: Precompiling PyPlot [d330b81b-6aea-500a-939a-2ce795aea3ee] └ @ Base loading.jl:1192
1-element Array{PyCall.PyObject,1}: PyObject <matplotlib.lines.Line2D object at 0x7f857bae0c50>
In [11]:
using PyPlot x = range(0; stop=2*pi, length=1000); y = sin.(3 * x + 4 * cos.(2 * x)); plot(x, y, color="red", linewidth=2.0, linestyle="--") title("A sinusoidally modulated sinusoid")
PyObject Text(0.5, 1, 'A sinusoidally modulated sinusoid')

In [ ]:
using D4M
In [ ]:
row = "a,a,a,a,a,a,a,aa,aaa,b,bb,bbb,a,aa,aaa,b,bb,bbb," column = "a,aa,aaa,b,bb,bbb,a,a,a,a,a,a,a,aa,aaa,b,bb,bbb," values = "a-a,a-aa,a-aaa,a-b,a-bb,a-bbb,a-a,aa-a,aaa-a,b-a,bb-a,bbb-a,a-a,aa-aa,aaa-aaa,b-b,bb-bb,bbb-bbb," A = Assoc(row,column,values)
In [ ]:
Ar = A["a,b,",:]
In [ ]:
Ac = A[:,"a,b,"]
In [ ]:
Av = A > "b,"

SymPy test

In [ ]:
using SymPy x = symbols("x") # or @vars x, Sym("x"), or Sym(:x) y = sin(pi*x) y(1), y(2.2), y(123456)

Unicode Plots

In [ ]:
using Plots unicodeplots()
In [ ]:
# /Users/tom/.julia/v0.4/Plots/docs/example_generation.jl, line 50: plot(sin,x-> sin(1.5x), 0, 4π, line=1, leg=false, fill=(0,:orange))
In [ ]: