Sharedwww / tables / charpoly_s2_101-200.gpOpen in CoCalc
Author: William A. Stein
1
\\ charpoly_s2_101-200.gp
2
\\ This is a table of characteristic polynomials of the
3
\\ Hecke operators T_p acting on the space S_2(Gamma_0(N))
4
\\ of weight 2 cusp forms for Gamma_0(N).
5
\\ William Stein ([email protected]), September, 1998.
6
7
{
8
T=matrix(200,97,m,n,0);
9
T[101,2]=(x^7 -13*x^5 + 2*x^4 + 47*x^3 -16*x^2 -43*x + 14)*(x );
10
T[101,3]=(x + 2)*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68);
11
T[101,5]=(x + 1)*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67);
12
T[101,7]=(x + 2)*(x^7 -2*x^6 -25*x^5 + 66*x^4 + 90*x^3 -326*x^2 + 165*x + 14);
13
T[101,11]=(x + 2)*(x^7 -8*x^6 -x^5 + 114*x^4 -72*x^3 -554*x^2 + 213*x + 878);
14
T[101,13]=(x -1)*(x^7 + x^6 -45*x^5 -59*x^4 + 664*x^3 + 1066*x^2 -3203*x -6001);
15
T[101,17]=(x -3)*(x^7 + 7*x^6 -33*x^5 -221*x^4 + 460*x^3 + 2038*x^2 -2747*x -3871);
16
T[101,19]=(x + 5)*(x^7 -19*x^6 + 108*x^5 + 24*x^4 -2032*x^3 + 4400*x^2 + 5824*x -18880);
17
T[101,23]=(x -1)*(x^7 + 7*x^6 -48*x^5 -304*x^4 + 432*x^3 + 2160*x^2 -1536*x -64);
18
T[101,29]=(x + 4)*(x^7 + 2*x^6 -60*x^5 -88*x^4 + 880*x^3 + 1248*x^2 -2112*x -640);
19
T[101,31]=(x + 9)*(x^7 -7*x^6 -92*x^5 + 900*x^4 -1472*x^3 -3872*x^2 + 11712*x -7616);
20
T[101,37]=(x + 2)*(x^7 -123*x^5 -100*x^4 + 2990*x^3 + 696*x^2 -5103*x -918);
21
T[101,41]=(x -8)*(x^7 + 2*x^6 -160*x^5 -256*x^4 + 3840*x^3 + 10112*x^2 + 6144*x + 1024);
22
T[101,43]=(x + 8)*(x^7 -32*x^6 + 280*x^5 + 896*x^4 -25616*x^3 + 121024*x^2 -120256*x -235264);
23
T[101,47]=(x -7)*(x^7 + 13*x^6 -36*x^5 -1120*x^4 -4832*x^3 -4176*x^2 + 9792*x + 12096);
24
T[101,53]=(x + 2)*(x^7 + 8*x^6 -252*x^5 -2032*x^4 + 17408*x^3 + 146944*x^2 -210624*x -2213632);
25
T[101,59]=(x + 14)*(x^7 -16*x^6 -49*x^5 + 1128*x^4 + 1338*x^3 -11046*x^2 -1023*x + 18680);
26
T[101,61]=(x -4)*(x^7 + 6*x^6 -180*x^5 -472*x^4 + 7152*x^3 + 12448*x^2 -45760*x + 17792);
27
T[101,67]=(x -2)*(x^7 -34*x^6 + 349*x^5 + 68*x^4 -23296*x^3 + 149424*x^2 -337723*x + 183394);
28
T[101,71]=(x -13)*(x^7 -9*x^6 -200*x^5 + 1588*x^4 + 7248*x^3 -39904*x^2 -35840*x + 189632);
29
T[101,73]=(x -8)*(x^7 + 2*x^6 -128*x^5 -320*x^4 + 3968*x^3 + 13184*x^2 -17408*x -68608);
30
T[101,79]=(x + 9)*(x^7 -15*x^6 -148*x^5 + 3496*x^4 -15520*x^3 -10832*x^2 + 177152*x -244160);
31
T[101,83]=(x + 4)*(x^7 + 22*x^6 -149*x^5 -6456*x^4 -28804*x^3 + 332730*x^2 + 3151505*x + 7092412);
32
T[101,89]=(x -14)*(x^7 + 22*x^6 + 96*x^5 -464*x^4 -2128*x^3 + 5472*x^2 + 4672*x -10880);
33
T[101,97]=(x -2)*(x^7 + 28*x^6 + 25*x^5 -5628*x^4 -62530*x^3 -249976*x^2 -314503*x + 59842);
34
35
T[102,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3;
36
T[102,3]=(x^2 + 2*x + 3)*(x^2 + 3)^2*(x -1)^4*(x + 1)^5;
37
T[102,5]=(x + 4)*(x -3)^2*(x^2 -3*x -2)^2*(x )^3*(x + 2)^5;
38
T[102,7]=(x + 2)*(x -2)*(x -4)^4*(x + 4)^4*(x )^5;
39
T[102,11]=(x + 4)*(x + 3)^2*(x -6)^2*(x^2 + x -4)^2*(x )^6;
40
T[102,13]=(x + 6)*(x + 1)^2*(x^2 -5*x + 2)^2*(x -2)^3*(x + 2)^5;
41
T[102,17]=(x + 1)^6*(x -1)^9;
42
T[102,19]=(x -4)^2*(x + 1)^2*(x^2 -3*x -36)^2*(x + 4)^7;
43
T[102,23]=(x -6)*(x + 6)*(x -9)^2*(x^2 + 9*x + 16)^2*(x )^3*(x -4)^4;
44
T[102,29]=(x + 4)*(x + 10)*(x^2 -68)^2*(x )^3*(x -6)^6;
45
T[102,31]=(x + 10)*(x -8)*(x + 6)*(x -2)^2*(x + 4)^2*(x^2 + 2*x -16)^2*(x -4)^4;
46
T[102,37]=(x -8)*(x^2 + 2*x -16)^2*(x + 4)^5*(x + 2)^5;
47
T[102,41]=(x -10)*(x + 10)*(x + 3)^2*(x^2 + 3*x -2)^2*(x -6)^3*(x + 6)^4;
48
T[102,43]=(x -12)*(x -8)^2*(x + 7)^2*(x + 4)^2*(x^2 + 3*x -36)^2*(x -4)^4;
49
T[102,47]=(x -12)*(x -4)*(x + 6)^2*(x^2 + 14*x + 32)^2*(x )^7;
50
T[102,53]=(x + 2)*(x^2 -8*x -52)^2*(x + 6)^4*(x -6)^6;
51
T[102,59]=(x -12)^2*(x -6)^2*(x^2 -6*x -8)^2*(x )^2*(x + 12)^5;
52
T[102,61]=(x^2 -10*x + 8)^2*(x -8)^3*(x + 4)^3*(x + 10)^5;
53
T[102,67]=(x -8)^2*(x + 12)^2*(x + 4)^3*(x -4)^8;
54
T[102,71]=(x -6)*(x + 6)*(x -12)^2*(x^2 -4*x -64)^2*(x )^3*(x + 4)^4;
55
T[102,73]=(x -10)*(x^2 + 8*x -52)^2*(x + 6)^4*(x -2)^6;
56
T[102,79]=(x -10)*(x + 8)*(x -8)^2*(x^2 -6*x -144)^2*(x + 10)^3*(x -12)^4;
57
T[102,83]=(x + 12)*(x -4)*(x -12)*(x + 6)^2*(x^2 + 10*x + 8)^2*(x )^2*(x + 4)^4;
58
T[102,89]=(x + 18)*(x + 2)*(x^2 -6*x -8)^2*(x )^2*(x + 6)^3*(x -10)^4;
59
T[102,97]=(x + 14)*(x -6)*(x + 16)^2*(x^2 + 14*x + 32)^2*(x -14)^3*(x -2)^4;
60
61
T[103,2]=(x^2 + 3*x + 1)*(x^6 -4*x^5 -x^4 + 17*x^3 -9*x^2 -16*x + 11);
62
T[103,3]=(x^6 -13*x^4 + 40*x^2 -8*x -16)*(x + 1)^2;
63
T[103,5]=(x^2 + 3*x + 1)*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16);
64
T[103,7]=(x^6 + 2*x^5 -18*x^4 -26*x^3 + 74*x^2 + 66*x + 1)*(x + 1)^2;
65
T[103,11]=(x^2 + 3*x + 1)*(x^6 + x^5 -41*x^4 -68*x^3 + 416*x^2 + 968*x + 272);
66
T[103,13]=(x^2 + 3*x -9)*(x^6 + x^5 -28*x^4 + 53*x^3 + 20*x^2 -103*x + 55);
67
T[103,17]=(x^2 + 9*x + 19)*(x^6 -21*x^5 + 144*x^4 -253*x^3 -912*x^2 + 3211*x -1745);
68
T[103,19]=(x^2 -5*x -5)*(x^6 + 7*x^5 -8*x^4 -173*x^3 -508*x^2 -589*x -241);
69
T[103,23]=(x^2 -20)*(x^6 -12*x^5 -23*x^4 + 640*x^3 -947*x^2 -6592*x + 12268);
70
T[103,29]=(x^2 + 6*x + 4)*(x^6 -12*x^5 + 27*x^4 + 28*x^3 -39*x^2 + 2*x + 4);
71
T[103,31]=(x^2 -45)*(x^6 + 16*x^5 + 57*x^4 -150*x^3 -1020*x^2 -1272*x -400);
72
T[103,37]=(x^2 -45)*(x^6 -83*x^4 -322*x^3 -336*x^2 + 64*x + 176);
73
T[103,41]=(x^2 -80)*(x^6 -14*x^5 -37*x^4 + 1574*x^3 -9687*x^2 + 22344*x -15152);
74
T[103,43]=(x^2 + 4*x -41)*(x^6 + 6*x^5 -171*x^4 -1160*x^3 + 3720*x^2 + 19520*x -23984);
75
T[103,47]=(x^2 + 3*x -29)*(x^6 -x^5 -143*x^4 -352*x^3 + 3048*x^2 + 5456*x -22384);
76
T[103,53]=(x^2 + 9*x -11)*(x^6 -19*x^5 + 109*x^4 -194*x^3 -88*x^2 + 384*x -80);
77
T[103,59]=(x^2 -15*x + 55)*(x^6 -3*x^5 -164*x^4 + 281*x^3 + 7632*x^2 -2167*x -78173);
78
T[103,61]=(x^2 -15*x + 45)*(x^6 -x^5 -194*x^4 -273*x^3 + 3602*x^2 + 1459*x -2495);
79
T[103,67]=(x^2 -2*x -179)*(x^6 + 12*x^5 -33*x^4 -752*x^3 -1016*x^2 + 9792*x + 22576);
80
T[103,71]=(x^2 -3*x -29)*(x^6 + 27*x^5 + 139*x^4 -1346*x^3 -10956*x^2 -872*x + 83632);
81
T[103,73]=(x^2 + 15*x + 45)*(x^6 + 7*x^5 -61*x^4 -428*x^3 + 760*x^2 + 4728*x -4624);
82
T[103,79]=(x^2 -7*x -89)*(x^6 + 21*x^5 -12*x^4 -1983*x^3 -5824*x^2 + 9033*x + 5779);
