CoCalc Public Filessage-9.1.ipynbOpen with one click!
Author: Harald Schilly
Views : 274
Compute Environment: Ubuntu 18.04 (Deprecated)
In [1]:
version()
'SageMath version 9.1, Release Date: 2020-05-20'
In [2]:
x = var('x') eq = 6*x^6 - 7*x^5 - 7*x^4 + 7*x^2 + 7*x - 6 sol = solve(eq, x) sol
[x == (2/3), x == -1, x == (3/2), x == -1/2*I*sqrt(3) - 1/2, x == 1/2*I*sqrt(3) - 1/2, x == 1]
In [3]:
show(sol)
[x=(23),x=(1),x=(32),x=12i312,x=12i312,x=1]\left[x = \left(\frac{2}{3}\right), x = \left(-1\right), x = \left(\frac{3}{2}\right), x = -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, x = \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, x = 1\right]
In [ ]:
plot(eq, (x, -1.1, 1.6))
In [12]:
eq = 6*x^6 - 7*x^5 - 7*x^4 + 7*x^2 + 7*x - 6 complex_plot(eq, (-1.5, 2.1), (-1.5, 1.5))

Polyhedral geometry

There is now a catalog for common polyhedral cones, e.g.

In [13]:
cones.nonnegative_orthant(5)
5-d cone in 5-d lattice N

New features for polyhedra:

In [8]:
sage: P = polytopes.cube(intervals='zero_one') # obtain others than the standard cube sage: P = matrix([[0,1,0],[0,1,1],[1,0,0]])*P # linear transformations sage: it = P.face_generator() # a (fast and efficient) face generator sage: next(it)
A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 8 vertices
In [ ]:
sage: next(it)
In [ ]:
sage: f = next(it) sage: f.normal_cone() # normal cone for faces
In [ ]:
sage: P.an_affine_basis()
In [7]:
sage: P = polytopes.hypercube(4) sage: P.flag_f_vector(0,3) # flag_f_vector is exposed
64
In [8]:
P.plot()

Integral curves over finite fields

In [9]:
A.<x,y> = AffineSpace(GF(16),2) C = Curve(y^3 + x^3*y + x); C # Klein quartic
Affine Plane Curve over Finite Field in z4 of size 2^4 defined by x^3*y + y^3 + x
In [10]:
C.function_field()
Function field in y defined by y^3 + x^3*y + x
In [11]:
C.genus()
3
In [12]:
C.closed_points()
[Point (x, y), Point (x + (z4), y + (z4^3 + z4^2)), Point (x + (z4^2), y + (z4^3 + z4^2 + z4 + 1)), Point (x + (z4^3), y + (z4^2 + z4)), Point (x + (z4 + 1), y + (z4^3 + z4)), Point (x + (z4^2 + z4), y + (z4^2 + z4 + 1)), Point (x + (z4^2 + z4), y + (z4^3 + 1)), Point (x + (z4^2 + z4), y + (z4^3 + z4^2 + z4)), Point (x + (z4^3 + z4^2), y + (z4^2 + z4 + 1)), Point (x + (z4^2 + 1), y + (z4^3)), Point (x + (z4^3 + z4), y + (z4^2 + z4 + 1)), Point (x + (z4^2 + z4 + 1), y + (z4^2 + z4)), Point (x + (z4^2 + z4 + 1), y + (z4^3 + z4 + 1)), Point (x + (z4^2 + z4 + 1), y + (z4^3 + z4^2 + 1)), Point (x + (z4^3 + z4^2 + z4 + 1), y + (z4^2 + z4))]
In [13]:
p1, p2 = _[:2] P1 = p1.place() P2 = p2.place() D = 5 * P1 - P2 D.basis_function_space()
[(x + z4)/x, 1/x^2*y + (z4^2 + z4)/x]
In [14]:
f1, f2 = D.basis_function_space() f1.zeros()
[Place (x + z4, y^2 + (z4^3 + z4^2)*y + z4^2 + z4 + 1), Place (x + z4, y + z4^3 + z4^2)]

Generator for cube-connected cycles

In [15]:
graphs.CubeConnectedCycle(3).plot()

Manifolds

More functionalities in index notation for tensors

In [16]:
E.<x,y> = EuclideanSpace() v = E.vector_field(-y, x) t = E.tensor_field(0, 2, [[1, x], [-2*y, x^2]]) v['j']*(t['_ij'] + t['_ji']) == v.contract(2*t.symmetrize())
True
In [17]:
v
Vector field on the Euclidean plane E^2
In [18]:
t
Tensor field of type (0,2) on the Euclidean plane E^2
In [19]:
v['j'], t['_ij'], t['_ji']
(X^j, X_ij, X_ji)
In [20]:
t.symmetrize()
Field of symmetric bilinear forms on the Euclidean plane E^2
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [21]:
@interact def func(k = slider(0, 10, .1), j = (-10, 10), l = range_slider(-5, 5)): print("k: %s" % k) print("j: %s" % j) print("l: [%s, %s]" % l)
In [ ]:
In [22]:
var('t y') plot_slope_field(y - t, (t,0,10), (y,0,6), plot_points=25)
In [ ]:
In [ ]:
In [23]:
G = cellular_automata.GraftalLace([2,0,3,3,6,0,2,7]) G
Graftal Lace Cellular Automata with rule 20336027
In [24]:
G.evolve(42) G.plot()
In [ ]:
In [25]:
init = 200*[1] init[100] = 0 init[101] = 0 ECA = cellular_automata.Elementary(151, width=200, initial_state=init) ECA
Elementary cellular automata with rule 151 and initial state [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
In [26]:
ECA.evolve(200) ECA.plot()
In [ ]:
In [ ]: