Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

5-dimensional Kerr-AdS spacetime with a Nambu-Goto string --- generic case with global AdS coordinates

Project: KerrAdS
Views: 104
License: GPL3
Image: ubuntu2004
Kernel: SageMath 9.3

5D Kerr-AdS spacetime with a Nambu-Goto string

Generic case (a,b) in global AdS coordinates

This SageMath notebook is relative to the article Heavy quarks in rotating plasma via holography by Anastasia A. Golubtsova, Eric Gourgoulhon and Marina K. Usova, arXiv:2107.11672.

The involved differential geometry computations are based on tools developed through the SageManifolds project.

NB: a version of SageMath at least equal to 9.1 is required to run this notebook:

version()
'SageMath version 9.3, Release Date: 2021-05-09'

First we set up the notebook to display mathematical objects using LaTeX rendering:

%display latex

Since some computations are quite long, we ask for running them in parallel on 8 cores:

Parallelism().set(nproc=8)

Spacetime manifold

We declare the Kerr-AdS spacetime as a 5-dimensional Lorentzian manifold:

M = Manifold(5, 'M', r'\mathcal{M}', structure='Lorentzian', metric_name='G') print(M)
5-dimensional Lorentzian manifold M

Let us define Boyer-Lindquist-type coordinates (rational polynomial version) on M\mathcal{M}, via the method chart(), the argument of which is a string expressing the coordinates names, their ranges (the default is (,+)(-\infty,+\infty)) and their LaTeX symbols:

BL.<t,r,mu,ph,ps> = M.chart(r't r:(0,+oo) mu:(0,1):\mu ph:(0,2*pi):\phi ps:(0,2*pi):\psi') BL
(M,(t,r,μ,ϕ,ψ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathcal{M},(t, r, {\mu}, {\phi}, {\psi})\right)

The coordinate μ\mu is related to the standard Boyer-Lindquist coordinate θ\theta by μ=cosθ \mu = \cos\theta

The coordinate ranges are

BL.coord_range()
t: (,+);r: (0,+);μ: (0,1);ϕ: (0,2π);ψ: (0,2π)\renewcommand{\Bold}[1]{\mathbf{#1}}t :\ \left( -\infty, +\infty \right) ;\quad r :\ \left( 0 , +\infty \right) ;\quad {\mu} :\ \left( 0 , 1 \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right) ;\quad {\psi} :\ \left( 0 , 2 \, \pi \right)

Note that contrary to the 4-dimensional case, the range of μ\mu is (0,1)(0,1) only (cf. Sec. 1.2 of R.C. Myers, arXiv:1111.1903 or Sec. 2 of G.W. Gibbons, H. Lüb, Don N. Page, C.N. Pope, J. Geom. Phys. 53, 49 (2005)). In other words, the range of θ\theta is (0,π2)\left(0, \frac{\pi}{2}\right) only.

Metric tensor

The 4 parameters mm, aa, bb and \ell of the Kerr-AdS spacetime are declared as symbolic variables, aa and bb being the two angular momentum parameters and \ell being related to the cosmological constant by Λ=62\Lambda = - 6 \ell^2:

var('m a b', domain='real')
(m,a,b)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(m, a, b\right)

In this notebook, we set =1 \ell = 1

l = 1
assume(a >= 0, a < 1) assume(b >= 0, b < 1)

Possible particular cases:

#b = a #a = 0 #b = 0

Some auxiliary functions:

keep_Delta = False # change to False to provide explicit expression for Delta_r, Xi_a, etc...
sig = (1 + r^2*l^2)/r^2 costh2 = mu^2 sinth2 = 1 - mu^2 rho2 = r^2 + a^2*mu^2 + b^2*sinth2 if keep_Delta: Delta_r = var('Delta_r', latex_name=r'\Delta_r', domain='real') Delta_th = var('Delta_th', latex_name=r'\Delta_\theta', domain='real') if a == b: Xi_a = var('Xi', latex_name=r'\Xi', domain='real') Xi_b = Xi_a else: Xi_a = var('Xi_a', latex_name=r'\Xi_a', domain='real') Xi_b = var('Xi_b', latex_name=r'\Xi_b', domain='real') #Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2 else: Delta_r = (r^2+a^2)*(r^2+b^2)*sig - 2*m Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2

The metric is set by its components in the coordinate frame associated with the Boyer-Lindquist-type coordinates, which is the current manifold's default frame. These components can be deduced from Eq. (5.22) of the article S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D 59, 064005 (1999) (the check of agreement with this equation is performed below):

G = M.metric() tmp = 1/rho2*( -Delta_r + Delta_th*(a^2*sinth2 + b^2*mu^2) + a^2*b^2*sig ) G[0,0] = tmp.simplify_full() tmp = a*sinth2/(rho2*Xi_a)*( Delta_r - (r^2+a^2)*(Delta_th + b^2*sig) ) G[0,3] = tmp.simplify_full() tmp = b*mu^2/(rho2*Xi_b)*( Delta_r - (r^2+b^2)*(Delta_th + a^2*sig) ) G[0,4] = tmp.simplify_full() G[1,1] = (rho2/Delta_r).simplify_full() G[2,2] = (rho2/Delta_th/(1-mu^2)).simplify_full() tmp = sinth2/(rho2*Xi_a^2)*( - Delta_r*a^2*sinth2 + (r^2+a^2)^2*(Delta_th + sig*b^2*sinth2) ) G[3,3] = tmp.simplify_full() tmp = a*b*sinth2*mu^2/(rho2*Xi_a*Xi_b)*( - Delta_r + sig*(r^2+a^2)*(r^2+b^2) ) G[3,4] = tmp.simplify_full() tmp = mu^2/(rho2*Xi_b^2)*( - Delta_r*b^2*mu^2 + (r^2+b^2)^2*(Delta_th + sig*a^2*mu^2) ) G[4,4] = tmp.simplify_full()
G.display_comp(only_nonredundant=True)
Gtttt=(a42a2b2+b4)μ4r4(a2+1)b2(a4+b4(2a2+1)b2+a2)μ2(a2+b2+1)r2+2m(a2b2)μ2+b2+r2Gtϕtϕ=a3b2(a5a3b2)μ4(aμ2a)r4+(a52a3b2+2am)μ2(2ab2μ2+(a3ab2)μ4a3ab2)r22am(a21)b2+(a4(a21)b2a2)μ2+(a21)r2Gtψtψ=bμ2r4+(a2b3b5)μ4+(b52bm)μ2+(2b3μ2+(a2bb3)μ4)r2b4(b4(a2+1)b2+a2)μ2+(b21)r2b2Grrrr=r4+((a2b2)μ2+b2)r2r6+(a2+b2+1)r4+a2b2+((a2+1)b2+a22m)r2Gμμμμ=(a2b2)μ2+b2+r2(a2b2)μ4(a22b2+1)μ2b2+1Gϕϕϕϕ=(a6a4(a4a2)b2+2a2m)μ4+((a21)μ2a2+1)r4(a4a2)b2+2a2m(a6a42(a4a2)b2+4a2m)μ2+(2(a21)b2μ2+(a4(a21)b2a2)μ4a4(a21)b2+a2)r2(a42a2+1)b2+(a62a4(a42a2+1)b2+a2)μ2+(a42a2+1)r2Gϕψϕψ=2(abmμ4abmμ2)(a21)b4(a21)b2((a21)b4+a4(a41)b2a2)μ2+((a21)b2a2+1)r2Gψψψψ=(b21)μ2r4(b6(a2+1)b4+a2b2+2b2m)μ4+(b6b4)μ2((b4(a2+1)b2+a2)μ42(b4b2)μ2)r2b62b4(b6(a2+2)b4+(2a2+1)b2a2)μ2+(b42b2+1)r2+b2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & \frac{{\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} - r^{4} - {\left(a^{2} + 1\right)} b^{2} - {\left(a^{4} + b^{4} - {\left(2 \, a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} - {\left(a^{2} + b^{2} + 1\right)} r^{2} + 2 \, m}{{\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} + r^{2}} \\ G_{ \, t \, {\phi} }^{ \phantom{\, t}\phantom{\, {\phi}} } & = & -\frac{a^{3} b^{2} - {\left(a^{5} - a^{3} b^{2}\right)} {\mu}^{4} - {\left(a {\mu}^{2} - a\right)} r^{4} + {\left(a^{5} - 2 \, a^{3} b^{2} + 2 \, a m\right)} {\mu}^{2} - {\left(2 \, a b^{2} {\mu}^{2} + {\left(a^{3} - a b^{2}\right)} {\mu}^{4} - a^{3} - a b^{2}\right)} r^{2} - 2 \, a m}{{\left(a^{2} - 1\right)} b^{2} + {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\mu}^{2} + {\left(a^{2} - 1\right)} r^{2}} \\ G_{ \, t \, {\psi} }^{ \phantom{\, t}\phantom{\, {\psi}} } & = & -\frac{b {\mu}^{2} r^{4} + {\left(a^{2} b^{3} - b^{5}\right)} {\mu}^{4} + {\left(b^{5} - 2 \, b m\right)} {\mu}^{2} + {\left(2 \, b^{3} {\mu}^{2} + {\left(a^{2} b - b^{3}\right)} {\mu}^{4}\right)} r^{2}}{b^{4} - {\left(b^{4} - {\left(a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} + {\left(b^{2} - 1\right)} r^{2} - b^{2}} \\ G_{ \, r \, r }^{ \phantom{\, r}\phantom{\, r} } & = & \frac{r^{4} + {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2}\right)} r^{2}}{r^{6} + {\left(a^{2} + b^{2} + 1\right)} r^{4} + a^{2} b^{2} + {\left({\left(a^{2} + 1\right)} b^{2} + a^{2} - 2 \, m\right)} r^{2}} \\ G_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & \frac{{\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} + r^{2}}{{\left(a^{2} - b^{2}\right)} {\mu}^{4} - {\left(a^{2} - 2 \, b^{2} + 1\right)} {\mu}^{2} - b^{2} + 1} \\ G_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & \frac{{\left(a^{6} - a^{4} - {\left(a^{4} - a^{2}\right)} b^{2} + 2 \, a^{2} m\right)} {\mu}^{4} + {\left({\left(a^{2} - 1\right)} {\mu}^{2} - a^{2} + 1\right)} r^{4} - {\left(a^{4} - a^{2}\right)} b^{2} + 2 \, a^{2} m - {\left(a^{6} - a^{4} - 2 \, {\left(a^{4} - a^{2}\right)} b^{2} + 4 \, a^{2} m\right)} {\mu}^{2} + {\left(2 \, {\left(a^{2} - 1\right)} b^{2} {\mu}^{2} + {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\mu}^{4} - a^{4} - {\left(a^{2} - 1\right)} b^{2} + a^{2}\right)} r^{2}}{{\left(a^{4} - 2 \, a^{2} + 1\right)} b^{2} + {\left(a^{6} - 2 \, a^{4} - {\left(a^{4} - 2 \, a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} + {\left(a^{4} - 2 \, a^{2} + 1\right)} r^{2}} \\ G_{ \, {\phi} \, {\psi} }^{ \phantom{\, {\phi}}\phantom{\, {\psi}} } & = & -\frac{2 \, {\left(a b m {\mu}^{4} - a b m {\mu}^{2}\right)}}{{\left(a^{2} - 1\right)} b^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left({\left(a^{2} - 1\right)} b^{4} + a^{4} - {\left(a^{4} - 1\right)} b^{2} - a^{2}\right)} {\mu}^{2} + {\left({\left(a^{2} - 1\right)} b^{2} - a^{2} + 1\right)} r^{2}} \\ G_{ \, {\psi} \, {\psi} }^{ \phantom{\, {\psi}}\phantom{\, {\psi}} } & = & -\frac{{\left(b^{2} - 1\right)} {\mu}^{2} r^{4} - {\left(b^{6} - {\left(a^{2} + 1\right)} b^{4} + a^{2} b^{2} + 2 \, b^{2} m\right)} {\mu}^{4} + {\left(b^{6} - b^{4}\right)} {\mu}^{2} - {\left({\left(b^{4} - {\left(a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{4} - 2 \, {\left(b^{4} - b^{2}\right)} {\mu}^{2}\right)} r^{2}}{b^{6} - 2 \, b^{4} - {\left(b^{6} - {\left(a^{2} + 2\right)} b^{4} + {\left(2 \, a^{2} + 1\right)} b^{2} - a^{2}\right)} {\mu}^{2} + {\left(b^{4} - 2 \, b^{2} + 1\right)} r^{2} + b^{2}} \end{array}

Check of Eq. (2.9)

We need the 1-forms dt\mathrm{d}t, dr\mathrm{d}r, dμ\mathrm{d}\mu, dϕ\mathrm{d}\phi and dψ\mathrm{d}\psi:

dt, dr, dmu, dph, dps = (BL.coframe()[i] for i in M.irange()) dt, dr, dmu, dph, dps
(dt,dr,dμ,dϕ,dψ)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathrm{d} t, \mathrm{d} r, \mathrm{d} {\mu}, \mathrm{d} {\phi}, \mathrm{d} {\psi}\right)
print(dt)
1-form dt on the 5-dimensional Lorentzian manifold M

In agreement with μ=cosθ\mu = \cos\theta, we introduce the 1-form dθ=dμ/sinθ,\mathrm{d}\theta = - \mathrm{d}\mu /\sin\theta , with sinθ=1μ2\sin\theta = \sqrt{1-\mu^2} since θ(0,π2)\theta\in\left(0, \frac{\pi}{2}\right) :

dth = - 1/sqrt(1 - mu^2)*dmu
s1 = dt - a*sinth2/Xi_a*dph - b*costh2/Xi_b*dps s1.display()
dt+(aμ2aa21)dϕ+(bμ2b21)dψ\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{d} t + \left( -\frac{a {\mu}^{2} - a}{a^{2} - 1} \right) \mathrm{d} {\phi} + \left( \frac{b {\mu}^{2}}{b^{2} - 1} \right) \mathrm{d} {\psi}
s2 = a*dt - (r^2 + a^2)/Xi_a*dph s2.display()
adt+(a2+r2a21)dϕ\renewcommand{\Bold}[1]{\mathbf{#1}}a \mathrm{d} t + \left( \frac{a^{2} + r^{2}}{a^{2} - 1} \right) \mathrm{d} {\phi}
s3 = b*dt - (r^2 + b^2)/Xi_b*dps s3.display()
bdt+(b2+r2b21)dψ\renewcommand{\Bold}[1]{\mathbf{#1}}b \mathrm{d} t + \left( \frac{b^{2} + r^{2}}{b^{2} - 1} \right) \mathrm{d} {\psi}
s4 = a*b*dt - b*(r^2 + a^2)*sinth2/Xi_a * dph - a*(r^2 + b^2)*costh2/Xi_b * dps s4.display()
abdt+(a2bμ2a2b+(bμ2b)r2a21)dϕ+(ab2μ2+aμ2r2b21)dψ\renewcommand{\Bold}[1]{\mathbf{#1}}a b \mathrm{d} t + \left( -\frac{a^{2} b {\mu}^{2} - a^{2} b + {\left(b {\mu}^{2} - b\right)} r^{2}}{a^{2} - 1} \right) \mathrm{d} {\phi} + \left( \frac{a b^{2} {\mu}^{2} + a {\mu}^{2} r^{2}}{b^{2} - 1} \right) \mathrm{d} {\psi}
G0 = - Delta_r/rho2 * s1*s1 + Delta_th*sinth2/rho2 * s2*s2 \ + Delta_th*costh2/rho2 * s3*s3 + rho2/Delta_r * dr*dr \ + rho2/Delta_th * dth*dth + sig/rho2 * s4*s4

Check of Eq. (2.9):

G0 == G
True\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True}

Einstein equation

The Ricci tensor of gg is

if not keep_Delta: # Ric = G.ricci() # print(Ric) pass
if not keep_Delta: # show(Ric.display_comp(only_nonredundant=True)) pass

Let us check that gg is a solution of the vacuum Einstein equation with the cosmological constant Λ=62\Lambda = - 6 \ell^2:

Lambda = -6*l^2 if not keep_Delta: # print(Ric == 2/3*Lambda*G) pass

Conformal metric at the boundary r+r\to +\infty (check of Eq. (2.11))

The conformal metric:

H = G / (1 + r^2) H.set_name('H')
H[1,1]
r4+((a2b2)μ2+b2)r2(r6+(a2+b2+1)r4+a2b2+((a2+1)b2+a22m)r2)(r2+1)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{r^{4} + {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2}\right)} r^{2}}{{\left(r^{6} + {\left(a^{2} + b^{2} + 1\right)} r^{4} + a^{2} b^{2} + {\left({\left(a^{2} + 1\right)} b^{2} + a^{2} - 2 \, m\right)} r^{2}\right)} {\left(r^{2} + 1\right)}}

Let us introduce a function to perform asymptotic expansions up to a given order:

u = var('u') def asympt(xx, rr, order): r""" Expansion in terms of 1/rr INPUT: - ``xx`` -- symbolic expression to expand - ``rr`` -- symbolic variable, the inverse of which is the expansion small parameter - ``order`` -- order of the expansion OUTPUT: - symbolic expression representing ``xx`` truncated at degree ``order`` in terms of ``1/rr`` """ xx = xx.subs({rr: 1/u}).simplify_full() xx = xx.series(u, order+1).truncate().simplify_full() xx = xx.subs({u: 1/rr}).simplify_full() return xx

Expansion to order 1/r01/r^0 provides the conformal metric on the boundary r+r\to +\infty:

H0 = M.sym_bilin_form_field(name='H_0') for i in M.irange(): for j in M.irange(i): H0[i, j] = asympt(H[i,j].expr(), r, 0) H0.display()
H0=dtdt+(aμ2aa21)dtdϕ+(bμ2b21)dtdψ+(1(a2b2)μ4(a22b2+1)μ2b2+1)dμdμ+(aμ2aa21)dϕdt+(μ21a21)dϕdϕ+(bμ2b21)dψdt+(μ2b21)dψdψ\renewcommand{\Bold}[1]{\mathbf{#1}}H_0 = -\mathrm{d} t\otimes \mathrm{d} t + \left( \frac{a {\mu}^{2} - a}{a^{2} - 1} \right) \mathrm{d} t\otimes \mathrm{d} {\phi} + \left( -\frac{b {\mu}^{2}}{b^{2} - 1} \right) \mathrm{d} t\otimes \mathrm{d} {\psi} + \left( \frac{1}{{\left(a^{2} - b^{2}\right)} {\mu}^{4} - {\left(a^{2} - 2 \, b^{2} + 1\right)} {\mu}^{2} - b^{2} + 1} \right) \mathrm{d} {\mu}\otimes \mathrm{d} {\mu} + \left( \frac{a {\mu}^{2} - a}{a^{2} - 1} \right) \mathrm{d} {\phi}\otimes \mathrm{d} t + \left( \frac{{\mu}^{2} - 1}{a^{2} - 1} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi} + \left( -\frac{b {\mu}^{2}}{b^{2} - 1} \right) \mathrm{d} {\psi}\otimes \mathrm{d} t + \left( -\frac{{\mu}^{2}}{b^{2} - 1} \right) \mathrm{d} {\psi}\otimes \mathrm{d} {\psi}

This agrees with Eq. (2.11); in particular, we have

H0[2,2].factor()
1(a2μ2b2μ2+b21)(μ+1)(μ1)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{{\left(a^{2} {\mu}^{2} - b^{2} {\mu}^{2} + b^{2} - 1\right)} {\left({\mu} + 1\right)} {\left({\mu} - 1\right)}}

Global AdS coordinates

ADS.<T,y,ch,Ph,Ps> = M.chart(r'T y:(0,+oo) ch:(0,1):\chi Ph:(0,2*pi):\Phi Ps:(0,2*pi):\Psi') ADS
(M,(T,y,χ,Φ,Ψ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathcal{M},(T, y, {\chi}, {\Phi}, {\Psi})\right)
ADS.coord_range()
T: (,+);y: (0,+);χ: (0,1);Φ: (0,2π);Ψ: (0,2π)\renewcommand{\Bold}[1]{\mathbf{#1}}T :\ \left( -\infty, +\infty \right) ;\quad y :\ \left( 0 , +\infty \right) ;\quad {\chi} :\ \left( 0 , 1 \right) ;\quad {\Phi} :\ \left( 0 , 2 \, \pi \right) ;\quad {\Psi} :\ \left( 0 , 2 \, \pi \right)

The transition from the Boyer-Lindquist coordinates to the global AdS coordinates is derived from Eq. (5.24) of S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D 59, 064005 (1999):

The following assumptions are required to perform simplifications:

if not (a == 0 or b == 0 or b == a): assume((a^2 - b^2)*mu^2 + b^2 + r^2 > 0) assume((a^2 - b^2)*ch^2 - a^2 + 1 > 0)
assumptions()
[txisxreal,rxisxreal,r>0,muxisxreal,μ>0,μ<1,phxisxreal,ϕ>0,ϕ<2π,psxisxreal,ψ>0,ψ<2π,mxisxreal,axisxreal,bxisxreal,a0,a<1,b0,b<1,Txisxreal,yxisxreal,y>0,chxisxreal,χ>0,χ<1,Phxisxreal,Φ>0,Φ<2π,Psxisxreal,Ψ>0,Ψ<2π,(a2b2)μ2+b2+r2>0,(a2b2)χ2a2+1>0]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[\verb|t|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|r|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, r > 0, \verb|mu|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\mu} > 0, {\mu} < 1, \verb|ph|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\phi} > 0, {\phi} < 2 \, \pi, \verb|ps|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\psi} > 0, {\psi} < 2 \, \pi, \verb|m|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|a|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|b|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, a \geq 0, a < 1, b \geq 0, b < 1, \verb|T|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|y|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, y > 0, \verb|ch|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\chi} > 0, {\chi} < 1, \verb|Ph|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\Phi} > 0, {\Phi} < 2 \, \pi, \verb|Ps|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\Psi} > 0, {\Psi} < 2 \, \pi, {\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} + r^{2} > 0, {\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1 > 0\right]

We import the function simplify_sqrt_real to simplify some square roots, which would not be simplified with simplify_full:

from sage.manifolds.utilities import simplify_sqrt_real
ys = sqrt(Xi_b*(r^2 + a^2)*(1-mu^2) + Xi_a*(r^2 + b^2)*mu^2) \ /(sqrt(Xi_a)*sqrt(Xi_b)) ys = simplify_sqrt_real(ys.simplify_full()) chs = sqrt(Xi_a)*sqrt(r^2 + b^2)*mu / sqrt(Xi_a*(r^2 + b^2)*mu^2 + Xi_b*(r^2 + a^2)*(1 - mu^2)) chs = simplify_sqrt_real(chs.simplify_full())
ys
a2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2a+1a+1b+1b+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}}}{\sqrt{a + 1} \sqrt{-a + 1} \sqrt{b + 1} \sqrt{-b + 1}}
chs
b2+r2a+1a+1μa2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{b^{2} + r^{2}} \sqrt{a + 1} \sqrt{-a + 1} {\mu}}{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}}}
BL_to_ADS = BL.transition_map(ADS, [t, ys, chs, ph + a*t, ps + b*t]) BL_to_ADS.display()
{T=ty=a2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2a+1a+1b+1b+1χ=b2+r2a+1a+1μa2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2Φ=at+ϕΨ=bt+ψ\renewcommand{\Bold}[1]{\mathbf{#1}}\left\{\begin{array}{lcl} T & = & t \\ y & = & \frac{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}}}{\sqrt{a + 1} \sqrt{-a + 1} \sqrt{b + 1} \sqrt{-b + 1}} \\ {\chi} & = & \frac{\sqrt{b^{2} + r^{2}} \sqrt{a + 1} \sqrt{-a + 1} {\mu}}{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}}} \\ {\Phi} & = & a t + {\phi} \\ {\Psi} & = & b t + {\psi} \end{array}\right.
Discr = (a^2 + b^2 + y^2*((b^2 - a^2)*ch^2 + a^2 - 1))^2 - 4*a^2*b^2 \ + 4*y^2*((a^2 - b^2)*ch^2 + b^2*(1 - a^2)) Discr = Discr.simplify_full() Discr
((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}
sqrDiscr = simplify_sqrt_real(sqrt(Discr))
rs2 = 1/2*(y^2*((a^2 - b^2)*ch^2 + 1 - a^2) - a^2 - b^2 + sqrDiscr) rs2 = rs2.simplify_full() rs2
12((a2b2)χ2a2+1)y212a212b2+12((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{2} \, {\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - \frac{1}{2} \, a^{2} - \frac{1}{2} \, b^{2} + \frac{1}{2} \, \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}

Check:

s = (rs2 + a^2)*(rs2 + b^2) - (rs2 + a^2)*(1 - b^2)*y^2*ch^2 \ - (rs2 + b^2)*(1 - a^2)*y^2*(1 - ch^2) == 0 s.simplify_full()
0=0\renewcommand{\Bold}[1]{\mathbf{#1}}0 = 0
rs = simplify_sqrt_real(sqrt(rs2))
mus = sqrt(1 - b^2)/sqrt(rs2 + b^2)*y*ch mus = simplify_sqrt_real(mus.simplify_full()) mus
2b+1b+1χy((a2b2)χ2a2+1)y2a2+b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{2} \sqrt{b + 1} \sqrt{-b + 1} {\chi} y}{\sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} + b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}}}
BL_to_ADS.set_inverse(T, rs, mus, Ph - a*T, Ps - b*T, verbose=True) BL_to_ADS.inverse().display()
Check of the inverse coordinate transformation: t == t *passed* r == r *passed* mu == mu *passed* ph == ph *passed* ps == ps *passed* T == T *passed* y == y *passed* ch == ch *passed* Ph == Ph *passed* Ps == Ps *passed*
{t=Tr=122((a2b2)χ2a2+1)y2a2b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2μ=2b+1b+1χy((a2b2)χ2a2+1)y2a2+b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2ϕ=Ta+Φψ=Tb+Ψ\renewcommand{\Bold}[1]{\mathbf{#1}}\left\{\begin{array}{lcl} t & = & T \\ r & = & \frac{1}{2} \, \sqrt{2} \sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} - b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}} \\ {\mu} & = & \frac{\sqrt{2} \sqrt{b + 1} \sqrt{-b + 1} {\chi} y}{\sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} + b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}}} \\ {\phi} & = & -T a + {\Phi} \\ {\psi} & = & -T b + {\Psi} \end{array}\right.
BL_to_ADS.jacobian()
(100000((a2b2)μ2+b21)ra2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2a+1a+1b+1b+1(a2b2)μr2+(a2b2)μa2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2a+1a+1b+1b+1000a2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2((b4(a2+1)b2+a2)μ3(b4(a2+1)b2+a2)μ)a+1a+1r(a4b42a4b2+(a42a2b2+b4)μ4+((a42a2b2+b4)μ4+b42(b4(a2+1)b2+a2)μ22b2+1)r4+a42(a2b4+a4(a4+a2)b2)μ2+2(a2b4+(a42a2b2+b4)μ42a2b2((a2+1)b4+a4(a4+2a2+1)b2+a2)μ2+a2)r2)b2+r2(a2b2+(b21)r2a2)a2b2(a2b2)μ2((a2b2)μ2+b21)r2+a2b2+r2a+1a+1a4b42a4b2+(a42a2b2+b4)μ4+((a42a2b2+b4)μ4+b42(b4(a2+1)b2+a2)μ22b2+1)r4+a42(a2b4+a4(a4+a2)b2)μ2+2(a2b4+(a42a2b2+b4)μ42a2b2((a2+1)b4+a4(a4+2a2+1)b2+a2)μ2+a2)r200a0010b0001)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & -\frac{{\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r}{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}} \sqrt{a + 1} \sqrt{-a + 1} \sqrt{b + 1} \sqrt{-b + 1}} & -\frac{{\left(a^{2} - b^{2}\right)} {\mu} r^{2} + {\left(a^{2} - b^{2}\right)} {\mu}}{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}} \sqrt{a + 1} \sqrt{-a + 1} \sqrt{b + 1} \sqrt{-b + 1}} & 0 & 0 \\ 0 & -\frac{\sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}} {\left({\left(b^{4} - {\left(a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{3} - {\left(b^{4} - {\left(a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}\right)} \sqrt{a + 1} \sqrt{-a + 1} r}{{\left(a^{4} b^{4} - 2 \, a^{4} b^{2} + {\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} + {\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} + b^{4} - 2 \, {\left(b^{4} - {\left(a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} - 2 \, b^{2} + 1\right)} r^{4} + a^{4} - 2 \, {\left(a^{2} b^{4} + a^{4} - {\left(a^{4} + a^{2}\right)} b^{2}\right)} {\mu}^{2} + 2 \, {\left(a^{2} b^{4} + {\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} - 2 \, a^{2} b^{2} - {\left({\left(a^{2} + 1\right)} b^{4} + a^{4} - {\left(a^{4} + 2 \, a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} + a^{2}\right)} r^{2}\right)} \sqrt{b^{2} + r^{2}}} & -\frac{{\left(a^{2} b^{2} + {\left(b^{2} - 1\right)} r^{2} - a^{2}\right)} \sqrt{-a^{2} b^{2} - {\left(a^{2} - b^{2}\right)} {\mu}^{2} - {\left({\left(a^{2} - b^{2}\right)} {\mu}^{2} + b^{2} - 1\right)} r^{2} + a^{2}} \sqrt{b^{2} + r^{2}} \sqrt{a + 1} \sqrt{-a + 1}}{a^{4} b^{4} - 2 \, a^{4} b^{2} + {\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} + {\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} + b^{4} - 2 \, {\left(b^{4} - {\left(a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} - 2 \, b^{2} + 1\right)} r^{4} + a^{4} - 2 \, {\left(a^{2} b^{4} + a^{4} - {\left(a^{4} + a^{2}\right)} b^{2}\right)} {\mu}^{2} + 2 \, {\left(a^{2} b^{4} + {\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\mu}^{4} - 2 \, a^{2} b^{2} - {\left({\left(a^{2} + 1\right)} b^{4} + a^{4} - {\left(a^{4} + 2 \, a^{2} + 1\right)} b^{2} + a^{2}\right)} {\mu}^{2} + a^{2}\right)} r^{2}} & 0 & 0 \\ a & 0 & 0 & 1 & 0 \\ b & 0 & 0 & 0 & 1 \end{array}\right)
BL_to_ADS.inverse().jacobian()
(1000002(((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y3+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2((a2b2)χ2a2+1)y+(a4(a21)b2(a4b42a2+2b2)χ2a2)y)2((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2((a2b2)χ2a2+1)y2a2b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y22(((a42a2b2+b4)χ3(a4(a21)b2a2)χ)y4+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2(a2b2)χy2(a4b42a2+2b2)χy2)2((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2((a2b2)χ2a2+1)y2a2b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2000(((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2(2a22b2)b+1b+1χ+(((2a42b422a2+22b2)χ3(2a4(2a22)b22a2)χ)y2(2a422a2b2+2b4)χ)b+1b+1)((a2b2)χ2a2+1)y2a2+b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y22(((a63a4b2+3a2b4b6)χ6a63(a6+(a21)b4a42(a4a2)b2)χ4+3a4+3(a62a4(a42a2+1)b2+a2)χ23a2+1)y6a6+3a4b23a2b4+b6(3a6+(3a6+b6+(a24)b44a4(5a48a2)b2)χ46a43(a42a2+1)b22(3a6+(a21)b45a42(2a43a2+1)b2+2a2)χ2+3a2)y4(3a6+3(a21)b43a46(a4a2)b2(3a6+b6+(a24)b44a4(5a48a2)b2)χ2)y2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2(((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4(a21)b2a2)χ2a2)y2))((a2b2)χ2a2+1)y2a2+b2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2(((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2((2a22)y3+(2a22b2)y)b+1b+1((2a4(2a4(2a22)b22a2)χ222a2+2)y5+(22a42(2a22)b2(2a42b422a2+22b2)χ222a2)y3+(2a422a2b2+2b4)y)b+1b+1)2(((a63a4b2+3a2b4b6)χ6a63(a6+(a21)b4a42(a4a2)b2)χ4+3a4+3(a62a4(a42a2+1)b2+a2)χ23a2+1)y6a6+3a4b23a2b4+b6(3a6+(3a6+b6+(a24)b44a4(5a48a2)b2)χ46a43(a42a2+1)b22(3a6+(a21)b45a42(2a43a2+1)b2+2a2)χ2+3a2)y4(3a6+3(a21)b43a46(a4a2)b2(3a6+b6+(a24)b44a4(5a48a2)b2)χ2)y2+((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4b42a2+2b2)χ2a2)y2(((a42a2b2+b4)χ4+a42(a4(a21)b2a2)χ22a2+1)y4+a42a2b2+b4+2(a4(a21)b2(a4(a21)b2a2)χ2a2)y2))00a0010b0001)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2} {\left({\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{3} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} {\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y + {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y\right)}}{2 \, \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} \sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} - b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}}} & \frac{\sqrt{2} {\left({\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{3} - {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}\right)} y^{4} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} {\left(a^{2} - b^{2}\right)} {\chi} y^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi} y^{2}\right)}}{2 \, \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} \sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} - b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}}} & 0 & 0 \\ 0 & -\frac{{\left(\sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} {\left(\sqrt{2} a^{2} - \sqrt{2} b^{2}\right)} \sqrt{b + 1} \sqrt{-b + 1} {\chi} + {\left({\left({\left(\sqrt{2} a^{4} - \sqrt{2} b^{4} - 2 \, \sqrt{2} a^{2} + 2 \, \sqrt{2} b^{2}\right)} {\chi}^{3} - {\left(\sqrt{2} a^{4} - {\left(\sqrt{2} a^{2} - \sqrt{2}\right)} b^{2} - \sqrt{2} a^{2}\right)} {\chi}\right)} y^{2} - {\left(\sqrt{2} a^{4} - 2 \, \sqrt{2} a^{2} b^{2} + \sqrt{2} b^{4}\right)} {\chi}\right)} \sqrt{b + 1} \sqrt{-b + 1}\right)} \sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} + b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}}}{2 \, {\left({\left({\left(a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right)} {\chi}^{6} - a^{6} - 3 \, {\left(a^{6} + {\left(a^{2} - 1\right)} b^{4} - a^{4} - 2 \, {\left(a^{4} - a^{2}\right)} b^{2}\right)} {\chi}^{4} + 3 \, a^{4} + 3 \, {\left(a^{6} - 2 \, a^{4} - {\left(a^{4} - 2 \, a^{2} + 1\right)} b^{2} + a^{2}\right)} {\chi}^{2} - 3 \, a^{2} + 1\right)} y^{6} - a^{6} + 3 \, a^{4} b^{2} - 3 \, a^{2} b^{4} + b^{6} - {\left(3 \, a^{6} + {\left(3 \, a^{6} + b^{6} + {\left(a^{2} - 4\right)} b^{4} - 4 \, a^{4} - {\left(5 \, a^{4} - 8 \, a^{2}\right)} b^{2}\right)} {\chi}^{4} - 6 \, a^{4} - 3 \, {\left(a^{4} - 2 \, a^{2} + 1\right)} b^{2} - 2 \, {\left(3 \, a^{6} + {\left(a^{2} - 1\right)} b^{4} - 5 \, a^{4} - 2 \, {\left(2 \, a^{4} - 3 \, a^{2} + 1\right)} b^{2} + 2 \, a^{2}\right)} {\chi}^{2} + 3 \, a^{2}\right)} y^{4} - {\left(3 \, a^{6} + 3 \, {\left(a^{2} - 1\right)} b^{4} - 3 \, a^{4} - 6 \, {\left(a^{4} - a^{2}\right)} b^{2} - {\left(3 \, a^{6} + b^{6} + {\left(a^{2} - 4\right)} b^{4} - 4 \, a^{4} - {\left(5 \, a^{4} - 8 \, a^{2}\right)} b^{2}\right)} {\chi}^{2}\right)} y^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} {\left({\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}\right)}\right)}} & -\frac{\sqrt{{\left({\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1\right)} y^{2} - a^{2} + b^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}}} {\left(\sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} {\left({\left(\sqrt{2} a^{2} - \sqrt{2}\right)} y^{3} + {\left(\sqrt{2} a^{2} - \sqrt{2} b^{2}\right)} y\right)} \sqrt{b + 1} \sqrt{-b + 1} - {\left({\left(\sqrt{2} a^{4} - {\left(\sqrt{2} a^{4} - {\left(\sqrt{2} a^{2} - \sqrt{2}\right)} b^{2} - \sqrt{2} a^{2}\right)} {\chi}^{2} - 2 \, \sqrt{2} a^{2} + \sqrt{2}\right)} y^{5} + {\left(2 \, \sqrt{2} a^{4} - 2 \, {\left(\sqrt{2} a^{2} - \sqrt{2}\right)} b^{2} - {\left(\sqrt{2} a^{4} - \sqrt{2} b^{4} - 2 \, \sqrt{2} a^{2} + 2 \, \sqrt{2} b^{2}\right)} {\chi}^{2} - 2 \, \sqrt{2} a^{2}\right)} y^{3} + {\left(\sqrt{2} a^{4} - 2 \, \sqrt{2} a^{2} b^{2} + \sqrt{2} b^{4}\right)} y\right)} \sqrt{b + 1} \sqrt{-b + 1}\right)}}{2 \, {\left({\left({\left(a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right)} {\chi}^{6} - a^{6} - 3 \, {\left(a^{6} + {\left(a^{2} - 1\right)} b^{4} - a^{4} - 2 \, {\left(a^{4} - a^{2}\right)} b^{2}\right)} {\chi}^{4} + 3 \, a^{4} + 3 \, {\left(a^{6} - 2 \, a^{4} - {\left(a^{4} - 2 \, a^{2} + 1\right)} b^{2} + a^{2}\right)} {\chi}^{2} - 3 \, a^{2} + 1\right)} y^{6} - a^{6} + 3 \, a^{4} b^{2} - 3 \, a^{2} b^{4} + b^{6} - {\left(3 \, a^{6} + {\left(3 \, a^{6} + b^{6} + {\left(a^{2} - 4\right)} b^{4} - 4 \, a^{4} - {\left(5 \, a^{4} - 8 \, a^{2}\right)} b^{2}\right)} {\chi}^{4} - 6 \, a^{4} - 3 \, {\left(a^{4} - 2 \, a^{2} + 1\right)} b^{2} - 2 \, {\left(3 \, a^{6} + {\left(a^{2} - 1\right)} b^{4} - 5 \, a^{4} - 2 \, {\left(2 \, a^{4} - 3 \, a^{2} + 1\right)} b^{2} + 2 \, a^{2}\right)} {\chi}^{2} + 3 \, a^{2}\right)} y^{4} - {\left(3 \, a^{6} + 3 \, {\left(a^{2} - 1\right)} b^{4} - 3 \, a^{4} - 6 \, {\left(a^{4} - a^{2}\right)} b^{2} - {\left(3 \, a^{6} + b^{6} + {\left(a^{2} - 4\right)} b^{4} - 4 \, a^{4} - {\left(5 \, a^{4} - 8 \, a^{2}\right)} b^{2}\right)} {\chi}^{2}\right)} y^{2} + \sqrt{{\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - b^{4} - 2 \, a^{2} + 2 \, b^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}} {\left({\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 2 \, a^{2} + 1\right)} y^{4} + a^{4} - 2 \, a^{2} b^{2} + b^{4} + 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - a^{2}\right)} y^{2}\right)}\right)}} & 0 & 0 \\ -a & 0 & 0 & 1 & 0 \\ -b & 0 & 0 & 0 & 1 \end{array}\right)