83
T[103,83]=(x^2 -3*x -59)*(x^6 + 9*x^5 -66*x^4 -819*x^3 -1462*x^2 + 4245*x + 9637);
84
T[103,89]=(x^2 + 18*x + 36)*(x^6 + 14*x^5 -372*x^4 -5720*x^3 + 16224*x^2 + 490560*x + 1667776);
85
T[103,97]=(x^2 -10*x -20)*(x^6 + 8*x^5 -337*x^4 -1292*x^3 + 28941*x^2 + 58914*x -560468);
86
87
T[104,2]=(x + 1)*(x -1)*(x )^9;
88
T[104,3]=(x^2 -x -4)*(x )^2*(x + 3)^3*(x -1)^4;
89
T[104,5]=(x^2 -3*x -2)*(x -2)^2*(x + 3)^3*(x + 1)^4;
90
T[104,7]=(x -5)*(x^2 + x -4)*(x + 2)^2*(x -1)^3*(x + 1)^3;
91
T[104,11]=(x^2 + 2*x -16)*(x -6)^3*(x + 2)^6;
92
T[104,13]=(x -1)^5*(x + 1)^6;
93
T[104,17]=(x^2 + x -38)*(x -6)^2*(x + 3)^7;
94
T[104,19]=(x + 2)*(x^2 -2*x -16)*(x + 6)^2*(x -2)^3*(x -6)^3;
95
T[104,23]=(x -4)*(x -8)^2*(x + 8)^2*(x + 4)^3*(x )^3;
96
T[104,29]=(x + 6)*(x + 2)^2*(x -6)^3*(x -2)^5;
97
T[104,31]=(x -10)^2*(x + 4)^4*(x -4)^5;
98
T[104,37]=(x -11)*(x^2 -7*x -26)*(x + 6)^2*(x + 7)^3*(x -3)^3;
99
T[104,41]=(x -8)*(x^2 -2*x -16)*(x + 6)^2*(x )^6;
100
T[104,43]=(x^2 -15*x + 52)*(x -4)^2*(x + 5)^3*(x + 1)^4;
101
T[104,47]=(x -9)*(x^2 + 13*x + 4)*(x + 2)^2*(x -3)^3*(x -13)^3;
102
T[104,53]=(x + 12)*(x^2 + 2*x -16)*(x -6)^2*(x -12)^3*(x )^3;
103
T[104,59]=(x -6)*(x^2 -2*x -16)*(x + 6)^3*(x + 10)^5;
104
T[104,61]=(x^2 -14*x + 32)*(x )*(x + 2)^2*(x + 8)^3*(x -8)^3;
105
T[104,67]=(x -6)*(x^2 + 2*x -16)*(x -10)^2*(x -14)^3*(x + 2)^3;
106
T[104,71]=(x -7)*(x^2 + 3*x -36)*(x -10)^2*(x + 3)^3*(x + 5)^3;
107
T[104,73]=(x + 2)*(x + 6)^2*(x + 10)^3*(x -2)^5;
108
T[104,79]=(x -12)*(x + 4)^5*(x -8)^5;
109
T[104,83]=(x + 16)*(x^2 + 12*x -32)*(x + 6)^2*(x -12)^3*(x )^3;
110
T[104,89]=(x + 10)*(x -10)^2*(x -6)^3*(x + 6)^5;
111
T[104,97]=(x^2 -68)*(x -2)^2*(x -14)^3*(x + 10)^4;
112
113
T[105,2]=(x -1)*(x^2 -5)*(x^2 + x -4)^2*(x )^2*(x + 1)^4;
114
T[105,3]=(x^2 -x + 3)*(x^4 + x^3 + 2*x^2 + 3*x + 9)*(x -1)^3*(x + 1)^4;
115
T[105,5]=(x^2 + 2*x + 5)*(x + 1)^4*(x -1)^7;
116
T[105,7]=(x^2 + 7)*(x -1)^5*(x + 1)^6;
117
T[105,11]=(x^2 -4*x -16)*(x )*(x -4)^2*(x + 4)^2*(x + 3)^2*(x^2 -x -4)^2;
118
T[105,13]=(x + 6)*(x^2 -20)*(x -5)^2*(x^2 -5*x + 2)^2*(x + 2)^4;
119
T[105,17]=(x + 6)^2*(x + 2)^2*(x -3)^2*(x^2 + 5*x + 2)^2*(x -2)^3;
120
T[105,19]=(x + 8)*(x^2 -4*x -16)*(x -2)^2*(x^2 + 6*x -8)^2*(x -4)^4;
121
T[105,23]=(x -8)*(x + 6)^2*(x -4)^2*(x^2 + 2*x -16)^2*(x )^4;
122
T[105,29]=(x -3)^2*(x^2 -x -38)^2*(x + 2)^7;
123
T[105,31]=(x -4)*(x^2 -12*x + 16)*(x + 4)^2*(x )^8;
124
T[105,37]=(x + 2)*(x^2 -4*x -76)*(x + 10)^2*(x -2)^2*(x -6)^6;
125
T[105,41]=(x + 6)*(x + 12)^2*(x + 2)^2*(x -2)^2*(x -10)^2*(x^2 -2*x -16)^2;
126
T[105,43]=(x^2 -80)*(x + 10)^2*(x + 4)^2*(x^2 -10*x + 8)^2*(x -4)^3;
127
T[105,47]=(x^2 -8*x -64)*(x -9)^2*(x^2 + 5*x -32)^2*(x )^2*(x -8)^3;
128
T[105,53]=(x -10)*(x^2 + 16*x + 44)*(x -6)^2*(x -12)^2*(x + 10)^2*(x^2 + 2*x -16)^2;
129
T[105,59]=(x -4)*(x^2 -80)*(x -12)^2*(x )^2*(x + 4)^6;
130
T[105,61]=(x -8)^2*(x^2 -6*x -144)^2*(x + 2)^7;
131
T[105,67]=(x -12)^2*(x^2 -4*x -64)^2*(x -4)^3*(x + 4)^4;
132
T[105,71]=(x + 12)*(x^2 -20*x + 80)*(x + 8)^2*(x -8)^4*(x )^4;
133
T[105,73]=(x + 2)*(x^2 + 16*x + 44)*(x -10)^2*(x -2)^2*(x + 6)^2*(x^2 + 8*x -52)^2;
134
T[105,79]=(x -8)*(x^2 -8*x -64)*(x + 16)^2*(x + 1)^2*(x^2 + 9*x + 16)^2*(x )^2;
135
T[105,83]=(x + 4)*(x^2 + 16*x -16)*(x + 12)^2*(x -12)^4*(x -4)^4;
136
T[105,89]=(x + 14)^2*(x + 2)^2*(x + 12)^2*(x^2 -6*x -8)^2*(x + 6)^3;
137
T[105,97]=(x + 18)*(x^2 -8*x -4)*(x + 1)^2*(x -18)^2*(x -2)^2*(x^2 + 9*x -86)^2;
138
139
T[106,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x + 1)^2*(x -1)^2;
140
T[106,3]=(x + 1)*(x -1)*(x -2)*(x + 2)*(x + 3)^2*(x^3 -3*x^2 -x + 1)^2;
141
T[106,5]=(x + 4)*(x -3)*(x -1)*(x^3 + 2*x^2 -4*x -4)^2*(x )^3;
142
T[106,7]=(x + 2)*(x -2)*(x )*(x^3 -4*x^2 + 4)^2*(x + 4)^3;
143
T[106,11]=(x -5)*(x + 4)*(x + 3)*(x^3 + 4*x^2 -4*x -20)^2*(x )^3;
144
T[106,13]=(x -5)*(x + 3)^2*(x + 4)^2*(x -1)^7;
145
T[106,17]=(x -5)*(x -3)^2*(x^3 + 5*x^2 -5*x -17)^2*(x + 3)^3;
146
T[106,19]=(x + 1)*(x + 7)*(x + 5)^2*(x + 4)^2*(x^3 -11*x^2 + 37*x -37)^2;
147
T[106,23]=(x + 3)*(x + 9)*(x -1)*(x -3)*(x -7)^2*(x^3 -3*x^2 -31*x -29)^2;
148
T[106,29]=(x -5)*(x + 6)*(x -6)*(x -9)*(x + 7)^2*(x^3 + 5*x^2 -37*x -61)^2;
149
T[106,31]=(x -7)*(x -5)*(x + 4)^2*(x -4)^2*(x^3 + 2*x^2 -76*x + 116)^2;
150
T[106,37]=(x -1)*(x + 6)*(x + 10)*(x^3 + 5*x^2 -89*x -353)^2*(x -5)^3;
151
T[106,41]=(x -2)*(x + 10)*(x^3 + 10*x^2 + 20*x -8)^2*(x -6)^4;
152
T[106,43]=(x + 1)*(x -7)*(x + 10)^2*(x + 2)^2*(x^3 -18*x^2 + 24*x + 556)^2;
153
T[106,47]=(x -4)*(x -6)*(x + 6)*(x )*(x + 2)^2*(x^3 + 10*x^2 -4*x -8)^2;
154
T[106,53]=(x + 1)^5*(x -1)^7;
155
T[106,59]=(x -15)*(x -6)*(x + 6)*(x -7)*(x + 2)^2*(x^3 -2*x^2 -60*x + 200)^2;
156
T[106,61]=(x -4)*(x -2)*(x + 10)*(x -8)*(x + 8)^2*(x^3 + 10*x^2 -56*x -556)^2;
157
T[106,67]=(x -4)*(x -16)*(x + 4)^2*(x + 12)^2*(x^3 -6*x^2 -72*x -108)^2;
158
T[106,71]=(x + 3)*(x -15)*(x -1)^2*(x -12)^2*(x^3 + 5*x^2 -105*x + 277)^2;
159
T[106,73]=(x + 12)*(x -8)*(x + 8)*(x^3 -6*x^2 -28*x -4)^2*(x + 4)^3;
160
T[106,79]=(x + 7)*(x -11)*(x + 13)*(x -1)*(x + 1)^2*(x^3 + 7*x^2 -77*x + 131)^2;
161
T[106,83]=(x + 6)*(x + 3)*(x -3)*(x + 14)*(x + 1)^2*(x^3 -27*x^2 + 213*x -457)^2;
162
T[106,89]=(x -2)*(x -17)*(x -18)*(x -9)*(x + 14)^2*(x^3 + 2*x^2 -212*x + 1048)^2;
163
T[106,97]=(x -17)*(x + 7)*(x -3)*(x + 13)*(x -1)^2*(x^3 + x^2 -133*x -137)^2;
164
165
T[107,2]=(x^2 + x -1)*(x^7 + x^6 -10*x^5 -7*x^4 + 29*x^3 + 12*x^2 -20*x -8);
166
T[107,3]=(x^2 + 3*x + 1)*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29);
167
T[107,5]=(x^2 + 3*x + 1)*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64);
168
T[107,7]=(x^2 + 4*x -1)*(x^7 -4*x^6 -23*x^5 + 114*x^4 -32*x^3 -360*x^2 + 448*x -128);
169
T[107,11]=(x^2 -4*x -1)*(x^7 + 2*x^6 -41*x^5 -95*x^4 + 361*x^3 + 950*x^2 + 519*x + 47);
170
T[107,13]=(x^7 -18*x^6 + 98*x^5 + x^4 -1649*x^3 + 4855*x^2 -3548*x -1244)*(x + 6)^2;
171
T[107,17]=(x^2 + 3*x + 1)*(x^7 + x^6 -41*x^5 -16*x^4 + 488*x^3 + 32*x^2 -1536*x -512);
172
T[107,19]=(x^2 -2*x -44)*(x^7 + 4*x^6 -52*x^5 -137*x^4 + 391*x^3 + 951*x^2 -694*x -1636);
173
T[107,23]=(x^2 -6*x -11)*(x^7 -123*x^5 -41*x^4 + 4295*x^3 + 1802*x^2 -34533*x + 21431);
174
T[107,29]=(x^2 + 2*x -19)*(x^7 + 3*x^6 -94*x^5 -382*x^4 + 1077*x^3 + 4927*x^2 -1896*x -11828);
175
T[107,31]=(x^2 + 2*x -19)*(x^7 -4*x^6 -45*x^5 + 224*x^4 -84*x^3 -576*x^2 + 320*x + 256);
176
T[107,37]=(x^2 + 13*x + 31)*(x^7 -25*x^6 + 219*x^5 -659*x^4 -1042*x^3 + 10321*x^2 -20000*x + 12113);
177
T[107,41]=(x^2 -10*x + 20)*(x^7 -82*x^5 + 155*x^4 + 893*x^3 -1965*x^2 -394*x + 724);
178
T[107,43]=(x^2 -9*x + 9)*(x^7 -11*x^6 -79*x^5 + 1026*x^4 + 140*x^3 -23568*x^2 + 59040*x -21856);
179
T[107,47]=(x^2 + 14*x + 44)*(x^7 + 9*x^6 -107*x^5 -1361*x^4 -2306*x^3 + 14076*x^2 + 30432*x -30848);
180
T[107,53]=(x^2 + 6*x -71)*(x^7 -8*x^6 -125*x^5 + 435*x^4 + 5683*x^3 -150*x^2 -79775*x -143149);
181
T[107,59]=(x^2 -3*x -99)*(x^7 + 19*x^6 + 81*x^5 -538*x^4 -6064*x^3 -21232*x^2 -31888*x -16736);
182
T[107,61]=(x^2 + 13*x + 31)*(x^7 -25*x^6 + 111*x^5 + 1195*x^4 -9280*x^3 + 2653*x^2 + 86150*x -123049);
183
T[107,67]=(x^2 + 10*x + 20)*(x^7 + 24*x^6 + 44*x^5 -3400*x^4 -36896*x^3 -136864*x^2 -88704*x + 333056);
184
T[107,71]=(x^2 + 3*x -99)*(x^7 + 19*x^6 -165*x^5 -4948*x^4 -15804*x^3 + 174696*x^2 + 1073984*x + 1370816);
185
T[107,73]=(x^2 + 8*x -29)*(x^7 -30*x^6 + 101*x^5 + 3540*x^4 -21896*x^3 -74968*x^2 + 357776*x + 79712);
186
T[107,79]=(x^2 -x -11)*(x^7 + 21*x^6 + 131*x^5 -13*x^4 -2664*x^3 -6337*x^2 + 5306*x + 19859);
187
T[107,83]=(x^2 -3*x -9)*(x^7 -12*x^6 -395*x^5 + 5505*x^4 + 25518*x^3 -554561*x^2 + 1427088*x + 2420672);
188
T[107,89]=(x^2 -20*x + 95)*(x^7 + 22*x^6 -87*x^5 -3053*x^4 -1107*x^3 + 33866*x^2 -27103*x -14123);
189
T[107,97]=(x^2 + 12*x -9)*(x^7 + 4*x^6 -207*x^5 -414*x^4 + 10036*x^3 + 8368*x^2 -124544*x + 139424);
190
191
T[108,2]=(x + 1)*(x -1)*(x^2 + 2)*(x )^6;
192
T[108,3]=(x )^10;
193
T[108,5]=(x + 3)^2*(x -3)^2*(x )^6;
194
T[108,7]=(x -5)*(x + 4)^2*(x + 1)^7;
195
T[108,11]=(x + 3)^2*(x -3)^2*(x )^6;
196
T[108,13]=(x + 7)*(x -2)^2*(x -5)^3*(x + 4)^4;
197
T[108,17]=(x )^10;
198
T[108,19]=(x + 1)*(x -8)^2*(x + 7)^3*(x -2)^4;
199
T[108,23]=(x -6)^2*(x + 6)^2*(x )^6;
200
T[108,29]=(x -6)^2*(x + 6)^2*(x )^6;
201
T[108,31]=(x -5)^4*(x + 4)^6;
202
T[108,37]=(x + 1)*(x + 10)^2*(x -11)^3*(x -2)^4;
203
T[108,41]=(x -6)^2*(x + 6)^2*(x )^6;
204
T[108,43]=(x + 10)^4*(x -8)^6;
205
T[108,47]=(x + 6)^2*(x -6)^2*(x )^6;
206
T[108,53]=(x -9)^2*(x + 9)^2*(x )^6;
207
T[108,59]=(x + 12)^2*(x -12)^2*(x )^6;
208
T[108,61]=(x + 13)*(x -14)^2*(x + 1)^3*(x -8)^4;
209
T[108,67]=(x -11)*(x + 16)^2*(x -5)^3*(x -14)^4;
210
T[108,71]=(x )^10;
211
T[108,73]=(x -17)*(x + 10)^2*(x + 7)^7;
212
T[108,79]=(x + 13)*(x + 4)^2*(x -17)^3*(x -8)^4;
213
T[108,83]=(x + 3)^2*(x -3)^2*(x )^6;
214
T[108,89]=(x -18)^2*(x + 18)^2*(x )^6;
215
T[108,97]=(x -5)*(x -14)^2*(x + 19)^3*(x + 1)^4;
216
217
T[109,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^4 + x^3 -5*x^2 -4*x + 3);
218
T[109,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -4*x^3 -x^2 + 15*x -8)*(x );
219
T[109,5]=(x -3)*(x^3 + 6*x^2 + 5*x -13)*(x^4 -x^3 -5*x^2 + 4*x + 3);
220
T[109,7]=(x -2)*(x^3 + x^2 -16*x + 13)*(x^4 + 3*x^3 -10*x^2 -23*x -2);
221
T[109,11]=(x -1)*(x^3 + 13*x^2 + 54*x + 71)*(x^4 -12*x^3 + 33*x^2 + 47*x -177);
222
T[109,13]=(x^3 + x^2 -16*x + 13)*(x^4 + 7*x^3 -10*x^2 -93*x + 16)*(x );
223
T[109,17]=(x + 8)*(x^3 -3*x^2 -4*x + 13)*(x^4 -11*x^3 + 10*x^2 + 215*x -576);
224
T[109,19]=(x + 5)*(x^3 + 5*x^2 -8*x -41)*(x^4 -10*x^3 + 27*x^2 + 3*x -59);
225
T[109,23]=(x -7)*(x^3 -x^2 -58*x -13)*(x^4 + 2*x^3 -31*x^2 -43*x + 177);
226
T[109,29]=(x + 5)*(x^3 + 6*x^2 -37*x -181)*(x^4 -x^3 -59*x^2 + 154*x -57);
227
T[109,31]=(x -6)*(x^3 + 7*x^2 -28*x + 7)*(x^4 + 5*x^3 -22*x^2 -69*x + 158);
228
T[109,37]=(x -2)*(x^3 -7*x -7)*(x^4 + 12*x^3 -65*x^2 -1031*x -2038);
229
T[109,41]=(x -2)*(x^3 + 6*x^2 -51*x + 71)*(x^4 -12*x^3 + 47*x^2 -61*x + 6);
230
T[109,43]=(x + 4)*(x^3 -9*x^2 -36*x + 351)*(x^4 -5*x^3 -40*x^2 + 75*x + 388);
231
T[109,47]=(x -9)*(x^3 + 10*x^2 -25*x -125)*(x^4 + x^3 -5*x^2 -4*x + 3);
232
T[109,53]=(x -12)*(x^3 -9*x^2 + 20*x -13)*(x^4 + 19*x^3 -24*x^2 -1351*x -684);
233
T[109,59]=(x -12)*(x^3 + 25*x^2 + 192*x + 461)*(x^4 -27*x^3 + 216*x^2 -513*x + 324);
234
T[109,61]=(x + 5)*(x^3 + 10*x^2 -144*x -1336)*(x^4 + 7*x^3 -102*x^2 + 72*x + 216);
235
T[109,67]=(x + 12)*(x^3 + 11*x^2 -25*x -43)*(x^4 -7*x^3 -53*x^2 + 455*x -772);
236
T[109,71]=(x + 6)*(x^3 + 10*x^2 -11*x -223)*(x^4 -32*x^3 + 209*x^2 + 1843*x -17298);
237
T[109,73]=(x + 5)*(x^3 -20*x^2 + 131*x -281)*(x^4 + 9*x^3 -77*x^2 -710*x -997);
238
T[109,79]=(x -8)*(x^3 + 6*x^2 -79*x -461)*(x^4 + 24*x^3 + 65*x^2 -935*x + 1264);
239
T[109,83]=(x + 2)*(x^3 + 13*x^2 -2*x -139)*(x^4 -21*x^3 + 80*x^2 + 301*x -534);
240
T[109,89]=(x -1)*(x^3 + 21*x^2 + 84*x + 91)*(x^4 + 16*x^3 -29*x^2 -349*x + 513);
241
T[109,97]=(x -1)*(x^3 + 20*x^2 + 75*x -125)*(x^4 + 11*x^3 -45*x^2 -96*x -23);
242
243
T[110,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3;
244
T[110,3]=(x^2 + x -8)*(x -1)^2*(x^2 -8)^2*(x )^2*(x + 1)^5;
245
T[110,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;
246
T[110,7]=(x -5)*(x + 1)*(x -3)*(x^2 -x -8)*(x )^2*(x + 2)^8;
247
T[110,11]=(x + 1)^5*(x -1)^10;
248
T[110,13]=(x + 6)*(x^2 + 8*x + 8)^2*(x -4)^4*(x -2)^6;
249
T[110,17]=(x -3)*(x + 3)*(x + 7)*(x^2 + 3*x -6)*(x -6)^2*(x^2 -8*x + 8)^2*(x + 2)^4;
250
T[110,19]=(x + 1)*(x + 7)*(x -5)*(x^2 -7*x + 4)*(x + 4)^2*(x )^8;
251
T[110,23]=(x -6)*(x^2 + 6*x -24)*(x -4)^2*(x + 6)^2*(x^2 -8)^2*(x + 1)^4;
252
T[110,29]=(x + 9)*(x + 3)*(x -5)*(x^2 + 3*x -6)*(x -6)^2*(x^2 -4*x -28)^2*(x )^4;
253
T[110,31]=(x -5)*(x + 7)*(x + 3)*(x^2 -x -8)*(x + 8)^2*(x -7)^4*(x )^4;
254
T[110,37]=(x + 7)*(x -5)*(x^2 -13*x + 34)*(x + 2)^2*(x^2 + 4*x -28)^2*(x -3)^5;
255
T[110,41]=(x + 6)*(x^2 -132)*(x -2)^3*(x + 8)^4*(x -6)^5;
256
T[110,43]=(x + 4)^2*(x -8)^2*(x -4)^3*(x + 6)^8;
257
T[110,47]=(x + 2)*(x^2 + 6*x -24)*(x -6)^2*(x + 12)^2*(x^2 -8)^2*(x -8)^4;
258
T[110,53]=(x + 1)*(x -9)*(x + 3)*(x^2 -9*x -54)*(x + 2)^2*(x^2 -12*x + 4)^2*(x + 6)^4;
259
T[110,59]=(x -6)*(x + 6)*(x + 10)*(x^2 -6*x -24)*(x -4)^2*(x^2 + 8*x -16)^2*(x -5)^4;
260
T[110,61]=(x -5)*(x + 1)*(x -7)*(x^2 + 5*x -2)*(x + 10)^2*(x^2 -4*x -124)^2*(x -12)^4;
261
T[110,67]=(x + 16)^2*(x^2 -8*x -56)^2*(x + 7)^4*(x -8)^5;
262
T[110,71]=(x -7)*(x -3)*(x + 9)*(x^2 -3*x -72)*(x -8)^2*(x^2 -128)^2*(x + 3)^4;
263
T[110,73]=(x -2)*(x + 10)*(x^2 + 8*x -116)*(x^2 + 8*x + 8)^2*(x -14)^3*(x -4)^4;
264
T[110,79]=(x -10)*(x -14)*(x^2 + 14*x + 16)*(x -8)^2*(x -4)^4*(x + 10)^5;
265
T[110,83]=(x^2 -6*x -24)*(x + 4)^2*(x + 6)^11;
266
T[110,89]=(x -9)*(x^2 -3*x -6)*(x + 15)^2*(x -10)^2*(x^2 + 4*x -124)^2*(x -15)^4;
267
T[110,97]=(x + 12)*(x -8)*(x + 4)*(x^2 + 14*x + 16)*(x -10)^2*(x^2 + 4*x -28)^2*(x + 7)^4;
268
269
T[111,2]=(x^3 -3*x^2 -x + 5)*(x^4 -6*x^2 + 2*x + 5)*(x + 2)^2*(x )^2;
270
T[111,3]=(x^2 + 3*x + 3)*(x^2 -x + 3)*(x + 1)^3*(x -1)^4;
271
T[111,5]=(x^3 -4*x^2 -4*x + 20)*(x^4 + 2*x^3 -8*x^2 + 4)*(x + 2)^2*(x )^2;
272
T[111,7]=(x^3 + 4*x^2 -8*x -16)*(x^4 -4*x^3 -16*x^2 + 64*x -16)*(x + 1)^4;
273
T[111,11]=(x^3 -4*x^2 -16*x + 32)*(x^4 -32*x^2 -32*x + 64)*(x -3)^2*(x + 5)^2;
274
T[111,13]=(x^3 + 2*x^2 -20*x -8)*(x^4 -4*x^3 -32*x^2 + 144*x -80)*(x + 4)^2*(x + 2)^2;
275
T[111,17]=(x^3 -4*x^2 -28*x + 116)*(x^4 + 2*x^3 -24*x^2 -72*x -28)*(x -6)^2*(x )^2;
276
T[111,19]=(x^3 + 8*x^2 + 8*x -16)*(x^4 -8*x^3 -8*x^2 + 144*x -224)*(x -2)^2*(x )^2;
277
T[111,23]=(x^3 + 2*x^2 -4*x -4)*(x^4 + 10*x^3 -32*x^2 -296*x + 652)*(x -2)^2*(x -6)^2;
278
T[111,29]=(x^3 -16*x^2 + 76*x -92)*(x^4 + 2*x^3 -56*x^2 -40*x + 724)*(x -6)^2*(x + 6)^2;
279
T[111,31]=(x^3 + 8*x^2 -32*x -272)*(x^4 -4*x^3 -16*x^2 + 16*x + 32)*(x + 4)^4;
280
T[111,37]=(x -1)^5*(x + 1)^6;
281
T[111,41]=(x^4 -12*x^3 + 304*x -400)*(x -6)^3*(x + 9)^4;
282
T[111,43]=(x^3 + 12*x^2 + 32*x -16)*(x^4 -4*x^3 -128*x^2 + 176*x + 3424)*(x -2)^2*(x -8)^2;
283
T[111,47]=(x^3 + 4*x^2 -48*x -64)*(x^4 + 12*x^3 + 16*x^2 -128*x -128)*(x -3)^2*(x + 9)^2;
284
T[111,53]=(x^3 + 6*x^2 -100*x -632)*(x^4 -8*x^3 -56*x^2 + 320*x + 464)*(x -1)^2*(x + 3)^2;
285
T[111,59]=(x^3 -6*x^2 -36*x + 108)*(x^4 + 10*x^3 -176*x^2 -2416*x -7156)*(x -12)^2*(x -8)^2;
286
T[111,61]=(x^4 + 8*x^3 -72*x^2 -480*x + 656)*(x + 8)^2*(x -8)^2*(x + 2)^3;
287
T[111,67]=(x^3 + 16*x^2 + 24*x -16)*(x^4 + 4*x^3 -16*x^2 -64*x -16)*(x -8)^2*(x + 4)^2;
288
T[111,71]=(x^3 -12*x^2 -16*x + 320)*(x^4 + 12*x^3 -48*x^2 -512*x + 1664)*(x -9)^2*(x + 15)^2;
289
T[111,73]=(x^3 + 6*x^2 -4*x -8)*(x^4 -12*x^3 -8*x^2 + 176*x -32)*(x + 1)^2*(x -11)^2;
290
T[111,79]=(x^3 -12*x^2 -72*x + 400)*(x^4 + 8*x^3 -56*x^2 -656*x -1504)*(x -4)^2*(x + 10)^2;
291
T[111,83]=(x^3 -112*x -416)*(x^4 + 20*x^3 + 112*x^2 + 192*x + 64)*(x -9)^2*(x + 15)^2;
292
T[111,89]=(x^3 + 4*x^2 -108*x -52)*(x^4 -26*x^3 + 128*x^2 + 944*x -5452)*(x -6)^2*(x -4)^2;
293
T[111,97]=(x^3 + 14*x^2 + 28*x -152)*(x^4 + 4*x^3 -272*x^2 -464*x + 17008)*(x -4)^2*(x -8)^2;
294
295
T[112,2]=(x + 1)*(x )^10;
296
T[112,3]=(x -2)^3*(x )^3*(x + 2)^5;
297
T[112,5]=(x + 4)^3*(x -2)^3*(x )^5;
298
T[112,7]=(x + 1)^4*(x -1)^7;
299
T[112,11]=(x -4)*(x + 4)^2*(x )^8;
300
T[112,13]=(x -2)^3*(x )^3*(x + 4)^5;
301
T[112,17]=(x + 6)^3*(x + 2)^3*(x -6)^5;
302
T[112,19]=(x + 8)*(x -8)^2*(x + 2)^3*(x -2)^5;
303
T[112,23]=(x + 8)*(x -8)^2*(x )^8;
304
T[112,29]=(x -2)^3*(x -6)^3*(x + 6)^5;
305
T[112,31]=(x + 8)*(x -8)^2*(x -4)^3*(x + 4)^5;
306
T[112,37]=(x + 6)^3*(x + 2)^3*(x -2)^5;
307
T[112,41]=(x + 2)^3*(x -2)^3*(x -6)^5;
308
T[112,43]=(x -4)*(x + 4)^2*(x + 8)^2*(x -8)^6;
309
T[112,47]=(x -8)*(x -4)*(x -12)*(x + 4)^2*(x + 8)^2*(x + 12)^4;
310
T[112,53]=(x + 10)^3*(x -6)^8;
311
T[112,59]=(x -6)^3*(x )^3*(x + 6)^5;
312
T[112,61]=(x -4)^3*(x + 6)^3*(x -8)^5;
313
T[112,67]=(x -12)*(x + 12)^2*(x -4)^2*(x + 4)^6;
314
T[112,71]=(x -8)*(x + 8)^2*(x )^8;
315
T[112,73]=(x + 14)^3*(x -10)^3*(x -2)^5;
316
T[112,79]=(x + 16)*(x -16)^2*(x + 8)^3*(x -8)^5;
317
T[112,83]=(x + 8)*(x -8)^2*(x -6)^3*(x + 6)^5;
318
T[112,89]=(x -10)^3*(x + 6)^8;
319
T[112,97]=(x + 2)^3*(x + 6)^3*(x + 10)^5;
320
321
T[113,2]=(x + 1)*(x^3 + 2*x^2 -5*x -9)*(x^3 + 2*x^2 -x -1)*(x -1)^2;
322
T[113,3]=(x -2)*(x^2 -2*x -2)*(x^3 + x^2 -4*x -1)*(x^3 + 5*x^2 + 6*x + 1);
323
T[113,5]=(x -2)*(x^2 -12)*(x^3 + x^2 -9*x -1)*(x + 1)^3;
324
T[113,7]=(x^3 -6*x^2 + 3*x + 9)*(x^3 + 10*x^2 + 31*x + 29)*(x )*(x -4)^2;
325
T[113,11]=(x^2 + 4*x -8)*(x^3 -2*x^2 -3*x + 3)*(x^3 -2*x^2 -15*x -13)*(x );
326
T[113,13]=(x -2)*(x^2 + 4*x -8)*(x^3 -8*x^2 + 17*x -7)*(x^3 + 8*x^2 + 5*x -43);
327
T[113,17]=(x + 6)*(x^3 -10*x^2 + 21*x -9)*(x^3 + 2*x^2 -29*x + 13)*(x + 2)^2;
328
T[113,19]=(x -6)*(x^2 + 6*x + 6)*(x^3 + 4*x^2 -11*x -1)*(x^3 -4*x^2 -45*x + 177);
329
T[113,23]=(x + 6)*(x^2 -2*x -2)*(x^3 + 6*x^2 -9*x -27)*(x^3 -4*x^2 -15*x -9);
330
T[113,29]=(x + 6)*(x^2 -8*x + 4)*(x^3 -5*x^2 -22*x + 97)*(x^3 + 7*x^2 + 12*x + 3);
331
T[113,31]=(x + 4)*(x^2 -4*x -8)*(x^3 -9*x^2 + 18*x + 1)*(x^3 + 15*x^2 + 26*x -211);
332
T[113,37]=(x -2)*(x^2 + 8*x + 4)*(x^3 -8*x^2 -61*x + 389)*(x^3 + 2*x^2 -71*x -113);
333
T[113,41]=(x + 2)*(x^2 + 4*x -8)*(x^3 -x^2 -16*x + 29)*(x^3 + 7*x^2 -68*x -63);
334
T[113,43]=(x -6)*(x^2 -6*x -66)*(x^3 -12*x^2 + 21*x -9)*(x^3 + 2*x^2 -29*x + 13);
335
T[113,47]=(x -6)*(x^2 -6*x -18)*(x^3 + 7*x^2 -28*x + 7)*(x^3 -9*x^2 -6*x + 81);
336
T[113,53]=(x -10)*(x^2 + 12*x + 24)*(x^3 + 5*x^2 -64*x + 29)*(x^3 + 21*x^2 + 120*x + 101);
337
T[113,59]=(x -6)*(x^2 -6*x -18)*(x^3 + 9*x^2 -42*x -369)*(x^3 -15*x^2 + 26*x + 169);
338
T[113,61]=(x -6)*(x^2 -12*x -12)*(x^3 + 21*x^2 + 108*x + 81)*(x^3 + 21*x^2 + 140*x + 301);
339
T[113,67]=(x -2)*(x^2 + 10*x + 22)*(x^3 -5*x^2 -36*x -43)*(x^3 + 3*x^2 -156*x -869);
340
T[113,71]=(x + 6)*(x^2 + 10*x + 22)*(x^3 -14*x^2 + 392)*(x^3 -22*x^2 + 144*x -264);
341
T[113,73]=(x -2)*(x^2 -4*x -188)*(x^3 + x^2 -40*x -109)*(x^3 + 11*x^2 -46*x + 41);
342
T[113,79]=(x -10)*(x^2 -10*x -50)*(x^3 -x^2 -40*x + 109)*(x^3 + 5*x^2 -50*x -125);
343
T[113,83]=(x + 4)*(x^2 -192)*(x^3 -14*x^2 + 63*x -91)*(x^3 -2*x^2 -193*x + 413);
344
T[113,89]=(x + 14)*(x^2 -12*x -12)*(x^3 + 6*x^2 -147*x + 401)*(x^3 + 16*x^2 -29*x -841);
345
T[113,97]=(x + 14)*(x^3 -12*x^2 -33*x + 287)*(x^3 -217*x + 1183)*(x + 2)^2;
346
347
T[114,2]=(x^2 -x + 2)*(x^2 + 2)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x -1)^4;
348
T[114,3]=(x^2 + x + 3)*(x^2 -x + 3)*(x^2 + 2*x + 3)^2*(x + 1)^4*(x -1)^5;
349
T[114,5]=(x -2)*(x + 4)^2*(x + 3)^2*(x -1)^2*(x + 2)^2*(x -3)^4*(x )^4;
350
T[114,7]=(x + 4)*(x -4)*(x + 5)^2*(x )^3*(x -3)^4*(x + 1)^6;
351
T[114,11]=(x + 4)*(x -4)*(x + 6)^2*(x -2)^2*(x + 3)^2*(x -1)^2*(x )^3*(x -3)^4;
352
T[114,13]=(x )*(x + 6)^2*(x -6)^2*(x -5)^2*(x + 1)^2*(x -2)^3*(x + 4)^5;
353
T[114,17]=(x + 2)*(x -6)*(x + 1)^2*(x + 6)^3*(x + 3)^4*(x -3)^6;
354
T[114,19]=(x -1)^8*(x + 1)^9;
355
T[114,23]=(x + 6)*(x + 2)*(x + 1)^2*(x -3)^2*(x + 4)^3*(x -4)^4*(x )^4;
356
T[114,29]=(x + 6)*(x -2)^2*(x + 10)^2*(x + 5)^2*(x -9)^2*(x + 2)^3*(x -6)^5;
357
T[114,31]=(x -6)*(x -4)*(x + 8)^2*(x + 6)^2*(x -8)^2*(x -2)^3*(x + 4)^6;
358
T[114,37]=(x + 4)*(x -10)*(x + 8)*(x -8)^2*(x + 10)^2*(x + 2)^2*(x )^2*(x -2)^6;
359
T[114,41]=(x -6)*(x -10)^2*(x + 2)^2*(x + 6)^4*(x + 8)^4*(x )^4;
360
T[114,43]=(x + 12)*(x -8)^2*(x + 4)^3*(x -4)^3*(x + 1)^8;
361
T[114,47]=(x -10)*(x -6)*(x + 4)*(x -12)^2*(x -3)^2*(x + 9)^2*(x -8)^2*(x )^2*(x + 3)^4;
362
T[114,53]=(x + 10)*(x -2)*(x -6)*(x + 1)^2*(x -10)^2*(x + 3)^2*(x + 6)^4*(x -12)^4;
363
T[114,59]=(x -4)*(x -12)*(x -15)^2*(x + 8)^2*(x -9)^2*(x )^2*(x + 12)^3*(x + 6)^4;
364
T[114,61]=(x -2)^2*(x + 2)^2*(x -14)^2*(x -7)^2*(x + 10)^3*(x + 1)^6;
365
T[114,67]=(x + 12)*(x )*(x -3)^2*(x -5)^2*(x -8)^5*(x + 4)^6;
366
T[114,71]=(x -8)*(x + 16)*(x -2)^2*(x + 6)^2*(x -12)^2*(x + 12)^2*(x )^3*(x -6)^4;
367
T[114,73]=(x + 6)*(x + 2)*(x -14)*(x -9)^2*(x -10)^2*(x + 11)^4*(x + 7)^6;
368
T[114,79]=(x + 4)*(x -10)*(x -16)^2*(x -8)^4*(x )^4*(x + 10)^5;
369
T[114,83]=(x + 12)*(x + 16)*(x -16)^2*(x -4)^2*(x + 6)^4*(x -12)^7;
370
T[114,89]=(x -10)^2*(x + 12)^2*(x )^2*(x + 2)^3*(x + 6)^4*(x -12)^4;
371
T[114,97]=(x -10)^3*(x + 2)^4*(x -8)^4*(x + 10)^6;
372
373
T[115,2]=(x -2)*(x^2 + 3*x + 1)*(x^4 -2*x^3 -4*x^2 + 5*x + 2)*(x^2 + x -1)^2;
374
T[115,3]=(x )*(x + 1)^2*(x^2 -5)^2*(x^2 + x -4)^2;
375
T[115,5]=(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)*(x + 1)^3*(x -1)^4;
376
T[115,7]=(x -1)*(x^2 + 2*x -4)*(x^4 + 3*x^3 -14*x^2 -52*x -32)*(x^2 -2*x -4)^2;
377
T[115,11]=(x -2)*(x^2 + 2*x -4)*(x^4 -4*x^3 -16*x^2 + 40*x + 32)*(x^2 + 6*x + 4)^2;
378
T[115,13]=(x + 2)*(x^2 + 8*x + 11)*(x^4 -41*x^2 + 212)*(x -3)^4;
379
T[115,17]=(x -3)*(x^2 + 4*x -16)*(x^4 + x^3 -18*x^2 -24*x + 32)*(x^2 -6*x + 4)^2;
380
T[115,19]=(x^2 -2*x -44)*(x^4 + 4*x^3 -16*x^2 -40*x + 32)*(x + 2)^5;
381
T[115,23]=(x -1)^5*(x + 1)^6;
382
T[115,29]=(x -7)*(x^2 + 10*x + 5)*(x^4 -19*x^3 + 117*x^2 -269*x + 202)*(x + 3)^4;
383
T[115,31]=(x + 5)*(x^2 -4*x -1)*(x^4 + x^3 -101*x^2 + 11*x + 2144)*(x^2 -45)^2;
384
T[115,37]=(x -11)*(x^2 + 6*x -36)*(x^4 + 3*x^3 -116*x^2 + 16*x + 2008)*(x^2 -2*x -4)^2;
385
T[115,41]=(x -1)*(x^2 + 6*x -11)*(x^4 -13*x^3 + 45*x^2 -3*x -94)*(x^2 -2*x -19)^2;
386
T[115,43]=(x^2 + 6*x -36)*(x^4 + 6*x^3 -36*x^2 -16*x + 128)*(x )^5;
387
T[115,47]=(x^2 -10*x + 5)*(x^4 -6*x^3 -83*x^2 + 548*x -128)*(x )*(x^2 -5)^2;
388
T[115,53]=(x -11)*(x^4 -19*x^3 -34*x^2 + 2092*x -8776)*(x + 6)^2*(x^2 + 8*x -4)^2;
389
T[115,59]=(x + 13)*(x^2 -80)*(x^4 -23*x^3 + 100*x^2 + 560*x -3136)*(x^2 -4*x -16)^2;
390
T[115,61]=(x + 8)*(x^2 -2*x -124)*(x^4 -56*x^2 + 136*x -32)*(x^2 -4*x -76)^2;
391
T[115,67]=(x -5)*(x^2 -6*x -36)*(x^4 + 3*x^3 -98*x^2 -212*x + 2032)*(x^2 + 10*x + 20)^2;
392
T[115,71]=(x -5)*(x^2 + 8*x + 11)*(x^4 + 3*x^3 -149*x^2 -535*x -8)*(x^2 -20*x + 95)^2;
393
T[115,73]=(x -6)*(x^2 -45)*(x^4 + 32*x^3 + 343*x^2 + 1392*x + 1684)*(x^2 -22*x + 101)^2;
394
T[115,79]=(x + 12)*(x^2 -22*x + 116)*(x^4 -2*x^3 -140*x^2 -352*x + 512)*(x^2 + 4*x -76)^2;
395
T[115,83]=(x -9)*(x^2 + 4*x -16)*(x^4 + 21*x^3 + 96*x^2 -224*x -1216)*(x^2 + 22*x + 116)^2;
396
T[115,89]=(x -4)*(x^2 -10*x + 20)*(x^4 -216*x^2 -1496*x -2752)*(x^2 + 12*x + 16)^2;
397
T[115,97]=(x + 14)*(x^2 -10*x -100)*(x^4 + 18*x^3 + 72*x^2 -200*x -1072)*(x^2 -22*x + 76)^2;
398
399
T[116,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^7;
400
T[116,3]=(x -1)*(x -2)*(x + 1)^2*(x + 3)^3*(x^2 -2*x -1)^3;
401
T[116,5]=(x + 2)*(x + 3)^2*(x -3)^2*(x -1)^2*(x + 1)^6;
402
T[116,7]=(x + 4)*(x -4)^2*(x^2 -8)^3*(x + 2)^4;
403
T[116,11]=(x + 6)*(x -3)*(x + 3)^2*(x + 1)^3*(x^2 -2*x -1)^3;
404
T[116,13]=(x -2)*(x + 3)*(x -5)*(x -3)^2*(x + 1)^2*(x^2 + 2*x -7)^3;
405
T[116,17]=(x + 6)*(x -2)^2*(x + 4)^2*(x -8)^2*(x^2 + 4*x -4)^3;
406
T[116,19]=(x -4)*(x + 4)*(x + 6)*(x + 8)^2*(x )^2*(x -6)^6;
407
T[116,23]=(x + 6)^2*(x )^2*(x -4)^3*(x^2 + 4*x -28)^3;
408
T[116,29]=(x -1)^6*(x + 1)^7;
409
T[116,31]=(x + 6)*(x -9)*(x -5)*(x + 3)^2*(x -3)^2*(x^2 -6*x -41)^3;
410
T[116,37]=(x -2)*(x -8)^3*(x + 8)^3*(x + 4)^6;
411
T[116,41]=(x + 8)*(x )*(x + 2)^2*(x -2)^3*(x^2 -8*x -56)^3;
412
T[116,43]=(x + 5)*(x + 1)*(x -10)*(x -7)^2*(x + 11)^2*(x^2 -10*x + 23)^3;
413
T[116,47]=(x + 2)*(x + 3)*(x + 7)*(x -11)^2*(x -13)^2*(x^2 -2*x -17)^3;
414
T[116,53]=(x -3)*(x -10)*(x + 5)*(x + 11)^2*(x -1)^2*(x^2 -2*x -71)^3;
415
T[116,59]=(x -6)*(x + 10)*(x + 4)^2*(x^2 -4*x -28)^3*(x )^3;
416
T[116,61]=(x -2)*(x -4)^2*(x -10)^2*(x + 8)^2*(x^2 + 4*x -4)^3;
417
T[116,67]=(x + 4)^2*(x -8)^2*(x + 12)^3*(x^2 -32)^3;
418
T[116,71]=(x -8)*(x -6)*(x -2)^2*(x + 2)^3*(x^2 + 12*x + 28)^3;
419
T[116,73]=(x + 16)*(x -10)*(x )*(x + 12)^2*(x -4)^8;
420
T[116,79]=(x -11)*(x + 1)*(x + 6)*(x + 7)^2*(x -15)^2*(x^2 + 2*x -1)^3;
421
T[116,83]=(x -16)*(x -4)^2*(x -6)^2*(x )^2*(x^2 -4*x -28)^3;
422
T[116,89]=(x -2)*(x -12)*(x + 12)*(x + 10)^2*(x + 6)^2*(x^2 + 8*x -56)^3;
423
T[116,97]=(x -10)*(x -8)*(x )*(x + 6)^2*(x + 2)^2*(x^2 + 8*x -56)^3;
424
425
T[117,2]=(x + 1)*(x^2 -3)*(x^2 -2*x -1)*(x -1)^2*(x^2 + 2*x -1)^2;
426
T[117,3]=(x + 1)*(x -1)^2*(x )^8;
427
T[117,5]=(x + 2)*(x -2)^2*(x )^2*(x^2 -8)^3;
428
T[117,7]=(x -2)^2*(x + 4)^3*(x^2 -8)^3;
429
T[117,11]=(x + 4)*(x^2 -12)*(x -2)^2*(x -4)^2*(x + 2)^4;
430
T[117,13]=(x -1)^5*(x + 1)^6;
431
T[117,17]=(x + 2)*(x^2 + 4*x -28)*(x^2 -48)*(x -2)^2*(x^2 -4*x -28)^2;
432
T[117,19]=(x -2)^2*(x^2 -8)^3*(x )^3;
433
T[117,23]=(x^2 -48)*(x -4)^2*(x )^3*(x + 4)^4;
434
T[117,29]=(x -10)*(x^2 -48)*(x + 10)^2*(x + 2)^2*(x -2)^4;
435
T[117,31]=(x -2)^2*(x -4)^3*(x^2 + 8*x + 8)^3;
