Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Project: BHLectures
Views: 623
Kernel: SageMath 10.0.rc1

Conformal completion of Minkowski spacetime

This Jupyter/SageMath notebook is relative to the lectures Geometry and physics of black holes.

It makes use of SageMath differential geometry tools developed through the SageManifolds project.

NB: a version of SageMath at least equal to 9.4 is required to run this notebook:

version()
'SageMath version 10.0.rc1, Release Date: 2023-04-28'

First we set up the notebook to display mathematical objects using LaTeX formatting:

%display latex

Spherical coordinates on Minkowski spacetime

We declare the spacetime manifold MM:

M = Manifold(4, 'M') print(M)
4-dimensional differentiable manifold M

and the spherical coordinates (t,r,θ,ϕ)(t,r,\theta,\phi) as a chart on MM:

XS.<t,r,th,ph> = M.chart(r't r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') XS

(M,(t,r,θ,ϕ))\displaystyle \left(M,(t, r, {\theta}, {\phi})\right)

XS.coord_range()

t: (,+);r: (0,+);θ: (0,π);ϕ: (0,2π)\displaystyle t :\ \left( -\infty, +\infty \right) ;\quad r :\ \left( 0 , +\infty \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right)

In term of these coordinates, the Minkowski metric is

g = M.lorentzian_metric('g') g[0,0] = -1 g[1,1] = 1 g[2,2] = r^2 g[3,3] = r^2*sin(th)^2 g.display()

g=dtdt+drdr+r2dθdθ+r2sin(θ)2dϕdϕ\displaystyle g = -\mathrm{d} t\otimes \mathrm{d} t+\mathrm{d} r\otimes \mathrm{d} r + r^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + r^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Null coordinates

Let us introduce the null coordinates u=tru=t-r (retarded time) and v=t+rv=t+r (advanced time):

XN.<u,v,th,ph> = M.chart(r'u v th:(0,pi):\theta ph:(0,2*pi):\phi', coord_restrictions=lambda u,v,th,ph: v-u>0) XN

(M,(u,v,θ,ϕ))\displaystyle \left(M,(u, v, {\theta}, {\phi})\right)

XN.coord_range()

u: (,+);v: (,+);θ: (0,π);ϕ: (0,2π)\displaystyle u :\ \left( -\infty, +\infty \right) ;\quad v :\ \left( -\infty, +\infty \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right)

XS_to_XN = XS.transition_map(XN, [t-r, t+r, th, ph]) XS_to_XN.display()

{u=r+tv=r+tθ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} u & = & -r + t \\ v & = & r + t \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

XS_to_XN.inverse().display()

{t=12u+12vr=12u+12vθ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} t & = & \frac{1}{2} \, u + \frac{1}{2} \, v \\ r & = & -\frac{1}{2} \, u + \frac{1}{2} \, v \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

In terms of the null coordinates (u,v,θ,ϕ)(u,v,\theta,\phi), the Minkowski metric writes

g.display(XN.frame(), XN)

g=12dudv12dvdu+(14u212uv+14v2)dθdθ+(14u2sin(θ)212uvsin(θ)2+14v2sin(θ)2)dϕdϕ\displaystyle g = -\frac{1}{2} \mathrm{d} u\otimes \mathrm{d} v -\frac{1}{2} \mathrm{d} v\otimes \mathrm{d} u + \left( \frac{1}{4} \, u^{2} - \frac{1}{2} \, u v + \frac{1}{4} \, v^{2} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \left( \frac{1}{4} \, u^{2} \sin\left({\theta}\right)^{2} - \frac{1}{2} \, u v \sin\left({\theta}\right)^{2} + \frac{1}{4} \, v^{2} \sin\left({\theta}\right)^{2} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Let us plot the coordinate grid (u,v)(u,v) in terms of the coordinates (t,r)(t,r):

graph = XN.plot(XS, ambient_coords=(r,t), fixed_coords={th: pi/2, ph: pi}, number_values=17, plot_points=200, color='green', style={u: '--', v: '-'}, thickness=1.5) graph
Image in a Jupyter notebook
show(graph, xmin=0, xmax=4, ymin=0, ymax=4, aspect_ratio=1)
Image in a Jupyter notebook
graph.save("glo_null_coord.pdf", xmin=0, xmax=4, ymin=0, ymax=4, aspect_ratio=1)

Compactified null coordinates

Instead of (u,v)(u,v), which span R\mathbb{R}, let consider the coordinates U=atanuU = \mathrm{atan}\, u and V=atanvV = \mathrm{atan}\, v, which span (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right):

graph = plot(atan(u), (u,-6, 6), thickness=2, axes_labels=[r'$u$', r'$U$']) \ + line([(-6,-pi/2), (6,-pi/2)], linestyle='--') \ + line([(-6,pi/2), (6,pi/2)], linestyle='--') show(graph, aspect_ratio=1)
Image in a Jupyter notebook
graph.save('glo_atan.pdf', aspect_ratio=1)
XNC.<U,V,th,ph> = M.chart(r'U:(-pi/2,pi/2) V:(-pi/2,pi/2) th:(0,pi):\theta ph:(0,2*pi):\phi', coord_restrictions=lambda U,V,th,ph: V-U>0) XNC

(M,(U,V,θ,ϕ))\displaystyle \left(M,(U, V, {\theta}, {\phi})\right)

XNC.coord_range()

U: (12π,12π);V: (12π,12π);θ: (0,π);ϕ: (0,2π)\displaystyle U :\ \left( -\frac{1}{2} \, \pi , \frac{1}{2} \, \pi \right) ;\quad V :\ \left( -\frac{1}{2} \, \pi , \frac{1}{2} \, \pi \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right)

XN_to_XNC = XN.transition_map(XNC, [atan(u), atan(v), th, ph]) XN_to_XNC.display()

{U=arctan(u)V=arctan(v)θ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} U & = & \arctan\left(u\right) \\ V & = & \arctan\left(v\right) \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

XN_to_XNC.inverse().display()

