CoCalc Public Fileswww / tables / charpoly_s2new_301-400.gp
Author: William A. Stein
1\\ charpoly_s2new.gp
2\\ This is a table of characteristic polynomials of the
3\\ Hecke operators T_p acting on the space S_2^{new}(Gamma_0(N))
4\\ of weight 2 cuspidal newforms for Gamma_0(N).
5\\ The cases in which S_k = S_k^{new} are omitted, since
6\\ they appear in other tables.
7\\ William Stein ([email protected]), October, 1998.
8
9{
10T=matrix(500,97,m,n,0);
11T[301,2]=(x^4 + 4*x^3 + 2*x^2 -5*x -3)*(x^5 -6*x^3 + x^2 + 5*x -2)*(x^5 -x^4 -6*x^3 + 5*x^2 + 6*x -1)*(x^7 -4*x^6 -3*x^5 + 25*x^4 -13*x^3 -23*x^2 + 11*x + 2);
12T[301,3]=(x^4 + 3*x^3 -2*x^2 -4*x -1)*(x^5 + 3*x^4 -6*x^3 -18*x^2 + x + 2)*(x^5 -5*x^4 + 2*x^3 + 18*x^2 -15*x -8)*(x^7 -x^6 -14*x^5 + 16*x^4 + 43*x^3 -54*x^2 -24*x + 32);
13T[301,5]=(x^4 + 4*x^3 -7*x + 3)*(x^5 + 6*x^4 -49*x^2 -67*x -4)*(x^5 -4*x^4 -4*x^3 + 15*x^2 + 17*x + 4)*(x^7 -16*x^5 + 9*x^4 + 57*x^3 -54*x^2 -12*x + 16);
14T[301,7]=(x + 1)^10*(x -1)^11;
15T[301,11]=(x^4 + 15*x^3 + 80*x^2 + 176*x + 129)*(x^5 -13*x^4 + 52*x^3 -56*x^2 -23*x + 32)*(x^5 + 16*x^4 + 83*x^3 + 120*x^2 -155*x -283)*(x^7 -16*x^6 + 83*x^5 -104*x^4 -347*x^3 + 881*x^2 -52*x -688);
16T[301,13]=(x^4 -x^3 -30*x^2 + 12*x + 217)*(x^5 + x^4 -36*x^3 -26*x^2 + 147*x -86)*(x^5 + 2*x^4 -35*x^3 -80*x^2 + 81*x + 193)*(x^7 + 2*x^6 -35*x^5 -102*x^4 + 9*x^3 + 247*x^2 + 220*x + 52);
17T[301,17]=(x^4 + x^3 -28*x^2 -14*x + 177)*(x^5 -x^4 -52*x^3 + 118*x^2 -33*x -34)*(x^5 + 8*x^4 -23*x^3 -216*x^2 + 87*x + 1051)*(x^7 -4*x^6 -29*x^5 + 94*x^4 + 245*x^3 -423*x^2 -844*x -292);
18T[301,19]=(x^4 + 8*x^3 -4*x^2 -153*x -289)*(x^5 + 10*x^4 -6*x^3 -207*x^2 -225*x + 346)*(x^5 -18*x^4 + 98*x^3 -145*x^2 -7*x + 4)*(x^7 -48*x^5 -87*x^4 + 185*x^3 + 182*x^2 -32*x -32);
19T[301,23]=(x^4 + 5*x^3 -35*x^2 -95*x -57)*(x^5 + 5*x^4 -39*x^3 -211*x^2 + 195*x + 1376)*(x^5 + 2*x^4 -54*x^3 -230*x^2 -280*x -73)*(x^7 -6*x^6 -90*x^5 + 578*x^4 + 1368*x^3 -11989*x^2 + 8264*x + 22336);
20T[301,29]=(x^4 + 16*x^3 + 42*x^2 -304*x -1083)*(x^5 + 4*x^4 -52*x^3 -294*x^2 -317*x -94)*(x^5 -2*x^4 -102*x^3 + 300*x^2 + 2581*x -9514)*(x^7 -12*x^6 -104*x^5 + 1370*x^4 + 2259*x^3 -36326*x^2 -9692*x + 162968);
21T[301,31]=(x^4 -3*x^3 -68*x^2 -68*x + 197)*(x^5 + 6*x^4 -91*x^3 -406*x^2 + 1563*x + 3681)*(x^5 + 3*x^4 -30*x^3 + 44*x^2 -5*x -14)*(x^7 -8*x^6 -55*x^5 + 264*x^4 + 841*x^3 -1935*x^2 -1694*x + 2708);
22T[301,37]=(x^4 + 11*x^3 -18*x^2 -354*x -197)*(x^5 + 9*x^4 -24*x^3 -202*x^2 + 343*x -134)*(x^5 -9*x^4 -70*x^3 + 576*x^2 + 829*x -3856)*(x^7 + 7*x^6 -162*x^5 -752*x^4 + 8965*x^3 + 16856*x^2 -155988*x + 38336);
23T[301,41]=(x^4 -x^3 -65*x^2 -95*x + 399)*(x^5 + 16*x^4 -56*x^3 -1980*x^2 -9270*x -9379)*(x^5 -17*x^4 + 5*x^3 + 907*x^2 -3021*x -238)*(x^7 -14*x^6 -26*x^5 + 1188*x^4 -4416*x^3 -12549*x^2 + 96344*x -136684);
24T[301,43]=(x -1)^9*(x + 1)^12;
25T[301,47]=(x^4 -11*x^3 + 2*x^2 + 148*x + 141)*(x^5 -7*x^4 -22*x^3 + 306*x^2 -885*x + 818)*(x^5 + 11*x^4 -158*x^3 -1482*x^2 + 6021*x + 33388)*(x^7 -x^6 -98*x^5 + 280*x^4 + 1527*x^3 -6662*x^2 + 5356*x + 2416);
26T[301,53]=(x^4 + 20*x^3 + 101*x^2 + 20*x -3)*(x^5 -19*x^4 + 65*x^3 + 509*x^2 -2187*x -3303)*(x^5 + 30*x^4 + 237*x^3 -238*x^2 -6095*x -3002)*(x^7 -15*x^6 -7*x^5 + 505*x^4 -579*x^3 -3727*x^2 + 4692*x + 4748);
27T[301,59]=(x^4 + 11*x^3 -7*x^2 -115*x -129)*(x^5 -9*x^4 -119*x^3 + 1239*x^2 -2057*x -3134)*(x^5 + 31*x^4 + 331*x^3 + 1395*x^2 + 1731*x -412)*(x^7 -45*x^6 + 787*x^5 -6611*x^4 + 25555*x^3 -26582*x^2 -47812*x -10832);
28T[301,61]=(x^4 + 10*x^3 -79*x^2 -636*x -989)*(x^5 + 2*x^4 -55*x^3 -94*x^2 + 669*x + 846)*(x^5 + 10*x^4 -113*x^3 -1518*x^2 -4775*x -4508)*(x^7 + 20*x^6 -53*x^5 -2734*x^4 -9793*x^3 + 49068*x^2 + 264040*x + 236648);
29T[301,67]=(x^4 + 2*x^3 -47*x^2 + 68*x + 23)*(x^5 -11*x^4 -137*x^3 + 1439*x^2 + 3699*x -32787)*(x^5 + 10*x^4 -115*x^3 -1120*x^2 + 1899*x + 19232)*(x^7 -7*x^6 -105*x^5 + 859*x^4 -193*x^3 -8291*x^2 + 7892*x + 15152);
30T[301,71]=(x^4 + 11*x^3 -145*x^2 -1039*x + 6663)*(x^5 -17*x^4 + 19*x^3 + 429*x^2 -497*x -2888)*(x^5 + 15*x^4 + 13*x^3 -99*x^2 -81*x + 54)*(x^7 -13*x^6 -103*x^5 + 1377*x^4 + 3519*x^3 -39338*x^2 -57312*x + 224768);
31T[301,73]=(x^4 -13*x^3 -225*x^2 + 1701*x + 17539)*(x^5 -13*x^4 -87*x^3 + 1259*x^2 -149*x -11282)*(x^5 + x^4 -145*x^3 + 139*x^2 + 2169*x -316)*(x^7 + 19*x^6 -45*x^5 -3229*x^4 -27525*x^3 -101672*x^2 -172968*x -107608);
32T[301,79]=(x^4 + 32*x^3 + 335*x^2 + 1254*x + 1427)*(x^5 -24*x^4 + 35*x^3 + 1570*x^2 + 39*x -16344)*(x^5 + 4*x^4 -65*x^3 -278*x^2 + 803*x + 3364)*(x^7 -12*x^6 -301*x^5 + 4110*x^4 + 17991*x^3 -334140*x^2 + 119952*x + 5237888);
33T[301,83]=(x^4 + 15*x^3 -54*x^2 -1004*x -1449)*(x^5 -23*x^4 + 134*x^3 + 136*x^2 -2483*x + 3958)*(x^5 + 36*x^4 + 399*x^3 + 920*x^2 -4849*x + 1187)*(x^7 + 6*x^6 -179*x^5 -1296*x^4 + 873*x^3 + 16327*x^2 + 5130*x -40636);
34T[301,89]=(x^4 + x^3 -85*x^2 -17*x + 1587)*(x^5 -35*x^4 + 381*x^3 -1221*x^2 -2831*x + 16184)*(x^5 + 15*x^4 -95*x^3 -1477*x^2 + 2481*x + 15788)*(x^7 + 17*x^6 -95*x^5 -1707*x^4 -791*x^3 + 23682*x^2 + 13340*x -95888);
35T[301,97]=(x^4 -22*x^3 + 74*x^2 + 417*x -427)*(x^5 + 13*x^4 -178*x^3 -1691*x^2 + 8052*x -5463)*(x^5 + 2*x^4 -284*x^3 -343*x^2 + 17909*x -19726)*(x^7 + 15*x^6 -346*x^5 -5549*x^4 + 490*x^3 + 184727*x^2 + 220652*x -636788);
36
37T[302,2]=(x -1)^6*(x + 1)^7;
38T[302,3]=(x + 1)*(x + 3)*(x -2)*(x^2 + 2*x -1)*(x^4 -10*x^2 -6*x + 9)*(x^4 -2*x^3 -4*x^2 + 8*x -1);
39T[302,5]=(x -2)*(x + 4)*(x^4 + 4*x^3 -8*x^2 -44*x -36)*(x^4 -8*x^2 -4*x + 4)*(x )^3;
40T[302,7]=(x -4)*(x^2 + 4*x -4)*(x^4 -2*x^3 -8*x^2 + 8*x + 4)*(x^4 -6*x^3 + 4*x^2 + 24*x -28)*(x + 2)^2;
41T[302,11]=(x -2)*(x + 6)*(x + 4)*(x^2 -4*x -4)*(x^4 -36*x^2 + 4*x + 12)*(x^4 -20*x^2 -4*x + 52);
42T[302,13]=(x + 6)*(x + 2)*(x^2 + 8*x + 8)*(x^4 -14*x^3 + 64*x^2 -104*x + 36)*(x^4 -6*x^3 -12*x^2 + 64*x -52)*(x );
43T[302,17]=(x + 6)*(x + 5)^3*(x + 1)^4*(x -3)^5;
44T[302,19]=(x + 8)*(x^2 -8)*(x^4 -4*x^3 -24*x^2 + 124*x -116)*(x^4 -12*x^3 + 40*x^2 -4*x -108)*(x )^2;
45T[302,23]=(x -6)*(x + 6)*(x^2 -4*x -28)*(x^4 + 6*x^3 -12*x^2 -64*x -52)*(x^4 -2*x^3 -64*x^2 + 288*x -324)*(x );
46T[302,29]=(x -6)*(x -8)*(x^2 -32)*(x^4 + 4*x^3 -40*x^2 + 144)*(x^4 + 4*x^3 -16*x^2 -64*x -16)*(x );
47T[302,31]=(x -9)*(x + 3)*(x^2 + 6*x -23)*(x^4 -122*x^2 + 44*x + 3033)*(x^4 -4*x^3 -14*x^2 + 32*x + 37)*(x );
48T[302,37]=(x -2)*(x^2 + 12*x + 28)*(x^4 -12*x^3 + 192*x + 128)*(x^4 + 8*x^3 -112*x^2 -800*x + 1216)*(x + 2)^2;
49T[302,41]=(x -12)*(x -6)*(x^2 + 8*x -56)*(x^4 + 8*x^3 -64*x^2 -528*x -144)*(x^4 + 12*x^3 + 32*x^2 -16)*(x );
50T[302,43]=(x^2 + 12*x + 4)*(x^4 -4*x^3 -48*x^2 + 272*x -288)*(x^4 -4*x^3 -56*x^2 + 208*x + 32)*(x )*(x + 6)^2;
51T[302,47]=(x -8)*(x + 3)*(x + 7)*(x^2 -14*x + 41)*(x^4 + 4*x^3 -170*x^2 -524*x + 5713)*(x^4 + 8*x^3 -30*x^2 -352*x -603);
52T[302,53]=(x + 12)*(x + 9)*(x -9)*(x^2 -14*x + 31)*(x^4 -12*x^3 + 10*x^2 + 138*x + 81)*(x^4 + 6*x^3 -84*x^2 -400*x + 1043);
53T[302,59]=(x + 4)*(x + 10)*(x^4 + 32*x^3 + 312*x^2 + 860*x + 276)*(x^4 -4*x^3 -208*x^2 + 1036*x -1076)*(x -2)^3;
54T[302,61]=(x + 13)*(x -5)*(x -8)*(x^2 + 6*x -9)*(x^4 + 8*x^3 -86*x^2 -246*x + 9)*(x^4 -2*x^3 -140*x^2 + 172*x + 4507);
55T[302,67]=(x + 7)*(x -3)*(x -2)*(x^2 -6*x -41)*(x^4 + 6*x^3 -106*x^2 -784*x -691)*(x^4 -4*x^3 -36*x^2 + 186*x -205);
56T[302,71]=(x + 12)*(x -4)*(x -12)*(x^2 -16*x + 56)*(x^4 + 14*x^3 + 28*x^2 -264*x -828)*(x^4 -6*x^3 -56*x^2 + 488*x -908);
57T[302,73]=(x -4)*(x + 8)*(x -10)*(x^2 -32)*(x^4 + 2*x^3 -32*x^2 -32*x + 268)*(x^4 -2*x^3 -156*x^2 + 1048*x -1796);
58T[302,79]=(x + 8)*(x^2 + 12*x + 4)*(x^4 -288*x^2 + 288*x + 17216)*(x -10)^2*(x -4)^4;
59T[302,83]=(x + 1)*(x + 11)*(x + 14)*(x^2 + 2*x -97)*(x^4 + 18*x^3 + 46*x^2 -308*x + 249)*(x^4 -20*x^3 -52*x^2 + 2114*x -7801);
60T[302,89]=(x -8)*(x + 6)*(x^2 + 16*x -8)*(x^4 -10*x^3 -236*x^2 + 2592*x -684)*(x^4 + 14*x^3 -96*x^2 -1136*x + 2500)*(x );
61T[302,97]=(x + 15)*(x -2)*(x^4 -16*x^3 + 50*x^2 + 200*x -731)*(x^4 + 8*x^3 -262*x^2 -1904*x + 8381)*(x + 7)^3;
62
63T[303,2]=(x + 2)*(x^2 -2)*(x^7 -12*x^5 + 40*x^3 + x^2 -24*x -4)*(x^6 -x^5 -7*x^4 + 5*x^3 + 13*x^2 -4*x -6)*(x );
64T[303,3]=(x -1)^8*(x + 1)^9;
65T[303,5]=(x + 1)*(x + 3)*(x^2 + 2*x -1)*(x^6 -6*x^5 + x^4 + 34*x^3 -16*x^2 -32*x + 16)*(x^7 -6*x^6 -15*x^5 + 132*x^4 -20*x^3 -768*x^2 + 688*x + 544);
66T[303,7]=(x + 2)*(x^2 + 4*x + 2)*(x^6 -18*x^4 + 4*x^3 + 80*x^2 -32*x -32)*(x^7 -6*x^6 -20*x^5 + 136*x^4 + 112*x^3 -832*x^2 -192*x + 1024)*(x );
67T[303,11]=(x + 6)*(x + 2)*(x^7 + 10*x^6 + x^5 -312*x^4 -1293*x^3 -1600*x^2 + 700*x + 2000)*(x^6 -10*x^5 + 5*x^4 + 144*x^3 -125*x^2 -388*x -164)*(x -2)^2;
68T[303,13]=(x -1)*(x + 3)*(x^2 + 6*x + 1)*(x^6 -44*x^4 + 14*x^3 + 444*x^2 -492*x + 53)*(x^7 -10*x^6 + 210*x^4 -396*x^3 -104*x^2 + 425*x -62);
69T[303,17]=(x + 5)*(x + 7)*(x^2 + 6*x + 7)*(x^7 -20*x^6 + 129*x^5 -162*x^4 -1328*x^3 + 4632*x^2 -2848*x -2848)*(x^6 -12*x^5 + 9*x^4 + 292*x^3 -656*x^2 -1336*x + 3504);
70T[303,19]=(x -7)*(x + 5)*(x^6 + 10*x^5 -30*x^4 -518*x^3 -1002*x^2 + 1898*x + 4273)*(x^7 -2*x^6 -58*x^5 + 98*x^4 + 962*x^3 -926*x^2 -4875*x -1156)*(x + 3)^2;
71T[303,23]=(x + 5)*(x + 3)*(x^2 -2*x -17)*(x^6 -4*x^5 -83*x^4 + 120*x^3 + 1816*x^2 + 2784*x + 1168)*(x^7 -6*x^6 -59*x^5 + 328*x^4 + 952*x^3 -4640*x^2 -5104*x + 17536);
72T[303,29]=(x -6)*(x + 6)*(x^2 -4*x -4)*(x^6 -8*x^5 -77*x^4 + 886*x^3 -1817*x^2 -3688*x + 10924)*(x^7 + 10*x^6 -9*x^5 -376*x^4 -957*x^3 + 1842*x^2 + 8708*x + 6584);
73T[303,31]=(x + 1)*(x -7)*(x^2 -2*x -7)*(x^7 -10*x^6 -102*x^5 + 1090*x^4 + 2062*x^3 -30130*x^2 + 20765*x + 103552)*(x^6 + 2*x^5 -70*x^4 -106*x^3 + 958*x^2 -550*x -699);
74T[303,37]=(x + 10)*(x -10)*(x^7 -8*x^6 -141*x^5 + 1032*x^4 + 3777*x^3 -18242*x^2 -25860*x + 85864)*(x^6 + 6*x^5 -173*x^4 -910*x^3 + 6521*x^2 + 27188*x + 20776)*(x + 4)^2;
75T[303,41]=(x -6)*(x + 2)*(x^2 + 12*x + 28)*(x^7 -4*x^6 -143*x^5 + 478*x^4 + 4963*x^3 -15522*x^2 -27324*x + 67304)*(x^6 -6*x^5 -119*x^4 + 880*x^3 + 2507*x^2 -31520*x + 62428);
76T[303,43]=(x + 12)*(x -4)*(x^2 + 4*x -4)*(x^6 + 12*x^5 -27*x^4 -776*x^3 -2443*x^2 -276*x + 452)*(x^7 + 4*x^6 -199*x^5 -1096*x^4 + 9945*x^3 + 71828*x^2 + 688*x -468032);
77T[303,47]=(x -11)*(x + 7)*(x^2 + 6*x + 7)*(x^6 -6*x^5 -131*x^4 + 1058*x^3 + 156*x^2 -12312*x + 10448)*(x^7 -219*x^5 -502*x^4 + 11212*x^3 + 57704*x^2 + 68784*x + 7424);
78T[303,53]=(x -4)*(x + 4)*(x^6 -18*x^5 + 113*x^4 -300*x^3 + 303*x^2 -40*x -32)*(x^7 -191*x^5 + 322*x^4 + 8999*x^3 -15426*x^2 -116448*x + 97376)*(x )^2;
79T[303,59]=(x + 10)*(x -4)*(x^2 -12*x + 18)*(x^6 -2*x^5 -71*x^4 + 368*x^3 -127*x^2 -2102*x + 3022)*(x^7 + 16*x^6 -5*x^5 -702*x^4 -209*x^3 + 7240*x^2 + 2752*x -17984);
80T[303,61]=(x -10)*(x + 2)*(x^2 + 4*x -124)*(x^6 + 14*x^5 -48*x^4 -864*x^3 -1408*x^2 + 480*x + 64)*(x^7 -12*x^6 -172*x^5 + 1344*x^4 + 12384*x^3 -19104*x^2 -231168*x -317056);
81T[303,67]=(x -10)*(x + 2)*(x^2 + 12*x + 4)*(x^7 -2*x^6 -188*x^5 + 312*x^4 + 10768*x^3 -11328*x^2 -182336*x + 12032)*(x^6 + 18*x^5 -108*x^4 -3592*x^3 -23536*x^2 -61632*x -57664);
82T[303,71]=(x -1)*(x + 9)*(x^2 -18*x + 31)*(x^7 + 20*x^6 -67*x^5 -3550*x^4 -15932*x^3 + 83752*x^2 + 591088*x + 409984)*(x^6 + 10*x^5 -63*x^4 -778*x^3 + 164*x^2 + 11176*x + 5072);
83T[303,73]=(x + 8)*(x -2)*(x^2 + 12*x -14)*(x^6 -24*x^5 + 10*x^4 + 2764*x^3 -9192*x^2 -53040*x -33568)*(x^7 -8*x^6 -212*x^5 + 1088*x^4 + 14560*x^3 -34784*x^2 -319872*x -119936);
84T[303,79]=(x -7)*(x -11)*(x^2 -6*x + 1)*(x^7 -14*x^6 -62*x^5 + 222*x^4 + 386*x^3 -34*x^2 -151*x -16)*(x^6 + 22*x^5 -178*x^4 -5462*x^3 -210*x^2 + 301106*x + 413997);
85T[303,83]=(x -8)*(x -2)*(x^2 -12*x -14)*(x^7 -4*x^6 -173*x^5 + 1062*x^4 + 2267*x^3 -13640*x^2 -5824*x + 17728)*(x^6 -10*x^5 -199*x^4 + 2424*x^3 + 5013*x^2 -129514*x + 359878);
86T[303,89]=(x -14)*(x + 8)*(x^2 + 8*x -146)*(x^6 -18*x^5 -71*x^4 + 1872*x^3 + 3049*x^2 -51166*x -111634)*(x^7 -10*x^6 -305*x^5 + 2596*x^4 + 24647*x^3 -124526*x^2 -673756*x + 469144);
87T[303,97]=(x^2 + 8*x -184)*(x^7 -52*x^6 + 1059*x^5 -10364*x^4 + 45129*x^3 -24502*x^2 -342612*x + 487192)*(x^6 -14*x^5 -13*x^4 + 678*x^3 -887*x^2 -6224*x + 3712)*(x + 10)^2;
88
89T[304,2]=(x )^9;
90T[304,3]=(x -1)*(x + 2)*(x^3 + x^2 -10*x -8)*(x -2)^2*(x + 1)^2;
91T[304,5]=(x + 4)*(x -3)*(x^3 -x^2 -10*x + 8)*(x + 1)^2*(x )^2;
92T[304,7]=(x^3 + 4*x^2 -5*x -16)*(x -1)^2*(x + 3)^2*(x -3)^2;
93T[304,11]=(x + 5)*(x + 3)*(x -3)*(x -6)*(x^3 -5*x^2 -2*x + 8)*(x + 2)^2;
94T[304,13]=(x -5)*(x -1)*(x + 1)*(x^3 -5*x^2 -2*x + 8)*(x + 4)^3;
95T[304,17]=(x -5)*(x + 5)*(x^3 -2*x^2 -9*x + 2)*(x + 3)^2*(x -3)^2;
96T[304,19]=(x + 1)^3*(x -1)^6;
97T[304,23]=(x + 8)*(x + 3)*(x^3 -5*x^2 -64*x + 256)*(x -1)^2*(x )^2;
98T[304,29]=(x + 3)*(x -2)*(x + 5)*(x -6)*(x -9)*(x + 2)*(x^3 + 9*x^2 -4*x -4);
99T[304,31]=(x + 8)*(x -8)*(x + 4)^2*(x -4)^2*(x )^3;
100T[304,37]=(x -10)*(x + 10)*(x -2)^3*(x + 2)^4;
101T[304,41]=(x -6)*(x + 6)*(x -10)*(x^3 -8*x^2 -20*x + 128)*(x )*(x + 8)^2;
102T[304,43]=(x -8)*(x -1)*(x + 4)*(x + 1)*(x -7)*(x + 8)*(x^3 + 17*x^2 + 24*x -368);
103T[304,47]=(x -8)*(x -3)*(x -9)*(x -1)*(x + 8)*(x^3 -x^2 -72*x + 256)*(x );
104T[304,53]=(x + 8)*(x + 3)*(x + 1)*(x + 4)*(x -9)*(x -12)*(x^3 -x^2 -134*x + 256);
105T[304,59]=(x + 14)*(x + 1)*(x + 6)*(x -6)*(x + 15)*(x + 9)*(x^3 -23*x^2 + 166*x -376);
106T[304,61]=(x + 13)*(x -2)*(x + 5)*(x -14)*(x + 1)*(x + 10)*(x^3 -3*x^2 -28*x + 92);
107T[304,67]=(x -12)*(x + 13)*(x + 5)*(x + 3)*(x -4)*(x^3 + 15*x^2 + 44*x + 32)*(x );
108T[304,71]=(x + 10)*(x + 6)*(x^3 -12*x^2 -76*x + 928)*(x -6)^2*(x + 2)^2;
109T[304,73]=(x + 15)*(x^3 -4*x^2 -67*x + 326)*(x + 7)^2*(x -9)^3;
110T[304,79]=(x -4)*(x^3 + 26*x^2 + 184*x + 256)*(x + 8)^2*(x -10)^3;
111T[304,83]=(x + 12)*(x + 10)*(x + 4)*(x -12)*(x^3 -6*x^2 -112*x + 736)*(x -6)^2;
112T[304,89]=(x^3 -18*x^2 -16*x + 1024)*(x -12)^2*(x + 12)^2*(x )^2;
113T[304,97]=(x -14)*(x + 2)*(x + 10)*(x -16)*(x -8)*(x + 8)*(x^3 + 8*x^2 -20*x -128);
114
115T[305,2]=(x^3 -3*x + 1)*(x^4 + 3*x^3 -x^2 -6*x -1)*(x^7 -2*x^6 -9*x^5 + 17*x^4 + 19*x^3 -36*x^2 + 5*x + 1)*(x^7 + 2*x^6 -11*x^5 -19*x^4 + 35*x^3 + 48*x^2 -25*x -27);
116T[305,3]=(x^3 -3*x -1)*(x^4 + 6*x^3 + 9*x^2 -x -4)*(x^7 -6*x^6 + 5*x^5 + 23*x^4 -28*x^3 -24*x^2 + 24*x + 8)*(x^7 -15*x^5 + 3*x^4 + 64*x^3 -8*x^2 -76*x -20);
117T[305,5]=(x + 1)^10*(x -1)^11;
118T[305,7]=(x^3 + 6*x^2 + 3*x -19)*(x^4 + 10*x^3 + 33*x^2 + 41*x + 16)*(x^7 -8*x^6 + 7*x^5 + 65*x^4 -96*x^3 -120*x^2 + 144*x + 16)*(x^7 -12*x^6 + 33*x^5 + 101*x^4 -568*x^3 + 472*x^2 + 464*x + 80);
119T[305,11]=(x^3 + 6*x^2 + 3*x -1)*(x^4 + 2*x^3 -23*x^2 -53*x + 32)*(x^7 + 6*x^6 -25*x^5 -153*x^4 + 100*x^3 + 840*x^2 + 216*x + 8)*(x^7 -2*x^6 -27*x^5 + 15*x^4 + 220*x^3 + 152*x^2 -148*x + 12);
120T[305,13]=(x^3 + 3*x^2 -36*x -127)*(x^4 + x^3 -8*x^2 + 5*x + 2)*(x^7 -5*x^6 -46*x^5 + 289*x^4 + 176*x^3 -3560*x^2 + 6432*x -2864)*(x^7 -9*x^6 + 12*x^5 + 73*x^4 -128*x^3 -200*x^2 + 192*x + 144);
121T[305,17]=(x^3 -39*x -19)*(x^4 + 4*x^3 -39*x^2 -109*x + 82)*(x^7 + 2*x^6 -61*x^5 -35*x^4 + 952*x^3 + 16*x^2 -3840*x + 2752)*(x^7 + 4*x^6 -37*x^5 -223*x^4 -176*x^3 + 792*x^2 + 1168*x -48);
122T[305,19]=(x^3 + 15*x^2 + 72*x + 109)*(x^4 + 7*x^3 -8*x^2 -59*x -44)*(x^7 -9*x^6 + 4*x^5 + 137*x^4 -256*x^3 -288*x^2 + 768*x -256)*(x^7 -13*x^6 -8*x^5 + 697*x^4 -2568*x^3 -672*x^2 + 12416*x -10496);
123T[305,23]=(x^3 -9*x^2 + 18*x -9)*(x^4 + 13*x^3 + 18*x^2 -217*x -344)*(x^7 + 5*x^6 -72*x^5 -349*x^4 + 656*x^3 + 3848*x^2 + 2368*x + 48)*(x^7 -5*x^6 -72*x^5 + 323*x^4 + 736*x^3 -1192*x^2 -896*x -144);
124T[305,29]=(x^3 -3*x^2 -54*x + 219)*(x^4 -5*x^3 -74*x^2 + 263*x + 398)*(x^7 + 13*x^6 -62*x^5 -1265*x^4 -3632*x^3 -1496*x^2 + 32*x + 48)*(x^7 -7*x^6 -76*x^5 + 331*x^4 + 1784*x^3 -2728*x^2 -6368*x + 2928);
125T[305,31]=(x^3 + 15*x^2 + 72*x + 111)*(x^4 + 21*x^3 + 112*x^2 -169*x -1868)*(x^7 -17*x^6 + 64*x^5 + 311*x^4 -2228*x^3 + 624*x^2 + 15568*x -22104)*(x^7 -35*x^6 + 448*x^5 -2265*x^4 + 396*x^3 + 29212*x^2 -33624*x -128052);
126T[305,37]=(x^3 -3*x^2 -18*x + 37)*(x^4 + 15*x^3 + 58*x^2 + 25*x -122)*(x^7 -x^6 -52*x^5 + 173*x^4 -136*x^3 -112*x^2 + 192*x -64)*(x^7 -9*x^6 -70*x^5 + 425*x^4 + 2056*x^3 -1400*x^2 -5760*x -2864);
127T[305,41]=(x^3 + 12*x^2 + 21*x -17)*(x^4 -6*x^3 -27*x^2 + 81*x + 162)*(x^7 + 8*x^6 -63*x^5 -541*x^4 + 208*x^3 + 4920*x^2 + 6192*x + 688)*(x^7 + 8*x^6 -119*x^5 -1089*x^4 + 2904*x^3 + 38368*x^2 + 25280*x -209856);
128T[305,43]=(x^3 -3*x^2 -60*x + 233)*(x^4 + x^3 -98*x^2 -3*x + 772)*(x^7 -5*x^6 -98*x^5 + 797*x^4 -1304*x^3 -2536*x^2 + 5696*x + 1616)*(x^7 -9*x^6 -132*x^5 + 1177*x^4 + 2800*x^3 -37496*x^2 + 64512*x + 144);
129T[305,47]=(x^3 + 3*x^2 -108*x -433)*(x^4 + 11*x^3 -30*x^2 -85*x + 184)*(x^7 -21*x^6 + 86*x^5 + 795*x^4 -6540*x^3 + 7968*x^2 + 21104*x -824)*(x^7 + 3*x^6 -184*x^5 -465*x^4 + 8240*x^3 + 4788*x^2 -95904*x + 105516);
130T[305,53]=(x^3 -9*x^2 + 18*x + 9)*(x^4 -3*x^3 -142*x^2 -255*x + 1342)*(x^7 + 9*x^6 -132*x^5 -791*x^4 + 4296*x^3 + 5728*x^2 -19072*x -20352)*(x^7 + 5*x^6 -94*x^5 -535*x^4 + 1776*x^3 + 14048*x^2 + 20032*x + 576);
131T[305,59]=(x^3 + 24*x^2 + 171*x + 381)*(x^4 -2*x^3 -103*x^2 + 125*x + 2048)*(x^7 + 24*x^6 + 63*x^5 -1255*x^4 -1604*x^3 + 16872*x^2 + 7192*x -62856)*(x^7 -6*x^6 -179*x^5 + 1397*x^4 + 4772*x^3 -56888*x^2 + 99196*x + 23460);
132T[305,61]=(x + 1)^10*(x -1)^11;
133T[305,67]=(x^3 -9*x^2 -66*x + 271)*(x^4 + 29*x^3 + 160*x^2 -1769*x -14884)*(x^7 -27*x^6 + 74*x^5 + 2391*x^4 -6096*x^3 -76264*x^2 -141152*x -72784)*(x^7 + 11*x^6 -104*x^5 -937*x^4 + 3920*x^3 + 18568*x^2 -55744*x -36752);
134T[305,71]=(x^3 -3*x^2 -141*x + 719)*(x^4 -3*x^3 -101*x^2 -117*x + 404)*(x^7 + 13*x^6 -153*x^5 -1745*x^4 + 2492*x^3 + 16928*x^2 + 4024*x -3704)*(x^7 -19*x^6 -9*x^5 + 1155*x^4 -1700*x^3 -19052*x^2 + 27236*x + 74460);
135T[305,73]=(x^3 -12*x^2 -15*x + 17)*(x^4 + 2*x^3 -117*x^2 + 519*x -586)*(x^7 -4*x^6 -209*x^5 + 1933*x^4 -2408*x^3 -19704*x^2 + 39856*x + 24848)*(x^7 -4*x^6 -267*x^5 + 841*x^4 + 12536*x^3 -15064*x^2 -86256*x + 97168);
136T[305,79]=(x^3 + 15*x^2 -72*x -1293)*(x^4 + 21*x^3 + 42*x^2 -1073*x -3364)*(x^7 -x^6 -92*x^5 + 139*x^4 + 2276*x^3 -3216*x^2 -15248*x + 16584)*(x^7 -3*x^6 -258*x^5 + 1255*x^4 + 16036*x^3 -109412*x^2 + 97488*x + 13644);
137T[305,83]=(x^3 -18*x^2 + 51*x -37)*(x^4 + 16*x^3 -101*x^2 -1609*x + 2804)*(x^7 -4*x^6 -125*x^5 + 523*x^4 + 1924*x^3 -2888*x^2 -5240*x -1304)*(x^7 -10*x^6 -301*x^5 + 2931*x^4 + 23328*x^3 -226800*x^2 -468180*x + 4744332);
138T[305,89]=(x^3 -6*x^2 -51*x + 127)*(x^4 -65*x^2 + 61*x + 634)*(x^7 + 10*x^6 -375*x^5 -2229*x^4 + 49040*x^3 + 85544*x^2 -2100176*x + 2949808)*(x^7 -14*x^6 -337*x^5 + 4215*x^4 + 31840*x^3 -289688*x^2 -1054960*x + 2883312);
139T[305,97]=(x^3 + 24*x^2 + 129*x -163)*(x^4 + 8*x^3 -21*x^2 -121*x + 214)*(x^7 -2*x^6 -245*x^5 + 201*x^4 + 18584*x^3 + 8456*x^2 -424080*x -935728)*(x^7 -20*x^6 -315*x^5 + 6289*x^4 + 17768*x^3 -282616*x^2 -818992*x + 696208);
140
141T[306,2]=(x -1)^4*(x + 1)^4;
142T[306,3]=(x )^8;
143T[306,5]=(x -4)*(x -2)*(x^2 -6)^2*(x )^2;
144T[306,7]=(x + 2)*(x + 4)*(x -2)*(x )*(x^2 -4*x -2)^2;
145T[306,11]=(x -4)*(x + 6)*(x^2 -24)^2*(x )^2;
146T[306,13]=(x + 2)*(x + 6)*(x -2)^2*(x^2 -4*x -20)^2;
147T[306,17]=(x + 1)^3*(x -1)^5;
148T[306,19]=(x + 4)^2*(x -4)^2*(x^2 -4*x -20)^2;
149T[306,23]=(x + 6)*(x -6)*(x^2 + 12*x + 30)*(x^2 -12*x + 30)*(x )^2;
150T[306,29]=(x -4)*(x -10)*(x^2 -6)^2*(x )^2;
151T[306,31]=(x + 6)*(x -8)*(x + 10)*(x + 4)*(x^2 -4*x -50)^2;
152T[306,37]=(x + 2)*(x -8)*(x + 4)^2*(x^2 + 8*x + 10)^2;
153T[306,41]=(x -10)*(x + 10)*(x -6)^2*(x + 6)^4;
154T[306,43]=(x -8)*(x -12)*(x + 4)^6;
155T[306,47]=(x + 12)*(x + 4)*(x^2 -24)^2*(x )^2;
156T[306,53]=(x -2)*(x -6)*(x^2 + 12*x + 12)*(x^2 -12*x + 12)*(x + 6)^2;
157T[306,59]=(x -12)*(x^2 -12*x + 12)*(x^2 + 12*x + 12)*(x )*(x + 12)^2;
158T[306,61]=(x -8)*(x + 10)*(x + 4)^2*(x^2 + 8*x + 10)^2;
159T[306,67]=(x + 4)*(x -8)*(x + 12)^2*(x^2 -4*x -20)^2;
160T[306,71]=(x -6)*(x + 6)*(x^2 -12*x -18)*(x^2 + 12*x -18)*(x )^2;
161T[306,73]=(x -10)*(x -2)^3*(x + 10)^4;
162T[306,79]=(x + 10)*(x + 8)*(x -10)*(x -8)*(x^2 -4*x -50)^2;
163T[306,83]=(x + 4)*(x + 12)*(x -12)*(x^2 + 12*x + 12)*(x^2 -12*x + 12)*(x );
164T[306,89]=(x -18)*(x -2)*(x^2 + 12*x -60)*(x^2 -12*x -60)*(x -6)^2;
165T[306,97]=(x + 14)*(x -6)*(x -14)^2*(x^2 + 20*x + 76)^2;
166
167T[308,2]=(x )^6;
168T[308,3]=(x + 1)*(x^2 -6)*(x^3 + x^2 -6*x -2);
169T[308,5]=(x + 1)*(x^3 + x^2 -16*x -12)*(x -2)^2;
170T[308,7]=(x + 1)^3*(x -1)^3;
171T[308,11]=(x + 1)^2*(x -1)^4;
172T[308,13]=(x + 4)*(x^2 -4*x -2)*(x^3 -12*x^2 + 34*x + 8);
173T[308,17]=(x + 6)*(x^2 -4*x -2)*(x^3 -2*x^2 -46*x + 156);
174T[308,19]=(x + 2)*(x^2 -24)*(x^3 + 2*x^2 -24*x -16);
175T[308,23]=(x -1)*(x^2 -8*x -8)*(x^3 + 7*x^2 -8*x -72);
176T[308,29]=(x -2)*(x^2 + 4*x -20)*(x^3 -6*x^2 -44*x -24);
177T[308,31]=(x + 1)*(x^2 -8*x + 10)*(x^3 + 9*x^2 -30*x -146);
178T[308,37]=(x + 9)*(x^3 -7*x^2 + 32)*(x -4)^2;
179T[308,41]=(x -6)*(x^2 + 4*x -50)*(x^3 + 2*x^2 -46*x -156);
180T[308,43]=(x -8)*(x^2 + 4*x -20)*(x^3 + 4*x^2 -20*x -32);
181T[308,47]=(x + 8)*(x^2 + 8*x + 10)*(x^3 + 4*x^2 -26*x -96);
182T[308,53]=(x -10)*(x^2 -96)*(x^3 -2*x^2 -64*x + 96);
183T[308,59]=(x -1)*(x^2 -54)*(x^3 + 23*x^2 + 170*x + 402);
184T[308,61]=(x + 2)*(x^2 + 4*x -50)*(x^3 -14*x^2 -62*x + 916);
185T[308,67]=(x -11)*(x^2 -216)*(x^3 + 5*x^2 -16*x -8);
186T[308,71]=(x -11)*(x^2 + 16*x + 40)*(x^3 + 5*x^2 -112*x + 312);
187T[308,73]=(x + 14)*(x^2 -20*x + 94)*(x^3 + 14*x^2 + 18*x -244);
188T[308,79]=(x + 14)*(x^2 + 12*x + 12)*(x^3 -14*x^2 -60*x + 936);
189T[308,83]=(x -4)*(x^2 + 24*x + 120)*(x^3 -4*x^2 -184*x + 1248);
190T[308,89]=(x -13)*(x^3 + 19*x^2 -32*x -1284)*(x -6)^2;
191T[308,97]=(x + 9)*(x^2 -20*x + 76)*(x^3 -15*x^2 + 16*x -4);
192
193T[309,2]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^8 + x^7 -13*x^6 -11*x^5 + 52*x^4 + 35*x^3 -59*x^2 -27*x + 1)*(x^5 + 2*x^4 -4*x^3 -6*x^2 + 4*x + 1);
194T[309,3]=(x + 1)^8*(x -1)^9;
195T[309,5]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^8 + x^7 -27*x^6 -17*x^5 + 196*x^4 -4*x^3 -432*x^2 + 304*x -32)*(x^5 + 5*x^4 -6*x^3 -56*x^2 -64*x -16);
196T[309,7]=(x + 2)*(x^3 + 2*x^2 -8*x + 4)*(x^5 + 2*x^4 -27*x^3 -42*x^2 + 129*x + 134)*(x^8 -6*x^7 -19*x^6 + 162*x^5 -55*x^4 -1022*x^3 + 1544*x^2 -220*x -32);
197T[309,11]=(x + 2)*(x^3 -8*x^2 + 16*x -4)*(x^8 -6*x^7 -32*x^6 + 228*x^5 + 88*x^4 -2144*x^3 + 2880*x^2 -64*x -256)*(x^5 + 12*x^4 + 36*x^3 -16*x^2 -112*x + 32);
198T[309,13]=(x + 5)*(x^3 + 3*x^2 -13*x -31)*(x^5 -x^4 -51*x^3 + 25*x^2 + 375*x + 9)*(x^8 -9*x^7 -18*x^6 + 354*x^5 -798*x^4 -620*x^3 + 2881*x^2 -1377*x + 106);
199T[309,17]=(x^3 -4*x^2 -8*x + 16)*(x^8 + 4*x^7 -31*x^6 -78*x^5 + 275*x^4 + 222*x^3 -240*x^2 -64*x + 32)*(x^5 + 10*x^4 -15*x^3 -316*x^2 -289*x + 1216)*(x );
200T[309,19]=(x + 8)*(x^3 -12*x^2 + 32*x + 16)*(x^5 + 16*x^4 + 81*x^3 + 120*x^2 -51*x + 4)*(x^8 -16*x^7 + 33*x^6 + 568*x^5 -2419*x^4 -3580*x^3 + 19760*x^2 + 8400*x -8000);
201T[309,23]=(x -1)*(x^3 -7*x^2 + 13*x -5)*(x^8 + 11*x^7 -60*x^6 -966*x^5 -174*x^4 + 24766*x^3 + 44419*x^2 -186415*x -452240)*(x^5 + 5*x^4 -45*x^3 -89*x^2 + 527*x -211);
202T[309,29]=(x + 2)*(x^3 -28*x + 52)*(x^8 -139*x^6 -10*x^5 + 4887*x^4 -2862*x^3 -31924*x^2 + 16100*x + 47800)*(x^5 + 16*x^4 + 69*x^3 + 14*x^2 -217*x -194);
203T[309,31]=(x -5)*(x^5 + 13*x^4 + 48*x^3 + 20*x^2 -144*x -144)*(x^8 -17*x^7 + 19*x^6 + 1385*x^5 -12264*x^4 + 46660*x^3 -90160*x^2 + 86000*x -32000)*(x^3 -7*x^2 + 3*x + 19);
204T[309,37]=(x -2)*(x^3 + 6*x^2 -28*x -148)*(x^5 -4*x^4 -108*x^3 + 352*x^2 + 2256*x -4896)*(x^8 + 6*x^7 -160*x^6 -708*x^5 + 6176*x^4 + 6896*x^3 -51456*x^2 + 39360*x -7040);
205T[309,41]=(x -8)*(x^3 -2*x^2 -32*x -52)*(x^8 -12*x^7 -53*x^6 + 1242*x^5 -5461*x^4 + 7460*x^3 + 1524*x^2 -5740*x -1960)*(x^5 + 20*x^4 + 103*x^3 + 18*x^2 -837*x -1172);
206T[309,43]=(x + 11)*(x^3 + x^2 -9*x -13)*(x^5 -7*x^4 -168*x^3 + 1216*x^2 + 2952*x -12976)*(x^8 -9*x^7 -101*x^6 + 893*x^5 + 1004*x^4 -6528*x^3 -9688*x^2 -1424*x + 1088);
207T[309,47]=(x + 2)*(x^3 -12*x^2 + 8*x + 20)*(x^8 + 6*x^7 -328*x^6 -2388*x^5 + 32376*x^4 + 294080*x^3 -707648*x^2 -11465280*x -24991744)*(x^5 -8*x^4 -4*x^3 + 144*x^2 -272*x + 32);
208T[309,53]=(x -10)*(x^3 + 8*x^2 + 12*x + 4)*(x^8 + 16*x^7 -88*x^6 -1700*x^5 + 4480*x^4 + 54544*x^3 -157632*x^2 -299456*x + 835712)*(x^5 + 8*x^4 -60*x^3 -416*x^2 + 464*x + 2144);
209T[309,59]=(x + 11)*(x^3 -15*x^2 + 41*x -17)*(x^8 -11*x^7 -196*x^6 + 2056*x^5 + 9944*x^4 -112482*x^3 -37943*x^2 + 1447045*x -2000020)*(x^5 + 19*x^4 + 7*x^3 -1461*x^2 -7251*x -5587);
210T[309,61]=(x + 5)*(x^3 + 19*x^2 + 31*x -607)*(x^5 + 19*x^4 + 49*x^3 -403*x^2 -381*x + 1017)*(x^8 -5*x^7 -306*x^6 + 1138*x^5 + 24774*x^4 -59024*x^3 -173591*x^2 + 167335*x -28310);
211T[309,67]=(x -11)*(x^3 + 3*x^2 -61*x -191)*(x^5 -11*x^4 -50*x^3 + 964*x^2 -3416*x + 3088)*(x^8 -5*x^7 -239*x^6 + 1349*x^5 + 13338*x^4 -72468*x^3 -160520*x^2 + 553008*x + 888256);
212T[309,71]=(x -16)*(x^3 -8*x^2 -72*x + 368)*(x^8 + 10*x^7 -196*x^6 -1736*x^5 + 9360*x^4 + 65600*x^3 -85504*x^2 -553216*x -22528)*(x^5 + 10*x^4 -108*x^3 -1480*x^2 -5104*x -5312);
213T[309,73]=(x -12)*(x^3 + 12*x^2 + 8*x -20)*(x^5 -20*x^4 + 32*x^3 + 832*x^2 -1536*x -9216)*(x^8 -14*x^7 -192*x^6 + 2804*x^5 + 7320*x^4 -110336*x^3 -111616*x^2 -2560*x + 10240);
214T[309,79]=(x -6)*(x^3 -2*x^2 -44*x + 20)*(x^5 + 14*x^4 -147*x^3 -2118*x^2 -3519*x + 12938)*(x^8 -14*x^7 -223*x^6 + 2554*x^5 + 13501*x^4 -76550*x^3 + 13796*x^2 + 178932*x -117632);
215T[309,83]=(x -1)*(x^3 -17*x^2 + 83*x -125)*(x^8 + 23*x^7 + 30*x^6 -1718*x^5 -8474*x^4 + 5696*x^3 + 80235*x^2 + 50473*x -122188)*(x^5 + 11*x^4 -161*x^3 -1785*x^2 -399*x + 3121);
216T[309,89]=(x + 6)*(x^3 -24*x^2 + 92*x + 556)*(x^5 -22*x^4 -152*x^3 + 6376*x^2 -41184*x + 51552)*(x^8 + 14*x^7 -100*x^6 -2188*x^5 -5896*x^4 + 33440*x^3 + 157088*x^2 + 207232*x + 86144);
217T[309,97]=(x + 7)*(x^3 -3*x^2 -157*x -449)*(x^5 -7*x^4 -251*x^3 + 711*x^2 + 6147*x -13473)*(x^8 -3*x^7 -530*x^6 + 750*x^5 + 73702*x^4 -35244*x^3 -2952907*x^2 + 838965*x + 8331170);
218
219T[310,2]=(x + 1)^4*(x -1)^5;
220T[310,3]=(x + 2)*(x -2)*(x^2 -6)*(x^2 + 2*x -2)*(x^3 -2*x^2 -4*x + 4);
221T[310,5]=(x + 1)^4*(x -1)^5;
222T[310,7]=(x + 4)*(x^2 -12)*(x^3 -16*x + 16)*(x )*(x + 2)^2;
223T[310,11]=(x -2)*(x^2 + 2*x -2)*(x^2 -4*x -2)*(x^3 -28*x -52)*(x );
224T[310,13]=(x + 4)*(x^2 + 6*x + 6)*(x^2 -4*x -2)*(x^3 + 8*x^2 + 16*x + 4)*(x );
225T[310,17]=(x -2)*(x^2 -24)*(x^3 -16*x + 16)*(x )*(x + 4)^2;
226T[310,19]=(x^2 -4*x -8)*(x^2 -24)*(x^3 -8*x^2 -16*x + 160)*(x + 4)^2;
227T[310,23]=(x + 4)*(x + 6)*(x^2 + 8*x + 4)*(x^3 + 2*x^2 -12*x -8)*(x -2)^2;
228T[310,29]=(x + 4)*(x -6)*(x^2 -16*x + 58)*(x^2 + 2*x -2)*(x^3 + 2*x^2 -96*x -260);
229T[310,31]=(x -1)^4*(x + 1)^5;
230T[310,37]=(x -8)*(x + 8)*(x^2 -4*x -2)*(x^2 + 10*x + 22)*(x^3 + 8*x^2 -24*x -92);
231T[310,41]=(x -6)*(x + 6)*(x^2 + 12*x + 24)*(x^3 + 2*x^2 -84*x + 232)*(x )^2;
232T[310,43]=(x -2)*(x + 10)*(x^2 -10*x + 22)*(x^2 + 16*x + 58)*(x^3 + 10*x^2 -60*x -604);
233T[310,47]=(x^2 -12)*(x^3 -20*x^2 + 80*x + 208)*(x -6)^2*(x )^2;
234T[310,53]=(x -8)*(x^2 + 4*x -50)*(x^2 + 14*x + 46)*(x^3 + 20*x^2 + 88*x + 4)*(x );
235T[310,59]=(x + 12)*(x -8)*(x^2 -8*x -8)*(x^2 -4*x -8)*(x^3 -20*x^2 + 112*x -160);
236T[310,61]=(x -14)*(x^2 + 8*x + 10)*(x^3 + 18*x^2 + 80*x + 100)*(x^2 + 6*x -138)*(x );
237T[310,67]=(x -8)*(x -4)*(x^2 + 4*x -104)*(x^2 + 16*x + 40)*(x^3 + 12*x^2 -112*x -1184);
238T[310,71]=(x^2 -96)*(x^2 -192)*(x^3 -8*x^2 -32*x + 128)*(x )^2;
239T[310,73]=(x -6)*(x^2 -12*x -72)*(x^3 + 20*x^2 + 40*x -464)*(x + 4)^3;
240T[310,79]=(x -8)*(x + 4)*(x^2 -28*x + 184)*(x^2 -24)*(x^3 -192*x -160);
241T[310,83]=(x^2 -8*x -134)*(x^2 + 6*x + 6)*(x^3 -10*x^2 -12*x + 124)*(x -6)^2;
242T[310,89]=(x + 6)*(x + 18)*(x^2 -12*x -60)*(x^2 + 12*x -12)*(x^3 -18*x^2 + 44*x + 40);
243T[310,97]=(x + 10)*(x + 2)*(x^2 -8*x -8)*(x^3 + 10*x^2 -28*x -8)*(x -4)^2;
244
245T[312,2]=(x )^6;
246T[312,3]=(x + 1)^3*(x -1)^3;
247T[312,5]=(x + 2)*(x -4)*(x + 4)*(x -2)*(x )^2;
248T[312,7]=(x -4)*(x + 4)^2*(x )^3;
249T[312,11]=(x -6)*(x )^2*(x + 2)^3;
250T[312,13]=(x -1)^2*(x + 1)^4;
251T[312,17]=(x + 6)^2*(x -2)^4;
252T[312,19]=(x -4)*(x )*(x -8)^2*(x + 4)^2;
253T[312,23]=(x -8)*(x )*(x -4)^4;
254T[312,29]=(x + 2)*(x -10)*(x -6)*(x + 6)^3;
255T[312,31]=(x -8)*(x -4)*(x + 8)*(x )*(x + 4)^2;
256T[312,37]=(x -6)*(x + 10)^2*(x + 2)^3;
257T[312,41]=(x -2)*(x + 4)*(x + 12)*(x -6)*(x )^2;
258T[312,43]=(x + 12)*(x -4)^2*(x + 4)^3;
259T[312,47]=(x + 4)*(x + 12)*(x -2)*(x -10)*(x + 6)^2;
260T[312,53]=(x + 10)*(x + 2)^2*(x -6)^3;
261T[312,59]=(x + 8)*(x -10)*(x + 14)*(x )*(x + 6)^2;
262T[312,61]=(x + 2)^2*(x -10)^2*(x + 6)^2;
263T[312,67]=(x + 12)*(x -4)*(x + 4)*(x )*(x -8)^2;
264T[312,71]=(x -10)*(x + 12)^2*(x -2)^3;
265T[312,73]=(x + 10)*(x -10)*(x + 14)*(x -6)*(x + 2)^2;
266T[312,79]=(x + 16)*(x -8)*(x + 8)^2*(x )^2;
267T[312,83]=(x -14)*(x -8)*(x + 10)*(x )*(x -6)^2;
268T[312,89]=(x -8)*(x + 18)*(x -4)*(x + 14)*(x + 12)*(x );
269T[312,97]=(x + 2)*(x -2)*(x + 6)*(x -14)*(x + 10)^2;
270
271T[314,2]=(x + 1)^7*(x -1)^7;
272T[314,3]=(x^6 -3*x^5 -9*x^4 + 26*x^3 + 20*x^2 -43*x -25)*(x^7 + x^6 -17*x^5 -6*x^4 + 84*x^3 -19*x^2 -73*x + 4)*(x );
273T[314,5]=(x^6 -x^5 -23*x^4 + 18*x^3 + 112*x^2 -123*x -3)*(x^7 -3*x^6 -19*x^5 + 58*x^4 + 80*x^3 -237*x^2 -115*x + 232)*(x );
274T[314,7]=(x + 3)*(x^6 -3*x^5 -27*x^4 + 102*x^3 + 98*x^2 -701*x + 649)*(x^7 -4*x^6 -24*x^5 + 87*x^4 + 136*x^3 -425*x^2 + 126*x + 5);
275T[314,11]=(x + 2)*(x^6 -9*x^5 -11*x^4 + 282*x^3 -520*x^2 -1137*x + 2793)*(x^7 + x^6 -61*x^5 + 988*x^3 -913*x^2 -989*x + 90);
276T[314,13]=(x + 1)*(x^7 -7*x^6 -44*x^5 + 344*x^4 + 464*x^3 -4928*x^2 + 352*x + 16832)*(x^6 -4*x^5 -40*x^4 + 192*x^3 + 64*x^2 -672*x -320);
277T[314,17]=(x -3)*(x^6 + 7*x^5 -49*x^4 -460*x^3 -478*x^2 + 2349*x + 3279)*(x^7 -4*x^6 -38*x^5 + 167*x^4 + 206*x^3 -1209*x^2 + 352*x + 619);
278T[314,19]=(x + 4)*(x^6 -17*x^5 + 77*x^4 + 104*x^3 -1534*x^2 + 3553*x -2545)*(x^7 -x^6 -71*x^5 + 80*x^4 + 906*x^3 + 437*x^2 -889*x -588);
279T[314,23]=(x + 1)*(x^7 -72*x^5 + 27*x^4 + 1296*x^3 -1043*x^2 -562*x + 453)*(x^6 + 3*x^5 -63*x^4 -152*x^3 + 1016*x^2 + 1851*x -1413);
280T[314,29]=(x^6 + 5*x^5 -53*x^4 -460*x^3 -1226*x^2 -1353*x -531)*(x^7 -5*x^6 -113*x^5 + 836*x^4 + 1562*x^3 -28455*x^2 + 85525*x -81000)*(x );
281T[314,31]=(x + 6)*(x^6 -18*x^5 + 16*x^4 + 880*x^3 -512*x^2 -16320*x -26816)*(x^7 -100*x^5 -64*x^4 + 2368*x^3 + 2240*x^2 -8896*x + 384);
282T[314,37]=(x + 1)*(x^6 -14*x^5 -72*x^4 + 1312*x^3 + 368*x^2 -27424*x + 44992)*(x^7 + 3*x^6 -194*x^5 -800*x^4 + 8688*x^3 + 49328*x^2 + 81440*x + 43200);
283T[314,41]=(x^6 + 12*x^5 -20*x^4 -584*x^3 -992*x^2 + 5664*x + 14400)*(x^7 + 8*x^6 -188*x^5 -1688*x^4 + 5728*x^3 + 86304*x^2 + 225856*x + 107264)*(x );
284T[314,43]=(x -1)*(x^6 -14*x^5 -72*x^4 + 1312*x^3 + 368*x^2 -27424*x + 44992)*(x^7 + 7*x^6 -58*x^5 -240*x^4 + 1216*x^3 + 752*x^2 -2976*x -1856);
285T[314,47]=(x^6 + 8*x^5 -116*x^4 -384*x^3 + 3952*x^2 -2016*x -9408)*(x^7 + 12*x^6 -204*x^5 -2672*x^4 + 8400*x^3 + 158432*x^2 + 203200*x -1062144)*(x );
286T[314,53]=(x -12)*(x^6 + 25*x^5 + 151*x^4 -642*x^3 -9020*x^2 -25761*x -15843)*(x^7 -13*x^6 -17*x^5 + 710*x^4 -1872*x^3 -1819*x^2 + 4085*x -600);
287T[314,59]=(x + 7)*(x^6 + 6*x^5 -124*x^4 -336*x^3 + 4096*x^2 + 2592*x -32832)*(x^7 + 15*x^6 -142*x^5 -2036*x^4 + 10000*x^3 + 71328*x^2 -383200*x + 321600);
288T[314,61]=(x^6 + 17*x^5 -121*x^4 -3320*x^3 -9414*x^2 + 81121*x + 351205)*(x^7 -9*x^6 -109*x^5 + 816*x^4 + 2694*x^3 -12577*x^2 + 12913*x -3340)*(x );
289T[314,67]=(x + 2)*(x^6 -23*x^5 + 21*x^4 + 3292*x^3 -31312*x^2 + 100343*x -78695)*(x^7 + 11*x^6 -93*x^5 -858*x^4 + 3612*x^3 + 16919*x^2 -35905*x -118050);
290T[314,71]=(x -10)*(x^6 + 24*x^5 + 144*x^4 -64*x^3 -1504*x^2 + 1248*x + 192)*(x^7 -18*x^6 -136*x^5 + 3696*x^4 -4352*x^3 -163488*x^2 + 396544*x + 1428096);
291T[314,73]=(x -12)*(x^6 + 20*x^5 -80*x^4 -3424*x^3 -11760*x^2 + 85632*x + 408896)*(x^7 -16*x^6 -56*x^5 + 1440*x^4 + 144*x^3 -27776*x^2 -33600*x + 12800);
292T[314,79]=(x + 8)*(x^6 -x^5 -163*x^4 + 618*x^3 + 790*x^2 -5109*x + 4519)*(x^7 + 9*x^6 -83*x^5 -866*x^4 + 950*x^3 + 21321*x^2 + 31443*x -36896);
293T[314,83]=(x^7 + 24*x^6 -112*x^5 -6840*x^4 -48672*x^3 + 48576*x^2 + 1234624*x + 1987584)*(x^6 -56*x^4 + 72*x^3 + 512*x^2 -768*x + 192)*(x );
294T[314,89]=(x + 3)*(x^6 -9*x^5 -393*x^4 + 3988*x^3 + 34706*x^2 -421155*x + 587559)*(x^7 + 10*x^6 -236*x^5 -3415*x^4 -3650*x^3 + 109099*x^2 + 450038*x + 491149);
295T[314,97]=(x + 2)*(x^6 + 2*x^5 -344*x^4 + 160*x^3 + 31888*x^2 -53920*x -534592)*(x^7 -8*x^6 -492*x^5 + 3184*x^4 + 60496*x^3 -305792*x^2 -1436416*x + 1284480);
296
297T[315,2]=(x + 1)*(x^2 -2*x -1)*(x^2 -x -4)*(x^2 + 2*x -1)*(x^2 -5)*(x );
298T[315,3]=(x )^10;
299T[315,5]=(x -1)^5*(x + 1)^5;
300T[315,7]=(x -1)^4*(x + 1)^6;
301T[315,11]=(x -3)*(x^2 + 4*x -4)*(x^2 + 4*x -16)*(x^2 -4*x -4)*(x^2 + x -4)*(x );
302T[315,13]=(x -5)*(x + 6)*(x^2 -5*x + 2)*(x^2 -20)*(x^2 + 4*x -4)^2;
303T[315,17]=(x + 3)*(x + 2)*(x^2 -5*x + 2)*(x^2 + 4*x -28)*(x^2 -4*x -28)*(x -2)^2;
304T[315,19]=(x -2)*(x + 8)*(x^2 + 6*x -8)*(x^2 -4*x -16)*(x^2 -8)^2;
305T[315,23]=(x + 8)*(x -6)*(x^2 -2*x -16)*(x^2 -4*x -28)*(x^2 + 4*x -28)*(x + 4)^2;
306T[315,29]=(x + 3)*(x^2 + x -38)*(x + 8)^2*(x -8)^2*(x -2)^3;
307T[315,31]=(x + 4)*(x -4)*(x^2 -12*x + 16)*(x^2 -72)^2*(x )^2;
308T[315,37]=(x -2)*(x + 2)*(x^2 -4*x -76)*(x -6)^2*(x + 6)^4;
309T[315,41]=(x -6)*(x -12)*(x^2 + 2*x -16)*(x^2 + 4*x -28)*(x^2 -4*x -28)*(x -2)^2;
310T[315,43]=(x -4)*(x + 10)*(x^2 -80)*(x^2 -10*x + 8)*(x^2 + 8*x -16)^2;
311T[315,47]=(x + 9)*(x + 8)*(x^2 -5*x -32)*(x^2 + 8*x -64)*(x + 4)^2*(x -4)^2;
312T[315,53]=(x + 10)*(x + 12)*(x^2 + 16*x + 56)*(x^2 -16*x + 44)*(x^2 -16*x + 56)*(x^2 -2*x -16);
313T[315,59]=(x^2 -80)*(x )*(x + 4)^3*(x -4)^4;
314T[315,61]=(x -8)*(x^2 -6*x -144)*(x + 2)^3*(x -6)^4;
315T[315,67]=(x -4)*(x^2 -4*x -64)*(x^2 + 8*x -112)^2*(x + 4)^3;
316T[315,71]=(x -12)*(x^2 -4*x -68)*(x^2 + 4*x -68)*(x^2 + 20*x + 80)*(x )*(x + 8)^2;
317T[315,73]=(x + 2)*(x -2)*(x^2 + 16*x + 44)*(x^2 + 8*x -52)*(x^2 -4*x -196)^2;
318T[315,79]=(x + 1)*(x -8)*(x^2 + 9*x + 16)*(x^2 -8*x -64)*(x^2 -32)^2;
319T[315,83]=(x -4)*(x + 12)*(x^2 -16*x -16)*(x + 8)^2*(x + 4)^2*(x -8)^2;
320T[315,89]=(x -12)*(x -6)*(x^2 -12*x -92)*(x^2 + 6*x -8)*(x^2 + 12*x -92)*(x -2)^2;
321T[315,97]=(x + 18)*(x + 1)*(x^2 + 9*x -86)*(x^2 -8*x -4)*(x^2 + 12*x + 28)^2;
322
323T[316,2]=(x )^6;
324T[316,3]=(x + 1)*(x + 3)*(x -2)^2*(x )^2;
325T[316,5]=(x^2 -3*x -1)*(x^2 + 5*x + 3)*(x -1)^2;
326T[316,7]=(x -3)*(x -1)*(x^2 + 2*x -12)*(x )^2;
327T[316,11]=(x -2)*(x + 6)*(x^2 -3*x -1)*(x^2 + 5*x + 3);
328T[316,13]=(x^2 -x -29)*(x^2 + 3*x -1)*(x + 1)^2;
329T[316,17]=(x -4)*(x + 4)*(x^2 -2*x -12)*(x^2 + 6*x -4);
330T[316,19]=(x + 6)*(x -6)*(x^2 + 3*x -27)^2;
331T[316,23]=(x -6)*(x -2)*(x^2 -3*x -27)*(x^2 + 9*x + 17);
332T[316,29]=(x + 8)*(x -8)*(x^2 + 2*x -12)*(x^2 + 6*x -4);
333T[316,31]=(x -4)*(x + 4)*(x^2 -7*x -17)*(x^2 -3*x -1);
334T[316,37]=(x + 8)*(x -4)*(x^2 -6*x -4)*(x + 2)^2;
335T[316,41]=(x + 6)*(x + 10)*(x^2 -14*x + 36)*(x^2 -6*x -4);
336T[316,43]=(x^2 -2*x -116)*(x -4)^2*(x + 2)^2;
337T[316,47]=(x + 9)*(x + 3)*(x + 6)^2*(x -6)^2;
338T[316,53]=(x -14)*(x + 2)*(x^2 + 10*x + 12)*(x^2 -52);
339T[316,59]=(x + 9)*(x -5)*(x^2 + 4*x -48)*(x^2 -6*x -4);
340T[316,61]=(x -6)*(x^2 + 6*x -108)*(x + 6)^3;
341T[316,67]=(x^2 -15*x + 53)*(x^2 + 5*x -23)*(x + 10)^2;
342T[316,71]=(x + 1)*(x -5)*(x^2 -18*x + 68)*(x^2 + 16*x + 12);
343T[316,73]=(x^2 -9*x -9)*(x^2 + 15*x + 27)*(x -6)^2;
344T[316,79]=(x -1)^3*(x + 1)^3;
345T[316,83]=(x -4)*(x^2 + 12*x -16)*(x )^3;
346T[316,89]=(x -1)*(x -9)*(x^2 + 15*x + 27)*(x^2 + 3*x -157);
347T[316,97]=(x^2 + 7*x -17)*(x^2 -17*x + 43)*(x + 11)^2;
348
349T[318,2]=(x -1)^4*(x + 1)^5;
350T[318,3]=(x + 1)^4*(x -1)^5;
351T[318,5]=(x + 3)*(x -4)*(x + 1)*(x^2 -x -4)*(x^2 -x -10)*(x )^2;
352T[318,7]=(x -5)*(x + 4)*(x^2 -x -4)*(x -1)^2*(x )^3;
353T[318,11]=(x + 5)*(x + 3)*(x -5)*(x^2 -3*x -8)*(x + 1)^4;
354T[318,13]=(x^2 + 2*x -16)*(x )*(x + 4)^2*(x + 2)^2*(x -6)^2;
355T[318,17]=(x + 7)*(x -5)*(x -2)*(x^2 + 9*x + 10)*(x^2 + 5*x + 2)*(x -6)^2;
356T[318,19]=(x -5)*(x -6)*(x -2)*(x^2 -3*x -2)*(x^2 + 2*x -40)*(x + 1)^2;
357T[318,23]=(x + 7)*(x + 5)*(x + 3)*(x -3)*(x -9)*(x^2 -3*x -8)*(x^2 -17);
358T[318,29]=(x + 1)*(x + 4)*(x + 3)*(x -3)*(x + 8)*(x^2 + 7*x + 8)*(x^2 + 2*x -40);
359T[318,31]=(x + 8)*(x -8)*(x + 4)*(x + 1)*(x -1)*(x^2 + x -92)*(x^2 -x -4);
360T[318,37]=(x -12)*(x + 2)*(x -2)*(x + 4)*(x^2 -2*x -16)*(x )*(x -6)^2;
361T[318,41]=(x -5)*(x + 3)*(x + 9)*(x -4)*(x + 4)*(x^2 + 13*x + 4)*(x^2 -2*x -40);
362T[318,43]=(x + 4)*(x + 8)*(x^2 -11*x + 20)*(x^2 -3*x -36)*(x )*(x + 1)^2;
363T[318,47]=(x + 6)*(x + 2)*(x^2 + 10*x -16)*(x^2 -68)*(x -6)^3;
364T[318,53]=(x -1)^4*(x + 1)^5;
365T[318,59]=(x -4)*(x + 4)*(x + 3)*(x -9)*(x + 12)*(x^2 + 3*x -8)*(x^2 + 3*x -36);
366T[318,61]=(x -10)*(x + 1)*(x + 2)*(x^2 -5*x + 2)*(x + 7)^2*(x + 6)^2;
367T[318,67]=(x + 10)*(x + 2)*(x + 13)*(x^2 + 14*x + 8)*(x^2 -9*x -86)*(x -1)^2;
368T[318,71]=(x + 3)*(x -7)*(x + 15)*(x^2 + 5*x -32)*(x )^4;
369T[318,73]=(x -6)*(x + 14)*(x + 6)*(x -10)*(x^2 -68)*(x -2)^3;
370T[318,79]=(x -1)*(x -15)*(x + 8)*(x + 16)*(x + 4)*(x^2 -15*x + 52)*(x^2 + 15*x -36);
371T[318,83]=(x + 10)*(x -6)*(x -8)*(x + 8)*(x^2 -2*x -40)*(x^2 + 18*x + 64)*(x );
372T[318,89]=(x + 5)*(x + 1)*(x + 12)*(x + 4)*(x^2 + 3*x -90)*(x^2 + x -208)*(x );
373T[318,97]=(x -13)*(x + 13)*(x -5)*(x + 3)*(x -19)*(x^2 -153)*(x^2 + 3*x -90);
374
375T[319,2]=(x -2)*(x^3 -3*x -1)*(x^4 + 2*x^3 -3*x^2 -3*x + 2)*(x^7 -3*x^6 -4*x^5 + 15*x^4 + x^3 -14*x^2 + 1)*(x^8 -13*x^6 -x^5 + 50*x^4 + 7*x^3 -54*x^2 -5*x + 1);
376T[319,3]=(x + 3)*(x^3 -3*x + 1)*(x^4 + 3*x^3 -x^2 -6*x -1)*(x^7 -17*x^5 + 3*x^4 + 78*x^3 -8*x^2 -96*x + 16)*(x^8 -4*x^7 -11*x^6 + 55*x^5 + 10*x^4 -184*x^3 + 80*x^2 + 112*x -64);
377T[319,5]=(x -1)*(x^3 + 6*x^2 + 3*x -19)*(x^4 + 5*x^3 + 5*x^2 -2*x -1)*(x^7 -4*x^6 -14*x^5 + 59*x^4 + 36*x^3 -225*x^2 + 81*x + 81)*(x^8 -10*x^7 + 18*x^6 + 107*x^5 -406*x^4 + 115*x^3 + 887*x^2 -641*x -94);
378T[319,7]=(x -4)*(x^3 + 3*x^2 -9*x -19)*(x^4 -x^3 -9*x^2 + 9*x + 8)*(x^7 -x^6 -25*x^5 + 9*x^4 + 136*x^3 -56*x^2 -152*x + 16)*(x^8 + 7*x^7 -13*x^6 -155*x^5 -128*x^4 + 416*x^3 + 168*x^2 -432*x + 128);
379T[319,11]=(x -1)^10*(x + 1)^13;
380T[319,13]=(x -6)*(x^3 + 6*x^2 + 3*x -19)*(x^4 + 2*x^3 -29*x^2 + 27*x + 46)*(x^7 -51*x^5 + 57*x^4 + 440*x^3 -768*x^2 -152*x + 464)*(x^8 + 4*x^7 -43*x^6 -193*x^5 + 522*x^4 + 3000*x^3 -520*x^2 -15168*x -15520);
381T[319,17]=(x -4)*(x^3 + 12*x^2 + 45*x + 53)*(x^4 + 4*x^3 -39*x^2 -63*x + 128)*(x^7 -18*x^6 + 110*x^5 -241*x^4 + 50*x^3 + 167*x^2 -87*x + 9)*(x^8 -12*x^7 -14*x^6 + 679*x^5 -2228*x^4 -4825*x^3 + 36595*x^2 -60885*x + 29158);
382T[319,19]=(x + 2)*(x^3 + 12*x^2 + 45*x + 51)*(x^4 + 2*x^3 -3*x^2 -3*x + 2)*(x^7 -10*x^6 -42*x^5 + 631*x^4 -524*x^3 -8961*x^2 + 23681*x -11805)*(x^8 + 10*x^7 -54*x^6 -553*x^5 + 1392*x^4 + 8819*x^3 -20435*x^2 -30877*x + 71932);
383T[319,23]=(x -3)*(x^3 -48*x + 64)*(x^4 + x^3 -20*x^2 + 64)*(x^7 -4*x^6 -35*x^5 + 56*x^4 + 233*x^3 -104*x^2 -240*x -64)*(x^8 -131*x^6 + 36*x^5 + 5041*x^4 -4620*x^3 -60704*x^2 + 76992*x + 116224);
384T[319,29]=(x + 1)^11*(x -1)^12;
385T[319,31]=(x + 7)*(x^3 + 9*x^2 + 6*x -19)*(x^4 + 10*x^3 -17*x^2 -65*x + 103)*(x^7 + 13*x^6 -66*x^5 -1075*x^4 + 730*x^3 + 20932*x^2 + 1896*x -67248)*(x^8 -5*x^7 -50*x^6 + 289*x^5 + 330*x^4 -3724*x^3 + 6072*x^2 -2288*x -896);
386T[319,37]=(x + 11)*(x^3 -15*x^2 + 36*x + 159)*(x^4 + 8*x^3 -27*x^2 -119*x -11)*(x^7 + 5*x^6 -118*x^5 -185*x^4 + 2890*x^3 + 2424*x^2 -14144*x + 9168)*(x^8 -9*x^7 -90*x^6 + 667*x^5 + 3024*x^4 -13420*x^3 -36544*x^2 + 51600*x + 23456);
387T[319,41]=(x -4)*(x^3 + 15*x^2 + 66*x + 89)*(x^4 + 35*x^3 + 426*x^2 + 2005*x + 2452)*(x^7 -31*x^6 + 355*x^5 -1686*x^4 + 1243*x^3 + 15098*x^2 -39530*x + 16141)*(x^8 -29*x^7 + 137*x^6 + 3172*x^5 -35705*x^4 + 31580*x^3 + 965970*x^2 -3799827*x + 2843894);
388T[319,43]=(x + 4)*(x^3 -9*x^2 -36*x -9)*(x^4 -5*x^3 -124*x^2 + 203*x + 3232)*(x^7 -9*x^6 -85*x^5 + 636*x^4 + 1319*x^3 -6618*x^2 + 4896*x + 27)*(x^8 + 11*x^7 -209*x^6 -2524*x^5 + 9867*x^4 + 158162*x^3 + 122208*x^2 -1571921*x -1897388);
389T[319,47]=(x -8)*(x^3 + 3*x^2 -6*x -17)*(x^4 + 11*x^3 + 12*x^2 -29*x -32)*(x^7 + 7*x^6 -152*x^5 -901*x^4 + 4602*x^3 + 14284*x^2 -15048*x -37904)*(x^8 -5*x^7 -102*x^6 + 723*x^5 + 282*x^4 -7932*x^3 + 3096*x^2 + 19664*x -16256);
390T[319,53]=(x -2)*(x^3 + 6*x^2 -81*x + 111)*(x^4 -16*x^3 + 15*x^2 + 273*x -502)*(x^7 -12*x^6 -58*x^5 + 909*x^4 -724*x^3 -10815*x^2 + 27045*x -17253)*(x^8 + 10*x^7 -182*x^6 -1315*x^5 + 13530*x^4 + 42165*x^3 -419997*x^2 + 208317*x + 1519550);
391T[319,59]=(x + 3)*(x^3 -57*x + 163)*(x^4 + 19*x^3 + 75*x^2 -52*x -311)*(x^7 -12*x^6 -380*x^5 + 4651*x^4 + 40312*x^3 -521413*x^2 -917057*x + 14604175)*(x^8 -24*x^7 + 80*x^6 + 1451*x^5 -9112*x^4 -7997*x^3 + 170207*x^2 -423621*x + 327676);
392T[319,61]=(x -2)*(x^3 + 9*x^2 -117*x -981)*(x^4 -x^3 -155*x^2 + 325*x + 3734)*(x^7 -15*x^6 -188*x^5 + 2820*x^4 + 5252*x^3 -68912*x^2 -143465*x -53325)*(x^8 + 31*x^7 + 238*x^6 -980*x^5 -14636*x^4 -1064*x^3 + 174583*x^2 -198947*x + 26558);
393T[319,67]=(x + 15)*(x^3 -15*x^2 + 12*x + 19)*(x^4 -221*x^2 -521*x + 613)*(x^7 + 25*x^6 + 189*x^5 + 376*x^4 -531*x^3 -420*x^2 + 312*x + 71)*(x^8 -11*x^7 -199*x^6 + 1788*x^5 + 11773*x^4 -71600*x^3 -161976*x^2 + 490367*x + 880052);
394T[319,71]=(x + 7)*(x^3 -24*x^2 + 153*x -111)*(x^4 + 19*x^3 + 17*x^2 -796*x -713)*(x^7 -4*x^6 -318*x^5 + 1565*x^4 + 22258*x^3 -127907*x^2 + 198565*x -92187)*(x^8 -8*x^7 -34*x^6 + 177*x^5 + 542*x^4 -671*x^3 -2375*x^2 -539*x + 1000);
395T[319,73]=(x -2)*(x^3 + 9*x^2 -30*x -37)*(x^4 + 3*x^3 -160*x^2 -477*x + 1142)*(x^7 -7*x^6 -200*x^5 + 1183*x^4 + 10784*x^3 -47752*x^2 -134720*x + 529136)*(x^8 + 11*x^7 -182*x^6 -1093*x^5 + 14090*x^4 + 984*x^3 -285744*x^2 + 772912*x -544096);
396T[319,79]=(x -6)*(x^3 -15*x^2 -42*x + 937)*(x^4 -x^3 -84*x^2 + 329*x -326)*(x^7 -11*x^6 + 5*x^5 + 332*x^4 -1399*x^3 + 1894*x^2 -534*x + 25)*(x^8 + 45*x^7 + 577*x^6 -1256*x^5 -73031*x^4 -344418*x^3 + 1095174*x^2 + 7545717*x -858600);
397T[319,83]=(x + 6)*(x^3 + 12*x^2 -81*x -3)*(x^4 -233*x^2 -365*x + 5878)*(x^7 -36*x^6 + 325*x^5 + 1515*x^4 -28966*x^3 + 30888*x^2 + 465984*x -608688)*(x^8 + 22*x^7 + 65*x^6 -1737*x^5 -15958*x^4 -38480*x^3 + 36960*x^2 + 149904*x -125504);
398T[319,89]=(x -9)*(x^3 + 36*x^2 + 423*x + 1611)*(x^4 + 29*x^3 + 101*x^2 -2924*x -20023)*(x^7 -26*x^6 + 89*x^5 + 2069*x^4 -15394*x^3 + 3636*x^2 + 150984*x -174960)*(x^8 -66*x^7 + 1749*x^6 -23825*x^5 + 177980*x^4 -723728*x^3 + 1485056*x^2 -1194304*x -8288);
399T[319,97]=(x + 17)*(x^3 + 6*x^2 -81*x -467)*(x^4 -13*x^3 -113*x^2 + 1202*x + 829)*(x^7 -14*x^6 + 29*x^5 + 391*x^4 -2018*x^3 + 528*x^2 + 12816*x -19408)*(x^8 -28*x^7 -69*x^6 + 6037*x^5 -10296*x^4 -304772*x^3 -295440*x^2 + 2386832*x + 3441760);
400
401T[320,2]=(x )^8;
402T[320,3]=(x^2 -8)*(x -2)^2*(x + 2)^2*(x )^2;
403T[320,5]=(x + 1)^4*(x -1)^4;
404T[320,7]=(x + 4)*(x -4)*(x^2 -8)*(x + 2)^2*(x -2)^2;
405T[320,11]=(x^2 -32)*(x -4)^2*(x + 4)^2*(x )^2;
406T[320,13]=(x + 2)^2*(x -6)^2*(x -2)^4;
407T[320,17]=(x + 6)^2*(x -2)^6;
408T[320,19]=(x + 8)*(x -8)*(x -4)^2*(x + 4)^2*(x )^2;
409T[320,23]=(x -4)*(x + 4)*(x^2 -8)*(x -6)^2*(x + 6)^2;
410T[320,29]=(x -2)^4*(x + 6)^4;
411T[320,31]=(x + 8)*(x -8)*(x^2 -32)*(x + 4)^2*(x -4)^2;
412T[320,37]=(x -10)^2*(x + 6)^2*(x + 2)^4;
413T[320,41]=(x + 6)^2*(x -2)^2*(x -6)^2*(x + 10)^2;
414T[320,43]=(x -10)*(x -2)*(x -8)*(x + 2)*(x + 8)*(x + 10)*(x^2 -72);
415T[320,47]=(x + 6)*(x + 2)*(x -4)*(x + 4)*(x -6)*(x -2)*(x^2 -8);
416T[320,53]=(x + 2)^2*(x -6)^2*(x + 6)^4;
417T[320,59]=(x + 4)*(x -4)*(x + 12)*(x -12)*(x^2 -128)*(x )^2;
418T[320,61]=(x + 2)^4*(x -2)^4;
419T[320,67]=(x + 6)*(x + 2)*(x -8)*(x -2)*(x + 8)*(x -6)*(x^2 -8);
420T[320,71]=(x^2 -32)*(x -12)^2*(x + 12)^2*(x )^2;
421T[320,73]=(x -2)^2*(x -10)^2*(x + 6)^4;
422T[320,79]=(x^2 -128)*(x + 8)^2*(x -8)^2*(x )^2;
423T[320,83]=(x -10)*(x + 6)*(x + 10)*(x -6)*(x + 16)*(x -16)*(x^2 -8);
424T[320,89]=(x -10)^2*(x + 6)^6;
425T[320,97]=(x + 14)^2*(x -10)^2*(x -2)^4;
426
427T[321,2]=(x^6 -3*x^5 -5*x^4 + 18*x^3 + x^2 -19*x + 3)*(x^7 -14*x^5 -x^4 + 55*x^3 + 8*x^2 -46*x -19)*(x^2 + x -1)^2;
428T[321,3]=(x -1)^8*(x + 1)^9;
429T[321,5]=(x^6 -6*x^5 + 2*x^4 + 28*x^3 -10*x^2 -16*x -3)*(x^7 + 8*x^6 + 6*x^5 -76*x^4 -102*x^3 + 240*x^2 + 225*x -250)*(x -1)^2*(x + 3)^2;
430T[321,7]=(x^2 + 2*x -4)*(x^6 -15*x^4 + 18*x^3 + 13*x^2 -14*x -4)*(x^7 -6*x^6 -15*x^5 + 124*x^4 + 33*x^3 -788*x^2 + 188*x + 1424)*(x + 2)^2;
431T[321,11]=(x^2 + 6*x + 4)*(x^6 -6*x^5 -21*x^4 + 138*x^3 -7*x^2 -632*x + 636)*(x^7 -4*x^6 -33*x^5 + 112*x^4 + 277*x^3 -610*x^2 -556*x + 976)*(x + 2)^2;
432T[321,13]=(x^6 + 8*x^5 -4*x^4 -122*x^3 -20*x^2 + 500*x -359)*(x^7 -6*x^6 -20*x^5 + 94*x^4 + 152*x^3 -276*x^2 -351*x -94)*(x + 1)^4;
433T[321,17]=(x^2 -2*x -19)*(x^2 + 6*x -11)*(x^6 -4*x^5 -50*x^4 + 36*x^3 + 718*x^2 + 1190*x + 477)*(x^7 + 10*x^6 -14*x^5 -420*x^4 -1034*x^3 + 2074*x^2 + 9837*x + 8762);
434T[321,19]=(x^2 + 8*x + 11)*(x^2 -5)*(x^6 + 4*x^5 -17*x^4 -28*x^3 + 36*x^2 + 16*x -16)*(x^7 -8*x^6 -73*x^5 + 672*x^4 + 420*x^3 -11200*x^2 + 20016*x -6208);
435T[321,23]=(x^2 + 4*x -16)*(x^6 -14*x^5 + 31*x^4 + 266*x^3 -971*x^2 -616*x + 3264)*(x^7 -6*x^6 -73*x^5 + 370*x^4 + 1541*x^3 -5380*x^2 -6992*x + 1664)*(x + 4)^2;
436T[321,29]=(x^6 -10*x^5 -68*x^4 + 784*x^3 + 400*x^2 -15392*x + 28608)*(x^7 -56*x^5 + 8*x^4 + 880*x^3 -256*x^2 -2944*x + 2432)*(x^2 + 2*x -4)^2;
437T[321,31]=(x^6 -12*x^5 -103*x^4 + 1626*x^3 -1239*x^2 -38900*x + 106468)*(x^7 -16*x^6 + 17*x^5 + 710*x^4 -2003*x^3 -8280*x^2 + 19460*x + 26512)*(x + 2)^2*(x + 6)^2;
438T[321,37]=(x^2 -2*x -79)*(x^6 + 12*x^5 -44*x^4 -770*x^3 -564*x^2 + 8196*x + 10721)*(x^7 -10*x^6 -28*x^5 + 502*x^4 -488*x^3 -5548*x^2 + 7545*x + 13642)*(x -1)^2;
439T[321,41]=(x^2 -80)*(x^2 + 10*x + 20)*(x^6 + 6*x^5 -76*x^4 -704*x^3 -1984*x^2 -2176*x -768)*(x^7 + 2*x^6 -152*x^5 -384*x^4 + 3648*x^3 + 13184*x^2 + 9728*x + 2048);
440T[321,43]=(x^2 + 6*x + 4)*(x^2 -20)*(x^6 + 12*x^5 -103*x^4 -1594*x^3 -2191*x^2 + 23660*x + 58868)*(x^7 -2*x^6 -71*x^5 + 64*x^4 + 1593*x^3 + 494*x^2 -11524*x -15424);
441T[321,47]=(x^2 -6*x + 4)*(x^2 -2*x -44)*(x^6 -16*x^5 -41*x^4 + 1624*x^3 -5507*x^2 -9410*x + 27276)*(x^7 -16*x^6 -65*x^5 + 2112*x^4 -8411*x^3 -14334*x^2 + 118556*x -127808);
442T[321,53]=(x^2 + 16*x + 44)*(x^2 -14*x + 44)*(x^6 -12*x^5 -44*x^4 + 608*x^3 -576*x^2 -2048*x + 2304)*(x^7 + 16*x^6 + 24*x^5 -552*x^4 -1216*x^3 + 4736*x^2 -3072*x + 512);
443T[321,59]=(x^2 -8*x -64)*(x^2 -80)*(x^6 -8*x^5 -152*x^4 + 416*x^3 + 8272*x^2 + 20224*x + 768)*(x^7 -20*x^6 -72*x^5 + 3104*x^4 -7600*x^3 -87104*x^2 + 187904*x + 806912);
444T[321,61]=(x^2 + 2*x -79)*(x^2 -2*x -179)*(x^6 + 24*x^5 -132*x^4 -6706*x^3 -27508*x^2 + 329508*x + 2054417)*(x^7 -2*x^6 -112*x^5 + 402*x^4 + 2612*x^3 -13232*x^2 + 12341*x -2294);
445T[321,67]=(x^2 -12*x + 16)*(x^2 -10*x + 20)*(x^6 + 4*x^5 -212*x^4 -1392*x^3 + 8656*x^2 + 86784*x + 164608)*(x^7 -30*x^6 + 56*x^5 + 4712*x^4 -26464*x^3 -154592*x^2 + 920128*x + 607744);
446T[321,71]=(x^2 + 8*x + 11)*(x^2 + 4*x -41)*(x^6 -36*x^5 + 275*x^4 + 3332*x^3 -53192*x^2 + 187120*x -58896)*(x^7 -32*x^6 + 239*x^5 + 1004*x^4 -10680*x^3 -20400*x^2 + 103536*x + 192256);
447T[321,73]=(x^2 -2*x -124)*(x^2 -6*x -36)*(x^6 + 26*x^5 + 36*x^4 -3024*x^3 -11824*x^2 + 69152*x + 53824)*(x^7 + 12*x^6 -112*x^5 -776*x^4 + 6320*x^3 -5696*x^2 -22272*x + 23680);
448T[321,79]=(x^2 + 4*x -176)*(x^6 -8*x^5 -128*x^4 + 192*x^3 + 3392*x^2 + 7168*x + 4096)*(x^7 -36*x^6 + 352*x^5 + 128*x^4 -12608*x^3 + 35072*x^2 -31744*x + 8192)*(x + 8)^2;
449T[321,83]=(x^2 -14*x + 4)*(x^2 + 12*x + 16)*(x^6 + 8*x^5 -201*x^4 -1572*x^3 + 3717*x^2 + 28030*x + 22668)*(x^7 + 10*x^6 -281*x^5 -2382*x^4 + 25429*x^3 + 170380*x^2 -710720*x -3919616);
450T[321,89]=(x^6 + 8*x^5 -240*x^4 -2304*x^3 + 1792*x^2 + 34816*x -36864)*(x^7 + 4*x^6 -208*x^5 -1368*x^4 + 7360*x^3 + 72448*x^2 + 129024*x -8192)*(x^2 + 10*x + 20)*(x^2 -4*x -176);
451T[321,97]=(x^2 + 2*x -44)*(x^6 + 24*x^5 + 92*x^4 -1344*x^3 -12480*x^2 -34304*x -25856)*(x^7 -24*x^6 -64*x^5 + 5304*x^4 -30720*x^3 -143744*x^2 + 1569792*x -3247616)*(x -10)^2;
452
453T[322,2]=(x + 1)^4*(x -1)^7;
454T[322,3]=(x + 2)*(x^2 + 2*x -4)*(x^2 + 2*x -2)*(x^3 -2*x^2 -6*x + 8)*(x )*(x -2)^2;
455T[322,5]=(x^2 + 2*x -4)*(x^2 -2*x -2)*(x^3 -4*x^2 -2*x + 4)*(x )*(x + 2)^3;
456T[322,7]=(x -1)^5*(x + 1)^6;
457T[322,11]=(x + 2)*(x -4)*(x + 4)*(x -6)*(x^2 -12)*(x^3 + 4*x^2 -12*x -16)*(x )^2;
458T[322,13]=(x -4)*(x^2 + 4*x -16)*(x^2 -4*x -8)*(x^3 -2*x^2 -16*x + 16)*(x )*(x + 4)^2;
459T[322,17]=(x + 8)*(x -6)*(x + 2)*(x + 6)*(x^2 + 10*x + 20)*(x^2 -2*x -2)*(x^3 -8*x^2 + 6*x + 44);
460T[322,19]=(x + 6)*(x -4)*(x^2 -20)*(x^3 -28*x -16)*(x )*(x + 2)^3;
461T[322,23]=(x -1)^5*(x + 1)^6;
462T[322,29]=(x -2)*(x + 10)*(x -10)*(x^3 + 10*x^2 -32*x -352)*(x -8)^2*(x + 2)^3;
463T[322,31]=(x + 8)*(x + 6)*(x^2 -2*x -4)*(x^2 + 10*x -2)*(x^3 + 2*x^2 -14*x -32)*(x -4)^2;
464T[322,37]=(x + 2)*(x + 10)*(x + 8)*(x^2 -8*x + 4)*(x^3 + 10*x^2 -28*x -344)*(x )*(x -6)^2;
465T[322,41]=(x^3 -6*x^2 -100*x + 344)*(x -6)^2*(x + 10)^3*(x + 2)^3;
466T[322,43]=(x + 4)*(x + 8)*(x^2 + 4*x -16)*(x^3 + 4*x^2 -64*x -128)*(x -6)^2*(x )^2;
467T[322,47]=(x -6)*(x^2 + 18*x + 76)*(x^2 + 6*x -18)*(x^3 -2*x^2 -14*x + 32)*(x )*(x -12)^2;
468T[322,53]=(x -12)*(x -2)*(x + 12)*(x^3 + 2*x^2 -60*x + 136)*(x^2 -12)*(x + 6)^3;
469T[322,59]=(x + 10)*(x + 2)*(x + 6)*(x^2 -18*x + 76)*(x^2 + 6*x -66)*(x^3 -6*x^2 -54*x + 216)*(x );
470T[322,61]=(x + 6)*(x -10)*(x -2)*(x^2 -6*x -18)*(x^2 -10*x -20)*(x^3 + 8*x^2 -74*x -524)*(x );
471T[322,67]=(x -8)*(x^2 + 16*x + 52)*(x^3 -4*x^2 -12*x + 16)*(x )*(x -4)^2*(x + 2)^2;
472T[322,71]=(x + 8)*(x -16)*(x -8)*(x + 12)*(x^2 -4*x -16)*(x^3 + 28*x^2 + 200*x + 64)*(x^2 + 4*x -104);
473T[322,73]=(x -6)*(x + 6)*(x^2 + 8*x + 4)*(x^2 -180)*(x^3 + 6*x^2 -220*x -1448)*(x -2)^2;
474T[322,79]=(x -8)*(x + 8)*(x^2 -80)*(x^2 + 12*x -12)*(x^3 + 20*x^2 -92*x -2432)*(x )^2;
475T[322,83]=(x + 14)*(x + 16)*(x -4)*(x -2)*(x^2 -4*x -76)*(x^2 -8*x -92)*(x^3 -28*x^2 + 244*x -656);
476T[322,89]=(x -6)*(x -12)*(x + 14)*(x + 6)*(x^2 -18*x + 54)*(x^2 + 10*x -100)*(x^3 -34*x + 76);
477T[322,97]=(x -12)*(x -2)*(x^2 + 6*x -116)*(x^2 + 14*x + 46)*(x^3 -16*x^2 -26*x + 172)*(x + 2)^2;
478
479T