Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 28
%md **PROYECTO DE ECUACIONES DIFERENCIALES** **INTEGRANTES:** *JOHANNA ERMELINDA OSORIO RUIZ CARNET OR12017* *JOSE LUIS VILLALOBOS MARTINEZ CARNET VM12038*

PROYECTO DE ECUACIONES DIFERENCIALES

INTEGRANTES:

JOHANNA ERMELINDA OSORIO RUIZ CARNET OR12017

JOSE LUIS VILLALOBOS MARTINEZ CARNET VM12038

Problema 1: Resolver la ecuación diferencial con SageMath. Consejo: Mira documentación en el libro de texto. Por su propia ecuación diferencial personal, sean P y Q dos dígitos distintos de cero en el número de identificación de estudiante, y consideran la ecuación diferencial.

dy/dx=cos(xqy)/pdy/dx= cos(x-qy)/p

Encontrar una solución general simbólica mediante un sistema de álgebra computacional y / o alguna combinación de las técnicas que se enumeran en este capítulo (Edwards y Penney

reset() a,b,x,C,z=var('a,b,x,C,z') y = function('y')(x) solution = desolve(diff(y,x) == (1/11)*cos(x-14*y) , y,ivar=x,contrib_ode=True,show_method=True) mySolution=solution[0][0] show(mySolution)
11153log(3cos(x+14y(x))+3+5sin(x+14y(x))3cos(x+14y(x))+35sin(x+14y(x)))=C\displaystyle -\frac{11}{15} \, \sqrt{3} \log\left(-\frac{\sqrt{3} \cos\left(-x + 14 \, y\left(x\right)\right) + \sqrt{3} + 5 \, \sin\left(-x + 14 \, y\left(x\right)\right)}{\sqrt{3} \cos\left(-x + 14 \, y\left(x\right)\right) + \sqrt{3} - 5 \, \sin\left(-x + 14 \, y\left(x\right)\right)}\right) = C

b) Determinar la solución particular simbólica correspondiente con varias condiciones iniciales típicas de la forma y(x_0)=y_0. lo que haremos es encontrar valores diferentes para C para que se ajuste para diferentes condiciones iniciales.

Aplicar las condiciones iniciales x0 = 1, y0 = 1

ss=mySolution.lhs() C=(ss).substitute({y(x):1}).substitute(x=1) show(C) equation1=ss.substitute({y(x):z})==1 equation2=-15/(11*sqrt(3))*equation1 show(equation2)
11153log(3cos(13)+3+5sin(13)3cos(13)+35sin(13))\displaystyle -\frac{11}{15} \, \sqrt{3} \log\left(-\frac{\sqrt{3} \cos\left(13\right) + \sqrt{3} + 5 \, \sin\left(13\right)}{\sqrt{3} \cos\left(13\right) + \sqrt{3} - 5 \, \sin\left(13\right)}\right)
log(3cos(x+14z)+3+5sin(x+14z)3cos(x+14z)+35sin(x+14z))=5113\displaystyle \log\left(-\frac{\sqrt{3} \cos\left(-x + 14 \, z\right) + \sqrt{3} + 5 \, \sin\left(-x + 14 \, z\right)}{\sqrt{3} \cos\left(-x + 14 \, z\right) + \sqrt{3} - 5 \, \sin\left(-x + 14 \, z\right)}\right) = -\frac{5}{11} \, \sqrt{3}

le aplicamos las condiciones iniciales de nuevo x0 = 0, y0 = 0

mySolution= solution[0][0] ss1=mySolution.lhs() C1=(ss1).substitute({y(x):0}).substitute(x=0) show(C1)
1115i3π\displaystyle -\frac{11}{15} i \, \sqrt{3} \pi

la aplicación de las condiciones iniciales de nuevo x0 = 10, y0 = 50

ss2=mySolution.lhs() C2=(ss2).substitute({y(x):50}).substitute(x=10) show(C2) x,C,z=var('x,C,z') y = function('y')(x) sol = desolve(diff(y,x) == (1/11)*cos(x-14*y) , y,ivar=x,contrib_ode=True,show_method=True) mySolution=solution[0][0] ss=mySolution.lhs() equation1=ss.substitute({y(x):z})==1 equation2=-15/(11*sqrt(3))*equation1 solve(equation2,z) implicit_plot(equation2,(x,-5,5),(z,-5,5))
11153log(3cos(690)+3+5sin(690)3cos(690)+35sin(690))\displaystyle -\frac{11}{15} \, \sqrt{3} \log\left(-\frac{\sqrt{3} \cos\left(690\right) + \sqrt{3} + 5 \, \sin\left(690\right)}{\sqrt{3} \cos\left(690\right) + \sqrt{3} - 5 \, \sin\left(690\right)}\right)
[]
%md c) Defina los posibles valores de a y b tales que la línea recta y=a*x+b sea una curva solución de la ecuación. En La ecuación diferencial,sustituyendo tenemos que:
x,C,z=var('x,C,z') y=function('y')(x) sol=desolve(diff(y,x) == (1/11)*cos(x-14*y) , y,ivar=x,contrib_ode=True,show_method=True) mySolution=solution[0][0] ss=mySolution.lhs() equation1=ss.substitute({y(x):z})==1 equation2=-15/(11*sqrt(3))*equation1 solve(equation2,z) implicit_plot(equation2,(x,-5,5),(z,-5,5))
[]
a,b,x,C,z=var('a,b,x,C,z') y = function('y')(x) equation3= diff(y,x)== (1/11)*cos(x-14*y) k1=(equation3).substitute({y:(a*x+b)}).substitute({diff(y,x):a}) show(k1) #factorizando,llegamos a que: equation4= a== (1/11)*cos((1-14*a)*x - 14*b) show(equation4) #a continuacion,haciendo 14*a-1=0 se llega a que: equation5= 14*a -1==0 solution1=solve(equation5,a) mySolution1= solution1[0] show(mySolution1) #entonces, ahora puedes resolver a b,sustituyendo el valor de una, por lo que deberia de ser: equation6=show(equation4.substitute ({a:1/14})) solution2=solve(cos(-14*b)-11/14, b) mySolution2=solution2[0] show(mySolution2) #Por lo tanto la solución es: equation7= y == a*x+b show(equation7) final=equation7.substitute({a:mySolution1}).substitute({b:mySolution2}) show(final)
a=111cos(14ax14b+x)\displaystyle a = \frac{1}{11} \, \cos\left(-14 \, a x - 14 \, b + x\right)
a=111cos((14a1)x14b)\displaystyle a = \frac{1}{11} \, \cos\left(-{\left(14 \, a - 1\right)} x - 14 \, b\right)
a=(114)\displaystyle a = \left(\frac{1}{14}\right)
(114)=111cos(14b)\displaystyle \left(\frac{1}{14}\right) = \frac{1}{11} \, \cos\left(-14 \, b\right)
b=114arccos(1114)\displaystyle b = \frac{1}{14} \, \arccos\left(\frac{11}{14}\right)
y(x)=ax+b\displaystyle y\left(x\right) = a x + b
y(x)=x(a=(114))+(b=114arccos(1114))\displaystyle y\left(x\right) = x (a = \left(\frac{1}{14}\right)) + (b = \frac{1}{14} \, \arccos\left(\frac{11}{14}\right))
#d) Grafiqué un campo direccional y algunas curvas solución. ¿Puede establecer alguna conexión entre la solución simbólica y sus curvas solución. from sage.calculus.desolvers import desolve_rk4 x,y=var('x,y') slopefield=plot_slope_field((1/11)*cos(x-14*y),(x,-5,4),(y,-5,4)) #una instancia de una variable f f=plot([]) #crear instancias de f como una trama vacía #loop over to get many plots #ajustes dinámicos,aviso de color RGB for k in [1, 2, 3, 4, 5, 5.5, 8, 9, 10, 11, 11.3, 11.5, 11.7, 12]: f=f+line(desolve_rk4((1/11)*cos(x-14*y),y,ics=[k/2-3,-k/2+3],end_points=[-5,5],step=0.01), rgbcolor=(k/12,0,1-k/12)) #Mostrar todas las curvas y campos de pendientes (slopefield+f).show(xmin=-5,xmax=5,ymin=-5,ymax=5)
from sage.calculus.desolvers import desolve_rk4 x,y=var('x,y') slopefield=plot_slope_field((1/1)*cos(x-14*y),(x,-5,5),(y,-5,5)) #una instancia de una variable f f=plot([]) #crear instancias de f como una trama vacía #puntos por encima de la trama pts=points([(-2.5,2.5),(-1,-2),(-2,1),(-1,2),(2,0), (1,0.5),(1,-1)],size=80,color='red') #loop over to get many plots #ajustes dinámicos aviso de color RGB for ics in [[-2.5,2.5],[-1,-2],[-2,1],[-1,2],[2,0],[1,0.5],[1,-1]]: f=f+line(desolve_rk4((1/11)*cos(x-14*y),y,ics,end_points=[-5,5],step=0.05)) #mostrar todos los campos curvas + pendiente (slopefield+pts+f).show(xmin=-5,xmax=5,ymin=-5,ymax=5)

problema2: #encontrar la solución de la ecuacion (D-2)3(D2+9)y=x2ex+xsin(3x); con valores iniciales y(0)=y'(0)=y"(0)=y3(0)=y4(0)=1

# Utilizo la ecuación caracteristica para encontrar las raices de la ecuación diferencial r=var('r') solve([(r-2)^3*(r^2+9)==0],r) # Escribo la solución complementaria var('x,c1,c2,c3,c4,c5') yc= function('y')(x)
[r == (-3*I), r == (3*I), r == 2] (x, c1, c2, c3, c4, c5)
# en c2 y c3 los multiplicó por x y x^2 respectivamente por que hay raices repetidas yc(x)= c1*exp(2*x)+c2*(x)*exp(2*x)+c3*(x^2)*exp(2*x)+c4*cos(3*x)+c5*sin(3*x) # Ahora para la solución particular tengo # Utilizó la parte no homogenea de la ecuación diferencial f= function ('y')(x) f(x)= x^2*exp(x)+x*sin(3*x)
# Escribiendo la solución trivial para f(x), recordar que L[y]=f(x) var('A,B,C,D,E,F,G') yp= function('y')(x)
(A, B, C, D, E, F, G)
# Multiplicó por x para eliminar multiplicidad de la solución de ensayo yp(x)= A*exp(x)+B*(x)*exp(x)+C*(x^2)*exp(x)+x*((D*x+E)*cos(3*x)+(F*x+G)*sin(3*x)) # Ahora trabajo con yp para encontrar sus coeficientes k=function('k')(x) D1= diff(yp,x,2)+9*yp D2= diff(D1,x,1)-2*D1 D3= diff(D2,x,1)-2*D2 D4= diff(D3,x,1)-2*D3 k= D4
# Resuelvo para poder hallar las constantes de la solución de ensayo tomando valores al azar solve([k(0)==f(0),k(1)==f(1),k(6)==f(6),k(2)==f(2),k(5)==f(5),k(3)==f(3),k(4)==f(4)],A,B,C,D,E,F,G)
[[A == (-267/250), B == (-14/25), C == (-1/10), D == (-23/13182), E == (-251/114244), F == (-3/8788), G == (1379/514098)]]
# Reescribimos la solución de ensayo con los valores encontrados yp(x)= (-267/250)*exp(x)+(-14/25)*x*exp(x)+(-1/10)*(x^2)*exp(x)+x*(((-23/13182)*x+(-251/114244))*cos(3*x)+((-3/8788)*x+(1379/514098))*sin(3*x)) show(yp)
x  110x2ex11028196(3(598x+753)cos(3x)+(351x2758)sin(3x))x1425xex267250ex\displaystyle x \ {\mapsto}\ -\frac{1}{10} \, x^{2} e^{x} - \frac{1}{1028196} \, {\left(3 \, {\left(598 \, x + 753\right)} \cos\left(3 \, x\right) + {\left(351 \, x - 2758\right)} \sin\left(3 \, x\right)\right)} x - \frac{14}{25} \, x e^{x} - \frac{267}{250} \, e^{x}
# Ahora escribo la solución general de la ecuación diferencial y encuentro las constantes de la solución complementaria y= function('y')(x) y(x)= yc(x)+ yp(x)
# Utilizó show para que la expresión se vea mejor show(y) solve([y(0)==1,diff(y,x,1)(0)==1,diff(y,x,2)(0)==1,diff(y,x,3)(0)==1,diff(y,x,4)(0)==1],c1,c2,c3,c4,c5)
x  c3x2e(2x)+c2xe(2x)110x2ex11028196(3(598x+753)cos(3x)+(351x2758)sin(3x))x+c4cos(3x)+c1e(2x)1425xex+c5sin(3x)267250ex\displaystyle x \ {\mapsto}\ c_{3} x^{2} e^{\left(2 \, x\right)} + c_{2} x e^{\left(2 \, x\right)} - \frac{1}{10} \, x^{2} e^{x} - \frac{1}{1028196} \, {\left(3 \, {\left(598 \, x + 753\right)} \cos\left(3 \, x\right) + {\left(351 \, x - 2758\right)} \sin\left(3 \, x\right)\right)} x + c_{4} \cos\left(3 \, x\right) + c_{1} e^{\left(2 \, x\right)} - \frac{14}{25} \, x e^{x} + c_{5} \sin\left(3 \, x\right) - \frac{267}{250} \, e^{x}
[[c1 == (774782/371293), c2 == (-43330/28561), c3 == (1020/2197), c4 == (-1737019/92823250), c5 == (-4850123/556939500)]]
# Reescribimos la solución general con los valores encontrados de las constantes de la solución complementaria y(x)= (774782/371293)*exp(2*x)+(-43330/28561)*(x)*exp(2*x)+(1020/2197)*(x^2)*exp(2*x)+(-1737019/92823250)*cos(3*x)+(-4850123/556139500)*sin(3*x)+ yp(x) # La solución general es: show(y)
x  10202197x2e(2x)110x2ex11028196(3(598x+753)cos(3x)+(351x2758)sin(3x))x4333028561xe(2x)1425xex173701992823250cos(3x)+774782371293e(2x)267250ex4850123556139500sin(3x)\displaystyle x \ {\mapsto}\ \frac{1020}{2197} \, x^{2} e^{\left(2 \, x\right)} - \frac{1}{10} \, x^{2} e^{x} - \frac{1}{1028196} \, {\left(3 \, {\left(598 \, x + 753\right)} \cos\left(3 \, x\right) + {\left(351 \, x - 2758\right)} \sin\left(3 \, x\right)\right)} x - \frac{43330}{28561} \, x e^{\left(2 \, x\right)} - \frac{14}{25} \, x e^{x} - \frac{1737019}{92823250} \, \cos\left(3 \, x\right) + \frac{774782}{371293} \, e^{\left(2 \, x\right)} - \frac{267}{250} \, e^{x} - \frac{4850123}{556139500} \, \sin\left(3 \, x\right)

problema 3 encontrar los primeros seis terminos de cada una de las soluciones linealmente independientes de la forma ΣCn Xn

#Generando una sumatoria del 12 terminos reset() n=12 b= list (var('a%d' % i) for i in range (n) ) x= var('x') y= function('y')(x) var('a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11')
a0=0 a1=1 y(x)=a0+a1*x+a2*x^2+a3*x^3+a4*x^4+a5*x^5+a6*x^6+a7*x^7+a8*x^8+a9*x^9+a10*x^10+a11*x^11 show(y(x))
a11x11+a10x10+a9x9+a8x8+a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+x\displaystyle a_{11} x^{11} + a_{10} x^{10} + a_{9} x^{9} + a_{8} x^{8} + a_{7} x^{7} + a_{6} x^{6} + a_{5} x^{5} + a_{4} x^{4} + a_{3} x^{3} + a_{2} x^{2} + x
#definir la serie de seno para poder introducirla en la ecuacion diferencial. senoX=taylor(sin(x),x,0,12) #para solo mostar los primeros terminos de la serie del seno show(senoX) #sustituyendo en la ecuancion diferencial y expandiendo tenemos a0=0 a1=1 ecua=expand(x*diff(y,x,2)+senoX*diff(y,x,1)+x*y(x)==0)
139916800x11+1362880x915040x7+1120x516x3+x\displaystyle -\frac{1}{39916800} \, x^{11} + \frac{1}{362880} \, x^{9} - \frac{1}{5040} \, x^{7} + \frac{1}{120} \, x^{5} - \frac{1}{6} \, x^{3} + x
show(ecua)
x  13628800a11x2113991680a10x20+11362880a11x1914435200a9x19+136288a10x1814989600a8x18115040a11x1715702400a7x17+140320a9x171504a10x1616652800a6x16+145360a8x16+11120a11x1517983360a5x15+151840a7x151560a9x15+112a10x1419979200a4x14+160480a6x141630a8x14116a11x13113305600a3x13+172576a5x131720a7x13+340a9x1353a10x12+a11x12119958400a2x12+190720a4x121840a6x12+115a8x12+a10x11+11a11x11+1120960a3x1111008a5x11+7120a7x1132a9x11+10a10x10+110a11x10+1181440a2x1011260a4x10+120a6x1043a8x10+a9x10139916800x11+90a10x911680a3x9+124a5x976a7x9+a8x9+9a9x912520a2x8+130a4x8a6x8+a7x8+8a8x8+72a9x8+1362880x9+140a3x756a5x7+a6x7+7a7x7+56a8x7+160a2x623a4x6+a5x6+6a6x6+42a7x615040x712a3x5+a4x5+5a5x5+30a6x513a2x4+a3x4+4a4x4+20a5x4+1120x5+a2x3+3a3x3+12a4x3+2a2x2+6a3x216x3+2a2x+x2+x=0\displaystyle x \ {\mapsto}\ -\frac{1}{3628800} \, a_{11} x^{21} - \frac{1}{3991680} \, a_{10} x^{20} + \frac{11}{362880} \, a_{11} x^{19} - \frac{1}{4435200} \, a_{9} x^{19} + \frac{1}{36288} \, a_{10} x^{18} - \frac{1}{4989600} \, a_{8} x^{18} - \frac{11}{5040} \, a_{11} x^{17} - \frac{1}{5702400} \, a_{7} x^{17} + \frac{1}{40320} \, a_{9} x^{17} - \frac{1}{504} \, a_{10} x^{16} - \frac{1}{6652800} \, a_{6} x^{16} + \frac{1}{45360} \, a_{8} x^{16} + \frac{11}{120} \, a_{11} x^{15} - \frac{1}{7983360} \, a_{5} x^{15} + \frac{1}{51840} \, a_{7} x^{15} - \frac{1}{560} \, a_{9} x^{15} + \frac{1}{12} \, a_{10} x^{14} - \frac{1}{9979200} \, a_{4} x^{14} + \frac{1}{60480} \, a_{6} x^{14} - \frac{1}{630} \, a_{8} x^{14} - \frac{11}{6} \, a_{11} x^{13} - \frac{1}{13305600} \, a_{3} x^{13} + \frac{1}{72576} \, a_{5} x^{13} - \frac{1}{720} \, a_{7} x^{13} + \frac{3}{40} \, a_{9} x^{13} - \frac{5}{3} \, a_{10} x^{12} + a_{11} x^{12} - \frac{1}{19958400} \, a_{2} x^{12} + \frac{1}{90720} \, a_{4} x^{12} - \frac{1}{840} \, a_{6} x^{12} + \frac{1}{15} \, a_{8} x^{12} + a_{10} x^{11} + 11 \, a_{11} x^{11} + \frac{1}{120960} \, a_{3} x^{11} - \frac{1}{1008} \, a_{5} x^{11} + \frac{7}{120} \, a_{7} x^{11} - \frac{3}{2} \, a_{9} x^{11} + 10 \, a_{10} x^{10} + 110 \, a_{11} x^{10} + \frac{1}{181440} \, a_{2} x^{10} - \frac{1}{1260} \, a_{4} x^{10} + \frac{1}{20} \, a_{6} x^{10} - \frac{4}{3} \, a_{8} x^{10} + a_{9} x^{10} - \frac{1}{39916800} \, x^{11} + 90 \, a_{10} x^{9} - \frac{1}{1680} \, a_{3} x^{9} + \frac{1}{24} \, a_{5} x^{9} - \frac{7}{6} \, a_{7} x^{9} + a_{8} x^{9} + 9 \, a_{9} x^{9} - \frac{1}{2520} \, a_{2} x^{8} + \frac{1}{30} \, a_{4} x^{8} - a_{6} x^{8} + a_{7} x^{8} + 8 \, a_{8} x^{8} + 72 \, a_{9} x^{8} + \frac{1}{362880} \, x^{9} + \frac{1}{40} \, a_{3} x^{7} - \frac{5}{6} \, a_{5} x^{7} + a_{6} x^{7} + 7 \, a_{7} x^{7} + 56 \, a_{8} x^{7} + \frac{1}{60} \, a_{2} x^{6} - \frac{2}{3} \, a_{4} x^{6} + a_{5} x^{6} + 6 \, a_{6} x^{6} + 42 \, a_{7} x^{6} - \frac{1}{5040} \, x^{7} - \frac{1}{2} \, a_{3} x^{5} + a_{4} x^{5} + 5 \, a_{5} x^{5} + 30 \, a_{6} x^{5} - \frac{1}{3} \, a_{2} x^{4} + a_{3} x^{4} + 4 \, a_{4} x^{4} + 20 \, a_{5} x^{4} + \frac{1}{120} \, x^{5} + a_{2} x^{3} + 3 \, a_{3} x^{3} + 12 \, a_{4} x^{3} + 2 \, a_{2} x^{2} + 6 \, a_{3} x^{2} - \frac{1}{6} \, x^{3} + 2 \, a_{2} x + x^{2} + x = 0
#agrupando los coeficientes de x^1 y resolviendo el sistema para encontra a2 solve([(ecua.lhs()).coefficient(x,1)==0],a2) show(solve([(ecua.lhs()).coefficient(x,1)==0],a2))
[a2 == (-1/2)]
[a2=(12)\displaystyle a_{2} = \left(-\frac{1}{2}\right)]
#agrupando coeficientes de x^2 y resolviendo para encontrar a3 show(solve([(ecua.lhs()).coefficient(x,2).substitute(a2=-1/2)==0],a3))
[a3=0\displaystyle a_{3} = 0]
#agrupando coeficientes de x^3 y resolviendo para encontrar a4 show(solve([(ecua.lhs()).coefficient(x,3).substitute(a2=-1/2,a3=0)==0],a4))
[a4=(118)\displaystyle a_{4} = \left(\frac{1}{18}\right)]
#agrupando coeficientes de x^4 y resolviendo para encontrar a5 show(solve([(ecua.lhs()).coefficient(x,4).substitute(a2=-1/2,a3=0,a4=1/18)==0],a5))
[a5=(7360)\displaystyle a_{5} = \left(-\frac{7}{360}\right)]
#agrupando coeficientes de x^5 y resolviendo para encontrar a6 show(solve([(ecua.lhs()).coefficient(x,5).substitute(a2=-1/2,a3=0,a4=1/18,a5=-7/360)==0],a6))
[a6=(1900)\displaystyle a_{6} = \left(\frac{1}{900}\right)]
#agrupando coeficientes de x^6 y resolviendo para encontrar a7 show(solve([(ecua.lhs()).coefficient(x,6).substitute(a2=-1/2,a3=0,a4=1/18,a5=-7/360,a6=1/900)==0],a7))
[a7=(157113400)\displaystyle a_{7} = \left(\frac{157}{113400}\right)]
#agrupando coeficientes de x^7 y resolviendo para encontrar a8 show(solve([(ecua.lhs()).coefficient(x,7).substitute(a2=-1/2,a3=0,a4=1/18,a5=-7/360,a6=1/900,a7=157/113400)==0],a8))
[a8=(1939690)\displaystyle a_{8} = \left(-\frac{19}{39690}\right)]
