CoCalc Public FilesKerr-AdS-5D-string-a_eq_b.ipynbOpen with one click!
Authors: agolubtsova , Eric Gourgoulhon
Views : 160
Description: 5D Kerr-AdS spacetime with a Nambu-Goto string (case a=b)
Compute Environment: Ubuntu 20.04 (Default)

5D Kerr-AdS spacetime with a Nambu-Goto string

Case a = b

This SageMath notebook is relative to the article Holographic drag force in 5d Kerr-AdS black hole by Irina Ya. Aref'eva, Anastasia A. Golubtsova and Eric Gourgoulhon, arXiv:2004.12984.

The involved differential geometry computations are based on tools developed through the SageManifolds project.

NB: a version of SageMath at least equal to 8.2 is required to run this notebook:

In [1]:
version()
'SageMath version 9.0, Release Date: 2020-01-01'

First we set up the notebook to display mathematical objects using LaTeX rendering:

In [2]:
%display latex

Since some computations are quite long, we ask for running them in parallel on 8 cores:

In [3]:
Parallelism().set(nproc=1) # only nproc=1 works on CoCalc

Spacetime manifold

We declare the Kerr-AdS spacetime as a 5-dimensional Lorentzian manifold:

In [4]:
M = Manifold(5, 'M', r'\mathcal{M}', structure='Lorentzian', metric_name='G') print(M)
5-dimensional Lorentzian manifold M

Let us define Boyer-Lindquist-type coordinates (rational polynomial version) on M\mathcal{M}, via the method chart(), the argument of which is a string expressing the coordinates names, their ranges (the default is (,+)(-\infty,+\infty)) and their LaTeX symbols:

In [ ]:
In [5]:
BL.<t,r,mu,ph,ps> = M.chart(r't r:(0,+oo) mu:(0,1):\mu ph:(0,2*pi):\phi ps:(0,2*pi):\psi') BL
(M,(t,r,μ,ϕ,ψ))\left(\mathcal{M},(t, r, {\mu}, {\phi}, {\psi})\right)

The coordinate μ\mu is related to the standard Boyer-Lindquist coordinate θ\theta by μ=cosθ \mu = \cos\theta

The coordinate ranges are

In [6]:
BL.coord_range()
t: (,+);r: (0,+);μ: (0,1);ϕ: (0,2π);ψ: (0,2π)t :\ \left( -\infty, +\infty \right) ;\quad r :\ \left( 0 , +\infty \right) ;\quad {\mu} :\ \left( 0 , 1 \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right) ;\quad {\psi} :\ \left( 0 , 2 \, \pi \right)

Note that contrary to the 4-dimensional case, the range of μ\mu is (0,1)(0,1) only (cf. Sec. 1.2 of R.C. Myers, arXiv:1111.1903 or Sec. 2 of G.W. Gibbons, H. Lüb, Don N. Page, C.N. Pope, J. Geom. Phys. 53, 49 (2005)). In other words, the range of θ\theta is (0,π2)\left(0, \frac{\pi}{2}\right) only.

Metric tensor

The 4 parameters mm, aa, bb and \ell of the Kerr-AdS spacetime are declared as symbolic variables, aa and bb being the two angular momentum parameters and \ell being related to the cosmological constant by Λ=62\Lambda = - 6 \ell^2:

In [7]:
var('m a b', domain='real')
(m,a,b)\left(m, a, b\right)
In [8]:
var('l', domain='real', latex_name=r'\ell')
{\ell}
In [9]:
# Particular cases # m = 0 # a = 0 # b = 0 b = a

Some auxiliary functions:

In [10]:
keep_Delta = False # change to False to provide explicit expression for Delta_r, Xi_a, etc...
In [11]:
sig = (1 + r^2*l^2)/r^2 costh2 = mu^2 sinth2 = 1 - mu^2 rho2 = r^2 + a^2*mu^2 + b^2*sinth2 if keep_Delta: Delta_r = var('Delta_r', latex_name=r'\Delta_r', domain='real') Delta_th = var('Delta_th', latex_name=r'\Delta_\theta', domain='real') if a == b: Xi_a = var('Xi', latex_name=r'\Xi', domain='real') Xi_b = Xi_a else: Xi_a = var('Xi_a', latex_name=r'\Xi_a', domain='real') Xi_b = var('Xi_b', latex_name=r'\Xi_b', domain='real') #Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2 else: Delta_r = (r^2+a^2)*(r^2+b^2)*sig - 2*m Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2

The metric is set by its components in the coordinate frame associated with the Boyer-Lindquist-type coordinates, which is the current manifold's default frame. These components can be deduced from Eq. (5.22) of the article S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D 59, 064005 (1999) (the check of agreement with this equation is performed below):

In [12]:
G = M.metric() tmp = 1/rho2*( -Delta_r + Delta_th*(a^2*sinth2 + b^2*mu^2) + a^2*b^2*sig ) G[0,0] = tmp.simplify_full() tmp = a*sinth2/(rho2*Xi_a)*( Delta_r - (r^2+a^2)*(Delta_th + b^2*sig) ) G[0,3] = tmp.simplify_full() tmp = b*mu^2/(rho2*Xi_b)*( Delta_r - (r^2+b^2)*(Delta_th + a^2*sig) ) G[0,4] = tmp.simplify_full() G[1,1] = (rho2/Delta_r).simplify_full() G[2,2] = (rho2/Delta_th/(1-mu^2)).simplify_full() tmp = sinth2/(rho2*Xi_a^2)*( - Delta_r*a^2*sinth2 + (r^2+a^2)^2*(Delta_th + sig*b^2*sinth2) ) G[3,3] = tmp.simplify_full() tmp = a*b*sinth2*mu^2/(rho2*Xi_a*Xi_b)*( - Delta_r + sig*(r^2+a^2)*(r^2+b^2) ) G[3,4] = tmp.simplify_full() tmp = mu^2/(rho2*Xi_b^2)*( - Delta_r*b^2*mu^2 + (r^2+b^2)^2*(Delta_th + sig*a^2*mu^2) ) G[4,4] = tmp.simplify_full() G.display()
G=(a42+2r4+(2a22+1)r2+a22ma2+r2)dtdt+(a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2)dtdϕ+(2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2)dtdψ+(a2r2+r42r6+(2a22+1)r4+a4+(a42+2a22m)r2)drdr+(a2+r2a22(a221)μ21)dμdμ+(a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2)dϕdt+(a622a2mμ4+(a22(a221)μ21)r4a42a2m(a62a44a2m)μ2+2(a42(a42a2)μ2a2)r2a642a42+(a442a22+1)r2+a2)dϕdϕ+(2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2)dϕdψ+(2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2)dψdt+(2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2)dψdϕ+(2a2mμ4(a221)μ2r42(a42a2)μ2r2(a62a4)μ2a642a42+(a442a22+1)r2+a2)dψdψG = \left( -\frac{a^{4} {\ell}^{2} + {\ell}^{2} r^{4} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2} - 2 \, m}{a^{2} + r^{2}} \right) \mathrm{d} t\otimes \mathrm{d} t + \left( -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} t\otimes \mathrm{d} {\phi} + \left( -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} t\otimes \mathrm{d} {\psi} + \left( \frac{a^{2} r^{2} + r^{4}}{{\ell}^{2} r^{6} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{4} + a^{4} + {\left(a^{4} {\ell}^{2} + 2 \, a^{2} - 2 \, m\right)} r^{2}} \right) \mathrm{d} r\otimes \mathrm{d} r + \left( -\frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1} \right) \mathrm{d} {\mu}\otimes \mathrm{d} {\mu} + \left( -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} t + \left( -\frac{a^{6} {\ell}^{2} - 2 \, a^{2} m {\mu}^{4} + {\left(a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} r^{4} - a^{4} - 2 \, a^{2} m - {\left(a^{6} {\ell}^{2} - a^{4} - 4 \, a^{2} m\right)} {\mu}^{2} + 2 \, {\left(a^{4} {\ell}^{2} - {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} - a^{2}\right)} r^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi} + \left( -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\psi} + \left( -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} {\psi}\otimes \mathrm{d} t + \left( -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\psi}\otimes \mathrm{d} {\phi} + \left( \frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} r^{4} - 2 \, {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} r^{2} - {\left(a^{6} {\ell}^{2} - a^{4}\right)} {\mu}^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\psi}\otimes \mathrm{d} {\psi}
In [13]:
G.display_comp(only_nonredundant=True)
Gtttt=a42+2r4+(2a22+1)r2+a22ma2+r2Gtϕtϕ=a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2Gtψtψ=2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2Grrrr=a2r2+r42r6+(2a22+1)r4+a4+(a42+2a22m)r2Gμμμμ=a2+r2a22(a221)μ21Gϕϕϕϕ=a622a2mμ4+(a22(a221)μ21)r4a42a2m(a62a44a2m)μ2+2(a42(a42a2)μ2a2)r2a642a42+(a442a22+1)r2+a2Gϕψϕψ=2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2Gψψψψ=2a2mμ4(a221)μ2r42(a42a2)μ2r2(a62a4)μ2a642a42+(a442a22+1)r2+a2\begin{array}{lcl} G_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & -\frac{a^{4} {\ell}^{2} + {\ell}^{2} r^{4} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2} - 2 \, m}{a^{2} + r^{2}} \\ G_{ \, t \, {\phi} }^{ \phantom{\, t}\phantom{\, {\phi}} } & = & -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ G_{ \, t \, {\psi} }^{ \phantom{\, t}\phantom{\, {\psi}} } & = & -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ G_{ \, r \, r }^{ \phantom{\, r}\phantom{\, r} } & = & \frac{a^{2} r^{2} + r^{4}}{{\ell}^{2} r^{6} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{4} + a^{4} + {\left(a^{4} {\ell}^{2} + 2 \, a^{2} - 2 \, m\right)} r^{2}} \\ G_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & -\frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1} \\ G_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & -\frac{a^{6} {\ell}^{2} - 2 \, a^{2} m {\mu}^{4} + {\left(a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} r^{4} - a^{4} - 2 \, a^{2} m - {\left(a^{6} {\ell}^{2} - a^{4} - 4 \, a^{2} m\right)} {\mu}^{2} + 2 \, {\left(a^{4} {\ell}^{2} - {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} - a^{2}\right)} r^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ G_{ \, {\phi} \, {\psi} }^{ \phantom{\, {\phi}}\phantom{\, {\psi}} } & = & -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ G_{ \, {\psi} \, {\psi} }^{ \phantom{\, {\psi}}\phantom{\, {\psi}} } & = & \frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} r^{4} - 2 \, {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} r^{2} - {\left(a^{6} {\ell}^{2} - a^{4}\right)} {\mu}^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \end{array}

