Sharedwww / tables / charpoly_s2_t2t3t5_1-500.gpOpen in CoCalc
Author: William A. Stein
1\\ charpoly_s2.gp
2\\ This is a table of characteristic polynomials of the
3\\ Hecke operators T_p acting on the space S_2(Gamma_0(N))
4\\ of weight 2 cusp forms for Gamma_0(N).
5\\ William Stein ([email protected]), September, 1998.
6
7{
8T=matrix(500,5,m,n,0);
9T[11,2]=x + 2;
10T[11,3]=x + 1;
11T[11,5]=x -1;
12
13T[14,2]=x + 1;
14T[14,3]=x + 2;
15T[14,5]=x ;
16
17T[15,2]=x + 1;
18T[15,3]=x + 1;
19T[15,5]=x -1;
20
21T[17,2]=x + 1;
22T[17,3]=x ;
23T[17,5]=x + 2;
24
25T[19,2]=x ;
26T[19,3]=x + 2;
27T[19,5]=x -3;
28
29T[20,2]=x ;
30T[20,3]=x + 2;
31T[20,5]=x + 1;
32
33T[21,2]=x + 1;
34T[21,3]=x -1;
35T[21,5]=x + 2;
36
37T[22,2]=x^2 + 2*x + 2;
38T[22,3]=(x + 1)^2;
39T[22,5]=(x -1)^2;
40
41T[23,2]=x^2 + x -1;
42T[23,3]=x^2 -5;
43T[23,5]=x^2 + 2*x -4;
44
45T[24,2]=x ;
46T[24,3]=x + 1;
47T[24,5]=x + 2;
48
49T[26,2]=(x -1)*(x + 1);
50T[26,3]=(x -1)*(x + 3);
51T[26,5]=(x + 3)*(x + 1);
52
53T[27,2]=x ;
54T[27,3]=x ;
55T[27,5]=x ;
56
57T[28,2]=(x + 1)*(x );
58T[28,3]=(x + 2)^2;
59T[28,5]=(x )^2;
60
61T[29,2]=x^2 + 2*x -1;
62T[29,3]=x^2 -2*x -1;
63T[29,5]=(x + 1)^2;
64
65T[30,2]=(x + 1)*(x^2 + x + 2);
66T[30,3]=(x -1)*(x + 1)^2;
67T[30,5]=(x + 1)*(x -1)^2;
68
69T[31,2]=x^2 -x -1;
70T[31,3]=x^2 + 2*x -4;
71T[31,5]=(x -1)^2;
72
73T[32,2]=x ;
74T[32,3]=x ;
75T[32,5]=x + 2;
76
77T[33,2]=(x -1)*(x + 2)^2;
78T[33,3]=(x + 1)*(x^2 + x + 3);
79T[33,5]=(x + 2)*(x -1)^2;
80
81T[34,2]=(x -1)*(x^2 + x + 2);
82T[34,3]=(x + 2)*(x )^2;
83T[34,5]=(x )*(x + 2)^2;
84
85T[35,2]=(x^2 + x -4)*(x );
86T[35,3]=(x -1)*(x^2 + x -4);
87T[35,5]=(x + 1)*(x -1)^2;
88
89T[36,2]=x ;
90T[36,3]=x ;
91T[36,5]=x ;
92
93T[37,2]=(x + 2)*(x );
94T[37,3]=(x + 3)*(x -1);
95T[37,5]=(x + 2)*(x );
96
97T[38,2]=(x -1)*(x + 1)*(x^2 + 2);
98T[38,3]=(x -1)*(x + 1)*(x + 2)^2;
99T[38,5]=(x + 4)*(x )*(x -3)^2;
100
101T[39,2]=(x -1)*(x^2 + 2*x -1);
102T[39,3]=(x + 1)*(x -1)^2;
103T[39,5]=(x -2)*(x^2 -8);
104
105T[40,2]=(x )^3;
106T[40,3]=(x )*(x + 2)^2;
107T[40,5]=(x -1)*(x + 1)^2;
108
109T[41,2]=x^3 + x^2 -5*x -1;
110T[41,3]=x^3 -4*x + 2;
111T[41,5]=x^3 + 2*x^2 -4*x -4;
112
113T[42,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2;
114T[42,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
115T[42,5]=(x )^2*(x + 2)^3;
116
117T[43,2]=(x + 2)*(x^2 -2);
118T[43,3]=(x + 2)*(x^2 -2);
119T[43,5]=(x + 4)*(x^2 -4*x + 2);
120
121T[44,2]=(x^2 + 2*x + 2)*(x )^2;
122T[44,3]=(x -1)*(x + 1)^3;
123T[44,5]=(x + 3)*(x -1)^3;
124
125T[45,2]=(x -1)*(x + 1)^2;
126T[45,3]=(x + 1)*(x )^2;
127T[45,5]=(x + 1)*(x -1)^2;
128
129T[46,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4);
130T[46,3]=(x )*(x^2 -5)^2;
131T[46,5]=(x -4)*(x^2 + 2*x -4)^2;
132
133T[47,2]=x^4 -x^3 -5*x^2 + 5*x -1;
134T[47,3]=x^4 -7*x^2 + 4*x + 1;
135T[47,5]=x^4 + 2*x^3 -16*x^2 -16*x + 48;
136
137T[48,2]=(x )^3;
138T[48,3]=(x -1)*(x + 1)^2;
139T[48,5]=(x + 2)^3;
140
141T[49,2]=x -1;
142T[49,3]=x ;
143T[49,5]=x ;
144
145T[50,2]=(x + 1)*(x -1);
146T[50,3]=(x -1)*(x + 1);
147T[50,5]=(x )^2;
148
149T[51,2]=(x^2 + x -4)*(x )*(x + 1)^2;
150T[51,3]=(x -1)*(x^2 + 3)*(x + 1)^2;
151T[51,5]=(x -3)*(x^2 -3*x -2)*(x + 2)^2;
152
153T[52,2]=(x -1)*(x + 1)*(x )^3;
154T[52,3]=(x )*(x -1)^2*(x + 3)^2;
155T[52,5]=(x -2)*(x + 1)^2*(x + 3)^2;
156
157T[53,2]=(x + 1)*(x^3 + x^2 -3*x -1);
158T[53,3]=(x + 3)*(x^3 -3*x^2 -x + 1);
159T[53,5]=(x^3 + 2*x^2 -4*x -4)*(x );
160
161T[54,2]=(x + 1)*(x -1)*(x^2 + 2);
162T[54,3]=(x )^4;
163T[54,5]=(x + 3)*(x -3)*(x )^2;
164
165T[55,2]=(x -1)*(x^2 -2*x -1)*(x + 2)^2;
166T[55,3]=(x^2 -8)*(x )*(x + 1)^2;
167T[55,5]=(x -1)*(x^2 -x + 5)*(x + 1)^2;
168
169T[56,2]=(x + 1)*(x )^4;
170T[56,3]=(x -2)*(x )*(x + 2)^3;
171T[56,5]=(x -2)*(x + 4)*(x )^3;
172
173T[57,2]=(x -1)*(x + 2)^2*(x )^2;
174T[57,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
175T[57,5]=(x + 3)*(x + 2)*(x -1)*(x -3)^2;
176
177T[58,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4);
178T[58,3]=(x + 3)*(x + 1)*(x^2 -2*x -1)^2;
179T[58,5]=(x + 3)*(x -1)*(x + 1)^4;
180
181T[59,2]=x^5 -9*x^3 + 2*x^2 + 16*x -8;
182T[59,3]=x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1;
183T[59,5]=x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1;
184
185T[60,2]=(x + 1)*(x^2 + x + 2)*(x )^4;
186T[60,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3;
187T[60,5]=(x -1)^3*(x + 1)^4;
188
189T[61,2]=(x + 1)*(x^3 -x^2 -3*x + 1);
190T[61,3]=(x + 2)*(x^3 -2*x^2 -4*x + 4);
191T[61,5]=(x + 3)*(x^3 + x^2 -9*x -13);
192
193T[62,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2;
194T[62,3]=(x^2 -2*x -2)*(x )*(x^2 + 2*x -4)^2;
195T[62,5]=(x + 2)*(x^2 -12)*(x -1)^4;
196
197T[63,2]=(x -1)*(x^2 -3)*(x + 1)^2;
198T[63,3]=(x -1)*(x )^4;
199T[63,5]=(x -2)*(x^2 -12)*(x + 2)^2;
200
201T[64,2]=(x )^3;
202T[64,3]=(x )^3;
203T[64,5]=(x -2)*(x + 2)^2;
204
205T[65,2]=(x + 1)*(x^2 + 2*x -1)*(x^2 -3);
206T[65,3]=(x + 2)*(x^2 -2*x -2)*(x^2 -2);
207T[65,5]=(x -1)^2*(x + 1)^3;
208
209T[66,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2;
210T[66,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3;
211T[66,5]=(x + 4)*(x -2)*(x )*(x + 2)^2*(x -1)^4;
212
213T[67,2]=(x -2)*(x^2 + x -1)*(x^2 + 3*x + 1);
214T[67,3]=(x + 2)*(x^2 -x -1)*(x^2 + 3*x + 1);
215T[67,5]=(x -2)*(x^2 -4*x -1)*(x + 3)^2;
216
217T[68,2]=(x -1)*(x^2 + x + 2)*(x )^4;
218T[68,3]=(x^2 -2*x -2)*(x + 2)^2*(x )^3;
219T[68,5]=(x^2 -12)*(x )^2*(x + 2)^3;
220
221T[69,2]=(x -1)*(x^2 -5)*(x^2 + x -1)^2;
222T[69,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2;
223T[69,5]=(x )*(x^2 + 2*x -4)^3;
224
225T[70,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2;
226T[70,3]=(x )*(x + 2)^2*(x -1)^2*(x^2 + x -4)^2;
227T[70,5]=(x^2 + 5)*(x + 1)^3*(x -1)^4;
228
229T[71,2]=(x^3 + x^2 -4*x -3)*(x^3 -5*x + 3);
230T[71,3]=(x^3 + x^2 -8*x -3)*(x^3 -x^2 -4*x + 3);
231T[71,5]=(x^3 + 3*x^2 -2*x -7)*(x^3 -5*x^2 -2*x + 25);
232
233T[72,2]=(x )^5;
234T[72,3]=(x + 1)*(x )^4;
235T[72,5]=(x -2)*(x + 2)^2*(x )^2;
236
237T[73,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 -x -3);
238T[73,3]=(x^2 + 3*x + 1)*(x^2 -x -3)*(x );
239T[73,5]=(x -2)*(x^2 + 3*x + 1)*(x^2 + x -3);
240
241T[74,2]=(x^2 + 2*x + 2)*(x^2 + 2)*(x -1)^2*(x + 1)^2;
242T[74,3]=(x^2 + x -1)*(x^2 -3*x -1)*(x + 3)^2*(x -1)^2;
243T[74,5]=(x^2 -x -11)*(x^2 + x -3)*(x + 2)^2*(x )^2;
244
245T[75,2]=(x + 2)*(x -1)*(x -2)*(x + 1)^2;
246T[75,3]=(x -1)^2*(x + 1)^3;
247T[75,5]=(x -1)*(x )^4;
248
249T[76,2]=(x + 1)*(x -1)*(x^2 + 2)*(x )^4;
250T[76,3]=(x -2)*(x + 1)^2*(x -1)^2*(x + 2)^3;
251T[76,5]=(x + 1)*(x + 4)^2*(x )^2*(x -3)^3;
252
253T[77,2]=(x -1)*(x^2 -5)*(x + 2)^2*(x )^2;
254T[77,3]=(x -2)*(x -1)*(x + 3)*(x^2 -2*x -4)*(x + 1)^2;
255T[77,5]=(x -3)*(x + 1)*(x -1)^2*(x + 2)^3;
256
257T[78,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3;
258T[78,3]=(x^2 -x + 3)*(x^2 + 3*x + 3)*(x + 1)^3*(x -1)^4;
259T[78,5]=(x + 3)^2*(x + 1)^2*(x^2 -8)^2*(x -2)^3;
260
261T[79,2]=(x + 1)*(x^5 -6*x^3 + 8*x -1);
262T[79,3]=(x + 1)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16);
263T[79,5]=(x + 3)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31);
264
265T[80,2]=(x )^7;
266T[80,3]=(x -2)*(x + 2)^3*(x )^3;
267T[80,5]=(x -1)^3*(x + 1)^4;
268
269T[81,2]=(x^2 -3)*(x )^2;
270T[81,3]=(x )^4;
271T[81,5]=(x^2 -3)*(x )^2;
272
273T[82,2]=(x + 1)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)*(x -1)^2;
274T[82,3]=(x + 2)*(x^2 -2)*(x^3 -4*x + 2)^2;
275T[82,5]=(x + 2)*(x^2 -8)*(x^3 + 2*x^2 -4*x -4)^2;
276
277T[83,2]=(x + 1)*(x^6 -x^5 -9*x^4 + 7*x^3 + 20*x^2 -12*x -8);
278T[83,3]=(x + 1)*(x^6 -x^5 -10*x^4 + 5*x^3 + 30*x^2 -4*x -25);
279T[83,5]=(x + 2)*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160);
280
281T[84,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2*(x )^6;
282T[84,3]=(x^2 + 2*x + 3)^2*(x + 1)^3*(x -1)^4;
283T[84,5]=(x -4)*(x + 2)^5*(x )^5;
284
285T[85,2]=(x -1)*(x^2 -3)*(x^2 + 2*x -1)*(x + 1)^2;
286T[85,3]=(x -2)*(x^2 -2*x -2)*(x^2 + 4*x + 2)*(x )^2;
287T[85,5]=(x^2 + 2*x + 5)*(x -1)^2*(x + 1)^3;
288
289T[86,2]=(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x -1)^2*(x + 1)^2;
290T[86,3]=(x^2 -x -1)*(x^2 + x -5)*(x + 2)^2*(x^2 -2)^2;
291T[86,5]=(x^2 -3*x -3)*(x^2 + 3*x + 1)*(x + 4)^2*(x^2 -4*x + 2)^2;
292
293T[87,2]=(x^2 -x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + 2*x -1)^2;
294T[87,3]=(x^4 -2*x^3 + 5*x^2 -6*x + 9)*(x -1)^2*(x + 1)^3;
295T[87,5]=(x^2 -2*x -4)*(x^3 -16*x + 8)*(x + 1)^4;
296
297T[88,2]=(x^2 + 2*x + 2)*(x )^7;
298T[88,3]=(x + 3)*(x^2 -x -4)*(x -1)^2*(x + 1)^4;
299T[88,5]=(x^2 -3*x -2)*(x + 3)^3*(x -1)^4;
300
301T[89,2]=(x + 1)*(x -1)*(x^5 + x^4 -10*x^3 -10*x^2 + 21*x + 17);
302T[89,3]=(x -2)*(x + 1)*(x^5 + 3*x^4 -4*x^3 -16*x^2 -9*x -1);
303T[89,5]=(x + 2)*(x + 1)*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13);
304
305T[90,2]=(x^2 -x + 2)*(x -1)^2*(x^2 + x + 2)^2*(x + 1)^3;
306T[90,3]=(x -1)*(x + 1)^2*(x )^8;
307T[90,5]=(x + 1)^5*(x -1)^6;
308
309T[91,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x );
310T[91,3]=(x + 2)*(x^2 -2)*(x^3 + 2*x^2 -6*x -8)*(x );
311T[91,5]=(x^2 -6*x + 7)*(x^3 -2*x^2 -3*x + 2)*(x + 3)^2;
312
313T[92,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x )^5;
314T[92,3]=(x + 3)*(x -1)*(x )^2*(x^2 -5)^3;
315T[92,5]=(x + 2)*(x )*(x -4)^2*(x^2 + 2*x -4)^3;
316
317T[93,2]=(x^2 + 3*x + 1)*(x^3 -4*x + 1)*(x^2 -x -1)^2;
318T[93,3]=(x^4 + 2*x^3 + 2*x^2 + 6*x + 9)*(x + 1)^2*(x -1)^3;
319T[93,5]=(x^2 + 4*x -1)*(x^3 + 2*x^2 -5*x -2)*(x -1)^4;
320
321T[94,2]=(x -1)*(x^8 -x^7 + 3*x^6 -x^5 + 3*x^4 -2*x^3 + 12*x^2 -8*x + 16)*(x + 1)^2;
322T[94,3]=(x^2 -8)*(x )*(x^4 -7*x^2 + 4*x + 1)^2;
323T[94,5]=(x^2 -4*x + 2)*(x )*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^2;
324
325T[95,2]=(x^3 -x^2 -3*x + 1)*(x^4 + 2*x^3 -6*x^2 -8*x + 9)*(x )^2;
326T[95,3]=(x^3 -2*x^2 -4*x + 4)*(x^4 -2*x^3 -8*x^2 + 16*x -4)*(x + 2)^2;
327T[95,5]=(x^2 -3*x + 5)*(x -1)^3*(x + 1)^4;
328
329T[96,2]=(x )^9;
330T[96,3]=(x^2 + 3)*(x -1)^3*(x + 1)^4;
331T[96,5]=(x -2)^2*(x + 2)^7;
332
333T[97,2]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -3*x^3 -x^2 + 6*x -1);
334T[97,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -5*x^2 -x + 4);
335T[97,5]=(x^3 + 3*x^2 -4*x + 1)*(x^4 -x^3 -4*x^2 + x + 2);
336
337T[98,2]=(x^2 -x + 2)*(x -1)^2*(x + 1)^3;
338T[98,3]=(x -2)*(x^2 -2)*(x + 2)^2*(x )^2;
339T[98,5]=(x^2 -8)*(x )^5;
340
341T[99,2]=(x -2)*(x + 1)^2*(x + 2)^3*(x -1)^3;
342T[99,3]=(x + 1)*(x^2 + x + 3)*(x )^6;
343T[99,5]=(x -2)*(x + 1)*(x -4)*(x + 4)*(x + 2)^2*(x -1)^3;
344
345T[100,2]=(x + 1)*(x -1)*(x )^5;
346T[100,3]=(x -2)*(x + 1)^2*(x -1)^2*(x + 2)^2;
347T[100,5]=(x + 1)*(x )^6;
348
349T[101,2]=(x^7 -13*x^5 + 2*x^4 + 47*x^3 -16*x^2 -43*x + 14)*(x );
350T[101,3]=(x + 2)*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68);
351T[101,5]=(x + 1)*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67);
352
353T[102,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3;
354T[102,3]=(x^2 + 2*x + 3)*(x^2 + 3)^2*(x -1)^4*(x + 1)^5;
355T[102,5]=(x + 4)*(x -3)^2*(x^2 -3*x -2)^2*(x )^3*(x + 2)^5;
356
357T[103,2]=(x^2 + 3*x + 1)*(x^6 -4*x^5 -x^4 + 17*x^3 -9*x^2 -16*x + 11);
358T[103,3]=(x^6 -13*x^4 + 40*x^2 -8*x -16)*(x + 1)^2;
359T[103,5]=(x^2 + 3*x + 1)*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16);
360
361T[104,2]=(x + 1)*(x -1)*(x )^9;
362T[104,3]=(x^2 -x -4)*(x )^2*(x + 3)^3*(x -1)^4;
363T[104,5]=(x^2 -3*x -2)*(x -2)^2*(x + 3)^3*(x + 1)^4;
364
365T[105,2]=(x -1)*(x^2 -5)*(x^2 + x -4)^2*(x )^2*(x + 1)^4;
366T[105,3]=(x^2 -x + 3)*(x^4 + x^3 + 2*x^2 + 3*x + 9)*(x -1)^3*(x + 1)^4;
367T[105,5]=(x^2 + 2*x + 5)*(x + 1)^4*(x -1)^7;
368
369T[106,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x -1)^2*(x + 1)^2;
370T[106,3]=(x + 2)*(x -1)*(x -2)*(x + 1)*(x + 3)^2*(x^3 -3*x^2 -x + 1)^2;
371T[106,5]=(x -3)*(x + 4)*(x -1)*(x^3 + 2*x^2 -4*x -4)^2*(x )^3;
372
373T[107,2]=(x^2 + x -1)*(x^7 + x^6 -10*x^5 -7*x^4 + 29*x^3 + 12*x^2 -20*x -8);
374T[107,3]=(x^2 + 3*x + 1)*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29);
375T[107,5]=(x^2 + 3*x + 1)*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64);
376
377T[108,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^6;
378T[108,3]=(x )^10;
379T[108,5]=(x + 3)^2*(x -3)^2*(x )^6;
380
381T[109,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^4 + x^3 -5*x^2 -4*x + 3);
382T[109,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -4*x^3 -x^2 + 15*x -8)*(x );
383T[109,5]=(x -3)*(x^3 + 6*x^2 + 5*x -13)*(x^4 -x^3 -5*x^2 + 4*x + 3);
384
385T[110,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3;
386T[110,3]=(x^2 + x -8)*(x -1)^2*(x^2 -8)^2*(x )^2*(x + 1)^5;
387T[110,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;
388
389T[111,2]=(x^3 -3*x^2 -x + 5)*(x^4 -6*x^2 + 2*x + 5)*(x + 2)^2*(x )^2;
390T[111,3]=(x^2 + 3*x + 3)*(x^2 -x + 3)*(x + 1)^3*(x -1)^4;
391T[111,5]=(x^3 -4*x^2 -4*x + 20)*(x^4 + 2*x^3 -8*x^2 + 4)*(x + 2)^2*(x )^2;
392
393T[112,2]=(x + 1)*(x )^10;
394T[112,3]=(x -2)^3*(x )^3*(x + 2)^5;
395T[112,5]=(x + 4)^3*(x -2)^3*(x )^5;
396
397T[113,2]=(x + 1)*(x^3 + 2*x^2 -5*x -9)*(x^3 + 2*x^2 -x -1)*(x -1)^2;
398T[113,3]=(x -2)*(x^2 -2*x -2)*(x^3 + 5*x^2 + 6*x + 1)*(x^3 + x^2 -4*x -1);
399T[113,5]=(x -2)*(x^2 -12)*(x^3 + x^2 -9*x -1)*(x + 1)^3;
400
401T[114,2]=(x^2 -x + 2)*(x^2 + 2)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x -1)^4;
402T[114,3]=(x^2 -x + 3)*(x^2 + x + 3)*(x^2 + 2*x + 3)^2*(x + 1)^4*(x -1)^5;
403T[114,5]=(x -2)*(x -1)^2*(x + 4)^2*(x + 2)^2*(x + 3)^2*(x -3)^4*(x )^4;
404
405T[115,2]=(x -2)*(x^2 + 3*x + 1)*(x^4 -2*x^3 -4*x^2 + 5*x + 2)*(x^2 + x -1)^2;
406T[115,3]=(x )*(x + 1)^2*(x^2 -5)^2*(x^2 + x -4)^2;
407T[115,5]=(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)*(x + 1)^3*(x -1)^4;
408
409T[116,2]=(x -1)*(x + 1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^7;
410T[116,3]=(x -1)*(x -2)*(x + 1)^2*(x + 3)^3*(x^2 -2*x -1)^3;
411T[116,5]=(x + 2)*(x -3)^2*(x -1)^2*(x + 3)^2*(x + 1)^6;
412
413T[117,2]=(x + 1)*(x^2 -2*x -1)*(x^2 -3)*(x -1)^2*(x^2 + 2*x -1)^2;
414T[117,3]=(x + 1)*(x -1)^2*(x )^8;
415T[117,5]=(x + 2)*(x -2)^2*(x )^2*(x^2 -8)^3;
416
417T[118,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x -1)^2*(x + 1)^2;
418T[118,3]=(x + 1)^2*(x -2)^2*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^2;
419T[118,5]=(x + 3)*(x + 2)*(x -2)*(x -1)*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;
420
421T[119,2]=(x^4 + x^3 -5*x^2 -x + 3)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 14*x -17)*(x + 1)^2;
422T[119,3]=(x^4 -2*x^3 -7*x^2 + 12*x -1)*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)*(x )^2;
423T[119,5]=(x^4 -2*x^3 -7*x^2 + 4*x + 3)*(x^5 -23*x^3 + 18*x^2 + 131*x -178)*(x + 2)^2;
424
425T[120,2]=(x + 1)*(x^2 + x + 2)*(x )^14;
426T[120,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x -1)^5*(x + 1)^6;
427T[120,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;
428
429T[121,2]=(x -1)*(x + 1)*(x -2)*(x )*(x + 2)^2;
430T[121,3]=(x -2)^2*(x + 1)^4;
431T[121,5]=(x + 3)*(x -1)^5;
432
433T[122,2]=(x^2 + x + 2)*(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x -1)^3*(x + 1)^3;
434T[122,3]=(x^2 -x -3)*(x^3 + x^2 -5*x + 2)*(x^3 -2*x^2 -4*x + 4)^2*(x + 2)^3;
435T[122,5]=(x -1)*(x^3 -x^2 -12*x + 16)*(x + 3)^2*(x^3 + x^2 -9*x -13)^2*(x )^2;
436
437T[123,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x )*(x^3 + x^2 -5*x -1)^2;
438T[123,3]=(x^6 + 5*x^4 + 2*x^3 + 15*x^2 + 27)*(x -1)^3*(x + 1)^4;
439T[123,5]=(x + 4)*(x + 2)*(x^2 -4*x + 2)*(x^3 -4*x^2 -2*x + 4)*(x^3 + 2*x^2 -4*x -4)^2;
440
441T[124,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2*(x )^7;
442T[124,3]=(x + 2)*(x^2 -2*x -2)^2*(x^2 + 2*x -4)^3*(x )^3;
443T[124,5]=(x + 3)*(x + 2)^2*(x^2 -12)^2*(x -1)^7;
444
445T[125,2]=(x^2 + x -1)*(x^2 -x -1)*(x^4 -8*x^2 + 11);
446T[125,3]=(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^4 -7*x^2 + 11);
447T[125,5]=(x )^8;
448
449T[126,2]=(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x -1)^3*(x + 1)^4;
450T[126,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
451T[126,5]=(x^2 -12)^2*(x -2)^3*(x )^4*(x + 2)^6;
452
453T[127,2]=(x^3 + 3*x^2 -3)*(x^7 -2*x^6 -8*x^5 + 15*x^4 + 17*x^3 -28*x^2 -11*x + 15);
454T[127,3]=(x^3 + 3*x^2 -3)*(x^7 -3*x^6 -12*x^5 + 39*x^4 + 26*x^3 -128*x^2 + 64*x + 16);
455T[127,5]=(x^3 + 6*x^2 + 9*x + 1)*(x^7 -8*x^6 + 11*x^5 + 53*x^4 -146*x^3 + 32*x^2 + 128*x -48);
456
457T[128,2]=(x )^9;
458T[128,3]=(x -2)^2*(x + 2)^2*(x )^5;
459T[128,5]=(x -2)^4*(x + 2)^5;
460
461T[129,2]=(x -1)*(x^2 -2*x -1)*(x^3 + 2*x^2 -5*x -8)*(x )*(x + 2)^2*(x^2 -2)^2;
462T[129,3]=(x^2 + 2*x + 3)*(x^4 + 4*x^2 + 9)*(x + 1)^3*(x -1)^4;
463T[129,5]=(x -2)*(x + 2)*(x^2 -2*x -1)*(x^3 + 4*x^2 -x -2)*(x + 4)^2*(x^2 -4*x + 2)^2;
464
465T[130,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 + x + 2)*(x^4 + x^2 + 4)*(x + 1)^3*(x -1)^4;
466T[130,3]=(x -2)*(x )*(x + 3)^2*(x -1)^2*(x^2 -2)^2*(x^2 -2*x -2)^2*(x + 2)^3;
467T[130,5]=(x^2 + x + 5)*(x^2 + 3*x + 5)*(x -1)^6*(x + 1)^7;
468
469T[131,2]=(x^10 -18*x^8 + 2*x^7 + 111*x^6 -18*x^5 -270*x^4 + 28*x^3 + 232*x^2 + 16*x -32)*(x );
470T[131,3]=(x + 1)*(x^10 -x^9 -22*x^8 + 24*x^7 + 157*x^6 -184*x^5 -403*x^4 + 533*x^3 + 222*x^2 -390*x + 67);
471T[131,5]=(x + 2)*(x^10 -4*x^9 -26*x^8 + 116*x^7 + 155*x^6 -988*x^5 + 138*x^4 + 2384*x^3 -763*x^2 -1856*x + 8);
472
473T[132,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2*(x )^10;
474T[132,3]=(x^2 -x + 3)*(x^2 + x + 3)^3*(x -1)^5*(x + 1)^6;
475T[132,5]=(x + 3)^2*(x + 4)^2*(x )^2*(x + 2)^3*(x -2)^4*(x -1)^6;
476
477T[133,2]=(x^2 -x -1)*(x^2 + 3*x + 1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3)*(x )^2;
478T[133,3]=(x^2 + 3*x + 1)*(x^2 -3*x + 1)*(x^2 + 3*x -1)*(x^3 -3*x^2 -x + 4)*(x + 2)^2;
479T[133,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x + 3)^2*(x -3)^2*(x -1)^2;
480
481T[134,2]=(x^2 -2*x + 2)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x -1)^3*(x + 1)^3;
482T[134,3]=(x^3 -x^2 -8*x + 11)*(x^3 -3*x^2 + 1)*(x + 2)^2*(x^2 -x -1)^2*(x^2 + 3*x + 1)^2;
483T[134,5]=(x^3 -3*x^2 -2*x + 3)*(x^3 + 3*x^2 -6*x + 1)*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^4;
484
485T[135,2]=(x + 2)*(x -2)*(x^2 -x -3)*(x^2 + x -3)*(x -1)^2*(x )^2*(x + 1)^3;
486T[135,3]=(x + 1)*(x )^12;
487T[135,5]=(x^2 + 5)*(x + 1)^5*(x -1)^6;
488
489T[136,2]=(x -1)*(x^2 + x + 2)*(x )^12;
490T[136,3]=(x -2)*(x^2 + 2*x -4)*(x^2 -2*x -2)^2*(x + 2)^4*(x )^4;
491T[136,5]=(x -2)^2*(x^2 -12)^2*(x )^4*(x + 2)^5;
492
493T[137,2]=(x^4 + 3*x^3 -4*x -1)*(x^7 -10*x^5 + 28*x^3 + 3*x^2 -19*x -7);
494T[137,3]=(x^4 + 5*x^3 + 4*x^2 -10*x -11)*(x^7 -3*x^6 -8*x^5 + 26*x^4 + 11*x^3 -58*x^2 + 16*x + 14);
495T[137,5]=(x^4 + 2*x^3 -12*x^2 -23*x + 1)*(x^7 + 2*x^6 -18*x^5 -21*x^4 + 103*x^3 + 26*x^2 -188*x + 88);
496
497T[138,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^4 + x^3 + 3*x^2 + 2*x + 4)^2*(x -1)^3*(x + 1)^4;
498T[138,3]=(x^2 + 3)*(x^4 + x^2 + 9)^2*(x -1)^5*(x + 1)^6;
499T[138,5]=(x -2)*(x + 2)*(x -4)^2*(x )^3*(x^2 + 2*x -4)^7;
500
501T[139,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^7 -x^6 -11*x^5 + 8*x^4 + 35*x^3 -10*x^2 -32*x -8);
502T[139,3]=(x -2)*(x^3 + 2*x^2 -x -1)*(x^7 + 2*x^6 -15*x^5 -25*x^4 + 56*x^3 + 52*x^2 -56*x -16);
503T[139,5]=(x + 1)*(x^3 + 8*x^2 + 19*x + 13)*(x^7 -11*x^6 + 36*x^5 + 2*x^4 -211*x^3 + 319*x^2 -55*x -83);
504
505T[140,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x )^10;
506T[140,3]=(x -3)*(x )^2*(x^2 + x -4)^3*(x -1)^4*(x + 2)^6;
507T[140,5]=(x^2 + 5)^2*(x -1)^7*(x + 1)^8;
508
509T[141,2]=(x -2)*(x + 2)*(x^2 + x -4)*(x )*(x + 1)^2*(x^4 -x^3 -5*x^2 + 5*x -1)^2;
510T[141,3]=(x^8 + 5*x^6 + 4*x^5 + 13*x^4 + 12*x^3 + 45*x^2 + 81)*(x -1)^3*(x + 1)^4;
511T[141,5]=(x + 3)*(x -2)*(x^2 -x -4)*(x )*(x + 1)^2*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^2;
512
513T[142,2]=(x^6 + x^5 + 2*x^4 + x^3 + 4*x^2 + 4*x + 8)*(x^6 + x^4 + 3*x^3 + 2*x^2 + 8)*(x -1)^2*(x + 1)^3;
514T[142,3]=(x -1)*(x -3)*(x + 3)*(x + 1)*(x )*(x^3 -x^2 -4*x + 3)^2*(x^3 + x^2 -8*x -3)^2;
515T[142,5]=(x + 2)*(x + 4)*(x )*(x -2)^2*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;
516
517T[143,2]=(x^4 -3*x^3 -x^2 + 5*x + 1)*(x^6 -10*x^4 + 2*x^3 + 24*x^2 -7*x -12)*(x )*(x + 2)^2;
518T[143,3]=(x^4 -7*x^2 + 4*x + 1)*(x^6 -3*x^5 -11*x^4 + 33*x^3 + 25*x^2 -91*x + 28)*(x + 1)^3;
519T[143,5]=(x + 1)*(x^4 -16*x^2 + 8*x + 16)*(x^6 -x^5 -26*x^4 + 32*x^3 + 152*x^2 -256*x + 96)*(x -1)^2;
520
521T[144,2]=(x )^13;
522T[144,3]=(x -1)*(x + 1)^2*(x )^10;
523T[144,5]=(x -2)^3*(x )^4*(x + 2)^6;
524
525T[145,2]=(x + 1)*(x^3 -3*x^2 -x + 5)*(x^3 -x^2 -3*x + 1)*(x^2 + 2*x -1)^3;
526T[145,3]=(x^3 + 2*x^2 -4*x -4)*(x^3 -2*x^2 -4*x + 4)*(x )*(x + 2)^2*(x^2 -2*x -1)^2;
527T[145,5]=(x^2 + x + 5)^2*(x + 1)^4*(x -1)^5;
528
529T[146,2]=(x^2 -x + 2)*(x^4 -x^3 + x^2 -2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x + 1)^3*(x -1)^4;
530T[146,3]=(x^4 -8*x^2 + 4*x + 4)*(x^3 -8*x + 4)*(x^2 + 3*x + 1)^2*(x^2 -x -3)^2*(x )^2;
531T[146,5]=(x^4 -2*x^3 -14*x^2 + 26*x + 2)*(x^3 + 2*x^2 -4*x -6)*(x -2)^2*(x^2 + 3*x + 1)^2*(x^2 + x -3)^2;
532
533T[147,2]=(x -1)^2*(x -2)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
534T[147,3]=(x^2 + 3)*(x + 1)^4*(x -1)^5;
535T[147,5]=(x^2 + 4*x + 2)*(x^2 -4*x + 2)*(x -2)^2*(x )^2*(x + 2)^3;
536
537T[148,2]=(x^2 + 2*x + 2)*(x^2 + 2)*(x + 1)^2*(x -1)^2*(x )^9;
538T[148,3]=(x + 1)*(x^2 + x -4)*(x^2 + x -1)^2*(x^2 -3*x -1)^2*(x + 3)^3*(x -1)^3;
539T[148,5]=(x + 4)*(x -2)^2*(x^2 + x -3)^2*(x^2 -x -11)^2*(x + 2)^3*(x )^3;
540
541T[149,2]=(x^3 + x^2 -2*x -1)*(x^9 + x^8 -15*x^7 -12*x^6 + 75*x^5 + 48*x^4 -137*x^3 -76*x^2 + 68*x + 39);
542T[149,3]=(x^3 + 4*x^2 + 3*x -1)*(x^9 -6*x^8 + 55*x^6 -67*x^5 -125*x^4 + 235*x^3 -6*x^2 -117*x + 27);
543T[149,5]=(x^3 + 3*x^2 -4*x -13)*(x^9 + x^8 -25*x^7 -4*x^6 + 202*x^5 -83*x^4 -529*x^3 + 305*x^2 + 392*x -221);
544
545T[150,2]=(x^2 -2*x + 2)*(x^2 -x + 2)*(x^2 + 2*x + 2)*(x^2 + x + 2)^2*(x -1)^4*(x + 1)^5;
546T[150,3]=(x^2 + x + 3)*(x^2 -x + 3)*(x -1)^7*(x + 1)^8;
547T[150,5]=(x + 1)*(x -1)^2*(x )^16;
548
549T[151,2]=(x^3 -5*x + 3)*(x^3 + 2*x^2 -x -1)*(x^6 -x^5 -7*x^4 + 3*x^3 + 13*x^2 + 3*x -1);
550T[151,3]=(x^3 + x^2 -2*x -1)*(x^6 + 5*x^5 -4*x^4 -51*x^3 -68*x^2 -12*x + 8)*(x -2)^3;
551T[151,5]=(x^3 + 7*x^2 + 14*x + 7)*(x^3 -5*x^2 -2*x + 25)*(x^6 -6*x^5 + 5*x^4 + 16*x^3 -8*x^2 -12*x -1);
552
553T[152,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^13;
554T[152,3]=(x^3 -x^2 -10*x + 8)*(x -2)^2*(x + 1)^3*(x -1)^4*(x + 2)^5;
555T[152,5]=(x^3 -x^2 -10*x + 8)*(x + 4)^3*(x + 1)^3*(x -3)^4*(x )^4;
556
557T[153,2]=(x -2)*(x + 2)*(x -1)*(x^2 -x -4)*(x^2 + x -4)^2*(x + 1)^3*(x )^3;
558T[153,3]=(x -1)*(x^2 + 3)*(x + 1)^2*(x )^10;
559T[153,5]=(x -2)*(x + 1)*(x + 3)*(x -1)*(x^2 + 3*x -2)*(x -3)^2*(x^2 -3*x -2)^2*(x + 2)^3;
560
561T[154,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x -1)^3*(x + 1)^4;
562T[154,3]=(x^2 + 2*x -4)*(x -1)^2*(x + 3)^2*(x + 2)^2*(x^2 -2*x -4)^2*(x )^2*(x -2)^3*(x + 1)^4;
563T[154,5]=(x + 4)*(x^2 -2*x -4)*(x -2)^2*(x + 1)^2*(x -3)^2*(x )^2*(x -1)^4*(x + 2)^6;
564
565T[155,2]=(x + 1)*(x + 2)*(x^4 + x^3 -8*x^2 -4*x + 12)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x )*(x^2 -x -1)^2;
566T[155,3]=(x -2)*(x^4 -x^3 -5*x^2 + 3*x + 4)*(x^4 + x^3 -9*x^2 -9*x -2)*(x + 1)^2*(x^2 + 2*x -4)^2;
567T[155,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;
568
569T[156,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3*(x )^12;
570T[156,3]=(x^2 + 3)*(x^2 -x + 3)^2*(x^2 + 3*x + 3)^2*(x + 1)^6*(x -1)^7;
571T[156,5]=(x + 4)*(x )*(x^2 -8)^3*(x + 3)^4*(x + 1)^4*(x -2)^7;
572
573T[157,2]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -7*x + 1)*(x^7 -5*x^6 + 2*x^5 + 21*x^4 -22*x^3 -21*x^2 + 27*x -1);
574T[157,3]=(x^5 + 7*x^4 + 15*x^3 + 7*x^2 -8*x -5)*(x^7 -5*x^6 -x^5 + 31*x^4 -20*x^3 -45*x^2 + 44*x -4);
575T[157,5]=(x^5 + 3*x^4 -12*x^3 -39*x^2 -x + 25)*(x^7 + x^6 -16*x^5 + 3*x^4 + 73*x^3 -87*x^2 + 8*x + 16);
576
577T[158,2]=(x^2 + x + 2)*(x^10 + 4*x^8 + 12*x^6 -x^5 + 24*x^4 + 32*x^2 + 32)*(x -1)^3*(x + 1)^4;
578T[158,3]=(x -2)*(x -1)*(x + 3)*(x^2 -6)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16)^2*(x + 1)^4;
579T[158,5]=(x -1)*(x + 1)*(x -3)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31)^2*(x + 2)^3*(x + 3)^3;
580
581T[159,2]=(x^4 -3*x^3 -x^2 + 7*x -3)*(x^5 -10*x^3 + 22*x + 5)*(x + 1)^2*(x^3 + x^2 -3*x -1)^2;
582T[159,3]=(x^2 + 3*x + 3)*(x^6 -3*x^5 + 8*x^4 -17*x^3 + 24*x^2 -27*x + 27)*(x -1)^4*(x + 1)^5;
583T[159,5]=(x^4 -2*x^3 -11*x^2 + 32*x -21)*(x^5 -19*x^3 + 6*x^2 + 67*x -2)*(x^3 + 2*x^2 -4*x -4)^2*(x )^2;
584
585T[160,2]=(x )^17;
586T[160,3]=(x^2 -8)*(x -2)^3*(x + 2)^5*(x )^7;
587T[160,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;
588
589T[161,2]=(x + 1)*(x^3 + x^2 -5*x -1)*(x^5 -2*x^4 -9*x^3 + 17*x^2 + 16*x -27)*(x^2 + x -1)^3;
590T[161,3]=(x^3 -2*x^2 -2*x + 2)*(x^5 -13*x^3 + 38*x + 10)*(x )*(x + 1)^2*(x^2 -5)^2;
591T[161,5]=(x -2)*(x^3 -2*x^2 -2*x + 2)*(x^5 + 4*x^4 -14*x^3 -54*x^2 + 52*x + 168)*(x^2 + 2*x -4)^3;
592
593T[162,2]=(x^4 + x^2 + 4)*(x^2 + 2)^2*(x -1)^4*(x + 1)^4;
594T[162,3]=(x )^16;
595T[162,5]=(x^2 -3)^2*(x + 3)^3*(x -3)^3*(x )^6;
596
597T[163,2]=(x^5 + 5*x^4 + 3*x^3 -15*x^2 -16*x + 3)*(x^7 -3*x^6 -5*x^5 + 19*x^4 -23*x^2 + 4*x + 6)*(x );
598T[163,3]=(x^5 + 5*x^4 + x^3 -23*x^2 -28*x -9)*(x^7 -x^6 -11*x^5 + 13*x^4 + 26*x^3 -39*x^2 + 16*x -2)*(x );
599T[163,5]=(x + 4)*(x^5 + 9*x^4 + 23*x^3 + 12*x^2 -x -1)*(x^7 -11*x^6 + 41*x^5 -44*x^4 -73*x^3 + 199*x^2 -136*x + 24);
600
601T[164,2]=(x + 1)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)*(x -1)^2*(x )^10;
602T[164,3]=(x^4 -2*x^3 -10*x^2 + 22*x -2)*(x + 2)^2*(x^2 -2)^2*(x^3 -4*x + 2)^3;
603T[164,5]=(x^4 -4*x^3 -8*x^2 + 44*x -36)*(x + 2)^2*(x^2 -8)^2*(x^3 + 2*x^2 -4*x -4)^3;
604
605T[165,2]=(x^2 -3)*(x^2 + 2*x -1)*(x^3 + x^2 -5*x -1)*(x + 1)^2*(x^2 -2*x -1)^2*(x -1)^4*(x + 2)^4;
606T[165,3]=(x^2 + 3)*(x^4 -2*x^2 + 9)*(x^2 + x + 3)^2*(x -1)^5*(x + 1)^6;
607T[165,5]=(x^2 + 2*x + 5)*(x^2 -x + 5)^2*(x -1)^7*(x + 1)^8;
608
609T[166,2]=(x^2 + x + 2)*(x^12 -x^11 + 3*x^10 -3*x^9 + 8*x^8 -10*x^7 + 16*x^6 -20*x^5 + 32*x^4 -24*x^3 + 48*x^2 -32*x + 64)*(x + 1)^3*(x -1)^3;
610T[166,3]=(x^2 + 2*x -4)*(x^3 -x^2 -6*x + 4)*(x^6 -x^5 -10*x^4 + 5*x^3 + 30*x^2 -4*x -25)^2*(x + 1)^3;
611T[166,5]=(x^2 -3*x + 1)*(x^3 + x^2 -5*x + 2)*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160)^2*(x + 2)^3;
612
613T[167,2]=(x^2 + x -1)*(x^12 -2*x^11 -17*x^10 + 33*x^9 + 103*x^8 -189*x^7 -277*x^6 + 447*x^5 + 363*x^4 -433*x^3 -205*x^2 + 120*x + 9);
614T[167,3]=(x^2 + x -1)*(x^12 -3*x^11 -22*x^10 + 71*x^9 + 145*x^8 -552*x^7 -243*x^6 + 1577*x^5 -122*x^4 -1737*x^3 + 384*x^2 + 599*x -91);
615T[167,5]=(x^12 -4*x^11 -41*x^10 + 152*x^9 + 648*x^8 -2136*x^7 -4816*x^6 + 13568*x^5 + 15616*x^4 -37632*x^3 -12544*x^2 + 33792*x -9216)*(x + 1)^2;
616
617T[168,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2*(x )^20;
618T[168,3]=(x^2 -2*x + 3)*(x^2 + 3)*(x^2 + 2*x + 3)^3*(x -1)^7*(x + 1)^8;
619T[168,5]=(x -4)^2*(x + 4)^2*(x -2)^4*(x )^8*(x + 2)^9;
620
621T[169,2]=(x^2 -3)*(x^3 + 2*x^2 -x -1)*(x^3 -2*x^2 -x + 1);
622T[169,3]=(x -2)^2*(x^3 + 2*x^2 -x -1)^2;
623T[169,5]=(x^2 -3)*(x^3 + 4*x^2 + 3*x -1)*(x^3 -4*x^2 + 3*x + 1);
624
625T[170,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x + 1)^4*(x -1)^5;
626T[170,3]=(x -3)*(x^2 + x -4)*(x -2)^2*(x -1)^2*(x^2 + 4*x + 2)^2*(x^2 -2*x -2)^2*(x + 2)^4*(x )^4;
627T[170,5]=(x^2 + 5)*(x^2 + 2*x + 5)^2*(x -1)^8*(x + 1)^9;
628
629T[171,2]=(x + 1)*(x^4 -9*x^2 + 12)*(x -1)^2*(x -2)^2*(x + 2)^4*(x )^4;
630T[171,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
631T[171,5]=(x + 1)*(x -2)*(x^4 -15*x^2 + 48)*(x + 2)^2*(x -1)^2*(x + 3)^3*(x -3)^4;
632
633T[172,2]=(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x + 1)^2*(x -1)^2*(x )^10;
634T[172,3]=(x^2 -4*x + 2)*(x^2 -x -1)^2*(x^2 + x -5)^2*(x^2 -2)^3*(x + 2)^4;
635T[172,5]=(x^2 -2)*(x )*(x^2 + 3*x + 1)^2*(x^2 -3*x -3)^2*(x + 4)^3*(x^2 -4*x + 2)^3;
636
637T[173,2]=(x^4 + x^3 -3*x^2 -x + 1)*(x^10 -x^9 -16*x^8 + 16*x^7 + 85*x^6 -80*x^5 -175*x^4 + 136*x^3 + 138*x^2 -71*x -25);
638T[173,3]=(x^4 + 6*x^3 + 10*x^2 + 3*x -1)*(x^10 -8*x^9 + 11*x^8 + 59*x^7 -165*x^6 -55*x^5 + 484*x^4 -202*x^3 -390*x^2 + 169*x + 113);
639T[173,5]=(x^4 + x^3 -5*x^2 -7*x -1)*(x^10 -x^9 -29*x^8 + 41*x^7 + 253*x^6 -452*x^5 -548*x^4 + 1344*x^3 -544*x^2 -128*x + 64);
640
641T[174,2]=(x^4 -x^3 + 3*x^2 -2*x + 4)*(x^6 -2*x^5 + 2*x^4 -x^3 + 4*x^2 -8*x + 8)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)^2*(x -1)^4*(x + 1)^5;
642T[174,3]=(x^2 + 3*x + 3)*(x^2 + x + 3)*(x^4 -2*x^3 + 5*x^2 -6*x + 9)^2*(x -1)^7*(x + 1)^8;
643T[174,5]=(x -3)*(x -2)*(x^2 -2*x -4)^2*(x^3 -16*x + 8)^2*(x + 3)^3*(x -1)^3*(x + 1)^9;
644
645T[175,2]=(x -2)*(x + 2)*(x^2 -x -1)*(x^2 + x -1)*(x^2 -x -4)*(x^2 + x -4)^2*(x )^3;
646T[175,3]=(x^2 + 2*x -4)*(x^2 -2*x -4)*(x^2 -x -4)*(x + 1)^2*(x^2 + x -4)^2*(x -1)^3;
647T[175,5]=(x + 1)*(x -1)^2*(x )^12;
648
649T[176,2]=(x^2 + 2*x + 2)*(x )^17;
650T[176,3]=(x -3)*(x^2 + x -4)*(x + 3)^2*(x^2 -x -4)^2*(x -1)^4*(x + 1)^6;
651T[176,5]=(x^2 -3*x -2)^3*(x -1)^6*(x + 3)^7;
652
653T[177,2]=(x^2 -x -1)*(x^2 + x -1)*(x^2 + 3*x + 1)*(x^3 -4*x -1)*(x^5 -9*x^3 + 2*x^2 + 16*x -8)^2;
654T[177,3]=(x^10 + 2*x^9 + 7*x^8 + 13*x^7 + 31*x^6 + 41*x^5 + 93*x^4 + 117*x^3 + 189*x^2 + 162*x + 243)*(x -1)^4*(x + 1)^5;
655T[177,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x + 3)^2*(x -1)^2*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;
656
657T[178,2]=(x^2 + x + 2)*(x^2 -x + 2)*(x^10 + x^9 -2*x^7 + x^6 + x^5 + 2*x^4 -8*x^3 + 16*x + 32)*(x + 1)^3*(x -1)^4;
658T[178,3]=(x -1)*(x^2 + 2*x -1)*(x^3 -x^2 -8*x + 4)*(x + 1)^2*(x^5 + 3*x^4 -4*x^3 -16*x^2 -9*x -1)^2*(x -2)^3;
659T[178,5]=(x -2)*(x -3)*(x^2 + 2*x -7)*(x^3 + x^2 -8*x -4)*(x + 2)^2*(x + 1)^2*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13)^2;
660
661T[179,2]=(x -2)*(x^3 + x^2 -2*x -1)*(x^11 + 3*x^10 -14*x^9 -45*x^8 + 59*x^7 + 225*x^6 -58*x^5 -427*x^4 -76*x^3 + 240*x^2 + 56*x -16);
662T[179,3]=(x^3 + 2*x^2 -x -1)*(x^11 -25*x^9 + 5*x^8 + 219*x^7 -98*x^6 -781*x^5 + 589*x^4 + 901*x^3 -1000*x^2 + 185*x -9)*(x );
663T[179,5]=(x -3)*(x^3 + 4*x^2 + 3*x -1)*(x^11 -3*x^10 -28*x^9 + 65*x^8 + 310*x^7 -499*x^6 -1680*x^5 + 1613*x^4 + 4325*x^3 -1977*x^2 -4019*x + 663);
664
665T[180,2]=(x^2 -x + 2)*(x -1)^2*(x^2 + x + 2)^2*(x + 1)^3*(x )^14;
666T[180,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3*(x )^18;
667T[180,5]=(x^2 + 5)*(x -1)^11*(x + 1)^12;
668
669T[181,2]=(x^5 + 3*x^4 -x^3 -7*x^2 -2*x + 1)*(x^9 -3*x^8 -9*x^7 + 29*x^6 + 23*x^5 -84*x^4 -23*x^3 + 89*x^2 + 8*x -27);
670T[181,3]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -9*x -1)*(x^9 -3*x^8 -15*x^7 + 46*x^6 + 63*x^5 -213*x^4 -32*x^3 + 272*x^2 -144*x + 16);
671T[181,5]=(x^5 + 5*x^4 -5*x^3 -55*x^2 -88*x -43)*(x^9 -x^8 -24*x^7 + 28*x^6 + 170*x^5 -181*x^4 -441*x^3 + 340*x^2 + 326*x -3);
672
673T[182,2]=(x^2 + 2)*(x^6 -x^5 + 2*x^4 -2*x^3 + 4*x^2 -4*x + 8)*(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x -1)^5*(x + 1)^6;
674T[182,3]=(x + 3)^2*(x -3)^2*(x^2 -2)^2*(x^3 + 2*x^2 -6*x -8)^2*(x )^3*(x -1)^4*(x + 2)^4;
675T[182,5]=(x -2)*(x + 4)*(x -4)*(x + 1)^2*(x^2 -6*x + 7)^2*(x^3 -2*x^2 -3*x + 2)^2*(x )^4*(x + 3)^6;
676
677T[183,2]=(x^2 + 2*x -1)*(x^6 -11*x^4 + 2*x^3 + 31*x^2 -10*x -17)*(x + 1)^2*(x^3 -x^2 -3*x + 1)^3;
678T[183,3]=(x^2 + 2*x + 3)*(x^6 -2*x^5 + 5*x^4 -8*x^3 + 15*x^2 -18*x + 27)*(x + 1)^5*(x -1)^6;
679T[183,5]=(x^6 -2*x^5 -23*x^4 + 28*x^3 + 144*x^2 -80*x -144)*(x + 3)^2*(x + 1)^2*(x^3 + x^2 -9*x -13)^2*(x -2)^3;
680
681T[184,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x )^16;
682T[184,3]=(x -3)*(x^2 + x -4)*(x + 3)^2*(x -1)^2*(x + 1)^2*(x^2 -5)^4*(x )^4;
683T[184,5]=(x + 4)*(x -2)^2*(x + 2)^3*(x -4)^3*(x^2 + 2*x -4)^4*(x )^4;
684
685T[185,2]=(x -1)*(x^5 -8*x^3 + 2*x^2 + 11*x -2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 11*x -12)*(x + 2)^3*(x )^3;
686T[185,3]=(x + 1)*(x + 2)*(x^5 -3*x^4 -6*x^3 + 20*x^2 + 4*x -22)*(x^5 + x^4 -8*x^3 -4*x^2 + 4*x + 2)*(x + 3)^2*(x -1)^3;
687T[185,5]=(x^2 + 2*x + 5)*(x^2 + 5)*(x -1)^6*(x + 1)^7;
688
689T[186,2]=(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x^6 + 2*x^4 + x^3 + 4*x^2 + 8)*(x^4 -x^3 + 3*x^2 -2*x + 4)^2*(x -1)^5*(x + 1)^6;
690T[186,3]=(x^2 + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 2*x^3 + 2*x^2 + 6*x + 9)^2*(x + 1)^7*(x -1)^8;
691T[186,5]=(x -3)*(x + 1)*(x^2 -3*x -2)*(x + 2)^2*(x^2 -12)^2*(x^2 + 4*x -1)^2*(x^3 + 2*x^2 -5*x -2)^2*(x -1)^9;
692
693T[187,2]=(x^2 + 2*x -2)*(x^3 + 2*x^2 -2*x -2)*(x^4 -x^3 -6*x^2 + 2*x + 2)*(x )*(x + 1)^2*(x + 2)^2*(x -2)^3;
694T[187,3]=(x -1)*(x^2 + x -4)*(x^2 -3)*(x^3 + 3*x^2 -x -5)*(x^4 -x^3 -11*x^2 + 9*x + 20)*(x + 1)^2*(x )^3;
695T[187,5]=(x -3)*(x -4)*(x^2 + 4*x + 1)*(x^2 -x -4)*(x^3 + 7*x^2 + 13*x + 5)*(x^4 -3*x^3 -3*x^2 + 9*x -2)*(x -1)^2*(x + 2)^2;
696
697T[188,2]=(x -1)*(x^8 -x^7 + 3*x^6 -x^5 + 3*x^4 -2*x^3 + 12*x^2 -8*x + 16)*(x + 1)^2*(x )^11;
698T[188,3]=(x^2 -x -3)*(x^2 + 3*x + 1)*(x^2 -8)^2*(x )^2*(x^4 -7*x^2 + 4*x + 1)^3;
699T[188,5]=(x^2 + 2*x -4)*(x^2 -4*x + 2)^2*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^3*(x )^4;
700
701T[189,2]=(x -2)*(x + 2)*(x^2 -7)*(x -1)^2*(x + 1)^3*(x^2 -3)^3*(x )^4;
702T[189,3]=(x -1)*(x )^18;
703T[189,5]=(x -1)*(x + 1)*(x -3)*(x + 3)*(x^2 -7)*(x^2 -3)*(x -2)^2*(x^2 -12)^2*(x )^2*(x + 2)^3;
704
705T[190,2]=(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x^8 + 2*x^7 + 2*x^6 + 4*x^5 + 9*x^4 + 8*x^3 + 8*x^2 + 16*x + 16)*(x^2 + 2)^2*(x -1)^4*(x + 1)^5;
706T[190,3]=(x + 3)*(x^2 + x -4)*(x^3 -2*x^2 -4*x + 4)^2*(x^4 -2*x^3 -8*x^2 + 16*x -4)^2*(x + 1)^3*(x -1)^3*(x + 2)^4;
707T[190,5]=(x^2 + 5)*(x^2 + 4*x + 5)*(x^2 -3*x + 5)^2*(x -1)^9*(x + 1)^10;
708
709T[191,2]=(x^2 + x -1)*(x^14 -23*x^12 + x^11 + 205*x^10 -13*x^9 -895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 -2135*x^4 -465*x^3 + 853*x^2 + 374*x + 41);
710T[191,3]=(x^14 -2*x^13 -30*x^12 + 58*x^11 + 334*x^10 -630*x^9 -1667*x^8 + 3160*x^7 + 3418*x^6 -7088*x^5 -1483*x^4 + 5142*x^3 -940*x^2 -122*x + 5)*(x + 1)^2;
711T[191,5]=(x^2 + x -1)*(x^14 -x^13 -48*x^12 + 63*x^11 + 860*x^10 -1339*x^9 -6923*x^8 + 11842*x^7 + 23938*x^6 -41166*x^5 -31785*x^4 + 51275*x^3 + 6610*x^2 -21509*x + 5527);
712
713T[192,2]=(x )^21;
714T[192,3]=(x^2 + 3)^3*(x -1)^7*(x + 1)^8;
715T[192,5]=(x -2)^8*(x + 2)^13;
716
717T[193,2]=(x^2 + 3*x + 1)*(x^8 -2*x^7 -9*x^6 + 18*x^5 + 21*x^4 -44*x^3 -11*x^2 + 27*x + 1)*(x^5 + 2*x^4 -5*x^3 -7*x^2 + 7*x + 1);
718T[193,3]=(x^5 + 5*x^4 -x^3 -27*x^2 -10*x + 23)*(x^8 -5*x^7 -2*x^6 + 40*x^5 -37*x^4 -48*x^3 + 36*x^2 + 31*x + 4)*(x + 1)^2;
719T[193,5]=(x^2 -5)*(x^8 -8*x^7 + 16*x^6 + 8*x^5 -35*x^4 + x^3 + 16*x^2 -x -2)*(x^5 + 8*x^4 + 15*x^3 -26*x^2 -106*x -83);
720
721T[194,2]=(x^6 + 4*x^5 + 9*x^4 + 15*x^3 + 18*x^2 + 16*x + 8)*(x^8 -3*x^7 + 7*x^6 -12*x^5 + 19*x^4 -24*x^3 + 28*x^2 -24*x + 16)*(x + 1)^4*(x -1)^5;
722T[194,3]=(x^4 -2*x^3 -9*x^2 + 18*x + 1)*(x^4 -2*x^3 -9*x^2 + 18*x -7)*(x )*(x^3 + 4*x^2 + 3*x -1)^2*(x^4 -5*x^2 -x + 4)^2;
723T[194,5]=(x -4)*(x^4 + 2*x^3 -5*x^2 -6*x + 7)*(x^4 + 2*x^3 -15*x^2 -26*x + 27)*(x^3 + 3*x^2 -4*x + 1)^2*(x^4 -x^3 -4*x^2 + x + 2)^2;
724
725T[195,2]=(x^3 -7*x -2)*(x -1)^2*(x^2 -3)^2*(x -2)^3*(x^2 + 2*x -1)^4*(x + 1)^5;
726T[195,3]=(x^2 + 2*x + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 4*x^2 + 9)*(x -1)^7*(x + 1)^8;
727T[195,5]=(x^2 -2*x + 5)*(x^4 + 2*x^2 + 25)*(x -1)^9*(x + 1)^10;
728
729T[196,2]=(x^2 -x + 2)*(x -1)^2*(x + 1)^3*(x )^10;
730T[196,3]=(x + 1)*(x -1)*(x^2 -8)*(x -2)^2*(x^2 -2)^2*(x )^3*(x + 2)^4;
731T[196,5]=(x + 3)*(x -3)*(x^2 -2)*(x^2 -8)^2*(x )^9;
732
733T[197,2]=(x + 2)*(x^5 -5*x^3 + x^2 + 3*x -1)*(x^10 -15*x^8 + x^7 + 78*x^6 -7*x^5 -165*x^4 + 15*x^3 + 123*x^2 -9*x -26);
734T[197,3]=(x^5 + 8*x^4 + 18*x^3 -x^2 -38*x -25)*(x^10 -10*x^9 + 29*x^8 + 17*x^7 -227*x^6 + 316*x^5 + 184*x^4 -784*x^3 + 646*x^2 -175*x + 2)*(x );
735T[197,5]=(x^5 + 4*x^4 -8*x^3 -37*x^2 + 16*x + 85)*(x^10 -2*x^9 -26*x^8 + 59*x^7 + 180*x^6 -465*x^5 -194*x^4 + 804*x^3 -200*x^2 -176*x + 32)*(x );
736
737T[198,2]=(x^2 -2*x + 2)*(x^2 + x + 2)^2*(x^2 -x + 2)^3*(x^2 + 2*x + 2)^3*(x + 1)^5*(x -1)^6;
738T[198,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3*(x )^20;
739T[198,5]=(x + 1)^2*(x -4)^3*(x -2)^4*(x + 4)^4*(x + 2)^5*(x )^5*(x -1)^6;
740
741T[199,2]=(x^2 + x -1)*(x^4 + 3*x^3 -4*x -1)*(x^10 -5*x^9 -4*x^8 + 51*x^7 -32*x^6 -154*x^5 + 151*x^4 + 168*x^3 -168*x^2 -54*x + 27);
742T[199,3]=(x^10 + 4*x^9 -19*x^8 -88*x^7 + 73*x^6 + 552*x^5 + 200*x^4 -784*x^3 -480*x^2 + 96*x + 64)*(x -2)^2*(x^2 + x -1)^2;
743T[199,5]=(x^4 + 5*x^3 + 4*x^2 -10*x -11)*(x^10 + x^9 -26*x^8 -26*x^7 + 216*x^6 + 219*x^5 -607*x^4 -571*x^3 + 317*x^2 + 156*x -63)*(x -3)^2;
744
745T[200,2]=(x -1)*(x + 1)*(x )^17;
746T[200,3]=(x -3)*(x + 3)*(x + 1)^3*(x -2)^3*(x -1)^3*(x )^3*(x + 2)^5;
747T[200,5]=(x -1)*(x + 1)^2*(x )^16;
748
749T[201,2]=(x -1)*(x + 2)*(x + 1)*(x^3 -3*x^2 -x + 5)*(x^5 -8*x^3 + 13*x + 2)*(x -2)^2*(x^2 + x -1)^2*(x^2 + 3*x + 1)^2;
750T[201,3]=(x^2 + 2*x + 3)*(x^4 -x^3 + 5*x^2 -3*x + 9)*(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x + 1)^5*(x -1)^6;
751T[201,5]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^5 + 3*x^4 -9*x^3 -19*x^2 + 10*x + 16)*(x )*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^5;
752
753T[202,2]=(x^2 + 2)*(x^14 + x^12 + 2*x^11 + x^10 -x^8 -2*x^7 -2*x^6 + 8*x^4 + 32*x^3 + 32*x^2 + 128)*(x -1)^4*(x + 1)^4;
754T[202,3]=(x^3 + 3*x^2 -1)*(x^4 + x^3 -8*x^2 + x + 8)*(x )*(x + 2)^2*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68)^2;
755T[202,5]=(x -2)*(x^3 + 3*x^2 -6*x -17)*(x^4 -3*x^3 -4*x^2 + 7*x -2)*(x + 1)^2*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67)^2;
756
757T[203,2]=(x -1)*(x + 2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 9*x -6)*(x^3 + x^2 -3*x -1)*(x -2)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
758T[203,3]=(x -2)*(x^2 + x -4)*(x^5 + 2*x^4 -10*x^3 -18*x^2 + 11*x + 2)*(x^3 + 3*x^2 -x -5)*(x + 1)^2*(x^2 -2*x -1)^3;
759T[203,5]=(x -1)*(x -2)*(x + 4)*(x^2 -3*x -2)*(x^2 -8)*(x^3 + 5*x^2 + 3*x -5)*(x^5 -5*x^4 -3*x^3 + 29*x^2 + 6*x -24)*(x + 1)^4;
760
761T[204,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3*(x )^16;
762T[204,3]=(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^2 + 2*x + 3)^2*(x^2 + 3)^3*(x -1)^8*(x + 1)^9;
763T[204,5]=(x + 1)*(x -1)*(x + 4)^2*(x^2 -12)^2*(x -3)^3*(x^2 -3*x -2)^3*(x )^6*(x + 2)^8;
764
765T[205,2]=(x -1)*(x^2 + x -1)*(x^3 -4*x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3)*(x + 1)^2*(x^3 + x^2 -5*x -1)^2;
766T[205,3]=(x )*(x + 1)^2*(x -2)^2*(x + 3)^2*(x^3 -2*x^2 -5*x + 2)^2*(x^3 -4*x + 2)^2;
767T[205,5]=(x^6 + 2*x^5 + 11*x^4 + 16*x^3 + 55*x^2 + 50*x + 125)*(x + 1)^6*(x -1)^7;
768
769T[206,2]=(x^12 -4*x^11 + 11*x^10 -23*x^9 + 43*x^8 -74*x^7 + 111*x^6 -148*x^5 + 172*x^4 -184*x^3 + 176*x^2 -128*x + 64)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x -1)^4*(x + 1)^5;
770T[206,3]=(x -2)*(x^2 + 3*x -1)*(x^2 -x -7)*(x^4 -2*x^3 -5*x^2 + 12*x -5)*(x^6 -13*x^4 + 40*x^2 -8*x -16)^2*(x + 1)^4;
771T[206,5]=(x -4)*(x^2 + 5*x + 3)*(x^2 -x -7)*(x^4 -7*x^2 + 6*x -1)*(x^2 + 3*x + 1)^2*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16)^2;
772
773T[207,2]=(x + 1)*(x^2 -x -1)*(x^2 -2*x -1)*(x^2 + 2*x -1)*(x -1)^2*(x^2 -5)^3*(x^2 + x -1)^3;
774T[207,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2*(x )^14;
775T[207,5]=(x^2 -4*x + 2)*(x^2 + 4*x + 2)*(x^2 -2*x -4)^2*(x )^3*(x^2 + 2*x -4)^5;
776
777T[208,2]=(x -1)*(x + 1)*(x )^21;
778T[208,3]=(x -3)*(x^2 + x -4)*(x + 1)^2*(x^2 -x -4)^2*(x + 3)^4*(x )^4*(x -1)^6;
779T[208,5]=(x^2 -3*x -2)^3*(x -2)^4*(x + 3)^5*(x + 1)^8;
780
781T[209,2]=(x^2 -2)*(x^5 -2*x^4 -6*x^3 + 10*x^2 + 5*x -4)*(x^7 + x^6 -14*x^5 -10*x^4 + 59*x^3 + 27*x^2 -66*x -30)*(x + 2)^2*(x )^3;
782T[209,3]=(x -1)*(x^2 + 2*x -1)*(x^5 -x^4 -9*x^3 + 11*x^2 + 7*x -1)*(x^7 -2*x^6 -14*x^5 + 28*x^4 + 46*x^3 -100*x^2 -17*x + 64)*(x + 1)^2*(x + 2)^2;
783T[209,5]=(x + 3)*(x^5 + 5*x^4 -3*x^3 -33*x^2 -9*x + 19)*(x^7 -2*x^6 -20*x^5 + 34*x^4 + 88*x^3 -156*x^2 + 57*x -6)*(x -3)^2*(x -1)^2*(x + 1)^2;
784
785T[210,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2)^2*(x^4 + x^3 + 2*x + 4)^2*(x^2 + x + 2)^4*(x -1)^7*(x + 1)^8;
786T[210,3]=(x^2 + 3)*(x^2 -x + 3)^2*(x^2 + 2*x + 3)^2*(x^4 + x^3 + 2*x^2 + 3*x + 9)^2*(x -1)^11*(x + 1)^12;
787T[210,5]=(x^2 + 5)^2*(x^2 + 2*x + 5)^3*(x + 1)^14*(x -1)^17;
788
789T[211,2]=(x^2 -x -1)*(x^3 -4*x + 1)*(x^3 + 2*x^2 -x -1)*(x^9 + x^8 -14*x^7 -11*x^6 + 66*x^5 + 36*x^4 -123*x^3 -38*x^2 + 72*x + 8);
790T[211,3]=(x^2 -3*x + 1)*(x^3 + x^2 -2*x -1)*(x^3 + 3*x^2 -x -4)*(x^9 + x^8 -20*x^7 -17*x^6 + 128*x^5 + 80*x^4 -292*x^3 -72*x^2 + 224*x -32);
791T[211,5]=(x^2 -2*x -4)*(x^3 + 5*x^2 + 2*x -4)*(x^3 + 8*x^2 + 19*x + 13)*(x^9 -15*x^8 + 83*x^7 -189*x^6 + 63*x^5 + 377*x^4 -410*x^3 + 10*x^2 + 51*x -3);
792
793T[212,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x -1)^2*(x + 1)^2*(x )^13;
794T[212,3]=(x^3 + 3*x^2 -3*x -7)*(x + 2)^2*(x -1)^2*(x + 3)^3*(x -2)^3*(x + 1)^3*(x^3 -3*x^2 -x + 1)^3;
795T[212,5]=(x -2)*(x + 2)*(x^3 -12*x -12)*(x -3)^2*(x + 4)^2*(x -1)^2*(x^3 + 2*x^2 -4*x -4)^3*(x )^5;
796
797T[213,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 + x -1)*(x^2 -x -3)*(x^4 -3*x^3 -2*x^2 + 7*x + 1)*(x^3 + x^2 -4*x -3)^2*(x^3 -5*x + 3)^2;
798T[213,3]=(x^6 -x^5 + 5*x^4 -3*x^3 + 15*x^2 -9*x + 27)*(x^6 + x^5 + x^4 + 3*x^3 + 3*x^2 + 9*x + 27)*(x -1)^5*(x + 1)^6;
799T[213,5]=(x -2)*(x^2 + 5*x + 5)*(x^2 -x -1)*(x^2 + x -3)*(x^4 + 3*x^3 -5*x^2 -4*x + 4)*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;
800
801T[214,2]=(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^14 + x^13 + 4*x^12 + 5*x^11 + 13*x^10 + 16*x^9 + 34*x^8 + 32*x^7 + 68*x^6 + 64*x^5 + 104*x^4 + 80*x^3 + 128*x^2 + 64*x + 128)*(x -1)^4*(x + 1)^4;
802T[214,3]=(x^2 -2*x -2)*(x^2 + 2*x -2)*(x + 2)^2*(x -1)^2*(x^2 + 3*x + 1)^2*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29)^2;
803T[214,5]=(x + 1)*(x + 3)*(x + 4)*(x^2 -3)*(x^2 -4*x + 1)*(x )*(x^2 + 3*x + 1)^2*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64)^2;
804
805T[215,2]=(x^5 -2*x^4 -7*x^3 + 13*x^2 + 5*x -4)*(x^6 -3*x^5 -5*x^4 + 17*x^3 + 3*x^2 -17*x -3)*(x^3 + 2*x^2 -3*x -3)*(x )*(x + 2)^2*(x^2 -2)^2;
806T[215,3]=(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 -4*x^5 -5*x^4 + 30*x^3 -20*x^2 + 1)*(x^3 -x^2 -4*x + 1)*(x )*(x + 2)^2*(x^2 -2)^2;
807T[215,5]=(x^2 + 4*x + 5)*(x^4 -4*x^3 + 12*x^2 -20*x + 25)*(x + 1)^7*(x -1)^8;
808
809T[216,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^21;
810T[216,3]=(x + 1)*(x )^24;
811T[216,5]=(x + 1)*(x + 4)*(x -4)*(x -1)*(x -2)^2*(x + 2)^3*(x + 3)^3*(x -3)^3*(x )^10;
812
813T[217,2]=(x^4 -5*x^2 + x + 1)*(x^5 -3*x^4 -5*x^3 + 16*x^2 + 6*x -19)*(x^2 -x -1)^2*(x^3 + 3*x^2 -3)^2;
814T[217,3]=(x^3 + 3*x^2 -3)*(x^3 + 3*x^2 -1)*(x^5 -3*x^4 -6*x^3 + 15*x^2 + 8*x -16)*(x^4 -3*x^3 -2*x^2 + 9*x -4)*(x^2 + 2*x -4)^2;
815T[217,5]=(x^3 + 6*x^2 + 9*x + 3)*(x^3 -9*x -9)*(x^5 -17*x^3 -5*x^2 + 56*x -4)*(x^4 -4*x^3 + x^2 + 5*x -2)*(x -1)^4;
816
817T[218,2]=(x^2 -x + 2)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^8 + x^7 + 3*x^6 + 2*x^5 + 7*x^4 + 4*x^3 + 12*x^2 + 8*x + 16)*(x + 1)^5*(x -1)^5;
818T[218,3]=(x + 2)*(x^2 -3*x + 1)*(x^2 + 4*x + 2)*(x^3 -3*x^2 -3*x + 8)*(x^2 + 2*x -2)*(x^3 + 4*x^2 + 3*x -1)^2*(x^4 -4*x^3 -x^2 + 15*x -8)^2*(x )^2;
819T[218,5]=(x + 3)*(x^2 -2*x -4)*(x^2 -2*x -1)*(x^3 + 3*x^2 -6*x -12)*(x^2 -3)*(x -3)^2*(x^3 + 6*x^2 + 5*x -13)^2*(x^4 -x^3 -5*x^2 + 4*x + 3)^2;
820
821T[219,2]=(x + 2)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x^6 + x^5 -9*x^4 -5*x^3 + 20*x^2 + 4*x -4)*(x )*(x^2 + 3*x + 1)^2*(x^2 -x -3)^2*(x -1)^3;
822T[219,3]=(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x^4 -x^3 + 3*x^2 -3*x + 9)*(x^2 + 3)*(x + 1)^6*(x -1)^7;
823T[219,5]=(x + 4)*(x + 3)*(x + 1)*(x^4 -9*x^3 + 25*x^2 -21*x + 2)*(x^6 -5*x^5 -7*x^4 + 49*x^3 + 20*x^2 -128*x -64)*(x -2)^2*(x^2 + x -3)^2*(x^2 + 3*x + 1)^2;
824
825T[220,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x )^16;
826T[220,3]=(x -2)*(x^2 + x -8)^2*(x + 2)^3*(x^2 -8)^3*(x )^3*(x -1)^6*(x + 1)^8;
827T[220,5]=(x^2 + 3*x + 5)*(x^2 -x + 5)^3*(x -1)^11*(x + 1)^12;
828
829T[221,2]=(x -1)*(x^2 -5)*(x^2 + x -1)*(x^3 -4*x + 1)*(x^6 -x^5 -9*x^4 + 6*x^3 + 19*x^2 -5*x -3)*(x^2 + x -5)*(x + 1)^3;
830T[221,3]=(x -2)*(x^2 -2*x -4)*(x^2 + 3*x + 1)*(x^3 + 3*x^2 -x -4)*(x^6 -x^5 -11*x^4 + 12*x^3 + 28*x^2 -36*x + 4)*(x^2 -x -5)*(x )^3;
831T[221,5]=(x -2)*(x -4)*(x^2 + 2*x -4)*(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x^6 + 2*x^5 -15*x^4 -16*x^3 + 60*x^2 -16*x -12)*(x + 2)^2*(x + 1)^2;
832
833T[222,2]=(x^6 -3*x^5 + 5*x^4 -7*x^3 + 10*x^2 -12*x + 8)*(x^8 + 2*x^6 + 2*x^5 + 5*x^4 + 4*x^3 + 8*x^2 + 16)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x -1)^6*(x + 1)^7;
834T[222,3]=(x^4 -3*x^3 + 5*x^2 -9*x + 9)*(x^4 + x^3 + 5*x^2 + 3*x + 9)*(x^2 + 3*x + 3)^2*(x^2 -x + 3)^2*(x + 1)^9*(x -1)^10;
835T[222,5]=(x -2)*(x -4)*(x + 4)*(x^2 -x -11)^2*(x^2 + x -3)^2*(x^3 -4*x^2 -4*x + 20)^2*(x^4 + 2*x^3 -8*x^2 + 4)^2*(x + 2)^4*(x )^6;
836
837T[223,2]=(x^2 + 2*x -1)*(x^4 + 4*x^3 + 2*x^2 -5*x -3)*(x^12 -7*x^11 + 6*x^10 + 57*x^9 -122*x^8 -105*x^7 + 430*x^6 -73*x^5 -499*x^4 + 242*x^3 + 143*x^2 -52*x -19);
838T[223,3]=(x^2 + 2*x -1)*(x^4 -4*x^2 + x + 1)*(x^12 -27*x^10 + 7*x^9 + 263*x^8 -131*x^7 -1091*x^6 + 816*x^5 + 1600*x^4 -1752*x^3 + 128*x^2 + 288*x -64);
839T[223,5]=(x^2 + 4*x + 2)*(x^4 + 3*x^3 -x^2 -7*x -3)*(x^12 -7*x^11 -11*x^10 + 157*x^9 -97*x^8 -1096*x^7 + 1354*x^6 + 2692*x^5 -3952*x^4 -1744*x^3 + 3200*x^2 -512*x -128);
840
841T[224,2]=(x + 1)*(x )^24;
842T[224,3]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x -2)^6*(x )^7*(x + 2)^8;
843T[224,5]=(x + 2)^2*(x^2 -2*x -4)^2*(x -2)^5*(x + 4)^5*(x )^9;
844
845T[225,2]=(x^2 -5)*(x )^2*(x -2)^3*(x + 2)^3*(x -1)^4*(x + 1)^5;
846T[225,3]=(x -1)^2*(x + 1)^3*(x )^14;
847T[225,5]=(x + 1)*(x -1)^2*(x )^16;
848
849T[226,2]=(x^2 + x + 2)*(x^6 + 2*x^5 + x^4 -x^3 + 2*x^2 + 8*x + 8)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^2 -x + 2)^2*(x + 1)^4*(x -1)^5;
850T[226,3]=(x + 2)*(x^2 -2)*(x^4 -2*x^3 -6*x^2 + 12*x -4)*(x -2)^2*(x^3 + 5*x^2 + 6*x + 1)^2*(x^3 + x^2 -4*x -1)^2*(x^2 -2*x -2)^3;
851T[226,5]=(x + 4)*(x^2 + 4*x + 2)*(x^4 -4*x^3 -4*x^2 + 16*x -4)*(x^2 -12)^2*(x^3 + x^2 -9*x -1)^2*(x -2)^4*(x + 1)^6;
852
853T[227,2]=(x^2 -5)*(x^3 + 2*x^2 -x -1)*(x^10 -17*x^8 -3*x^7 + 98*x^6 + 40*x^5 -218*x^4 -148*x^3 + 136*x^2 + 144*x