Sharedwww / tables / charpoly_s2_1-100.gpOpen in CoCalc
Author: William A. Stein
1
\\ charpoly_s2_1-100.gp
2
\\ This is a table of characteristic polynomials of the
3
\\ Hecke operators T_p acting on the space S_2(Gamma_0(N))
4
\\ of weight 2 cusp forms for Gamma_0(N).
5
\\ William Stein ([email protected]), September, 1998.
6
7
{
8
T=matrix(100,97,m,n,0);
9
T[11,2]=x + 2;
10
T[11,3]=x + 1;
11
T[11,5]=x -1;
12
T[11,7]=x + 2;
13
T[11,11]=x -1;
14
T[11,13]=x -4;
15
T[11,17]=x + 2;
16
T[11,19]=x ;
17
T[11,23]=x + 1;
18
T[11,29]=x ;
19
T[11,31]=x -7;
20
T[11,37]=x -3;
21
T[11,41]=x + 8;
22
T[11,43]=x + 6;
23
T[11,47]=x -8;
24
T[11,53]=x + 6;
25
T[11,59]=x -5;
26
T[11,61]=x -12;
27
T[11,67]=x + 7;
28
T[11,71]=x + 3;
29
T[11,73]=x -4;
30
T[11,79]=x + 10;
31
T[11,83]=x + 6;
32
T[11,89]=x -15;
33
T[11,97]=x + 7;
34
35
T[14,2]=x + 1;
36
T[14,3]=x + 2;
37
T[14,5]=x ;
38
T[14,7]=x -1;
39
T[14,11]=x ;
40
T[14,13]=x + 4;
41
T[14,17]=x -6;
42
T[14,19]=x -2;
43
T[14,23]=x ;
44
T[14,29]=x + 6;
45
T[14,31]=x + 4;
46
T[14,37]=x -2;
47
T[14,41]=x -6;
48
T[14,43]=x -8;
49
T[14,47]=x + 12;
50
T[14,53]=x -6;
51
T[14,59]=x + 6;
52
T[14,61]=x -8;
53
T[14,67]=x + 4;
54
T[14,71]=x ;
55
T[14,73]=x -2;
56
T[14,79]=x -8;
57
T[14,83]=x + 6;
58
T[14,89]=x + 6;
59
T[14,97]=x + 10;
60
61
T[15,2]=x + 1;
62
T[15,3]=x + 1;
63
T[15,5]=x -1;
64
T[15,7]=x ;
65
T[15,11]=x + 4;
66
T[15,13]=x + 2;
67
T[15,17]=x -2;
68
T[15,19]=x -4;
69
T[15,23]=x ;
70
T[15,29]=x + 2;
71
T[15,31]=x ;
72
T[15,37]=x + 10;
73
T[15,41]=x -10;
74
T[15,43]=x -4;
75
T[15,47]=x -8;
76
T[15,53]=x + 10;
77
T[15,59]=x + 4;
78
T[15,61]=x + 2;
79
T[15,67]=x -12;
80
T[15,71]=x + 8;
81
T[15,73]=x -10;
82
T[15,79]=x ;
83
T[15,83]=x -12;
84
T[15,89]=x + 6;
85
T[15,97]=x -2;
86
87
T[17,2]=x + 1;
88
T[17,3]=x ;
89
T[17,5]=x + 2;
90
T[17,7]=x -4;
91
T[17,11]=x ;
92
T[17,13]=x + 2;
93
T[17,17]=x -1;
94
T[17,19]=x + 4;
95
T[17,23]=x -4;
96
T[17,29]=x -6;
97
T[17,31]=x -4;
98
T[17,37]=x + 2;
99
T[17,41]=x + 6;
100
T[17,43]=x -4;
101
T[17,47]=x ;
102
T[17,53]=x -6;
103
T[17,59]=x + 12;
104
T[17,61]=x + 10;
105
T[17,67]=x -4;
106
T[17,71]=x + 4;
107
T[17,73]=x + 6;
108
T[17,79]=x -12;
109
T[17,83]=x + 4;
110
T[17,89]=x -10;
111
T[17,97]=x -2;
112
113
T[19,2]=x ;
114
T[19,3]=x + 2;
115
T[19,5]=x -3;
116
T[19,7]=x + 1;
117
T[19,11]=x -3;
118
T[19,13]=x + 4;
119
T[19,17]=x + 3;
120
T[19,19]=x -1;
121
T[19,23]=x ;
122
T[19,29]=x -6;
123
T[19,31]=x + 4;
124
T[19,37]=x -2;
125
T[19,41]=x + 6;
126
T[19,43]=x + 1;
127
T[19,47]=x + 3;
128
T[19,53]=x -12;
129
T[19,59]=x + 6;
130
T[19,61]=x + 1;
131
T[19,67]=x + 4;
132
T[19,71]=x -6;
133
T[19,73]=x + 7;
134
T[19,79]=x -8;
135
T[19,83]=x -12;
136
T[19,89]=x -12;
137
T[19,97]=x -8;
138
139
T[20,2]=x ;
140
T[20,3]=x + 2;
141
T[20,5]=x + 1;
142
T[20,7]=x -2;
143
T[20,11]=x ;
144
T[20,13]=x -2;
145
T[20,17]=x + 6;
146
T[20,19]=x + 4;
147
T[20,23]=x -6;
148
T[20,29]=x -6;
149
T[20,31]=x + 4;
150
T[20,37]=x -2;
151
T[20,41]=x -6;
152
T[20,43]=x + 10;
153
T[20,47]=x + 6;
154
T[20,53]=x + 6;
155
T[20,59]=x -12;
156
T[20,61]=x -2;
157
T[20,67]=x -2;
158
T[20,71]=x + 12;
159
T[20,73]=x -2;
160
T[20,79]=x -8;
161
T[20,83]=x -6;
162
T[20,89]=x + 6;
163
T[20,97]=x -2;
164
165
T[21,2]=x + 1;
166
T[21,3]=x -1;
167
T[21,5]=x + 2;
168
T[21,7]=x + 1;
169
T[21,11]=x -4;
170
T[21,13]=x + 2;
171
T[21,17]=x + 6;
172
T[21,19]=x -4;
173
T[21,23]=x ;
174
T[21,29]=x + 2;
175
T[21,31]=x ;
176
T[21,37]=x -6;
177
T[21,41]=x -2;
178
T[21,43]=x + 4;
179
T[21,47]=x ;
180
T[21,53]=x -6;
181
T[21,59]=x -12;
182
T[21,61]=x + 2;
183
T[21,67]=x -4;
184
T[21,71]=x ;
185
T[21,73]=x + 6;
186
T[21,79]=x + 16;
187
T[21,83]=x + 12;
188
T[21,89]=x + 14;
189
T[21,97]=x -18;
190
191
T[22,2]=x^2 + 2*x + 2;
192
T[22,3]=(x + 1)^2;
193
T[22,5]=(x -1)^2;
194
T[22,7]=(x + 2)^2;
195
T[22,11]=(x -1)^2;
196
T[22,13]=(x -4)^2;
197
T[22,17]=(x + 2)^2;
198
T[22,19]=(x )^2;
199
T[22,23]=(x + 1)^2;
200
T[22,29]=(x )^2;
201
T[22,31]=(x -7)^2;
202
T[22,37]=(x -3)^2;
203
T[22,41]=(x + 8)^2;
204
T[22,43]=(x + 6)^2;
205
T[22,47]=(x -8)^2;
206
T[22,53]=(x + 6)^2;
207
T[22,59]=(x -5)^2;
208
T[22,61]=(x -12)^2;
209
T[22,67]=(x + 7)^2;
210
T[22,71]=(x + 3)^2;
211
T[22,73]=(x -4)^2;
212
T[22,79]=(x + 10)^2;
213
T[22,83]=(x + 6)^2;
214
T[22,89]=(x -15)^2;
215
T[22,97]=(x + 7)^2;
216
217
T[23,2]=x^2 + x -1;
218
T[23,3]=x^2 -5;
219
T[23,5]=x^2 + 2*x -4;
220
T[23,7]=x^2 -2*x -4;
221
T[23,11]=x^2 + 6*x + 4;
222
T[23,13]=(x -3)^2;
223
T[23,17]=x^2 -6*x + 4;
224
T[23,19]=(x + 2)^2;
225
T[23,23]=(x -1)^2;
226
T[23,29]=(x + 3)^2;
227
T[23,31]=x^2 -45;
228
T[23,37]=x^2 -2*x -4;
229
T[23,41]=x^2 -2*x -19;
230
T[23,43]=(x )^2;
231
T[23,47]=x^2 -5;
232
T[23,53]=x^2 + 8*x -4;
233
T[23,59]=x^2 -4*x -16;
234
T[23,61]=x^2 -4*x -76;
235
T[23,67]=x^2 + 10*x + 20;
236
T[23,71]=x^2 -20*x + 95;
237
T[23,73]=x^2 -22*x + 101;
238
T[23,79]=x^2 + 4*x -76;
239
T[23,83]=x^2 + 22*x + 116;
240
T[23,89]=x^2 + 12*x + 16;
241
T[23,97]=x^2 -22*x + 76;
242
243
T[24,2]=x ;
244
T[24,3]=x + 1;
245
T[24,5]=x + 2;
246
T[24,7]=x ;
247
T[24,11]=x -4;
248
T[24,13]=x + 2;
249
T[24,17]=x -2;
250
T[24,19]=x + 4;
251
T[24,23]=x + 8;
252
T[24,29]=x -6;
253
T[24,31]=x -8;
254
T[24,37]=x -6;
255
T[24,41]=x + 6;
256
T[24,43]=x -4;
257
T[24,47]=x ;
258
T[24,53]=x + 2;
259
T[24,59]=x -4;
260
T[24,61]=x + 2;
261
T[24,67]=x + 4;
262
T[24,71]=x -8;
263
T[24,73]=x -10;
264
T[24,79]=x + 8;
265
T[24,83]=x + 4;
266
T[24,89]=x + 6;
267
T[24,97]=x -2;
268
269
T[26,2]=(x -1)*(x + 1);
270
T[26,3]=(x -1)*(x + 3);
271
T[26,5]=(x + 3)*(x + 1);
272
T[26,7]=(x + 1)*(x -1);
273
T[26,11]=(x -6)*(x + 2);
274
T[26,13]=(x -1)*(x + 1);
275
T[26,17]=(x + 3)^2;
276
T[26,19]=(x -2)*(x -6);
277
T[26,23]=(x + 4)*(x );
278
T[26,29]=(x -6)*(x -2);
279
T[26,31]=(x -4)*(x + 4);
280
T[26,37]=(x + 7)*(x -3);
281
T[26,41]=(x )^2;
282
T[26,43]=(x + 5)*(x + 1);
283
T[26,47]=(x -13)*(x -3);
284
T[26,53]=(x -12)*(x );
285
T[26,59]=(x + 10)*(x + 6);
286
T[26,61]=(x + 8)*(x -8);
287
T[26,67]=(x + 2)*(x -14);
288
T[26,71]=(x + 5)*(x + 3);
289
T[26,73]=(x + 10)*(x -2);
290
T[26,79]=(x + 4)*(x -8);
291
T[26,83]=(x -12)*(x );
292
T[26,89]=(x -6)*(x + 6);
293
T[26,97]=(x + 10)*(x -14);
294
295
T[27,2]=x ;
296
T[27,3]=x ;
297
T[27,5]=x ;
298
T[27,7]=x + 1;
299
T[27,11]=x ;
300
T[27,13]=x -5;
301
T[27,17]=x ;
302
T[27,19]=x + 7;
303
T[27,23]=x ;
304
T[27,29]=x ;
305
T[27,31]=x + 4;
306
T[27,37]=x -11;
307
T[27,41]=x ;
308
T[27,43]=x -8;
309
T[27,47]=x ;
310
T[27,53]=x ;
311
T[27,59]=x ;
312
T[27,61]=x + 1;
313
T[27,67]=x -5;
314
T[27,71]=x ;
315
T[27,73]=x + 7;
316
T[27,79]=x -17;
317
T[27,83]=x ;
318
T[27,89]=x ;
319
T[27,97]=x + 19;
320
321
T[28,2]=(x + 1)*(x );
322
T[28,3]=(x + 2)^2;
323
T[28,5]=(x )^2;
324
T[28,7]=(x -1)^2;
325
T[28,11]=(x )^2;
326
T[28,13]=(x + 4)^2;
327
T[28,17]=(x -6)^2;
328
T[28,19]=(x -2)^2;
329
T[28,23]=(x )^2;
330
T[28,29]=(x + 6)^2;
331
T[28,31]=(x + 4)^2;
332
T[28,37]=(x -2)^2;
333
T[28,41]=(x -6)^2;
334
T[28,43]=(x -8)^2;
335
T[28,47]=(x + 12)^2;
336
T[28,53]=(x -6)^2;
337
T[28,59]=(x + 6)^2;
338
T[28,61]=(x -8)^2;
339
T[28,67]=(x + 4)^2;
340
T[28,71]=(x )^2;
341
T[28,73]=(x -2)^2;
342
T[28,79]=(x -8)^2;
343
T[28,83]=(x + 6)^2;
344
T[28,89]=(x + 6)^2;
345
T[28,97]=(x + 10)^2;
346
347
T[29,2]=x^2 + 2*x -1;
348
T[29,3]=x^2 -2*x -1;
349
T[29,5]=(x + 1)^2;
350
T[29,7]=x^2 -8;
351
T[29,11]=x^2 -2*x -1;
352
T[29,13]=x^2 + 2*x -7;
353
T[29,17]=x^2 + 4*x -4;
354
T[29,19]=(x -6)^2;
355
T[29,23]=x^2 + 4*x -28;
356
T[29,29]=(x -1)^2;
357
T[29,31]=x^2 -6*x -41;
358
T[29,37]=(x + 4)^2;
359
T[29,41]=x^2 -8*x -56;
360
T[29,43]=x^2 -10*x + 23;
361
T[29,47]=x^2 -2*x -17;
362
T[29,53]=x^2 -2*x -71;
363
T[29,59]=x^2 -4*x -28;
364
T[29,61]=x^2 + 4*x -4;
365
T[29,67]=x^2 -32;
366
T[29,71]=x^2 + 12*x + 28;
367
T[29,73]=(x -4)^2;
368
T[29,79]=x^2 + 2*x -1;
369
T[29,83]=x^2 -4*x -28;
370
T[29,89]=x^2 + 8*x -56;
371
T[29,97]=x^2 + 8*x -56;
372
373
T[30,2]=(x + 1)*(x^2 + x + 2);
374
T[30,3]=(x -1)*(x + 1)^2;
375
T[30,5]=(x + 1)*(x -1)^2;
376
T[30,7]=(x + 4)*(x )^2;
377
T[30,11]=(x )*(x + 4)^2;
378
T[30,13]=(x -2)*(x + 2)^2;
379
T[30,17]=(x -6)*(x -2)^2;
380
T[30,19]=(x + 4)*(x -4)^2;
381
T[30,23]=(x )^3;
382
T[30,29]=(x + 6)*(x + 2)^2;
383
T[30,31]=(x -8)*(x )^2;
384
T[30,37]=(x -2)*(x + 10)^2;
385
T[30,41]=(x + 6)*(x -10)^2;
386
T[30,43]=(x + 4)*(x -4)^2;
387
T[30,47]=(x )*(x -8)^2;
388
T[30,53]=(x + 6)*(x + 10)^2;
389
T[30,59]=(x )*(x + 4)^2;
390
T[30,61]=(x + 10)*(x + 2)^2;
391
T[30,67]=(x + 4)*(x -12)^2;
392
T[30,71]=(x )*(x + 8)^2;
393
T[30,73]=(x -2)*(x -10)^2;
394
T[30,79]=(x -8)*(x )^2;
395
T[30,83]=(x -12)^3;
396
T[30,89]=(x -18)*(x + 6)^2;
397
T[30,97]=(x -2)^3;
398
399
T[31,2]=x^2 -x -1;
400
T[31,3]=x^2 + 2*x -4;
401
T[31,5]=(x -1)^2;
402
T[31,7]=x^2 + 4*x -1;
403
T[31,11]=(x -2)^2;
404
T[31,13]=x^2 + 2*x -4;
405
T[31,17]=x^2 -6*x + 4;
406
T[31,19]=x^2 -5;
407
T[31,23]=x^2 + 2*x -44;
408
T[31,29]=x^2 -10*x + 20;
409
T[31,31]=(x -1)^2;
410
T[31,37]=(x + 2)^2;
411
T[31,41]=(x -7)^2;
412
T[31,43]=x^2 + 2*x -4;
413
T[31,47]=x^2 + 4*x -16;
414
T[31,53]=x^2 + 12*x + 16;
415
T[31,59]=x^2 -5;
416
T[31,61]=x^2 + 6*x -116;
417
T[31,67]=(x -8)^2;
418
T[31,71]=x^2 -4*x -121;
419
T[31,73]=x^2 -8*x -4;
420
T[31,79]=x^2 + 10*x -20;
421
T[31,83]=x^2 + 12*x -44;
422
T[31,89]=x^2 -10*x -20;
423
T[31,97]=x^2 + 14*x -31;
424
425
T[32,2]=x ;
426
T[32,3]=x ;
427
T[32,5]=x + 2;
428
T[32,7]=x ;
429
T[32,11]=x ;
430
T[32,13]=x -6;
431
T[32,17]=x -2;
432
T[32,19]=x ;
433
T[32,23]=x ;
434
T[32,29]=x + 10;
435
T[32,31]=x ;
436
T[32,37]=x + 2;
437
T[32,41]=x -10;
438
T[32,43]=x ;
439
T[32,47]=x ;
440
T[32,53]=x -14;
441
T[32,59]=x ;
442
T[32,61]=x + 10;
443
T[32,67]=x ;
444
T[32,71]=x ;
445
T[32,73]=x + 6;
446
T[32,79]=x ;
447
T[32,83]=x ;
448
T[32,89]=x -10;
449
T[32,97]=x -18;
450
451
T[33,2]=(x -1)*(x + 2)^2;
452
T[33,3]=(x + 1)*(x^2 + x + 3);
453
T[33,5]=(x + 2)*(x -1)^2;
454
T[33,7]=(x -4)*(x + 2)^2;
455
T[33,11]=(x -1)^3;
456
T[33,13]=(x + 2)*(x -4)^2;
457
T[33,17]=(x + 2)^3;
458
T[33,19]=(x )^3;
459
T[33,23]=(x -8)*(x + 1)^2;
460
T[33,29]=(x + 6)*(x )^2;
461
T[33,31]=(x + 8)*(x -7)^2;
462
T[33,37]=(x -6)*(x -3)^2;
463
T[33,41]=(x + 2)*(x + 8)^2;
464
T[33,43]=(x )*(x + 6)^2;
465
T[33,47]=(x -8)^3;
466
T[33,53]=(x -6)*(x + 6)^2;
467
T[33,59]=(x + 4)*(x -5)^2;
468
T[33,61]=(x -6)*(x -12)^2;
469
T[33,67]=(x + 4)*(x + 7)^2;
470
T[33,71]=(x )*(x + 3)^2;
471
T[33,73]=(x + 14)*(x -4)^2;
472
T[33,79]=(x + 4)*(x + 10)^2;
473
T[33,83]=(x -12)*(x + 6)^2;
474
T[33,89]=(x + 6)*(x -15)^2;
475
T[33,97]=(x -2)*(x + 7)^2;
476
477
T[34,2]=(x -1)*(x^2 + x + 2);
478
T[34,3]=(x + 2)*(x )^2;
479
T[34,5]=(x )*(x + 2)^2;
480
T[34,7]=(x + 4)*(x -4)^2;
481
T[34,11]=(x -6)*(x )^2;
482
T[34,13]=(x -2)*(x + 2)^2;
483
T[34,17]=(x + 1)*(x -1)^2;
484
T[34,19]=(x + 4)^3;
485
T[34,23]=(x )*(x -4)^2;
486
T[34,29]=(x )*(x -6)^2;
487
T[34,31]=(x + 4)*(x -4)^2;
488
T[34,37]=(x + 4)*(x + 2)^2;
489
T[34,41]=(x -6)*(x + 6)^2;
490
T[34,43]=(x -8)*(x -4)^2;
491
T[34,47]=(x )^3;
492
T[34,53]=(x + 6)*(x -6)^2;
493
T[34,59]=(x )*(x + 12)^2;
494
T[34,61]=(x + 4)*(x + 10)^2;
495
T[34,67]=(x -8)*(x -4)^2;
496
T[34,71]=(x )*(x + 4)^2;
497
T[34,73]=(x -2)*(x + 6)^2;
498
T[34,79]=(x -8)*(x -12)^2;
499
T[34,83]=(x )*(x + 4)^2;
500
T[34,89]=(x + 6)*(x -10)^2;
501
T[34,97]=(x -14)*(x -2)^2;
502
503
T[35,2]=(x^2 + x -4)*(x );
504
T[35,3]=(x -1)*(x^2 + x -4);
505
T[35,5]=(x + 1)*(x -1)^2;
506
T[35,7]=(x -1)*(x + 1)^2;
507
T[35,11]=(x + 3)*(x^2 -x -4);
508
T[35,13]=(x -5)*(x^2 -5*x + 2);
509
T[35,17]=(x -3)*(x^2 + 5*x + 2);
510
T[35,19]=(x -2)*(x^2 + 6*x -8);
511
T[35,23]=(x + 6)*(x^2 + 2*x -16);
512
T[35,29]=(x -3)*(x^2 -x -38);
513
T[35,31]=(x + 4)*(x )^2;
514
T[35,37]=(x -2)*(x -6)^2;
515
T[35,41]=(x + 12)*(x^2 -2*x -16);
516
T[35,43]=(x + 10)*(x^2 -10*x + 8);
517
T[35,47]=(x -9)*(x^2 + 5*x -32);
518
T[35,53]=(x -12)*(x^2 + 2*x -16);
519
T[35,59]=(x )*(x + 4)^2;
520
T[35,61]=(x -8)*(x^2 -6*x -144);
521
T[35,67]=(x + 4)*(x^2 -4*x -64);
522
T[35,71]=(x )*(x -8)^2;
523
T[35,73]=(x -2)*(x^2 + 8*x -52);
524
T[35,79]=(x + 1)*(x^2 + 9*x + 16);
525
T[35,83]=(x -12)*(x -4)^2;
526
T[35,89]=(x + 12)*(x^2 -6*x -8);
527
T[35,97]=(x + 1)*(x^2 + 9*x -86);
528
529
T[36,2]=x ;
530
T[36,3]=x ;
531
T[36,5]=x ;
532
T[36,7]=x + 4;
533
T[36,11]=x ;
534
T[36,13]=x -2;
535
T[36,17]=x ;
536
T[36,19]=x -8;
537
T[36,23]=x ;
538
T[36,29]=x ;
539
T[36,31]=x + 4;
540
T[36,37]=x + 10;
541
T[36,41]=x ;
542
T[36,43]=x -8;
543
T[36,47]=x ;
544
T[36,53]=x ;
545
T[36,59]=x ;
546
T[36,61]=x -14;
547
T[36,67]=x + 16;
548
T[36,71]=x ;
549
T[36,73]=x + 10;
550
T[36,79]=x + 4;
551
T[36,83]=x ;
552
T[36,89]=x ;
553
T[36,97]=x -14;
554
555
T[37,2]=(x + 2)*(x );
556
T[37,3]=(x -1)*(x + 3);
557
T[37,5]=(x + 2)*(x );
558
T[37,7]=(x + 1)^2;
559
T[37,11]=(x -3)*(x + 5);
560
T[37,13]=(x + 2)*(x + 4);
561
T[37,17]=(x -6)*(x );
562
T[37,19]=(x -2)*(x );
563
T[37,23]=(x -6)*(x -2);
564
T[37,29]=(x -6)*(x + 6);
565
T[37,31]=(x + 4)^2;
566
T[37,37]=(x + 1)*(x -1);
567
T[37,41]=(x + 9)^2;
568
T[37,43]=(x -2)*(x -8);
569
T[37,47]=(x -3)*(x + 9);
570
T[37,53]=(x -1)*(x + 3);
571
T[37,59]=(x -12)*(x -8);
572
T[37,61]=(x + 8)*(x -8);
573
T[37,67]=(x -8)*(x + 4);
574
T[37,71]=(x + 15)*(x -9);
575
T[37,73]=(x -11)*(x + 1);
576
T[37,79]=(x + 10)*(x -4);
577
T[37,83]=(x -9)*(x + 15);
578
T[37,89]=(x -6)*(x -4);
579
T[37,97]=(x -4)*(x -8);
580
581
T[38,2]=(x + 1)*(x -1)*(x^2 + 2);
582
T[38,3]=(x + 1)*(x -1)*(x + 2)^2;
583
T[38,5]=(x + 4)*(x )*(x -3)^2;
584
T[38,7]=(x -3)*(x + 1)^3;
585
T[38,11]=(x -2)*(x + 6)*(x -3)^2;
586
T[38,13]=(x -5)*(x + 1)*(x + 4)^2;
587
T[38,17]=(x -3)^2*(x + 3)^2;
588
T[38,19]=(x + 1)*(x -1)^3;
589
T[38,23]=(x + 1)*(x -3)*(x )^2;
590
T[38,29]=(x + 5)*(x -9)*(x -6)^2;
591
T[38,31]=(x + 8)*(x + 4)^3;
592
T[38,37]=(x + 2)*(x -2)^3;
593
T[38,41]=(x + 8)*(x )*(x + 6)^2;
594
T[38,43]=(x -4)*(x -8)*(x + 1)^2;
595
T[38,47]=(x -8)*(x )*(x + 3)^2;
596
T[38,53]=(x + 1)*(x + 3)*(x -12)^2;
597
T[38,59]=(x -9)*(x -15)*(x + 6)^2;
598
T[38,61]=(x + 10)*(x -2)*(x + 1)^2;
599
T[38,67]=(x -3)*(x -5)*(x + 4)^2;
600
T[38,71]=(x -2)*(x + 6)*(x -6)^2;
601
T[38,73]=(x -9)*(x + 7)^3;
602
T[38,79]=(x + 10)^2*(x -8)^2;
603
T[38,83]=(x + 6)^2*(x -12)^2;
604
T[38,89]=(x + 12)*(x )*(x -12)^2;
605
T[38,97]=(x + 2)*(x + 10)*(x -8)^2;
606
607
T[39,2]=(x -1)*(x^2 + 2*x -1);
608
T[39,3]=(x + 1)*(x -1)^2;
609
T[39,5]=(x -2)*(x^2 -8);
610
T[39,7]=(x + 4)*(x^2 -8);
611
T[39,11]=(x -4)*(x + 2)^2;
612
T[39,13]=(x -1)*(x + 1)^2;
613
T[39,17]=(x -2)*(x^2 -4*x -28);
614
T[39,19]=(x^2 -8)*(x );
615
T[39,23]=(x )*(x + 4)^2;
616
T[39,29]=(x + 10)*(x -2)^2;
617
T[39,31]=(x -4)*(x^2 + 8*x + 8);
618
T[39,37]=(x + 2)*(x^2 + 4*x -28);
619
T[39,41]=(x -6)*(x^2 -16*x + 56);
620
T[39,43]=(x + 12)*(x^2 -8*x -16);
621
T[39,47]=(x^2 + 12*x + 4)*(x );
622
T[39,53]=(x -6)*(x + 2)^2;
623
T[39,59]=(x -12)*(x^2 -4*x -28);
624
T[39,61]=(x + 2)*(x^2 -4*x -124);
625
T[39,67]=(x + 8)*(x^2 -8*x + 8);
626
T[39,71]=(x )*(x -2)^2;
627
T[39,73]=(x -2)*(x^2 -12*x + 4);
628
T[39,79]=(x -8)*(x^2 -128);
629
T[39,83]=(x -4)*(x^2 + 4*x -28);
630
T[39,89]=(x + 2)*(x^2 -24*x + 136);
631
T[39,97]=(x -10)*(x^2 + 4*x -28);
632
633
T[40,2]=(x )^3;
634
T[40,3]=(x )*(x + 2)^2;
635
T[40,5]=(x -1)*(x + 1)^2;
636
T[40,7]=(x + 4)*(x -2)^2;
637
T[40,11]=(x -4)*(x )^2;
638
T[40,13]=(x + 2)*(x -2)^2;
639
T[40,17]=(x -2)*(x + 6)^2;
640
T[40,19]=(x -4)*(x + 4)^2;
641
T[40,23]=(x -4)*(x -6)^2;
642
T[40,29]=(x + 2)*(x -6)^2;
643
T[40,31]=(x + 8)*(x + 4)^2;
644
T[40,37]=(x -6)*(x -2)^2;
645
T[40,41]=(x + 6)*(x -6)^2;
646
T[40,43]=(x + 8)*(x + 10)^2;
647
T[40,47]=(x -4)*(x + 6)^2;
648
T[40,53]=(x -6)*(x + 6)^2;
649
T[40,59]=(x + 4)*(x -12)^2;
650
T[40,61]=(x + 2)*(x -2)^2;
651
T[40,67]=(x -8)*(x -2)^2;
652
T[40,71]=(x )*(x + 12)^2;
653
T[40,73]=(x + 6)*(x -2)^2;
654
T[40,79]=(x )*(x -8)^2;
655
T[40,83]=(x + 16)*(x -6)^2;
656
T[40,89]=(x + 6)^3;
657
T[40,97]=(x + 14)*(x -2)^2;
658
659
T[41,2]=x^3 + x^2 -5*x -1;
660
T[41,3]=x^3 -4*x + 2;
661
T[41,5]=x^3 + 2*x^2 -4*x -4;
662
T[41,7]=x^3 -6*x^2 + 8*x -2;
663
T[41,11]=x^3 -2*x^2 -20*x + 50;
664
T[41,13]=x^3 + 2*x^2 -12*x -8;
665
T[41,17]=(x + 2)^3;
666
T[41,19]=x^3 -4*x^2 -16*x -10;
667
T[41,23]=x^3 -4*x^2 -32*x -32;
668
T[41,29]=x^3 + 6*x^2 -4*x -40;
669
T[41,31]=x^3 -16*x^2 + 64*x -32;
670
T[41,37]=x^3 + 6*x^2 -36*x -108;
671
T[41,41]=(x -1)^3;
672
T[41,43]=x^3 + 4*x^2 -8*x -16;
673
T[41,47]=x^3 -120*x -502;
674
T[41,53]=x^3 -6*x^2 -4*x + 8;
675
T[41,59]=x^3 + 8*x^2 -16*x -160;
676
T[41,61]=x^3 -2*x^2 -52*x + 184;
677
T[41,67]=x^3 + 2*x^2 -20*x -50;
678
T[41,71]=x^3 -20*x^2 + 84*x + 134;
679
T[41,73]=x^3 + 2*x^2 -180*x + 244;
680
T[41,79]=x^3 -32*x^2 + 328*x -1090;
681
T[41,83]=x^3 -64*x -128;
682
T[41,89]=x^3 + 6*x^2 -148*x -920;
683
T[41,97]=x^3 -6*x^2 -52*x + 248;
684
685
T[42,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2;
686
T[42,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
687
T[42,5]=(x )^2*(x + 2)^3;
688
T[42,7]=(x -1)^2*(x + 1)^3;
689
T[42,11]=(x + 4)*(x -4)^2*(x )^2;
690
T[42,13]=(x -6)*(x + 4)^2*(x + 2)^2;
691
T[42,17]=(x -2)*(x -6)^2*(x + 6)^2;
692
T[42,19]=(x + 4)*(x -2)^2*(x -4)^2;
693
T[42,23]=(x -8)*(x )^4;
694
T[42,29]=(x + 6)^2*(x + 2)^3;
695
T[42,31]=(x + 4)^2*(x )^3;
696
T[42,37]=(x + 10)*(x -6)^2*(x -2)^2;
697
T[42,41]=(x + 6)*(x -2)^2*(x -6)^2;
698
T[42,43]=(x -8)^2*(x + 4)^3;
699
T[42,47]=(x + 12)^2*(x )^3;
700
T[42,53]=(x -6)^5;
701
T[42,59]=(x -4)*(x + 6)^2*(x -12)^2;
702
T[42,61]=(x -6)*(x + 2)^2*(x -8)^2;
703
T[42,67]=(x + 4)^2*(x -4)^3;
704
T[42,71]=(x -8)*(x )^4;
705
T[42,73]=(x -10)*(x -2)^2*(x + 6)^2;
706
T[42,79]=(x )*(x + 16)^2*(x -8)^2;
707
T[42,83]=(x + 4)*(x + 12)^2*(x + 6)^2;
708
T[42,89]=(x + 14)^2*(x + 6)^3;
709
T[42,97]=(x + 14)*(x -18)^2*(x + 10)^2;
710
711
T[43,2]=(x + 2)*(x^2 -2);
712
T[43,3]=(x + 2)*(x^2 -2);
713
T[43,5]=(x + 4)*(x^2 -4*x + 2);
714
T[43,7]=(x^2 + 4*x + 2)*(x );
715
T[43,11]=(x -3)*(x^2 + 2*x -7);
716
T[43,13]=(x + 5)*(x^2 -2*x -7);
717
T[43,17]=(x + 3)*(x^2 -10*x + 17);
718
T[43,19]=(x + 2)*(x^2 + 4*x -4);
719
T[43,23]=(x + 1)*(x^2 -2*x -31);
720
T[43,29]=(x + 6)*(x^2 -18);
721
T[43,31]=(x + 1)*(x + 3)^2;
722
T[43,37]=(x^2 -72)*(x );
723
T[43,41]=(x -5)*(x^2 + 2*x -7);
724
T[43,43]=(x + 1)*(x -1)^2;
725
T[43,47]=(x -4)*(x -6)^2;
726
T[43,53]=(x + 5)*(x^2 -22*x + 113);
727
T[43,59]=(x + 12)*(x^2 + 4*x -4);
728
T[43,61]=(x -2)*(x^2 -8*x -2);
729
T[43,67]=(x + 3)*(x^2 -2*x -71);
730
T[43,71]=(x -2)*(x^2 + 12*x + 28);
731
T[43,73]=(x -2)*(x^2 + 24*x + 126);
732
T[43,79]=(x + 8)*(x^2 -4*x -4);
733
T[43,83]=(x -15)*(x^2 -18*x + 49);
734
T[43,89]=(x + 4)*(x^2 + 12*x + 18);
735
T[43,97]=(x -7)*(x^2 + 2*x -7);
736
737
T[44,2]=(x^2 + 2*x + 2)*(x )^2;
738
T[44,3]=(x -1)*(x + 1)^3;
739
T[44,5]=(x + 3)*(x -1)^3;
740
T[44,7]=(x -2)*(x + 2)^3;
741
T[44,11]=(x + 1)*(x -1)^3;
742
T[44,13]=(x + 4)*(x -4)^3;
743
T[44,17]=(x -6)*(x + 2)^3;
744
T[44,19]=(x -8)*(x )^3;
745
T[44,23]=(x + 3)*(x + 1)^3;
746
T[44,29]=(x )^4;
747
T[44,31]=(x -5)*(x -7)^3;
748
T[44,37]=(x + 1)*(x -3)^3;
749
T[44,41]=(x )*(x + 8)^3;
750
T[44,43]=(x + 10)*(x + 6)^3;
751
T[44,47]=(x )*(x -8)^3;
752
T[44,53]=(x + 6)^4;
753
T[44,59]=(x -3)*(x -5)^3;
754
T[44,61]=(x + 4)*(x -12)^3;
755
T[44,67]=(x + 1)*(x + 7)^3;
756
T[44,71]=(x -15)*(x + 3)^3;
757
T[44,73]=(x + 4)*(x -4)^3;
758
T[44,79]=(x -2)*(x + 10)^3;
759
T[44,83]=(x -6)*(x + 6)^3;
760
T[44,89]=(x + 9)*(x -15)^3;
761
T[44,97]=(x + 7)^4;
762
763
T[45,2]=(x -1)*(x + 1)^2;
764
T[45,3]=(x + 1)*(x )^2;
765
T[45,5]=(x + 1)*(x -1)^2;
766
T[45,7]=(x )^3;
767
T[45,11]=(x -4)*(x + 4)^2;
768
T[45,13]=(x + 2)^3;
769
T[45,17]=(x + 2)*(x -2)^2;
770
T[45,19]=(x -4)^3;
771
T[45,23]=(x )^3;
772
T[45,29]=(x -2)*(x + 2)^2;
773
T[45,31]=(x )^3;
774
T[45,37]=(x + 10)^3;
775
T[45,41]=(x + 10)*(x -10)^2;
776
T[45,43]=(x -4)^3;
777
T[45,47]=(x + 8)*(x -8)^2;
778
T[45,53]=(x -10)*(x + 10)^2;
779
T[45,59]=(x -4)*(x + 4)^2;
780
T[45,61]=(x + 2)^3;
781
T[45,67]=(x -12)^3;
782
T[45,71]=(x -8)*(x + 8)^2;
783
T[45,73]=(x -10)^3;
784
T[45,79]=(x )^3;
785
T[45,83]=(x + 12)*(x -12)^2;
786
T[45,89]=(x -6)*(x + 6)^2;
787
T[45,97]=(x -2)^3;
788
789
T[46,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4);
790
T[46,3]=(x )*(x^2 -5)^2;
791
T[46,5]=(x -4)*(x^2 + 2*x -4)^2;
792
T[46,7]=(x + 4)*(x^2 -2*x -4)^2;
793
T[46,11]=(x -2)*(x^2 + 6*x + 4)^2;
794
T[46,13]=(x + 2)*(x -3)^4;
795
T[46,17]=(x + 2)*(x^2 -6*x + 4)^2;
796
T[46,19]=(x + 2)^5;
797
T[46,23]=(x -1)^5;
798
T[46,29]=(x -2)*(x + 3)^4;
799
T[46,31]=(x )*(x^2 -45)^2;
800
T[46,37]=(x + 4)*(x^2 -2*x -4)^2;
801
T[46,41]=(x -6)*(x^2 -2*x -19)^2;
802
T[46,43]=(x -10)*(x )^4;
803
T[46,47]=(x )*(x^2 -5)^2;
804
T[46,53]=(x + 4)*(x^2 + 8*x -4)^2;
805
T[46,59]=(x -12)*(x^2 -4*x -16)^2;
806
T[46,61]=(x + 8)*(x^2 -4*x -76)^2;
807
T[46,67]=(x + 10)*(x^2 + 10*x + 20)^2;
808
T[46,71]=(x )*(x^2 -20*x + 95)^2;
809
T[46,73]=(x -6)*(x^2 -22*x + 101)^2;
810
T[46,79]=(x + 12)*(x^2 + 4*x -76)^2;
811
T[46,83]=(x -14)*(x^2 + 22*x + 116)^2;
812
T[46,89]=(x + 6)*(x^2 + 12*x + 16)^2;
813
T[46,97]=(x -6)*(x^2 -22*x + 76)^2;
814
815
T[47,2]=x^4 -x^3 -5*x^2 + 5*x -1;
816
T[47,3]=x^4 -7*x^2 + 4*x + 1;
817
T[47,5]=x^4 + 2*x^3 -16*x^2 -16*x + 48;
818
T[47,7]=x^4 -4*x^3 -7*x^2 + 44*x -43;
819
T[47,11]=x^4 + 6*x^3 -4*x^2 -56*x -48;
820
T[47,13]=x^4 -8*x^3 + 56*x + 48;
821
T[47,17]=x^4 -6*x^3 -21*x^2 + 74*x + 141;
822
T[47,19]=x^4 -16*x^2 -8*x + 16;
823
T[47,23]=x^4 + 6*x^3 -20*x^2 -40*x -16;
824
T[47,29]=x^4 + 10*x^3 + 20*x^2 -8*x -16;
825
T[47,31]=x^4 + 8*x^3 -56*x + 48;
826
T[47,37]=x^4 -10*x^3 + 15*x^2 + 34*x + 9;
827
T[47,41]=x^4 -6*x^3 -8*x^2 + 32*x -16;
828
T[47,43]=x^4 -2*x^3 -80*x^2 -112*x + 432;
829
T[47,47]=(x -1)^4;
830
T[47,53]=x^4 + 6*x^3 -101*x^2 -314*x + 2429;
831
T[47,59]=x^4 -4*x^3 -115*x^2 + 704*x -519;
832
T[47,61]=x^4 + 6*x^3 -73*x^2 + 10*x + 337;
833
T[47,67]=x^4 -10*x^3 -120*x^2 + 752*x + 3184;
834
T[47,71]=x^4 + 12*x^3 -19*x^2 -320*x + 657;
835
T[47,73]=x^4 -22*x^3 + 60*x^2 + 1368*x -7664;
836
T[47,79]=x^4 -20*x^3 + 77*x^2 + 240*x -47;
837
T[47,83]=x^4 -20*x^3 + 80*x^2 + 192*x -256;
838
T[47,89]=x^4 + 6*x^3 -161*x^2 -206*x + 4841;
839
T[47,97]=x^4 -30*x^3 + 179*x^2 + 1634*x -14307;
840
841
T[48,2]=(x )^3;
842
T[48,3]=(x -1)*(x + 1)^2;
843
T[48,5]=(x + 2)^3;
844
T[48,7]=(x )^3;
845
T[48,11]=(x + 4)*(x -4)^2;
846
T[48,13]=(x + 2)^3;
847
T[48,17]=(x -2)^3;
848
T[48,19]=(x -4)*(x + 4)^2;
849
T[48,23]=(x -8)*(x + 8)^2;
850
T[48,29]=(x -6)^3;
851
T[48,31]=(x + 8)*(x -8)^2;
852
T[48,37]=(x -6)^3;
853
T[48,41]=(x + 6)^3;
854
T[48,43]=(x + 4)*(x -4)^2;
855
T[48,47]=(x )^3;
856
T[48,53]=(x + 2)^3;
857
T[48,59]=(x + 4)*(x -4)^2;
858
T[48,61]=(x + 2)^3;
859
T[48,67]=(x -4)*(x + 4)^2;
860
T[48,71]=(x + 8)*(x -8)^2;
861
T[48,73]=(x -10)^3;
862
T[48,79]=(x -8)*(x + 8)^2;
863
T[48,83]=(x -4)*(x + 4)^2;
864
T[48,89]=(x + 6)^3;
865
T[48,97]=(x -2)^3;
866
867
T[49,2]=x -1;
868
T[49,3]=x ;
869
T[49,5]=x ;
870
T[49,7]=x ;
871
T[49,11]=x -4;
872
T[49,13]=x ;
873
T[49,17]=x ;
874
T[49,19]=x ;
875
T[49,23]=x -8;
876
T[49,29]=x -2;
877
T[49,31]=x ;
878
T[49,37]=x + 6;
879
T[49,41]=x ;
880
T[49,43]=x + 12;
881
T[49,47]=x ;
882
T[49,53]=x + 10;
883
T[49,59]=x ;
884
T[49,61]=x ;
885
T[49,67]=x -4;
886
T[49,71]=x -16;
887
T[49,73]=x ;
888
T[49,79]=x -8;
889
T[49,83]=x ;
890
T[49,89]=x ;
891
T[49,97]=x ;
892
893
T[50,2]=(x -1)*(x + 1);
894
T[50,3]=(x -1)*(x + 1);
895
T[50,5]=(x )^2;
896
T[50,7]=(x -2)*(x + 2);
897
T[50,11]=(x + 3)^2;
898
T[50,13]=(x + 4)*(x -4);
899
T[50,17]=(x -3)*(x + 3);
900
T[50,19]=(x -5)^2;
901
T[50,23]=(x -6)*(x + 6);
902
T[50,29]=(x )^2;
903
T[50,31]=(x -2)^2;
904
T[50,37]=(x -2)*(x + 2);
905
T[50,41]=(x + 3)^2;
906
T[50,43]=(x + 4)*(x -4);
907
T[50,47]=(x + 12)*(x -12);
908
T[50,53]=(x + 6)*(x -6);
909
T[50,59]=(x )^2;
910
T[50,61]=(x -2)^2;
911
T[50,67]=(x + 13)*(x -13);
912
T[50,71]=(x -12)^2;
913
T[50,73]=(x -11)*(x + 11);
914
T[50,79]=(x + 10)^2;
915
T[50,83]=(x + 9)*(x -9);
916
T[50,89]=(x -15)^2;
917
T[50,97]=(x + 2)*(x -2);
918
919
T[51,2]=(x^2 + x -4)*(x )*(x + 1)^2;
920
T[51,3]=(x -1)*(x^2 + 3)*(x + 1)^2;
921
T[51,5]=(x -3)*(x^2 -3*x -2)*(x + 2)^2;
922
T[51,7]=(x + 4)*(x -4)^2*(x )^2;
923
T[51,11]=(x + 3)*(x^2 + x -4)*(x )^2;
924
T[51,13]=(x + 1)*(x^2 -5*x + 2)*(x + 2)^2;
925
T[51,17]=(x + 1)*(x -1)^4;
926
T[51,19]=(x + 1)*(x^2 -3*x -36)*(x + 4)^2;
927
T[51,23]=(x -9)*(x^2 + 9*x + 16)*(x -4)^2;
928
T[51,29]=(x^2 -68)*(x -6)^3;
929
T[51,31]=(x -2)*(x^2 + 2*x -16)*(x -4)^2;
930
T[51,37]=(x + 4)*(x^2 + 2*x -16)*(x + 2)^2;
931
T[51,41]=(x + 3)*(x^2 + 3*x -2)*(x + 6)^2;
932
T[51,43]=(x + 7)*(x^2 + 3*x -36)*(x -4)^2;
933
T[51,47]=(x + 6)*(x^2 + 14*x + 32)*(x )^2;
934
T[51,53]=(x + 6)*(x^2 -8*x -52)*(x -6)^2;
935
T[51,59]=(x -6)*(x^2 -6*x -8)*(x + 12)^2;
936
T[51,61]=(x -8)*(x^2 -10*x + 8)*(x + 10)^2;
937
T[51,67]=(x + 4)*(x -4)^4;
938
T[51,71]=(x -12)*(x^2 -4*x -64)*(x + 4)^2;
939
T[51,73]=(x -2)*(x^2 + 8*x -52)*(x + 6)^2;
940
T[51,79]=(x + 10)*(x^2 -6*x -144)*(x -12)^2;
941
T[51,83]=(x + 6)*(x^2 + 10*x + 8)*(x + 4)^2;
942
T[51,89]=(x^2 -6*x -8)*(x )*(x -10)^2;
943
T[51,97]=(x + 16)*(x^2 + 14*x + 32)*(x -2)^2;
944
945
T[52,2]=(x + 1)*(x -1)*(x )^3;
946
T[52,3]=(x )*(x -1)^2*(x + 3)^2;
947
T[52,5]=(x -2)*(x + 3)^2*(x + 1)^2;
948
T[52,7]=(x + 2)*(x -1)^2*(x + 1)^2;
949
T[52,11]=(x -6)^2*(x + 2)^3;
950
T[52,13]=(x -1)^2*(x + 1)^3;
951
T[52,17]=(x -6)*(x + 3)^4;
952
T[52,19]=(x + 6)*(x -2)^2*(x -6)^2;
953
T[52,23]=(x -8)*(x + 4)^2*(x )^2;
954
T[52,29]=(x -6)^2*(x -2)^3;
955
T[52,31]=(x -10)*(x -4)^2*(x + 4)^2;
956
T[52,37]=(x + 6)*(x -3)^2*(x + 7)^2;
957
T[52,41]=(x + 6)*(x )^4;
958
T[52,43]=(x -4)*(x + 5)^2*(x + 1)^2;
959
T[52,47]=(x + 2)*(x -13)^2*(x -3)^2;
960
T[52,53]=(x -6)*(x -12)^2*(x )^2;
961
T[52,59]=(x + 6)^2*(x + 10)^3;
962
T[52,61]=(x + 2)*(x + 8)^2*(x -8)^2;
963
T[52,67]=(x -10)*(x + 2)^2*(x -14)^2;
964
T[52,71]=(x -10)*(x + 3)^2*(x + 5)^2;
965
T[52,73]=(x + 10)^2*(x -2)^3;
966
T[52,79]=(x -8)^2*(x + 4)^3;
967
T[52,83]=(x + 6)*(x -12)^2*(x )^2;
968
T[52,89]=(x -6)^2*(x + 6)^3;
969
T[52,97]=(x -2)*(x -14)^2*(x + 10)^2;
970
971
T[53,2]=(x + 1)*(x^3 + x^2 -3*x -1);
972
T[53,3]=(x + 3)*(x^3 -3*x^2 -x + 1);
973
T[53,5]=(x^3 + 2*x^2 -4*x -4)*(x );
974
T[53,7]=(x + 4)*(x^3 -4*x^2 + 4);
975
T[53,11]=(x^3 + 4*x^2 -4*x -20)*(x );
976
T[53,13]=(x + 3)*(x -1)^3;
977
T[53,17]=(x + 3)*(x^3 + 5*x^2 -5*x -17);
978
T[53,19]=(x + 5)*(x^3 -11*x^2 + 37*x -37);
979
T[53,23]=(x -7)*(x^3 -3*x^2 -31*x -29);
980
T[53,29]=(x + 7)*(x^3 + 5*x^2 -37*x -61);
981
T[53,31]=(x -4)*(x^3 + 2*x^2 -76*x + 116);
982
T[53,37]=(x -5)*(x^3 + 5*x^2 -89*x -353);
983
T[53,41]=(x -6)*(x^3 + 10*x^2 + 20*x -8);
984
T[53,43]=(x + 2)*(x^3 -18*x^2 + 24*x + 556);
985
T[53,47]=(x + 2)*(x^3 + 10*x^2 -4*x -8);
986
T[53,53]=(x + 1)*(x -1)^3;
987
T[53,59]=(x + 2)*(x^3 -2*x^2 -60*x + 200);
988
T[53,61]=(x + 8)*(x^3 + 10*x^2 -56*x -556);
989
T[53,67]=(x + 12)*(x^3 -6*x^2 -72*x -108);
990
T[53,71]=(x -1)*(x^3 + 5*x^2 -105*x + 277);
991
T[53,73]=(x + 4)*(x^3 -6*x^2 -28*x -4);
992
T[53,79]=(x + 1)*(x^3 + 7*x^2 -77*x + 131);
993
T[53,83]=(x + 1)*(x^3 -27*x^2 + 213*x -457);
994
T[53,89]=(x + 14)*(x^3 + 2*x^2 -212*x + 1048);
995
T[53,97]=(x -1)*(x^3 + x^2 -133*x -137);
996
997
T[54,2]=(x + 1)*(x -1)*(x^2 + 2);
998
T[54,3]=(x )^4;
999
T[54,5]=(x + 3)*(x -3)*(x )^2;
1000
T[54,7]=(x + 1)^4;
1001
T[54,11]=(x + 3)*(x -3)*(x )^2;
1002
T[54,13]=(x -5)^2*(x + 4)^2;
1003
T[54,17]=(x )^4;
1004
T[54,19]=(x + 7)^2*(x -2)^2;
1005
T[54,23]=(x + 6)*(x -6)*(x )^2;
1006
T[54,29]=(x -6)*(x + 6)*(x )^2;
1007
T[54,31]=(x -5)^2*(x + 4)^2;
1008
T[54,37]=(x -2)^2*(x -11)^2;
1009
T[54,41]=(x + 6)*(x -6)*(x )^2;
1010
T[54,43]=(x + 10)^2*(x -8)^2;
1011
T[54,47]=(x + 6)*(x -6)*(x )^2;
1012
T[54,53]=(x -9)*(x + 9)*(x )^2;
1013
T[54,59]=(x -12)*(x + 12)*(x )^2;
1014
T[54,61]=(x + 1)^2*(x -8)^2;
1015
T[54,67]=(x -5)^2*(x -14)^2;
1016
T[54,71]=(x )^4;
1017
T[54,73]=(x + 7)^4;
1018
T[54,79]=(x -17)^2*(x -8)^2;
1019
T[54,83]=(x -3)*(x + 3)*(x )^2;
1020
T[54,89]=(x -18)*(x + 18)*(x )^2;
1021
T[54,97]=(x + 1)^2*(x + 19)^2;
1022
1023
T[55,2]=(x -1)*(x^2 -2*x -1)*(x + 2)^2;
1024
T[55,3]=(x^2 -8)*(x )*(x + 1)^2;
1025
T[55,5]=(x -1)*(x^2 -x + 5)*(x + 1)^2;
1026
T[55,7]=(x )*(x + 2)^4;
1027
T[55,11]=(x + 1)*(x -1)^4;
1028
T[55,13]=(x -2)*(x^2 + 8*x + 8)*(x -4)^2;
1029
T[55,17]=(x -6)*(x^2 -8*x + 8)*(x + 2)^2;
1030
T[55,19]=(x + 4)*(x )^4;
1031
T[55,23]=(x -4)*(x^2 -8)*(x + 1)^2;
1032
T[55,29]=(x -6)*(x^2 -4*x -28)*(x )^2;
1033
T[55,31]=(x + 8)*(x -7)^2*(x )^2;
1034
T[55,37]=(x + 2)*(x^2 + 4*x -28)*(x -3)^2;
1035
T[55,41]=(x -2)*(x + 8)^2*(x -6)^2;
1036
T[55,43]=(x -4)*(x + 6)^4;
1037
T[55,47]=(x + 12)*(x^2 -8)*(x -8)^2;
1038
T[55,53]=(x + 2)*(x^2 -12*x + 4)*(x + 6)^2;
1039
T[55,59]=(x -4)*(x^2 + 8*x -16)*(x -5)^2;
1040
T[55,61]=(x + 10)*(x^2 -4*x -124)*(x -12)^2;
1041
T[55,67]=(x + 16)*(x^2 -8*x -56)*(x + 7)^2;
1042
T[55,71]=(x -8)*(x^2 -128)*(x + 3)^2;
1043
T[55,73]=(x -14)*(x^2 + 8*x + 8)*(x -4)^2;
1044
T[55,79]=(x -8)*(x -4)^2*(x + 10)^2;
1045
T[55,83]=(x + 4)*(x + 6)^4;
1046
T[55,89]=(x -10)*(x^2 + 4*x -124)*(x -15)^2;
1047
T[55,97]=(x -10)*(x^2 + 4*x -28)*(x + 7)^2;
1048
1049
T[56,2]=(x + 1)*(x )^4;
1050
T[56,3]=(x -2)*(x )*(x + 2)^3;
1051
T[56,5]=(x -2)*(x + 4)*(x )^3;
1052
T[56,7]=(x + 1)*(x -1)^4;
1053
T[56,11]=(x + 4)*(x )^4;
1054
T[56,13]=(x -2)*(x )*(x + 4)^3;
1055
T[56,17]=(x + 6)*(x + 2)*(x -6)^3;
1056
T[56,19]=(x -8)*(x + 2)*(x -2)^3;
1057
T[56,23]=(x -8)*(x )^4;
1058
T[56,29]=(x -2)*(x -6)*(x + 6)^3;
1059
T[56,31]=(x -4)*(x -8)*(x + 4)^3;
1060
T[56,37]=(x + 2)*(x + 6)*(x -2)^3;
1061
T[56,41]=(x -2)*(x + 2)*(x -6)^3;
1062
T[56,43]=(x + 4)*(x -8)^4;
1063
T[56,47]=(x + 4)*(x + 8)*(x + 12)^3;
1064
T[56,53]=(x + 10)*(x -6)^4;
1065
T[56,59]=(x -6)*(x )*(x + 6)^3;
1066
T[56,61]=(x -4)*(x + 6)*(x -8)^3;
1067
T[56,67]=(x + 12)*(x + 4)^4;
1068
T[56,71]=(x + 8)*(x )^4;
1069
T[56,73]=(x -10)*(x + 14)*(x -2)^3;
1070
T[56,79]=(x -16)*(x + 8)*(x -8)^3;
1071
T[56,83]=(x -8)*(x -6)*(x + 6)^3;
1072
T[56,89]=(x -10)*(x + 6)^4;
1073
T[56,97]=(x + 6)*(x + 2)*(x + 10)^3;
1074
1075
T[57,2]=(x -1)*(x + 2)^2*(x )^2;
1076
T[57,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
1077
T[57,5]=(x + 2)*(x -1)*(x + 3)*(x -3)^2;
1078
T[57,7]=(x + 5)*(x -3)*(x )*(x + 1)^2;
1079
T[57,11]=(x -1)*(x + 3)*(x )*(x -3)^2;
1080
T[57,13]=(x -2)*(x -6)*(x + 6)*(x + 4)^2;
1081
T[57,17]=(x + 1)*(x + 6)*(x -3)*(x + 3)^2;
1082
T[57,19]=(x -1)^2*(x + 1)^3;
1083
T[57,23]=(x + 4)*(x -4)^2*(x )^2;
1084
T[57,29]=(x + 2)*(x + 10)*(x -2)*(x -6)^2;
1085
T[57,31]=(x -2)*(x + 6)*(x -8)*(x + 4)^2;
1086
T[57,37]=(x + 10)*(x -8)*(x )*(x -2)^2;
1087
T[57,41]=(x + 2)*(x + 8)*(x )*(x + 6)^2;
1088
T[57,43]=(x + 4)*(x + 1)^4;
1089
T[57,47]=(x -12)*(x + 9)*(x -3)*(x + 3)^2;
1090
T[57,53]=(x -10)*(x -12)^2*(x + 6)^2;
1091
T[57,59]=(x + 8)*(x + 12)*(x )*(x + 6)^2;
1092
T[57,61]=(x + 2)*(x -7)*(x + 1)^3;
1093
T[57,67]=(x -8)^2*(x + 4)^3;
1094
T[57,71]=(x -12)*(x + 12)*(x )*(x -6)^2;
1095
T[57,73]=(x -10)*(x + 11)^2*(x + 7)^2;
1096
T[57,79]=(x -16)*(x -8)^2*(x )^2;
1097
T[57,83]=(x -16)*(x -4)*(x -12)^3;
1098
T[57,89]=(x + 6)*(x -10)*(x + 2)*(x -12)^2;
1099
T[57,97]=(x + 10)*(x -10)*(x + 2)*(x -8)^2;
1100
1101
T[58,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4);
1102
T[58,3]=(x + 3)*(x + 1)*(x^2 -2*x -1)^2;
1103
T[58,5]=(x + 3)*(x -1)*(x + 1)^4;
1104
T[58,7]=(x + 2)^2*(x^2 -8)^2;
1105
T[58,11]=(x + 1)*(x + 3)*(x^2 -2*x -1)^2;
1106
T[58,13]=(x -3)*(x + 1)*(x^2 + 2*x -7)^2;
1107
T[58,17]=(x + 4)*(x -8)*(x^2 + 4*x -4)^2;
1108
T[58,19]=(x + 8)*(x )*(x -6)^4;
1109
T[58,23]=(x -4)*(x )*(x^2 + 4*x -28)^2;
1110
T[58,29]=(x + 1)^2*(x -1)^4;
1111
T[58,31]=(x + 3)*(x -3)*(x^2 -6*x -41)^2;
1112
T[58,37]=(x + 8)*(x -8)*(x + 4)^4;
1113
T[58,41]=(x + 2)*(x -2)*(x^2 -8*x -56)^2;
1114
T[58,43]=(x -7)*(x + 11)*(x^2 -10*x + 23)^2;
1115
T[58,47]=(x -13)*(x -11)*(x^2 -2*x -17)^2;
1116
T[58,53]=(x -1)*(x + 11)*(x^2 -2*x -71)^2;
1117
T[58,59]=(x + 4)*(x )*(x^2 -4*x -28)^2;
1118
T[58,61]=(x + 8)*(x -4)*(x^2 + 4*x -4)^2;
1119
T[58,67]=(x + 12)*(x + 4)*(x^2 -32)^2;
1120
T[58,71]=(x -2)*(x + 2)*(x^2 + 12*x + 28)^2;
1121
T[58,73]=(x + 12)*(x -4)^5;
1122
T[58,79]=(x -15)*(x + 7)*(x^2 + 2*x -1)^2;
1123
T[58,83]=(x -4)*(x )*(x^2 -4*x -28)^2;
1124
T[58,89]=(x + 10)*(x + 6)*(x^2 + 8*x -56)^2;
1125
T[58,97]=(x + 2)*(x + 6)*(x^2 + 8*x -56)^2;
1126
1127
T[59,2]=x^5 -9*x^3 + 2*x^2 + 16*x -8;
1128
T[59,3]=x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1;
1129
T[59,5]=x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1;
1130
T[59,7]=x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71;
1131
T[59,11]=x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64;
1132
T[59,13]=x^5 -8*x^4 + 88*x^2 -48*x -224;
1133
T[59,17]=x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412;
1134
T[59,19]=x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469;
1135
T[59,23]=x^5 + 8*x^4 -88*x^2 -112*x -32;
1136
T[59,29]=x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757;
1137
T[59,31]=x^5 -116*x^3 + 56*x^2 + 1280*x + 256;
1138
T[59,37]=x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32;
1139
T[59,41]=x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217;
1140
T[59,43]=x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128;
1141
T[59,47]=x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256;
1142
T[59,53]=x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73;
1143
T[59,59]=(x -1)^5;
1144
T[59,61]=x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072;
1145
T[59,67]=x^5 -188*x^3 -200*x^2 + 5472*x -8896;
1146
T[59,71]=x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424;
1147
T[59,73]=x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952;