436
T[117,37]=(x -2)^2*(x + 2)^3*(x^2 + 4*x -28)^3;
437
T[117,41]=(x + 6)*(x^2 -48)*(x^2 + 16*x + 56)*(x -6)^2*(x^2 -16*x + 56)^2;
438
T[117,43]=(x -8)^2*(x + 12)^3*(x^2 -8*x -16)^3;
439
T[117,47]=(x^2 -12*x + 4)*(x^2 -108)*(x^2 + 12*x + 4)^2*(x )^3;
440
T[117,53]=(x + 6)*(x -6)^2*(x -2)^2*(x )^2*(x + 2)^4;
441
T[117,59]=(x + 12)*(x^2 -12)*(x^2 + 4*x -28)*(x -12)^2*(x^2 -4*x -28)^2;
442
T[117,61]=(x + 10)^2*(x + 2)^3*(x^2 -4*x -124)^3;
443
T[117,67]=(x -14)^2*(x + 8)^3*(x^2 -8*x + 8)^3;
444
T[117,71]=(x^2 -12)*(x + 2)^2*(x )^3*(x -2)^4;
445
T[117,73]=(x + 10)^2*(x -2)^3*(x^2 -12*x + 4)^3;
446
T[117,79]=(x + 4)^2*(x -8)^3*(x^2 -128)^3;
447
T[117,83]=(x + 4)*(x^2 -108)*(x^2 -4*x -28)*(x -4)^2*(x^2 + 4*x -28)^2;
448
T[117,89]=(x -2)*(x^2 -48)*(x^2 + 24*x + 136)*(x + 2)^2*(x^2 -24*x + 136)^2;
449
T[117,97]=(x + 10)^2*(x -10)^3*(x^2 + 4*x -28)^3;
450
451
T[118,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x + 1)^2*(x -1)^2;
452
T[118,3]=(x + 1)^2*(x -2)^2*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^2;
453
T[118,5]=(x -1)*(x + 2)*(x -2)*(x + 3)*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;
454
T[118,7]=(x + 1)*(x -3)*(x + 3)^2*(x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71)^2;
455
T[118,11]=(x + 1)*(x -1)*(x -2)*(x + 2)*(x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64)^2;
456
T[118,13]=(x + 2)*(x + 3)*(x -3)*(x + 6)*(x^5 -8*x^4 + 88*x^2 -48*x -224)^2;
457
T[118,17]=(x -7)*(x + 1)*(x + 2)^2*(x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412)^2;
458
T[118,19]=(x + 5)*(x + 8)*(x -3)*(x -4)*(x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469)^2;
459
T[118,23]=(x -8)*(x )*(x -4)^2*(x^5 + 8*x^4 -88*x^2 -112*x -32)^2;
460
T[118,29]=(x + 5)*(x + 1)*(x -4)*(x + 4)*(x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757)^2;
461
T[118,31]=(x -2)*(x -10)*(x + 4)^2*(x^5 -116*x^3 + 56*x^2 + 1280*x + 256)^2;
462
T[118,37]=(x + 7)*(x + 12)*(x + 1)*(x -8)*(x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32)^2;
463
T[118,41]=(x + 11)*(x -5)*(x -7)^2*(x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217)^2;
464
T[118,43]=(x -9)*(x + 9)*(x + 6)^2*(x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128)^2;
465
T[118,47]=(x -10)*(x -2)*(x + 6)*(x + 2)*(x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256)^2;
466
T[118,53]=(x + 11)*(x -12)*(x -9)*(x )*(x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73)^2;
467
T[118,59]=(x + 1)^3*(x -1)^11;
468
T[118,61]=(x + 8)*(x + 2)*(x + 12)*(x -10)*(x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072)^2;
469
T[118,67]=(x + 2)*(x -10)*(x -4)^2*(x^5 -188*x^3 -200*x^2 + 5472*x -8896)^2;
470
T[118,71]=(x -12)*(x -9)*(x + 15)*(x -4)*(x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424)^2;
471
T[118,73]=(x -10)*(x -12)*(x -4)*(x + 14)*(x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952)^2;
472
T[118,79]=(x + 15)*(x -5)*(x -11)^2*(x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923)^2;
473
T[118,83]=(x + 14)*(x + 13)*(x -14)*(x + 11)*(x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152)^2;
474
T[118,89]=(x -18)*(x + 6)*(x -4)*(x )*(x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984)^2;
475
T[118,97]=(x -2)*(x -8)*(x -14)*(x )*(x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656)^2;
476
477
T[119,2]=(x^4 + x^3 -5*x^2 -x + 3)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 14*x -17)*(x + 1)^2;
478
T[119,3]=(x^4 -2*x^3 -7*x^2 + 12*x -1)*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)*(x )^2;
479
T[119,5]=(x^4 -2*x^3 -7*x^2 + 4*x + 3)*(x^5 -23*x^3 + 18*x^2 + 131*x -178)*(x + 2)^2;
480
T[119,7]=(x^2 -4*x + 7)*(x -1)^4*(x + 1)^5;
481
T[119,11]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 2*x^4 -44*x^3 -40*x^2 + 496*x -192)*(x )^2;
482
T[119,13]=(x^4 -8*x^3 -16*x^2 + 216*x -368)*(x^5 -2*x^4 -40*x^3 + 56*x^2 + 352*x -544)*(x + 2)^2;
483
T[119,17]=(x + 1)^4*(x -1)^7;
484
T[119,19]=(x^4 -10*x^3 -20*x^2 + 392*x -784)*(x^5 -6*x^4 -12*x^3 + 56*x^2 + 48*x -64)*(x + 4)^2;
485
T[119,23]=(x^4 + 6*x^3 -40*x^2 -224*x -240)*(x^5 + 10*x^4 -8*x^3 -144*x^2 + 272*x -128)*(x -4)^2;
486
T[119,29]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 8*x^4 -72*x^3 -464*x^2 + 1216*x + 2592)*(x -6)^2;
487
T[119,31]=(x^4 -12*x^3 -13*x^2 + 418*x -917)*(x^5 -33*x^3 -94*x^2 -77*x -16)*(x -4)^2;
488
T[119,37]=(x^4 -6*x^3 -44*x^2 -8*x + 80)*(x^5 -8*x^4 -104*x^3 + 432*x^2 + 3584*x + 4384)*(x + 2)^2;
489
T[119,41]=(x^4 -12*x^3 + 27*x^2 + 86*x -237)*(x^5 -18*x^4 + 79*x^3 -64*x^2 -137*x + 162)*(x + 6)^2;
490
T[119,43]=(x^4 + 12*x^3 -23*x^2 -212*x -115)*(x^5 -8*x^4 -31*x^3 + 216*x^2 + 157*x -1052)*(x -4)^2;
491
T[119,47]=(x^4 -2*x^3 -128*x^2 -64*x + 1776)*(x^5 + 10*x^4 -48*x^3 -816*x^2 -2704*x -2304)*(x )^2;
492
T[119,53]=(x^4 + 26*x^3 + 227*x^2 + 758*x + 801)*(x^5 -4*x^4 -33*x^3 + 76*x^2 + 301*x + 138)*(x -6)^2;
493
T[119,59]=(x^4 + 4*x^3 -192*x^2 -1408*x -768)*(x^5 -8*x^4 -80*x^3 + 640*x^2 + 256*x -3072)*(x + 12)^2;
494
T[119,61]=(x^4 -12*x^3 -157*x^2 + 1330*x + 6451)*(x^5 -22*x^4 + 143*x^3 -40*x^2 -2377*x + 5542)*(x + 10)^2;
495
T[119,67]=(x^4 + 12*x^3 -71*x^2 -548*x + 1949)*(x^5 -16*x^4 + 49*x^3 + 304*x^2 -1747*x + 1868)*(x -4)^2;
496
T[119,71]=(x^4 + 14*x^3 -44*x^2 -1160*x -3312)*(x^5 + 2*x^4 -236*x^3 -872*x^2 + 7472*x + 13696)*(x + 4)^2;
497
T[119,73]=(x^4 -20*x^3 + 123*x^2 -262*x + 131)*(x^5 -10*x^4 -177*x^3 + 2212*x^2 -4217*x -11118)*(x + 6)^2;
498
T[119,79]=(x^4 + 14*x^3 -56*x^2 -928*x -400)*(x^5 -18*x^4 + 40*x^3 + 544*x^2 -2672*x + 3072)*(x -12)^2;
499
T[119,83]=(x^4 + 28*x^3 + 264*x^2 + 968*x + 1200)*(x^5 + 12*x^4 -64*x^3 -952*x^2 -1872*x + 1984)*(x + 4)^2;
500
T[119,89]=(x^4 + 10*x^3 -176*x^2 -592*x + 720)*(x^5 -20*x^4 -100*x^3 + 3552*x^2 -14192*x + 7456)*(x -10)^2;
501
T[119,97]=(x^4 -26*x^3 + 177*x^2 + 4*x -1901)*(x^5 -12*x^4 -239*x^3 + 2766*x^2 + 2163*x + 218)*(x -2)^2;
502
503
T[120,2]=(x + 1)*(x^2 + x + 2)*(x )^14;
504
T[120,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x -1)^5*(x + 1)^6;
505
T[120,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;
506
T[120,7]=(x -4)*(x -2)^4*(x + 4)^5*(x )^7;
507
T[120,11]=(x -4)^4*(x + 4)^5*(x )^8;
508
T[120,13]=(x -6)*(x + 6)*(x -2)^7*(x + 2)^8;
509
T[120,17]=(x + 2)*(x -6)^3*(x + 6)^5*(x -2)^8;
510
T[120,19]=(x -4)^7*(x + 4)^10;
511
T[120,23]=(x -4)^2*(x + 8)^3*(x -6)^4*(x )^8;
512
T[120,29]=(x + 6)^4*(x -6)^6*(x + 2)^7;
513
T[120,31]=(x + 8)^3*(x + 4)^4*(x -8)^5*(x )^5;
514
T[120,37]=(x + 6)*(x + 2)*(x -6)^4*(x + 10)^4*(x -2)^7;
515
T[120,41]=(x -6)^4*(x -10)^5*(x + 6)^8;
516
T[120,43]=(x -12)*(x + 8)^2*(x + 4)^4*(x + 10)^4*(x -4)^6;
517
T[120,47]=(x -4)^2*(x + 6)^4*(x )^5*(x -8)^6;
518
T[120,53]=(x -10)*(x + 2)^2*(x -6)^3*(x + 10)^4*(x + 6)^7;
519
T[120,59]=(x -4)^2*(x )^4*(x -12)^5*(x + 4)^6;
520
T[120,61]=(x -6)*(x -14)*(x + 10)^3*(x -2)^4*(x + 2)^8;
521
T[120,67]=(x -4)*(x -8)^2*(x -12)^4*(x -2)^4*(x + 4)^6;
522
T[120,71]=(x -8)^3*(x + 8)^4*(x + 12)^4*(x )^6;
523
T[120,73]=(x + 14)*(x + 6)^3*(x -10)^6*(x -2)^7;
524
T[120,79]=(x -16)*(x + 8)^3*(x )^6*(x -8)^7;
525
T[120,83]=(x + 12)*(x + 16)^2*(x + 4)^2*(x -6)^4*(x -12)^8;
526
T[120,89]=(x -2)*(x -10)*(x -18)^3*(x + 6)^12;
527
T[120,97]=(x + 14)^2*(x -2)^15;
528
529
T[121,2]=(x -2)*(x + 1)*(x -1)*(x )*(x + 2)^2;
530
T[121,3]=(x -2)^2*(x + 1)^4;
531
T[121,5]=(x + 3)*(x -1)^5;
532
T[121,7]=(x )*(x -2)^2*(x + 2)^3;
533
T[121,11]=(x -1)*(x )^5;
534
T[121,13]=(x -1)*(x + 1)*(x + 4)*(x )*(x -4)^2;
535
T[121,17]=(x + 5)*(x -2)*(x -5)*(x )*(x + 2)^2;
536
T[121,19]=(x -6)*(x + 6)*(x )^4;
537
T[121,23]=(x + 9)*(x -2)^2*(x + 1)^3;
538
T[121,29]=(x + 9)*(x -9)*(x )^4;
539
T[121,31]=(x + 5)*(x + 2)^2*(x -7)^3;
540
T[121,37]=(x -7)*(x + 3)^2*(x -3)^3;
541
T[121,41]=(x -8)*(x + 5)*(x -5)*(x )*(x + 8)^2;
542
T[121,43]=(x -6)*(x + 6)^2*(x )^3;
543
T[121,47]=(x + 12)*(x -2)^2*(x -8)^3;
544
T[121,53]=(x -6)*(x -9)^2*(x + 6)^3;
545
T[121,59]=(x + 15)*(x -8)^2*(x -5)^3;
546
T[121,61]=(x -6)*(x + 6)*(x + 12)*(x )*(x -12)^2;
547
T[121,67]=(x -13)*(x -2)^2*(x + 7)^3;
548
T[121,71]=(x -12)^2*(x + 3)^4;
549
T[121,73]=(x -2)*(x + 4)*(x + 2)*(x )*(x -4)^2;
550
T[121,79]=(x )*(x -10)^2*(x + 10)^3;
551
T[121,83]=(x )*(x -6)^2*(x + 6)^3;
552
T[121,89]=(x -15)^3*(x + 9)^3;
553
T[121,97]=(x -17)*(x + 13)^2*(x + 7)^3;
554
555
T[122,2]=(x^2 + x + 2)*(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x + 1)^3*(x -1)^3;
556
T[122,3]=(x^2 -x -3)*(x^3 + x^2 -5*x + 2)*(x^3 -2*x^2 -4*x + 4)^2*(x + 2)^3;
557
T[122,5]=(x -1)*(x^3 -x^2 -12*x + 16)*(x + 3)^2*(x^3 + x^2 -9*x -13)^2*(x )^2;
558
T[122,7]=(x + 5)*(x^2 -5*x + 3)*(x^3 -4*x^2 -10*x + 41)*(x -1)^2*(x^3 + 3*x^2 -x -1)^2;
559
T[122,11]=(x + 3)*(x^2 -2*x -12)*(x^3 + 7*x^2 + 10*x -4)*(x + 5)^2*(x^3 -13*x^2 + 53*x -67)^2;
560
T[122,13]=(x + 3)*(x^2 -6*x -4)*(x^3 + x^2 -6*x -4)*(x -1)^2*(x^3 + 9*x^2 + 11*x -37)^2;
561
T[122,17]=(x^2 + 2*x -12)*(x^3 + 6*x^2 -4*x -16)*(x )*(x -4)^2*(x^3 + 2*x^2 -8*x + 4)^2;
562
T[122,19]=(x^2 -x -29)*(x^3 + 3*x^2 -x -4)*(x )*(x + 4)^2*(x^3 -48*x -20)^2;
563
T[122,23]=(x -5)*(x^2 + 3*x -27)*(x^3 -2*x^2 -38*x + 113)*(x + 9)^2*(x^3 -5*x^2 + 5*x + 1)^2;
564
T[122,29]=(x -6)*(x^2 + 11*x + 27)*(x^3 -x^2 -31*x + 2)*(x + 6)^2*(x^3 -4*x^2 -4*x + 20)^2;
565
T[122,31]=(x^2 + x -3)*(x^3 + 3*x^2 -43*x + 8)*(x^3 + 2*x^2 -76*x + 116)^2*(x )^3;
566
T[122,37]=(x + 12)*(x^2 + 3*x -1)*(x^3 -7*x^2 -65*x + 424)*(x -8)^2*(x^3 + 6*x^2 -36*x -108)^2;
567
T[122,41]=(x + 3)*(x^2 + 9*x -9)*(x^3 -4*x^2 -70*x -139)*(x -5)^2*(x^3 -3*x^2 -61*x + 191)^2;
568
T[122,43]=(x^3 -12*x^2 -16*x + 256)*(x -8)^2*(x^3 + 14*x^2 + 56*x + 68)^2*(x + 8)^3;
569
T[122,47]=(x -12)*(x^2 -8*x -36)*(x^3 + 8*x^2 -28*x -208)*(x -4)^2*(x^3 + 4*x^2 -88*x + 16)^2;
570
T[122,53]=(x + 2)*(x^2 + x -81)*(x^3 -11*x^2 -195*x + 2198)*(x -6)^2*(x^3 + 2*x^2 -12*x -8)^2;
571
T[122,59]=(x + 9)*(x^3 + 23*x^2 + 164*x + 368)*(x -9)^2*(x^3 -29*x^2 + 231*x -325)^2*(x )^2;
572
T[122,61]=(x + 1)^6*(x -1)^8;
573
T[122,67]=(x -7)*(x^2 -52)*(x^3 -21*x^2 + 44*x + 772)*(x + 7)^2*(x^3 -9*x^2 -85*x + 559)^2;
574
T[122,71]=(x + 16)*(x^2 -9*x -9)*(x^3 -27*x^2 + 207*x -432)*(x + 8)^2*(x^3 -14*x^2 -12*x + 92)^2;
575
T[122,73]=(x + 3)*(x^2 -x -29)*(x^3 -22*x^2 + 80*x + 449)*(x + 11)^2*(x^3 + x^2 -45*x -25)^2;
576
T[122,79]=(x -1)*(x^2 + 12*x -16)*(x^3 -3*x^2 -108*x + 432)*(x -3)^2*(x^3 -13*x^2 -51*x + 625)^2;
577
T[122,83]=(x + 12)*(x^2 -9*x -9)*(x^3 + 11*x^2 -85*x -28)*(x -4)^2*(x^3 + 8*x^2 -64*x -256)^2;
578
T[122,89]=(x -12)*(x^2 + 14*x + 36)*(x^3 + 10*x^2 -76*x + 112)*(x + 4)^2*(x^3 + 4*x^2 -56*x + 80)^2;
579
T[122,97]=(x -2)*(x^2 -17*x -9)*(x^3 + 5*x^2 -7*x + 2)*(x + 14)^2*(x^3 -10*x^2 -116*x + 1096)^2;
580
581
T[123,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x )*(x^3 + x^2 -5*x -1)^2;
582
T[123,3]=(x^6 + 5*x^4 + 2*x^3 + 15*x^2 + 27)*(x -1)^3*(x + 1)^4;
583
T[123,5]=(x + 2)*(x + 4)*(x^2 -4*x + 2)*(x^3 -4*x^2 -2*x + 4)*(x^3 + 2*x^2 -4*x -4)^2;
584
T[123,7]=(x + 4)*(x + 2)*(x^2 + 4*x + 2)*(x^3 -2*x^2 -14*x + 32)*(x^3 -6*x^2 + 8*x -2)^2;
585
T[123,11]=(x + 3)*(x -5)*(x^2 -2*x -1)*(x^3 + 4*x^2 + x -4)*(x^3 -2*x^2 -20*x + 50)^2;
586
T[123,13]=(x + 6)*(x + 4)*(x^2 -4*x -14)*(x^3 -8*x^2 + 14*x + 4)*(x^3 + 2*x^2 -12*x -8)^2;
587
T[123,17]=(x -3)*(x + 5)*(x^2 -2*x -1)*(x^3 -2*x^2 -23*x + 62)*(x + 2)^6;
588
T[123,19]=(x + 2)*(x^2 + 8*x + 14)*(x^3 -2*x^2 -6*x + 8)*(x )*(x^3 -4*x^2 -16*x -10)^2;
589
T[123,23]=(x -4)*(x + 6)*(x^2 -2)*(x^3 + 10*x^2 + 26*x + 16)*(x^3 -4*x^2 -32*x -32)^2;
590
T[123,29]=(x -1)*(x -5)*(x^2 -2*x -49)*(x^3 + 6*x^2 -27*x -86)*(x^3 + 6*x^2 -4*x -40)^2;
591
T[123,31]=(x -7)*(x + 5)*(x^3 + 2*x^2 -91*x -256)*(x + 3)^2*(x^3 -16*x^2 + 64*x -32)^2;
592
T[123,37]=(x^2 + 2*x -71)*(x^3 -20*x^2 + 117*x -166)*(x + 7)^2*(x^3 + 6*x^2 -36*x -108)^2;
593
T[123,41]=(x + 1)^3*(x -1)^10;
594
T[123,43]=(x -7)*(x + 1)*(x^3 -10*x^2 -119*x + 1156)*(x + 5)^2*(x^3 + 4*x^2 -8*x -16)^2;
595
T[123,47]=(x -7)*(x -3)*(x^2 -18*x + 79)*(x^3 -4*x^2 -35*x -8)*(x^3 -120*x -502)^2;
596
T[123,53]=(x + 6)*(x + 14)*(x^2 -8*x + 8)*(x^3 -14*x^2 + 32)*(x^3 -6*x^2 -4*x + 8)^2;
597
T[123,59]=(x + 12)*(x^2 -72)*(x^3 + 8*x^2 -40*x + 32)*(x )*(x^3 + 8*x^2 -16*x -160)^2;
598
T[123,61]=(x^2 -2*x -31)*(x^3 + 8*x^2 + 5*x -46)*(x + 3)^2*(x^3 -2*x^2 -52*x + 184)^2;
599
T[123,67]=(x^2 -4*x -68)*(x^3 -12*x^2 -124*x + 976)*(x + 2)^2*(x^3 + 2*x^2 -20*x -50)^2;
600
T[123,71]=(x^2 -6*x -41)*(x^3 + 32*x^2 + 337*x + 1168)*(x + 3)^2*(x^3 -20*x^2 + 84*x + 134)^2;
601
T[123,73]=(x -13)*(x + 11)*(x^2 -2*x -127)*(x^3 -4*x^2 -99*x + 454)*(x^3 + 2*x^2 -180*x + 244)^2;
602
T[123,79]=(x + 2)*(x -10)*(x^2 + 4*x -28)*(x^3 + 20*x^2 + 68*x + 32)*(x^3 -32*x^2 + 328*x -1090)^2;
603
T[123,83]=(x + 16)*(x + 2)*(x^2 + 12*x -14)*(x^3 + 14*x^2 + 10*x -296)*(x^3 -64*x -128)^2;
604
T[123,89]=(x -18)*(x + 10)*(x^2 + 12*x + 4)*(x^3 -14*x^2 -4*x + 184)*(x^3 + 6*x^2 -148*x -920)^2;
605
T[123,97]=(x + 14)*(x + 12)*(x^2 -24*x + 126)*(x^3 + 12*x^2 + 14*x -148)*(x^3 -6*x^2 -52*x + 248)^2;
606
607
T[124,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2*(x )^7;
608
T[124,3]=(x + 2)*(x^2 -2*x -2)^2*(x^2 + 2*x -4)^3*(x )^3;
609
T[124,5]=(x + 3)*(x + 2)^2*(x^2 -12)^2*(x -1)^7;
610
T[124,7]=(x + 1)*(x -3)*(x )^2*(x^2 + 4*x -1)^3*(x -2)^4;
611
T[124,11]=(x + 6)*(x -6)*(x^2 + 6*x + 6)^2*(x )^2*(x -2)^6;
612
T[124,13]=(x + 4)*(x^2 + 2*x -26)^2*(x -2)^3*(x^2 + 2*x -4)^3;
613
T[124,17]=(x -6)*(x )*(x + 6)^2*(x^2 -12)^2*(x^2 -6*x + 4)^3;
614
T[124,19]=(x + 1)*(x + 5)*(x -4)^2*(x^2 -5)^3*(x + 4)^4;
615
T[124,23]=(x + 6)*(x + 4)*(x -8)^2*(x^2 + 2*x -44)^3*(x )^4;
616
T[124,29]=(x )*(x^2 + 6*x -18)^2*(x -2)^3*(x^2 -10*x + 20)^3;
617
T[124,31]=(x + 1)^3*(x -1)^11;
618
T[124,37]=(x + 10)*(x -10)^2*(x^2 -10*x -2)^2*(x + 2)^7;
619
T[124,41]=(x + 6)^2*(x + 9)^2*(x^2 -12*x + 24)^2*(x -7)^6;
620
T[124,43]=(x -2)*(x^2 + 2*x -26)^2*(x -8)^3*(x^2 + 2*x -4)^3;
621
T[124,47]=(x -4)*(x )*(x + 8)^2*(x^2 + 4*x -16)^3*(x -6)^4;
622
T[124,53]=(x -12)*(x )*(x + 6)^2*(x^2 -6*x + 6)^2*(x^2 + 12*x + 16)^3;
623
T[124,59]=(x -9)*(x + 3)*(x + 12)^2*(x^2 + 12*x + 24)^2*(x^2 -5)^3;
624
T[124,61]=(x + 10)*(x -12)*(x + 6)^2*(x^2 + 2*x -26)^2*(x^2 + 6*x -116)^3;
625
T[124,67]=(x + 4)*(x + 12)^3*(x -8)^10;
626
T[124,71]=(x -5)*(x + 15)*(x -8)^2*(x^2 -192)^2*(x^2 -4*x -121)^3;
627
T[124,73]=(x -14)*(x + 14)*(x -10)^2*(x^2 -8*x -4)^3*(x + 10)^4;
628
T[124,79]=(x -10)*(x -8)*(x + 8)^2*(x^2 -4*x -104)^2*(x^2 + 10*x -20)^3;
629
T[124,83]=(x -6)*(x -2)*(x -8)^2*(x^2 -6*x -66)^2*(x^2 + 12*x -44)^3;
630
T[124,89]=(x -12)*(x + 6)^2*(x^2 -10*x -20)^3*(x -6)^5;
631
T[124,97]=(x + 7)^2*(x -2)^2*(x^2 -4*x -104)^2*(x^2 + 14*x -31)^3;
632
633
T[125,2]=(x^2 + x -1)*(x^2 -x -1)*(x^4 -8*x^2 + 11);
634
T[125,3]=(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^4 -7*x^2 + 11);
635
T[125,5]=(x )^8;
636
T[125,7]=(x^4 -13*x^2 + 11)*(x + 3)^2*(x -3)^2;
637
T[125,11]=(x + 3)^4*(x -2)^4;
638
T[125,13]=(x^2 + 3*x -9)*(x^2 -3*x -9)*(x^4 -32*x^2 + 176);
639
T[125,17]=(x^2 + 4*x -1)*(x^2 -4*x -1)*(x^4 -28*x^2 + 176);
640
T[125,19]=(x^2 + 5*x + 5)^2*(x^2 -10*x + 20)^2;
641
T[125,23]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x^4 -17*x^2 + 11);
642
T[125,29]=(x^2 -45)^2*(x^2 + 5*x -5)^2;
643
T[125,31]=(x^2 + x -31)^2*(x -2)^4;
644
T[125,37]=(x^2 + 6*x -36)*(x^2 -6*x -36)*(x^4 -68*x^2 + 176);
645
T[125,41]=(x^2 + x -31)^2*(x + 3)^4;
646
T[125,43]=(x^4 -107*x^2 + 1331)*(x -9)^2*(x + 9)^2;
647
T[125,47]=(x^2 -x -61)*(x^2 + x -61)*(x^4 -43*x^2 + 11);
648
T[125,53]=(x^2 -7*x + 11)*(x^2 + 7*x + 11)*(x^4 -112*x^2 + 2816);
649
T[125,59]=(x^2 -15*x + 45)^2*(x^2 -20)^2;
650
T[125,61]=(x^2 + x -31)^4;
651
T[125,67]=(x^2 + 21*x + 99)*(x^2 -21*x + 99)*(x^4 -28*x^2 + 176);
652
T[125,71]=(x^2 + 6*x -116)^2*(x + 3)^4;
653
T[125,73]=(x^2 -3*x -9)*(x^2 + 3*x -9)*(x^4 -352*x^2 + 21296);
654
T[125,79]=(x^2 -10*x + 20)^2*(x^2 -10*x + 5)^2;
655
T[125,83]=(x^2 + 8*x -4)*(x^2 -8*x -4)*(x^4 -77*x^2 + 1331);
656
T[125,89]=(x^2 -180)^2*(x^2 + 15*x + 55)^2;
657
T[125,97]=(x^2 -9*x + 9)*(x^2 + 9*x + 9)*(x^4 -128*x^2 + 176);
658
659
T[126,2]=(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x -1)^3*(x + 1)^4;
660
T[126,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
661
T[126,5]=(x^2 -12)^2*(x -2)^3*(x )^4*(x + 2)^6;
662
T[126,7]=(x -1)^8*(x + 1)^9;
663
T[126,11]=(x^2 -12)^2*(x + 4)^4*(x )^4*(x -4)^5;
664
T[126,13]=(x -6)^3*(x + 4)^4*(x -2)^4*(x + 2)^6;
665
T[126,17]=(x + 2)*(x -2)^2*(x^2 -12)^2*(x + 6)^5*(x -6)^5;
666
T[126,19]=(x -2)^4*(x -4)^6*(x + 4)^7;
667
T[126,23]=(x + 8)*(x -8)^2*(x^2 -12)^2*(x )^10;
668
T[126,29]=(x -6)*(x + 6)^3*(x -2)^3*(x )^4*(x + 2)^6;
669
T[126,31]=(x + 4)^8*(x )^9;
670
T[126,37]=(x + 10)^3*(x -6)^6*(x -2)^8;
671
T[126,41]=(x + 2)^2*(x^2 -108)^2*(x + 6)^3*(x -6)^4*(x -2)^4;
672
T[126,43]=(x -8)^4*(x + 4)^13;
673
T[126,47]=(x -12)*(x^2 -48)^2*(x + 12)^3*(x )^9;
674
T[126,53]=(x^2 -48)^2*(x + 6)^4*(x -6)^9;
675
T[126,59]=(x + 4)*(x -6)*(x + 12)^2*(x -4)^2*(x^2 -48)^2*(x + 6)^3*(x -12)^4;
676
T[126,61]=(x -6)^3*(x -8)^4*(x + 10)^4*(x + 2)^6;
677
T[126,67]=(x + 4)^8*(x -4)^9;
678
T[126,71]=(x + 8)*(x -8)^2*(x^2 -108)^2*(x )^10;
679
T[126,73]=(x -10)^3*(x -2)^4*(x -14)^4*(x + 6)^6;
680
T[126,79]=(x )^3*(x + 16)^6*(x -8)^8;
681
T[126,83]=(x -4)*(x -6)*(x + 4)^2*(x -12)^2*(x + 6)^3*(x + 12)^4*(x )^4;
682
T[126,89]=(x -14)^2*(x -6)^2*(x^2 -12)^2*(x + 14)^4*(x + 6)^5;
683
T[126,97]=(x + 14)^3*(x + 10)^4*(x -14)^4*(x -18)^6;
684
685
T[127,2]=(x^3 + 3*x^2 -3)*(x^7 -2*x^6 -8*x^5 + 15*x^4 + 17*x^3 -28*x^2 -11*x + 15);
686
T[127,3]=(x^3 + 3*x^2 -3)*(x^7 -3*x^6 -12*x^5 + 39*x^4 + 26*x^3 -128*x^2 + 64*x + 16);
687
T[127,5]=(x^3 + 6*x^2 + 9*x + 1)*(x^7 -8*x^6 + 11*x^5 + 53*x^4 -146*x^3 + 32*x^2 + 128*x -48);
688
T[127,7]=(x^3 + 3*x^2 -3)*(x^7 + 3*x^6 -20*x^5 -41*x^4 + 114*x^3 + 64*x^2 -112*x -16);
689
T[127,11]=(x^3 -21*x -37)*(x^7 -28*x^5 -17*x^4 + 88*x^3 -37*x^2 -5*x + 3);
690
T[127,13]=(x^3 + 3*x^2 -18*x -37)*(x^7 + x^6 -69*x^5 -38*x^4 + 1515*x^3 + 52*x^2 -10416*x + 5383);
691
T[127,17]=(x^3 + 18*x^2 + 105*x + 199)*(x^7 -24*x^6 + 200*x^5 -467*x^4 -2678*x^3 + 19593*x^2 -45913*x + 38235);
692
T[127,19]=(x^3 -3*x^2 + 1)*(x^7 + 5*x^6 -51*x^5 -206*x^4 + 685*x^3 + 1582*x^2 -2664*x + 853);
693
T[127,23]=(x^3 + 9*x^2 + 18*x -9)*(x^7 + x^6 -74*x^5 -279*x^4 + 812*x^3 + 6344*x^2 + 12376*x + 8016);
694
T[127,29]=(x^3 -3*x^2 -18*x + 3)*(x^7 + 7*x^6 -72*x^5 -359*x^4 + 1612*x^3 + 2512*x^2 -5368*x -