Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 1572
Kernel: Python 2 (SageMath)

Functions

def function_name():

*Your code goes here* value = "Do something useful" return value

def function_name(parameter1, parameter2): #Your code goes here

value = parameter1 return value

test = function_name("Hello", ”Functions")

def hello_functions(): value = "Hello World!" return value hello = hello_functions() print hello # Define a function to print a list # You can pass your own list to the function to perform some calculates on it def print_list(my_list): for item in my_list: print item test_list = [1,2,3] print_list(test_list)

Functions and Lists

Let us write a function to calculate sum of all numbers given in a list.

Play with the function sum_list and calculate sum of 2 different lists:

Sum of arithmetic progression 1,2,...100. Sum of series 1,1/2, 1/3, 1/4 …, 1/100.
# Define a function to calculate sum of all the elements in the list def sum_list(list): total = 0 # To store the sum of all the numbers in the list # Loop over the list and add # each value of the list to total for item in list: total += item # adds the item to the total; is same as total = total + item # return total return total #If you do not return total nothing will be passed!! test = [1,2,3] print sum_list(test) # The value returned by the function sum_list will be printed out # Calculate the sum of all numbers from 1 to 100 # Calculate the sum of the series 1, 1/2, 1/3, 1/4, ..., 1/100

Functions and Lists - Exercise

Now lets try to write a function to get all codons from the sequence: 'ACGATCGATCGTACGATCGATACG'

def get_codons(seq): #Make an empty list that will contain codons #Loop over the seq to get all codons #for codon in range(?,len(seq),?): # Append your list with the codon from seq # You can return the list containing codons #return #your list #make sure that the return function is indented properly!! sequence = 'ACGATCGATCGTACGATCGATACG' #print ?(?) # call the function and pass the sequence to the function

Functions and Dictionaries

Write a function to calculate number of times a codon is used in the sequence: 'ACGATCGATCGTACGATCGATACG’.

Remember a dictionary can be defined as:

my_var = {'key':'value'}

def get_counts(seq): # Make an empty dictionary to store codons for i in range(0,len(seq),3): codon = seq[i:i+3] # If the codon is already within your # dictionary then increase its count # otherwise add it to the dictionary with and assign it's count as 1 return # count #Make sure that return is indented properly sequence = 'ACGATCGATCGTACGATCGATACG' print get_codon_counts(sequence)

Functions: Exercise

  1. Make a function get_counts and count the number of times each dinucleotide (AA, AC, AT, AG, …., GC, GG) occurs in a sequence.

  2. Use HIV_gag.fasta sequence given below to calculate nucleotide counts, dinucleotide counts and codon counts using the same function get_counts.

  3. Make a function translate_dna to translate each codon into amino acid according to the genetic code. You can use the code given in the code hint to create a dictionary for the genetic code.

  4. Translate hiv_gag sequence into its protein sequence

#HIV-1 gag sequence hiv_gag = 'ATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGAAAAAAGCACAGCAAGCAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACAAGATTTAAACACCATGCTAAACACAGTGGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAAATTTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGAATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAATGCGAACCCAGATTGTAAGACTATTTTAAAAGCATTGGGACCAGCGGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAGGCAAGAGTTTTGGCTGAAGCAATGAGCCAAGTAACAAATTCAGCTACCATAATGATGCAGAGAGGCAATTTTAGGAACCAAAGAAAGATTGTTAAGTGTTTCAATTGTGGCAAAGAAGGGCACACAGCCAGAAATTGCAGGGCCCCTAGGAAAAAGGGCTGTTGGAAATGTGGAAAGGAAGGACACCAAATGAAAGATTGTACTGAGAGACAGGCTAATTTTTTAGGGAAGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCAACAGCCCCACCAGAAGAGAGCTTCAGGTCTGGGGTAGAGACAACAACTCCCCCTCAGAAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGGTCACTCTTTGGCAACGACCCCTCGTCACAATAAAGATAGGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGAGCAGATGATACAGTATTAGAAGAAATGAGTTTGCCAGGAAGATGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTATCAAAGTAAGACAGTATGATCAGATACTCATAGAAATCTGTGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAATCTGTTGACTCAGATTGGTTGCACTTTAAATTTTCCCATTAGCCCTATTGAGACTGTACCAGTAAAATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAGATGGAAAAGGAAGGGAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCCATAAAGAAAAAAGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTGGGAAGTTCAATTAGGAATACCACATCCCGCAGGGTTAAAAAAGAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCATATTTTTCAGTTCCCTTAGATGAAGACTTCAGGAAGTATACTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAGCTGAGACAACATCTGTTGAGGTGGGGACTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAGTGCTGCCAGAAAAAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGGGAAATTGAATTGGGCAAGTCAGATTTACCCAGGGATTAAAGTAAGGCAATTATGTAAACTCCTTAGAGGAACCAAAGCACTAACAGAAGTAATACCACTAACAGAAGAAGCAGAGCTAGAACTGGCAGAAAACAGAGAGATTCTAAAAGAACCAGTACATGGAGTGTATTATGACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGGGCAAGGCCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAATCTGAAAACAGGAAAATATGCAAGAATGAGGGGTGCCCACACTAATGATGTAAAACAATTAACAGAGGCAGTGCAAAAAATAACCACAGAAAGCATAGTAATATGGGGAAAGACTCCTAAATTTAAACTGCCCATACAAAAGGAAACATGGGAAACATGGTGGACAGAGTATTGGCAAGCCACCTGGATTCCTGAGTGGGAGTTTGTTAATACCCCTCCCTTAGTGAAATTATGGTACCAGTTAGAGAAAGAACCCATAGTAGGAGCAGAAACCTTCTATGTAGATGGGGCAGCTAACAGGGAGACTAAATTAGGAAAAGCAGGATATGTTACTAATAGAGGAAGACAAAAAGTTGTCACCCTAACTGACACAACAAATCAGAAGACTGAGTTACAAGCAATTTATCTAGCTTTGCAGGATTCGGGATTAGAAGTAAACATAGTAACAGACTCACAATATGCATTAGGAATCATTCAAGCACAACCAGATCAAAGTGAATCAGAGTTAGTCAATCAAATAATAGAGCAGTTAATAAAAAAGGAAAAGGTCTATCTGGCATGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATAAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTTTTAGATGGAATAGATAAGGCCCAAGATGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTTAACCTGCCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAAGGAGAAGCCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATTTAGAAGGAAAAGTTATCCTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAAGCAGAAGTTATTCCAGCAGAAACAGGGCAGGAAACAGCATATTTTCTTTTAAAATTAGCAGGAAGATGGCCAGTAAAAACAATACATACTGACAATGGCAGCAATTTCACCGGTGCTACGGTTAGGGCCGCCTGTTGGTGGGCGGGAATCAAGCAGGAATTTGGAATTCCCTACAATCCCCAAAGTCAAGGAGTAGTAGAATCTATGAATAAAGAATTAAAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACATCTTAAGACAGCAGTACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAAATCCACTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGTGAAGGGGCAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAGATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGATTAGT' #### Use this code to translate codons into amino acids according to the genetic code bases = ["T","C","A","G"] codons = [a+b+c for a in bases for b in bases for c in bases] amino_acids = "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG" codon_table = dict(zip(codons, amino_acids)) ####
# Duplicate of the previous cell (just in case you loose the sequence or the code) #HIV-1 gag sequence ATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGAAAAAAGCACAGCAAGCAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTGATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACAAGATTTAAACACCATGCTAAACACAGTGGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAAATTTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGAATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCTTTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACCTTGTTGGTCCAAAATGCGAACCCAGATTGTAAGACTATTTTAAAAGCATTGGGACCAGCGGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAGGCAAGAGTTTTGGCTGAAGCAATGAGCCAAGTAACAAATTCAGCTACCATAATGATGCAGAGAGGCAATTTTAGGAACCAAAGAAAGATTGTTAAGTGTTTCAATTGTGGCAAAGAAGGGCACACAGCCAGAAATTGCAGGGCCCCTAGGAAAAAGGGCTGTTGGAAATGTGGAAAGGAAGGACACCAAATGAAAGATTGTACTGAGAGACAGGCTAATTTTTTAGGGAAGATCTGGCCTTCCTACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCAACAGCCCCACCAGAAGAGAGCTTCAGGTCTGGGGTAGAGACAACAACTCCCCCTCAGAAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAACTTCCCTCAGGTCACTCTTTGGCAACGACCCCTCGTCACAATAAAGATAGGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGAGCAGATGATACAGTATTAGAAGAAATGAGTTTGCCAGGAAGATGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTATCAAAGTAAGACAGTATGATCAGATACTCATAGAAATCTGTGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAATCTGTTGACTCAGATTGGTTGCACTTTAAATTTTCCCATTAGCCCTATTGAGACTGTACCAGTAAAATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCATTGACAGAAGAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAGATGGAAAAGGAAGGGAAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCCATAAAGAAAAAAGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTGGGAAGTTCAATTAGGAATACCACATCCCGCAGGGTTAAAAAAGAAAAAATCAGTAACAGTACTGGATGTGGGTGATGCATATTTTTCAGTTCCCTTAGATGAAGACTTCAGGAAGTATACTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTTATCTATCAATACATGGATGATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAGCTGAGACAACATCTGTTGAGGTGGGGACTTACCACACCAGACAAAAAACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAGTGCTGCCAGAAAAAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGGGAAATTGAATTGGGCAAGTCAGATTTACCCAGGGATTAAAGTAAGGCAATTATGTAAACTCCTTAGAGGAACCAAAGCACTAACAGAAGTAATACCACTAACAGAAGAAGCAGAGCTAGAACTGGCAGAAAACAGAGAGATTCTAAAAGAACCAGTACATGGAGTGTATTATGACCCATCAAAAGACTTAATAGCAGAAATACAGAAGCAGGGGCAAGGCCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAATCTGAAAACAGGAAAATATGCAAGAATGAGGGGTGCCCACACTAATGATGTAAAACAATTAACAGAGGCAGTGCAAAAAATAACCACAGAAAGCATAGTAATATGGGGAAAGACTCCTAAATTTAAACTGCCCATACAAAAGGAAACATGGGAAACATGGTGGACAGAGTATTGGCAAGCCACCTGGATTCCTGAGTGGGAGTTTGTTAATACCCCTCCCTTAGTGAAATTATGGTACCAGTTAGAGAAAGAACCCATAGTAGGAGCAGAAACCTTCTATGTAGATGGGGCAGCTAACAGGGAGACTAAATTAGGAAAAGCAGGATATGTTACTAATAGAGGAAGACAAAAAGTTGTCACCCTAACTGACACAACAAATCAGAAGACTGAGTTACAAGCAATTTATCTAGCTTTGCAGGATTCGGGATTAGAAGTAAACATAGTAACAGACTCACAATATGCATTAGGAATCATTCAAGCACAACCAGATCAAAGTGAATCAGAGTTAGTCAATCAAATAATAGAGCAGTTAATAAAAAAGGAAAAGGTCTATCTGGCATGGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATAAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTTTTAGATGGAATAGATAAGGCCCAAGATGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTTAACCTGCCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTAAAAGGAGAAGCCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATTTAGAAGGAAAAGTTATCCTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAAGCAGAAGTTATTCCAGCAGAAACAGGGCAGGAAACAGCATATTTTCTTTTAAAATTAGCAGGAAGATGGCCAGTAAAAACAATACATACTGACAATGGCAGCAATTTCACCGGTGCTACGGTTAGGGCCGCCTGTTGGTGGGCGGGAATCAAGCAGGAATTTGGAATTCCCTACAATCCCCAAAGTCAAGGAGTAGTAGAATCTATGAATAAAGAATTAAAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACATCTTAAGACAGCAGTACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAAATCCACTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGTGAAGGGGCAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCAAAGATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGATTAGT #### Use this code to translate codons into amino acids according to the genetic code bases = ["T","C","A","G"] codons = [a+b+c for a in bases for b in bases for c in bases] amino_acids = "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG" codon_table = dict(zip(codons, amino_acids)) ####