#agrupando coeficientes de x^8 y resolviendo para encontrar a9 show(solve([(ecua.lhs()).coefficient(x,8).substitute(a2=-1/2,a3=0,a4=1/18,a5=-7/360,a6=1/900,a7=157/113400,a8=-19/39690)==0],a9))
[a9=(79738102400)\displaystyle a_{9} = \left(\frac{797}{38102400}\right)]
#agrupando coeficientes de x^9 y resolviendo para encontrar a10 show(solve([(ecua.lhs()).coefficient(x,9).substitute(a2=-1/2,a3=0,a4=1/18,a5=-7/360,a6=1/900,a7=157/113400,a8=-19/39690,a9=797/38102400)==0],a10))
[a10=(92330618000)\displaystyle a_{10} = \left(\frac{923}{30618000}\right)]
#agrupando coeficientes de x^10 y resolviendo para encontrar a11 show(solve([(ecua.lhs()).coefficient(x,10).substitute(a2=-1/2,a3=0,a4=1/18,a5=-7/360,a6=1/900,a7=157/113400,a8=-19/39690,a9=797/38102400,a10=923/30618000)==0],a11))
[a11=(41551947151720000)\displaystyle a_{11} = \left(-\frac{415519}{47151720000}\right)]
# ahora que ya caculamos los ao, c1,a2,... a11 los sustituimos y tenemos que nuestra primera solucion independiente es y1(x), esto se tiene debido a que y=0 es punto ordinario y debido a un teorema visto en clase que nos asegura que habran dos soluciones linealmente independiente y1(x)=0+1*x+(-1/2)*x^2+(0)*x^3+(1/18)*x^4+(-7/360)*x^5+(1/900)*x^6+(157/113400)*x^7+(-1939690)*x^8+(797/38102400)*x^9+(923/30618000)*x^10+(-415519/47151720000)*x^11 show(y1(x))
41551947151720000x11+92330618000x10+79738102400x91939690x8+157113400x7+1900x67360x5+118x412x2+x\displaystyle -\frac{415519}{47151720000} \, x^{11} + \frac{923}{30618000} \, x^{10} + \frac{797}{38102400} \, x^{9} - 1939690 \, x^{8} + \frac{157}{113400} \, x^{7} + \frac{1}{900} \, x^{6} - \frac{7}{360} \, x^{5} + \frac{1}{18} \, x^{4} - \frac{1}{2} \, x^{2} + x
#para la segunda solucion tenemos #Generando una sumatoria del 12 terminos n=12 b= list (var('a%d' % i) for i in range (n) ) x= var('x') y= function('y')(x) var('a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11') a0=1 a1=0 y(x)=a0+a1*x+a2*x^2+a3*x^3+a4*x^4+a5*x^5+a6*x^6+a7*x^7+a8*x^8+a9*x^9+a10*x^10+a11*x^11 show(y(x)) #definir la serie de seno para poder introducirla en la ecuacion diferencial. senoX=taylor(sin(x),x,0,12) #para solo mostar los primeros terminos de la serie del seno show(senoX) #sustituyendo en la ecuancion diferencial y expandiendo tenemos a0=1 a1=0 ecua=expand(x*diff(y,x,2)+senoX*diff(y,x,1)+x*y(x)==0) show(ecua)
(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)
a11x11+a10x10+a9x9+a8x8+a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+1\displaystyle a_{11} x^{11} + a_{10} x^{10} + a_{9} x^{9} + a_{8} x^{8} + a_{7} x^{7} + a_{6} x^{6} + a_{5} x^{5} + a_{4} x^{4} + a_{3} x^{3} + a_{2} x^{2} + 1
139916800x11+1362880x915040x7+1120x516x3+x\displaystyle -\frac{1}{39916800} \, x^{11} + \frac{1}{362880} \, x^{9} - \frac{1}{5040} \, x^{7} + \frac{1}{120} \, x^{5} - \frac{1}{6} \, x^{3} + x
x  13628800a11x2113991680a10x20+11362880a11x1914435200a9x19+136288a10x1814989600a8x18115040a11x1715702400a7x17+140320a9x171504a10x1616652800a6x16+145360a8x16+11120a11x1517983360a5x15+151840a7x151560a9x15+112a10x1419979200a4x14+160480a6x141630a8x14116a11x13113305600a3x13+172576a5x131720a7x13+340a9x1353a10x12+a11x12119958400a2x12+190720a4x121840a6x12+115a8x12+a10x11+11a11x11+1120960a3x1111008a5x11+7120a7x1132a9x11+10a10x10+110a11x10+1181440a2x1011260a4x10+120a6x1043a8x10+a9x10+90a10x911680a3x9+124a5x976a7x9+a8x9+9a9x912520a2x8+130a4x8a6x8+a7x8+8a8x8+72a9x8+140a3x756a5x7+a6x7+7a7x7+56a8x7+160a2x623a4x6+a5x6+6a6x6+42a7x612a3x5+a4x5+5a5x5+30a6x513a2x4+a3x4+4a4x4+20a5x4+a2x3+3a3x3+12a4x3+2a2x2+6a3x2+2a2x+x=0\displaystyle x \ {\mapsto}\ -\frac{1}{3628800} \, a_{11} x^{21} - \frac{1}{3991680} \, a_{10} x^{20} + \frac{11}{362880} \, a_{11} x^{19} - \frac{1}{4435200} \, a_{9} x^{19} + \frac{1}{36288} \, a_{10} x^{18} - \frac{1}{4989600} \, a_{8} x^{18} - \frac{11}{5040} \, a_{11} x^{17} - \frac{1}{5702400} \, a_{7} x^{17} + \frac{1}{40320} \, a_{9} x^{17} - \frac{1}{504} \, a_{10} x^{16} - \frac{1}{6652800} \, a_{6} x^{16} + \frac{1}{45360} \, a_{8} x^{16} + \frac{11}{120} \, a_{11} x^{15} - \frac{1}{7983360} \, a_{5} x^{15} + \frac{1}{51840} \, a_{7} x^{15} - \frac{1}{560} \, a_{9} x^{15} + \frac{1}{12} \, a_{10} x^{14} - \frac{1}{9979200} \, a_{4} x^{14} + \frac{1}{60480} \, a_{6} x^{14} - \frac{1}{630} \, a_{8} x^{14} - \frac{11}{6} \, a_{11} x^{13} - \frac{1}{13305600} \, a_{3} x^{13} + \frac{1}{72576} \, a_{5} x^{13} - \frac{1}{720} \, a_{7} x^{13} + \frac{3}{40} \, a_{9} x^{13} - \frac{5}{3} \, a_{10} x^{12} + a_{11} x^{12} - \frac{1}{19958400} \, a_{2} x^{12} + \frac{1}{90720} \, a_{4} x^{12} - \frac{1}{840} \, a_{6} x^{12} + \frac{1}{15} \, a_{8} x^{12} + a_{10} x^{11} + 11 \, a_{11} x^{11} + \frac{1}{120960} \, a_{3} x^{11} - \frac{1}{1008} \, a_{5} x^{11} + \frac{7}{120} \, a_{7} x^{11} - \frac{3}{2} \, a_{9} x^{11} + 10 \, a_{10} x^{10} + 110 \, a_{11} x^{10} + \frac{1}{181440} \, a_{2} x^{10} - \frac{1}{1260} \, a_{4} x^{10} + \frac{1}{20} \, a_{6} x^{10} - \frac{4}{3} \, a_{8} x^{10} + a_{9} x^{10} + 90 \, a_{10} x^{9} - \frac{1}{1680} \, a_{3} x^{9} + \frac{1}{24} \, a_{5} x^{9} - \frac{7}{6} \, a_{7} x^{9} + a_{8} x^{9} + 9 \, a_{9} x^{9} - \frac{1}{2520} \, a_{2} x^{8} + \frac{1}{30} \, a_{4} x^{8} - a_{6} x^{8} + a_{7} x^{8} + 8 \, a_{8} x^{8} + 72 \, a_{9} x^{8} + \frac{1}{40} \, a_{3} x^{7} - \frac{5}{6} \, a_{5} x^{7} + a_{6} x^{7} + 7 \, a_{7} x^{7} + 56 \, a_{8} x^{7} + \frac{1}{60} \, a_{2} x^{6} - \frac{2}{3} \, a_{4} x^{6} + a_{5} x^{6} + 6 \, a_{6} x^{6} + 42 \, a_{7} x^{6} - \frac{1}{2} \, a_{3} x^{5} + a_{4} x^{5} + 5 \, a_{5} x^{5} + 30 \, a_{6} x^{5} - \frac{1}{3} \, a_{2} x^{4} + a_{3} x^{4} + 4 \, a_{4} x^{4} + 20 \, a_{5} x^{4} + a_{2} x^{3} + 3 \, a_{3} x^{3} + 12 \, a_{4} x^{3} + 2 \, a_{2} x^{2} + 6 \, a_{3} x^{2} + 2 \, a_{2} x + x = 0