{u=sin(U)cos(U)v=sin(V)cos(V)θ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} u & = & \frac{\sin\left(U\right)}{\cos\left(U\right)} \\ v & = & \frac{\sin\left(V\right)}{\cos\left(V\right)} \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

Expressed in terms of the coordinates (U,V,θ,ϕ)(U,V,\theta,\phi), the metric tensor is

g.display(XNC.frame(), XNC)

g=12cos(U)2cos(V)2dUdV12cos(U)2cos(V)2dVdU+(cos(V)2sin(U)22cos(U)cos(V)sin(U)sin(V)+cos(U)2sin(V)24cos(U)2cos(V)2)dθdθ+(cos(V)2sin(U)22cos(U)cos(V)sin(U)sin(V)+cos(U)2sin(V)2)sin(θ)24cos(U)2cos(V)2dϕdϕ\displaystyle g = -\frac{1}{2 \, \cos\left(U\right)^{2} \cos\left(V\right)^{2}} \mathrm{d} U\otimes \mathrm{d} V -\frac{1}{2 \, \cos\left(U\right)^{2} \cos\left(V\right)^{2}} \mathrm{d} V\otimes \mathrm{d} U + \left( \frac{\cos\left(V\right)^{2} \sin\left(U\right)^{2} - 2 \, \cos\left(U\right) \cos\left(V\right) \sin\left(U\right) \sin\left(V\right) + \cos\left(U\right)^{2} \sin\left(V\right)^{2}}{4 \, \cos\left(U\right)^{2} \cos\left(V\right)^{2}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{{\left(\cos\left(V\right)^{2} \sin\left(U\right)^{2} - 2 \, \cos\left(U\right) \cos\left(V\right) \sin\left(U\right) \sin\left(V\right) + \cos\left(U\right)^{2} \sin\left(V\right)^{2}\right)} \sin\left({\theta}\right)^{2}}{4 \, \cos\left(U\right)^{2} \cos\left(V\right)^{2}} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Let us call Ω2\Omega^{-2} the common factor:

Omega = M.scalar_field({XNC: 2*cos(U)*cos(V)}, name='Omega', latex_name=r'\Omega') Omega.display()

Ω:MR(u,v,θ,ϕ)2u2+1v2+1(U,V,θ,ϕ)2cos(U)cos(V)\displaystyle \begin{array}{llcl} \Omega:& M & \longrightarrow & \mathbb{R} \\ & \left(u, v, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{u^{2} + 1} \sqrt{v^{2} + 1}} \\ & \left(U, V, {\theta}, {\phi}\right) & \longmapsto & 2 \, \cos\left(U\right) \cos\left(V\right) \end{array}

Omega.display(XS)

Ω:MR(t,r,θ,ϕ)2r2+2rt+t2+1r22rt+t2+1\displaystyle \begin{array}{llcl} \Omega:& M & \longrightarrow & \mathbb{R} \\ & \left(t, r, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1}} \end{array}

Conformal metric

We introduce the metric g~=Ω2g\tilde g = \Omega^2 g:

gt = M.lorentzian_metric('gt', latex_name=r'\tilde{g}') gt.set(Omega^2*g) gt.display(XNC.frame(), XNC)

g~=2dUdV2dVdU+(cos(V)2sin(U)22cos(U)cos(V)sin(U)sin(V)+cos(U)2sin(V)2)dθdθ+(cos(V)2sin(U)22cos(U)cos(V)sin(U)sin(V)+cos(U)2sin(V)2)sin(θ)2dϕdϕ\displaystyle \tilde{g} = -2 \mathrm{d} U\otimes \mathrm{d} V -2 \mathrm{d} V\otimes \mathrm{d} U + \left( \cos\left(V\right)^{2} \sin\left(U\right)^{2} - 2 \, \cos\left(U\right) \cos\left(V\right) \sin\left(U\right) \sin\left(V\right) + \cos\left(U\right)^{2} \sin\left(V\right)^{2} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + {\left(\cos\left(V\right)^{2} \sin\left(U\right)^{2} - 2 \, \cos\left(U\right) \cos\left(V\right) \sin\left(U\right) \sin\left(V\right) + \cos\left(U\right)^{2} \sin\left(V\right)^{2}\right)} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Clearly the metric components g~θθ{\tilde g}_{\theta\theta} and g~ϕϕ{\tilde g}_{\phi\phi} can be simplified further. Let us do it by hand, by extracting the symbolic expression via expr():

g22 = gt[XNC.frame(), 2, 2, XNC].expr() g22

cos(V)2sin(U)22cos(U)cos(V)sin(U)sin(V)+cos(U)2sin(V)2\displaystyle \cos\left(V\right)^{2} \sin\left(U\right)^{2} - 2 \, \cos\left(U\right) \cos\left(V\right) \sin\left(U\right) \sin\left(V\right) + \cos\left(U\right)^{2} \sin\left(V\right)^{2}

g22_simpl = g22.factor().reduce_trig() g22_simpl

sin(U+V)2\displaystyle \sin\left(-U + V\right)^{2}

g33st = gt[XNC.frame(), 3, 3, XNC].expr() / sin(th)^2 g33st

cos(V)2sin(U)22cos(U)cos(V)sin(U)sin(V)+cos(U)2sin(V)2\displaystyle \cos\left(V\right)^{2} \sin\left(U\right)^{2} - 2 \, \cos\left(U\right) \cos\left(V\right) \sin\left(U\right) \sin\left(V\right) + \cos\left(U\right)^{2} \sin\left(V\right)^{2}

g33_simpl = g33st.factor().reduce_trig() * sin(th)^2 g33_simpl

sin(U+V)2sin(θ)2\displaystyle \sin\left(-U + V\right)^{2} \sin\left({\theta}\right)^{2}

gt.add_comp(XNC.frame())[2,2, XNC] = g22_simpl gt.add_comp(XNC.frame())[3,3, XNC] = g33_simpl

Hence the final form of the conformal metric in terms of the compactified null coordinates:

gt.display(XNC.frame(), XNC)

g~=2dUdV2dVdU+sin(U+V)2dθdθ+sin(U+V)2sin(θ)2dϕdϕ\displaystyle \tilde{g} = -2 \mathrm{d} U\otimes \mathrm{d} V -2 \mathrm{d} V\otimes \mathrm{d} U + \sin\left(-U + V\right)^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \sin\left(-U + V\right)^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

In terms of the non-compactified null coordinates (u,v,θ,ϕ)(u,v,\theta,\phi):

gt.display(XN.frame(), XN)

g~=(2(u2+1)v2+u2+1)dudv+(2(u2+1)v2+u2+1)dvdu+(u22uv+v2(u2+1)v2+u2+1)dθdθ+(u2sin(θ)22uvsin(θ)2+v2sin(θ)2(u2+1)v2+u2+1)dϕdϕ\displaystyle \tilde{g} = \left( -\frac{2}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1} \right) \mathrm{d} u\otimes \mathrm{d} v + \left( -\frac{2}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1} \right) \mathrm{d} v\otimes \mathrm{d} u + \left( \frac{u^{2} - 2 \, u v + v^{2}}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \left( \frac{u^{2} \sin\left({\theta}\right)^{2} - 2 \, u v \sin\left({\theta}\right)^{2} + v^{2} \sin\left({\theta}\right)^{2}}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

and in terms of the default coordinates (t,r,θ,ϕ)(t,r,\theta,\phi):

gt.display()

g~=(4r4+t42(r21)t2+2r2+1)dtdt+(4r4+t42(r21)t2+2r2+1)drdr+(4r2r4+t42(r21)t2+2r2+1)dθdθ+(4r2sin(θ)2r4+t42(r21)t2+2r2+1)dϕdϕ\displaystyle \tilde{g} = \left( -\frac{4}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1} \right) \mathrm{d} t\otimes \mathrm{d} t + \left( \frac{4}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1} \right) \mathrm{d} r\otimes \mathrm{d} r + \left( \frac{4 \, r^{2}}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \left( \frac{4 \, r^{2} \sin\left({\theta}\right)^{2}}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Einstein cylinder coordinates

Let us introduce some coordinates (τ,χ)(\tau,\chi) such that the null coordinates (U,V)(U,V) are respectively half the retarded time τχ\tau -\chi and half the advanced time τ+χ\tau+\chi:

XC.<tau,ch,th,ph> = M.chart(r'tau:(-pi,pi):\tau ch:(0,pi):\chi th:(0,pi):\theta ph:(0,2*pi):\phi', coord_restrictions=lambda tau,ch,th,ph: [tau<pi-ch, tau>ch-pi]) XC

(M,(τ,χ,θ,ϕ))\displaystyle \left(M,({\tau}, {\chi}, {\theta}, {\phi})\right)

XC.coord_range()

τ: (π,π);χ: (0,π);θ: (0,π);ϕ: (0,2π)\displaystyle {\tau} :\ \left( -\pi , \pi \right) ;\quad {\chi} :\ \left( 0 , \pi \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right)

XC_to_XNC = XC.transition_map(XNC, [(tau-ch)/2, (tau+ch)/2, th, ph]) XC_to_XNC.display()

{U=12χ+12τV=12χ+12τθ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} U & = & -\frac{1}{2} \, {\chi} + \frac{1}{2} \, {\tau} \\ V & = & \frac{1}{2} \, {\chi} + \frac{1}{2} \, {\tau} \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

XC_to_XNC.inverse().display()

{τ=U+Vχ=U+Vθ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} {\tau} & = & U + V \\ {\chi} & = & -U + V \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

The conformal metric takes then the form of the standard metric on the Einstein cylinder R×S3\mathbb{R}\times\mathbb{S}^3:

gt.display(XC.frame(), XC)

g~=dτdτ+dχdχ+sin(χ)2dθdθ+sin(χ)2sin(θ)2dϕdϕ\displaystyle \tilde{g} = -\mathrm{d} {\tau}\otimes \mathrm{d} {\tau}+\mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + \sin\left({\chi}\right)^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

The square of the conformal factor expressed in all the coordinates introduced so far:

(Omega^2).display()

Ω2:MR(t,r,θ,ϕ)4r4+t42(r21)t2+2r2+1(u,v,θ,ϕ)4(u2+1)v2+u2+1(U,V,θ,ϕ)4cos(U)2cos(V)2(τ,χ,θ,ϕ)4cos(12χ)4cos(12τ)48cos(12χ)2cos(12τ)2sin(12χ)2sin(12τ)2+4sin(12χ)4sin(12τ)4\displaystyle \begin{array}{llcl} {\Omega}^{ 2 } : & M & \longrightarrow & \mathbb{R} \\ & \left(t, r, {\theta}, {\phi}\right) & \longmapsto & \frac{4}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1} \\ & \left(u, v, {\theta}, {\phi}\right) & \longmapsto & \frac{4}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1} \\ & \left(U, V, {\theta}, {\phi}\right) & \longmapsto & 4 \, \cos\left(U\right)^{2} \cos\left(V\right)^{2} \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & 4 \, \cos\left(\frac{1}{2} \, {\chi}\right)^{4} \cos\left(\frac{1}{2} \, {\tau}\right)^{4} - 8 \, \cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2} + 4 \, \sin\left(\frac{1}{2} \, {\chi}\right)^{4} \sin\left(\frac{1}{2} \, {\tau}\right)^{4} \end{array}

XS_to_XC = M.coord_change(XNC,XC) * M.coord_change(XN, XNC) * M.coord_change(XS, XN) XS_to_XC.display()

{τ=arctan(r+t)+arctan(r+t)χ=arctan(r+t)arctan(r+t)θ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} {\tau} & = & \arctan\left(r + t\right) + \arctan\left(-r + t\right) \\ {\chi} & = & \arctan\left(r + t\right) - \arctan\left(-r + t\right) \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

XC_to_XS = M.coord_change(XN, XS) * M.coord_change(XNC, XN) * M.coord_change(XC,XNC) XC_to_XS.display()