Remark: despite the rather complicated relation between yy and (r,μ)(r,\mu), the ratio (1+r2)/(1+y2)(1 + r^2)/(1 + y^2) depends only on μ\mu and takes a simple form: 1+r21+y2=(1a2)(1b2)1a2μ2b2(1μ2) \frac{1 + r^2}{1 + y^2} = \frac{(1 - a^2) (1 - b^2)}{1 - a^2\mu^2 - b^2 (1 - \mu^2)} Indeed:

((1 + r^2)/(1 + ys^2)).simplify_full().factor()
(a+1)(a1)(b+1)(b1)a2μ2b2μ2+b21\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{\left(a + 1\right)} {\left(a - 1\right)} {\left(b + 1\right)} {\left(b - 1\right)}}{a^{2} {\mu}^{2} - b^{2} {\mu}^{2} + b^{2} - 1}

Metric components in global ADS coordinates

For generic values of (a,b)(a,b), Sage does not succeed in computing the components of the metric tensor GG in a reasonable time. Only for a=ba=b or b=0b=0 it manages to do so. For b=0b=0, the expression is cumbersome, but for a=ba=b, one gets a rather simple expression:

if a == b: show(G.display_comp(chart=ADS, only_nonredundant=True))

Asymptotic form of the metric in ADS coordinates (check of Eq. (2.17))

For y+y\to +\infty, the metric tensor GG can be approximated by KK, the expression of the latter in ADS coordinates being given by Eq. (3.27) of Gibbons, Perry & Pope, CQG 22, 1503 (2005) (arXiv:hep-th/0408217) (our Eq. (2.17)):

M.set_default_frame(ADS.frame()) M.set_default_chart(ADS)
K = M.lorentzian_metric('K') Delta = var('Delta', latex_name=r'\Delta', domain='real') K[0, 0] = -1 - y^2 + 2*m/(Delta^3*y^2) K[0, 3] = -2*m*a*(1 - ch^2)/(Delta^3*y^2) K[0, 4] = -2*m*b*ch^2/(Delta^3*y^2) K[1, 1] = 1/(1 + y^2 - 2*m/(Delta^3*y^2)) K[2, 2] = y^2/(1 - ch^2) K[3, 3] = y^2*(1 - ch^2) + 2*m*a^2*(1 - ch^2)^2/(Delta^3*y^2) K[3, 4] = 2*m*a*b*ch^2*(1 - ch^2)/(Delta^3*y^2) K[4, 4] = y^2*ch^2 + 2*m*b^2*ch^4/(Delta^3*y^2) K.display()
K=(y2+2mΔ3y21)dTdT+2(χ21)amΔ3y2dTdΦ2bχ2mΔ3y2dTdΨ+(1y22mΔ3y2+1)dydy+(y2χ21)dχdχ+2(χ21)amΔ3y2dΦdT+((χ21)y2+2(χ21)2a2mΔ3y2)dΦdΦ2(χ21)abχ2mΔ3y2dΦdΨ2bχ2mΔ3y2dΨdT2(χ21)abχ2mΔ3y2dΨdΦ+(χ2y2+2b2χ4mΔ3y2)dΨdΨ\renewcommand{\Bold}[1]{\mathbf{#1}}K = \left( -y^{2} + \frac{2 \, m}{{\Delta}^{3} y^{2}} - 1 \right) \mathrm{d} T\otimes \mathrm{d} T + \frac{2 \, {\left({\chi}^{2} - 1\right)} a m}{{\Delta}^{3} y^{2}} \mathrm{d} T\otimes \mathrm{d} {\Phi} -\frac{2 \, b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} T\otimes \mathrm{d} {\Psi} + \left( \frac{1}{y^{2} - \frac{2 \, m}{{\Delta}^{3} y^{2}} + 1} \right) \mathrm{d} y\otimes \mathrm{d} y + \left( -\frac{y^{2}}{{\chi}^{2} - 1} \right) \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + \frac{2 \, {\left({\chi}^{2} - 1\right)} a m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Phi}\otimes \mathrm{d} T + \left( -{\left({\chi}^{2} - 1\right)} y^{2} + \frac{2 \, {\left({\chi}^{2} - 1\right)}^{2} a^{2} m}{{\Delta}^{3} y^{2}} \right) \mathrm{d} {\Phi}\otimes \mathrm{d} {\Phi} -\frac{2 \, {\left({\chi}^{2} - 1\right)} a b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Phi}\otimes \mathrm{d} {\Psi} -\frac{2 \, b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Psi}\otimes \mathrm{d} T -\frac{2 \, {\left({\chi}^{2} - 1\right)} a b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Psi}\otimes \mathrm{d} {\Phi} + \left( {\chi}^{2} y^{2} + \frac{2 \, b^{2} {\chi}^{4} m}{{\Delta}^{3} y^{2}} \right) \mathrm{d} {\Psi}\otimes \mathrm{d} {\Psi}

In the above expression, we do not have specified Δ\Delta. Its explicit expression in terms of aa, bb and χ\chi is

Delta_abc = (1 - a^2*(1 - ch^2) - b^2*ch^2).simplify_full() Delta_abc
(a2b2)χ2a2+1\renewcommand{\Bold}[1]{\mathbf{#1}}{\left(a^{2} - b^{2}\right)} {\chi}^{2} - a^{2} + 1

Check of Eq. (2.17) for a=ba=b:

For a=ba=b, GG and KK differ only by a term proportional to dydy\mathrm{d}y\otimes\mathrm{d}y:

if a == b: K0 = K.copy(name='K') K0.apply_map(lambda x: x.subs({Delta: Delta_abc})) GmK = G - K0 show(GmK.display())

This difference is only of order O(1/y6)O(1/y^6):

if a == b: es = sum(asympt(GmK[1,1].expr(), y, k) for k in range(9)) show(es)

Setting the metric to its asymptotic form:

G.set(K) G.display()
G=(y2+2mΔ3y21)dTdT+2(χ21)amΔ3y2dTdΦ2bχ2mΔ3y2dTdΨ+(1y22mΔ3y2+1)dydy+(y2χ21)dχdχ+2(χ21)amΔ3y2dΦdT+((χ21)y2+2(χ21)2a2mΔ3y2)dΦdΦ2(χ21)abχ2mΔ3y2dΦdΨ2bχ2mΔ3y2dΨdT2(χ21)abχ2mΔ3y2dΨdΦ+(χ2y2+2b2χ4mΔ3y2)dΨdΨ\renewcommand{\Bold}[1]{\mathbf{#1}}G = \left( -y^{2} + \frac{2 \, m}{{\Delta}^{3} y^{2}} - 1 \right) \mathrm{d} T\otimes \mathrm{d} T + \frac{2 \, {\left({\chi}^{2} - 1\right)} a m}{{\Delta}^{3} y^{2}} \mathrm{d} T\otimes \mathrm{d} {\Phi} -\frac{2 \, b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} T\otimes \mathrm{d} {\Psi} + \left( \frac{1}{y^{2} - \frac{2 \, m}{{\Delta}^{3} y^{2}} + 1} \right) \mathrm{d} y\otimes \mathrm{d} y + \left( -\frac{y^{2}}{{\chi}^{2} - 1} \right) \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + \frac{2 \, {\left({\chi}^{2} - 1\right)} a m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Phi}\otimes \mathrm{d} T + \left( -{\left({\chi}^{2} - 1\right)} y^{2} + \frac{2 \, {\left({\chi}^{2} - 1\right)}^{2} a^{2} m}{{\Delta}^{3} y^{2}} \right) \mathrm{d} {\Phi}\otimes \mathrm{d} {\Phi} -\frac{2 \, {\left({\chi}^{2} - 1\right)} a b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Phi}\otimes \mathrm{d} {\Psi} -\frac{2 \, b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Psi}\otimes \mathrm{d} T -\frac{2 \, {\left({\chi}^{2} - 1\right)} a b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \mathrm{d} {\Psi}\otimes \mathrm{d} {\Phi} + \left( {\chi}^{2} y^{2} + \frac{2 \, b^{2} {\chi}^{4} m}{{\Delta}^{3} y^{2}} \right) \mathrm{d} {\Psi}\otimes \mathrm{d} {\Psi}
G.display_comp()
GTTTT=y2+2mΔ3y21GTΦTΦ=2(χ21)amΔ3y2GTΨTΨ=2bχ2mΔ3y2Gyyyy=1y22mΔ3y2+1Gχχχχ=y2χ21GΦTΦT=2(χ21)amΔ3y2GΦΦΦΦ=(χ21)y2+2(χ21)2a2mΔ3y2GΦΨΦΨ=2(χ21)abχ2mΔ3y2GΨTΨT=2bχ2mΔ3y2GΨΦΨΦ=2(χ21)abχ2mΔ3y2GΨΨΨΨ=χ2y2+2b2χ4mΔ3y2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, T \, T }^{ \phantom{\, T}\phantom{\, T} } & = & -y^{2} + \frac{2 \, m}{{\Delta}^{3} y^{2}} - 1 \\ G_{ \, T \, {\Phi} }^{ \phantom{\, T}\phantom{\, {\Phi}} } & = & \frac{2 \, {\left({\chi}^{2} - 1\right)} a m}{{\Delta}^{3} y^{2}} \\ G_{ \, T \, {\Psi} }^{ \phantom{\, T}\phantom{\, {\Psi}} } & = & -\frac{2 \, b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \\ G_{ \, y \, y }^{ \phantom{\, y}\phantom{\, y} } & = & \frac{1}{y^{2} - \frac{2 \, m}{{\Delta}^{3} y^{2}} + 1} \\ G_{ \, {\chi} \, {\chi} }^{ \phantom{\, {\chi}}\phantom{\, {\chi}} } & = & -\frac{y^{2}}{{\chi}^{2} - 1} \\ G_{ \, {\Phi} \, T }^{ \phantom{\, {\Phi}}\phantom{\, T} } & = & \frac{2 \, {\left({\chi}^{2} - 1\right)} a m}{{\Delta}^{3} y^{2}} \\ G_{ \, {\Phi} \, {\Phi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Phi}} } & = & -{\left({\chi}^{2} - 1\right)} y^{2} + \frac{2 \, {\left({\chi}^{2} - 1\right)}^{2} a^{2} m}{{\Delta}^{3} y^{2}} \\ G_{ \, {\Phi} \, {\Psi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Psi}} } & = & -\frac{2 \, {\left({\chi}^{2} - 1\right)} a b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \\ G_{ \, {\Psi} \, T }^{ \phantom{\, {\Psi}}\phantom{\, T} } & = & -\frac{2 \, b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \\ G_{ \, {\Psi} \, {\Phi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Phi}} } & = & -\frac{2 \, {\left({\chi}^{2} - 1\right)} a b {\chi}^{2} m}{{\Delta}^{3} y^{2}} \\ G_{ \, {\Psi} \, {\Psi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Psi}} } & = & {\chi}^{2} y^{2} + \frac{2 \, b^{2} {\chi}^{4} m}{{\Delta}^{3} y^{2}} \end{array}

String worldsheet

The string worldsheet as a 2-dimensional Lorentzian submanifold of M\mathcal{M}:

W = Manifold(2, 'W', ambient=M, structure='Lorentzian') print(W)
2-dimensional Lorentzian submanifold W immersed in the 5-dimensional Lorentzian manifold M

Let us assume that the string worldsheet is parametrized by (T,y)(T,y):

XW.<T,y> = W.chart(r'T y:(0,+oo)') XW
(W,(T,y))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(W,(T, y)\right)

The string embedding in Kerr-AdS spacetime, as an expansion about a straight string solution in AdS (Eq. (4.27) of the paper):

ch0 = var('ch0', latex_name=r'\chi_0', domain='real') Phi0 = var('Phi0', latex_name=r'\Phi_0', domain='real') Psi0 = var('Psi0', latex_name=r'\Psi_0', domain='real') cosTh0 = ch0 sinTh0 = sqrt(1 - ch0^2) ch_s = ch0 + (a+b)^2*function('chi_1')(y) Ph_s = Phi0 + a*T + a*function('Phi_1')(y) Ps_s = Psi0 + b*T + b*function('Psi_1')(y) F = W.diff_map(M, {(XW, ADS): [T, y, ch_s, Ph_s, Ps_s]}, name='F') W.set_embedding(F) F.display(XW, ADS)
F:WM(T,y)(T,y,χ,Φ,Ψ)=(T,y,(a+b)2χ1(y)+χ0,Ta+aΦ1(y)+Φ0,Tb+bΨ1(y)+Ψ0)\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{llcl} F:& W & \longrightarrow & \mathcal{M} \\ & \left(T, y\right) & \longmapsto & \left(T, y, {\chi}, {\Phi}, {\Psi}\right) = \left(T, y, {\left(a + b\right)}^{2} \chi_{1}\left(y\right) + {\chi_0}, T a + a \Phi_{1}\left(y\right) + {\Phi_0}, T b + b \Psi_{1}\left(y\right) + {\Psi_0}\right) \end{array}
F.jacobian_matrix()
(10010(a2+2ab+b2)yχ1(y)aayΦ1(y)bbyΨ1(y))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \\ 0 & {\left(a^{2} + 2 \, a b + b^{2}\right)} \frac{\partial}{\partial y}\chi_{1}\left(y\right) \\ a & a \frac{\partial}{\partial y}\Phi_{1}\left(y\right) \\ b & b \frac{\partial}{\partial y}\Psi_{1}\left(y\right) \end{array}\right)

Induced metric on the string worldsheet

The string worldsheet metric is the metric gg induced by the spacetime metric GG, i.e. the pullback of GG by the embedding FF:

Because of the bug #27492, which impedes parallel computations involving symbolic functions, such as χ1\chi_1, we set back to serial computations:

Parallelism().set(nproc=1)
g = W.induced_metric()
g[0,0]
8(a10+6a9b+13a8b2+8a7b314a6b428a5b514a4b6+8a3b7+13a2b8+6ab9+b10)χ0mχ1(y)3+2(a12+8a11b+26a10b2+40a9b3+15a8b448a7b584a6b648a5b7+15a4b8+40a3b9+26a2b10+8ab11+b12)mχ1(y)4Δ3y2+(Δ3a2Δ3(Δ3a2Δ3b2)χ02)y4((Δ3a6+4Δ3a5b+5Δ3a4b25Δ3a2b44Δ3ab5Δ3b6)y4+4(a8(a21)b6a64(a3a)b55(a4a2)b4+5(a6a4)b23(a8+4a7b+4a6b24a5b310a4b44a3b5+4a2b6+4ab7+b8)χ02+4(a7a5)b)m)χ1(y)2+2((a42a2b2+b4)χ04+a42(a4(a21)b2a2)χ022a2+1)m2((Δ3a4+2Δ3a3b2Δ3ab3Δ3b4)χ0y44((a6+2a5ba4b24a3b3a2b4+2ab5+b6)χ03(a6(a21)b4a42(a3a)b3+2(a5a3)b)χ0)m)χ1(y)Δ3y2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{8 \, {\left(a^{10} + 6 \, a^{9} b + 13 \, a^{8} b^{2} + 8 \, a^{7} b^{3} - 14 \, a^{6} b^{4} - 28 \, a^{5} b^{5} - 14 \, a^{4} b^{6} + 8 \, a^{3} b^{7} + 13 \, a^{2} b^{8} + 6 \, a b^{9} + b^{10}\right)} {\chi_0} m \chi_{1}\left(y\right)^{3} + 2 \, {\left(a^{12} + 8 \, a^{11} b + 26 \, a^{10} b^{2} + 40 \, a^{9} b^{3} + 15 \, a^{8} b^{4} - 48 \, a^{7} b^{5} - 84 \, a^{6} b^{6} - 48 \, a^{5} b^{7} + 15 \, a^{4} b^{8} + 40 \, a^{3} b^{9} + 26 \, a^{2} b^{10} + 8 \, a b^{11} + b^{12}\right)} m \chi_{1}\left(y\right)^{4} - {\Delta}^{3} y^{2} + {\left({\Delta}^{3} a^{2} - {\Delta}^{3} - {\left({\Delta}^{3} a^{2} - {\Delta}^{3} b^{2}\right)} {\chi_0}^{2}\right)} y^{4} - {\left({\left({\Delta}^{3} a^{6} + 4 \, {\Delta}^{3} a^{5} b + 5 \, {\Delta}^{3} a^{4} b^{2} - 5 \, {\Delta}^{3} a^{2} b^{4} - 4 \, {\Delta}^{3} a b^{5} - {\Delta}^{3} b^{6}\right)} y^{4} + 4 \, {\left(a^{8} - {\left(a^{2} - 1\right)} b^{6} - a^{6} - 4 \, {\left(a^{3} - a\right)} b^{5} - 5 \, {\left(a^{4} - a^{2}\right)} b^{4} + 5 \, {\left(a^{6} - a^{4}\right)} b^{2} - 3 \, {\left(a^{8} + 4 \, a^{7} b + 4 \, a^{6} b^{2} - 4 \, a^{5} b^{3} - 10 \, a^{4} b^{4} - 4 \, a^{3} b^{5} + 4 \, a^{2} b^{6} + 4 \, a b^{7} + b^{8}\right)} {\chi_0}^{2} + 4 \, {\left(a^{7} - a^{5}\right)} b\right)} m\right)} \chi_{1}\left(y\right)^{2} + 2 \, {\left({\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi_0}^{4} + a^{4} - 2 \, {\left(a^{4} - {\left(a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi_0}^{2} - 2 \, a^{2} + 1\right)} m - 2 \, {\left({\left({\Delta}^{3} a^{4} + 2 \, {\Delta}^{3} a^{3} b - 2 \, {\Delta}^{3} a b^{3} - {\Delta}^{3} b^{4}\right)} {\chi_0} y^{4} - 4 \, {\left({\left(a^{6} + 2 \, a^{5} b - a^{4} b^{2} - 4 \, a^{3} b^{3} - a^{2} b^{4} + 2 \, a b^{5} + b^{6}\right)} {\chi_0}^{3} - {\left(a^{6} - {\left(a^{2} - 1\right)} b^{4} - a^{4} - 2 \, {\left(a^{3} - a\right)} b^{3} + 2 \, {\left(a^{5} - a^{3}\right)} b\right)} {\chi_0}\right)} m\right)} \chi_{1}\left(y\right)}{{\Delta}^{3} y^{2}}

Nambu-Goto action

The determinant of gg is

detg = g.determinant().expr()

Let us define a function for expansions in aa and bb up to a given order:

eps = var('eps', latex_name=r'\epsilon', domain='real') def expand_ab(expr, order): res = expr.subs({a: eps*a, b: eps*b}) res = res.series(eps, order+1).truncate() res = res.subs({eps: 1}).simplify_full() return res
Delta3_4 = expand_ab((Delta_abc)^3, 4) Delta3_4
3(a42a2b2+b4)χ4+3a43(2a4(2a21)b2a2)χ23a2+1\renewcommand{\Bold}[1]{\mathbf{#1}}3 \, {\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + 3 \, a^{4} - 3 \, {\left(2 \, a^{4} - {\left(2 \, a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 3 \, a^{2} + 1
Delta6_4 = expand_ab((Delta_abc)^6, 4) Delta6_4
15(a42a2b2+b4)χ4+15a46(5a4(5a21)b2a2)χ26a2+1\renewcommand{\Bold}[1]{\mathbf{#1}}15 \, {\left(a^{4} - 2 \, a^{2} b^{2} + b^{4}\right)} {\chi}^{4} + 15 \, a^{4} - 6 \, {\left(5 \, a^{4} - {\left(5 \, a^{2} - 1\right)} b^{2} - a^{2}\right)} {\chi}^{2} - 6 \, a^{2} + 1

Expanding at fourth order in aa and bb (will be required latter):

detg_4 = expand_ab(detg, 4) detg_4 = detg_4.subs({Delta^3: Delta3_4, Delta^6: Delta6_4}) detg_4 = detg_4.simplify_full() detg_4 = expand_ab(detg_4, 4)

For the time being, only the expansion at second order in aa is required:

detg_2 = expand_ab(detg_4, 2) detg_2
((a2b2)χ02a2+1)y4((a2χ02a2)y8+2(a2χ02a2)y6+(a2χ02a24(a2χ02a2)m)y44(a2χ02a2)my2+4(a2χ02a2)m2)yΦ1(y)2+(b2χ02y8+2b2χ02y64b2χ02my2+4b2χ02m2(4b2χ02mb2χ02)y4)yΨ1(y)22(2(a2b2)χ022a2+1)m+y2y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{\left({\left(a^{2} - b^{2}\right)} {\chi_0}^{2} - a^{2} + 1\right)} y^{4} - {\left({\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{8} + 2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{6} + {\left(a^{2} {\chi_0}^{2} - a^{2} - 4 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m\right)} y^{4} - 4 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m y^{2} + 4 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m^{2}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\left(b^{2} {\chi_0}^{2} y^{8} + 2 \, b^{2} {\chi_0}^{2} y^{6} - 4 \, b^{2} {\chi_0}^{2} m y^{2} + 4 \, b^{2} {\chi_0}^{2} m^{2} - {\left(4 \, b^{2} {\chi_0}^{2} m - b^{2} {\chi_0}^{2}\right)} y^{4}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 2 \, {\left(2 \, {\left(a^{2} - b^{2}\right)} {\chi_0}^{2} - 2 \, a^{2} + 1\right)} m + y^{2}}{y^{4} + y^{2} - 2 \, m}

The Nambu-Goto Lagrangian at second order in aa and bb:

L_2 = expand_ab(sqrt(-detg_2), 2) L_2
((a2b2)χ02a2+2)y4((a2χ02a2)y8+2(a2χ02a2)y6+(a2χ02a24(a2χ02a2)m)y44(a2χ02a2)my2+4(a2χ02a2)m2)yΦ1(y)2+(b2χ02y8+2b2χ02y64b2χ02my2+4b2χ02m2(4b2χ02mb2χ02)y4)yΨ1(y)24((a2b2)χ02a2+1)m+2y22(y4+y22m)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left(a^{2} - b^{2}\right)} {\chi_0}^{2} - a^{2} + 2\right)} y^{4} - {\left({\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{8} + 2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{6} + {\left(a^{2} {\chi_0}^{2} - a^{2} - 4 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m\right)} y^{4} - 4 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m y^{2} + 4 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m^{2}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\left(b^{2} {\chi_0}^{2} y^{8} + 2 \, b^{2} {\chi_0}^{2} y^{6} - 4 \, b^{2} {\chi_0}^{2} m y^{2} + 4 \, b^{2} {\chi_0}^{2} m^{2} - {\left(4 \, b^{2} {\chi_0}^{2} m - b^{2} {\chi_0}^{2}\right)} y^{4}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 4 \, {\left({\left(a^{2} - b^{2}\right)} {\chi_0}^{2} - a^{2} + 1\right)} m + 2 \, y^{2}}{2 \, {\left(y^{4} + y^{2} - 2 \, m\right)}}
L_2.numerator()
a2χ02y8yΦ1(y)2+b2χ02y8yΨ1(y)22a2χ02y6yΦ1(y)2+a2y8yΦ1(y)2+2b2χ02y6yΨ1(y)2+4a2χ02my4yΦ1(y)24b2χ02my4yΨ1(y)2a2χ02y4yΦ1(y)2+2a2y6yΦ1(y)2+b2χ02y4yΨ1(y)2+4a2χ02my2yΦ1(y)24a2my4yΦ1(y)24b2χ02my2yΨ1(y)2+a2χ02y4b2χ02y44a2χ02m2yΦ1(y)2+a2y4yΦ1(y)2+4b2χ02m2yΨ1(y)24a2my2yΦ1(y)2a2y4+4a2m2yΦ1(y)24a2χ02m+4b2χ02m+2y4+4a2m+2y24m\renewcommand{\Bold}[1]{\mathbf{#1}}-a^{2} {\chi_0}^{2} y^{8} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + b^{2} {\chi_0}^{2} y^{8} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 2 \, a^{2} {\chi_0}^{2} y^{6} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + a^{2} y^{8} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + 2 \, b^{2} {\chi_0}^{2} y^{6} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + 4 \, a^{2} {\chi_0}^{2} m y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, b^{2} {\chi_0}^{2} m y^{4} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - a^{2} {\chi_0}^{2} y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + 2 \, a^{2} y^{6} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + b^{2} {\chi_0}^{2} y^{4} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + 4 \, a^{2} {\chi_0}^{2} m y^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, a^{2} m y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, b^{2} {\chi_0}^{2} m y^{2} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + a^{2} {\chi_0}^{2} y^{4} - b^{2} {\chi_0}^{2} y^{4} - 4 \, a^{2} {\chi_0}^{2} m^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + a^{2} y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + 4 \, b^{2} {\chi_0}^{2} m^{2} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 4 \, a^{2} m y^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - a^{2} y^{4} + 4 \, a^{2} m^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, a^{2} {\chi_0}^{2} m + 4 \, b^{2} {\chi_0}^{2} m + 2 \, y^{4} + 4 \, a^{2} m + 2 \, y^{2} - 4 \, m
L_2.denominator()
2y4+2y24m\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, y^{4} + 2 \, y^{2} - 4 \, m

Euler-Lagrange equations

def euler_lagrange(lagr, qs, var): r""" Derive the Euler-Lagrange equations from a given Lagrangian. INPUT: - ``lagr`` -- symbolic expression representing the Lagrangian density - ``qs`` -- either a single symbolic function or a list/tuple of symbolic functions, representing the `q`'s; these functions must appear in ``lagr`` up to at most their first derivatives - ``var`` -- either a single variable, typically `t` (1-dimensional problem) or a list/tuple of symbolic variables OUTPUT: - list of Euler-Lagrange equations; if only one function is involved, the single Euler-Lagrannge equation is returned instead. """ if not isinstance(qs, (list, tuple)): qs = [qs] if not isinstance(var, (list, tuple)): var = [var] n = len(qs) d = len(var) qv = [SR.var('qxxxx{}'.format(q)) for q in qs] dqv = [[SR.var('qxxxx{}_{}'.format(q, v)) for v in var] for q in qs] subs = {qs[i](*var): qv[i] for i in range(n)} subs_inv = {qv[i]: qs[i](*var) for i in range(n)} for i in range(n): subs.update({diff(qs[i](*var), var[j]): dqv[i][j] for j in range(d)}) subs_inv.update({dqv[i][j]: diff(qs[i](*var), var[j]) for j in range(d)}) lg = lagr.substitute(subs) eqs = [] for i in range(n): dLdq = diff(lg, qv[i]).simplify_full() dLdq = dLdq.substitute(subs_inv) ddL = 0 for j in range(d): h = diff(lg, dqv[i][j]).simplify_full() h = h.substitute(subs_inv) ddL += diff(h, var[j]) eqs.append((dLdq - ddL).simplify_full() == 0) if n == 1: return eqs[0] return eqs

We compute the Euler-Lagrange equations from L2L_2 for Φ1\Phi_1 and Ψ1\Psi_1:

eqs = euler_lagrange(L_2, [Phi_1, Psi_1], y) eqs
[2(2(a2χ02a2)y3+(a2χ02a2)y)yΦ1(y)+((a2χ02a2)y4+(a2χ02a2)y22(a2χ02a2)m)2(y)2Φ1(y)=0,2(2b2χ02y3+b2χ02y)yΨ1(y)(b2χ02y4+b2χ02y22b2χ02m)2(y)2Ψ1(y)=0]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[2 \, {\left(2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{3} + {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + {\left({\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{4} + {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{2} - 2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Phi_{1}\left(y\right) = 0, -2 \, {\left(2 \, b^{2} {\chi_0}^{2} y^{3} + b^{2} {\chi_0}^{2} y\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - {\left(b^{2} {\chi_0}^{2} y^{4} + b^{2} {\chi_0}^{2} y^{2} - 2 \, b^{2} {\chi_0}^{2} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Psi_{1}\left(y\right) = 0\right]

Solving the equation for Φ1\Phi_1 (Eq. (4.29))

eq_Phi1 = eqs[0] eq_Phi1
2(2(a2χ02a2)y3+(a2χ02a2)y)yΦ1(y)+((a2χ02a2)y4+(a2χ02a2)y22(a2χ02a2)m)2(y)2Φ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\left(2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{3} + {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + {\left({\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{4} + {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{2} - 2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Phi_{1}\left(y\right) = 0
eq_Phi1 = (eq_Phi1/(a^2*(ch0^2-1))).simplify_full() eq_Phi1
2(2y3+y)yΦ1(y)+(y4+y22m)2(y)2Φ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\left(2 \, y^{3} + y\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + {\left(y^{4} + y^{2} - 2 \, m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Phi_{1}\left(y\right) = 0
Phi1_sol(y) = desolve(eq_Phi1, Phi_1(y), ivar=y) Phi1_sol(y)
K11y4+y22mdy+K2\renewcommand{\Bold}[1]{\mathbf{#1}}K_{1} \int \frac{1}{y^{4} + y^{2} - 2 \, m}\,{d y} + K_{2}

We recover Eqs. (4.29) with K1=pK_1 = \mathfrak{p} and K2=0K_2=0.

The symbolic constants K1K_1 and K2K_2 are actually denoted _K1 and _K2 by SageMath, as print reveals:

print(Phi1_sol(y))
_K1*integrate(1/(y^4 + y^2 - 2*m), y) + _K2

Hence we perform the substitutions with SR.var('_K1') and SR.var('_K2'):

pf = var("pf", latex_name=r"\mathfrak{p}", domain='real') Phi1_sol(y) = Phi1_sol(y).subs({SR.var('_K1'): pf, SR.var('_K2'): 0}) Phi1_sol(y)
p1y4+y22mdy\renewcommand{\Bold}[1]{\mathbf{#1}}{\mathfrak{p}} \int \frac{1}{y^{4} + y^{2} - 2 \, m}\,{d y}

Solving the equation for Ψ1\Psi_1 (Eq. (4.29))

eq_Psi1 = eqs[1] eq_Psi1
2(2b2χ02y3+b2χ02y)yΨ1(y)(b2χ02y4+b2χ02y22b2χ02m)2(y)2Ψ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}-2 \, {\left(2 \, b^{2} {\chi_0}^{2} y^{3} + b^{2} {\chi_0}^{2} y\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - {\left(b^{2} {\chi_0}^{2} y^{4} + b^{2} {\chi_0}^{2} y^{2} - 2 \, b^{2} {\chi_0}^{2} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Psi_{1}\left(y\right) = 0
eq_Phi1 = (eq_Psi1/(b^2*ch0^2)).simplify_full() eq_Phi1
2(2y3+y)yΨ1(y)(y4+y22m)2(y)2Ψ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}-2 \, {\left(2 \, y^{3} + y\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - {\left(y^{4} + y^{2} - 2 \, m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Psi_{1}\left(y\right) = 0
Psi1_sol(y) = desolve(eq_Psi1, Psi_1(y), ivar=y) Psi1_sol(y)
K11y4+y22mdy+K2\renewcommand{\Bold}[1]{\mathbf{#1}}K_{1} \int \frac{1}{y^{4} + y^{2} - 2 \, m}\,{d y} + K_{2}

We recover Eq. (4.29) with K1=qK_1 = \mathfrak{q} and K2=0K_2=0.

qf = var('qf', latex_name=r"\mathfrak{q}", domain='real') Psi1_sol(y) = Psi1_sol(y).subs({SR.var('_K1'): qf, SR.var('_K2'): 0}) Psi1_sol(y)
q1y4+y22mdy\renewcommand{\Bold}[1]{\mathbf{#1}}{\mathfrak{q}} \int \frac{1}{y^{4} + y^{2} - 2 \, m}\,{d y}

Nambu-Goto Lagrangian at fourth order in aa and bb

L_4 = expand_ab(sqrt(-detg_4), 4)
eqs = euler_lagrange(L_4, [Phi_1, Psi_1, chi_1], y)

The equation for χ1\chi_1

eq_chi1 = eqs[2] eq_chi1
((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)y4(((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)y8+2((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)y6+((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ04((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)m)y44((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)my2+4((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)m2)yΦ1(y)2+(((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)y8+2((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)y6+((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ04((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)m)y44((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)my2+4((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)m2)yΨ1(y)24((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)m+2(2(a4+4a3b+6a2b2+4ab3+b4)y7+3(a4+4a3b+6a2b2+4ab3+b4)y5+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y32(a4+4a3b+6a2b2+4ab3+b4)my)yχ1(y)+((a4+4a3b+6a2b2+4ab3+b4)y8+2(a4+4a3b+6a2b2+4ab3+b4)y6+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y44(a4+4a3b+6a2b2+4ab3+b4)my2+4(a4+4a3b+6a2b2+4ab3+b4)m2)2(y)2χ1(y)(χ021)y4+(χ021)y22(χ021)m=0\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} y^{4} - {\left({\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} y^{8} + 2 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} y^{6} + {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} m\right)} y^{4} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} m y^{2} + 4 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} m^{2}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\left({\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} y^{8} + 2 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} y^{6} + {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0} - 4 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} m\right)} y^{4} - 4 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} m y^{2} + 4 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} m^{2}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} m + 2 \, {\left(2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{7} + 3 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{5} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{3} - 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y\right)} \frac{\partial}{\partial y}\chi_{1}\left(y\right) + {\left({\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{8} + 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{6} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y^{2} + 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\chi_{1}\left(y\right)}{{\left({\chi_0}^{2} - 1\right)} y^{4} + {\left({\chi_0}^{2} - 1\right)} y^{2} - 2 \, {\left({\chi_0}^{2} - 1\right)} m} = 0
eq_chi1.lhs().denominator().simplify_full()
(χ021)y4+(χ021)y22(χ021)m\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\chi_0}^{2} - 1\right)} y^{4} + {\left({\chi_0}^{2} - 1\right)} y^{2} - 2 \, {\left({\chi_0}^{2} - 1\right)} m
eq_chi1 = eq_chi1.lhs().numerator().simplify_full() == 0 eq_chi1
((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)y4(((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)y8+2((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)y6+((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ04((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)m)y44((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)my2+4((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)m2)yΦ1(y)2+(((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)y8+2((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)y6+((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ04((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)m)y44((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)my2+4((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)m2)yΨ1(y)24((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)m+2(2(a4+4a3b+6a2b2+4ab3+b4)y7+3(a4+4a3b+6a2b2+4ab3+b4)y5+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y32(a4+4a3b+6a2b2+4ab3+b4)my)yχ1(y)+((a4+4a3b+6a2b2+4ab3+b4)y8+2(a4+4a3b+6a2b2+4ab3+b4)y6+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y44(a4+4a3b+6a2b2+4ab3+b4)my2+4(a4+4a3b+6a2b2+4ab3+b4)m2)2(y)2χ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} y^{4} - {\left({\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} y^{8} + 2 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} y^{6} + {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} m\right)} y^{4} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} m y^{2} + 4 \, {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} m^{2}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\left({\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} y^{8} + 2 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} y^{6} + {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0} - 4 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} m\right)} y^{4} - 4 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} m y^{2} + 4 \, {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} m^{2}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} m + 2 \, {\left(2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{7} + 3 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{5} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{3} - 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y\right)} \frac{\partial}{\partial y}\chi_{1}\left(y\right) + {\left({\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{8} + 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{6} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y^{2} + 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\chi_{1}\left(y\right) = 0

We plug the solutions obtained previously for Φ1(y)\Phi_1(y) and Ψ1(y)\Psi_1(y) in this equation:

eq_chi1 = eq_chi1.substitute_function(Phi_1, Phi1_sol).substitute_function(Psi_1, Psi1_sol) eq_chi1 = eq_chi1.simplify_full() eq_chi1
((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)y4((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)p2+((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)q24((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)m+2(2(a4+4a3b+6a2b2+4ab3+b4)y7+3(a4+4a3b+6a2b2+4ab3+b4)y5+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y32(a4+4a3b+6a2b2+4ab3+b4)my)yχ1(y)+((a4+4a3b+6a2b2+4ab3+b4)y8+2(a4+4a3b+6a2b2+4ab3+b4)y6+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y44(a4+4a3b+6a2b2+4ab3+b4)my2+4(a4+4a3b+6a2b2+4ab3+b4)m2)2(y)2χ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} y^{4} - {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} {\mathfrak{p}}^{2} + {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} {\mathfrak{q}}^{2} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} m + 2 \, {\left(2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{7} + 3 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{5} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{3} - 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y\right)} \frac{\partial}{\partial y}\chi_{1}\left(y\right) + {\left({\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{8} + 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{6} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y^{2} + 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\chi_{1}\left(y\right) = 0

Check of Eq. (4.30)

lhs = eq_chi1.lhs() lhs = lhs.simplify_full() lhs
((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)y4((a4+2a3b+a2b2)χ03(a4+2a3b+a2b2)χ0)p2+((a2b2+2ab3+b4)χ03(a2b2+2ab3+b4)χ0)q24((a4+2a3b2ab3b4)χ03(a4+2a3b2ab3b4)χ0)m+2(2(a4+4a3b+6a2b2+4ab3+b4)y7+3(a4+4a3b+6a2b2+4ab3+b4)y5+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y32(a4+4a3b+6a2b2+4ab3+b4)my)yχ1(y)+((a4+4a3b+6a2b2+4ab3+b4)y8+2(a4+4a3b+6a2b2+4ab3+b4)y6+(a4+4a3b+6a2b2+4ab3+b44(a4+4a3b+6a2b2+4ab3+b4)m)y44(a4+4a3b+6a2b2+4ab3+b4)my2+4(a4+4a3b+6a2b2+4ab3+b4)m2)2(y)2χ1(y)\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} y^{4} - {\left({\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right)} {\chi_0}\right)} {\mathfrak{p}}^{2} + {\left({\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}^{3} - {\left(a^{2} b^{2} + 2 \, a b^{3} + b^{4}\right)} {\chi_0}\right)} {\mathfrak{q}}^{2} - 4 \, {\left({\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}^{3} - {\left(a^{4} + 2 \, a^{3} b - 2 \, a b^{3} - b^{4}\right)} {\chi_0}\right)} m + 2 \, {\left(2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{7} + 3 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{5} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{3} - 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y\right)} \frac{\partial}{\partial y}\chi_{1}\left(y\right) + {\left({\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{8} + 2 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} y^{6} + {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m\right)} y^{4} - 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m y^{2} + 4 \, {\left(a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}\right)} m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\chi_{1}\left(y\right)
s = lhs.coefficient(diff(chi_1(y), y, 2)) # coefficient of chi_1'' s.factor()
(y4+y22m)2(a+b)4\renewcommand{\Bold}[1]{\mathbf{#1}}{\left(y^{4} + y^{2} - 2 \, m\right)}^{2} {\left(a + b\right)}^{4}
s1 = (lhs/s - diff(chi_1(y), y, 2)).simplify_full() s1
((a2b2)χ03(a2b2)χ0)y4(a2χ03a2χ0)p2+(b2χ03b2χ0)q24((a2b2)χ03(a2b2)χ0)m+2(2(a2+2ab+b2)y7+3(a2+2ab+b2)y5+(a2+2ab+b24(a2+2ab+b2)m)y32(a2+2ab+b2)my)yχ1(y)(a2+2ab+b2)y8+2(a2+2ab+b2)y6+(a2+2ab+b24(a2+2ab+b2)m)y44(a2+2ab+b2)my2+4(a2+2ab+b2)m2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left(a^{2} - b^{2}\right)} {\chi_0}^{3} - {\left(a^{2} - b^{2}\right)} {\chi_0}\right)} y^{4} - {\left(a^{2} {\chi_0}^{3} - a^{2} {\chi_0}\right)} {\mathfrak{p}}^{2} + {\left(b^{2} {\chi_0}^{3} - b^{2} {\chi_0}\right)} {\mathfrak{q}}^{2} - 4 \, {\left({\left(a^{2} - b^{2}\right)} {\chi_0}^{3} - {\left(a^{2} - b^{2}\right)} {\chi_0}\right)} m + 2 \, {\left(2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{7} + 3 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{5} + {\left(a^{2} + 2 \, a b + b^{2} - 4 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} y^{3} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m y\right)} \frac{\partial}{\partial y}\chi_{1}\left(y\right)}{{\left(a^{2} + 2 \, a b + b^{2}\right)} y^{8} + 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{6} + {\left(a^{2} + 2 \, a b + b^{2} - 4 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} y^{4} - 4 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m y^{2} + 4 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m^{2}}
b1 = s1.coefficient(diff(chi_1(y), y)).factor() b1
2(2y2+1)yy4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left(2 \, y^{2} + 1\right)} y}{y^{4} + y^{2} - 2 \, m}
b2 = (s1 - b1*diff(chi_1(y), y)).simplify_full().factor() b2
(a2y4b2y4a2p2+b2q24a2m+4b2m)(χ0+1)(χ01)χ0(y4+y22m)2(a+b)2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(a^{2} y^{4} - b^{2} y^{4} - a^{2} {\mathfrak{p}}^{2} + b^{2} {\mathfrak{q}}^{2} - 4 \, a^{2} m + 4 \, b^{2} m\right)} {\left({\chi_0} + 1\right)} {\left({\chi_0} - 1\right)} {\chi_0}}{{\left(y^{4} + y^{2} - 2 \, m\right)}^{2} {\left(a + b\right)}^{2}}

The equation for χ1\chi_1 is thus:

eq_chi1 = diff(chi_1(y), y, 2) + b1*diff(chi_1(y), y) + b2 == 0 eq_chi1
2(2y2+1)yyχ1(y)y4+y22m+(a2y4b2y4a2p2+b2q24a2m+4b2m)(χ0+1)(χ01)χ0(y4+y22m)2(a+b)2+2(y)2χ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left(2 \, y^{2} + 1\right)} y \frac{\partial}{\partial y}\chi_{1}\left(y\right)}{y^{4} + y^{2} - 2 \, m} + \frac{{\left(a^{2} y^{4} - b^{2} y^{4} - a^{2} {\mathfrak{p}}^{2} + b^{2} {\mathfrak{q}}^{2} - 4 \, a^{2} m + 4 \, b^{2} m\right)} {\left({\chi_0} + 1\right)} {\left({\chi_0} - 1\right)} {\chi_0}}{{\left(y^{4} + y^{2} - 2 \, m\right)}^{2} {\left(a + b\right)}^{2}} + \frac{\partial^{2}}{(\partial y)^{2}}\chi_{1}\left(y\right) = 0

Given that χ1(y)=sinΘ0  Θ1(y)=1χ02  Θ1(y) \chi_1(y) = - \sin\Theta_0 \; \Theta_1(y) = - \sqrt{1-\chi_0^2} \; \Theta_1(y) and sin2Θ0=2χ01χ02\sin2\Theta_0 = 2\chi_0\sqrt{1-\chi_0^2} we get for the following equation for Υ=Θ1\Upsilon = \Theta_1' (defining Θ2:=2Θ0\Theta_2 := 2 \Theta_0):

Y = function('Y', latex_name=r'\Upsilon') Th2 = var('Th2', latex_name=r'\Theta_2', domain='real') eq_Y = diff(Y(y), y) + b1*Y(y) \ - b2/(1 - ch0)/(1 + ch0)/ch0*sin(Th2)/2 == 0 eq_Y
2(2y2+1)yΥ(y)y4+y22m+(a2y4b2y4a2p2+b2q24a2m+4b2m)sin(Θ2)2(y4+y22m)2(a+b)2+yΥ(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left(2 \, y^{2} + 1\right)} y \Upsilon\left(y\right)}{y^{4} + y^{2} - 2 \, m} + \frac{{\left(a^{2} y^{4} - b^{2} y^{4} - a^{2} {\mathfrak{p}}^{2} + b^{2} {\mathfrak{q}}^{2} - 4 \, a^{2} m + 4 \, b^{2} m\right)} \sin\left({\Theta_2}\right)}{2 \, {\left(y^{4} + y^{2} - 2 \, m\right)}^{2} {\left(a + b\right)}^{2}} + \frac{\partial}{\partial y}\Upsilon\left(y\right) = 0

This agrees with Eq. (4.30) of the paper.

Solving the equation for Υ:=Θ1\Upsilon := \Theta_1'

Y_sol(y) = desolve(eq_Y, Y(y), ivar=y)

The solution involves an integral that SageMath is not capable to evaluate with the default integrator. Printing Y_sol provides the unvaluated form of the integral, in order to compute it by means of FriCAS:

print(Y_sol(y))
1/2*(2*_C - (a*sin(Th2) - b*sin(Th2))*y/(a + b) - integrate(-(a^2*pf^2 - b^2*qf^2 + (a^2 - b^2)*y^2 + 2*(a^2 - b^2)*m)/(y^4 + y^2 - 2*m), y)*sin(Th2)/(a^2 + 2*a*b + b^2))/(y^4 + y^2 - 2*m)

The solution involves some constant, denoted _C by SageMath. We rename it C_1 and rewrite the above solution as

C_1 = var('C_1') Integ(y) = function('Integ')(y) Y_sol0(y) = 1/2*(2*C_1 - (a*sin(Th2) - b*sin(Th2))*y/(a + b) \ - Integ(y)*sin(Th2)/(a^2 + 2*a*b + b^2))/(y^4 + y^2 - 2*m) Y_sol0(y)
2C1(asin(Θ2)bsin(Θ2))ya+bInteg(y)sin(Θ2)a2+2ab+b22(y4+y22m)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, C_{1} - \frac{{\left(a \sin\left({\Theta_2}\right) - b \sin\left({\Theta_2}\right)\right)} y}{a + b} - \frac{{\rm Integ}\left(y\right) \sin\left({\Theta_2}\right)}{a^{2} + 2 \, a b + b^{2}}}{2 \, {\left(y^{4} + y^{2} - 2 \, m\right)}}

Integ(y) represents the integral I(y)I(y), whose integrand, F(y)F(y) say, is read from the output of print(Y_sol(Y)):

F(y) = -(a^2*pf^2 - b^2*qf^2 + (a^2 - b^2)*y^2 + 2*(a^2 - b^2)*m)/(y^4 + y^2 - 2*m) F(y)
a2p2b2q2+(a2b2)y2+2(a2b2)my4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} + {\left(a^{2} - b^{2}\right)} y^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m}{y^{4} + y^{2} - 2 \, m}

We split the integral in two parts: I(y)=F1  s1(y)+F2  s2(y) I(y) = F_1 \; s_1(y) + F_2 \; s_2(y) with s1(y):=yyˉ2yˉ4+yˉ22mdyˉ,s2(y):=ydyˉyˉ4+yˉ22m s_1(y) := \int^y \frac{\bar{y}^2}{\bar{y}^4 + \bar{y}^2 - 2m} \, \mathrm{d}\bar{y}, \qquad s_2(y) := \int^y \frac{\mathrm{d}\bar{y}}{\bar{y}^4 + \bar{y}^2 - 2m} and

F1 = -(a^2 - b^2) F1
a2+b2\renewcommand{\Bold}[1]{\mathbf{#1}}-a^{2} + b^{2}
F2 = -(a^2*pf^2 - b^2*qf^2 + 2*(a^2 - b^2)*m) F2
a2p2+b2q22(a2b2)m\renewcommand{\Bold}[1]{\mathbf{#1}}-a^{2} {\mathfrak{p}}^{2} + b^{2} {\mathfrak{q}}^{2} - 2 \, {\left(a^{2} - b^{2}\right)} m

Check:

bool(F(y) == F1*y^2/(y^4 + y^2 - 2*m) + F2/(y^4 + y^2 - 2*m))
True\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True}

Let us evaluate s1(y)s_1(y) by means of FriCAS:

s1 = integrate(y^2/(y^4 + y^2 - 2*m), y, algorithm='fricas') s1
12128m+1+18m+1log(128m+18m+1+18m+1+y)12128m+1+18m+1log(128m+18m+1+18m+1+y)12128m+118m+1log(128m+18m+118m+1+y)+12128m+118m+1log(128m+18m+118m+1+y)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{\sqrt{8 \, m + 1} + 1}{8 \, m + 1}} \log\left(\sqrt{\frac{1}{2}} \sqrt{8 \, m + 1} \sqrt{-\frac{\sqrt{8 \, m + 1} + 1}{8 \, m + 1}} + y\right) - \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{\sqrt{8 \, m + 1} + 1}{8 \, m + 1}} \log\left(-\sqrt{\frac{1}{2}} \sqrt{8 \, m + 1} \sqrt{-\frac{\sqrt{8 \, m + 1} + 1}{8 \, m + 1}} + y\right) - \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{\frac{\sqrt{8 \, m + 1} - 1}{8 \, m + 1}} \log\left(\sqrt{\frac{1}{2}} \sqrt{8 \, m + 1} \sqrt{\frac{\sqrt{8 \, m + 1} - 1}{8 \, m + 1}} + y\right) + \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{\frac{\sqrt{8 \, m + 1} - 1}{8 \, m + 1}} \log\left(-\sqrt{\frac{1}{2}} \sqrt{8 \, m + 1} \sqrt{\frac{\sqrt{8 \, m + 1} - 1}{8 \, m + 1}} + y\right)
s1 = s1.canonicalize_radical().simplify_log() s1
28m+11log(2y8m+112y+8m+11)+28m+11log(2y+8m+112y8m+11)48m+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{2} \sqrt{\sqrt{8 \, m + 1} - 1} \log\left(\frac{\sqrt{2} y - \sqrt{\sqrt{8 \, m + 1} - 1}}{\sqrt{2} y + \sqrt{\sqrt{8 \, m + 1} - 1}}\right) + \sqrt{2} \sqrt{-\sqrt{8 \, m + 1} - 1} \log\left(\frac{\sqrt{2} y + \sqrt{-\sqrt{8 \, m + 1} - 1}}{\sqrt{2} y - \sqrt{-\sqrt{8 \, m + 1} - 1}}\right)}{4 \, \sqrt{8 \, m + 1}}

Check:

diff(s1, y).simplify_full()
y2y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{y^{2}}{y^{4} + y^{2} - 2 \, m}

Similarly, we evaluate s2(y)s_2(y) by means of FriCAS:

s2 = integrate(1/(y^4 + y^2 - 2*m), y, algorithm='fricas') s2
148m2+m8m3+m2+18m2+mlog(12(8m8m2+m8m3+m2+1)8m2+m8m3+m2+18m2+m+2y)+148m2+m8m3+m2+18m2+mlog(12(8m8m2+m8m3+m2+1)8m2+m8m3+m2+18m2+m+2y)148m2+m8m3+m218m2+mlog(12(8m+8m2+m8m3+m2+1)8m2+m8m3+m218m2+m+2y)+148m2+m8m3+m218m2+mlog(12(8m+8m2+m8m3+m2+1)8m2+m8m3+m218m2+m+2y)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{4} \, \sqrt{\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1}{8 \, m^{2} + m}} \log\left(\frac{1}{2} \, {\left(8 \, m - \frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1\right)} \sqrt{\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1}{8 \, m^{2} + m}} + 2 \, y\right) + \frac{1}{4} \, \sqrt{\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1}{8 \, m^{2} + m}} \log\left(-\frac{1}{2} \, {\left(8 \, m - \frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1\right)} \sqrt{\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1}{8 \, m^{2} + m}} + 2 \, y\right) - \frac{1}{4} \, \sqrt{-\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} - 1}{8 \, m^{2} + m}} \log\left(\frac{1}{2} \, {\left(8 \, m + \frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1\right)} \sqrt{-\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} - 1}{8 \, m^{2} + m}} + 2 \, y\right) + \frac{1}{4} \, \sqrt{-\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} - 1}{8 \, m^{2} + m}} \log\left(-\frac{1}{2} \, {\left(8 \, m + \frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} + 1\right)} \sqrt{-\frac{\frac{8 \, m^{2} + m}{\sqrt{8 \, m^{3} + m^{2}}} - 1}{8 \, m^{2} + m}} + 2 \, y\right)
s2 = s2.canonicalize_radical().simplify_log() s2
8m+8m+11log(4(8m+1)14my8m+8m+11(8m+1+1)4(8m+1)14my+8m+8m+11(8m+1+1))+8m+8m+1+1log(4(8m+1)14my8m+8m+1+1(8m+11)4(8m+1)14my+8m+8m+1+1(8m+11))4(8m+1)34m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{-8 \, m + \sqrt{8 \, m + 1} - 1} \log\left(\frac{4 \, {\left(8 \, m + 1\right)}^{\frac{1}{4}} \sqrt{m} y - \sqrt{-8 \, m + \sqrt{8 \, m + 1} - 1} {\left(\sqrt{8 \, m + 1} + 1\right)}}{4 \, {\left(8 \, m + 1\right)}^{\frac{1}{4}} \sqrt{m} y + \sqrt{-8 \, m + \sqrt{8 \, m + 1} - 1} {\left(\sqrt{8 \, m + 1} + 1\right)}}\right) + \sqrt{8 \, m + \sqrt{8 \, m + 1} + 1} \log\left(\frac{4 \, {\left(8 \, m + 1\right)}^{\frac{1}{4}} \sqrt{m} y - \sqrt{8 \, m + \sqrt{8 \, m + 1} + 1} {\left(\sqrt{8 \, m + 1} - 1\right)}}{4 \, {\left(8 \, m + 1\right)}^{\frac{1}{4}} \sqrt{m} y + \sqrt{8 \, m + \sqrt{8 \, m + 1} + 1} {\left(\sqrt{8 \, m + 1} - 1\right)}}\right)}{4 \, {\left(8 \, m + 1\right)}^{\frac{3}{4}} \sqrt{m}}

Check:

diff(s2, y).simplify_full()
1y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{y^{4} + y^{2} - 2 \, m}

In the above expressions for s1(y)s_1(y) and s2(y)s_2(y), there appears 1+8m\sqrt{1 + 8 m}, which can be rewritten 1+8m=2yH2+1 \sqrt{1 + 8 m} = 2 y_H^2 + 1 where yHy_H is the positive root of yH4+yH22m=0y_H^4 + y_H^2 - 2m = 0. More precisely, we perform the following substitution: m=12yH2(yH2+1) m = \frac{1}{2} y_H^2 (y_H^2 + 1)

yH = var('yH', latex_name=r'y_H', domain='real') assume(yH > 0) m_yH = yH^2*(yH^2 + 1)/2 s1 = s1.subs({m: m_yH}).canonicalize_radical().simplify_log() s1
yHlog(y+yHyyH)+iyH2+1log(yiyH2+1y+iyH2+1)2(2yH2+1)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{y_H} \log\left(\frac{y + {y_H}}{y - {y_H}}\right) + i \, \sqrt{{y_H}^{2} + 1} \log\left(\frac{y - i \, \sqrt{{y_H}^{2} + 1}}{y + i \, \sqrt{{y_H}^{2} + 1}}\right)}{2 \, {\left(2 \, {y_H}^{2} + 1\right)}}

In the second log\log, we recognize the arccot\mathrm{arccot} function, via the identity arccotx=i2ln(xix+i). \mathrm{arccot}\, x = \frac{i}{2} \ln\left( \frac{x - i}{x + i} \right) . Given that arccotx=π/2arctanx\mathrm{arccot}\, x = \pi/2 - \mathrm{arctan}\, x, we use this identity as iln(xix+i)=2arctan(x)+π i \ln\left( \frac{x - i}{x + i} \right) = - 2 \, \mathrm{arctan}(x) + \pi

Thus, we perform the following substitution, disregarding the additive constant π\pi:

s1 = s1.subs({I*sqrt(yH^2 + 1)*log((y - I*sqrt(yH^2 + 1))/(y + I*sqrt(yH^2 + 1))): -2*sqrt(yH^2 + 1)*atan(y/sqrt(yH^2 + 1))}) s1
yHlog(y+yHyyH)2yH2+1arctan(yyH2+1)2(2yH2+1)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{y_H} \log\left(\frac{y + {y_H}}{y - {y_H}}\right) - 2 \, \sqrt{{y_H}^{2} + 1} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right)}{2 \, {\left(2 \, {y_H}^{2} + 1\right)}}

Let us check that we have indeed a primitive of yy2y4+y22my\mapsto \frac{y^2}{y^4 + y^2 - 2m}:

Ds1 = diff(s1, y).simplify_full() Ds1
y2y4yH4+y2yH2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{y^{2}}{y^{4} - {y_H}^{4} + y^{2} - {y_H}^{2}}
yH_m = sqrt(sqrt(1 + 8*m) - 1)/sqrt(2) Ds1.subs({yH: yH_m}).simplify_full()
y2y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{y^{2}}{y^{4} + y^{2} - 2 \, m}

Similarly, let us express s2s_2 in terms of yHy_H:

s2 = s2.subs({m: m_yH}).canonicalize_radical().simplify_log() s2
iyHlog(iyH2+yH2+1yiiyH2+yH2+1y+i)+yH2+1log(yyHy+yH)2(2yH3+yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{i \, {y_H} \log\left(\frac{-i \, {y_H}^{2} + \sqrt{{y_H}^{2} + 1} y - i}{i \, {y_H}^{2} + \sqrt{{y_H}^{2} + 1} y + i}\right) + \sqrt{{y_H}^{2} + 1} \log\left(\frac{y - {y_H}}{y + {y_H}}\right)}{2 \, {\left(2 \, {y_H}^{3} + {y_H}\right)} \sqrt{{y_H}^{2} + 1}}

Again, we use the identity iln(xix+i)=2arctan(x)+π i \ln\left( \frac{x - i}{x + i} \right) = - 2 \, \mathrm{arctan}(x) + \pi to rewrite s2s_2 as

s2 = s2.subs({I*yH*log((-I*yH^2 + sqrt(yH^2 + 1)*y - I)/(I*yH^2 + sqrt(yH^2 + 1)*y + I)): -2*yH*atan(y/sqrt(yH^2 + 1))}) s2
2yHarctan(yyH2+1)yH2+1log(yyHy+yH)2(2yH3+yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{2 \, {y_H} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right) - \sqrt{{y_H}^{2} + 1} \log\left(\frac{y - {y_H}}{y + {y_H}}\right)}{2 \, {\left(2 \, {y_H}^{3} + {y_H}\right)} \sqrt{{y_H}^{2} + 1}}

Let us also replace ln(yyHy+yH)\ln\left(\frac{y - y_H}{y + y_H}\right) by ln(y+yHyyH)-\ln\left(\frac{y + y_H}{y - y_H}\right) in order to have the same log term as in s1(y)s_1(y):

s2 = s2.subs({log((y - yH)/(y + yH)): - log((y + yH)/(y - yH))}) s2
2yHarctan(yyH2+1)+yH2+1log(y+yHyyH)2(2yH3+yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{2 \, {y_H} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right) + \sqrt{{y_H}^{2} + 1} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)}{2 \, {\left(2 \, {y_H}^{3} + {y_H}\right)} \sqrt{{y_H}^{2} + 1}}

Let us check that we have indeed a primitive of y1y4+y22my\mapsto \frac{1}{y^4 + y^2 - 2m}:

Ds2 = diff(s2, y).simplify_full() Ds2
1y4yH4+y2yH2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{y^{4} - {y_H}^{4} + y^{2} - {y_H}^{2}}
Ds2.subs({yH: yH_m}).simplify_full()
1y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{y^{4} + y^{2} - 2 \, m}

The full integral is thus

Integ0 = (F1*s1 + F2*s2).simplify_full() Integ0
(a2p2b2q2+(a2b2)yH2+2(a2b2)m)yH2+1log(y+yHyyH)2((a2b2)yH3(a2p2b2q2a2+b2+2(a2b2)m)yH)arctan(yyH2+1)2(2yH3+yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} + {\left(a^{2} - b^{2}\right)} {y_H}^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m\right)} \sqrt{{y_H}^{2} + 1} \log\left(\frac{y + {y_H}}{y - {y_H}}\right) - 2 \, {\left({\left(a^{2} - b^{2}\right)} {y_H}^{3} - {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} - a^{2} + b^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m\right)} {y_H}\right)} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right)}{2 \, {\left(2 \, {y_H}^{3} + {y_H}\right)} \sqrt{{y_H}^{2} + 1}}

so that the solution is

Y_sol(y) = Y_sol0(y).subs({Integ(y): Integ0}).simplify_full() Y_sol(y)
2((a2sin(Θ2)b2sin(Θ2))yH3(a2p2sin(Θ2)b2q2sin(Θ2)a2sin(Θ2)+b2sin(Θ2)+2(a2sin(Θ2)b2sin(Θ2))m)yH)arctan(yyH2+1)+(4(2C1a2+4C1ab+2C1b2(a2sin(Θ2)b2sin(Θ2))y)yH3+2(2C1a2+4C1ab+2C1b2(a2sin(Θ2)b2sin(Θ2))y)yH(a2p2sin(Θ2)b2q2sin(Θ2)+(a2sin(Θ2)b2sin(Θ2))yH2+2(a2sin(Θ2)b2sin(Θ2))m)log(y+yHyyH))yH2+14(2((a2+2ab+b2)y4+(a2+2ab+b2)y22(a2+2ab+b2)m)yH3+((a2+2ab+b2)y4+(a2+2ab+b2)y22(a2+2ab+b2)m)yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left({\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{3} - {\left(a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) - a^{2} \sin\left({\Theta_2}\right) + b^{2} \sin\left({\Theta_2}\right) + 2 \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} m\right)} {y_H}\right)} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right) + {\left(4 \, {\left(2 \, C_{1} a^{2} + 4 \, C_{1} a b + 2 \, C_{1} b^{2} - {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y\right)} {y_H}^{3} + 2 \, {\left(2 \, C_{1} a^{2} + 4 \, C_{1} a b + 2 \, C_{1} b^{2} - {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y\right)} {y_H} - {\left(a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) + {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{2} + 2 \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} m\right)} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)\right)} \sqrt{{y_H}^{2} + 1}}{4 \, {\left(2 \, {\left({\left(a^{2} + 2 \, a b + b^{2}\right)} y^{4} + {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{2} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} {y_H}^{3} + {\left({\left(a^{2} + 2 \, a b + b^{2}\right)} y^{4} + {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{2} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} {y_H}\right)} \sqrt{{y_H}^{2} + 1}}
Y_sol(y).numerator().simplify_full()
2((a2sin(Θ2)b2sin(Θ2))yH3(a2p2sin(Θ2)b2q2sin(Θ2)a2sin(Θ2)+b2sin(Θ2)+2(a2sin(Θ2)b2sin(Θ2))m)yH)arctan(yyH2+1)+(4(2C1a2+4C1ab+2C1b2(a2sin(Θ2)b2sin(Θ2))y)yH3+2(2C1a2+4C1ab+2C1b2(a2sin(Θ2)b2sin(Θ2))y)yH(a2p2sin(Θ2)b2q2sin(Θ2)+(a2sin(Θ2)b2sin(Θ2))yH2+2(a2sin(Θ2)b2sin(Θ2))m)log(y+yHyyH))yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\left({\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{3} - {\left(a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) - a^{2} \sin\left({\Theta_2}\right) + b^{2} \sin\left({\Theta_2}\right) + 2 \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} m\right)} {y_H}\right)} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right) + {\left(4 \, {\left(2 \, C_{1} a^{2} + 4 \, C_{1} a b + 2 \, C_{1} b^{2} - {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y\right)} {y_H}^{3} + 2 \, {\left(2 \, C_{1} a^{2} + 4 \, C_{1} a b + 2 \, C_{1} b^{2} - {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y\right)} {y_H} - {\left(a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) + {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{2} + 2 \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} m\right)} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)\right)} \sqrt{{y_H}^{2} + 1}
Y_sol(y).denominator().factor()
4(y4+y22m)(2yH2+1)yH2+1(a+b)2yH\renewcommand{\Bold}[1]{\mathbf{#1}}4 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1} {\left(a + b\right)}^{2} {y_H}

Let us check that Y_sol is indeed a solution of the differential equation for Υ\Upsilon:

eq_Y.substitute_function(Y, Y_sol).subs({yH: yH_m}).simplify_full()
0=0\renewcommand{\Bold}[1]{\mathbf{#1}}0 = 0
print(Y_sol(y))
1/4*(2*((a^2*sin(Th2) - b^2*sin(Th2))*yH^3 - (a^2*pf^2*sin(Th2) - b^2*qf^2*sin(Th2) - a^2*sin(Th2) + b^2*sin(Th2) + 2*(a^2*sin(Th2) - b^2*sin(Th2))*m)*yH)*arctan(y/sqrt(yH^2 + 1)) + (4*(2*C_1*a^2 + 4*C_1*a*b + 2*C_1*b^2 - (a^2*sin(Th2) - b^2*sin(Th2))*y)*yH^3 + 2*(2*C_1*a^2 + 4*C_1*a*b + 2*C_1*b^2 - (a^2*sin(Th2) - b^2*sin(Th2))*y)*yH - (a^2*pf^2*sin(Th2) - b^2*qf^2*sin(Th2) + (a^2*sin(Th2) - b^2*sin(Th2))*yH^2 + 2*(a^2*sin(Th2) - b^2*sin(Th2))*m)*log((y + yH)/(y - yH)))*sqrt(yH^2 + 1))/((2*((a^2 + 2*a*b + b^2)*y^4 + (a^2 + 2*a*b + b^2)*y^2 - 2*(a^2 + 2*a*b + b^2)*m)*yH^3 + ((a^2 + 2*a*b + b^2)*y^4 + (a^2 + 2*a*b + b^2)*y^2 - 2*(a^2 + 2*a*b + b^2)*m)*yH)*sqrt(yH^2 + 1))

Check of Eq. (4.31) (expression of Θ1=Υ\Theta'_1 = \Upsilon)

The term involving the constant C1C_1 agrees with that of Eq. (4.31):

s = Y_sol(y).coefficient(C_1).simplify_full() s
1y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{y^{4} + y^{2} - 2 \, m}

Let us remove it from Υ\Upsilon and divide the result by sin(2Θ0)\sin(2\Theta_0):

Y1 = ((Y_sol(y) - s*C_1)/sin(Th2)).simplify_full() Y1
2((a2b2)yH3(a2p2b2q2a2+b2+2(a2b2)m)yH)arctan(yyH2+1)(4(a2b2)yyH3+2(a2b2)yyH+(a2p2b2q2+(a2b2)yH2+2(a2b2)m)log(y+yHyyH))yH2+14(2((a2+2ab+b2)y4+(a2+2ab+b2)y22(a2+2ab+b2)m)yH3+((a2+2ab+b2)y4+(a2+2ab+b2)y22(a2+2ab+b2)m)yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left({\left(a^{2} - b^{2}\right)} {y_H}^{3} - {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} - a^{2} + b^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m\right)} {y_H}\right)} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right) - {\left(4 \, {\left(a^{2} - b^{2}\right)} y {y_H}^{3} + 2 \, {\left(a^{2} - b^{2}\right)} y {y_H} + {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} + {\left(a^{2} - b^{2}\right)} {y_H}^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m\right)} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)\right)} \sqrt{{y_H}^{2} + 1}}{4 \, {\left(2 \, {\left({\left(a^{2} + 2 \, a b + b^{2}\right)} y^{4} + {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{2} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} {y_H}^{3} + {\left({\left(a^{2} + 2 \, a b + b^{2}\right)} y^{4} + {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{2} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} {y_H}\right)} \sqrt{{y_H}^{2} + 1}}

The coefficient of the arctan term is

s = Y1.coefficient(arctan(y/sqrt(yH^2 + 1))).simplify_full().factor() s
a2p2b2q2a2yH2+b2yH2+2a2m2b2ma2+b22(y4+y22m)(2yH2+1)yH2+1(a+b)2\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} - a^{2} {y_H}^{2} + b^{2} {y_H}^{2} + 2 \, a^{2} m - 2 \, b^{2} m - a^{2} + b^{2}}{2 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1} {\left(a + b\right)}^{2}}

The numerator of this term agrees with Eq. (4.31), once we express mm in terms of yHy_H:

s.numerator().subs({m: m_yH}).simplify_full()
(a2b2)yH4a2p2+b2q2+a2b2\renewcommand{\Bold}[1]{\mathbf{#1}}-{\left(a^{2} - b^{2}\right)} {y_H}^{4} - a^{2} {\mathfrak{p}}^{2} + b^{2} {\mathfrak{q}}^{2} + a^{2} - b^{2}

The denominator agrees with Eq. (4.31) as well:

s.denominator()
2(y4+y22m)(2yH2+1)yH2+1(a+b)2\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1} {\left(a + b\right)}^{2}

Let us remove the arctan term from Υ\Upsilon:

Y2 = (Y1 - s*arctan(y/sqrt(yH^2 + 1))).simplify_full() Y2
4(a2b2)yyH3+2(a2b2)yyH+(a2p2b2q2+(a2b2)yH2+2(a2b2)m)log(y+yHyyH)4(2((a2+2ab+b2)y4+(a2+2ab+b2)y22(a2+2ab+b2)m)yH3+((a2+2ab+b2)y4+(a2+2ab+b2)y22(a2+2ab+b2)m)yH)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{4 \, {\left(a^{2} - b^{2}\right)} y {y_H}^{3} + 2 \, {\left(a^{2} - b^{2}\right)} y {y_H} + {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} + {\left(a^{2} - b^{2}\right)} {y_H}^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m\right)} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)}{4 \, {\left(2 \, {\left({\left(a^{2} + 2 \, a b + b^{2}\right)} y^{4} + {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{2} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} {y_H}^{3} + {\left({\left(a^{2} + 2 \, a b + b^{2}\right)} y^{4} + {\left(a^{2} + 2 \, a b + b^{2}\right)} y^{2} - 2 \, {\left(a^{2} + 2 \, a b + b^{2}\right)} m\right)} {y_H}\right)}}
Y2.numerator().simplify_full()
4(a2b2)yyH32(a2b2)yyH(a2p2b2q2+(a2b2)yH2+2(a2b2)m)log(y+yHyyH)\renewcommand{\Bold}[1]{\mathbf{#1}}-4 \, {\left(a^{2} - b^{2}\right)} y {y_H}^{3} - 2 \, {\left(a^{2} - b^{2}\right)} y {y_H} - {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} + {\left(a^{2} - b^{2}\right)} {y_H}^{2} + 2 \, {\left(a^{2} - b^{2}\right)} m\right)} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)
Y2.denominator().factor()
4(y4+y22m)(2yH2+1)(a+b)2yH\renewcommand{\Bold}[1]{\mathbf{#1}}4 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(2 \, {y_H}^{2} + 1\right)} {\left(a + b\right)}^{2} {y_H}

The coefficient of the log term is

s = Y2.coefficient(log((y + yH)/(y - yH))).simplify_full().factor() s
a2p2b2q2+a2yH2b2yH2+2a2m2b2m4(y4+y22m)(2yH2+1)(a+b)2yH\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} + a^{2} {y_H}^{2} - b^{2} {y_H}^{2} + 2 \, a^{2} m - 2 \, b^{2} m}{4 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(2 \, {y_H}^{2} + 1\right)} {\left(a + b\right)}^{2} {y_H}}

The numerator and denominator both agree with Eq. (4.31):

s.numerator().subs({m: m_yH}).simplify_full()
(a2b2)yH4a2p2+b2q22(a2b2)yH2\renewcommand{\Bold}[1]{\mathbf{#1}}-{\left(a^{2} - b^{2}\right)} {y_H}^{4} - a^{2} {\mathfrak{p}}^{2} + b^{2} {\mathfrak{q}}^{2} - 2 \, {\left(a^{2} - b^{2}\right)} {y_H}^{2}
s.denominator()
4(y4+y22m)(2yH2+1)(a+b)2yH\renewcommand{\Bold}[1]{\mathbf{#1}}4 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(2 \, {y_H}^{2} + 1\right)} {\left(a + b\right)}^{2} {y_H}

Given that artanhx=12ln(1+x1x) \mathrm{artanh}\, x = \frac{1}{2} \ln\left( \frac{1 + x}{1 - x} \right) we have ln(x+1x1)=2artanh(1x) \ln \left( \frac{x + 1}{x - 1} \right) = 2\, \mathrm{artanh}\left(\frac{1}{x}\right)

Hence the term in ln(y+yHyyH)\ln\left(\frac{y + y_H}{y - y_H}\right) agrees with the corresponding term in Eq. (4.30).

Finally, the last term in Υ\Upsilon is

Y3 = (Y2 - s*log((y + yH)/(y - yH))).simplify_full() Y3.factor()
(ab)y2(y4+y22m)(a+b)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{\left(a - b\right)} y}{2 \, {\left(y^{4} + y^{2} - 2 \, m\right)} {\left(a + b\right)}}

This term agrees with Eq. (4.31), given the simplification a2b2(a+b)2=aba+b\frac{a^2 - b^2}{(a + b)^2} = \frac{a - b}{a + b}.

Conjugate momenta

def conjugate_momenta(lagr, qs, var): r""" Compute the conjugate momenta from a given Lagrangian. INPUT: - ``lagr`` -- symbolic expression representing the Lagrangian density - ``qs`` -- either a single symbolic function or a list/tuple of symbolic functions, representing the `q`'s; these functions must appear in ``lagr`` up to at most their first derivatives - ``var`` -- either a single variable, typically `t` (1-dimensional problem) or a list/tuple of symbolic variables; in the latter case the time coordinate must the first one OUTPUT: - list of conjugate momenta; if only one function is involved, the single conjugate momentum is returned instead. """ if not isinstance(qs, (list, tuple)): qs = [qs] if not isinstance(var, (list, tuple)): var = [var] n = len(qs) d = len(var) dqvt = [SR.var('qxxxx{}_t'.format(q)) for q in qs] subs = {diff(qs[i](*var), var[0]): dqvt[i] for i in range(n)} subs_inv = {dqvt[i]: diff(qs[i](*var), var[0]) for i in range(n)} lg = lagr.substitute(subs) ps = [diff(lg, dotq).simplify_full().substitute(subs_inv) for dotq in dqvt] if n == 1: return ps[0] return ps
pis = conjugate_momenta(L_2, [Phi_1, Psi_1], y) pis
[(a2χ02a2)y4yΦ1(y)(a2χ02a2)y2yΦ1(y)+2(a2χ02a2)myΦ1(y),b2χ02y4yΨ1(y)+b2χ02y2yΨ1(y)2b2χ02myΨ1(y)]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-{\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) - {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} y^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + 2 \, {\left(a^{2} {\chi_0}^{2} - a^{2}\right)} m \frac{\partial}{\partial y}\Phi_{1}\left(y\right), b^{2} {\chi_0}^{2} y^{4} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) + b^{2} {\chi_0}^{2} y^{2} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - 2 \, b^{2} {\chi_0}^{2} m \frac{\partial}{\partial y}\Psi_{1}\left(y\right)\right]

πΦy\pi^y_\Phi:

pi_Phi_y = (pis[0]/a).substitute_function(Phi_1, Phi1_sol).simplify_full() pi_Phi_y
(aχ02a)p\renewcommand{\Bold}[1]{\mathbf{#1}}-{\left(a {\chi_0}^{2} - a\right)} {\mathfrak{p}}

πΨy\pi_\Psi^y:

pi_Psi_y = (pis[1]/b).substitute_function(Psi_1, Psi1_sol).simplify_full() pi_Psi_y
bχ02q\renewcommand{\Bold}[1]{\mathbf{#1}}b {\chi_0}^{2} {\mathfrak{q}}

Check of Eq. (4.33)

We start from πΘy\pi^y_\Theta as given by Eq. (4.32):

pi_Theta = ((y^4 + y^2 - 2*m)*(a + b)^2*Y_sol(y)).simplify_full() pi_Theta
2((a2sin(Θ2)b2sin(Θ2))yH3(a2p2sin(Θ2)b2q2sin(Θ2)a2sin(Θ2)+b2sin(Θ2)+2(a2sin(Θ2)b2sin(Θ2))m)yH)arctan(yyH2+1)+(4(2C1a2+4C1ab+2C1b2(a2sin(Θ2)b2sin(Θ2))y)yH3+2(2C1a2+4C1ab+2C1b2(a2sin(Θ2)b2sin(Θ2))y)yH(a2p2sin(Θ2)b2q2sin(Θ2)+(a2sin(Θ2)b2sin(Θ2))yH2+2(a2sin(Θ2)b2sin(Θ2))m)log(y+yHyyH))yH2+14(2yH3+yH)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left({\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{3} - {\left(a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) - a^{2} \sin\left({\Theta_2}\right) + b^{2} \sin\left({\Theta_2}\right) + 2 \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} m\right)} {y_H}\right)} \arctan\left(\frac{y}{\sqrt{{y_H}^{2} + 1}}\right) + {\left(4 \, {\left(2 \, C_{1} a^{2} + 4 \, C_{1} a b + 2 \, C_{1} b^{2} - {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y\right)} {y_H}^{3} + 2 \, {\left(2 \, C_{1} a^{2} + 4 \, C_{1} a b + 2 \, C_{1} b^{2} - {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y\right)} {y_H} - {\left(a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) + {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{2} + 2 \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} m\right)} \log\left(\frac{y + {y_H}}{y - {y_H}}\right)\right)} \sqrt{{y_H}^{2} + 1}}{4 \, {\left(2 \, {y_H}^{3} + {y_H}\right)} \sqrt{{y_H}^{2} + 1}}

Let us perform an expansion in 1/y1/y for y+y\rightarrow +\infty:

u = var('u') assume(u > 0) s = pi_Theta.subs({y: 1/u}).simplify_log() s = s.taylor(u, 0, 2) s = s.subs({u: 1/y}) s
12(a2sin(Θ2)b2sin(Θ2))ya2sin(Θ2)b2sin(Θ2)2yπa2p2sin(Θ2)πb2q2sin(Θ2)πa2sin(Θ2)+πb2sin(Θ2)(πa2sin(Θ2)πb2sin(Θ2))yH2+2(πa2sin(Θ2)πb2sin(Θ2))m4(C1a2+2C1ab+C1b2+2(C1a2+2C1ab+C1b2)yH2)yH2+14(2yH2+1)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{2} \, {\left(a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)\right)} y - \frac{a^{2} \sin\left({\Theta_2}\right) - b^{2} \sin\left({\Theta_2}\right)}{2 \, y} - \frac{\pi a^{2} {\mathfrak{p}}^{2} \sin\left({\Theta_2}\right) - \pi b^{2} {\mathfrak{q}}^{2} \sin\left({\Theta_2}\right) - \pi a^{2} \sin\left({\Theta_2}\right) + \pi b^{2} \sin\left({\Theta_2}\right) - {\left(\pi a^{2} \sin\left({\Theta_2}\right) - \pi b^{2} \sin\left({\Theta_2}\right)\right)} {y_H}^{2} + 2 \, {\left(\pi a^{2} \sin\left({\Theta_2}\right) - \pi b^{2} \sin\left({\Theta_2}\right)\right)} m - 4 \, {\left(C_{1} a^{2} + 2 \, C_{1} a b + C_{1} b^{2} + 2 \, {\left(C_{1} a^{2} + 2 \, C_{1} a b + C_{1} b^{2}\right)} {y_H}^{2}\right)} \sqrt{{y_H}^{2} + 1}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}}

We consider πΘysin(2Θ0)\frac{\pi^y_\Theta}{\sin(2\Theta_0)}:

s1 = (s/sin(Th2)).expand() s1
πa2p24(2yH2+1)yH2+1+πb2q24(2yH2+1)yH2+1+πa2yH24(2yH2+1)yH2+1πb2yH24(2yH2+1)yH2+112a2y+12b2y+2C1a2yH2(2yH2+1)sin(Θ2)+4C1abyH2(2yH2+1)sin(Θ2)+2C1b2yH2(2yH2+1)sin(Θ2)πa2m2(2yH2+1)yH2+1+πb2m2(2yH2+1)yH2+1+πa24(2yH2+1)yH2+1πb24(2yH2+1)yH2+1a22y+b22y+C1a2(2yH2+1)sin(Θ2)+2C1ab(2yH2+1)sin(Θ2)+C1b2(2yH2+1)sin(Θ2)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{\pi a^{2} {\mathfrak{p}}^{2}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} + \frac{\pi b^{2} {\mathfrak{q}}^{2}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} + \frac{\pi a^{2} {y_H}^{2}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} - \frac{\pi b^{2} {y_H}^{2}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} - \frac{1}{2} \, a^{2} y + \frac{1}{2} \, b^{2} y + \frac{2 \, C_{1} a^{2} {y_H}^{2}}{{\left(2 \, {y_H}^{2} + 1\right)} \sin\left({\Theta_2}\right)} + \frac{4 \, C_{1} a b {y_H}^{2}}{{\left(2 \, {y_H}^{2} + 1\right)} \sin\left({\Theta_2}\right)} + \frac{2 \, C_{1} b^{2} {y_H}^{2}}{{\left(2 \, {y_H}^{2} + 1\right)} \sin\left({\Theta_2}\right)} - \frac{\pi a^{2} m}{2 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} + \frac{\pi b^{2} m}{2 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} + \frac{\pi a^{2}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} - \frac{\pi b^{2}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}} - \frac{a^{2}}{2 \, y} + \frac{b^{2}}{2 \, y} + \frac{C_{1} a^{2}}{{\left(2 \, {y_H}^{2} + 1\right)} \sin\left({\Theta_2}\right)} + \frac{2 \, C_{1} a b}{{\left(2 \, {y_H}^{2} + 1\right)} \sin\left({\Theta_2}\right)} + \frac{C_{1} b^{2}}{{\left(2 \, {y_H}^{2} + 1\right)} \sin\left({\Theta_2}\right)}

The term in factor of C1C_1 is

s1.coefficient(C_1).factor()
(a+b)2sin(Θ2)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(a + b\right)}^{2}}{\sin\left({\Theta_2}\right)}

Hence this terms agrees with Eq. (4.32). We remove it from the main term:

s2 = (s1 - s1.coefficient(C_1)*C_1).simplify_full() s2
4((a2b2)y2+a2b2)yH4+2(a2b2)y2+6((a2b2)y2+a2b2)yH2+2a22b2((πa2πb2)yyH2(πa2p2πb2q2πa2+πb2+2(πa2πb2)m)y)yH2+14(2yyH4+3yyH2+y)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{4 \, {\left({\left(a^{2} - b^{2}\right)} y^{2} + a^{2} - b^{2}\right)} {y_H}^{4} + 2 \, {\left(a^{2} - b^{2}\right)} y^{2} + 6 \, {\left({\left(a^{2} - b^{2}\right)} y^{2} + a^{2} - b^{2}\right)} {y_H}^{2} + 2 \, a^{2} - 2 \, b^{2} - {\left({\left(\pi a^{2} - \pi b^{2}\right)} y {y_H}^{2} - {\left(\pi a^{2} {\mathfrak{p}}^{2} - \pi b^{2} {\mathfrak{q}}^{2} - \pi a^{2} + \pi b^{2} + 2 \, {\left(\pi a^{2} - \pi b^{2}\right)} m\right)} y\right)} \sqrt{{y_H}^{2} + 1}}{4 \, {\left(2 \, y {y_H}^{4} + 3 \, y {y_H}^{2} + y\right)}}
s2.numerator().simplify_full()
4((a2b2)y2+a2b2)yH42(a2b2)y26((a2b2)y2+a2b2)yH22a2+2b2+((πa2πb2)yyH2(πa2p2πb2q2πa2+πb2+2(πa2πb2)m)y)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-4 \, {\left({\left(a^{2} - b^{2}\right)} y^{2} + a^{2} - b^{2}\right)} {y_H}^{4} - 2 \, {\left(a^{2} - b^{2}\right)} y^{2} - 6 \, {\left({\left(a^{2} - b^{2}\right)} y^{2} + a^{2} - b^{2}\right)} {y_H}^{2} - 2 \, a^{2} + 2 \, b^{2} + {\left({\left(\pi a^{2} - \pi b^{2}\right)} y {y_H}^{2} - {\left(\pi a^{2} {\mathfrak{p}}^{2} - \pi b^{2} {\mathfrak{q}}^{2} - \pi a^{2} + \pi b^{2} + 2 \, {\left(\pi a^{2} - \pi b^{2}\right)} m\right)} y\right)} \sqrt{{y_H}^{2} + 1}
s2.denominator().factor()
4(2yH2+1)(yH2+1)y\renewcommand{\Bold}[1]{\mathbf{#1}}4 \, {\left(2 \, {y_H}^{2} + 1\right)} {\left({y_H}^{2} + 1\right)} y

Let divide both the numerator and denominator by yy

s2n = (s2.numerator()/y).expand() s2n
4a2yyH4+4b2yyH4πyH2+1a2p2+πyH2+1b2q2+πyH2+1a2yH2πyH2+1b2yH26a2yyH2+6b2yyH24a2yH4y+4b2yH4y2πyH2+1a2m+2πyH2+1b2m+πyH2+1a2πyH2+1b22a2y+2b2y6a2yH2y+6b2yH2y2a2y+2b2y\renewcommand{\Bold}[1]{\mathbf{#1}}-4 \, a^{2} y {y_H}^{4} + 4 \, b^{2} y {y_H}^{4} - \pi \sqrt{{y_H}^{2} + 1} a^{2} {\mathfrak{p}}^{2} + \pi \sqrt{{y_H}^{2} + 1} b^{2} {\mathfrak{q}}^{2} + \pi \sqrt{{y_H}^{2} + 1} a^{2} {y_H}^{2} - \pi \sqrt{{y_H}^{2} + 1} b^{2} {y_H}^{2} - 6 \, a^{2} y {y_H}^{2} + 6 \, b^{2} y {y_H}^{2} - \frac{4 \, a^{2} {y_H}^{4}}{y} + \frac{4 \, b^{2} {y_H}^{4}}{y} - 2 \, \pi \sqrt{{y_H}^{2} + 1} a^{2} m + 2 \, \pi \sqrt{{y_H}^{2} + 1} b^{2} m + \pi \sqrt{{y_H}^{2} + 1} a^{2} - \pi \sqrt{{y_H}^{2} + 1} b^{2} - 2 \, a^{2} y + 2 \, b^{2} y - \frac{6 \, a^{2} {y_H}^{2}}{y} + \frac{6 \, b^{2} {y_H}^{2}}{y} - \frac{2 \, a^{2}}{y} + \frac{2 \, b^{2}}{y}
s2d = (s2.denominator()/y).factor() s2d
4(2yH2+1)(yH2+1)\renewcommand{\Bold}[1]{\mathbf{#1}}4 \, {\left(2 \, {y_H}^{2} + 1\right)} {\left({y_H}^{2} + 1\right)}

The coefficient of the term in yy is

s = s2n.coefficient(y).factor() s/s2d
12(a+b)(ab)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{2} \, {\left(a + b\right)} {\left(a - b\right)}

This is in agreement with Eq. (4.33).

We remove it:

s3n = (s2n - s*y).simplify_full().expand() s3n
πyH2+1a2p2+πyH2+1b2q2+πyH2+1a2yH2πyH2+1b2yH24a2yH4y+4b2yH4y2πyH2+1a2m+2πyH2+1b2m+πyH2+1a2πyH2+1b26a2yH2y+6b2yH2y2a2y+2b2y\renewcommand{\Bold}[1]{\mathbf{#1}}-\pi \sqrt{{y_H}^{2} + 1} a^{2} {\mathfrak{p}}^{2} + \pi \sqrt{{y_H}^{2} + 1} b^{2} {\mathfrak{q}}^{2} + \pi \sqrt{{y_H}^{2} + 1} a^{2} {y_H}^{2} - \pi \sqrt{{y_H}^{2} + 1} b^{2} {y_H}^{2} - \frac{4 \, a^{2} {y_H}^{4}}{y} + \frac{4 \, b^{2} {y_H}^{4}}{y} - 2 \, \pi \sqrt{{y_H}^{2} + 1} a^{2} m + 2 \, \pi \sqrt{{y_H}^{2} + 1} b^{2} m + \pi \sqrt{{y_H}^{2} + 1} a^{2} - \pi \sqrt{{y_H}^{2} + 1} b^{2} - \frac{6 \, a^{2} {y_H}^{2}}{y} + \frac{6 \, b^{2} {y_H}^{2}}{y} - \frac{2 \, a^{2}}{y} + \frac{2 \, b^{2}}{y}

The coefficient of the term in 1/y1/y is

s = s3n.coefficient(y^(-1)).factor() s/s2d
12(a+b)(ab)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{2} \, {\left(a + b\right)} {\left(a - b\right)}

This is in agreement with Eq. (4.33).

Finally the remaining term is

s4n = (s3n - s/y).simplify_full().expand() s4n
πyH2+1a2p2+πyH2+1b2q2+πyH2+1a2yH2πyH2+1b2yH22πyH2+1a2m+2πyH2+1b2m+πyH2+1a2πyH2+1b2\renewcommand{\Bold}[1]{\mathbf{#1}}-\pi \sqrt{{y_H}^{2} + 1} a^{2} {\mathfrak{p}}^{2} + \pi \sqrt{{y_H}^{2} + 1} b^{2} {\mathfrak{q}}^{2} + \pi \sqrt{{y_H}^{2} + 1} a^{2} {y_H}^{2} - \pi \sqrt{{y_H}^{2} + 1} b^{2} {y_H}^{2} - 2 \, \pi \sqrt{{y_H}^{2} + 1} a^{2} m + 2 \, \pi \sqrt{{y_H}^{2} + 1} b^{2} m + \pi \sqrt{{y_H}^{2} + 1} a^{2} - \pi \sqrt{{y_H}^{2} + 1} b^{2}
s4n.factor()
π(a2p2b2q2a2yH2+b2yH2+2a2m2b2ma2+b2)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-\pi {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} - a^{2} {y_H}^{2} + b^{2} {y_H}^{2} + 2 \, a^{2} m - 2 \, b^{2} m - a^{2} + b^{2}\right)} \sqrt{{y_H}^{2} + 1}
s = s4n.factor()/s2d s
π(a2p2b2q2a2yH2+b2yH2+2a2m2b2ma2+b2)4(2yH2+1)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{\pi {\left(a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} - a^{2} {y_H}^{2} + b^{2} {y_H}^{2} + 2 \, a^{2} m - 2 \, b^{2} m - a^{2} + b^{2}\right)}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}}
s.subs({m: m_yH}).factor()
π(a2yH4b2yH4+a2p2b2q2a2+b2)4(2yH2+1)yH2+1\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{\pi {\left(a^{2} {y_H}^{4} - b^{2} {y_H}^{4} + a^{2} {\mathfrak{p}}^{2} - b^{2} {\mathfrak{q}}^{2} - a^{2} + b^{2}\right)}}{4 \, {\left(2 \, {y_H}^{2} + 1\right)} \sqrt{{y_H}^{2} + 1}}

The denominator clearly agrees with Eq. (4.33).

Conclusion: we have full agreement with Eq. (4.33).