CoCalc Public Filesversions.ipynbOpen with one click!
Author: Alex B
Views : 221
Description: Jupyter notebook versions.ipynb
Compute Environment: Ubuntu 18.04 (Deprecated)
In [1]:
import nltk import sklearn #from pyspark import SparkFiles #from pyspark import SparkConf, SparkContext from __future__ import print_function import torch print ('The nltk version is {}.'.format(nltk.__version__)) print ('The scikit-learn version is {}.'.format(sklearn.__version__)) print( "blah2018_04_06") torch.version.__version__
The nltk version is 3.4. The scikit-learn version is 0.22.2.post1. blah2018_04_06
'1.3.1'
In [2]:
from plotly import __version__ print (__version__)
4.3.0
In [3]:
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
In [4]:
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
In [5]:
init_notebook_mode(connected=True)
In [6]:
import plotly.plotly as py #import cufflinks as cf import pandas as pd import numpy as np #print (cf.__version__)
--------------------------------------------------------------------------- ImportError Traceback (most recent call last) <ipython-input-6-8eb0ea406c05> in <module>() ----> 1 import plotly.plotly as py 2 #import cufflinks as cf 3 import pandas as pd 4 import numpy as np 5 #print (cf.__version__) /ext/anaconda-2019.03/lib/python3.7/site-packages/plotly/plotly/__init__.py in <module>() 2 from _plotly_future_ import _chart_studio_error 3 ----> 4 _chart_studio_error("plotly") /ext/anaconda-2019.03/lib/python3.7/site-packages/_plotly_future_/__init__.py in _chart_studio_error(submodule) 47 chart_studio.{submodule} module instead. 48 """.format( ---> 49 submodule=submodule 50 ) 51 ) ImportError: The plotly.plotly module is deprecated, please install the chart-studio package and use the chart_studio.plotly module instead.
In [15]:
import tensorflow as tf hello = tf.constant('Yo bro') #sess = tf.Session() #sess.run(hello) hello
<tf.Tensor: shape=(), dtype=string, numpy=b'Yo bro'>
In [8]:
print (tf.__version__)
2.1.0
In [10]:
a = tf.constant(10) b = tf.constant(32) #sess.run(a + b) print(a,b)
tf.Tensor(10, shape=(), dtype=int32) tf.Tensor(32, shape=(), dtype=int32)
In [ ]:
#sess.close()
In [ ]: