Open in CoCalc
1\\ charpoly_s2_101-200.gp
2\\ This is a table of characteristic polynomials of the
3\\ Hecke operators T_p acting on the space S_2(Gamma_0(N))
4\\ of weight 2 cusp forms for Gamma_0(N).
5\\ William Stein ([email protected]), September, 1998.
6
7{
8T=matrix(200,97,m,n,0);
9T[101,2]=(x^7 -13*x^5 + 2*x^4 + 47*x^3 -16*x^2 -43*x + 14)*(x );
10T[101,3]=(x + 2)*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68);
11T[101,5]=(x + 1)*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67);
12T[101,7]=(x + 2)*(x^7 -2*x^6 -25*x^5 + 66*x^4 + 90*x^3 -326*x^2 + 165*x + 14);
13T[101,11]=(x + 2)*(x^7 -8*x^6 -x^5 + 114*x^4 -72*x^3 -554*x^2 + 213*x + 878);
14T[101,13]=(x -1)*(x^7 + x^6 -45*x^5 -59*x^4 + 664*x^3 + 1066*x^2 -3203*x -6001);
15T[101,17]=(x -3)*(x^7 + 7*x^6 -33*x^5 -221*x^4 + 460*x^3 + 2038*x^2 -2747*x -3871);
16T[101,19]=(x + 5)*(x^7 -19*x^6 + 108*x^5 + 24*x^4 -2032*x^3 + 4400*x^2 + 5824*x -18880);
17T[101,23]=(x -1)*(x^7 + 7*x^6 -48*x^5 -304*x^4 + 432*x^3 + 2160*x^2 -1536*x -64);
18T[101,29]=(x + 4)*(x^7 + 2*x^6 -60*x^5 -88*x^4 + 880*x^3 + 1248*x^2 -2112*x -640);
19T[101,31]=(x + 9)*(x^7 -7*x^6 -92*x^5 + 900*x^4 -1472*x^3 -3872*x^2 + 11712*x -7616);
20T[101,37]=(x + 2)*(x^7 -123*x^5 -100*x^4 + 2990*x^3 + 696*x^2 -5103*x -918);
21T[101,41]=(x -8)*(x^7 + 2*x^6 -160*x^5 -256*x^4 + 3840*x^3 + 10112*x^2 + 6144*x + 1024);
22T[101,43]=(x + 8)*(x^7 -32*x^6 + 280*x^5 + 896*x^4 -25616*x^3 + 121024*x^2 -120256*x -235264);
23T[101,47]=(x -7)*(x^7 + 13*x^6 -36*x^5 -1120*x^4 -4832*x^3 -4176*x^2 + 9792*x + 12096);
24T[101,53]=(x + 2)*(x^7 + 8*x^6 -252*x^5 -2032*x^4 + 17408*x^3 + 146944*x^2 -210624*x -2213632);
25T[101,59]=(x + 14)*(x^7 -16*x^6 -49*x^5 + 1128*x^4 + 1338*x^3 -11046*x^2 -1023*x + 18680);
26T[101,61]=(x -4)*(x^7 + 6*x^6 -180*x^5 -472*x^4 + 7152*x^3 + 12448*x^2 -45760*x + 17792);
27T[101,67]=(x -2)*(x^7 -34*x^6 + 349*x^5 + 68*x^4 -23296*x^3 + 149424*x^2 -337723*x + 183394);
28T[101,71]=(x -13)*(x^7 -9*x^6 -200*x^5 + 1588*x^4 + 7248*x^3 -39904*x^2 -35840*x + 189632);
29T[101,73]=(x -8)*(x^7 + 2*x^6 -128*x^5 -320*x^4 + 3968*x^3 + 13184*x^2 -17408*x -68608);
30T[101,79]=(x + 9)*(x^7 -15*x^6 -148*x^5 + 3496*x^4 -15520*x^3 -10832*x^2 + 177152*x -244160);
31T[101,83]=(x + 4)*(x^7 + 22*x^6 -149*x^5 -6456*x^4 -28804*x^3 + 332730*x^2 + 3151505*x + 7092412);
32T[101,89]=(x -14)*(x^7 + 22*x^6 + 96*x^5 -464*x^4 -2128*x^3 + 5472*x^2 + 4672*x -10880);
33T[101,97]=(x -2)*(x^7 + 28*x^6 + 25*x^5 -5628*x^4 -62530*x^3 -249976*x^2 -314503*x + 59842);
34
35T[102,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3;
36T[102,3]=(x^2 + 2*x + 3)*(x^2 + 3)^2*(x -1)^4*(x + 1)^5;
37T[102,5]=(x + 4)*(x -3)^2*(x^2 -3*x -2)^2*(x )^3*(x + 2)^5;
38T[102,7]=(x + 2)*(x -2)*(x -4)^4*(x + 4)^4*(x )^5;
39T[102,11]=(x + 4)*(x + 3)^2*(x -6)^2*(x^2 + x -4)^2*(x )^6;
40T[102,13]=(x + 6)*(x + 1)^2*(x^2 -5*x + 2)^2*(x -2)^3*(x + 2)^5;
41T[102,17]=(x + 1)^6*(x -1)^9;
42T[102,19]=(x -4)^2*(x + 1)^2*(x^2 -3*x -36)^2*(x + 4)^7;
43T[102,23]=(x -6)*(x + 6)*(x -9)^2*(x^2 + 9*x + 16)^2*(x )^3*(x -4)^4;
44T[102,29]=(x + 4)*(x + 10)*(x^2 -68)^2*(x )^3*(x -6)^6;
45T[102,31]=(x + 10)*(x -8)*(x + 6)*(x -2)^2*(x + 4)^2*(x^2 + 2*x -16)^2*(x -4)^4;
46T[102,37]=(x -8)*(x^2 + 2*x -16)^2*(x + 4)^5*(x + 2)^5;
47T[102,41]=(x -10)*(x + 10)*(x + 3)^2*(x^2 + 3*x -2)^2*(x -6)^3*(x + 6)^4;
48T[102,43]=(x -12)*(x -8)^2*(x + 7)^2*(x + 4)^2*(x^2 + 3*x -36)^2*(x -4)^4;
49T[102,47]=(x -12)*(x -4)*(x + 6)^2*(x^2 + 14*x + 32)^2*(x )^7;
50T[102,53]=(x + 2)*(x^2 -8*x -52)^2*(x + 6)^4*(x -6)^6;
51T[102,59]=(x -12)^2*(x -6)^2*(x^2 -6*x -8)^2*(x )^2*(x + 12)^5;
52T[102,61]=(x^2 -10*x + 8)^2*(x -8)^3*(x + 4)^3*(x + 10)^5;
53T[102,67]=(x -8)^2*(x + 12)^2*(x + 4)^3*(x -4)^8;
54T[102,71]=(x -6)*(x + 6)*(x -12)^2*(x^2 -4*x -64)^2*(x )^3*(x + 4)^4;
55T[102,73]=(x -10)*(x^2 + 8*x -52)^2*(x + 6)^4*(x -2)^6;
56T[102,79]=(x -10)*(x + 8)*(x -8)^2*(x^2 -6*x -144)^2*(x + 10)^3*(x -12)^4;
57T[102,83]=(x + 12)*(x -4)*(x -12)*(x + 6)^2*(x^2 + 10*x + 8)^2*(x )^2*(x + 4)^4;
58T[102,89]=(x + 18)*(x + 2)*(x^2 -6*x -8)^2*(x )^2*(x + 6)^3*(x -10)^4;
59T[102,97]=(x + 14)*(x -6)*(x + 16)^2*(x^2 + 14*x + 32)^2*(x -14)^3*(x -2)^4;
60
61T[103,2]=(x^2 + 3*x + 1)*(x^6 -4*x^5 -x^4 + 17*x^3 -9*x^2 -16*x + 11);
62T[103,3]=(x^6 -13*x^4 + 40*x^2 -8*x -16)*(x + 1)^2;
63T[103,5]=(x^2 + 3*x + 1)*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16);
64T[103,7]=(x^6 + 2*x^5 -18*x^4 -26*x^3 + 74*x^2 + 66*x + 1)*(x + 1)^2;
65T[103,11]=(x^2 + 3*x + 1)*(x^6 + x^5 -41*x^4 -68*x^3 + 416*x^2 + 968*x + 272);
66T[103,13]=(x^2 + 3*x -9)*(x^6 + x^5 -28*x^4 + 53*x^3 + 20*x^2 -103*x + 55);
67T[103,17]=(x^2 + 9*x + 19)*(x^6 -21*x^5 + 144*x^4 -253*x^3 -912*x^2 + 3211*x -1745);
68T[103,19]=(x^2 -5*x -5)*(x^6 + 7*x^5 -8*x^4 -173*x^3 -508*x^2 -589*x -241);
69T[103,23]=(x^2 -20)*(x^6 -12*x^5 -23*x^4 + 640*x^3 -947*x^2 -6592*x + 12268);
70T[103,29]=(x^2 + 6*x + 4)*(x^6 -12*x^5 + 27*x^4 + 28*x^3 -39*x^2 + 2*x + 4);
71T[103,31]=(x^2 -45)*(x^6 + 16*x^5 + 57*x^4 -150*x^3 -1020*x^2 -1272*x -400);
72T[103,37]=(x^2 -45)*(x^6 -83*x^4 -322*x^3 -336*x^2 + 64*x + 176);
73T[103,41]=(x^2 -80)*(x^6 -14*x^5 -37*x^4 + 1574*x^3 -9687*x^2 + 22344*x -15152);
74T[103,43]=(x^2 + 4*x -41)*(x^6 + 6*x^5 -171*x^4 -1160*x^3 + 3720*x^2 + 19520*x -23984);
75T[103,47]=(x^2 + 3*x -29)*(x^6 -x^5 -143*x^4 -352*x^3 + 3048*x^2 + 5456*x -22384);
76T[103,53]=(x^2 + 9*x -11)*(x^6 -19*x^5 + 109*x^4 -194*x^3 -88*x^2 + 384*x -80);
77T[103,59]=(x^2 -15*x + 55)*(x^6 -3*x^5 -164*x^4 + 281*x^3 + 7632*x^2 -2167*x -78173);
78T[103,61]=(x^2 -15*x + 45)*(x^6 -x^5 -194*x^4 -273*x^3 + 3602*x^2 + 1459*x -2495);
79T[103,67]=(x^2 -2*x -179)*(x^6 + 12*x^5 -33*x^4 -752*x^3 -1016*x^2 + 9792*x + 22576);
80T[103,71]=(x^2 -3*x -29)*(x^6 + 27*x^5 + 139*x^4 -1346*x^3 -10956*x^2 -872*x + 83632);
81T[103,73]=(x^2 + 15*x + 45)*(x^6 + 7*x^5 -61*x^4 -428*x^3 + 760*x^2 + 4728*x -4624);
82T[103,79]=(x^2 -7*x -89)*(x^6 + 21*x^5 -12*x^4 -1983*x^3 -5824*x^2 + 9033*x + 5779);
83T[103,83]=(x^2 -3*x -59)*(x^6 + 9*x^5 -66*x^4 -819*x^3 -1462*x^2 + 4245*x + 9637);
84T[103,89]=(x^2 + 18*x + 36)*(x^6 + 14*x^5 -372*x^4 -5720*x^3 + 16224*x^2 + 490560*x + 1667776);
85T[103,97]=(x^2 -10*x -20)*(x^6 + 8*x^5 -337*x^4 -1292*x^3 + 28941*x^2 + 58914*x -560468);
86
87T[104,2]=(x + 1)*(x -1)*(x )^9;
88T[104,3]=(x^2 -x -4)*(x )^2*(x + 3)^3*(x -1)^4;
89T[104,5]=(x^2 -3*x -2)*(x -2)^2*(x + 3)^3*(x + 1)^4;
90T[104,7]=(x -5)*(x^2 + x -4)*(x + 2)^2*(x -1)^3*(x + 1)^3;
91T[104,11]=(x^2 + 2*x -16)*(x -6)^3*(x + 2)^6;
92T[104,13]=(x -1)^5*(x + 1)^6;
93T[104,17]=(x^2 + x -38)*(x -6)^2*(x + 3)^7;
94T[104,19]=(x + 2)*(x^2 -2*x -16)*(x + 6)^2*(x -2)^3*(x -6)^3;
95T[104,23]=(x -4)*(x -8)^2*(x + 8)^2*(x + 4)^3*(x )^3;
96T[104,29]=(x + 6)*(x + 2)^2*(x -6)^3*(x -2)^5;
97T[104,31]=(x -10)^2*(x + 4)^4*(x -4)^5;
98T[104,37]=(x -11)*(x^2 -7*x -26)*(x + 6)^2*(x + 7)^3*(x -3)^3;
99T[104,41]=(x -8)*(x^2 -2*x -16)*(x + 6)^2*(x )^6;
100T[104,43]=(x^2 -15*x + 52)*(x -4)^2*(x + 5)^3*(x + 1)^4;
101T[104,47]=(x -9)*(x^2 + 13*x + 4)*(x + 2)^2*(x -3)^3*(x -13)^3;
102T[104,53]=(x + 12)*(x^2 + 2*x -16)*(x -6)^2*(x -12)^3*(x )^3;
103T[104,59]=(x -6)*(x^2 -2*x -16)*(x + 6)^3*(x + 10)^5;
104T[104,61]=(x^2 -14*x + 32)*(x )*(x + 2)^2*(x + 8)^3*(x -8)^3;
105T[104,67]=(x -6)*(x^2 + 2*x -16)*(x -10)^2*(x -14)^3*(x + 2)^3;
106T[104,71]=(x -7)*(x^2 + 3*x -36)*(x -10)^2*(x + 3)^3*(x + 5)^3;
107T[104,73]=(x + 2)*(x + 6)^2*(x + 10)^3*(x -2)^5;
108T[104,79]=(x -12)*(x + 4)^5*(x -8)^5;
109T[104,83]=(x + 16)*(x^2 + 12*x -32)*(x + 6)^2*(x -12)^3*(x )^3;
110T[104,89]=(x + 10)*(x -10)^2*(x -6)^3*(x + 6)^5;
111T[104,97]=(x^2 -68)*(x -2)^2*(x -14)^3*(x + 10)^4;
112
113T[105,2]=(x -1)*(x^2 -5)*(x^2 + x -4)^2*(x )^2*(x + 1)^4;
114T[105,3]=(x^2 -x + 3)*(x^4 + x^3 + 2*x^2 + 3*x + 9)*(x -1)^3*(x + 1)^4;
115T[105,5]=(x^2 + 2*x + 5)*(x + 1)^4*(x -1)^7;
116T[105,7]=(x^2 + 7)*(x -1)^5*(x + 1)^6;
117T[105,11]=(x^2 -4*x -16)*(x )*(x -4)^2*(x + 4)^2*(x + 3)^2*(x^2 -x -4)^2;
118T[105,13]=(x + 6)*(x^2 -20)*(x -5)^2*(x^2 -5*x + 2)^2*(x + 2)^4;
119T[105,17]=(x + 6)^2*(x + 2)^2*(x -3)^2*(x^2 + 5*x + 2)^2*(x -2)^3;
120T[105,19]=(x + 8)*(x^2 -4*x -16)*(x -2)^2*(x^2 + 6*x -8)^2*(x -4)^4;
121T[105,23]=(x -8)*(x + 6)^2*(x -4)^2*(x^2 + 2*x -16)^2*(x )^4;
122T[105,29]=(x -3)^2*(x^2 -x -38)^2*(x + 2)^7;
123T[105,31]=(x -4)*(x^2 -12*x + 16)*(x + 4)^2*(x )^8;
124T[105,37]=(x + 2)*(x^2 -4*x -76)*(x + 10)^2*(x -2)^2*(x -6)^6;
125T[105,41]=(x + 6)*(x + 12)^2*(x + 2)^2*(x -2)^2*(x -10)^2*(x^2 -2*x -16)^2;
126T[105,43]=(x^2 -80)*(x + 10)^2*(x + 4)^2*(x^2 -10*x + 8)^2*(x -4)^3;
127T[105,47]=(x^2 -8*x -64)*(x -9)^2*(x^2 + 5*x -32)^2*(x )^2*(x -8)^3;
128T[105,53]=(x -10)*(x^2 + 16*x + 44)*(x -6)^2*(x -12)^2*(x + 10)^2*(x^2 + 2*x -16)^2;
129T[105,59]=(x -4)*(x^2 -80)*(x -12)^2*(x )^2*(x + 4)^6;
130T[105,61]=(x -8)^2*(x^2 -6*x -144)^2*(x + 2)^7;
131T[105,67]=(x -12)^2*(x^2 -4*x -64)^2*(x -4)^3*(x + 4)^4;
132T[105,71]=(x + 12)*(x^2 -20*x + 80)*(x + 8)^2*(x -8)^4*(x )^4;
133T[105,73]=(x + 2)*(x^2 + 16*x + 44)*(x -10)^2*(x -2)^2*(x + 6)^2*(x^2 + 8*x -52)^2;
134T[105,79]=(x -8)*(x^2 -8*x -64)*(x + 16)^2*(x + 1)^2*(x^2 + 9*x + 16)^2*(x )^2;
135T[105,83]=(x + 4)*(x^2 + 16*x -16)*(x + 12)^2*(x -12)^4*(x -4)^4;
136T[105,89]=(x + 14)^2*(x + 2)^2*(x + 12)^2*(x^2 -6*x -8)^2*(x + 6)^3;
137T[105,97]=(x + 18)*(x^2 -8*x -4)*(x + 1)^2*(x -18)^2*(x -2)^2*(x^2 + 9*x -86)^2;
138
139T[106,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x + 1)^2*(x -1)^2;
140T[106,3]=(x + 1)*(x -1)*(x -2)*(x + 2)*(x + 3)^2*(x^3 -3*x^2 -x + 1)^2;
141T[106,5]=(x + 4)*(x -3)*(x -1)*(x^3 + 2*x^2 -4*x -4)^2*(x )^3;
142T[106,7]=(x + 2)*(x -2)*(x )*(x^3 -4*x^2 + 4)^2*(x + 4)^3;
143T[106,11]=(x -5)*(x + 4)*(x + 3)*(x^3 + 4*x^2 -4*x -20)^2*(x )^3;
144T[106,13]=(x -5)*(x + 3)^2*(x + 4)^2*(x -1)^7;
145T[106,17]=(x -5)*(x -3)^2*(x^3 + 5*x^2 -5*x -17)^2*(x + 3)^3;
146T[106,19]=(x + 1)*(x + 7)*(x + 5)^2*(x + 4)^2*(x^3 -11*x^2 + 37*x -37)^2;
147T[106,23]=(x + 3)*(x + 9)*(x -1)*(x -3)*(x -7)^2*(x^3 -3*x^2 -31*x -29)^2;
148T[106,29]=(x -5)*(x + 6)*(x -6)*(x -9)*(x + 7)^2*(x^3 + 5*x^2 -37*x -61)^2;
149T[106,31]=(x -7)*(x -5)*(x + 4)^2*(x -4)^2*(x^3 + 2*x^2 -76*x + 116)^2;
150T[106,37]=(x -1)*(x + 6)*(x + 10)*(x^3 + 5*x^2 -89*x -353)^2*(x -5)^3;
151T[106,41]=(x -2)*(x + 10)*(x^3 + 10*x^2 + 20*x -8)^2*(x -6)^4;
152T[106,43]=(x + 1)*(x -7)*(x + 10)^2*(x + 2)^2*(x^3 -18*x^2 + 24*x + 556)^2;
153T[106,47]=(x -4)*(x -6)*(x + 6)*(x )*(x + 2)^2*(x^3 + 10*x^2 -4*x -8)^2;
154T[106,53]=(x + 1)^5*(x -1)^7;
155T[106,59]=(x -15)*(x -6)*(x + 6)*(x -7)*(x + 2)^2*(x^3 -2*x^2 -60*x + 200)^2;
156T[106,61]=(x -4)*(x -2)*(x + 10)*(x -8)*(x + 8)^2*(x^3 + 10*x^2 -56*x -556)^2;
157T[106,67]=(x -4)*(x -16)*(x + 4)^2*(x + 12)^2*(x^3 -6*x^2 -72*x -108)^2;
158T[106,71]=(x + 3)*(x -15)*(x -1)^2*(x -12)^2*(x^3 + 5*x^2 -105*x + 277)^2;
159T[106,73]=(x + 12)*(x -8)*(x + 8)*(x^3 -6*x^2 -28*x -4)^2*(x + 4)^3;
160T[106,79]=(x + 7)*(x -11)*(x + 13)*(x -1)*(x + 1)^2*(x^3 + 7*x^2 -77*x + 131)^2;
161T[106,83]=(x + 6)*(x + 3)*(x -3)*(x + 14)*(x + 1)^2*(x^3 -27*x^2 + 213*x -457)^2;
162T[106,89]=(x -2)*(x -17)*(x -18)*(x -9)*(x + 14)^2*(x^3 + 2*x^2 -212*x + 1048)^2;
163T[106,97]=(x -17)*(x + 7)*(x -3)*(x + 13)*(x -1)^2*(x^3 + x^2 -133*x -137)^2;
164
165T[107,2]=(x^2 + x -1)*(x^7 + x^6 -10*x^5 -7*x^4 + 29*x^3 + 12*x^2 -20*x -8);
166T[107,3]=(x^2 + 3*x + 1)*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29);
167T[107,5]=(x^2 + 3*x + 1)*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64);
168T[107,7]=(x^2 + 4*x -1)*(x^7 -4*x^6 -23*x^5 + 114*x^4 -32*x^3 -360*x^2 + 448*x -128);
169T[107,11]=(x^2 -4*x -1)*(x^7 + 2*x^6 -41*x^5 -95*x^4 + 361*x^3 + 950*x^2 + 519*x + 47);
170T[107,13]=(x^7 -18*x^6 + 98*x^5 + x^4 -1649*x^3 + 4855*x^2 -3548*x -1244)*(x + 6)^2;
171T[107,17]=(x^2 + 3*x + 1)*(x^7 + x^6 -41*x^5 -16*x^4 + 488*x^3 + 32*x^2 -1536*x -512);
172T[107,19]=(x^2 -2*x -44)*(x^7 + 4*x^6 -52*x^5 -137*x^4 + 391*x^3 + 951*x^2 -694*x -1636);
173T[107,23]=(x^2 -6*x -11)*(x^7 -123*x^5 -41*x^4 + 4295*x^3 + 1802*x^2 -34533*x + 21431);
174T[107,29]=(x^2 + 2*x -19)*(x^7 + 3*x^6 -94*x^5 -382*x^4 + 1077*x^3 + 4927*x^2 -1896*x -11828);
175T[107,31]=(x^2 + 2*x -19)*(x^7 -4*x^6 -45*x^5 + 224*x^4 -84*x^3 -576*x^2 + 320*x + 256);
176T[107,37]=(x^2 + 13*x + 31)*(x^7 -25*x^6 + 219*x^5 -659*x^4 -1042*x^3 + 10321*x^2 -20000*x + 12113);
177T[107,41]=(x^2 -10*x + 20)*(x^7 -82*x^5 + 155*x^4 + 893*x^3 -1965*x^2 -394*x + 724);
178T[107,43]=(x^2 -9*x + 9)*(x^7 -11*x^6 -79*x^5 + 1026*x^4 + 140*x^3 -23568*x^2 + 59040*x -21856);
179T[107,47]=(x^2 + 14*x + 44)*(x^7 + 9*x^6 -107*x^5 -1361*x^4 -2306*x^3 + 14076*x^2 + 30432*x -30848);
180T[107,53]=(x^2 + 6*x -71)*(x^7 -8*x^6 -125*x^5 + 435*x^4 + 5683*x^3 -150*x^2 -79775*x -143149);
181T[107,59]=(x^2 -3*x -99)*(x^7 + 19*x^6 + 81*x^5 -538*x^4 -6064*x^3 -21232*x^2 -31888*x -16736);
182T[107,61]=(x^2 + 13*x + 31)*(x^7 -25*x^6 + 111*x^5 + 1195*x^4 -9280*x^3 + 2653*x^2 + 86150*x -123049);
183T[107,67]=(x^2 + 10*x + 20)*(x^7 + 24*x^6 + 44*x^5 -3400*x^4 -36896*x^3 -136864*x^2 -88704*x + 333056);
184T[107,71]=(x^2 + 3*x -99)*(x^7 + 19*x^6 -165*x^5 -4948*x^4 -15804*x^3 + 174696*x^2 + 1073984*x + 1370816);
185T[107,73]=(x^2 + 8*x -29)*(x^7 -30*x^6 + 101*x^5 + 3540*x^4 -21896*x^3 -74968*x^2 + 357776*x + 79712);
186T[107,79]=(x^2 -x -11)*(x^7 + 21*x^6 + 131*x^5 -13*x^4 -2664*x^3 -6337*x^2 + 5306*x + 19859);
187T[107,83]=(x^2 -3*x -9)*(x^7 -12*x^6 -395*x^5 + 5505*x^4 + 25518*x^3 -554561*x^2 + 1427088*x + 2420672);
188T[107,89]=(x^2 -20*x + 95)*(x^7 + 22*x^6 -87*x^5 -3053*x^4 -1107*x^3 + 33866*x^2 -27103*x -14123);
189T[107,97]=(x^2 + 12*x -9)*(x^7 + 4*x^6 -207*x^5 -414*x^4 + 10036*x^3 + 8368*x^2 -124544*x + 139424);
190
191T[108,2]=(x + 1)*(x -1)*(x^2 + 2)*(x )^6;
192T[108,3]=(x )^10;
193T[108,5]=(x + 3)^2*(x -3)^2*(x )^6;
194T[108,7]=(x -5)*(x + 4)^2*(x + 1)^7;
195T[108,11]=(x + 3)^2*(x -3)^2*(x )^6;
196T[108,13]=(x + 7)*(x -2)^2*(x -5)^3*(x + 4)^4;
197T[108,17]=(x )^10;
198T[108,19]=(x + 1)*(x -8)^2*(x + 7)^3*(x -2)^4;
199T[108,23]=(x -6)^2*(x + 6)^2*(x )^6;
200T[108,29]=(x -6)^2*(x + 6)^2*(x )^6;
201T[108,31]=(x -5)^4*(x + 4)^6;
202T[108,37]=(x + 1)*(x + 10)^2*(x -11)^3*(x -2)^4;
203T[108,41]=(x -6)^2*(x + 6)^2*(x )^6;
204T[108,43]=(x + 10)^4*(x -8)^6;
205T[108,47]=(x + 6)^2*(x -6)^2*(x )^6;
206T[108,53]=(x -9)^2*(x + 9)^2*(x )^6;
207T[108,59]=(x + 12)^2*(x -12)^2*(x )^6;
208T[108,61]=(x + 13)*(x -14)^2*(x + 1)^3*(x -8)^4;
209T[108,67]=(x -11)*(x + 16)^2*(x -5)^3*(x -14)^4;
210T[108,71]=(x )^10;
211T[108,73]=(x -17)*(x + 10)^2*(x + 7)^7;
212T[108,79]=(x + 13)*(x + 4)^2*(x -17)^3*(x -8)^4;
213T[108,83]=(x + 3)^2*(x -3)^2*(x )^6;
214T[108,89]=(x -18)^2*(x + 18)^2*(x )^6;
215T[108,97]=(x -5)*(x -14)^2*(x + 19)^3*(x + 1)^4;
216
217T[109,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^4 + x^3 -5*x^2 -4*x + 3);
218T[109,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -4*x^3 -x^2 + 15*x -8)*(x );
219T[109,5]=(x -3)*(x^3 + 6*x^2 + 5*x -13)*(x^4 -x^3 -5*x^2 + 4*x + 3);
220T[109,7]=(x -2)*(x^3 + x^2 -16*x + 13)*(x^4 + 3*x^3 -10*x^2 -23*x -2);
221T[109,11]=(x -1)*(x^3 + 13*x^2 + 54*x + 71)*(x^4 -12*x^3 + 33*x^2 + 47*x -177);
222T[109,13]=(x^3 + x^2 -16*x + 13)*(x^4 + 7*x^3 -10*x^2 -93*x + 16)*(x );
223T[109,17]=(x + 8)*(x^3 -3*x^2 -4*x + 13)*(x^4 -11*x^3 + 10*x^2 + 215*x -576);
224T[109,19]=(x + 5)*(x^3 + 5*x^2 -8*x -41)*(x^4 -10*x^3 + 27*x^2 + 3*x -59);
225T[109,23]=(x -7)*(x^3 -x^2 -58*x -13)*(x^4 + 2*x^3 -31*x^2 -43*x + 177);
226T[109,29]=(x + 5)*(x^3 + 6*x^2 -37*x -181)*(x^4 -x^3 -59*x^2 + 154*x -57);
227T[109,31]=(x -6)*(x^3 + 7*x^2 -28*x + 7)*(x^4 + 5*x^3 -22*x^2 -69*x + 158);
228T[109,37]=(x -2)*(x^3 -7*x -7)*(x^4 + 12*x^3 -65*x^2 -1031*x -2038);
229T[109,41]=(x -2)*(x^3 + 6*x^2 -51*x + 71)*(x^4 -12*x^3 + 47*x^2 -61*x + 6);
230T[109,43]=(x + 4)*(x^3 -9*x^2 -36*x + 351)*(x^4 -5*x^3 -40*x^2 + 75*x + 388);
231T[109,47]=(x -9)*(x^3 + 10*x^2 -25*x -125)*(x^4 + x^3 -5*x^2 -4*x + 3);
232T[109,53]=(x -12)*(x^3 -9*x^2 + 20*x -13)*(x^4 + 19*x^3 -24*x^2 -1351*x -684);
233T[109,59]=(x -12)*(x^3 + 25*x^2 + 192*x + 461)*(x^4 -27*x^3 + 216*x^2 -513*x + 324);
234T[109,61]=(x + 5)*(x^3 + 10*x^2 -144*x -1336)*(x^4 + 7*x^3 -102*x^2 + 72*x + 216);
235T[109,67]=(x + 12)*(x^3 + 11*x^2 -25*x -43)*(x^4 -7*x^3 -53*x^2 + 455*x -772);
236T[109,71]=(x + 6)*(x^3 + 10*x^2 -11*x -223)*(x^4 -32*x^3 + 209*x^2 + 1843*x -17298);
237T[109,73]=(x + 5)*(x^3 -20*x^2 + 131*x -281)*(x^4 + 9*x^3 -77*x^2 -710*x -997);
238T[109,79]=(x -8)*(x^3 + 6*x^2 -79*x -461)*(x^4 + 24*x^3 + 65*x^2 -935*x + 1264);
239T[109,83]=(x + 2)*(x^3 + 13*x^2 -2*x -139)*(x^4 -21*x^3 + 80*x^2 + 301*x -534);
240T[109,89]=(x -1)*(x^3 + 21*x^2 + 84*x + 91)*(x^4 + 16*x^3 -29*x^2 -349*x + 513);
241T[109,97]=(x -1)*(x^3 + 20*x^2 + 75*x -125)*(x^4 + 11*x^3 -45*x^2 -96*x -23);
242
243T[110,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3;
244T[110,3]=(x^2 + x -8)*(x -1)^2*(x^2 -8)^2*(x )^2*(x + 1)^5;
245T[110,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;
246T[110,7]=(x -5)*(x + 1)*(x -3)*(x^2 -x -8)*(x )^2*(x + 2)^8;
247T[110,11]=(x + 1)^5*(x -1)^10;
248T[110,13]=(x + 6)*(x^2 + 8*x + 8)^2*(x -4)^4*(x -2)^6;
249T[110,17]=(x -3)*(x + 3)*(x + 7)*(x^2 + 3*x -6)*(x -6)^2*(x^2 -8*x + 8)^2*(x + 2)^4;
250T[110,19]=(x + 1)*(x + 7)*(x -5)*(x^2 -7*x + 4)*(x + 4)^2*(x )^8;
251T[110,23]=(x -6)*(x^2 + 6*x -24)*(x -4)^2*(x + 6)^2*(x^2 -8)^2*(x + 1)^4;
252T[110,29]=(x + 9)*(x + 3)*(x -5)*(x^2 + 3*x -6)*(x -6)^2*(x^2 -4*x -28)^2*(x )^4;
253T[110,31]=(x -5)*(x + 7)*(x + 3)*(x^2 -x -8)*(x + 8)^2*(x -7)^4*(x )^4;
254T[110,37]=(x + 7)*(x -5)*(x^2 -13*x + 34)*(x + 2)^2*(x^2 + 4*x -28)^2*(x -3)^5;
255T[110,41]=(x + 6)*(x^2 -132)*(x -2)^3*(x + 8)^4*(x -6)^5;
256T[110,43]=(x + 4)^2*(x -8)^2*(x -4)^3*(x + 6)^8;
257T[110,47]=(x + 2)*(x^2 + 6*x -24)*(x -6)^2*(x + 12)^2*(x^2 -8)^2*(x -8)^4;
258T[110,53]=(x + 1)*(x -9)*(x + 3)*(x^2 -9*x -54)*(x + 2)^2*(x^2 -12*x + 4)^2*(x + 6)^4;
259T[110,59]=(x -6)*(x + 6)*(x + 10)*(x^2 -6*x -24)*(x -4)^2*(x^2 + 8*x -16)^2*(x -5)^4;
260T[110,61]=(x -5)*(x + 1)*(x -7)*(x^2 + 5*x -2)*(x + 10)^2*(x^2 -4*x -124)^2*(x -12)^4;
261T[110,67]=(x + 16)^2*(x^2 -8*x -56)^2*(x + 7)^4*(x -8)^5;
262T[110,71]=(x -7)*(x -3)*(x + 9)*(x^2 -3*x -72)*(x -8)^2*(x^2 -128)^2*(x + 3)^4;
263T[110,73]=(x -2)*(x + 10)*(x^2 + 8*x -116)*(x^2 + 8*x + 8)^2*(x -14)^3*(x -4)^4;
264T[110,79]=(x -10)*(x -14)*(x^2 + 14*x + 16)*(x -8)^2*(x -4)^4*(x + 10)^5;
265T[110,83]=(x^2 -6*x -24)*(x + 4)^2*(x + 6)^11;
266T[110,89]=(x -9)*(x^2 -3*x -6)*(x + 15)^2*(x -10)^2*(x^2 + 4*x -124)^2*(x -15)^4;
267T[110,97]=(x + 12)*(x -8)*(x + 4)*(x^2 + 14*x + 16)*(x -10)^2*(x^2 + 4*x -28)^2*(x + 7)^4;
268
269T[111,2]=(x^3 -3*x^2 -x + 5)*(x^4 -6*x^2 + 2*x + 5)*(x + 2)^2*(x )^2;
270T[111,3]=(x^2 + 3*x + 3)*(x^2 -x + 3)*(x + 1)^3*(x -1)^4;
271T[111,5]=(x^3 -4*x^2 -4*x + 20)*(x^4 + 2*x^3 -8*x^2 + 4)*(x + 2)^2*(x )^2;
272T[111,7]=(x^3 + 4*x^2 -8*x -16)*(x^4 -4*x^3 -16*x^2 + 64*x -16)*(x + 1)^4;
273T[111,11]=(x^3 -4*x^2 -16*x + 32)*(x^4 -32*x^2 -32*x + 64)*(x -3)^2*(x + 5)^2;
274T[111,13]=(x^3 + 2*x^2 -20*x -8)*(x^4 -4*x^3 -32*x^2 + 144*x -80)*(x + 4)^2*(x + 2)^2;
275T[111,17]=(x^3 -4*x^2 -28*x + 116)*(x^4 + 2*x^3 -24*x^2 -72*x -28)*(x -6)^2*(x )^2;
276T[111,19]=(x^3 + 8*x^2 + 8*x -16)*(x^4 -8*x^3 -8*x^2 + 144*x -224)*(x -2)^2*(x )^2;
277T[111,23]=(x^3 + 2*x^2 -4*x -4)*(x^4 + 10*x^3 -32*x^2 -296*x + 652)*(x -2)^2*(x -6)^2;
278T[111,29]=(x^3 -16*x^2 + 76*x -92)*(x^4 + 2*x^3 -56*x^2 -40*x + 724)*(x -6)^2*(x + 6)^2;
279T[111,31]=(x^3 + 8*x^2 -32*x -272)*(x^4 -4*x^3 -16*x^2 + 16*x + 32)*(x + 4)^4;
280T[111,37]=(x -1)^5*(x + 1)^6;
281T[111,41]=(x^4 -12*x^3 + 304*x -400)*(x -6)^3*(x + 9)^4;
282T[111,43]=(x^3 + 12*x^2 + 32*x -16)*(x^4 -4*x^3 -128*x^2 + 176*x + 3424)*(x -2)^2*(x -8)^2;
283T[111,47]=(x^3 + 4*x^2 -48*x -64)*(x^4 + 12*x^3 + 16*x^2 -128*x -128)*(x -3)^2*(x + 9)^2;
284T[111,53]=(x^3 + 6*x^2 -100*x -632)*(x^4 -8*x^3 -56*x^2 + 320*x + 464)*(x -1)^2*(x + 3)^2;
285T[111,59]=(x^3 -6*x^2 -36*x + 108)*(x^4 + 10*x^3 -176*x^2 -2416*x -7156)*(x -12)^2*(x -8)^2;
286T[111,61]=(x^4 + 8*x^3 -72*x^2 -480*x + 656)*(x + 8)^2*(x -8)^2*(x + 2)^3;
287T[111,67]=(x^3 + 16*x^2 + 24*x -16)*(x^4 + 4*x^3 -16*x^2 -64*x -16)*(x -8)^2*(x + 4)^2;
288T[111,71]=(x^3 -12*x^2 -16*x + 320)*(x^4 + 12*x^3 -48*x^2 -512*x + 1664)*(x -9)^2*(x + 15)^2;
289T[111,73]=(x^3 + 6*x^2 -4*x -8)*(x^4 -12*x^3 -8*x^2 + 176*x -32)*(x + 1)^2*(x -11)^2;
290T[111,79]=(x^3 -12*x^2 -72*x + 400)*(x^4 + 8*x^3 -56*x^2 -656*x -1504)*(x -4)^2*(x + 10)^2;
291T[111,83]=(x^3 -112*x -416)*(x^4 + 20*x^3 + 112*x^2 + 192*x + 64)*(x -9)^2*(x + 15)^2;
292T[111,89]=(x^3 + 4*x^2 -108*x -52)*(x^4 -26*x^3 + 128*x^2 + 944*x -5452)*(x -6)^2*(x -4)^2;
293T[111,97]=(x^3 + 14*x^2 + 28*x -152)*(x^4 + 4*x^3 -272*x^2 -464*x + 17008)*(x -4)^2*(x -8)^2;
294
295T[112,2]=(x + 1)*(x )^10;
296T[112,3]=(x -2)^3*(x )^3*(x + 2)^5;
297T[112,5]=(x + 4)^3*(x -2)^3*(x )^5;
298T[112,7]=(x + 1)^4*(x -1)^7;
299T[112,11]=(x -4)*(x + 4)^2*(x )^8;
300T[112,13]=(x -2)^3*(x )^3*(x + 4)^5;
301T[112,17]=(x + 6)^3*(x + 2)^3*(x -6)^5;
302T[112,19]=(x + 8)*(x -8)^2*(x + 2)^3*(x -2)^5;
303T[112,23]=(x + 8)*(x -8)^2*(x )^8;
304T[112,29]=(x -2)^3*(x -6)^3*(x + 6)^5;
305T[112,31]=(x + 8)*(x -8)^2*(x -4)^3*(x + 4)^5;
306T[112,37]=(x + 6)^3*(x + 2)^3*(x -2)^5;
307T[112,41]=(x + 2)^3*(x -2)^3*(x -6)^5;
308T[112,43]=(x -4)*(x + 4)^2*(x + 8)^2*(x -8)^6;
309T[112,47]=(x -8)*(x -4)*(x -12)*(x + 4)^2*(x + 8)^2*(x + 12)^4;
310T[112,53]=(x + 10)^3*(x -6)^8;
311T[112,59]=(x -6)^3*(x )^3*(x + 6)^5;
312T[112,61]=(x -4)^3*(x + 6)^3*(x -8)^5;
313T[112,67]=(x -12)*(x + 12)^2*(x -4)^2*(x + 4)^6;
314T[112,71]=(x -8)*(x + 8)^2*(x )^8;
315T[112,73]=(x + 14)^3*(x -10)^3*(x -2)^5;
316T[112,79]=(x + 16)*(x -16)^2*(x + 8)^3*(x -8)^5;
317T[112,83]=(x + 8)*(x -8)^2*(x -6)^3*(x + 6)^5;
318T[112,89]=(x -10)^3*(x + 6)^8;
319T[112,97]=(x + 2)^3*(x + 6)^3*(x + 10)^5;
320
321T[113,2]=(x + 1)*(x^3 + 2*x^2 -5*x -9)*(x^3 + 2*x^2 -x -1)*(x -1)^2;
322T[113,3]=(x -2)*(x^2 -2*x -2)*(x^3 + x^2 -4*x -1)*(x^3 + 5*x^2 + 6*x + 1);
323T[113,5]=(x -2)*(x^2 -12)*(x^3 + x^2 -9*x -1)*(x + 1)^3;
324T[113,7]=(x^3 -6*x^2 + 3*x + 9)*(x^3 + 10*x^2 + 31*x + 29)*(x )*(x -4)^2;
325T[113,11]=(x^2 + 4*x -8)*(x^3 -2*x^2 -3*x + 3)*(x^3 -2*x^2 -15*x -13)*(x );
326T[113,13]=(x -2)*(x^2 + 4*x -8)*(x^3 -8*x^2 + 17*x -7)*(x^3 + 8*x^2 + 5*x -43);
327T[113,17]=(x + 6)*(x^3 -10*x^2 + 21*x -9)*(x^3 + 2*x^2 -29*x + 13)*(x + 2)^2;
328T[113,19]=(x -6)*(x^2 + 6*x + 6)*(x^3 + 4*x^2 -11*x -1)*(x^3 -4*x^2 -45*x + 177);
329T[113,23]=(x + 6)*(x^2 -2*x -2)*(x^3 + 6*x^2 -9*x -27)*(x^3 -4*x^2 -15*x -9);
330T[113,29]=(x + 6)*(x^2 -8*x + 4)*(x^3 -5*x^2 -22*x + 97)*(x^3 + 7*x^2 + 12*x + 3);
331T[113,31]=(x + 4)*(x^2 -4*x -8)*(x^3 -9*x^2 + 18*x + 1)*(x^3 + 15*x^2 + 26*x -211);
332T[113,37]=(x -2)*(x^2 + 8*x + 4)*(x^3 -8*x^2 -61*x + 389)*(x^3 + 2*x^2 -71*x -113);
333T[113,41]=(x + 2)*(x^2 + 4*x -8)*(x^3 -x^2 -16*x + 29)*(x^3 + 7*x^2 -68*x -63);
334T[113,43]=(x -6)*(x^2 -6*x -66)*(x^3 -12*x^2 + 21*x -9)*(x^3 + 2*x^2 -29*x + 13);
335T[113,47]=(x -6)*(x^2 -6*x -18)*(x^3 + 7*x^2 -28*x + 7)*(x^3 -9*x^2 -6*x + 81);
336T[113,53]=(x -10)*(x^2 + 12*x + 24)*(x^3 + 5*x^2 -64*x + 29)*(x^3 + 21*x^2 + 120*x + 101);
337T[113,59]=(x -6)*(x^2 -6*x -18)*(x^3 + 9*x^2 -42*x -369)*(x^3 -15*x^2 + 26*x + 169);
338T[113,61]=(x -6)*(x^2 -12*x -12)*(x^3 + 21*x^2 + 108*x + 81)*(x^3 + 21*x^2 + 140*x + 301);
339T[113,67]=(x -2)*(x^2 + 10*x + 22)*(x^3 -5*x^2 -36*x -43)*(x^3 + 3*x^2 -156*x -869);
340T[113,71]=(x + 6)*(x^2 + 10*x + 22)*(x^3 -14*x^2 + 392)*(x^3 -22*x^2 + 144*x -264);
341T[113,73]=(x -2)*(x^2 -4*x -188)*(x^3 + x^2 -40*x -109)*(x^3 + 11*x^2 -46*x + 41);
342T[113,79]=(x -10)*(x^2 -10*x -50)*(x^3 -x^2 -40*x + 109)*(x^3 + 5*x^2 -50*x -125);
343T[113,83]=(x + 4)*(x^2 -192)*(x^3 -14*x^2 + 63*x -91)*(x^3 -2*x^2 -193*x + 413);
344T[113,89]=(x + 14)*(x^2 -12*x -12)*(x^3 + 6*x^2 -147*x + 401)*(x^3 + 16*x^2 -29*x -841);
345T[113,97]=(x + 14)*(x^3 -12*x^2 -33*x + 287)*(x^3 -217*x + 1183)*(x + 2)^2;
346
347T[114,2]=(x^2 -x + 2)*(x^2 + 2)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x -1)^4;
348T[114,3]=(x^2 + x + 3)*(x^2 -x + 3)*(x^2 + 2*x + 3)^2*(x + 1)^4*(x -1)^5;
349T[114,5]=(x -2)*(x + 4)^2*(x + 3)^2*(x -1)^2*(x + 2)^2*(x -3)^4*(x )^4;
350T[114,7]=(x + 4)*(x -4)*(x + 5)^2*(x )^3*(x -3)^4*(x + 1)^6;
351T[114,11]=(x + 4)*(x -4)*(x + 6)^2*(x -2)^2*(x + 3)^2*(x -1)^2*(x )^3*(x -3)^4;
352T[114,13]=(x )*(x + 6)^2*(x -6)^2*(x -5)^2*(x + 1)^2*(x -2)^3*(x + 4)^5;
353T[114,17]=(x + 2)*(x -6)*(x + 1)^2*(x + 6)^3*(x + 3)^4*(x -3)^6;
354T[114,19]=(x -1)^8*(x + 1)^9;
355T[114,23]=(x + 6)*(x + 2)*(x + 1)^2*(x -3)^2*(x + 4)^3*(x -4)^4*(x )^4;
356T[114,29]=(x + 6)*(x -2)^2*(x + 10)^2*(x + 5)^2*(x -9)^2*(x + 2)^3*(x -6)^5;
357T[114,31]=(x -6)*(x -4)*(x + 8)^2*(x + 6)^2*(x -8)^2*(x -2)^3*(x + 4)^6;
358T[114,37]=(x + 4)*(x -10)*(x + 8)*(x -8)^2*(x + 10)^2*(x + 2)^2*(x )^2*(x -2)^6;
359T[114,41]=(x -6)*(x -10)^2*(x + 2)^2*(x + 6)^4*(x + 8)^4*(x )^4;
360T[114,43]=(x + 12)*(x -8)^2*(x + 4)^3*(x -4)^3*(x + 1)^8;
361T[114,47]=(x -10)*(x -6)*(x + 4)*(x -12)^2*(x -3)^2*(x + 9)^2*(x -8)^2*(x )^2*(x + 3)^4;
362T[114,53]=(x + 10)*(x -2)*(x -6)*(x + 1)^2*(x -10)^2*(x + 3)^2*(x + 6)^4*(x -12)^4;
363T[114,59]=(x -4)*(x -12)*(x -15)^2*(x + 8)^2*(x -9)^2*(x )^2*(x + 12)^3*(x + 6)^4;
364T[114,61]=(x -2)^2*(x + 2)^2*(x -14)^2*(x -7)^2*(x + 10)^3*(x + 1)^6;
365T[114,67]=(x + 12)*(x )*(x -3)^2*(x -5)^2*(x -8)^5*(x + 4)^6;
366T[114,71]=(x -8)*(x + 16)*(x -2)^2*(x + 6)^2*(x -12)^2*(x + 12)^2*(x )^3*(x -6)^4;
367T[114,73]=(x + 6)*(x + 2)*(x -14)*(x -9)^2*(x -10)^2*(x + 11)^4*(x + 7)^6;
368T[114,79]=(x + 4)*(x -10)*(x -16)^2*(x -8)^4*(x )^4*(x + 10)^5;
369T[114,83]=(x + 12)*(x + 16)*(x -16)^2*(x -4)^2*(x + 6)^4*(x -12)^7;
370T[114,89]=(x -10)^2*(x + 12)^2*(x )^2*(x + 2)^3*(x + 6)^4*(x -12)^4;
371T[114,97]=(x -10)^3*(x + 2)^4*(x -8)^4*(x + 10)^6;
372
373T[115,2]=(x -2)*(x^2 + 3*x + 1)*(x^4 -2*x^3 -4*x^2 + 5*x + 2)*(x^2 + x -1)^2;
374T[115,3]=(x )*(x + 1)^2*(x^2 -5)^2*(x^2 + x -4)^2;
375T[115,5]=(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)*(x + 1)^3*(x -1)^4;
376T[115,7]=(x -1)*(x^2 + 2*x -4)*(x^4 + 3*x^3 -14*x^2 -52*x -32)*(x^2 -2*x -4)^2;
377T[115,11]=(x -2)*(x^2 + 2*x -4)*(x^4 -4*x^3 -16*x^2 + 40*x + 32)*(x^2 + 6*x + 4)^2;
378T[115,13]=(x + 2)*(x^2 + 8*x + 11)*(x^4 -41*x^2 + 212)*(x -3)^4;
379T[115,17]=(x -3)*(x^2 + 4*x -16)*(x^4 + x^3 -18*x^2 -24*x + 32)*(x^2 -6*x + 4)^2;
380T[115,19]=(x^2 -2*x -44)*(x^4 + 4*x^3 -16*x^2 -40*x + 32)*(x + 2)^5;
381T[115,23]=(x -1)^5*(x + 1)^6;
382T[115,29]=(x -7)*(x^2 + 10*x + 5)*(x^4 -19*x^3 + 117*x^2 -269*x + 202)*(x + 3)^4;
383T[115,31]=(x + 5)*(x^2 -4*x -1)*(x^4 + x^3 -101*x^2 + 11*x + 2144)*(x^2 -45)^2;
384T[115,37]=(x -11)*(x^2 + 6*x -36)*(x^4 + 3*x^3 -116*x^2 + 16*x + 2008)*(x^2 -2*x -4)^2;
385T[115,41]=(x -1)*(x^2 + 6*x -11)*(x^4 -13*x^3 + 45*x^2 -3*x -94)*(x^2 -2*x -19)^2;
386T[115,43]=(x^2 + 6*x -36)*(x^4 + 6*x^3 -36*x^2 -16*x + 128)*(x )^5;
387T[115,47]=(x^2 -10*x + 5)*(x^4 -6*x^3 -83*x^2 + 548*x -128)*(x )*(x^2 -5)^2;
388T[115,53]=(x -11)*(x^4 -19*x^3 -34*x^2 + 2092*x -8776)*(x + 6)^2*(x^2 + 8*x -4)^2;
389T[115,59]=(x + 13)*(x^2 -80)*(x^4 -23*x^3 + 100*x^2 + 560*x -3136)*(x^2 -4*x -16)^2;
390T[115,61]=(x + 8)*(x^2 -2*x -124)*(x^4 -56*x^2 + 136*x -32)*(x^2 -4*x -76)^2;
391T[115,67]=(x -5)*(x^2 -6*x -36)*(x^4 + 3*x^3 -98*x^2 -212*x + 2032)*(x^2 + 10*x + 20)^2;
392T[115,71]=(x -5)*(x^2 + 8*x + 11)*(x^4 + 3*x^3 -149*x^2 -535*x -8)*(x^2 -20*x + 95)^2;
393T[115,73]=(x -6)*(x^2 -45)*(x^4 + 32*x^3 + 343*x^2 + 1392*x + 1684)*(x^2 -22*x + 101)^2;
394T[115,79]=(x + 12)*(x^2 -22*x + 116)*(x^4 -2*x^3 -140*x^2 -352*x + 512)*(x^2 + 4*x -76)^2;
395T[115,83]=(x -9)*(x^2 + 4*x -16)*(x^4 + 21*x^3 + 96*x^2 -224*x -1216)*(x^2 + 22*x + 116)^2;
396T[115,89]=(x -4)*(x^2 -10*x + 20)*(x^4 -216*x^2 -1496*x -2752)*(x^2 + 12*x + 16)^2;
397T[115,97]=(x + 14)*(x^2 -10*x -100)*(x^4 + 18*x^3 + 72*x^2 -200*x -1072)*(x^2 -22*x + 76)^2;
398
399T[116,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^7;
400T[116,3]=(x -1)*(x -2)*(x + 1)^2*(x + 3)^3*(x^2 -2*x -1)^3;
401T[116,5]=(x + 2)*(x + 3)^2*(x -3)^2*(x -1)^2*(x + 1)^6;
402T[116,7]=(x + 4)*(x -4)^2*(x^2 -8)^3*(x + 2)^4;
403T[116,11]=(x + 6)*(x -3)*(x + 3)^2*(x + 1)^3*(x^2 -2*x -1)^3;
404T[116,13]=(x -2)*(x + 3)*(x -5)*(x -3)^2*(x + 1)^2*(x^2 + 2*x -7)^3;
405T[116,17]=(x + 6)*(x -2)^2*(x + 4)^2*(x -8)^2*(x^2 + 4*x -4)^3;
406T[116,19]=(x -4)*(x + 4)*(x + 6)*(x + 8)^2*(x )^2*(x -6)^6;
407T[116,23]=(x + 6)^2*(x )^2*(x -4)^3*(x^2 + 4*x -28)^3;
408T[116,29]=(x -1)^6*(x + 1)^7;
409T[116,31]=(x + 6)*(x -9)*(x -5)*(x + 3)^2*(x -3)^2*(x^2 -6*x -41)^3;
410T[116,37]=(x -2)*(x -8)^3*(x + 8)^3*(x + 4)^6;
411T[116,41]=(x + 8)*(x )*(x + 2)^2*(x -2)^3*(x^2 -8*x -56)^3;
412T[116,43]=(x + 5)*(x + 1)*(x -10)*(x -7)^2*(x + 11)^2*(x^2 -10*x + 23)^3;
413T[116,47]=(x + 2)*(x + 3)*(x + 7)*(x -11)^2*(x -13)^2*(x^2 -2*x -17)^3;
414T[116,53]=(x -3)*(x -10)*(x + 5)*(x + 11)^2*(x -1)^2*(x^2 -2*x -71)^3;
415T[116,59]=(x -6)*(x + 10)*(x + 4)^2*(x^2 -4*x -28)^3*(x )^3;
416T[116,61]=(x -2)*(x -4)^2*(x -10)^2*(x + 8)^2*(x^2 + 4*x -4)^3;
417T[116,67]=(x + 4)^2*(x -8)^2*(x + 12)^3*(x^2 -32)^3;
418T[116,71]=(x -8)*(x -6)*(x -2)^2*(x + 2)^3*(x^2 + 12*x + 28)^3;
419T[116,73]=(x + 16)*(x -10)*(x )*(x + 12)^2*(x -4)^8;
420T[116,79]=(x -11)*(x + 1)*(x + 6)*(x + 7)^2*(x -15)^2*(x^2 + 2*x -1)^3;
421T[116,83]=(x -16)*(x -4)^2*(x -6)^2*(x )^2*(x^2 -4*x -28)^3;
422T[116,89]=(x -2)*(x -12)*(x + 12)*(x + 10)^2*(x + 6)^2*(x^2 + 8*x -56)^3;
423T[116,97]=(x -10)*(x -8)*(x )*(x + 6)^2*(x + 2)^2*(x^2 + 8*x -56)^3;
424
425T[117,2]=(x + 1)*(x^2 -3)*(x^2 -2*x -1)*(x -1)^2*(x^2 + 2*x -1)^2;
426T[117,3]=(x + 1)*(x -1)^2*(x )^8;
427T[117,5]=(x + 2)*(x -2)^2*(x )^2*(x^2 -8)^3;
428T[117,7]=(x -2)^2*(x + 4)^3*(x^2 -8)^3;
429T[117,11]=(x + 4)*(x^2 -12)*(x -2)^2*(x -4)^2*(x + 2)^4;
430T[117,13]=(x -1)^5*(x + 1)^6;
431T[117,17]=(x + 2)*(x^2 + 4*x -28)*(x^2 -48)*(x -2)^2*(x^2 -4*x -28)^2;
432T[117,19]=(x -2)^2*(x^2 -8)^3*(x )^3;
433T[117,23]=(x^2 -48)*(x -4)^2*(x )^3*(x + 4)^4;
434T[117,29]=(x -10)*(x^2 -48)*(x + 10)^2*(x + 2)^2*(x -2)^4;
435T[117,31]=(x -2)^2*(x -4)^3*(x^2 + 8*x + 8)^3;
436T[117,37]=(x -2)^2*(x + 2)^3*(x^2 + 4*x -28)^3;
437T[117,41]=(x + 6)*(x^2 -48)*(x^2 + 16*x + 56)*(x -6)^2*(x^2 -16*x + 56)^2;
438T[117,43]=(x -8)^2*(x + 12)^3*(x^2 -8*x -16)^3;
439T[117,47]=(x^2 -12*x + 4)*(x^2 -108)*(x^2 + 12*x + 4)^2*(x )^3;
440T[117,53]=(x + 6)*(x -6)^2*(x -2)^2*(x )^2*(x + 2)^4;
441T[117,59]=(x + 12)*(x^2 -12)*(x^2 + 4*x -28)*(x -12)^2*(x^2 -4*x -28)^2;
442T[117,61]=(x + 10)^2*(x + 2)^3*(x^2 -4*x -124)^3;
443T[117,67]=(x -14)^2*(x + 8)^3*(x^2 -8*x + 8)^3;
444T[117,71]=(x^2 -12)*(x + 2)^2*(x )^3*(x -2)^4;
445T[117,73]=(x + 10)^2*(x -2)^3*(x^2 -12*x + 4)^3;
446T[117,79]=(x + 4)^2*(x -8)^3*(x^2 -128)^3;
447T[117,83]=(x + 4)*(x^2 -108)*(x^2 -4*x -28)*(x -4)^2*(x^2 + 4*x -28)^2;
448T[117,89]=(x -2)*(x^2 -48)*(x^2 + 24*x + 136)*(x + 2)^2*(x^2 -24*x + 136)^2;
449T[117,97]=(x + 10)^2*(x -10)^3*(x^2 + 4*x -28)^3;
450
451T[118,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x + 1)^2*(x -1)^2;
452T[118,3]=(x + 1)^2*(x -2)^2*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^2;
453T[118,5]=(x -1)*(x + 2)*(x -2)*(x + 3)*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;
454T[118,7]=(x + 1)*(x -3)*(x + 3)^2*(x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71)^2;
455T[118,11]=(x + 1)*(x -1)*(x -2)*(x + 2)*(x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64)^2;
456T[118,13]=(x + 2)*(x + 3)*(x -3)*(x + 6)*(x^5 -8*x^4 + 88*x^2 -48*x -224)^2;
457T[118,17]=(x -7)*(x + 1)*(x + 2)^2*(x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412)^2;
458T[118,19]=(x + 5)*(x + 8)*(x -3)*(x -4)*(x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469)^2;
459T[118,23]=(x -8)*(x )*(x -4)^2*(x^5 + 8*x^4 -88*x^2 -112*x -32)^2;
460T[118,29]=(x + 5)*(x + 1)*(x -4)*(x + 4)*(x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757)^2;
461T[118,31]=(x -2)*(x -10)*(x + 4)^2*(x^5 -116*x^3 + 56*x^2 + 1280*x + 256)^2;
462T[118,37]=(x + 7)*(x + 12)*(x + 1)*(x -8)*(x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32)^2;
463T[118,41]=(x + 11)*(x -5)*(x -7)^2*(x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217)^2;
464T[118,43]=(x -9)*(x + 9)*(x + 6)^2*(x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128)^2;
465T[118,47]=(x -10)*(x -2)*(x + 6)*(x + 2)*(x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256)^2;
466T[118,53]=(x + 11)*(x -12)*(x -9)*(x )*(x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73)^2;
467T[118,59]=(x + 1)^3*(x -1)^11;
468T[118,61]=(x + 8)*(x + 2)*(x + 12)*(x -10)*(x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072)^2;
469T[118,67]=(x + 2)*(x -10)*(x -4)^2*(x^5 -188*x^3 -200*x^2 + 5472*x -8896)^2;
470T[118,71]=(x -12)*(x -9)*(x + 15)*(x -4)*(x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424)^2;
471T[118,73]=(x -10)*(x -12)*(x -4)*(x + 14)*(x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952)^2;
472T[118,79]=(x + 15)*(x -5)*(x -11)^2*(x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923)^2;
473T[118,83]=(x + 14)*(x + 13)*(x -14)*(x + 11)*(x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152)^2;
474T[118,89]=(x -18)*(x + 6)*(x -4)*(x )*(x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984)^2;
475T[118,97]=(x -2)*(x -8)*(x -14)*(x )*(x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656)^2;
476
477T[119,2]=(x^4 + x^3 -5*x^2 -x + 3)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 14*x -17)*(x + 1)^2;
478T[119,3]=(x^4 -2*x^3 -7*x^2 + 12*x -1)*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)*(x )^2;
479T[119,5]=(x^4 -2*x^3 -7*x^2 + 4*x + 3)*(x^5 -23*x^3 + 18*x^2 + 131*x -178)*(x + 2)^2;
480T[119,7]=(x^2 -4*x + 7)*(x -1)^4*(x + 1)^5;
481T[119,11]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 2*x^4 -44*x^3 -40*x^2 + 496*x -192)*(x )^2;
482T[119,13]=(x^4 -8*x^3 -16*x^2 + 216*x -368)*(x^5 -2*x^4 -40*x^3 + 56*x^2 + 352*x -544)*(x + 2)^2;
483T[119,17]=(x + 1)^4*(x -1)^7;
484T[119,19]=(x^4 -10*x^3 -20*x^2 + 392*x -784)*(x^5 -6*x^4 -12*x^3 + 56*x^2 + 48*x -64)*(x + 4)^2;
485T[119,23]=(x^4 + 6*x^3 -40*x^2 -224*x -240)*(x^5 + 10*x^4 -8*x^3 -144*x^2 + 272*x -128)*(x -4)^2;
486T[119,29]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 8*x^4 -72*x^3 -464*x^2 + 1216*x + 2592)*(x -6)^2;
487T[119,31]=(x^4 -12*x^3 -13*x^2 + 418*x -917)*(x^5 -33*x^3 -94*x^2 -77*x -16)*(x -4)^2;
488T[119,37]=(x^4 -6*x^3 -44*x^2 -8*x + 80)*(x^5 -8*x^4 -104*x^3 + 432*x^2 + 3584*x + 4384)*(x + 2)^2;
489T[119,41]=(x^4 -12*x^3 + 27*x^2 + 86*x -237)*(x^5 -18*x^4 + 79*x^3 -64*x^2 -137*x + 162)*(x + 6)^2;
490T[119,43]=(x^4 + 12*x^3 -23*x^2 -212*x -115)*(x^5 -8*x^4 -31*x^3 + 216*x^2 + 157*x -1052)*(x -4)^2;
491T[119,47]=(x^4 -2*x^3 -128*x^2 -64*x + 1776)*(x^5 + 10*x^4 -48*x^3 -816*x^2 -2704*x -2304)*(x )^2;
492T[119,53]=(x^4 + 26*x^3 + 227*x^2 + 758*x + 801)*(x^5 -4*x^4 -33*x^3 + 76*x^2 + 301*x + 138)*(x -6)^2;
493T[119,59]=(x^4 + 4*x^3 -192*x^2 -1408*x -768)*(x^5 -8*x^4 -80*x^3 + 640*x^2 + 256*x -3072)*(x + 12)^2;
494T[119,61]=(x^4 -12*x^3 -157*x^2 + 1330*x + 6451)*(x^5 -22*x^4 + 143*x^3 -40*x^2 -2377*x + 5542)*(x + 10)^2;
495T[119,67]=(x^4 + 12*x^3 -71*x^2 -548*x + 1949)*(x^5 -16*x^4 + 49*x^3 + 304*x^2 -1747*x + 1868)*(x -4)^2;
496T[119,71]=(x^4 + 14*x^3 -44*x^2 -1160*x -3312)*(x^5 + 2*x^4 -236*x^3 -872*x^2 + 7472*x + 13696)*(x + 4)^2;
497T[119,73]=(x^4 -20*x^3 + 123*x^2 -262*x + 131)*(x^5 -10*x^4 -177*x^3 + 2212*x^2 -4217*x -11118)*(x + 6)^2;
498T[119,79]=(x^4 + 14*x^3 -56*x^2 -928*x -400)*(x^5 -18*x^4 + 40*x^3 + 544*x^2 -2672*x + 3072)*(x -12)^2;
499T[119,83]=(x^4 + 28*x^3 + 264*x^2 + 968*x + 1200)*(x^5 + 12*x^4 -64*x^3 -952*x^2 -1872*x + 1984)*(x + 4)^2;
500T[119,89]=(x^4 + 10*x^3 -176*x^2 -592*x + 720)*(x^5 -20*x^4 -100*x^3 + 3552*x^2 -14192*x + 7456)*(x -10)^2;
501T[119,97]=(x^4 -26*x^3 + 177*x^2 + 4*x -1901)*(x^5 -12*x^4 -239*x^3 + 2766*x^2 + 2163*x + 218)*(x -2)^2;
502
503T[120,2]=(x + 1)*(x^2 + x + 2)*(x )^14;
504T[120,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x -1)^5*(x + 1)^6;
505T[120,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;
506T[120,7]=(x -4)*(x -2)^4*(x + 4)^5*(x )^7;
507T[120,11]=(x -4)^4*(x + 4)^5*(x )^8;
508T[120,13]=(x -6)*(x + 6)*(x -2)^7*(x + 2)^8;
509T[120,17]=(x + 2)*(x -6)^3*(x + 6)^5*(x -2)^8;
510T[120,19]=(x -4)^7*(x + 4)^10;
511T[120,23]=(x -4)^2*(x + 8)^3*(x -6)^4*(x )^8;
512T[120,29]=(x + 6)^4*(x -6)^6*(x + 2)^7;
513T[120,31]=(x + 8)^3*(x + 4)^4*(x -8)^5*(x )^5;
514T[120,37]=(x + 6)*(x + 2)*(x -6)^4*(x + 10)^4*(x -2)^7;
515T[120,41]=(x -6)^4*(x -10)^5*(x + 6)^8;
516T[120,43]=(x -12)*(x + 8)^2*(x + 4)^4*(x + 10)^4*(x -4)^6;
517T[120,47]=(x -4)^2*(x + 6)^4*(x )^5*(x -8)^6;
518T[120,53]=(x -10)*(x + 2)^2*(x -6)^3*(x + 10)^4*(x + 6)^7;
519T[120,59]=(x -4)^2*(x )^4*(x -12)^5*(x + 4)^6;
520T[120,61]=(x -6)*(x -14)*(x + 10)^3*(x -2)^4*(x + 2)^8;
521T[120,67]=(x -4)*(x -8)^2*(x -12)^4*(x -2)^4*(x + 4)^6;
522T[120,71]=(x -8)^3*(x + 8)^4*(x + 12)^4*(x )^6;
523T[120,73]=(x + 14)*(x + 6)^3*(x -10)^6*(x -2)^7;
524T[120,79]=(x -16)*(x + 8)^3*(x )^6*(x -8)^7;
525T[120,83]=(x + 12)*(x + 16)^2*(x + 4)^2*(x -6)^4*(x -12)^8;
526T[120,89]=(x -2)*(x -10)*(x -18)^3*(x + 6)^12;
527T[120,97]=(x + 14)^2*(x -2)^15;
528
529T[121,2]=(x -2)*(x + 1)*(x -1)*(x )*(x + 2)^2;
530T[121,3]=(x -2)^2*(x + 1)^4;
531T[121,5]=(x + 3)*(x -1)^5;
532T[121,7]=(x )*(x -2)^2*(x + 2)^3;
533T[121,11]=(x -1)*(x )^5;
534T[121,13]=(x -1)*(x + 1)*(x + 4)*(x )*(x -4)^2;
535T[121,17]=(x + 5)*(x -2)*(x -5)*(x )*(x + 2)^2;
536T[121,19]=(x -6)*(x + 6)*(x )^4;
537T[121,23]=(x + 9)*(x -2)^2*(x + 1)^3;
538T[121,29]=(x + 9)*(x -9)*(x )^4;
539T[121,31]=(x + 5)*(x + 2)^2*(x -7)^3;
540T[121,37]=(x -7)*(x + 3)^2*(x -3)^3;
541T[121,41]=(x -8)*(x + 5)*(x -5)*(x )*(x + 8)^2;
542T[121,43]=(x -6)*(x + 6)^2*(x )^3;
543T[121,47]=(x + 12)*(x -2)^2*(x -8)^3;
544T[121,53]=(x -6)*(x -9)^2*(x + 6)^3;
545T[121,59]=(x + 15)*(x -8)^2*(x -5)^3;
546T[121,61]=(x -6)*(x + 6)*(x + 12)*(x )*(x -12)^2;
547T[121,67]=(x -13)*(x -2)^2*(x + 7)^3;
548T[121,71]=(x -12)^2*(x + 3)^4;
549T[121,73]=(x -2)*(x + 4)*(x + 2)*(x )*(x -4)^2;
550T[121,79]=(x )*(x -10)^2*(x + 10)^3;
551T[121,83]=(x )*(x -6)^2*(x + 6)^3;
552T[121,89]=(x -15)^3*(x + 9)^3;
553T[121,97]=(x -17)*(x + 13)^2*(x + 7)^3;
554
555T[122,2]=(x^2 + x + 2)*(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x + 1)^3*(x -1)^3;
556T[122,3]=(x^2 -x -3)*(x^3 + x^2 -5*x + 2)*(x^3 -2*x^2 -4*x + 4)^2*(x + 2)^3;
557T[122,5]=(x -1)*(x^3 -x^2 -12*x + 16)*(x + 3)^2*(x^3 + x^2 -9*x -13)^2*(x )^2;
558T[122,7]=(x + 5)*(x^2 -5*x + 3)*(x^3 -4*x^2 -10*x + 41)*(x -1)^2*(x^3 + 3*x^2 -x -1)^2;
559T[122,11]=(x + 3)*(x^2 -2*x -12)*(x^3 + 7*x^2 + 10*x -4)*(x + 5)^2*(x^3 -13*x^2 + 53*x -67)^2;
560T[122,13]=(x + 3)*(x^2 -6*x -4)*(x^3 + x^2 -6*x -4)*(x -1)^2*(x^3 + 9*x^2 + 11*x -37)^2;
561T[122,17]=(x^2 + 2*x -12)*(x^3 + 6*x^2 -4*x -16)*(x )*(x -4)^2*(x^3 + 2*x^2 -8*x + 4)^2;
562T[122,19]=(x^2 -x -29)*(x^3 + 3*x^2 -x -4)*(x )*(x + 4)^2*(x^3 -48*x -20)^2;
563T[122,23]=(x -5)*(x^2 + 3*x -27)*(x^3 -2*x^2 -38*x + 113)*(x + 9)^2*(x^3 -5*x^2 + 5*x + 1)^2;
564T[122,29]=(x -6)*(x^2 + 11*x + 27)*(x^3 -x^2 -31*x + 2)*(x + 6)^2*(x^3 -4*x^2 -4*x + 20)^2;
565T[122,31]=(x^2 + x -3)*(x^3 + 3*x^2 -43*x + 8)*(x^3 + 2*x^2 -76*x + 116)^2*(x )^3;
566T[122,37]=(x + 12)*(x^2 + 3*x -1)*(x^3 -7*x^2 -65*x + 424)*(x -8)^2*(x^3 + 6*x^2 -36*x -108)^2;
567T[122,41]=(x + 3)*(x^2 + 9*x -9)*(x^3 -4*x^2 -70*x -139)*(x -5)^2*(x^3 -3*x^2 -61*x + 191)^2;
568T[122,43]=(x^3 -12*x^2 -16*x + 256)*(x -8)^2*(x^3 + 14*x^2 + 56*x + 68)^2*(x + 8)^3;
569T[122,47]=(x -12)*(x^2 -8*x -36)*(x^3 + 8*x^2 -28*x -208)*(x -4)^2*(x^3 + 4*x^2 -88*x + 16)^2;
570T[122,53]=(x + 2)*(x^2 + x -81)*(x^3 -11*x^2 -195*x + 2198)*(x -6)^2*(x^3 + 2*x^2 -12*x -8)^2;
571T[122,59]=(x + 9)*(x^3 + 23*x^2 + 164*x + 368)*(x -9)^2*(x^3 -29*x^2 + 231*x -325)^2*(x )^2;
572T[122,61]=(x + 1)^6*(x -1)^8;
573T[122,67]=(x -7)*(x^2 -52)*(x^3 -21*x^2 + 44*x + 772)*(x + 7)^2*(x^3 -9*x^2 -85*x + 559)^2;
574T[122,71]=(x + 16)*(x^2 -9*x -9)*(x^3 -27*x^2 + 207*x -432)*(x + 8)^2*(x^3 -14*x^2 -12*x + 92)^2;
575T[122,73]=(x + 3)*(x^2 -x -29)*(x^3 -22*x^2 + 80*x + 449)*(x + 11)^2*(x^3 + x^2 -45*x -25)^2;
576T[122,79]=(x -1)*(x^2 + 12*x -16)*(x^3 -3*x^2 -108*x + 432)*(x -3)^2*(x^3 -13*x^2 -51*x + 625)^2;
577T[122,83]=(x + 12)*(x^2 -9*x -9)*(x^3 + 11*x^2 -85*x -28)*(x -4)^2*(x^3 + 8*x^2 -64*x -256)^2;
578T[122,89]=(x -12)*(x^2 + 14*x + 36)*(x^3 + 10*x^2 -76*x + 112)*(x + 4)^2*(x^3 + 4*x^2 -56*x + 80)^2;
579T[122,97]=(x -2)*(x^2 -17*x -9)*(x^3 + 5*x^2 -7*x + 2)*(x + 14)^2*(x^3 -10*x^2 -116*x + 1096)^2;
580
581T[123,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x )*(x^3 + x^2 -5*x -1)^2;
582T[123,3]=(x^6 + 5*x^4 + 2*x^3 + 15*x^2 + 27)*(x -1)^3*(x + 1)^4;
583T[123,5]=(x + 2)*(x + 4)*(x^2 -4*x + 2)*(x^3 -4*x^2 -2*x + 4)*(x^3 + 2*x^2 -4*x -4)^2;
584T[123,7]=(x + 4)*(x + 2)*(x^2 + 4*x + 2)*(x^3 -2*x^2 -14*x + 32)*(x^3 -6*x^2 + 8*x -2)^2;
585T[123,11]=(x + 3)*(x -5)*(x^2 -2*x -1)*(x^3 + 4*x^2 + x -4)*(x^3 -2*x^2 -20*x + 50)^2;
586T[123,13]=(x + 6)*(x + 4)*(x^2 -4*x -14)*(x^3 -8*x^2 + 14*x + 4)*(x^3 + 2*x^2 -12*x -8)^2;
587T[123,17]=(x -3)*(x + 5)*(x^2 -2*x -1)*(x^3 -2*x^2 -23*x + 62)*(x + 2)^6;
588T[123,19]=(x + 2)*(x^2 + 8*x + 14)*(x^3 -2*x^2 -6*x + 8)*(x )*(x^3 -4*x^2 -16*x -10)^2;
589T[123,23]=(x -4)*(x + 6)*(x^2 -2)*(x^3 + 10*x^2 + 26*x + 16)*(x^3 -4*x^2 -32*x -32)^2;
590T[123,29]=(x -1)*(x -5)*(x^2 -2*x -49)*(x^3 + 6*x^2 -27*x -86)*(x^3 + 6*x^2 -4*x -40)^2;
591T[123,31]=(x -7)*(x + 5)*(x^3 + 2*x^2 -91*x -256)*(x + 3)^2*(x^3 -16*x^2 + 64*x -32)^2;
592T[123,37]=(x^2 + 2*x -71)*(x^3 -20*x^2 + 117*x -166)*(x + 7)^2*(x^3 + 6*x^2 -36*x -108)^2;
593T[123,41]=(x + 1)^3*(x -1)^10;
594T[123,43]=(x -7)*(x + 1)*(x^3 -10*x^2 -119*x + 1156)*(x + 5)^2*(x^3 + 4*x^2 -8*x -16)^2;
595T[123,47]=(x -7)*(x -3)*(x^2 -18*x + 79)*(x^3 -4*x^2 -35*x -8)*(x^3 -120*x -502)^2;
596T[123,53]=(x + 6)*(x + 14)*(x^2 -8*x + 8)*(x^3 -14*x^2 + 32)*(x^3 -6*x^2 -4*x + 8)^2;
597T[123,59]=(x + 12)*(x^2 -72)*(x^3 + 8*x^2 -40*x + 32)*(x )*(x^3 + 8*x^2 -16*x -160)^2;
598T[123,61]=(x^2 -2*x -31)*(x^3 + 8*x^2 + 5*x -46)*(x + 3)^2*(x^3 -2*x^2 -52*x + 184)^2;
599T[123,67]=(x^2 -4*x -68)*(x^3 -12*x^2 -124*x + 976)*(x + 2)^2*(x^3 + 2*x^2 -20*x -50)^2;
600T[123,71]=(x^2 -6*x -41)*(x^3 + 32*x^2 + 337*x + 1168)*(x + 3)^2*(x^3 -20*x^2 + 84*x + 134)^2;
601T[123,73]=(x -13)*(x + 11)*(x^2 -2*x -127)*(x^3 -4*x^2 -99*x + 454)*(x^3 + 2*x^2 -180*x + 244)^2;
602T[123,79]=(x + 2)*(x -10)*(x^2 + 4*x -28)*(x^3 + 20*x^2 + 68*x + 32)*(x^3 -32*x^2 + 328*x -1090)^2;
603T[123,83]=(x + 16)*(x + 2)*(x^2 + 12*x -14)*(x^3 + 14*x^2 + 10*x -296)*(x^3 -64*x -128)^2;
604T[123,89]=(x -18)*(x + 10)*(x^2 + 12*x + 4)*(x^3 -14*x^2 -4*x + 184)*(x^3 + 6*x^2 -148*x -920)^2;
605T[123,97]=(x + 14)*(x + 12)*(x^2 -24*x + 126)*(x^3 + 12*x^2 + 14*x -148)*(x^3 -6*x^2 -52*x + 248)^2;
606
607T[124,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2*(x )^7;
608T[124,3]=(x + 2)*(x^2 -2*x -2)^2*(x^2 + 2*x -4)^3*(x )^3;
609T[124,5]=(x + 3)*(x + 2)^2*(x^2 -12)^2*(x -1)^7;
610T[124,7]=(x + 1)*(x -3)*(x )^2*(x^2 + 4*x -1)^3*(x -2)^4;
611T[124,11]=(x + 6)*(x -6)*(x^2 + 6*x + 6)^2*(x )^2*(x -2)^6;
612T[124,13]=(x + 4)*(x^2 + 2*x -26)^2*(x -2)^3*(x^2 + 2*x -4)^3;
613T[124,17]=(x -6)*(x )*(x + 6)^2*(x^2 -12)^2*(x^2 -6*x + 4)^3;
614T[124,19]=(x + 1)*(x + 5)*(x -4)^2*(x^2 -5)^3*(x + 4)^4;
615T[124,23]=(x + 6)*(x + 4)*(x -8)^2*(x^2 + 2*x -44)^3*(x )^4;
616T[124,29]=(x )*(x^2 + 6*x -18)^2*(x -2)^3*(x^2 -10*x + 20)^3;
617T[124,31]=(x + 1)^3*(x -1)^11;
618T[124,37]=(x + 10)*(x -10)^2*(x^2 -10*x -2)^2*(x + 2)^7;
619T[124,41]=(x + 6)^2*(x + 9)^2*(x^2 -12*x + 24)^2*(x -7)^6;
620T[124,43]=(x -2)*(x^2 + 2*x -26)^2*(x -8)^3*(x^2 + 2*x -4)^3;
621T[124,47]=(x -4)*(x )*(x + 8)^2*(x^2 + 4*x -16)^3*(x -6)^4;
622T[124,53]=(x -12)*(x )*(x + 6)^2*(x^2 -6*x + 6)^2*(x^2 + 12*x + 16)^3;
623T[124,59]=(x -9)*(x + 3)*(x + 12)^2*(x^2 + 12*x + 24)^2*(x^2 -5)^3;
624T[124,61]=(x + 10)*(x -12)*(x + 6)^2*(x^2 + 2*x -26)^2*(x^2 + 6*x -116)^3;
625T[124,67]=(x + 4)*(x + 12)^3*(x -8)^10;
626T[124,71]=(x -5)*(x + 15)*(x -8)^2*(x^2 -192)^2*(x^2 -4*x -121)^3;
627T[124,73]=(x -14)*(x + 14)*(x -10)^2*(x^2 -8*x -4)^3*(x + 10)^4;
628T[124,79]=(x -10)*(x -8)*(x + 8)^2*(x^2 -4*x -104)^2*(x^2 + 10*x -20)^3;
629T[124,83]=(x -6)*(x -2)*(x -8)^2*(x^2 -6*x -66)^2*(x^2 + 12*x -44)^3;
630T[124,89]=(x -12)*(x + 6)^2*(x^2 -10*x -20)^3*(x -6)^5;
631T[124,97]=(x + 7)^2*(x -2)^2*(x^2 -4*x -104)^2*(x^2 + 14*x -31)^3;
632
633T[125,2]=(x^2 + x -1)*(x^2 -x -1)*(x^4 -8*x^2 + 11);
634T[125,3]=(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^4 -7*x^2 + 11);
635T[125,5]=(x )^8;
636T[125,7]=(x^4 -13*x^2 + 11)*(x + 3)^2*(x -3)^2;
637T[125,11]=(x + 3)^4*(x -2)^4;
638T[125,13]=(x^2 + 3*x -9)*(x^2 -3*x -9)*(x^4 -32*x^2 + 176);
639T[125,17]=(x^2 + 4*x -1)*(x^2 -4*x -1)*(x^4 -28*x^2 + 176);
640T[125,19]=(x^2 + 5*x + 5)^2*(x^2 -10*x + 20)^2;
641T[125,23]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x^4 -17*x^2 + 11);
642T[125,29]=(x^2 -45)^2*(x^2 + 5*x -5)^2;
643T[125,31]=(x^2 + x -31)^2*(x -2)^4;
644T[125,37]=(x^2 + 6*x -36)*(x^2 -6*x -36)*(x^4 -68*x^2 + 176);
645T[125,41]=(x^2 + x -31)^2*(x + 3)^4;
646T[125,43]=(x^4 -107*x^2 + 1331)*(x -9)^2*(x + 9)^2;
647T[125,47]=(x^2 -x -61)*(x^2 + x -61)*(x^4 -43*x^2 + 11);
648T[125,53]=(x^2 -7*x + 11)*(x^2 + 7*x + 11)*(x^4 -112*x^2 + 2816);
649T[125,59]=(x^2 -15*x + 45)^2*(x^2 -20)^2;
650T[125,61]=(x^2 + x -31)^4;
651T[125,67]=(x^2 + 21*x + 99)*(x^2 -21*x + 99)*(x^4 -28*x^2 + 176);
652T[125,71]=(x^2 + 6*x -116)^2*(x + 3)^4;
653T[125,73]=(x^2 -3*x -9)*(x^2 + 3*x -9)*(x^4 -352*x^2 + 21296);
654T[125,79]=(x^2 -10*x + 20)^2*(x^2 -10*x + 5)^2;
655T[125,83]=(x^2 + 8*x -4)*(x^2 -8*x -4)*(x^4 -77*x^2 + 1331);
656T[125,89]=(x^2 -180)^2*(x^2 + 15*x + 55)^2;
657T[125,97]=(x^2 -9*x + 9)*(x^2 + 9*x + 9)*(x^4 -128*x^2 + 176);
658
659T[126,2]=(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x -1)^3*(x + 1)^4;
660T[126,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
661T[126,5]=(x^2 -12)^2*(x -2)^3*(x )^4*(x + 2)^6;
662T[126,7]=(x -1)^8*(x + 1)^9;
663T[126,11]=(x^2 -12)^2*(x + 4)^4*(x )^4*(x -4)^5;
664T[126,13]=(x -6)^3*(x + 4)^4*(x -2)^4*(x + 2)^6;
665T[126,17]=(x + 2)*(x -2)^2*(x^2 -12)^2*(x + 6)^5*(x -6)^5;
666T[126,19]=(x -2)^4*(x -4)^6*(x + 4)^7;
667T[126,23]=(x + 8)*(x -8)^2*(x^2 -12)^2*(x )^10;
668T[126,29]=(x -6)*(x + 6)^3*(x -2)^3*(x )^4*(x + 2)^6;
669T[126,31]=(x + 4)^8*(x )^9;
670T[126,37]=(x + 10)^3*(x -6)^6*(x -2)^8;
671T[126,41]=(x + 2)^2*(x^2 -108)^2*(x + 6)^3*(x -6)^4*(x -2)^4;
672T[126,43]=(x -8)^4*(x + 4)^13;
673T[126,47]=(x -12)*(x^2 -48)^2*(x + 12)^3*(x )^9;
674T[126,53]=(x^2 -48)^2*(x + 6)^4*(x -6)^9;
675T[126,59]=(x + 4)*(x -6)*(x + 12)^2*(x -4)^2*(x^2 -48)^2*(x + 6)^3*(x -12)^4;
676T[126,61]=(x -6)^3*(x -8)^4*(x + 10)^4*(x + 2)^6;
677T[126,67]=(x + 4)^8*(x -4)^9;
678T[126,71]=(x + 8)*(x -8)^2*(x^2 -108)^2*(x )^10;
679T[126,73]=(x -10)^3*(x -2)^4*(x -14)^4*(x + 6)^6;
680T[126,79]=(x )^3*(x + 16)^6*(x -8)^8;
681T[126,83]=(x -4)*(x -6)*(x + 4)^2*(x -12)^2*(x + 6)^3*(x + 12)^4*(x )^4;
682T[126,89]=(x -14)^2*(x -6)^2*(x^2 -12)^2*(x + 14)^4*(x + 6)^5;
683T[126,97]=(x + 14)^3*(x + 10)^4*(x -14)^4*(x -18)^6;
684
685T[127,2]=(x^3 + 3*x^2 -3)*(x^7 -2*x^6 -8*x^5 + 15*x^4 + 17*x^3 -28*x^2 -11*x + 15);
686T[127,3]=(x^3 + 3*x^2 -3)*(x^7 -3*x^6 -12*x^5 + 39*x^4 + 26*x^3 -128*x^2 + 64*x + 16);
687T[127,5]=(x^3 + 6*x^2 + 9*x + 1)*(x^7 -8*x^6 + 11*x^5 + 53*x^4 -146*x^3 + 32*x^2 + 128*x -48);
688T[127,7]=(x^3 + 3*x^2 -3)*(x^7 + 3*x^6 -20*x^5 -41*x^4 + 114*x^3 + 64*x^2 -112*x -16);
689T[127,11]=(x^3 -21*x -37)*(x^7 -28*x^5 -17*x^4 + 88*x^3 -37*x^2 -5*x + 3);
690T[127,13]=(x^3 + 3*x^2 -18*x -37)*(x^7 + x^6 -69*x^5 -38*x^4 + 1515*x^3 + 52*x^2 -10416*x + 5383);
691T[127,17]=(x^3 + 18*x^2 + 105*x + 199)*(x^7 -24*x^6 + 200*x^5 -467*x^4 -2678*x^3 + 19593*x^2 -45913*x + 38235);
692T[127,19]=(x^3 -3*x^2 + 1)*(x^7 + 5*x^6 -51*x^5 -206*x^4 + 685*x^3 + 1582*x^2 -2664*x + 853);
693T[127,23]=(x^3 + 9*x^2 + 18*x -9)*(x^7 + x^6 -74*x^5 -279*x^4 + 812*x^3 + 6344*x^2 + 12376*x + 8016);
694T[127,29]=(x^3 -3*x^2 -18*x + 3)*(x^7 + 7*x^6 -72*x^5 -359*x^4 + 1612*x^3 + 2512*x^2 -5368*x -5520);
695T[127,31]=(x^3 -12*x^2 + 27*x -17)*(x^7 + 8