 CoCalc Public Fileswww / wiki / ant07(2f)plan(2f)2007(2d)10(2d)19.html
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
ant07/plan/2007-10-19 [top] [TitleIndex] [WordIndex]

# 2007-10-19

3. Prove that if [O_K : O] is coprime to p, then ideals of O that divide p are in bijection with ideals of O_K, and have same generators. Give both proofs.
4. Formally define essential discriminant divisors and recall example (with no details)
5. General factorization:
1. Given a prime p and an order O=Z[a], find the prime factorization of p*O_K.
2. Two steps: (1) find the primes of O_K that contain p, then (2) find the powers of each that divide p*O_K.
3. We focus on (1) for the rest of today.
4. For this, we find a p-maximal order O' that contains O, then find the primes that contain p in O'.
5. State the Post-Zassenhaus theorem, and give the proof of part of it.
6. State lemma 5.3.6: computing a p-maximal order.
7. Describe algorithm to write finite separable algebra as sum of fields.
8. Describe general algorithm for factoring primes.
6. A toy implementation of prime factorization and/or finding a p-maximal order would be a good student project. To make it much more interesting make code that is general enough to also do something in the context of a functional field of a curve. Hopefully Alyson will do this ?

2013-05-11 18:33