Check of agreement with Eq. (5.22) of Hawking et al or Eq. (2.3) of our paper

We need the 1-forms dt\mathrm{d}t, dr\mathrm{d}r, dμ\mathrm{d}\mu, dϕ\mathrm{d}\phi and dψ\mathrm{d}\psi:

In [14]:
dt, dr, dmu, dph, dps = (BL.coframe()[i] for i in M.irange()) dt, dr, dmu, dph, dps
(dt,dr,dμ,dϕ,dψ)\left(\mathrm{d} t, \mathrm{d} r, \mathrm{d} {\mu}, \mathrm{d} {\phi}, \mathrm{d} {\psi}\right)
In [15]:
print(dt)
1-form dt on the 5-dimensional Lorentzian manifold M

In agreement with μ=cosθ\mu = \cos\theta, we introduce the 1-form dθ=dμ/sinθ\mathrm{d}\theta = - \mathrm{d}\mu /\sin\theta , with sinθ=1μ2\sin\theta = \sqrt{1-\mu^2} since θ(0,π2)\theta\in\left(0, \frac{\pi}{2}\right):

In [16]:
dth = - 1/sqrt(1 - mu^2)*dmu
In [17]:
s1 = dt - a*sinth2/Xi_a*dph - b*costh2/Xi_b*dps s1.display()
dt+(aμ2aa221)dϕ+(aμ2a221)dψ\mathrm{d} t + \left( -\frac{a {\mu}^{2} - a}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\phi} + \left( \frac{a {\mu}^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\psi}
In [18]:
s2 = a*dt - (r^2 + a^2)/Xi_a*dph s2.display()
adt+(a2+r2a221)dϕa \mathrm{d} t + \left( \frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\phi}
In [19]:
s3 = b*dt - (r^2 + b^2)/Xi_b*dps s3.display()
adt+(a2+r2a221)dψa \mathrm{d} t + \left( \frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\psi}
In [20]:
s4 = a*b*dt - b*(r^2 + a^2)*sinth2/Xi_a * dph - a*(r^2 + b^2)*costh2/Xi_b * dps s4.display()
a2dt+(a3μ2a3+(aμ2a)r2a221)dϕ+(a3μ2+aμ2r2a221)dψa^{2} \mathrm{d} t + \left( -\frac{a^{3} {\mu}^{2} - a^{3} + {\left(a {\mu}^{2} - a\right)} r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\phi} + \left( \frac{a^{3} {\mu}^{2} + a {\mu}^{2} r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\psi}
In [21]:
G0 = - Delta_r/rho2 * s1*s1 + Delta_th*sinth2/rho2 * s2*s2 + Delta_th*costh2/rho2 * s3*s3 \ + rho2/Delta_r * dr*dr + rho2/Delta_th * dth*dth + sig/rho2 * s4*s4 G0.display_comp(only_nonredundant=True)
Xtttt=a42+2r4+(2a22+1)r2+a22ma2+r2Xtϕtϕ=a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2Xtψtψ=2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2Xrrrr=a2r2+r42r6+(2a22+1)r4+a4+(a42+2a22m)r2Xμμμμ=a2+r2a22(a221)μ21Xϕtϕt=a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2Xϕϕϕϕ=a622a2mμ4+(a22(a221)μ21)r4a42a2m(a62a44a2m)μ2+2(a42(a42a2)μ2a2)r2a642a42+(a442a22+1)r2+a2Xϕψϕψ=2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2Xψtψt=2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2Xψϕψϕ=2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2Xψψψψ=2a2mμ4(a221)μ2r42(a42a2)μ2r2(a62a4)μ2a642a42+(a442a22+1)r2+a2\begin{array}{lcl} X_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & -\frac{a^{4} {\ell}^{2} + {\ell}^{2} r^{4} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2} - 2 \, m}{a^{2} + r^{2}} \\ X_{ \, t \, {\phi} }^{ \phantom{\, t}\phantom{\, {\phi}} } & = & -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, t \, {\psi} }^{ \phantom{\, t}\phantom{\, {\psi}} } & = & -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, r \, r }^{ \phantom{\, r}\phantom{\, r} } & = & \frac{a^{2} r^{2} + r^{4}}{{\ell}^{2} r^{6} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{4} + a^{4} + {\left(a^{4} {\ell}^{2} + 2 \, a^{2} - 2 \, m\right)} r^{2}} \\ X_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & -\frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1} \\ X_{ \, {\phi} \, t }^{ \phantom{\, {\phi}}\phantom{\, t} } & = & -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & -\frac{a^{6} {\ell}^{2} - 2 \, a^{2} m {\mu}^{4} + {\left(a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} r^{4} - a^{4} - 2 \, a^{2} m - {\left(a^{6} {\ell}^{2} - a^{4} - 4 \, a^{2} m\right)} {\mu}^{2} + 2 \, {\left(a^{4} {\ell}^{2} - {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} - a^{2}\right)} r^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ X_{ \, {\phi} \, {\psi} }^{ \phantom{\, {\phi}}\phantom{\, {\psi}} } & = & -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ X_{ \, {\psi} \, t }^{ \phantom{\, {\psi}}\phantom{\, t} } & = & -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, {\psi} \, {\phi} }^{ \phantom{\, {\psi}}\phantom{\, {\phi}} } & = & -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ X_{ \, {\psi} \, {\psi} }^{ \phantom{\, {\psi}}\phantom{\, {\psi}} } & = & \frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} r^{4} - 2 \, {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} r^{2} - {\left(a^{6} {\ell}^{2} - a^{4}\right)} {\mu}^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \end{array}
In [22]:
G0 == G
True\mathrm{True}

Einstein equation

The Ricci tensor of gg is

In [23]:
if not keep_Delta: # Ric = G.ricci() # print(Ric) pass
In [24]:
if not keep_Delta: # show(Ric.display_comp(only_nonredundant=True)) pass

Let us check that gg is a solution of the vacuum Einstein equation with the cosmological constant Λ=62\Lambda = - 6 \ell^2:

In [25]:
Lambda = -6*l^2 if not keep_Delta: # print(Ric == 2/3*Lambda*G) pass

Check of Eq. (2.10)

One must have a=ba=b and keep_Delta == False for the test to pass:

In [26]:
if a == b and not keep_Delta: G1 = - (1 + rho2*l^2 - 2*m/rho2) * dt*dt + rho2/Delta_r * dr*dr \ + rho2/Delta_th * dth*dth \ + sinth2/Xi_a^2*(rho2*Xi_a + 2*a^2*m/rho2*sinth2) * dph * dph \ + costh2/Xi_a^2*(rho2*Xi_a + 2*a^2*m/rho2*costh2) * dps * dps \ + a*sinth2/Xi_a*(rho2*l^2 - 2*m/rho2) * (dt*dph + dph*dt) \ + a*costh2/Xi_a*(rho2*l^2 - 2*m/rho2) * (dt*dps + dps*dt) \ + 2*m*a^2*sinth2*costh2/Xi_a^2/rho2 * (dph*dps + dps*dph) print(G1 == G)
True

String worldsheet

The string worldsheet as a 2-dimensional Lorentzian manifold:

In [27]:
W = Manifold(2, 'W', structure='Lorentzian') print(W)
2-dimensional Lorentzian manifold W

Let us assume that the string worldsheet is parametrized by (t,r)(t,r):

In [28]:
XW.<t,r> = W.chart(r't r:(0,+oo)') XW
(W,(t,r))\left(W,(t, r)\right)

The string embedding in Kerr-AdS spacetime, as an expansion about a straight string solution in AdS (Eq. (4.6)-(4.8) of the paper):

In [29]:
Mu0 = var('Mu0', latex_name=r'\mu_0', domain='real') Phi0 = var('Phi0', latex_name=r'\Phi_0', domain='real') Psi0 = var('Psi0', latex_name=r'\Psi_0', domain='real') beta1 = var('beta1', latex_name=r'\beta_1', domain='real') beta2 = var('beta2', latex_name=r'\beta_2', domain='real') cosTh0 = Mu0 sinTh0 = sqrt(1 - Mu0^2) mu_s = Mu0 + a^2*function('mu_1')(r) ph_s = Phi0 + beta1*a*l^2*t + beta1*a*function('phi_1')(r) ps_s = Psi0 + beta2*a*l^2*t + beta2*a*function('psi_1')(r) F = W.diff_map(M, {(XW, BL): [t, r, mu_s, ph_s, ps_s]}, name='F') F.display()
F:WM(t,r)(t,r,μ,ϕ,ψ)=(t,r,a2μ1(r)+μ0,aβ12t+aβ1ϕ1(r)+Φ0,aβ22t+aβ2ψ1(r)+Ψ0)\begin{array}{llcl} F:& W & \longrightarrow & \mathcal{M} \\ & \left(t, r\right) & \longmapsto & \left(t, r, {\mu}, {\phi}, {\psi}\right) = \left(t, r, a^{2} \mu_{1}\left(r\right) + {\mu_0}, a {\beta_1} {\ell}^{2} t + a {\beta_1} \phi_{1}\left(r\right) + {\Phi_0}, a {\beta_2} {\ell}^{2} t + a {\beta_2} \psi_{1}\left(r\right) + {\Psi_0}\right) \end{array}
In [30]:
F.jacobian_matrix()
(10010a2rμ1(r)aβ12aβ1rϕ1(r)aβ22aβ2rψ1(r))\left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \\ 0 & a^{2} \frac{\partial}{\partial r}\mu_{1}\left(r\right) \\ a {\beta_1} {\ell}^{2} & a {\beta_1} \frac{\partial}{\partial r}\phi_{1}\left(r\right) \\ a {\beta_2} {\ell}^{2} & a {\beta_2} \frac{\partial}{\partial r}\psi_{1}\left(r\right) \end{array}\right)

Induced metric on the string worldsheet

The string worldsheet metric is the metric gg induced by the spacetime metric GG, i.e. the pullback of GG by the embedding FF:

In [31]:
g = W.metric() g.set(F.pullback(G))
In [32]:
# g[0,0].expr().factor()

Nambu-Goto action

In [33]:
detg = g.determinant().expr()

Expanding at second order in aa:

In [34]:
detg_a2 = detg.series(a, 3).truncate().simplify_full() detg_a2
((μ02a2β22(μ021)a2β12+2μ02a2β22(μ021)a2β1)42)r4+((μ021)a2β124r8+2(μ021)a2β122r64(μ021)a2β12mr2+4(μ021)a2β12m2(4(μ021)a2β122m(μ021)a2β12)r4)rϕ1(r)2(μ02a2β224r8+2μ02a2β222r64μ02a2β22mr2+4μ02a2β22m2(4μ02a2β222mμ02a2β22)r4)rψ1(r)2+a22(2(μ02a2β2(μ021)a2β1)21)mr22r4+r22m\frac{{\left({\left({\mu_0}^{2} a^{2} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} + 2 \, {\mu_0}^{2} a^{2} {\beta_2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}\right)} {\ell}^{4} - {\ell}^{2}\right)} r^{4} + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{4} r^{8} + 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} r^{6} - 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m r^{2} + 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m^{2} - {\left(4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} m - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2}\right)} r^{4}\right)} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} r^{8} + 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} r^{6} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m r^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m^{2} - {\left(4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} m - {\mu_0}^{2} a^{2} {\beta_2}^{2}\right)} r^{4}\right)} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} + a^{2} - 2 \, {\left(2 \, {\left({\mu_0}^{2} a^{2} {\beta_2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}\right)} {\ell}^{2} - 1\right)} m - r^{2}}{{\ell}^{2} r^{4} + r^{2} - 2 \, m}

The Nambu-Goto Lagrangian at second order in aa:

In [35]:
L_a2 = (sqrt(-detg_a2)).series(a, 3).truncate().simplify_full() L_a2
((μ02a2β22(μ021)a2β12+2μ02a2β22(μ021)a2β1)422)r4+((μ021)a2β124r8+2(μ021)a2β122r64(μ021)a2β12mr2+4(μ021)a2β12m2(4(μ021)a2β122m(μ021)a2β12)r4)rϕ1(r)2(μ02a2β224r8+2μ02a2β222r64μ02a2β22mr2+4μ02a2β22m2(4μ02a2β222mμ02a2β22)r4)rψ1(r)2+a24((μ02a2β2(μ021)a2β1)21)m2r22(2r4+r22m)-\frac{{\left({\left({\mu_0}^{2} a^{2} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} + 2 \, {\mu_0}^{2} a^{2} {\beta_2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}\right)} {\ell}^{4} - 2 \, {\ell}^{2}\right)} r^{4} + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{4} r^{8} + 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} r^{6} - 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m r^{2} + 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m^{2} - {\left(4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} m - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2}\right)} r^{4}\right)} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} r^{8} + 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} r^{6} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m r^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m^{2} - {\left(4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} m - {\mu_0}^{2} a^{2} {\beta_2}^{2}\right)} r^{4}\right)} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} + a^{2} - 4 \, {\left({\left({\mu_0}^{2} a^{2} {\beta_2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}\right)} {\ell}^{2} - 1\right)} m - 2 \, r^{2}}{2 \, {\left({\ell}^{2} r^{4} + r^{2} - 2 \, m\right)}}
In [36]:
L_a2.numerator()
μ02a2β124r8rϕ1(r)2+μ02a2β224r8rψ1(r)2+a2β124r8rϕ1(r)22μ02a2β122r6rϕ1(r)2+2μ02a2β222r6rψ1(r)2+4μ02a2β122mr4rϕ1(r)24μ02a2β222mr4rψ1(r)2+μ02a2β124r4μ02a2β224r4+2a2β122r6rϕ1(r)2+2μ02a2β14r42μ02a2β24r44a2β122mr4rϕ1(r)2a2β124r4μ02a2β12r4rϕ1(r)2+μ02a2β22r4rψ1(r)22a2β14r4+4μ02a2β12mr2rϕ1(r)24μ02a2β22mr2rψ1(r)24μ02a2β12m2rϕ1(r)2+a2β12r4rϕ1(r)2+4μ02a2β22m2rψ1(r)24a2β12mr2rϕ1(r)24μ02a2β12m+4μ02a2β22m+4a2β12m2rϕ1(r)2+4a2β12m+22r4a2+2r24m-{\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{4} r^{8} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} r^{8} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} + a^{2} {\beta_1}^{2} {\ell}^{4} r^{8} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - 2 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{2} r^{6} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} r^{6} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{2} m r^{4} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} m r^{4} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} + {\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{4} r^{4} - {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} r^{4} + 2 \, a^{2} {\beta_1}^{2} {\ell}^{2} r^{6} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + 2 \, {\mu_0}^{2} a^{2} {\beta_1} {\ell}^{4} r^{4} - 2 \, {\mu_0}^{2} a^{2} {\beta_2} {\ell}^{4} r^{4} - 4 \, a^{2} {\beta_1}^{2} {\ell}^{2} m r^{4} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - a^{2} {\beta_1}^{2} {\ell}^{4} r^{4} - {\mu_0}^{2} a^{2} {\beta_1}^{2} r^{4} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + {\mu_0}^{2} a^{2} {\beta_2}^{2} r^{4} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} - 2 \, a^{2} {\beta_1} {\ell}^{4} r^{4} + 4 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} m r^{2} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m r^{2} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} m^{2} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + a^{2} {\beta_1}^{2} r^{4} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m^{2} \frac{\partial}{\partial r}\psi_{1}\left(r\right)^{2} - 4 \, a^{2} {\beta_1}^{2} m r^{2} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_1} {\ell}^{2} m + 4 \, {\mu_0}^{2} a^{2} {\beta_2} {\ell}^{2} m + 4 \, a^{2} {\beta_1}^{2} m^{2} \frac{\partial}{\partial r}\phi_{1}\left(r\right)^{2} + 4 \, a^{2} {\beta_1} {\ell}^{2} m + 2 \, {\ell}^{2} r^{4} - a^{2} + 2 \, r^{2} - 4 \, m
In [37]:
L_a2.denominator()
22r4+2r24m2 \, {\ell}^{2} r^{4} + 2 \, r^{2} - 4 \, m

Euler-Lagrange equations

In [38]:
def euler_lagrange(lagr, qs, var): r""" Derive the Euler-Lagrange equations from a given Lagrangian. INPUT: - ``lagr`` -- symbolic expression representing the Lagrangian density - ``qs`` -- either a single symbolic function or a list/tuple of symbolic functions, representing the `q`'s; these functions must appear in ``lagr`` up to at most their first derivatives - ``var`` -- either a single variable, typically `t` (1-dimensional problem) or a list/tuple of symbolic variables OUTPUT: - list of Euler-Lagrange equations; if only one function is involved, the single Euler-Lagrannge equation is returned instead. """ if not isinstance(qs, (list, tuple)): qs = [qs] if not isinstance(var, (list, tuple)): var = [var] n = len(qs) d = len(var) qv = [SR.var('qxxxx{}'.format(q)) for q in qs] dqv = [[SR.var('qxxxx{}_{}'.format(q, v)) for v in var] for q in qs] subs = {qs[i](*var): qv[i] for i in range(n)} subs_inv = {qv[i]: qs[i](*var) for i in range(n)} for i in range(n): subs.update({diff(qs[i](*var), var[j]): dqv[i][j] for j in range(d)}) subs_inv.update({dqv[i][j]: diff(qs[i](*var), var[j]) for j in range(d)}) lg = lagr.substitute(subs) eqs = [] for i in range(n): dLdq = diff(lg, qv[i]).simplify_full() dLdq = dLdq.substitute(subs_inv) ddL = 0 for j in range(d): h = diff(lg, dqv[i][j]).simplify_full() h = h.substitute(subs_inv) ddL += diff(h, var[j]) eqs.append((dLdq - ddL).simplify_full() == 0) if n == 1: return eqs[0] return eqs

We compute the Euler-Lagrange equations at order a2a^2 for ϕ1\phi_1 and ψ1\psi_1:

In [39]:
eqs = euler_lagrange(L_a2, [phi_1, psi_1], r) eqs
[2(2(μ021)a2β122r3+(μ021)a2β12r)rϕ1(r)+((μ021)a2β122r4+(μ021)a2β12r22(μ021)a2β12m)2(r)2ϕ1(r)=0,2(2μ02a2β222r3+μ02a2β22r)rψ1(r)(μ02a2β222r4+μ02a2β22r22μ02a2β22m)2(r)2ψ1(r)=0]\left[2 \, {\left(2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} r^{3} + {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} r\right)} \frac{\partial}{\partial r}\phi_{1}\left(r\right) + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} r^{4} + {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} r^{2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m\right)} \frac{\partial^{2}}{(\partial r)^{2}}\phi_{1}\left(r\right) = 0, -2 \, {\left(2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} r^{3} + {\mu_0}^{2} a^{2} {\beta_2}^{2} r\right)} \frac{\partial}{\partial r}\psi_{1}\left(r\right) - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} r^{4} + {\mu_0}^{2} a^{2} {\beta_2}^{2} r^{2} - 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m\right)} \frac{\partial^{2}}{(\partial r)^{2}}\psi_{1}\left(r\right) = 0\right]