{t=cos(12τ)sin(12τ)cos(12χ)2cos(12τ)2sin(12χ)2sin(12τ)2r=cos(12χ)sin(12χ)cos(12χ)2cos(12τ)2sin(12χ)2sin(12τ)2θ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} t & = & \frac{\cos\left(\frac{1}{2} \, {\tau}\right) \sin\left(\frac{1}{2} \, {\tau}\right)}{\cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} - \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2}} \\ r & = & \frac{\cos\left(\frac{1}{2} \, {\chi}\right) \sin\left(\frac{1}{2} \, {\chi}\right)}{\cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} - \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2}} \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

The expressions for tt and rr can be simplified:

tc = XC_to_XS(tau,ch,th,ph)[0] tc

cos(12τ)sin(12τ)cos(12χ)2cos(12τ)2sin(12χ)2sin(12τ)2\displaystyle \frac{\cos\left(\frac{1}{2} \, {\tau}\right) \sin\left(\frac{1}{2} \, {\tau}\right)}{\cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} - \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2}}

tc.reduce_trig()

sin(τ)cos(χ)+cos(τ)\displaystyle \frac{\sin\left({\tau}\right)}{\cos\left({\chi}\right) + \cos\left({\tau}\right)}

rc = XC_to_XS(tau,ch,th,ph)[1] rc

cos(12χ)sin(12χ)cos(12χ)2cos(12τ)2sin(12χ)2sin(12τ)2\displaystyle \frac{\cos\left(\frac{1}{2} \, {\chi}\right) \sin\left(\frac{1}{2} \, {\chi}\right)}{\cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} - \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2}}

rc.reduce_trig()

sin(χ)cos(χ)+cos(τ)\displaystyle \frac{\sin\left({\chi}\right)}{\cos\left({\chi}\right) + \cos\left({\tau}\right)}

XS_to_XC.set_inverse(tc.reduce_trig(), rc.reduce_trig(), th, ph) XC_to_XS = XS_to_XC.inverse()
Check of the inverse coordinate transformation: t == t *passed* r == r *passed* th == th *passed* ph == ph *passed* tau == arctan((sin(ch) + sin(tau))/(cos(ch) + cos(tau))) + arctan(-(sin(ch) - sin(tau))/(cos(ch) + cos(tau))) **failed** ch == arctan((sin(ch) + sin(tau))/(cos(ch) + cos(tau))) - arctan(-(sin(ch) - sin(tau))/(cos(ch) + cos(tau))) **failed** th == th *passed* ph == ph *passed* NB: a failed report can reflect a mere lack of simplification.
XC_to_XS.display()

{t=sin(τ)cos(χ)+cos(τ)r=sin(χ)cos(χ)+cos(τ)θ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} t & = & \frac{\sin\left({\tau}\right)}{\cos\left({\chi}\right) + \cos\left({\tau}\right)} \\ r & = & \frac{\sin\left({\chi}\right)}{\cos\left({\chi}\right) + \cos\left({\tau}\right)} \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

Conformal Penrose diagram

Let us draw the coordinate grid (t,r)(t,r) in terms of the coordinates (τ,χ)(\tau,\chi):

graphXS = XS.plot(XC, ambient_coords=(ch, tau), fixed_coords={th: pi/2, ph: pi}, max_range=30, number_values=51, plot_points=250, color={t: 'red', r: 'grey'}) graph_i0 = circle((pi,0), 0.05, fill=True, color='grey') + \ text(r"$i^0$", (3.3, 0.2), fontsize=18, color='grey') graph_ip = circle((0,pi), 0.05, fill=True, color='red') + \ text(r"$i^+$", (0.25, 3.3), fontsize=18, color='red') graph_im = circle((0,-pi), 0.05, fill=True, color='red') + \ text(r"$i^-$", (0.25, -3.3), fontsize=18, color='red') graph_Ip = line([(0,pi), (pi,0)], color='green', thickness=2) + \ text(r"$\mathscr{I}^+$", (1.8, 1.8), fontsize=18, color='green') graph_Im = line([(0,-pi), (pi,0)], color='green', thickness=2) + \ text(r"$\mathscr{I}^-$", (1.8, -1.8), fontsize=18, color='green') graph = graphXS + graph_i0 + graph_ip + graph_im + graph_Ip + graph_Im show(graph, figsize=8)
Image in a Jupyter notebook
graph.save('glo_conf_diag_Mink.pdf', figsize=8)

Some blow-up near i0i^0:

graph = XS.plot(XC, ambient_coords=(ch, tau), fixed_coords={th: pi/2, ph: pi}, max_range=100, number_values=41, plot_points=200, color={t: 'red', r: 'grey'}) graph += circle((pi,0), 0.005, fill=True, color='grey') + \ text(r"$i^0$", (pi, 0.02), fontsize=18, color='grey') show(graph, xmin=3., xmax=3.2, ymin=-0.2, ymax=0.2, aspect_ratio=1)
Image in a Jupyter notebook

To produce a more satisfactory figure, let us use some logarithmic radial coordinate:

XL.<t, rh, th, ph> = M.chart(r't rh:\rho th:(0,pi):\theta ph:(0,2*pi):\phi') XL

(M,(t,ρ,θ,ϕ))\displaystyle \left(M,(t, {\rho}, {\theta}, {\phi})\right)

XS_to_XL = XS.transition_map(XL, [t, ln(r), th, ph]) XS_to_XL.display()

{t=tρ=log(r)θ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} t & = & t \\ {\rho} & = & \log\left(r\right) \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

XS_to_XL.inverse().display()

{t=tr=eρθ=θϕ=ϕ\displaystyle \left\{\begin{array}{lcl} t & = & t \\ r & = & e^{{\rho}} \\ {\theta} & = & {\theta} \\ {\phi} & = & {\phi} \end{array}\right.

XL_to_XC = M.coord_change(XS, XC) * M.coord_change(XL, XS) XC_to_XL = M.coord_change(XS, XL) * M.coord_change(XC, XS)
graph = XL.plot(XC, ambient_coords=(ch, tau), fixed_coords={th: pi/2, ph: pi}, ranges={t: (-20, 20), rh: (-2, 10)}, number_values=19, color={t: 'red', rh: 'grey'}) graph += circle((pi,0), 0.005, fill=True, color='grey') + \ text(r"$i^0$", (pi, 0.02), fontsize=18, color='grey') show(graph, xmin=3., xmax=3.2, ymin=-0.2, ymax=0.2, aspect_ratio=1)
Image in a Jupyter notebook

Null radial geodesics in the conformal diagram

To get a view of the null radial geodesics in the conformal diagram, it suffices to plot the chart (u,v,θ,ϕ)(u,v,\theta,\phi) in terms of the chart (τ,χ,θ,ϕ)(\tau,\chi,\theta,\phi). The following plot shows

  • the null geodesics defined by (u,θ,ϕ)=(u0,π/2,π)(u,\theta,\phi) = (u_0, \pi/2,\pi) for 17 values of u0u_0 evenly spaced in [8,8][-8,8] (dashed lines)

  • the null geodesics defined by (v,θ,ϕ)=(v0,π/2,π)(v,\theta,\phi) = (v_0, \pi/2,\pi) for 17 values of v0v_0 evenly spaced in [8,8][-8,8] (solid lines)

graphXN = XN.plot(XC, ambient_coords=(ch, tau), fixed_coords={th: pi/2, ph: pi}, number_values=17, plot_points=150, color='green', style={u: '--', v: '-'}, thickness=1.5) graph = graphXN + graph_i0 + graph_ip + graph_im + graph_Ip + graph_Im show(graph, figsize=8)
Image in a Jupyter notebook
graph.save('glo_conf_Mink_null.pdf', figsize=8)

Conformal factor

The conformal factor expressed in various coordinate systems:

Omega.display()

Ω:MR(t,r,θ,ϕ)2r2+2rt+t2+1r22rt+t2+1(u,v,θ,ϕ)2u2+1v2+1(U,V,θ,ϕ)2cos(U)cos(V)(τ,χ,θ,ϕ)2cos(12χ)2cos(12τ)22sin(12χ)2sin(12τ)2(t,ρ,θ,ϕ)2t2+2teρ+e(2ρ)+1t22teρ+e(2ρ)+1\displaystyle \begin{array}{llcl} \Omega:& M & \longrightarrow & \mathbb{R} \\ & \left(t, r, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1}} \\ & \left(u, v, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{u^{2} + 1} \sqrt{v^{2} + 1}} \\ & \left(U, V, {\theta}, {\phi}\right) & \longmapsto & 2 \, \cos\left(U\right) \cos\left(V\right) \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & 2 \, \cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} - 2 \, \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2} \\ & \left(t, {\rho}, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{t^{2} + 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \sqrt{t^{2} - 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1}} \end{array}

The expression in terms of (τ,χ,θ,ϕ)(\tau,\chi,\theta,\phi) can be simplified:

Omega.expr(XC)

2cos(12χ)2cos(12τ)22sin(12χ)2sin(12τ)2\displaystyle 2 \, \cos\left(\frac{1}{2} \, {\chi}\right)^{2} \cos\left(\frac{1}{2} \, {\tau}\right)^{2} - 2 \, \sin\left(\frac{1}{2} \, {\chi}\right)^{2} \sin\left(\frac{1}{2} \, {\tau}\right)^{2}

s = Omega.expr(XC) - cos(tau) - cos(ch) s.trig_reduce()

0\displaystyle 0

Hence we set

Omega.add_expr(cos(tau) + cos(ch), XC) Omega.display()

Ω:MR(t,r,θ,ϕ)2r2+2rt+t2+1r22rt+t2+1(u,v,θ,ϕ)2u2+1v2+1(U,V,θ,ϕ)2cos(U)cos(V)(τ,χ,θ,ϕ)cos(χ)+cos(τ)(t,ρ,θ,ϕ)2t2+2teρ+e(2ρ)+1t22teρ+e(2ρ)+1\displaystyle \begin{array}{llcl} \Omega:& M & \longrightarrow & \mathbb{R} \\ & \left(t, r, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1}} \\ & \left(u, v, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{u^{2} + 1} \sqrt{v^{2} + 1}} \\ & \left(U, V, {\theta}, {\phi}\right) & \longmapsto & 2 \, \cos\left(U\right) \cos\left(V\right) \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & \cos\left({\chi}\right) + \cos\left({\tau}\right) \\ & \left(t, {\rho}, {\theta}, {\phi}\right) & \longmapsto & \frac{2}{\sqrt{t^{2} + 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \sqrt{t^{2} - 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1}} \end{array}

A plot of Ω\Omega in terms of the coordinates (τ,χ)(\tau,\chi):

graph = plot3d(Omega.expr(XC), (tau,-pi,pi), (ch,0,pi)) \ + plot3d(0, (tau,-pi,pi), (ch,0,pi), color='yellow', opacity=0.7) show(graph, aspect_ratio=1, axes_labels=['tau', 'chi', 'Omega'])
show(graph, aspect_ratio=1, viewer='tachyon')
Image in a Jupyter notebook

Differential of the conformal factor

The 1-form dΩ\mathrm{d}\Omega is:

dOmega = Omega.differential() print(dOmega)
1-form dOmega on the 4-dimensional differentiable manifold M
dOmega.display()

dΩ=(4(t3(r21)t)r2+2rt+t2+1r22rt+t2+1r8+t84(r21)t6+4r6+2(3r42r2+3)t4+6r44(r6+r4r21)t2+4r2+1)dt+(4(r3rt2+r)r2+2rt+t2+1r22rt+t2+1r8+t84(r21)t6+4r6+2(3r42r2+3)t4+6r44(r6+r4r21)t2+4r2+1)dr\displaystyle \mathrm{d}\Omega = \left( -\frac{4 \, {\left(t^{3} - {\left(r^{2} - 1\right)} t\right)} \sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1}}{r^{8} + t^{8} - 4 \, {\left(r^{2} - 1\right)} t^{6} + 4 \, r^{6} + 2 \, {\left(3 \, r^{4} - 2 \, r^{2} + 3\right)} t^{4} + 6 \, r^{4} - 4 \, {\left(r^{6} + r^{4} - r^{2} - 1\right)} t^{2} + 4 \, r^{2} + 1} \right) \mathrm{d} t + \left( -\frac{4 \, {\left(r^{3} - r t^{2} + r\right)} \sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1}}{r^{8} + t^{8} - 4 \, {\left(r^{2} - 1\right)} t^{6} + 4 \, r^{6} + 2 \, {\left(3 \, r^{4} - 2 \, r^{2} + 3\right)} t^{4} + 6 \, r^{4} - 4 \, {\left(r^{6} + r^{4} - r^{2} - 1\right)} t^{2} + 4 \, r^{2} + 1} \right) \mathrm{d} r

dOmega.display(XNC.frame(), XNC)

dΩ=2cos(V)sin(U)dU2cos(U)sin(V)dV\displaystyle \mathrm{d}\Omega = -2 \, \cos\left(V\right) \sin\left(U\right) \mathrm{d} U -2 \, \cos\left(U\right) \sin\left(V\right) \mathrm{d} V

M.set_default_chart(XNC) M.set_default_frame(XNC.frame())
dOmega.display()

dΩ=2cos(V)sin(U)dU2cos(U)sin(V)dV\displaystyle \mathrm{d}\Omega = -2 \, \cos\left(V\right) \sin\left(U\right) \mathrm{d} U -2 \, \cos\left(U\right) \sin\left(V\right) \mathrm{d} V

dOmega1 = M.one_form() dOmega1[0] = -2*cos(V)*sin(U) dOmega1[1] = -2*cos(U)*sin(V) dOmega1.display()

2cos(V)sin(U)dU2cos(U)sin(V)dV\displaystyle -2 \, \cos\left(V\right) \sin\left(U\right) \mathrm{d} U -2 \, \cos\left(U\right) \sin\left(V\right) \mathrm{d} V

dOmega1.display(XC.frame(), XC)

2cos(12τ)sin(12τ)dτ2cos(12χ)sin(12χ)dχ\displaystyle -2 \, \cos\left(\frac{1}{2} \, {\tau}\right) \sin\left(\frac{1}{2} \, {\tau}\right) \mathrm{d} {\tau} -2 \, \cos\left(\frac{1}{2} \, {\chi}\right) \sin\left(\frac{1}{2} \, {\chi}\right) \mathrm{d} {\chi}

Einstein static universe

E = Manifold(4, 'E') print(E)
4-dimensional differentiable manifold E
XE.<tau,ch,th,ph> = E.chart(r'tau:\tau ch:(0,pi):\chi th:(0,pi):\theta ph:(0,2*pi):\phi') XE

(E,(τ,χ,θ,ϕ))\displaystyle \left(E,({\tau}, {\chi}, {\theta}, {\phi})\right)

XE.coord_range()

τ: (,+);χ: (0,π);θ: (0,π);ϕ: (0,2π)\displaystyle {\tau} :\ \left( -\infty, +\infty \right) ;\quad {\chi} :\ \left( 0 , \pi \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right)

XC.coord_range()

τ: (π,π);χ: (0,π);θ: (0,π);ϕ: (0,2π)\displaystyle {\tau} :\ \left( -\pi , \pi \right) ;\quad {\chi} :\ \left( 0 , \pi \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right)

Embedding of MM in EE

Phi = M.diff_map(E, {(XC, XE): [tau, ch, th, ph]}, name='Phi', latex_name=r'\Phi') print(Phi) Phi.display()
Differentiable map Phi from the 4-dimensional differentiable manifold M to the 4-dimensional differentiable manifold E

Φ:ME(t,r,θ,ϕ)(τ,χ,θ,ϕ)=(arctan(r+t)+arctan(r+t),arctan(r+t)arctan(r+t),θ,ϕ)(u,v,θ,ϕ)(τ,χ,θ,ϕ)=(arctan(u)+arctan(v),arctan(u)+arctan(v),θ,ϕ)(U,V,θ,ϕ)(τ,χ,θ,ϕ)=(U+V,U+V,θ,ϕ)(τ,χ,θ,ϕ)(τ,χ,θ,ϕ)=(τ,χ,θ,ϕ)(t,ρ,θ,ϕ)(τ,χ,θ,ϕ)=(arctan(t+eρ)+arctan(teρ),arctan(t+eρ)arctan(teρ),θ,ϕ)\displaystyle \begin{array}{llcl} \Phi:& M & \longrightarrow & E \\ & \left(t, r, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, {\chi}, {\theta}, {\phi}\right) = \left(\arctan\left(r + t\right) + \arctan\left(-r + t\right), \arctan\left(r + t\right) - \arctan\left(-r + t\right), {\theta}, {\phi}\right) \\ & \left(u, v, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, {\chi}, {\theta}, {\phi}\right) = \left(\arctan\left(u\right) + \arctan\left(v\right), -\arctan\left(u\right) + \arctan\left(v\right), {\theta}, {\phi}\right) \\ & \left(U, V, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, {\chi}, {\theta}, {\phi}\right) = \left(U + V, -U + V, {\theta}, {\phi}\right) \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, {\chi}, {\theta}, {\phi}\right) = \left({\tau}, {\chi}, {\theta}, {\phi}\right) \\ & \left(t, {\rho}, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, {\chi}, {\theta}, {\phi}\right) = \left(\arctan\left(t + e^{{\rho}}\right) + \arctan\left(t - e^{{\rho}}\right), \arctan\left(t + e^{{\rho}}\right) - \arctan\left(t - e^{{\rho}}\right), {\theta}, {\phi}\right) \end{array}

XS.plot(XE, mapping=Phi, ambient_coords=(ch, tau), fixed_coords={th: pi/2, ph: pi}, plot_points=200, color={t: 'red', r: 'grey'})
Image in a Jupyter notebook

Embedding of EE in R5\mathbb{R}^5

R5 = Manifold(5, 'R^5', latex_name=r'\mathbb{R}^5') print(R5)
5-dimensional differentiable manifold R^5
X5.<tau,W,X,Y,Z> = R5.chart(r'tau:\tau W X Y Z') X5

(R5,(τ,W,X,Y,Z))\displaystyle \left(\mathbb{R}^5,({\tau}, W, X, Y, Z)\right)

Psi = E.diff_map(R5, {(XE, X5): [tau, cos(ch), sin(ch)*sin(th)*cos(ph), sin(ch)*sin(th)*sin(ph), sin(ch)*cos(th)]}, name='Psi', latex_name=r'\Psi') print(Psi) Psi.display()
Differentiable map Psi from the 4-dimensional differentiable manifold E to the 5-dimensional differentiable manifold R^5

Ψ:ER5(τ,χ,θ,ϕ)(τ,W,X,Y,Z)=(τ,cos(χ),cos(ϕ)sin(χ)sin(θ),sin(χ)sin(ϕ)sin(θ),cos(θ)sin(χ))\displaystyle \begin{array}{llcl} \Psi:& E & \longrightarrow & \mathbb{R}^5 \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, W, X, Y, Z\right) = \left({\tau}, \cos\left({\chi}\right), \cos\left({\phi}\right) \sin\left({\chi}\right) \sin\left({\theta}\right), \sin\left({\chi}\right) \sin\left({\phi}\right) \sin\left({\theta}\right), \cos\left({\theta}\right) \sin\left({\chi}\right)\right) \end{array}

The Einstein cylinder:

graphE = XE.plot(X5, ambient_coords=(W,X,tau), mapping=Psi, fixed_coords={th:pi/2, ph:0.001}, max_range=4, number_values=9, color='silver', thickness=0.5, label_axes=False) # phi = 0 graphE += XE.plot(X5, ambient_coords=(W,X,tau), mapping=Psi, fixed_coords={th:pi/2, ph:pi}, max_range=4, number_values=9, color='silver', thickness=0.5, label_axes=False) # phi = pi show(graphE, aspect_ratio=1, axes_labels=['W', 'X', 'tau'])

Embedding of MM in R5\mathbb{R}^5

The embedding Θ:MR5\Theta:\, M\rightarrow \mathbb{R}^5 is obtained by composition of the embeddings Φ:ME\Phi:\, M\rightarrow E and Ψ:ER5\Psi:\, E\rightarrow \mathbb{R}^5:

Theta = Psi * Phi print(Theta) Theta.display()
Differentiable map from the 4-dimensional differentiable manifold M to the 5-dimensional differentiable manifold R^5

MR5(t,r,θ,ϕ)(τ,W,X,Y,Z)=(arctan(r+t)+arctan(r+t),r2+2rt+t2+1r22rt+t2+1(r2t21)r4+t42(r21)t2+2r2+1,2r2+2rt+t2+1r22rt+t2+1rcos(ϕ)sin(θ)r4+t42(r21)t2+2r2+1,2r2+2rt+t2+1r22rt+t2+1rsin(ϕ)sin(θ)r4+t42(r21)t2+2r2+1,2r2+2rt+t2+1r22rt+t2+1rcos(θ)r4+t42(r21)t2+2r2+1)(u,v,θ,ϕ)(τ,W,X,Y,Z)=(arctan(u)+arctan(v),u2+1(uv+1)v2+1(u2+1)v2+u2+1,(ucos(ϕ)sin(θ)vcos(ϕ)sin(θ))u2+1v2+1(u2+1)v2+u2+1,(usin(ϕ)sin(θ)vsin(ϕ)sin(θ))u2+1v2+1(u2+1)v2+u2+1,u2+1v2+1(ucos(θ)vcos(θ))(u2+1)v2+u2+1)(U,V,θ,ϕ)(τ,W,X,Y,Z)=(U+V,cos(U)cos(V)+sin(U)sin(V),(cos(V)sin(U)cos(U)sin(V))cos(ϕ)sin(θ),(cos(V)sin(U)cos(U)sin(V))sin(ϕ)sin(θ),(cos(V)sin(U)cos(U)sin(V))cos(θ))(τ,χ,θ,ϕ)(τ,W,X,Y,Z)=(τ,cos(χ),cos(ϕ)sin(χ)sin(θ),sin(χ)sin(ϕ)sin(θ),cos(θ)sin(χ))(t,ρ,θ,ϕ)(τ,W,X,Y,Z)=(arctan(t+eρ)+arctan(teρ),t2+2teρ+e(2ρ)+1t22teρ+e(2ρ)+1(t2e(2ρ)+1)t42t2(e(2ρ)1)+e(4ρ)+2e(2ρ)+1,2t2+2teρ+e(2ρ)+1t22teρ+e(2ρ)+1cos(ϕ)eρsin(θ)t42t2(e(2ρ)1)+e(4ρ)+2e(2ρ)+1,2t2+2teρ+e(2ρ)+1t22teρ+e(2ρ)+1eρsin(ϕ)sin(θ)t42t2(e(2ρ)1)+e(4ρ)+2e(2ρ)+1,2t2+2teρ+e(2ρ)+1t22teρ+e(2ρ)+1cos(θ)eρt42t2(e(2ρ)1)+e(4ρ)+2e(2ρ)+1)\displaystyle \begin{array}{llcl} & M & \longrightarrow & \mathbb{R}^5 \\ & \left(t, r, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, W, X, Y, Z\right) = \left(\arctan\left(r + t\right) + \arctan\left(-r + t\right), -\frac{\sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1} {\left(r^{2} - t^{2} - 1\right)}}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1}, \frac{2 \, \sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1} r \cos\left({\phi}\right) \sin\left({\theta}\right)}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1}, \frac{2 \, \sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1} r \sin\left({\phi}\right) \sin\left({\theta}\right)}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1}, \frac{2 \, \sqrt{r^{2} + 2 \, r t + t^{2} + 1} \sqrt{r^{2} - 2 \, r t + t^{2} + 1} r \cos\left({\theta}\right)}{r^{4} + t^{4} - 2 \, {\left(r^{2} - 1\right)} t^{2} + 2 \, r^{2} + 1}\right) \\ & \left(u, v, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, W, X, Y, Z\right) = \left(\arctan\left(u\right) + \arctan\left(v\right), \frac{\sqrt{u^{2} + 1} {\left(u v + 1\right)} \sqrt{v^{2} + 1}}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1}, -\frac{{\left(u \cos\left({\phi}\right) \sin\left({\theta}\right) - v \cos\left({\phi}\right) \sin\left({\theta}\right)\right)} \sqrt{u^{2} + 1} \sqrt{v^{2} + 1}}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1}, -\frac{{\left(u \sin\left({\phi}\right) \sin\left({\theta}\right) - v \sin\left({\phi}\right) \sin\left({\theta}\right)\right)} \sqrt{u^{2} + 1} \sqrt{v^{2} + 1}}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1}, -\frac{\sqrt{u^{2} + 1} \sqrt{v^{2} + 1} {\left(u \cos\left({\theta}\right) - v \cos\left({\theta}\right)\right)}}{{\left(u^{2} + 1\right)} v^{2} + u^{2} + 1}\right) \\ & \left(U, V, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, W, X, Y, Z\right) = \left(U + V, \cos\left(U\right) \cos\left(V\right) + \sin\left(U\right) \sin\left(V\right), -{\left(\cos\left(V\right) \sin\left(U\right) - \cos\left(U\right) \sin\left(V\right)\right)} \cos\left({\phi}\right) \sin\left({\theta}\right), -{\left(\cos\left(V\right) \sin\left(U\right) - \cos\left(U\right) \sin\left(V\right)\right)} \sin\left({\phi}\right) \sin\left({\theta}\right), -{\left(\cos\left(V\right) \sin\left(U\right) - \cos\left(U\right) \sin\left(V\right)\right)} \cos\left({\theta}\right)\right) \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, W, X, Y, Z\right) = \left({\tau}, \cos\left({\chi}\right), \cos\left({\phi}\right) \sin\left({\chi}\right) \sin\left({\theta}\right), \sin\left({\chi}\right) \sin\left({\phi}\right) \sin\left({\theta}\right), \cos\left({\theta}\right) \sin\left({\chi}\right)\right) \\ & \left(t, {\rho}, {\theta}, {\phi}\right) & \longmapsto & \left({\tau}, W, X, Y, Z\right) = \left(\arctan\left(t + e^{{\rho}}\right) + \arctan\left(t - e^{{\rho}}\right), \frac{\sqrt{t^{2} + 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \sqrt{t^{2} - 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} {\left(t^{2} - e^{\left(2 \, {\rho}\right)} + 1\right)}}{t^{4} - 2 \, t^{2} {\left(e^{\left(2 \, {\rho}\right)} - 1\right)} + e^{\left(4 \, {\rho}\right)} + 2 \, e^{\left(2 \, {\rho}\right)} + 1}, \frac{2 \, \sqrt{t^{2} + 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \sqrt{t^{2} - 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \cos\left({\phi}\right) e^{{\rho}} \sin\left({\theta}\right)}{t^{4} - 2 \, t^{2} {\left(e^{\left(2 \, {\rho}\right)} - 1\right)} + e^{\left(4 \, {\rho}\right)} + 2 \, e^{\left(2 \, {\rho}\right)} + 1}, \frac{2 \, \sqrt{t^{2} + 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \sqrt{t^{2} - 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} e^{{\rho}} \sin\left({\phi}\right) \sin\left({\theta}\right)}{t^{4} - 2 \, t^{2} {\left(e^{\left(2 \, {\rho}\right)} - 1\right)} + e^{\left(4 \, {\rho}\right)} + 2 \, e^{\left(2 \, {\rho}\right)} + 1}, \frac{2 \, \sqrt{t^{2} + 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \sqrt{t^{2} - 2 \, t e^{{\rho}} + e^{\left(2 \, {\rho}\right)} + 1} \cos\left({\theta}\right) e^{{\rho}}}{t^{4} - 2 \, t^{2} {\left(e^{\left(2 \, {\rho}\right)} - 1\right)} + e^{\left(4 \, {\rho}\right)} + 2 \, e^{\left(2 \, {\rho}\right)} + 1}\right) \end{array}

graphM = XS.plot(X5, ambient_coords=(W,X,tau), mapping=Theta, fixed_coords={th:pi/2, ph:0.001}, max_range=30, number_values=51, plot_points=250, color={t:'red', r:'black'}, label_axes=False) # phi = 0 graphM += XS.plot(X5, ambient_coords=(W,X,tau), mapping=Theta, fixed_coords={th:pi/2, ph:pi}, max_range=30, number_values=51, plot_points=250, color={t:'red', r:'black'}, label_axes=False) # phi = pi show(graphE+graphM, aspect_ratio=1, axes_labels=['W', 'X', 'tau'])
graph = (graphE+graphM).rotate((0,0,1), 0.2) show(graph, aspect_ratio=(2,2,1), viewer='tachyon', frame=False, figsize=20)
Image in a Jupyter notebook
graph = (graphE+graphM).rotate((0,0,1), pi) show(graph, aspect_ratio=(2,2,1), viewer='tachyon', frame=False, figsize=20)
Image in a Jupyter notebook
graphMN = XN.plot(X5, ambient_coords=(W,X,tau), mapping=Theta, fixed_coords={th:pi/2, ph:0.001}, max_range=16, number_values=21, plot_points=150, color='green', style={u: '--', v: '-'}, label_axes=False) # phi = 0 graphMN += XN.plot(X5, ambient_coords=(W,X,tau), mapping=Theta, fixed_coords={th:pi/2, ph:pi}, max_range=16, number_values=21, plot_points=150, color='green', style={u: '--', v: '-'}, label_axes=False) # phi = pi
show(graphE+graphMN, aspect_ratio=1, frame=False)
show(graphE+graphMN, aspect_ratio=(2,2,1), viewer='tachyon', frame=False, figsize=20)
Image in a Jupyter notebook