CoCalc Public Filestmp / 2017-05-08-060534.ipynbOpen with one click!
Authors: Harald Schilly, William A. Stein
In [1]:
show(integrate(sin(x^2),x))
116π((i+1)2erf((12i+12)2x)+(i1)2erf((12i12)2x)(i1)2erf(ix)+(i+1)2erf((1)14x))\frac{1}{16} \, \sqrt{\pi} {\left(\left(i + 1\right) \, \sqrt{2} \text{erf}\left(\left(\frac{1}{2} i + \frac{1}{2}\right) \, \sqrt{2} x\right) + \left(i - 1\right) \, \sqrt{2} \text{erf}\left(\left(\frac{1}{2} i - \frac{1}{2}\right) \, \sqrt{2} x\right) - \left(i - 1\right) \, \sqrt{2} \text{erf}\left(\sqrt{-i} x\right) + \left(i + 1\right) \, \sqrt{2} \text{erf}\left(\left(-1\right)^{\frac{1}{4}} x\right)\right)}

bar...

consider that α,β\alpha, \beta are

consider that α,β\alpha, \beta are

ldsaj fla jsdf jasdj asjdf

Foo

In [2]:
https://cloud.sagemath.com/projects/4a5f0542-5873-4eed-a85c-a18c706e8bcd/files/tmp/2017-05-08-060534.ipynb#Foo
401
In [5]:
print range(100)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
In [ ]:

Bar

In [ ]: