Sharedwww / tables / charpoly_s2new_201-300.gpOpen in CoCalc
Author: William A. Stein
1
\\ charpoly_s2new.gp
2
\\ This is a table of characteristic polynomials of the
3
\\ Hecke operators T_p acting on the space S_2^{new}(Gamma_0(N))
4
\\ of weight 2 cuspidal newforms for Gamma_0(N).
5
\\ The cases in which S_k = S_k^{new} are omitted, since
6
\\ they appear in other tables.
7
\\ William Stein ([email protected]), October, 1998.
8
9
{
10
T=matrix(500,97,m,n,0);
11
T[201,2]=(x + 1)*(x + 2)*(x -1)*(x^3 -3*x^2 -x + 5)*(x^5 -8*x^3 + 13*x + 2);
12
T[201,3]=(x + 1)^5*(x -1)^6;
13
T[201,5]=(x + 1)*(x + 3)*(x^3 -x^2 -3*x + 1)*(x^5 + 3*x^4 -9*x^3 -19*x^2 + 10*x + 16)*(x );
14
T[201,7]=(x + 5)*(x + 3)*(x^3 -x^2 -5*x + 1)*(x^5 -7*x^4 + 3*x^3 + 63*x^2 -128*x + 64)*(x );
15
T[201,11]=(x + 6)*(x + 4)*(x^3 -10*x^2 + 24*x + 4)*(x^5 -20*x^3 -4*x^2 + 56*x -32)*(x );
16
T[201,13]=(x + 4)*(x^3 + 8*x^2 + 12*x + 4)*(x^5 -10*x^4 + 20*x^3 + 36*x^2 -88*x -32)*(x -4)^2;
17
T[201,17]=(x + 7)*(x -6)*(x -2)*(x^3 -28*x + 52)*(x^5 + 5*x^4 -46*x^3 -96*x^2 + 636*x -568);
18
T[201,19]=(x + 5)*(x^3 + 2*x^2 -44*x -20)*(x^5 -5*x^4 -46*x^3 + 248*x^2 -180*x -16)*(x + 2)^2;
19
T[201,23]=(x + 3)*(x + 7)*(x + 1)*(x^3 -3*x^2 -31*x + 95)*(x^5 + 2*x^4 -14*x^3 + 8*x^2 + 11*x -4);
20
T[201,29]=(x -4)*(x -1)*(x + 8)*(x^3 -4*x^2 -48*x + 64)*(x^5 -3*x^4 -98*x^3 + 224*x^2 + 2048*x -2048);
21
T[201,31]=(x + 7)*(x + 4)*(x + 1)*(x^3 -11*x^2 -13*x + 295)*(x^5 -9*x^4 -x^3 + 173*x^2 -332*x -32);
22
T[201,37]=(x -3)*(x + 3)*(x -5)*(x^3 + 9*x^2 -13*x -169)*(x^5 -8*x^4 -68*x^3 + 438*x^2 + 655*x -818);
23
T[201,41]=(x + 3)*(x + 9)*(x^3 -x^2 -61*x -97)*(x^5 + 7*x^4 -15*x^3 -129*x^2 -14*x + 32)*(x );
24
T[201,43]=(x -7)*(x + 6)*(x -9)*(x^5 -x^4 -91*x^3 + 205*x^2 + 1974*x -6056)*(x + 1)^3;
25
T[201,47]=(x -9)*(x -8)*(x^3 -18*x^2 + 60*x + 52)*(x^5 + 5*x^4 -46*x^3 -248*x^2 -180*x + 16)*(x );
26
T[201,53]=(x -10)*(x -1)*(x + 5)*(x^3 -7*x^2 -77*x -131)*(x^5 + 15*x^4 -97*x^3 -1933*x^2 -4176*x -1588);
27
T[201,59]=(x + 9)*(x^3 -15*x^2 -25*x + 625)*(x^5 + 6*x^4 -104*x^3 -284*x^2 + 2465*x -496)*(x -3)^2;
28
T[201,61]=(x -14)*(x -2)*(x + 2)*(x^3 + 2*x^2 -76*x + 116)*(x^5 -6*x^4 -96*x^3 + 1044*x^2 -3472*x + 3856);
29
T[201,67]=(x -1)^4*(x + 1)^7;
30
T[201,71]=(x + 4)*(x + 12)*(x + 16)*(x^3 -18*x^2 + 68*x + 100)*(x^5 -22*x^4 + 20*x^3 + 2148*x^2 -12592*x + 10624);
31
T[201,73]=(x -11)*(x + 7)*(x + 13)*(x^3 + 19*x^2 + 83*x + 97)*(x^5 -284*x^3 + 534*x^2 + 19963*x -78838);
32
T[201,79]=(x + 16)*(x -8)*(x + 8)*(x^3 -28*x^2 + 248*x -688)*(x^5 -28*x^4 -24*x^3 + 5936*x^2 -39680*x -1024);
33
T[201,83]=(x + 4)*(x -1)*(x -5)*(x^3 + 7*x^2 -21*x -25)*(x^5 -9*x^4 -229*x^3 + 2819*x^2 -6284*x + 3904);
34
T[201,89]=(x + 15)*(x -4)*(x^3 + 6*x^2 -148*x + 116)*(x^5 + 11*x^4 -80*x^3 -284*x^2 + 1900*x -2264)*(x );
35
T[201,97]=(x -16)*(x + 12)*(x -4)*(x^3 + 8*x^2 -240*x -932)*(x^5 + 14*x^4 -176*x^3 -3964*x^2 -21880*x -36832);
36
37
T[202,2]=(x + 1)^4*(x -1)^4;
38
T[202,3]=(x^3 + 3*x^2 -1)*(x^4 + x^3 -8*x^2 + x + 8)*(x );
39
T[202,5]=(x -2)*(x^3 + 3*x^2 -6*x -17)*(x^4 -3*x^3 -4*x^2 + 7*x -2);
40
T[202,7]=(x -1)*(x^3 + 3*x^2 -18*x -37)*(x^4 -2*x^3 -9*x^2 + 3*x + 13);
41
T[202,11]=(x -4)*(x^3 + 9*x^2 + 24*x + 17)*(x^4 -x^3 -28*x^2 + 39*x -8);
42
T[202,13]=(x^3 + 3*x^2 -36*x -127)*(x^4 -x^3 -16*x^2 -19*x -4)*(x );
43
T[202,17]=(x -5)*(x^3 + 9*x^2 + 18*x -9)*(x^4 -4*x^3 -59*x^2 + 133*x + 813);
44
T[202,19]=(x -1)*(x^4 + 13*x^3 + 30*x^2 -84*x -8)*(x + 2)^3;
45
T[202,23]=(x -6)*(x^3 + 12*x^2 + 36*x + 8)*(x^4 -2*x^3 -28*x^2 + 48*x -16);
46
T[202,29]=(x + 5)*(x^3 -84*x + 136)*(x^4 -9*x^3 -4*x^2 + 196*x -392);
47
T[202,31]=(x^3 -12*x^2 + 192)*(x^4 + 8*x^3 -80*x^2 -704*x -768)*(x );
48
T[202,37]=(x + 8)*(x^3 -3*x^2 -60*x + 53)*(x^4 + x^3 -8*x^2 + x + 8);
49
T[202,41]=(x + 4)*(x^3 -6*x^2 -24*x -8)*(x^4 + 2*x^3 -32*x^2 + 8*x + 128);
50
T[202,43]=(x + 5)*(x^4 + 3*x^3 -30*x^2 -44*x + 232)*(x + 2)^3;
51
T[202,47]=(x -6)*(x^3 + 6*x^2 -96*x + 8)*(x^4 + 4*x^3 -76*x^2 -504*x -784);
52
T[202,53]=(x -3)*(x^3 -12*x + 8)*(x^4 -21*x^3 + 120*x^2 + 28*x -1256);
53
T[202,59]=(x + 12)*(x^3 -9*x^2 -12*x + 179)*(x^4 -15*x^3 -60*x^2 + 1165*x -1268);
54
T[202,61]=(x + 1)*(x^3 -192*x + 512)*(x^4 -x^3 -124*x^2 -160*x + 1856);
55
T[202,67]=(x -2)*(x^3 + 21*x^2 + 84*x -107)*(x^4 + 17*x^3 + 34*x^2 -469*x -1666);
56
T[202,71]=(x + 10)*(x^3 + 6*x^2 -132*x -856)*(x^4 -168*x^2 + 448*x + 3088);
57
T[202,73]=(x + 16)*(x^3 -84*x + 136)*(x^4 -16*x^3 + 36*x^2 + 168*x -416);
58
T[202,79]=(x + 2)*(x^3 -6*x^2 -144*x -408)*(x^4 + 12*x^3 -180*x^2 -1688*x + 2256);
59
T[202,83]=(x -16)*(x^3 + 15*x^2 -125)*(x^4 -27*x^3 + 88*x^2 + 1933*x -9556);
60
T[202,89]=(x^3 + 6*x^2 -216*x -1304)*(x^4 + 6*x^3 -264*x^2 -904*x + 17344)*(x );
61
T[202,97]=(x -13)*(x^3 -15*x^2 -114*x + 1819)*(x^4 -4*x^3 -159*x^2 + 285*x + 3121);
62
63
T[203,2]=(x -1)*(x + 2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 9*x -6)*(x^3 + x^2 -3*x -1)*(x -2)^2*(x + 1)^3;
64
T[203,3]=(x -2)*(x^2 -2*x -1)*(x^2 + x -4)*(x^3 + 3*x^2 -x -5)*(x^5 + 2*x^4 -10*x^3 -18*x^2 + 11*x + 2)*(x + 1)^2;
65
T[203,5]=(x -1)*(x + 4)*(x -2)*(x^2 -3*x -2)*(x^2 -8)*(x^3 + 5*x^2 + 3*x -5)*(x^5 -5*x^4 -3*x^3 + 29*x^2 + 6*x -24);
66
T[203,7]=(x + 1)^7*(x -1)^8;
67
T[203,11]=(x + 4)*(x + 5)*(x -2)*(x^2 + 4*x -4)*(x^2 + x -4)*(x^3 -5*x^2 -5*x -1)*(x^5 -3*x^4 -39*x^3 + 117*x^2 + 270*x -648);
68
T[203,13]=(x -4)*(x + 2)*(x^2 -8*x + 8)*(x^2 -5*x + 2)*(x^5 -15*x^4 + 53*x^3 + 147*x^2 -1082*x + 1432)*(x + 5)^4;
69
T[203,17]=(x -4)*(x + 4)*(x + 2)*(x^2 -6*x -8)*(x^2 -8)*(x^3 -2*x^2 -32*x -52)*(x^5 + 4*x^4 -28*x^3 -68*x^2 + 168*x + 96);
70
T[203,19]=(x -5)*(x -2)*(x + 4)*(x^2 -2*x -17)*(x^5 + 15*x^4 + 68*x^3 + 84*x^2 + 4*x -8)*(x^3 + 6*x^2 -28*x -148)*(x -4)^2;
71
T[203,23]=(x -9)*(x -6)*(x^2 + 2*x -7)*(x^2 + 2*x -16)*(x^5 + 5*x^4 -34*x^3 -196*x^2 + 24*x + 768)*(x^3 -2*x^2 -52*x + 40)*(x );
72
T[203,29]=(x -1)^5*(x + 1)^10;
73
T[203,31]=(x -7)*(x + 8)*(x + 2)*(x^2 + 5*x -32)*(x^3 + 5*x^2 -7*x -1)*(x^5 -9*x^4 -73*x^3 + 837*x^2 -1106*x -3824)*(x -2)^2;
74
T[203,37]=(x + 10)*(x -8)*(x -2)*(x^2 -72)*(x^3 + 12*x^2 + 20*x -100)*(x^5 -14*x^4 -20*x^3 + 692*x^2 -216*x -8896)*(x -6)^2;
75
T[203,41]=(x + 3)*(x^2 + 14*x + 32)*(x^2 -10*x + 23)*(x^3 -16*x -16)*(x^5 + 11*x^4 -16*x^3 -448*x^2 -816*x + 1152)*(x )^2;
76
T[203,43]=(x + 9)*(x^2 -3*x -36)*(x^3 + 7*x^2 -5*x -1)*(x^5 -19*x^4 + 93*x^3 -79*x^2 -14*x + 16)*(x )*(x + 6)^3;
77
T[203,47]=(x + 7)*(x + 10)*(x -7)*(x^2 + 5*x -32)*(x^2 -10*x + 7)*(x^3 + 3*x^2 -33*x -89)*(x^5 -4*x^4 -68*x^3 + 304*x^2 + 837*x -3918);
78
T[203,53]=(x -6)*(x -3)*(x -9)*(x^2 + 7*x -94)*(x^2 -2*x -127)*(x^3 + 15*x^2 + 47*x + 37)*(x^5 + 16*x^4 + 52*x^3 -322*x^2 -2193*x -3282);
79
T[203,59]=(x -12)*(x^2 + 16*x + 56)*(x^2 + 4*x -64)*(x^5 + 12*x^4 -16*x^3 -620*x^2 -1968*x -768)*(x^3 + 8*x^2 -72*x + 100)*(x )^2;
80
T[203,61]=(x -2)*(x -14)*(x + 4)*(x^2 -72)*(x^5 -20*x^4 -56*x^3 + 2048*x^2 + 144*x -26176)*(x^3 + 26*x^2 + 204*x + 472)*(x -6)^2;
81
T[203,67]=(x + 6)*(x -12)*(x -3)*(x^2 -10*x -47)*(x^2 + 2*x -152)*(x^3 -14*x^2 -168*x + 2228)*(x^5 + 3*x^4 -162*x^3 -108*x^2 + 2068*x -2416);
82
T[203,71]=(x -8)*(x^5 + x^4 -108*x^3 -424*x^2 + 684*x + 2592)*(x^3 -84*x + 268)*(x + 8)^3*(x -7)^3;
83
T[203,73]=(x + 16)*(x + 4)*(x + 1)*(x^2 -18*x + 64)*(x^3 + 8*x^2 -16*x -160)*(x^5 -35*x^4 + 388*x^3 -880*x^2 -8544*x + 35456)*(x^2 + 6*x -89);
84
T[203,79]=(x -12)*(x + 9)*(x^2 + 8*x + 8)*(x^2 -7*x + 8)*(x^3 -23*x^2 + 101*x + 151)*(x^5 + 13*x^4 + 17*x^3 -69*x^2 -28*x + 64)*(x );
85
T[203,83]=(x + 16)*(x -16)*(x -14)*(x^2 -4*x -28)*(x^2 -4*x -64)*(x^3 + 8*x^2 + 16*x + 4)*(x^5 + 10*x^4 -152*x^3 -28*x^2 + 1128*x + 1152);
86
T[203,89]=(x -15)*(x -12)*(x + 6)*(x^2 -10*x + 7)*(x^3 -12*x^2 -136*x + 1580)*(x^5 + 25*x^4 + 128*x^3 -356*x^2 -276*x -48)*(x -2)^2;
87
T[203,97]=(x -3)*(x -12)*(x^2 -10*x -128)*(x^2 -22*x + 103)*(x^3 + 8*x^2 -320*x -3200)*(x^5 + 25*x^4 -12*x^3 -4576*x^2 -38784*x -92672)*(x );
88
89
T[204,2]=(x )^2;
90
T[204,3]=(x + 1)*(x -1);
91
T[204,5]=(x + 1)*(x -1);
92
T[204,7]=(x -4)*(x );
93
T[204,11]=(x -3)*(x -5);
94
T[204,13]=(x -3)*(x + 5);
95
T[204,17]=(x + 1)*(x -1);
96
T[204,19]=(x -1)^2;
97
T[204,23]=(x + 3)*(x -3);
98
T[204,29]=(x -2)*(x + 10);
99
T[204,31]=(x -2)*(x -6);
100
T[204,37]=(x + 8)*(x + 4);
101
T[204,41]=(x -5)*(x + 5);
102
T[204,43]=(x + 1)*(x + 9);
103
T[204,47]=(x + 2)*(x -6);
104
T[204,53]=(x + 6)*(x + 14);
105
T[204,59]=(x -6)*(x + 6);
106
T[204,61]=(x + 4)*(x -8);
107
T[204,67]=(x -12)*(x + 12);
108
T[204,71]=(x -12)*(x + 12);
109
T[204,73]=(x + 2)*(x -2);
110
T[204,79]=(x + 14)*(x -10);
111
T[204,83]=(x -6)*(x + 2);
112
T[204,89]=(x -12)*(x -16);
113
T[204,97]=(x -16)*(x );
114
115
T[205,2]=(x -1)*(x^2 + x -1)*(x^3 -4*x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3)*(x + 1)^2;
116
T[205,3]=(x )*(x + 3)^2*(x + 1)^2*(x -2)^2*(x^3 -2*x^2 -5*x + 2)^2;
117
T[205,5]=(x + 1)^6*(x -1)^7;
118
T[205,7]=(x + 4)*(x^2 + 3*x -1)*(x^3 -x^2 -5*x -2)*(x^3 + 9*x^2 + 23*x + 14)*(x^2 -3*x -9)*(x -2)^2;
119
T[205,11]=(x -6)*(x^2 + 8*x + 11)*(x^3 -4*x^2 -x + 8)*(x^3 -4*x^2 -7*x + 26)*(x + 3)^2*(x )^2;
120
T[205,13]=(x -2)*(x + 4)*(x + 2)*(x^2 + x -29)*(x^3 -x^2 -15*x + 28)*(x^3 + 3*x^2 -x -2)*(x^2 + 3*x -9);
121
T[205,17]=(x -4)*(x + 6)*(x -2)*(x^2 -5)*(x^3 -4*x^2 -27*x + 94)*(x^3 + 2*x^2 -11*x + 4)*(x^2 + 4*x -9);
122
T[205,19]=(x + 6)*(x^2 + 3*x -27)*(x^3 + 5*x^2 + 3*x -8)*(x^3 -15*x^2 + 71*x -106)*(x^2 + 5*x -5)*(x )^2;
123
T[205,23]=(x + 4)*(x^2 -4*x -9)*(x^3 -20*x^2 + 127*x -256)*(x^3 -6*x^2 -31*x -28)*(x + 8)^2*(x + 3)^2;
124
T[205,29]=(x -2)*(x -10)*(x -6)*(x^2 + 5*x + 3)*(x^3 + 13*x^2 + 51*x + 62)*(x^3 -x^2 -31*x + 2)*(x^2 + 3*x + 1);
125
T[205,31]=(x^2 + 3*x -27)*(x^3 -x^2 -27*x + 64)*(x^3 + 11*x^2 -35*x -464)*(x^2 + 7*x -19)*(x )^3;
126
T[205,37]=(x -6)*(x^2 + 3*x -27)*(x^3 + 17*x^2 + 77*x + 98)*(x^3 -11*x^2 + 35*x -26)*(x^2 -x -1)*(x + 6)^2;
127
T[205,41]=(x + 1)^6*(x -1)^7;
128
T[205,43]=(x -4)*(x + 4)*(x -8)*(x^2 + 3*x -79)*(x^3 -x^2 -27*x + 64)*(x^3 + 3*x^2 -x -4)*(x^2 + 3*x -9);
129
T[205,47]=(x + 4)*(x -2)*(x + 2)*(x^2 + x -1)*(x^3 -9*x^2 -21*x + 218)*(x^3 -7*x^2 -109*x + 662)*(x^2 + 19*x + 87);
130
T[205,53]=(x -6)*(x + 14)*(x -8)*(x^2 + 2*x -4)*(x^3 + 10*x^2 + 12*x -64)*(x^3 -8*x^2 -88*x + 712)*(x^2 + 10*x + 12);
131
T[205,59]=(x + 4)*(x -12)*(x + 12)*(x^2 + 17*x + 71)*(x^3 -15*x^2 + 39*x + 28)*(x^3 -31*x^2 + 315*x -1052)*(x^2 + 17*x + 43);
132
T[205,61]=(x -2)*(x -14)*(x + 10)*(x^2 + 12*x + 23)*(x^3 + 14*x^2 + 59*x + 74)*(x^3 -6*x^2 -45*x + 158)*(x^2 + 4*x -41);
133
T[205,67]=(x + 8)*(x -10)*(x + 2)*(x^2 + 7*x -17)*(x^3 + 5*x^2 -117*x + 178)*(x^3 + 15*x^2 -73*x -1234)*(x^2 -7*x + 11);
134
T[205,71]=(x + 12)*(x -8)*(x + 2)*(x^2 + 6*x -171)*(x^3 + 2*x^2 -31*x + 32)*(x^3 + 10*x^2 + 27*x + 14)*(x^2 -20*x + 87);
135
T[205,73]=(x -6)*(x^2 + 3*x -27)*(x^3 -11*x^2 -61*x + 454)*(x^3 + 3*x^2 -43*x -98)*(x^2 -19*x + 79)*(x + 6)^2;
136
T[205,79]=(x + 8)*(x + 2)*(x + 4)*(x^2 -15*x + 53)*(x^3 -9*x^2 -21*x + 218)*(x^3 + 13*x^2 -249*x -3184)*(x^2 + 17*x + 11);
137
T[205,83]=(x -4)*(x -12)*(x^2 + 15*x + 53)*(x^3 -13*x^2 + 37*x + 28)*(x^3 -19*x^2 + 115*x -224)*(x^2 + 21*x + 79)*(x );
138
T[205,89]=(x + 6)*(x -10)*(x -14)*(x^2 + 2*x -207)*(x^3 + 6*x^2 -49*x -82)*(x^3 + 12*x^2 -55*x + 46)*(x^2 -5);
139
T[205,97]=(x + 6)*(x + 8)*(x -10)*(x^2 -6*x -108)*(x^3 + 10*x^2 -92*x -448)*(x^3 + 8*x^2 -104*x -248)*(x^2 -14*x + 44);
140
141
T[206,2]=(x -1)^4*(x + 1)^5;
142
T[206,3]=(x -2)*(x^2 -x -7)*(x^2 + 3*x -1)*(x^4 -2*x^3 -5*x^2 + 12*x -5);
143
T[206,5]=(x -4)*(x^2 -x -7)*(x^2 + 5*x + 3)*(x^4 -7*x^2 + 6*x -1);
144
T[206,7]=(x^2 + 3*x -5)*(x^2 -5*x + 3)*(x^4 -2*x^3 -17*x^2 + 50*x -31)*(x );
145
T[206,11]=(x + 6)*(x^4 -4*x^3 -24*x^2 + 48*x + 80)*(x -4)^2*(x )^2;
146
T[206,13]=(x + 2)*(x^2 -2*x -28)*(x^2 -6*x -4)*(x^4 -28*x^2 -48*x -16);
147
T[206,17]=(x -2)*(x^2 -5*x + 3)*(x^2 + 3*x -5)*(x^4 + 14*x^3 + 31*x^2 -270*x -1007);
148
T[206,19]=(x + 4)*(x^4 -48*x^2 + 64*x -16)*(x -6)^2*(x -2)^2;
149
T[206,23]=(x^2 + 3*x -27)*(x^2 + 7*x + 5)*(x^4 -2*x^3 -65*x^2 -66*x + 265)*(x );
150
T[206,29]=(x^4 -48*x^2 -128*x -16)*(x -6)^2*(x + 6)^3;
151
T[206,31]=(x^4 -8*x^3 -24*x^2 + 32*x + 64)*(x + 4)^2*(x -8)^3;
152
T[206,37]=(x -8)*(x^2 -x -29)*(x^2 + 7*x + 5)*(x^4 -10*x^3 -81*x^2 + 528*x + 2795);
153
T[206,41]=(x -2)*(x^2 -11*x + 27)*(x^2 + 13*x + 35)*(x^4 + 18*x^3 + 31*x^2 -914*x -4175);
154
T[206,43]=(x -2)*(x^2 + 3*x -5)*(x^2 + 5*x -23)*(x^4 -4*x^3 -83*x^2 + 110*x + 1231);
155
T[206,47]=(x + 8)*(x^2 + 2*x -28)*(x^2 + 14*x + 36)*(x^4 -92*x^2 + 352*x -80);
156
T[206,53]=(x + 12)*(x^2 + 9*x -9)*(x^2 -9*x + 13)*(x^4 + 4*x^3 -67*x^2 -466*x -785);
157
T[206,59]=(x -12)*(x^2 + 6*x -108)*(x^2 + 10*x -4)*(x^4 -8*x^3 -116*x^2 + 464*x + 3920);
158
T[206,61]=(x -10)*(x^2 + 6*x -20)*(x^2 + 6*x -4)*(x^4 + 4*x^3 -68*x^2 -400*x -496);
159
T[206,67]=(x + 2)*(x^2 -5*x -59)*(x^2 + 3*x -157)*(x^4 -18*x^3 + 103*x^2 -224*x + 163);
160
T[206,71]=(x^2 -8*x -100)*(x^4 -4*x^3 -32*x^2 + 48*x + 112)*(x )*(x -6)^2;
161
T[206,73]=(x -10)*(x^2 + 6*x -20)*(x^2 -18*x + 68)*(x^4 -12*x^3 + 28*x^2 -16);
162
T[206,79]=(x^2 -5*x + 3)*(x^2 -9*x -45)*(x^4 -18*x^3 + 3*x^2 + 146*x -7)*(x );
163
T[206,83]=(x^2 -20*x + 48)*(x^4 -12*x^3 -152*x^2 + 2432*x -7616)*(x + 4)^3;
164
T[206,89]=(x -2)*(x^2 -14*x + 36)*(x^2 + 2*x -28)*(x^4 -4*x^3 -180*x^2 -944*x -1328);
165
T[206,97]=(x -14)*(x^2 -x -29)*(x^2 + 19*x + 83)*(x^4 + 6*x^3 -205*x^2 -1878*x -4135);
166
167
T[207,2]=(x + 1)*(x^2 + 2*x -1)*(x^2 -x -1)*(x^2 -5)*(x^2 -2*x -1);
168
T[207,3]=(x )^9;
169
T[207,5]=(x^2 -4*x + 2)*(x^2 + 4*x + 2)*(x )*(x^2 -2*x -4)^2;
170
T[207,7]=(x + 2)*(x^2 + 4*x + 2)^2*(x^2 -2*x -4)^2;
171
T[207,11]=(x^2 -6*x + 4)*(x^2 -8)^2*(x + 4)^3;
172
T[207,13]=(x + 6)*(x^2 -20)*(x -3)^2*(x )^4;
173
T[207,17]=(x + 4)*(x^2 -12*x + 34)*(x^2 + 12*x + 34)*(x^2 + 6*x + 4)*(x^2 -10*x + 20);
174
T[207,19]=(x -2)*(x^2 -10*x + 20)*(x + 2)^2*(x^2 + 4*x -14)^2;
175
T[207,23]=(x -1)^3*(x + 1)^6;
176
T[207,29]=(x + 2)*(x^2 -20)*(x -3)^2*(x^2 -72)^2;
177
T[207,31]=(x -4)*(x^2 + 4*x -16)*(x^2 -45)*(x^2 -72)^2;
178
T[207,37]=(x -2)*(x^2 -2*x -4)*(x^2 -20)*(x^2 + 4*x -4)^2;
179
T[207,41]=(x + 2)*(x^2 + 2*x -19)*(x^2 -8*x -16)*(x^2 + 8*x -16)*(x^2 -4*x -76);
180
T[207,43]=(x -10)*(x^2 -2*x -44)*(x^2 + 12*x + 18)^2*(x )^2;
181
T[207,47]=(x^2 -12*x + 4)*(x^2 + 12*x + 4)*(x^2 -5)*(x )*(x -4)^2;
182
T[207,53]=(x -12)*(x^2 -8*x -4)*(x^2 -6*x + 4)*(x^2 -4*x -46)*(x^2 + 4*x -46);
183
T[207,59]=(x -12)*(x^2 + 4*x -28)*(x^2 + 4*x -16)*(x^2 + 8*x -64)*(x^2 -4*x -28);
184
T[207,61]=(x + 6)*(x^2 -4*x -76)*(x^2 -20)*(x^2 -4*x -4)^2;
185
T[207,67]=(x + 10)*(x^2 -6*x + 4)*(x^2 + 10*x + 20)*(x^2 -20*x + 98)^2;
186
T[207,71]=(x + 8)*(x^2 -16*x + 32)*(x^2 + 20*x + 95)*(x^2 + 16*x + 32)*(x -8)^2;
187
T[207,73]=(x + 14)*(x^2 + 4*x -76)*(x^2 -22*x + 101)*(x^2 -4*x -124)^2;
188
T[207,79]=(x -10)*(x^2 + 4*x -76)*(x^2 -6*x -36)*(x^2 + 4*x -94)^2;
189
T[207,83]=(x + 12)*(x^2 -8*x + 8)*(x^2 + 8*x + 8)*(x^2 -22*x + 116)*(x + 4)^2;
190
T[207,89]=(x -16)*(x^2 + 12*x -14)*(x^2 -12*x + 16)*(x^2 + 2*x -4)*(x^2 -12*x -14);
191
T[207,97]=(x^2 -22*x + 76)*(x^2 -8*x -4)*(x + 10)^5;
192
193
T[208,2]=(x )^6;
194
T[208,3]=(x -3)*(x^2 + x -4)*(x )*(x + 1)^2;
195
T[208,5]=(x + 3)*(x -2)*(x^2 -3*x -2)*(x + 1)^2;
196
T[208,7]=(x -2)*(x + 1)*(x + 5)*(x -1)*(x^2 -x -4);
197
T[208,11]=(x + 6)*(x^2 -2*x -16)*(x -2)^3;
198
T[208,13]=(x + 1)^3*(x -1)^3;
199
T[208,17]=(x -6)*(x^2 + x -38)*(x + 3)^3;
200
T[208,19]=(x -6)*(x + 6)*(x + 2)*(x -2)*(x^2 + 2*x -16);
201
T[208,23]=(x + 8)*(x + 4)*(x -4)*(x )*(x -8)^2;
202
T[208,29]=(x + 6)*(x -6)*(x -2)^2*(x + 2)^2;
203
T[208,31]=(x + 10)*(x -4)^2*(x + 4)^3;
204
T[208,37]=(x + 6)*(x -11)*(x -3)*(x + 7)*(x^2 -7*x -26);
205
T[208,41]=(x + 6)*(x -8)*(x^2 -2*x -16)*(x )^2;
206
T[208,43]=(x -5)*(x + 4)*(x^2 + 15*x + 52)*(x -1)^2;
207
T[208,47]=(x -2)*(x + 9)*(x + 13)*(x + 3)*(x^2 -13*x + 4);
208
T[208,53]=(x + 12)*(x -6)*(x -12)*(x^2 + 2*x -16)*(x );
209
T[208,59]=(x -6)*(x + 6)*(x^2 + 2*x -16)*(x -10)^2;
210
T[208,61]=(x + 2)*(x -8)*(x + 8)*(x^2 -14*x + 32)*(x );
211
T[208,67]=(x + 6)*(x + 14)*(x + 10)*(x -2)*(x^2 -2*x -16);
212
T[208,71]=(x -3)*(x + 7)*(x -5)*(x + 10)*(x^2 -3*x -36);
213
T[208,73]=(x + 2)*(x + 10)*(x + 6)^2*(x -2)^2;
214
T[208,79]=(x + 12)*(x -4)^2*(x + 8)^3;
215
T[208,83]=(x -6)*(x -16)*(x + 12)*(x^2 -12*x -32)*(x );
216
T[208,89]=(x + 10)*(x -6)*(x + 6)^2*(x -10)^2;
217
T[208,97]=(x -14)*(x -2)*(x^2 -68)*(x + 10)^2;
218
219
T[209,2]=(x^2 -2)*(x^5 -2*x^4 -6*x^3 + 10*x^2 + 5*x -4)*(x^7 + x^6 -14*x^5 -10*x^4 + 59*x^3 + 27*x^2 -66*x -30)*(x );
220
T[209,3]=(x -1)*(x^2 + 2*x -1)*(x^5 -x^4 -9*x^3 + 11*x^2 + 7*x -1)*(x^7 -2*x^6 -14*x^5 + 28*x^4 + 46*x^3 -100*x^2 -17*x + 64);
221
T[209,5]=(x + 3)*(x^5 + 5*x^4 -3*x^3 -33*x^2 -9*x + 19)*(x^7 -2*x^6 -20*x^5 + 34*x^4 + 88*x^3 -156*x^2 + 57*x -6)*(x + 1)^2;
222
T[209,7]=(x + 4)*(x^2 + 4*x + 2)*(x^5 -6*x^4 -x^3 + 62*x^2 -119*x + 64)*(x^7 -10*x^6 + 17*x^5 + 86*x^4 -185*x^3 -316*x^2 + 394*x + 512);
223
T[209,11]=(x -1)^6*(x + 1)^9;
224
T[209,13]=(x -2)*(x^2 + 4*x -14)*(x^5 -4*x^4 -9*x^3 + 26*x^2 + 37*x + 2)*(x^7 + 4*x^6 -51*x^5 -194*x^4 + 639*x^3 + 2082*x^2 -2550*x -5716);
225
T[209,17]=(x^2 -4*x + 2)*(x^5 + 4*x^4 -32*x^3 -64*x^2 + 304*x -64)*(x^7 -2*x^6 -70*x^5 + 44*x^4 + 1552*x^3 + 864*x^2 -11424*x -17088)*(x );
226
T[209,19]=(x + 1)^7*(x -1)^8;
227
T[209,23]=(x -3)*(x^5 -3*x^4 -76*x^3 + 388*x^2 -224*x -784)*(x^7 -10*x^6 -51*x^5 + 648*x^4 -316*x^3 -5136*x^2 + 3312*x + 1920)*(x + 3)^2;
228
T[209,29]=(x + 6)*(x^2 + 4*x -14)*(x^5 -10*x^4 -37*x^3 + 656*x^2 -1827*x + 490)*(x^7 + 18*x^6 + 117*x^5 + 340*x^4 + 383*x^3 -114*x^2 -534*x -276);
229
T[209,31]=(x + 7)*(x^2 + 10*x + 23)*(x^5 -11*x^4 -3*x^3 + 193*x^2 -31*x -757)*(x^7 -24*x^6 + 214*x^5 -904*x^4 + 1918*x^3 -1934*x^2 + 715*x + 4);
230
T[209,37]=(x + 7)*(x^2 -6*x -41)*(x^5 -x^4 -80*x^3 + 104*x^2 + 1520*x -3088)*(x^7 -121*x^5 -194*x^4 + 3512*x^3 + 9296*x^2 -1680*x -8992);
231
T[209,41]=(x^2 -8*x -16)*(x^5 -2*x^4 -189*x^3 + 252*x^2 + 7253*x -4112)*(x^7 + 12*x^6 -5*x^5 -526*x^4 -1823*x^3 -174*x^2 + 3840*x -1824)*(x );
232
T[209,43]=(x + 10)*(x^2 -12*x + 4)*(x^5 -20*x^4 + 23*x^3 + 1640*x^2 -9843*x + 11266)*(x^7 -2*x^6 -89*x^5 + 150*x^4 + 1677*x^3 -1208*x^2 -6988*x + 4976);
233
T[209,47]=(x^2 -12*x + 28)*(x^5 + 20*x^4 + 28*x^3 -1088*x^2 -2192*x + 13184)*(x^7 -8*x^6 -152*x^5 + 1344*x^4 + 1024*x^3 -22848*x^2 + 12096*x + 79872)*(x );
234
T[209,53]=(x -6)*(x^2 -8*x -56)*(x^5 + 14*x^4 -88*x^3 -1392*x^2 + 1808*x + 30304)*(x^7 -2*x^6 -160*x^5 + 32*x^4 + 6032*x^3 + 13920*x^2 + 8832*x + 768);
235
T[209,59]=(x -3)*(x^2 + 6*x + 7)*(x^5 -3*x^4 -164*x^3 + 908*x^2 -496*x -2000)*(x^7 + 10*x^6 -345*x^5 -2976*x^4 + 36164*x^3 + 249792*x^2 -1125936*x -6552192);
236
T[209,61]=(x + 10)*(x^2 + 8*x -34)*(x^5 + 10*x^4 -24*x^3 -464*x^2 -1264*x -736)*(x^7 -14*x^6 -34*x^5 + 1044*x^4 -1728*x^3 -17920*x^2 + 60512*x -36544);
237
T[209,67]=(x -11)*(x^2 + 18*x + 79)*(x^5 -9*x^4 -195*x^3 + 827*x^2 + 10633*x + 17689)*(x^7 -8*x^6 -170*x^5 + 1308*x^4 + 6342*x^3 -33086*x^2 -115621*x + 13544);
238
T[209,71]=(x -15)*(x^2 + 22*x + 119)*(x^5 -23*x^4 -17*x^3 + 2929*x^2 -14485*x + 19081)*(x^7 -10*x^6 -134*x^5 + 944*x^4 + 2278*x^3 -11928*x^2 -9057*x + 39756);
239
T[209,73]=(x -8)*(x^2 -8*x -56)*(x^5 -340*x^3 -1168*x^2 + 27728*x + 155392)*(x^7 + 6*x^6 -220*x^5 -1592*x^4 + 3536*x^3 + 44576*x^2 + 100224*x + 67328);
240
T[209,79]=(x + 16)*(x^2 + 32*x + 254)*(x^5 -44*x^4 + 748*x^3 -6128*x^2 + 24176*x -36800)*(x^7 -52*x^6 + 970*x^5 -7152*x^4 + 7992*x^3 + 90880*x^2 -26464*x -203264);
241
T[209,83]=(x^2 -4*x + 2)*(x^5 + 14*x^4 -69*x^3 -1242*x^2 -4103*x -3908)*(x^7 + 10*x^6 -219*x^5 -3362*x^4 -8273*x^3 + 71352*x^2 + 410346*x + 576936)*(x );
242
T[209,89]=(x -9)*(x^2 + 10*x -73)*(x^5 + 27*x^4 + 268*x^3 + 1168*x^2 + 1952*x + 320)*(x^7 -401*x^5 -698*x^4 + 50392*x^3 + 161184*x^2 -1951104*x -8199552);
243
T[209,97]=(x + 1)*(x^2 -2*x -1)*(x^5 -15*x^4 -124*x^3 + 2116*x^2 + 304*x -37456)*(x^7 + 24*x^6 -189*x^5 -6678*x^4 + 8156*x^3 + 605448*x^2 -49072*x -17393056);
244
245
T[210,2]=(x + 1)^2*(x -1)^3;
246
T[210,3]=(x + 1)^2*(x -1)^3;
247
T[210,5]=(x + 1)^2*(x -1)^3;
248
T[210,7]=(x + 1)^2*(x -1)^3;
249
T[210,11]=(x -4)*(x + 4)^2*(x )^2;
250
T[210,13]=(x -2)^2*(x + 2)^3;
251
T[210,17]=(x -2)^2*(x + 6)^3;
252
T[210,19]=(x -4)*(x -8)*(x )*(x + 4)^2;
253
T[210,23]=(x )^2*(x + 8)^3;
254
T[210,29]=(x + 6)*(x -10)*(x + 2)*(x -6)^2;
255
T[210,31]=(x )*(x + 8)^2*(x + 4)^2;
256
T[210,37]=(x + 10)*(x -6)*(x + 2)*(x -2)^2;
257
T[210,41]=(x + 2)*(x -2)*(x -6)*(x + 6)^2;
258
T[210,43]=(x + 12)*(x -8)^2*(x + 4)^2;
259
T[210,47]=(x + 8)*(x + 12)*(x -4)*(x )^2;
260
T[210,53]=(x + 6)*(x -10)*(x + 10)*(x -6)^2;
261
T[210,59]=(x -12)*(x + 12)^2*(x -4)^2;
262
T[210,61]=(x -14)*(x -2)*(x + 10)*(x + 6)*(x + 2);
263
T[210,67]=(x + 12)*(x -8)*(x + 4)*(x -12)*(x );
264
T[210,71]=(x + 12)*(x -8)*(x + 8)*(x -12)*(x );
265
T[210,73]=(x + 6)*(x -14)*(x + 10)*(x -10)*(x + 14);
266
T[210,79]=(x -16)*(x + 16)*(x + 8)*(x -8)*(x );
267
T[210,83]=(x + 12)*(x + 4)*(x -12)^3;
268
T[210,89]=(x -14)*(x -6)*(x -2)*(x -10)*(x + 6);
269
T[210,97]=(x + 10)*(x -10)*(x -14)*(x -2)^2;
270
271
T[212,2]=(x )^5;
272
T[212,3]=(x + 1)*(x -2)*(x^3 + 3*x^2 -3*x -7);
273
T[212,5]=(x + 2)*(x -2)*(x^3 -12*x -12);
274
T[212,7]=(x + 2)*(x^3 -6*x^2 + 28)*(x );
275
T[212,11]=(x -2)*(x + 4)*(x^3 -6*x^2 -12*x + 84);
276
T[212,13]=(x + 7)*(x + 2)*(x -5)^3;
277
T[212,17]=(x + 3)*(x -2)*(x^3 -3*x^2 -21*x + 39);
278
T[212,19]=(x -5)*(x -2)*(x^3 + 3*x^2 -45*x -161);
279
T[212,23]=(x + 3)*(x + 2)*(x^3 + 3*x^2 -21*x + 3);
280
T[212,29]=(x -2)*(x -9)*(x^3 + 9*x^2 + 15*x + 3);
281
T[212,31]=(x + 8)*(x -2)*(x^3 + 6*x^2 -36*x -212);
282
T[212,37]=(x + 3)*(x -10)*(x^3 + 9*x^2 + 3*x -89);
283
T[212,41]=(x^3 + 6*x^2 -36*x -72)*(x -2)^2;
284
T[212,43]=(x -4)*(x + 4)*(x^3 -48*x + 124);
285
T[212,47]=(x + 12)*(x -10)*(x^3 -18*x^2 + 60*x + 168);
286
T[212,53]=(x -1)*(x + 1)^4;
287
T[212,59]=(x + 12)*(x + 2)*(x^3 + 6*x^2 -36*x -72);
288
T[212,61]=(x + 10)*(x -10)*(x^3 -48*x + 124);
289
T[212,67]=(x + 2)*(x -4)*(x^3 + 6*x^2 -72*x -356);
290
T[212,71]=(x -6)*(x + 9)*(x^3 + 3*x^2 -39*x + 57);
291
T[212,73]=(x + 6)*(x -10)*(x^3 -24*x^2 + 180*x -428);
292
T[212,79]=(x -10)*(x -5)*(x^3 -3*x^2 -219*x + 643);
293
T[212,83]=(x + 11)*(x + 6)*(x^3 + 3*x^2 -9*x -9);
294
T[212,89]=(x^3 + 6*x^2 -180*x -504)*(x + 10)^2;
295
T[212,97]=(x -14)*(x + 3)*(x^3 + 9*x^2 -105*x -917);
296
297
T[213,2]=(x -1)*(x^2 -x -3)*(x^2 + 3*x + 1)*(x^2 + x -1)*(x^4 -3*x^3 -2*x^2 + 7*x + 1);
298
T[213,3]=(x -1)^5*(x + 1)^6;
299
T[213,5]=(x -2)*(x^2 + 5*x + 5)*(x^2 + x -3)*(x^2 -x -1)*(x^4 + 3*x^3 -5*x^2 -4*x + 4);
300
T[213,7]=(x -2)*(x^2 + 4*x -1)*(x^4 -6*x^3 + 7*x^2 + 6*x -4)*(x + 3)^2*(x + 1)^2;
301
T[213,11]=(x^2 + 4*x -1)*(x^2 + 8*x + 11)*(x^4 -2*x^3 -15*x^2 + 36*x -16)*(x )*(x -3)^2;
302
T[213,13]=(x + 2)*(x^2 + 3*x -1)*(x^2 + 5*x -5)*(x^2 + x -11)*(x^4 -5*x^3 -11*x^2 + 40*x + 4);
303
T[213,17]=(x^2 + 4*x -1)*(x^2 -5)*(x^4 + 8*x^3 -31*x^2 -338*x -604)*(x )*(x -3)^2;
304
T[213,19]=(x^2 + 4*x -9)*(x^4 -8*x^3 -57*x^2 + 492*x -304)*(x )*(x^2 + 8*x + 11)^2;
305
T[213,23]=(x^2 + 3*x -29)*(x^2 -3*x -27)*(x^2 + 3*x -9)*(x^4 + x^3 -43*x^2 + 104*x -64)*(x );
306
T[213,29]=(x + 2)*(x^2 -3*x -59)*(x^2 -7*x + 9)*(x^2 -3*x -9)*(x^4 + 5*x^3 -69*x^2 -560*x -1076);
307
T[213,31]=(x + 10)*(x^2 -8*x -4)*(x^4 -2*x^3 -96*x^2 + 72*x + 2096)*(x + 2)^2*(x -2)^2;
308
T[213,37]=(x + 6)*(x^2 -3*x -99)*(x^2 + x -31)*(x^2 + x -3)*(x^4 -19*x^3 + 125*x^2 -332*x + 284);
309
T[213,41]=(x^2 -3*x -27)*(x^2 + 17*x + 71)*(x^2 -15*x + 55)*(x^4 + 19*x^3 + 115*x^2 + 282*x + 244)*(x );
310
T[213,43]=(x + 4)*(x^2 + 3*x -99)*(x^2 + 15*x + 45)*(x^2 -13*x + 13)*(x^4 -25*x^3 + 205*x^2 -600*x + 400);
311
T[213,47]=(x -12)*(x^2 -15*x + 45)*(x^2 + 9*x -9)*(x^2 + 5*x -55)*(x^4 -7*x^3 -85*x^2 + 436*x -496);
312
T[213,53]=(x + 4)*(x^2 + 3*x -29)*(x^2 -5*x -75)*(x^2 -9*x + 19)*(x^4 + 5*x^3 -81*x^2 -390*x + 524);
313
T[213,59]=(x -12)*(x^2 -4*x -121)*(x^2 -45)*(x^4 -10*x^3 -71*x^2 + 880*x -1936)*(x + 3)^2;
314
T[213,61]=(x -10)*(x^2 + 24*x + 131)*(x^2 -45)*(x^4 -2*x^3 -135*x^2 -184*x + 604)*(x -5)^2;
315
T[213,67]=(x -2)*(x^2 + 5*x -145)*(x^2 -13*x + 13)*(x^2 + 17*x + 41)*(x^4 -35*x^3 + 421*x^2 -2050*x + 3284);
316
T[213,71]=(x + 1)^5*(x -1)^6;
317
T[213,73]=(x + 10)*(x^2 + 2*x -116)*(x^2 + 10*x + 20)*(x^2 -2*x -4)*(x^4 -2*x^3 -80*x^2 + 456*x -656);
318
T[213,79]=(x -4)*(x^2 + x -31)*(x^2 + 9*x + 17)*(x^2 + 5*x + 5)*(x^4 + x^3 -175*x^2 -892*x -656);
319
T[213,83]=(x + 4)*(x^2 + 12*x + 31)*(x^2 -20*x + 87)*(x^4 -18*x^3 -95*x^2 + 2944*x -11216)*(x + 3)^2;
320
T[213,89]=(x -6)*(x^2 + 14*x + 29)*(x^2 -12*x -9)*(x^4 + 16*x^3 -73*x^2 -1456*x -3644)*(x -3)^2;
321
T[213,97]=(x + 2)*(x^2 -9*x -61)*(x^2 -5*x -55)*(x^2 + 9*x -81)*(x^4 + x^3 -83*x^2 -116*x + 76);
322
323
T[214,2]=(x -1)^4*(x + 1)^4;
324
T[214,3]=(x^2 -2*x -2)*(x^2 + 2*x -2)*(x -1)^2*(x + 2)^2;
325
T[214,5]=(x + 4)*(x + 3)*(x + 1)*(x^2 -4*x + 1)*(x^2 -3)*(x );
326
T[214,7]=(x -4)*(x -2)*(x + 2)*(x + 4)*(x^2 + 2*x -2)^2;
327
T[214,11]=(x + 2)*(x + 6)*(x^2 -2*x -2)*(x^2 -6*x + 6)*(x + 3)^2;
328
T[214,13]=(x + 4)*(x -4)*(x^2 -2*x -2)*(x^2 + 2*x -2)*(x + 1)^2;
329
T[214,17]=(x + 6)*(x + 2)*(x^2 -10*x + 22)*(x^2 + 6*x + 6)*(x -6)^2;
330
T[214,19]=(x + 7)*(x -1)*(x + 2)^2*(x -2)^4;
331
T[214,23]=(x -5)*(x + 7)*(x -9)*(x -1)*(x^2 -3)*(x^2 + 12*x + 33);
332
T[214,29]=(x + 4)*(x^2 -10*x + 22)*(x^2 -6*x -18)*(x )*(x + 6)^2;
333
T[214,31]=(x + 2)*(x + 10)*(x + 4)*(x -4)*(x^2 + 4*x -44)*(x -2)^2;
334
T[214,37]=(x -12)*(x + 1)*(x + 9)*(x^2 + 8*x -32)*(x )*(x + 4)^2;
335
T[214,41]=(x -3)*(x + 5)*(x + 11)^2*(x^2 -6*x -39)^2;
336
T[214,43]=(x -12)*(x -1)*(x -8)*(x + 7)^2*(x + 9)^3;
337
T[214,47]=(x -8)*(x + 1)*(x -11)*(x^2 -3)*(x^2 -12*x + 33)*(x );
338
T[214,53]=(x -10)*(x + 9)*(x -6)*(x -7)*(x^2 -108)*(x^2 -8*x + 4);
339
T[214,59]=(x -6)*(x + 5)*(x + 3)*(x + 6)*(x^2 -10*x + 13)*(x^2 -6*x -99);
340
T[214,61]=(x + 8)*(x -1)*(x + 7)*(x -4)*(x^2 + 2*x -2)*(x^2 -2*x -74);
341
T[214,67]=(x -5)*(x + 5)*(x + 10)*(x -14)*(x^2 -10*x -23)*(x + 1)^2;
342
T[214,71]=(x + 12)*(x^2 -6*x -66)*(x^2 -6*x -138)*(x )*(x -6)^2;
343
T[214,73]=(x -8)*(x + 16)*(x^2 + 2*x -146)*(x^2 + 10*x + 22)*(x + 4)^2;
344
T[214,79]=(x -11)*(x -7)*(x^2 + 4*x -239)*(x^2 -16*x -11)*(x + 7)^2;
345
T[214,83]=(x -12)*(x + 16)*(x^2 -18*x + 54)*(x^2 + 18*x + 6)*(x -4)^2;
346
T[214,89]=(x -9)^2*(x + 15)^2*(x^2 -6*x -99)^2;
347
T[214,97]=(x + 12)*(x + 6)*(x -12)*(x -14)*(x^2 + 2*x -2)*(x^2 -6*x -234);
348
349
T[215,2]=(x^5 -2*x^4 -7*x^3 + 13*x^2 + 5*x -4)*(x^6 -3*x^5 -5*x^4 + 17*x^3 + 3*x^2 -17*x -3)*(x^3 + 2*x^2 -3*x -3)*(x );
350
T[215,3]=(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 -4*x^5 -5*x^4 + 30*x^3 -20*x^2 + 1)*(x^3 -x^2 -4*x + 1)*(x );
351
T[215,5]=(x + 1)^7*(x -1)^8;
352
T[215,7]=(x + 2)*(x^5 -5*x^4 -14*x^3 + 97*x^2 -58*x -160)*(x^6 -8*x^5 + x^4 + 92*x^3 -72*x^2 -194*x -31)*(x^3 + 3*x^2 -6*x -7);
353
T[215,11]=(x + 1)*(x^5 + 6*x^4 + x^3 -43*x^2 -59*x -12)*(x^6 -41*x^4 + 12*x^3 + 322*x^2 + 88*x -93)*(x^3 -9*x^2 + 107);
354
T[215,13]=(x + 1)*(x^5 -5*x^4 -50*x^3 + 284*x^2 + 224*x -2000)*(x^6 -6*x^5 -20*x^4 + 104*x^3 + 144*x^2 -352*x -448)*(x^3 + 2*x^2 -16*x -8);
355
T[215,17]=(x + 3)*(x^5 + 17*x^4 + 94*x^3 + 180*x^2 + 80*x -16)*(x^6 -6*x^5 -60*x^4 + 408*x^3 + 272*x^2 -3616*x + 1344)*(x^3 -10*x^2 + 16*x + 24);
356
T[215,19]=(x + 2)*(x^3 -6*x^2 -24*x + 72)*(x^6 -6*x^5 -32*x^4 + 152*x^3 + 224*x^2 -768*x -512)*(x^5 + 6*x^4 -72*x^3 -352*x^2 + 1280*x + 4608);
357
T[215,23]=(x + 1)*(x^5 -x^4 -54*x^3 + 132*x^2 + 200*x -384)*(x^6 -96*x^4 + 8*x^3 + 2368*x^2 -800*x -5952)*(x^3 + 6*x^2 -24*x -72);
358
T[215,29]=(x -4)*(x^5 -6*x^4 -84*x^3 + 752*x^2 -1744*x + 1152)*(x^6 + 10*x^5 -36*x^4 -680*x^3 -2000*x^2 + 544*x + 5952)*(x^3 -2*x^2 -16*x + 8);
359
T[215,31]=(x -3)*(x^5 -6*x^4 -67*x^3 + 529*x^2 -903*x + 128)*(x^6 -97*x^4 -28*x^3 + 2386*x^2 + 1584*x -10133)*(x^3 -13*x^2 + 44*x -41);
360
T[215,37]=(x + 8)*(x^5 -5*x^4 -28*x^3 + 127*x^2 + 86*x -400)*(x^6 -28*x^5 + 221*x^4 + 278*x^3 -10350*x^2 + 37566*x -29813)*(x^3 -9*x^2 + 1);
361
T[215,41]=(x -5)*(x^5 -2*x^4 -99*x^3 + 247*x^2 + 211*x + 30)*(x^6 + 6*x^5 -139*x^4 -874*x^3 + 3702*x^2 + 21968*x -10911)*(x^3 -15*x^2 + 42*x + 31);
362
T[215,43]=(x -1)^6*(x + 1)^9;
363
T[215,47]=(x^5 -124*x^3 + 72*x^2 + 3392*x -2048)*(x^6 + 6*x^5 -60*x^4 -504*x^3 -688*x^2 + 2080*x + 4416)*(x^3 + 22*x^2 + 112*x -72)*(x );
364
T[215,53]=(x + 5)*(x^5 + 23*x^4 + 190*x^3 + 668*x^2 + 912*x + 400)*(x^6 + 4*x^5 -200*x^4 -592*x^3 + 8240*x^2 + 33536*x + 17088)*(x^3 -8*x^2 + 4*x + 24);
365
T[215,59]=(x -12)*(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 + 20*x^5 + 59*x^4 -940*x^3 -6450*x^2 -9416*x + 6987)*(x^3 -13*x^2 -56*x + 579);
366
T[215,61]=(x + 4)*(x^3 + 10*x^2 -72*x -648)*(x^6 + 8*x^5 -192*x^4 -1064*x^3 + 6080*x^2 + 13856*x + 6848)*(x^5 -20*x^4 -80*x^3 + 3152*x^2 -7504*x -60672);
367
T[215,67]=(x + 3)*(x^5 -21*x^4 + 44*x^3 + 732*x^2 + 584*x + 96)*(x^6 -22*x^5 + 52*x^4 + 1176*x^3 -3600*x^2 -17632*x + 32192)*(x^3 + 6*x^2 -24*x -72);
368
T[215,71]=(x -6)*(x^3 + 6*x^2 -120*x -328)*(x^6 -8*x^5 -92*x^4 + 464*x^3 + 928*x^2 -4288*x + 192)*(x^5 -4*x^4 -212*x^3 + 632*x^2 + 10576*x -20352);
369
T[215,73]=(x + 8)*(x^5 -5*x^4 -84*x^3 + 191*x^2 + 1222*x + 1112)*(x^6 -34*x^5 + 401*x^4 -1956*x^3 + 3000*x^2 + 3668*x -10133)*(x^3 -3*x^2 -30*x + 41);
370
T[215,79]=(x^5 -41*x^4 + 644*x^3 -4765*x^2 + 16120*x -18688)*(x^6 + 16*x^5 -189*x^4 -2736*x^3 + 7802*x^2 + 106132*x + 194267)*(x^3 + 17*x^2 + 32*x -287)*(x );
371
T[215,83]=(x + 9)*(x^5 + 7*x^4 -98*x^3 -888*x^2 -1256*x + 2400)*(x^6 + 14*x^5 -156*x^4 -2104*x^3 + 4080*x^2 + 43616*x -101952)*(x^3 + 12*x^2 -108*x -648);
372
T[215,89]=(x + 6)*(x^5 -20*x^4 + 8*x^3 + 1000*x^2 -688*x -2656)*(x^6 -264*x^4 + 1088*x^3 + 16528*x^2 -132992*x + 265152)*(x^3 -8*x^2 -84*x -72);
373
T[215,97]=(x + 17)*(x^5 -37*x^4 + 410*x^3 -1208*x^2 -160*x + 1152)*(x^6 -34*x^5 + 348*x^4 -728*x^3 -4480*x^2 + 16256*x -11776)*(x^3 -6*x^2 -132*x + 216);
374
375
T[216,2]=(x )^4;
376
T[216,3]=(x )^4;
377
T[216,5]=(x + 1)*(x -1)*(x -4)*(x + 4);
378
T[216,7]=(x -3)^2*(x + 3)^2;
379
T[216,11]=(x + 5)*(x -4)*(x + 4)*(x -5);
380
T[216,13]=(x -1)^2*(x -4)^2;
381
T[216,17]=(x -8)*(x + 4)*(x + 8)*(x -4);
382
T[216,19]=(x -2)^2*(x + 1)^2;
383
T[216,23]=(x + 2)*(x + 4)*(x -4)*(x -2);
384
T[216,29]=(x + 6)*(x -6)*(x )^2;
385
T[216,31]=(x + 7)^2*(x + 4)^2;
386
T[216,37]=(x + 9)^2*(x + 6)^2;
387
T[216,41]=(x + 6)*(x -6)*(x )^2;
388
T[216,43]=(x + 2)^2*(x + 8)^2;
389
T[216,47]=(x + 6)*(x -6)*(x + 12)*(x -12);
390
T[216,53]=(x + 5)*(x -5)*(x -8)*(x + 8);
391
T[216,59]=(x -4)^2*(x + 4)^2;
392
T[216,61]=(x + 5)^2*(x + 8)^2;
393
T[216,67]=(x + 10)^2*(x -11)^2;
394
T[216,71]=(x -8)^2*(x + 8)^2;
395
T[216,73]=(x -1)^4;
396
T[216,79]=(x + 5)^2*(x -16)^2;
397
T[216,83]=(x + 8)*(x + 11)*(x -11)*(x -8);
398
T[216,89]=(x -12)*(x + 6)*(x -6)*(x + 12);
399
T[216,97]=(x + 1)^2*(x -5)^2;
400
401
T[217,2]=(x^4 -5*x^2 + x + 1)*(x^5 -3*x^4 -5*x^3 + 16*x^2 + 6*x -19)*(x^3 + 3*x^2 -3)^2;
402
T[217,3]=(x^3 + 3*x^2 -1)*(x^3 + 3*x^2 -3)*(x^5 -3*x^4 -6*x^3 + 15*x^2 + 8*x -16)*(x^4 -3*x^3 -2*x^2 + 9*x -4);
403
T[217,5]=(x^3 -9*x -9)*(x^3 + 6*x^2 + 9*x + 3)*(x^5 -17*x^3 -5*x^2 + 56*x -4)*(x^4 -4*x^3 + x^2 + 5*x -2);
404
T[217,7]=(x -1)^7*(x + 1)^8;
405
T[217,11]=(x^3 + 6*x^2 + 3*x -19)*(x^3 -27*x + 27)*(x^5 -4*x^4 -13*x^3 + 39*x^2 + 48*x + 8)*(x^4 -2*x^3 -23*x^2 + 81*x -68);
406
T[217,13]=(x^3 + 3*x^2 -24*x + 1)*(x^3 + 3*x^2 -18*x -37)*(x^5 + 3*x^4 -14*x^3 -47*x^2 -36*x -4)*(x^4 + x^3 -18*x^2 -37*x -2);
407
T[217,17]=(x^3 + 12*x^2 + 45*x + 51)*(x^3 + 6*x^2 + 9*x + 1)*(x^5 + 4*x^4 -33*x^3 -173*x^2 -104*x + 244)*(x^4 -8*x^3 -17*x^2 + 123*x + 214);
408
T[217,19]=(x^3 + 3*x^2 -24*x -53)*(x^3 -3*x^2 + 3)*(x^5 + 9*x^4 -28*x^3 -257*x^2 + 408*x + 976)*(x^4 -5*x^3 -32*x^2 + 159*x + 4);
409
T[217,23]=(x^3 + 18*x^2 + 99*x + 153)*(x^3 + 12*x^2 + 27*x -57)*(x^5 -18*x^4 + 97*x^3 -73*x^2 -568*x + 664)*(x^4 -20*x^3 + 129*x^2 -243*x -160);
410
T[217,29]=(x^3 + 15*x^2 + 54*x + 37)*(x^3 -9*x^2 + 27)*(x^5 + x^4 -88*x^3 -177*x^2 + 1484*x + 2732)*(x^4 + 7*x^3 -24*x^2 -187*x -110);
411
T[217,31]=(x + 1)^7*(x -1)^8;
412
T[217,37]=(x^3 -21*x + 17)*(x^3 -6*x^2 + 3*x + 19)*(x^5 + 12*x^4 -43*x^3 -529*x^2 + 1184*x + 1996)*(x^4 -179*x^2 -9*x + 7058);
413
T[217,41]=(x^3 -15*x^2 + 48*x -17)*(x^3 + 21*x^2 + 126*x + 159)*(x^4 -5*x^3 -60*x^2 + 263*x -254)*(x^5 + 21*x^4 + 88*x^3 -497*x^2 -2620*x + 1484);
414
T[217,43]=(x^3 + 3*x^2 -36*x -57)*(x^3 + 3*x^2 -60*x -71)*(x^5 -5*x^4 -106*x^3 + 249*x^2 + 2280*x -2888)*(x^4 + 15*x^3 + 78*x^2 + 163*x + 116);
415
T[217,47]=(x^3 + 9*x^2 -57*x -89)*(x^3 + 21*x^2 + 135*x + 267)*(x^4 -19*x^3 + 111*x^2 -213*x + 32)*(x^5 -39*x^4 + 519*x^3 -2281*x^2 -3632*x + 35104);
416
T[217,53]=(x^3 -9*x^2 + 81)*(x^3 + 9*x^2 + 6*x -73)*(x^5 -19*x^4 -46*x^3 + 1825*x^2 -1044*x -25708)*(x^4 -3*x^3 -166*x^2 -81*x + 2390);
417
T[217,59]=(x^3 + 3*x^2 -108*x -543)*(x^3 + 3*x^2 -198*x -327)*(x^5 -x^4 -100*x^3 + 469*x^2 -216*x -1072)*(x^4 -5*x^3 -138*x^2 + 981*x -556);
418
T[217,61]=(x^3 -3*x^2 -18*x + 3)*(x^3 + 3*x^2 -60*x -71)*(x^5 + x^4 -140*x^3 -67*x^2 + 3844*x + 8588)*(x^4 + 5*x^3 -108*x^2 + 187*x + 22);
419
T[217,67]=(x^3 -6*x^2 + 3*x + 19)*(x^3 + 18*x^2 + 51*x -233)*(x^5 + 2*x^4 -97*x^3 + 87*x^2 + 2328*x -6064)*(x^4 + 14*x^3 -137*x^2 -2761*x -10076);
420
T[217,71]=(x^3 + 21*x^2 + 144*x + 321)*(x^3 + 9*x^2 -84*x -739)*(x^5 -23*x^4 + 24*x^3 + 2041*x^2 -7632*x -12608)*(x^4 + 5*x^3 -92*x^2 -307*x + 1720);
421
T[217,73]=(x^3 + 9*x^2 -84*x + 127)*(x^3 + 3*x^2 -6*x + 1)*(x^5 + 5*x^4 -150*x^3 -1179*x^2 -2412*x -788)*(x^4 + 9*x^3 -74*x^2 -845*x -1766);
422
T[217,79]=(x^3 + 12*x^2 + 12*x -152)*(x^3 -12*x^2 + 36*x -8)*(x^5 -12*x^4 -140*x^3 + 1096*x^2 + 1632*x -9664)*(x^4 + 4*x^3 -92*x^2 -648*x -1088);
423
T[217,83]=(x^3 -3*x^2 -180*x + 901)*(x^3 + 3*x^2 -198*x + 807)*(x^4 -25*x^3 + 116*x^2 + 961*x -5732)*(x^5 -11*x^4 -138*x^3 + 1039*x^2 + 200*x -304);
424
T[217,89]=(x^3 -21*x^2 -90*x + 2703)*(x^3 + 3*x^2 -54*x -219)*(x^5 + 13*x^4 -104*x^3 -2031*x^2 -9140*x -13028)*(x^4 -21*x^3 + 90*x^2 -61*x -118);
425
T[217,97]=(x^3 + 21*x^2 + 138*x + 289)*(x^3 -9*x^2 -246*x + 2413)*(x^4 + 15*x^3 + 16*x^2 -451*x -1298)*(x^5 + 7*x^4 -54*x^3 -407*x^2 -652*x -76);
426
427
T[218,2]=(x + 1)^5*(x -1)^5;
428
T[218,3]=(x + 2)*(x^2 + 4*x + 2)*(x^2 -3*x + 1)*(x^3 -3*x^2 -3*x + 8)*(x^2 + 2*x -2);
429
T[218,5]=(x + 3)*(x^2 -2*x -4)*(x^2 -2*x -1)*(x^3 + 3*x^2 -6*x -12)*(x^2 -3);
430
T[218,7]=(x + 4)*(x^2 + 4*x + 2)*(x^2 -6*x + 6)*(x + 2)^2*(x -2)^3;
431
T[218,11]=(x -3)*(x^2 + 2*x -7)*(x^2 + 6*x + 4)*(x^3 -3*x^2 -6*x + 12)*(x -1)^2;
432
T[218,13]=(x + 4)*(x^2 + 8*x + 8)*(x^2 -3*x -9)*(x^3 -9*x^2 + 15*x + 16)*(x^2 -4*x -8);
433
T[218,17]=(x + 6)*(x^2 + 4*x + 2)*(x^2 + 4*x -16)*(x^2 -2*x -2)*(x )^3;
434
T[218,19]=(x -5)*(x^2 + 10*x + 17)*(x^2 + 2*x -11)*(x^3 -3*x^2 -36*x + 112)*(x )^2;
435
T[218,23]=(x -3)*(x^2 -3*x -9)*(x^2 + 2*x -49)*(x^3 -54*x -81)*(x^2 + 8*x + 13);
436
T[218,29]=(x + 3)*(x^2 -6*x -9)*(x^2 -10*x + 20)*(x^3 + 3*x^2 -6*x -12)*(x^2 + 16*x + 61);
437
T[218,31]=(x + 4)*(x^2 + 4*x -14)*(x^2 + 6*x -36)*(x^3 -48*x -56)*(x^2 -6*x -18);
438
T[218,37]=(x + 4)*(x^2 -x -1)*(x^2 -2*x -26)*(x^2 + 4*x -14)*(x^3 + 3*x^2 -51*x -134);
439
T[218,41]=(x^2 -4*x -76)*(x^2 -6*x + 6)*(x^2 -8*x -34)*(x )*(x + 6)^3;
440
T[218,43]=(x + 10)*(x^2 + 4*x -14)*(x^2 -3*x -9)*(x^3 -3*x^2 -9*x + 4)*(x^2 + 10*x + 22);
441
T[218,47]=(x + 3)*(x^2 + 9*x + 9)*(x^2 -6*x + 7)*(x^3 + 6*x^2 -42*x -249)*(x^2 -27);
442
T[218,53]=(x -12)*(x^2 -3*x -29)*(x^2 -8*x + 8)*(x^3 + 3*x^2 -105*x -516)*(x^2 + 4*x -8);
443
T[218,59]=(x -12)*(x^2 -80)*(x^2 + 4*x -68)*(x^3 -12*x^2 -96*x + 768)*(x + 6)^2;
444
T[218,61]=(x + 7)*(x^2 -4*x + 1)*(x^2 -14*x + 4)*(x^3 + 3*x^2 -78*x + 28)*(x^2 -2*x -17);
445
T[218,67]=(x + 4)*(x^2 -16*x + 44)*(x^2 -4*x -4)*(x^3 -156*x + 592)*(x^2 + 4*x -188);
446
T[218,71]=(x + 12)*(x^2 -6*x -66)*(x^2 + 16*x + 44)*(x^2 -4*x + 2)*(x + 6)^3;
447
T[218,73]=(x + 1)*(x^2 -3*x -9)*(x^2 + 26*x + 161)*(x^3 -6*x^2 -96*x + 19)*(x^2 -10*x -83);
448
T[218,79]=(x + 16)*(x^2 -4*x -124)*(x^2 -5*x -55)*(x^3 -15*x^2 + 21*x + 64)*(x^2 -8*x + 4);
449
T[218,83]=(x -6)*(x^2 + 27*x + 171)*(x^2 -4*x -68)*(x^3 -15*x^2 + 21*x + 294)*(x^2 -16*x + 52);
450
T[218,89]=(x + 3)*(x^2 -5*x -145)*(x^2 -10*x -83)*(x^3 -6*x^2 -60*x + 249)*(x -7)^2;
451
T[218,97]=(x + 19)*(x^2 -31*x + 239)*(x^2 -18*x + 9)*(x^2 -22*x + 109)*(x^3 -138*x + 529);
452
453
T[219,2]=(x + 2)*(x -1)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x^6 + x^5 -9*x^4 -5*x^3 + 20*x^2 + 4*x -4)*(x );
454
T[219,3]=(x + 1)^6*(x -1)^7;
455
T[219,5]=(x + 1)*(x + 4)*(x + 3)*(x^4 -9*x^3 + 25*x^2 -21*x + 2)*(x^6 -5*x^5 -7*x^4 + 49*x^3 + 20*x^2 -128*x -64);
456
T[219,7]=(x + 4)*(x^4 + 4*x^3 -8*x^2 -12*x + 16)*(x^6 -8*x^5 + 4*x^4 + 92*x^3 -216*x^2 + 160*x -32)*(x -2)^2;
457
T[219,11]=(x^4 -2*x^3 -20*x^2 + 52*x -32)*(x^6 + 2*x^5 -40*x^4 -20*x^3 + 336*x^2 -240*x + 32)*(x )*(x + 4)^2;
458
T[219,13]=(x + 4)*(x^4 -6*x^3 -4*x^2 + 12*x + 8)*(x^6 -4*x^5 -28*x^4 + 108*x^3 + 88*x^2 -240*x + 32)*(x + 2)^2;
459
T[219,17]=(x -3)*(x + 3)*(x^4 -9*x^3 -5*x^2 + 141*x -22)*(x^6 + 3*x^5 -29*x^4 -149*x^3 -200*x^2 -16*x + 64)*(x );
460
T[219,19]=(x + 4)*(x^4 -x^3 -57*x^2 + 145*x -92)*(x^6 -5*x^5 -13*x^4 + 57*x^3 + 52*x^2 -144*x -64)*(x + 1)^2;
461
T[219,23]=(x -6)*(x^4 -4*x^3 -36*x^2 + 156*x -64)*(x^6 + 6*x^5 -36*x^4 -140*x^3 + 448*x^2 + 704*x -1792)*(x )^2;
462
T[219,29]=(x -8)*(x + 10)*(x + 6)*(x^4 -10*x^3 + 20*x^2 + 52*x -136)*(x^6 + 4*x^5 -60*x^4 -132*x^3 + 960*x^2 + 192*x -256);
463
T[219,31]=(x -6)*(x + 6)*(x + 10)*(x^4 + 10*x^3 -4*x^2 -40*x + 32)*(x^6 -4*x^5 -136*x^4 + 344*x^3 + 6208*x^2 -7392*x -94912);
464
T[219,37]=(x -1)*(x + 2)*(x + 7)*(x^4 + 11*x^3 -47*x^2 -735*x -1682)*(x^6 -13*x^5 + 13*x^4 + 281*x^3 -330*x^2 -1652*x + 664);
465
T[219,41]=(x + 10)*(x -2)*(x^4 -4*x^3 -76*x^2 + 196*x + 664)*(x^6 + 6*x^5 -172*x^4 -596*x^3 + 6904*x^2 + 1392*x -11104)*(x );
466
T[219,43]=(x -6)*(x + 6)*(x -2)*(x^4 + 10*x^3 -52*x^2 -376*x + 1408)*(x^6 + 12*x^5 -160*x^4 -2072*x^3 + 3808*x^2 + 80160*x + 156608);
467
T[219,47]=(x -7)*(x + 8)*(x + 3)*(x^4 -7*x^3 -25*x^2 + 145*x + 44)*(x^6 + 19*x^5 -15*x^4 -1735*x^3 -4068*x^2 + 31308*x + 34648);
468
T[219,53]=(x -9)*(x + 12)*(x -3)*(x^4 -11*x^3 -45*x^2 + 371*x -374)*(x^6 + 5*x^5 -109*x^4 -19*x^3 + 3004*x^2 -8672*x + 6464);
469
T[219,59]=(x + 9)*(x -4)*(x -1)*(x^4 -11*x^3 -23*x^2 + 239*x + 272)*(x^6 + 3*x^5 -113*x^4 -445*x^3 + 2664*x^2 + 13652*x + 10744);
470
T[219,61]=(x + 1)*(x + 5)*(x + 14)*(x^4 -23*x^3 + 121*x^2 + 443*x -3574)*(x^6 -11*x^5 -219*x^4 + 2371*x^3 + 4318*x^2 -62108*x + 42296);
471
T[219,67]=(x -8)*(x^4 + 23*x^3 + 175*x^2 + 509*x + 484)*(x^6 -5*x^5 -125*x^4 + 521*x^3 + 2832*x^2 -6320*x -22208)*(x + 13)^2;
472
T[219,71]=(x -12)*(x + 8)*(x -10)*(x^4 -22*x^3 -28*x^2 + 2380*x -6304)*(x^6 + 8*x^5 -172*x^4 -1380*x^3 + 7168*x^2 + 54592*x -25856);
473
T[219,73]=(x -1)^5*(x + 1)^8;
474
T[219,79]=(x -8)*(x -11)*(x + 1)*(x^4 + 3*x^3 -89*x^2 -447*x -472)*(x^6 -5*x^5 -181*x^4 + 333*x^3 + 8368*x^2 + 17088*x + 3584);
475
T[219,83]=(x -15)*(x + 11)*(x -16)*(x^4 -13*x^3 -29*x^2 + 467*x -872)*(x^6 + 5*x^5 -239*x^4 -1809*x^3 + 6076*x^2 + 77428*x + 159464);
476
T[219,89]=(x + 18)*(x + 2)*(x + 14)*(x^4 -8*x^3 -176*x^2 + 720*x + 8656)*(x^6 -20*x^5 + 28*x^4 + 1072*x^3 -1136*x^2 -20096*x -29248);
477
T[219,97]=(x -5)*(x + 11)*(x + 2)*(x^4 -5*x^3 -159*x^2 + 1073*x -638)*(x^6 -13*x^5 -67*x^4 + 573*x^3 + 2926*x^2 + 3420*x + 248);
478
479
T[220,2]=(x )^2;
480
T[220,3]=(x + 2)*(x -2);
481
T[220,5]=(x -1)^2;
482
T[220,7]=(x + 4)*(x );
483
T[220,11]=(x + 1)*(x -1);
484
T[220,13]=(x + 4)*(x );
485
T[220,17]=(x + 4)*(x );
486
T[220,19]=(x + 4)^2;
487
T[220,23]=(x + 6)*(x -6);
488
T[220,29]=(x -2)*(x + 6);
489
T[220,31]=(x -8)*(x );
490
T[220,37]=(x + 6)*(x -2);
491
T[220,41]=(x + 10)*(x -6);
492
T[220,43]=(x -8)*(x -4);
493
T[220,47]=(x -10)*(x -6);
494
T[220,53]=(x + 6)*(x -2);
495
T[220,59]=(x + 4)*(x + 12);
496
T[220,61]=(x + 14)*(x -2);
497
T[220,67]=(x -2)*(x + 10);
498
T[220,71]=(x + 12)*(x -4);
499
T[220,73]=(x + 16)*(x + 4);
500
T[220,79]=(x -8)*(x + 8);
501
T[220,83]=(x -12)*(x );
502
T[220,89]=(x -6)^2;
503
T[220,97]=(x -14)*(x -6);
504
505
T[221,2]=(x -1)*(x + 1)*(x^2 -5)*(x^2 + x -1)*(x^3 -4*x + 1)*(x^6 -x^5 -9*x^4 + 6*x^3 + 19*x^2 -5*x -3)*(x^2 + x -5);
506
T[221,3]=(x -2)*(x^2 -2*x -4)*(x^2 + 3*x + 1)*(x^3 + 3*x^2 -x -4)*(x^6 -x^5 -11*x^4 + 12*x^3 + 28*x^2 -36*x + 4)*(x^2 -x -5)*(x );
507
T[221,5]=(x -4)*(x -2)*(x^2 -5)*(x^2 + 2*x -4)*(x^3 + 2*x^2 -5*x -2)*(x^6 + 2*x^5 -15*x^4 -16*x^3 + 60*x^2 -16*x -12)*(x + 1)^2;
508
T[221,7]=(x + 2)*(x^2 + x -1)*(x^3 + 9*x^2 + 23*x + 16)*(x^6 -7*x^5 -7*x^4 + 112*x^3 -56*x^2 -400*x + 208)*(x^2 + 5*x + 1)*(x -2)^3;
509
T[221,11]=(x + 6)*(x -6)*(x^2 -3*x -3)*(x^3 + 7*x^2 + 11*x + 4)*(x^6 + x^5 -19*x^4 -8*x^3 + 88*x^2 + 16*x -48)*(x^2 + 3*x -9)*(x -2)^2;
510
T[221,13]=(x + 1)^8*(x -1)^9;
511
T[221,17]=(x + 1)^8*(x -1)^9;
512
T[221,19]=(x -4)*(x -8)*(x^2 + 7*x + 1)*(x^2 -4*x -16)*(x^3 + 17*x^2 + 91*x + 148)*(x^6 -23*x^5 + 167*x^4 -176*x^3 -2712*x^2 + 9968*x -8528)*(x^2 -5*x + 1);
513
T[221,23]=(x -6)*(x -4)*(x^2 + 6*x + 4)*(x^2 -6*x + 4)*(x^3 -2*x^2 -76*x + 256)*(x^6 + 10*x^5 -44*x^4 -624*x^3 -1148*x^2 + 2104*x + 4944)*(x^2 -6*x -12);
514
T[221,29]=(x^2 + 8*x + 11)*(x^3 -4*x^2 -7*x + 26)*(x^6 + 4*x^5 -25*x^4 -80*x^3 + 168*x^2 + 320*x + 48)*(x -9)^2*(x + 6)^4;
515
T[221,31]=(x^2 -20)*(x^3 + 6*x^2 -31*x -184)*(x^6 -16*x^5 + 27*x^4 + 528*x^3 -1352*x^2 -4864*x + 6704)*(x^2 -8*x -5)*(x + 7)^2*(x + 2)^2;
516
T[221,37]=(x + 8)*(x -2)*(x^2 -10*x + 20)*(x^2 -10*x + 5)*(x^3 + 4*x^2 -115*x -566)*(x^6 -4*x^5 -49*x^4 + 168*x^3 + 204*x^2 -72*x -52)*(x^2 + 8*x -5);
517
T[221,41]=(x + 6)*(x^2 -4*x -16)*(x^2 -10*x + 20)*(x^3 -2*x^2 -48*x + 128)*(x^6 + 4*x^5 -72*x^4 -152*x^3 + 1076*x^2 -976*x -192)*(x )^3;
518
T[221,43]=(x -4)*(x^2 + 12*x + 16)*(x^3 -6*x^2 -31*x -28)*(x^6 -10*x^5 -63*x^4 + 664*x^3 + 416*x^2 -10624*x + 14912)*(x )*(x + 11)^2*(x -9)^2;
519
T[221,47]=(x + 4)*(x^2 -2*x -4)*(x^2 + 4*x -16)*(x^3 + 2*x^2 -76*x -256)*(x^6 + 6*x^5 -164*x^4 -464*x^3 + 5936*x^2 -12064*x + 5952)*(x^2 + 2*x -20)*(x );
520
T[221,53]=(x -14)*(x + 6)*(x^2 -20)*(x^2 + 3*x + 1)*(x^3 -11*x^2 -45*x + 338)*(x^6 + 27*x^5 + 181*x^4 -360*x^3 -3680*x^2 + 9152*x -5184)*(x^2 + 11*x + 25);
521
T[221,59]=(x -4)*(x^2 + 4*x -16)*(x^2 + 8*x + 11)*(x^3 -6*x^2 -99*x -108)*(x^6 -10*x^5 -171*x^4 + 1784*x^3 + 3512*x^2 -36224*x -56688)*(x^2 -8*x -5)*(x );
522
T[221,61]=(x + 10)*(x -2)*(x^2 -3*x -9)*(x^2 -8*x -4)*(x^2 -19*x + 85)*(x^6 -11*x^5 -177*x^4 + 1160*x^3 + 10632*x^2 -2032*x -4112)*(x^3 + 15*x^2 + 71*x + 106);
523
T[221,67]=(x + 8)*(x^2 -80)*(x^2 + 2*x -124)*(x^3 + 18*x^2 + 92*x + 112)*(x^6 -18*x^5 -4*x^4 + 1280*x^3 -3136*x^2 -17536*x + 38144)*(x^2 + 18*x + 60)*(x );
524
T[221,71]=(x + 10)*(x^2 -16*x + 44)*(x^2 -4*x -76)*(x^3 + 20*x^2 + 84*x -128)*(x^6 -300*x^4 -1024*x^3 + 22000*x^2 + 156160*x + 268992)*(x -2)^3;
525
T[221,73]=(x -10)*(x^2 + 10*x -55)*(x^2 + 14*x + 4)*(x^3 -4*x^2 -119*x + 478)*(x^6 -12*x^5 -177*x^4 + 1592*x^3 + 7676*x^2 -7096*x -18068)*(x^2 -8*x -5)*(x );
526
T[221,79]=(x -14)*(x^2 -14*x + 44)*(x^2 + 2*x -19)*(x^3 + 24*x^2 + 131*x + 56)*(x^6 + 6*x^5 -131*x^4 -828*x^3 -884*x^2 + 2024*x + 3188)*(x^2 + 8*x -5)*(x );
527
T[221,83]=(x -12)*(x + 4)*(x^2 + 8*x + 11)*(x^2 -8*x -64)*(x^3 -22*x^2 + 149*x -292)*(x^6 -26*x^5 -171*x^4 + 7552*x^3 -15488*x^2 -298304*x -510528)*(x^2 -21);
528
T[221,89]=(x + 18)*(x^2 + 9*x -111)*(x^3 + 17*x^2 + 69*x + 82)*(x^6 -21*x^5 -17*x^4 + 2256*x^3 -7688*x^2 -20656*x + 55152)*(x^2 -15*x + 45)*(x + 2)^3;
529
T[221,97]=(x + 4)*(x -2)*(x^2 + 18*x + 76)*(x^2 -7*x -89)*(x^3 -x^2 -175*x -502)*(x^6 -3*x^5 -211*x^4 + 504*x^3 + 8788*x^2 -7108*x -40988)*(x^2 -7*x -119);
530
531
T[222,2]=(x -1)^2*(x + 1)^3;
532
T[222,3]=(x -1)^2*(x + 1)^3;
533
T[222,5]=(x -2)*(x -4)*(x + 4)*(x )^2;
534
T[222,7]=(x )*(x + 1)^2*(x -3)^2;
535
T[222,11]=(x + 4)*(x -1)*(x + 1)*(x -5)*(x -3);
536
T[222,13]=(x + 1)*(x -6)*(x + 3)*(x -3)*(x -1);
537
T[222,17]=(x -6)*(x -3)^2*(x + 3)^2;
538
T[222,19]=(x -8)*(x -3)*(x + 5)*(x + 7)^2;
539
T[222,23]=(x -5)*(x -3)*(x + 1)*(x -9)*(x );
540
T[222,29]=(x + 6)*(x + 4)*(x -4)*(x )^2;
541
T[222,31]=(x + 2)*(x + 10)*(x -4)*(x + 6)*(x -2);
542
T[222,37]=(x + 1)^2*(x -1)^3;
543
T[222,41]=(x + 10)*(x -6)*(x + 6)^3;
544
T[222,43]=(x + 8)*(x -12)*(x + 4)*(x -4)^2;
545
T[222,47]=(x + 6)*(x -2)*(x + 10)*(x -6)*(x -8);
546
T[222,53]=(x -9)*(x -6)*(x + 1)*(x -3)*(x + 11);
547
T[222,59]=(x + 12)*(x + 4)^2*(x )^2;
548
T[222,61]=(x -2)*(x + 10)*(x -10)*(x + 2)^2;
549
T[222,67]=(x -6)*(x + 12)*(x -14)*(x -2)^2;
550
T[222,71]=(x + 12)*(x -12)*(x )^3;
551
T[222,73]=(x -5)*(x -10)*(x -13)*(x + 3)*(x + 11);
552
T[222,79]=(x + 10)*(x -2)*(x + 12)*(x + 6)*(x -14);
553
T[222,83]=(x -3)*(x -9)*(x -5)*(x + 4)*(x + 9);
554
T[222,89]=(x + 10)*(x -11)^2*(x + 3)^2;
555
T[222,97]=(x + 10)*(x -2)*(x + 6)*(x -10)*(x -6);
556
557
T[224,2]=(x )^6;
558
T[224,3]=(x -2)*(x + 2)*(x^2 + 2*x -4)*(x^2 -2*x -4);
559
T[224,5]=(x^2 -2*x -4)^2*(x )^2;
560
T[224,7]=(x + 1)^3*(x -1)^3;
561
T[224,11]=(x -4)*(x + 4)*(x^2 + 4*x -16)*(x^2 -4*x -16);
562
T[224,13]=(x + 4)^2*(x^2 -6*x + 4)^2;
563
T[224,17]=(x + 2)^2*(x^2 -20)^2;
564
T[224,19]=(x -6)*(x + 6)*(x^2 + 2*x -4)*(x^2 -2*x -4);
565
T[224,23]=(x + 8)*(x -8)*(x -4)^2*(x + 4)^2;
566
T[224,29]=(x -2)^2*(x^2 -20)^2;
567
T[224,31]=(x -4)*(x + 4)*(x^2 -4*x -16)*(x^2 + 4*x -16);
568
T[224,37]=(x -10)^2*(x^2 -20)^2;
569
T[224,41]=(x + 10)^2*(x^2 + 8*x -4)^2;
570
T[224,43]=(x + 4)*(x -4)*(x^2 -4*x -16)*(x^2 + 4*x -16);
571
T[224,47]=(x + 4)*(x -4)*(x^2 + 12*x + 16)*(x^2 -12*x + 16);
572
T[224,53]=(x + 2)^2*(x + 10)^4;
573
T[224,59]=(x + 10)*(x -10)*(x^2 + 14*x + 44)*(x^2 -14*x + 44);
574
T[224,61]=(x + 8)^2*(x^2 -18*x + 76)^2;
575
T[224,67]=(x + 8)*(x -8)*(x + 4)^2*(x -4)^2;
576
T[224,71]=(x^2 -8*x -64)*(x^2 + 8*x -64)*(x )^2;
577
T[224,73]=(x + 6)^2*(x^2 -12*x -44)^2;
578
T[224,79]=(x -16)*(x + 16)*(x^2 -8*x -64)*(x^2 + 8*x -64);
579
T[224,83]=(x -2)*(x + 2)*(x^2 -14*x + 44)*(x^2 + 14*x + 44);
580
T[224,89]=(x -18)^2*(x + 6)^4;
581
T[224,97]=(x + 2)^2*(x^2 -16*x + 44)^2;
582
583
T[225,2]=(x + 1)*(x -2)*(x + 2)*(x^2 -5)*(x )^2;
584
T[225,3]=(x )^7;
585
T[225,5]=(x )^7;
586
T[225,7]=(x -5)*(x + 5)*(x + 3)*(x -3)*(x )^3;
587
T[225,11]=(x -4)*(x + 2)^2*(x )^4;
588
T[225,13]=(x + 1)*(x -5)*(x -2)*(x + 5)*(x -1)*(x )^2;
589
T[225,17]=(x + 2)*(x^2 -20)*(x -2)^2*(x )^2;
590
T[225,19]=(x + 5)^2*(x + 1)^2*(x -4)^3;
591
T[225,23]=(x -6)*(x + 6)*(x^2 -80)*(x )^3;
592
T[225,29]=(x -2)*(x + 10)^2*(x )^4;
593
T[225,31]=(x )*(x + 7)^2*(x -8)^2*(x + 3)^2;
594
T[225,37]=(x -2)*(x + 10)*(x + 2)*(x -10)^2*(x )^2;
595
T[225,41]=(x + 10)*(x -8)^2*(x )^4;
596
T[225,43]=(x + 1)*(x + 5)*(x -1)*(x -5)*(x + 4)*(x )^2;
597
T[225,47]=(x + 2)*(x -8)*(x -2)*(x^2 -80)*(x )^2;
598
T[225,53]=(x -4)*(x + 4)*(x + 10)*(x^2 -20)*(x )^2;
599
T[225,59]=(x -4)*(x -10)^2*(x )^4;
600
T[225,61]=(x + 2)*(x -7)^2*(x -2)^2*(x + 13)^2;
601
T[225,67]=(x + 3)*(x -3)*(x -5)*(x + 12)*(x + 5)*(x )^2;
602
T[225,71]=(x -8)^3*(x )^4;
603
T[225,73]=(x -14)*(x + 14)*(x -10)*(x + 10)^2*(x )^2;
604
T[225,79]=(x -16)^2*(x + 4)^2*(x )^3;
605
T[225,83]=(x -12)*(x + 6)*(x -6)*(x^2 -320)*(x )^2;
606
T[225,89]=(x -6)*(x )^6;
607
T[225,97]=(x + 2)*(x -5)*(x + 5)*(x + 17)*(x -17)*(x )^2;
608
609
T[226,2]=(x + 1)^4*(x -1)^5;
610
T[226,3]=(x + 2)*(x^2 -2*x -2)*(x^4 -2*x^3 -6*x^2 + 12*x -4)*(x^2 -2);
611
T[226,5]=(x + 4)*(x^2 + 4*x + 2)*(x^4 -4*x^3 -4*x^2 + 16*x -4)*(x -2)^2;
612
T[226,7]=(x^2 + 4*x -4)*(x^2 + 2*x -4)^2*(x )^3;
613
T[226,11]=(x^2 -4*x -8)*(x^4 -20*x^2 + 80)*(x + 4)^3;
614
T[226,13]=(x + 2)*(x^2 + 4*x -8)*(x^4 -4*x^3 -24*x^2 + 96*x -64)*(x -2)^2;
615
T[226,17]=(x^2 + 4*x -4)*(x^2 -20)^2*(x + 2)^3;
616
T[226,19]=(x + 2)*(x^2 -2*x -26)*(x^4 + 6*x^3 -14*x^2 -84*x -4)*(x^2 -50);
617
T[226,23]=(x -4)*(x^2 -14*x + 46)*(x^4 + 6*x^3 -54*x^2 -324*x -324)*(x^2 -32);
618
T[226,29]=(x + 4)*(x^2 + 4*x -46)*(x^4 -20*x^2 -40*x -20)*(x -2)^2;
619
T[226,31]=(x -8)*(x^2 -4*x -8)*(x^4 -60*x^2 -80*x + 80)*(x^2 + 12*x + 28);
620
T[226,37]=(x + 8)*(x^2 + 4*x -44)*(x^4 + 8*x^3 -36*x^2 -8*x + 76)*(x^2 -12*x + 18);
621
T[226,41]=(x + 6)*(x^2 -12*x + 24)*(x^4 -8*x^3 -76*x^2 + 368*x -304)*(x + 2)^2;
622
T[226,43]=(x -6)*(x^2 + 18*x + 78)*(x^4 + 6*x^3 -54*x^2 -44*x -4)*(x^2 -2);
623
T[226,47]=(x + 12)*(x^2 + 6*x -66)*(x^4 + 6*x^3 -14*x^2 -84*x -4)*(x )^2;
624
T[226,53]=(x -10)*(x^2 -4*x -4)*(x^4 -4