Modules

A module is a file consisting of Python code.

A module allows you to logically organize your Python code.

  • To split it into several files for easier maintenance.

  • To reuse that handy function that you’ve written in several programs, without copying it into every script.

Remember we wrote a function to count the number of times a codon is used. We can store such functions in file so that we can use them later. We have stored get_counts and translate_dna into a file called dna_tools.py

You can import a module in Python using its file name.

Now load your dna_tools module and try to use both functions: get_counts and translate_dna.

import dna_tools #This calls the file dna_tools.py stored in the same folder print dna_tools.get_counts('ATCGATCATGAC') # You can also rename a module when you import it in Python and call the function inside the module. import dna_tools as tools print tools.get_counts('ATCGATCATGAC')

Built-in Modules

Module is a little toolbox or kit which is a collection of functions

Package is a collection of modules

Some important (default) modules: - math - itertools - random - sys - dir - And many more: https://docs.python.org/2/library/index.html

# Use the math package and find the solutions to the following: # Square root of 10 # Absolute value of -5.1 # 2^10 # Use random module to generate a random number between 0 and 1. # Use random module to generate 10 random integers between 0 and 20.

Built-in Modules: Exercise

  1. Generate a random number, ran. If ran is 0 then print 'A', if ran is 1 then print 'T', if ran is 2 then print 'G', and if ran is 3 then print 'C'.

  2. Can you use another built-in function in random modules to directly generate 'ATGC's?

  3. Generate a dna sequence which is 500 bases long using the random module.

  4. Use the dna_tools module created by you to generate a di-nucleotide profile (i.e. frequency of AA, AT, ….GG) and tri-nucleotide profile of the dna sequence.

# Check the https://docs.python.org/2/library/index.html to see how to generate random numbers # Import a module which you can use to create random numbers # Hint: use if elif conditions # Import a module which you can use to create random numbers # Use for loop to create random DNA sequence of length 500 # Import dna_tools and access the functions defined in dna_tools