Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 91
%md ## Inellipse of convex quadrilateral ### Inellipse The word "inellipse" is used in place of "ellipse inscribed". ![Quadrilateral Inellipse](QuadrilateralInellipse.png "Drawing of a quadrilateral inellipse") In the worsheet we simply compute the drawing of a quadrilateral inellipse. Some of the key points in Horvitz's paper : - using Marden's theorem - center of quadrilateral inellipse is lying in the segment linking midpoints of diagonals ### References - 2003 - Horvitz - The locus of centers of ellipses inscribed in quadrilaterals - Worlfram - Area inellipse given areal coordinates of center - http://mathworld.wolfram.com/Inellipse.html - Wolfram - Areal coordinates of point with respect to triangle - http://mathworld.wolfram.com/ArealCoordinates.html

Inellipse of convex quadrilateral

Inellipse

The word "inellipse" is used in place of "ellipse inscribed".

Quadrilateral Inellipse

In the worsheet we simply compute the drawing of a quadrilateral inellipse.

Some of the key points in Horvitz's paper :

  • using Marden's theorem

  • center of quadrilateral inellipse is lying in the segment linking midpoints of diagonals

### References

#%hide import sys sys.path.append('./modules') import DrawingConstants as dc %load ./modules/RationalTrigonometry.sage %load ./modules/EuclideanGeometry.sage %load ./modules/InversiveGeometry.sage %load ./modules/PinwheelGeometry.sage %load ./modules/TrilinearCoordinates.sage %load ./modules/MatrixRepresentationConics.sage # Alias from dc module [nd] = [dc.nd] [c0,c1,c2,c3,c4,c5,c6,c7,c8] = [dc.c0,dc.c1,dc.c2,dc.c3,dc.c4,dc.c5,dc.c6,dc.c7,dc.c8] [ls] = [dc.ls] [th1,th2,th3,th4] = [dc.th1,dc.th2,dc.th3,dc.th4] [fs1,fs2,fs3,fs4,fs5] = [dc.fs1,dc.fs2,dc.fs3,dc.fs4,dc.fs5]
DrawingConstants module loading ... ...DrawingConstants module loaded RationalTrigonometry (RT) module loading ... ...RationalTrigonometry module loaded EuclideanGeometry (EG) module loading ... ...EuclideanGeometry module loaded InversiveGeometry(IG) module loading ... ...EuclideanGeometry module loaded Pinwheel Geometry(PWG) module loading ... ...Pinwheel Geometry module loaded TrilinearCoordinates (TC) module loading ... ...Trilinear coordinates module loaded Matrix representation of Conics (MR) module loading ... ... Matrix representation of Conics module loaded
# Drawing using Horwitz notation # Initialize graphics g = Graphics() # Parameters s = 4 t = 2 # Set convex quadrilateral ABDC A = [0,0] ; B = [1,0] ; C = [0,1] ; D = [s,t] pA = vector(A) ; tA = text("$A$",pA,fontsize=fs2,color=c1); g += tA pB = vector(B) ; tB = text("$B$",pB,fontsize=fs2,color=c1); g += tB pC = vector(C) ; tC = text("$C$",pC,fontsize=fs2,color=c1); g += tC pD = vector(D) ; tD = text("$D$",pD,fontsize=fs2,color=c1); g += tD g += line([pA,pB,pD,pC,pA],color=c1,thickness=th2) # Intersecting L2 and L3 : x = 0 and y = -t/(s-1) E = [0,-t/(s-1)] pE = vector(E) ; tE = text("$E$",pE,fontsize=fs2,color=c1); g += tE g += line([pA,pE,pB],color=c1,thickness=th1,linestyle=ls) # Set midpoints of diagonals M1 = [1/2,1/2] ; M2 = [1/2*s,1/2*t] pM1 = vector(M1) ; tM1 = text("$M_1$",pM1,fontsize=fs2,color=c1); g += tM1 pM2 = vector(M2) ; tM2 = text("$M_2$",pM2,fontsize=fs2,color=c1); g += tM2 g += line([pA,pD],color=c1,thickness=th1,linestyle=ls) g += line([pB,pC],color=c1,thickness=th1,linestyle=ls) g += line([pM1,pM2],color=c1,thickness=th1) # segment Z, joining diagonals midpoints # equation of line M1M2 : y = L(x) = 1/2*(s - t + 2*x(t - 1))/(s - 1) with x in [1/2,1/2*s] x = var('x') L(x) = 1/2*(s - t + 2*x*(t - 1))/(s - 1) # Set center of the inellipse h = 4/3 ; k = L(h) #; print "L(h) = k = ",k # 7/9 G = [h,k] pG = vector(G) ; tG = text("$G$",pG,fontsize=fs2,color=c1); g += tG # From h,k deducing other parameters for ellipse and points t1 = 2*h - 1 - 2*k*(s-1)/t ; t2 = 1 - 2*h ; t3 = 1 - t1 - t2 z1 = 0 ; z2 = 1 ; z3 = -t/(s - 1)*I e1 = (t2*z3 + t3*z2)/(t2 + t3) ; e2 = (t3*z1 + t1*z3)/(t3 + t1) ; e3 = (t1*z2 + t2*z1)/(t1 + t2) E1 = [e1.real(),e1.imag()]; pE1 = vector(E1) ; tE1 = text("$E_1$",pE1,fontsize=fs2,color=c1); g += tE1 E2 = [e2.real(),e2.imag()]; pE2 = vector(E2) ; tE2 = text("$E_2$",pE2,fontsize=fs2,color=c1); g += tE2 E3 = [e3.real(),e3.imag()]; pE3 = vector(E3) ; tE3 = text("$E_3$",pE3,fontsize=fs2,color=c1); g += tE3 # Drawing symetric points if we want five points on the ellipse, without computing focii pE4 = Symetric(pG,pE1); tE4 = text("$E_4$",pE4,fontsize=fs2,color=c1); g += tE4 pE5 = Symetric(pG,pE2); tE5 = text("$E_5$",pE5,fontsize=fs2,color=c1); g += tE5 # Compute focii w = var('w') focii(w) = ((s - 1)*w^2 + (I*t*(t1 + t2) + (s - 1)*(t2 - 1))*w - I*t1*t).factor() #; print "focii(w) = ",focii(w) res = solve([focii == 0],w) #; print "res = ",res # Converting to numeric values, roots of equation w1 = res[0].rhs().n() #; print "w1 = ",w1 w2 = res[1].rhs().n() #; print "w2 = ",w2 W1 = [w1.real(),w1.imag()]; pW1 = vector(W1) #; tW1 = text("$W_1$",pW1,fontsize=fs2,color=c1); g += tW1 W2 = [w2.real(),w2.imag()]; pW2 = vector(W2) #; tW2 = text("$W_2$",pW2,fontsize=fs2,color=c1); g += tW2 # Draw the ellipsis after major-axis and minor-axis lengths computation f = RT_Distance(pG,pW1).n() p = ((RT_Distance(pW1,pE1) + RT_Distance(pW2,pE1))/2).n() # choosing any point (here E1) on ellipse q = sqrt(p^2 - f^2).n() if pW1[0] != pW2[0] : theta = atan((pW1[1]-W2[1])/(pW1[0]-pW2[0])) else: theta = pi/2 g += ellipse(center=pG,r1=p,r2=q,angle=theta,color=c2) # Check formula for squared area of ellipse SquaredArea_Ellipse = (pi/(2*(s-1)))^2*(2*h - 1)*(s + 2*h*(t - 1))*(s - 2*h) print "SquaredArea_Ellipse = ",SquaredArea_Ellipse.n()," vs (pi*p*q)^2 = ",((pi*p*q)^2).n() # Check formula area for in ellipse triangle CDE using areal coordinates of center G of ellipse Area_CDE = TriangleArea(pC,pD,pE) Area_CDG = TriangleArea(pC,pD,pG) ; k = Area_CDG / Area_CDE Area_DEG = TriangleArea(pD,pE,pG) ; l = Area_DEG / Area_CDE Area_ECG = TriangleArea(pE,pC,pG) ; m = Area_ECG / Area_CDE SquaredArea = (pi*Area_CDE)^2*(1 - 2*k)*(1 - 2*l)*(1 - 2*m) print "SquaredArea = ",SquaredArea.n() # Computing maximum for squared area hh = var('hh') f0(hh) = (pi/(2*(s-1)))^2*(2*hh - 1)*(s + 2*hh*(t - 1))*(s - 2*hh); print "Solving max of f0(hh) = ",f0 print "f0(1/2) = ",f0(1/2).n()," vs f0(s/2) = ",f0(s/2).n() f1(hh) = f0.derivative(hh).factor(); print "f1 = ",f1 res = solve([f1],hh) hh0 = res[0].rhs().n(); print "root for extrema hh0 = ",hh0 # hh0 = 4/3 hh1 = res[1].rhs().n(); print "root for extrema hh1 = ",hh1 # hh1 = -1 print "f0(hh0) = ",f0(hh0).n() # Show graphics show(g,axes=False,aspect_ratio=True) #save(g,'QuadrilateralInellipse.png',axes=False,aspect_ratio=True)
SquaredArea_Ellipse = 4.06156559715611 vs (pi*p*q)^2 = 4.06156559715612 SquaredArea = 4.06156559715611 Solving max of f0(hh) = hh |--> -1/9*pi^2*(2*hh - 1)*(hh + 2)*(hh - 2) f0(1/2) = 0.000000000000000 vs f0(s/2) = 0.000000000000000 f1 = hh |--> -2/9*pi^2*(3*hh - 4)*(hh + 1) root for extrema hh0 = 1.33333333333333 root for extrema hh1 = -1.00000000000000 f0(hh0) = 4.06156559715611