#agrupando los coeficientes de x^1 y resolviendo el sistema para encontra a2 solve([(ecua.lhs()).coefficient(x,1)==0],a2) show(solve([(ecua.lhs()).coefficient(x,1)==0],a2))
[a2 == (-1/2)]
[a2=(12)\displaystyle a_{2} = \left(-\frac{1}{2}\right)]
#agrupando coeficientes de x^2 y resolviendo para encontrar a3 show(solve([(ecua.lhs()).coefficient(x,2).substitute(a2=-1/2)==0],a3))
[a3=(16)\displaystyle a_{3} = \left(\frac{1}{6}\right)]
#agrupando coeficientes de x^3 y resolviendo para encontrar a4 show(solve([(ecua.lhs()).coefficient(x,3).substitute(a2=-1/2,a3=1/6)==0],a4))
[a4=0\displaystyle a_{4} = 0]
#agrupando coeficientes de x^4 y resolviendo para encontrar a5 show(solve([(ecua.lhs()).coefficient(x,4).substitute(a2=-1/2,a3=1/6,a4=0)==0],a5))
[a5=(160)\displaystyle a_{5} = \left(-\frac{1}{60}\right)]
#agrupando coeficientes de x^5 y resolviendo para encontrar a6 show(solve([(ecua.lhs()).coefficient(x,5).substitute(a2=-1/2,a3=1/6,a4=0,a5=-1/60)==0],a6))
[a6=(1180)\displaystyle a_{6} = \left(\frac{1}{180}\right)]
#agrupando coeficientes de x^6 y resolviendo para encontrar a7 show(solve([(ecua.lhs()).coefficient(x,6).substitute(a2=-1/2,a3=1/6,a4=0,a5=-1/60,a6=1/180)==0],a7))
[a7=(15040)\displaystyle a_{7} = \left(-\frac{1}{5040}\right)]
#agrupando coeficientes de x^7 y resolviendo para encontrar a8 show(solve([(ecua.lhs()).coefficient(x,7).substitute(a2=-1/2,a3=1/6,a4=0,a5=-1/60,a6=1/180,a7=-1/5040)==0],a8))
[a8=(12520)\displaystyle a_{8} = \left(-\frac{1}{2520}\right)]
#agrupando coeficientes de x^8y resolviendo para encontrar a9 show(solve([(ecua.lhs()).coefficient(x,8).substitute(a2=-1/2,a3=1/6,a4=0,a5=-1/60,a6=1/180,a7=-1/5040,a8=-1/2520)==0],a9))
[a9=(1190720)\displaystyle a_{9} = \left(\frac{11}{90720}\right)]
#agrupando coeficientes de x^9y resolviendo para encontrar a10 show(solve([(ecua.lhs()).coefficient(x,9).substitute(a2=-1/2,a3=1/6,a4=0,a5=-1/60,a6=1/180,a7=-1/5040,a8=-1/2520,a9=11/90720)==0],a10))
[a10=(1680400)\displaystyle a_{10} = \left(-\frac{1}{680400}\right)]
#agrupando coeficientes de x^10 y resolviendo para encontrar a11 show(solve([(ecua.lhs()).coefficient(x,10).substitute(a2=-1/2,a3=1/6,a4=0,a5=-1/60,a6=1/180,a7=-1/5040,a8=-1/2520,a9=11/90720,a10=-1/680400)==0],a11))
[a11=(4957598752000)\displaystyle a_{11} = \left(-\frac{4957}{598752000}\right)]
#ahora que ya calculamos los nuevos valores para a0,a1,a2,....a11, los sustituimos para obtener nuestra segunda solucion y2(x)=1+0*x+(-1/2)*x^2+(1/6)*x^3+(0)*x^4+(-1/60)*x^5+(1/180)*x^6+(-1/5040)*x^7+(-1/2520)*x^8+(11/90720)*x^9+(-1/680400)*x^10+(-4957/598752000)*x^11 show(y2(x))
4957598752000x111680400x10+1190720x912520x815040x7+1180x6160x5+16x312x2+1\displaystyle -\frac{4957}{598752000} \, x^{11} - \frac{1}{680400} \, x^{10} + \frac{11}{90720} \, x^{9} - \frac{1}{2520} \, x^{8} - \frac{1}{5040} \, x^{7} + \frac{1}{180} \, x^{6} - \frac{1}{60} \, x^{5} + \frac{1}{6} \, x^{3} - \frac{1}{2} \, x^{2} + 1