1148
T[59,79]=x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923;
1149
T[59,83]=x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152;
1150
T[59,89]=x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984;
1151
T[59,97]=x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656;
1152
1153
T[60,2]=(x + 1)*(x^2 + x + 2)*(x )^4;
1154
T[60,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3;
1155
T[60,5]=(x -1)^3*(x + 1)^4;
1156
T[60,7]=(x -2)^2*(x + 4)^2*(x )^3;
1157
T[60,11]=(x + 4)^3*(x )^4;
1158
T[60,13]=(x + 2)^3*(x -2)^4;
1159
T[60,17]=(x -6)^2*(x + 6)^2*(x -2)^3;
1160
T[60,19]=(x -4)^3*(x + 4)^4;
1161
T[60,23]=(x -6)^2*(x )^5;
1162
T[60,29]=(x -6)^2*(x + 6)^2*(x + 2)^3;
1163
T[60,31]=(x -8)^2*(x + 4)^2*(x )^3;
1164
T[60,37]=(x + 10)^3*(x -2)^4;
1165
T[60,41]=(x + 6)^2*(x -6)^2*(x -10)^3;
1166
T[60,43]=(x + 4)^2*(x + 10)^2*(x -4)^3;
1167
T[60,47]=(x + 6)^2*(x )^2*(x -8)^3;
1168
T[60,53]=(x + 10)^3*(x + 6)^4;
1169
T[60,59]=(x -12)^2*(x )^2*(x + 4)^3;
1170
T[60,61]=(x -2)^2*(x + 10)^2*(x + 2)^3;
1171
T[60,67]=(x -2)^2*(x + 4)^2*(x -12)^3;
1172
T[60,71]=(x + 12)^2*(x )^2*(x + 8)^3;
1173
T[60,73]=(x -10)^3*(x -2)^4;
1174
T[60,79]=(x )^3*(x -8)^4;
1175
T[60,83]=(x -6)^2*(x -12)^5;
1176
T[60,89]=(x -18)^2*(x + 6)^5;
1177
T[60,97]=(x -2)^7;
1178
1179
T[61,2]=(x + 1)*(x^3 -x^2 -3*x + 1);
1180
T[61,3]=(x + 2)*(x^3 -2*x^2 -4*x + 4);
1181
T[61,5]=(x + 3)*(x^3 + x^2 -9*x -13);
1182
T[61,7]=(x -1)*(x^3 + 3*x^2 -x -1);
1183
T[61,11]=(x + 5)*(x^3 -13*x^2 + 53*x -67);
1184
T[61,13]=(x -1)*(x^3 + 9*x^2 + 11*x -37);
1185
T[61,17]=(x -4)*(x^3 + 2*x^2 -8*x + 4);
1186
T[61,19]=(x + 4)*(x^3 -48*x -20);
1187
T[61,23]=(x + 9)*(x^3 -5*x^2 + 5*x + 1);
1188
T[61,29]=(x + 6)*(x^3 -4*x^2 -4*x + 20);
1189
T[61,31]=(x^3 + 2*x^2 -76*x + 116)*(x );
1190
T[61,37]=(x -8)*(x^3 + 6*x^2 -36*x -108);
1191
T[61,41]=(x -5)*(x^3 -3*x^2 -61*x + 191);
1192
T[61,43]=(x + 8)*(x^3 + 14*x^2 + 56*x + 68);
1193
T[61,47]=(x -4)*(x^3 + 4*x^2 -88*x + 16);
1194
T[61,53]=(x -6)*(x^3 + 2*x^2 -12*x -8);
1195
T[61,59]=(x -9)*(x^3 -29*x^2 + 231*x -325);
1196
T[61,61]=(x + 1)*(x -1)^3;
1197
T[61,67]=(x + 7)*(x^3 -9*x^2 -85*x + 559);
1198
T[61,71]=(x + 8)*(x^3 -14*x^2 -12*x + 92);
1199
T[61,73]=(x + 11)*(x^3 + x^2 -45*x -25);
1200
T[61,79]=(x -3)*(x^3 -13*x^2 -51*x + 625);
1201
T[61,83]=(x -4)*(x^3 + 8*x^2 -64*x -256);
1202
T[61,89]=(x + 4)*(x^3 + 4*x^2 -56*x + 80);
1203
T[61,97]=(x + 14)*(x^3 -10*x^2 -116*x + 1096);
1204
1205
T[62,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2;
1206
T[62,3]=(x^2 -2*x -2)*(x )*(x^2 + 2*x -4)^2;
1207
T[62,5]=(x + 2)*(x^2 -12)*(x -1)^4;
1208
T[62,7]=(x )*(x -2)^2*(x^2 + 4*x -1)^2;
1209
T[62,11]=(x^2 + 6*x + 6)*(x )*(x -2)^4;
1210
T[62,13]=(x -2)*(x^2 + 2*x -26)*(x^2 + 2*x -4)^2;
1211
T[62,17]=(x + 6)*(x^2 -12)*(x^2 -6*x + 4)^2;
1212
T[62,19]=(x -4)*(x + 4)^2*(x^2 -5)^2;
1213
T[62,23]=(x -8)*(x^2 + 2*x -44)^2*(x )^2;
1214
T[62,29]=(x -2)*(x^2 + 6*x -18)*(x^2 -10*x + 20)^2;
1215
T[62,31]=(x + 1)*(x -1)^6;
1216
T[62,37]=(x -10)*(x^2 -10*x -2)*(x + 2)^4;
1217
T[62,41]=(x + 6)*(x^2 -12*x + 24)*(x -7)^4;
1218
T[62,43]=(x -8)*(x^2 + 2*x -26)*(x^2 + 2*x -4)^2;
1219
T[62,47]=(x + 8)*(x -6)^2*(x^2 + 4*x -16)^2;
1220
T[62,53]=(x + 6)*(x^2 -6*x + 6)*(x^2 + 12*x + 16)^2;
1221
T[62,59]=(x + 12)*(x^2 + 12*x + 24)*(x^2 -5)^2;
1222
T[62,61]=(x + 6)*(x^2 + 2*x -26)*(x^2 + 6*x -116)^2;
1223
T[62,67]=(x + 12)*(x -8)^6;
1224
T[62,71]=(x -8)*(x^2 -192)*(x^2 -4*x -121)^2;
1225
T[62,73]=(x -10)*(x + 10)^2*(x^2 -8*x -4)^2;
1226
T[62,79]=(x + 8)*(x^2 -4*x -104)*(x^2 + 10*x -20)^2;
1227
T[62,83]=(x -8)*(x^2 -6*x -66)*(x^2 + 12*x -44)^2;
1228
T[62,89]=(x + 6)*(x -6)^2*(x^2 -10*x -20)^2;
1229
T[62,97]=(x -2)*(x^2 -4*x -104)*(x^2 + 14*x -31)^2;
1230
1231
T[63,2]=(x -1)*(x^2 -3)*(x + 1)^2;
1232
T[63,3]=(x -1)*(x )^4;
1233
T[63,5]=(x -2)*(x^2 -12)*(x + 2)^2;
1234
T[63,7]=(x -1)^2*(x + 1)^3;
1235
T[63,11]=(x + 4)*(x^2 -12)*(x -4)^2;
1236
T[63,13]=(x -2)^2*(x + 2)^3;
1237
T[63,17]=(x -6)*(x^2 -12)*(x + 6)^2;
1238
T[63,19]=(x + 4)^2*(x -4)^3;
1239
T[63,23]=(x^2 -12)*(x )^3;
1240
T[63,29]=(x -2)*(x + 2)^2*(x )^2;
1241
T[63,31]=(x + 4)^2*(x )^3;
1242
T[63,37]=(x -2)^2*(x -6)^3;
1243
T[63,41]=(x + 2)*(x^2 -108)*(x -2)^2;
1244
T[63,43]=(x + 4)^5;
1245
T[63,47]=(x^2 -48)*(x )^3;
1246
T[63,53]=(x + 6)*(x^2 -48)*(x -6)^2;
1247
T[63,59]=(x + 12)*(x^2 -48)*(x -12)^2;
1248
T[63,61]=(x + 10)^2*(x + 2)^3;
1249
T[63,67]=(x + 4)^2*(x -4)^3;
1250
T[63,71]=(x^2 -108)*(x )^3;
1251
T[63,73]=(x -14)^2*(x + 6)^3;
1252
T[63,79]=(x -8)^2*(x + 16)^3;
1253
T[63,83]=(x -12)*(x + 12)^2*(x )^2;
1254
T[63,89]=(x -14)*(x^2 -12)*(x + 14)^2;
1255
T[63,97]=(x -14)^2*(x -18)^3;
1256
1257
T[64,2]=(x )^3;
1258
T[64,3]=(x )^3;
1259
T[64,5]=(x -2)*(x + 2)^2;
1260
T[64,7]=(x )^3;
1261
T[64,11]=(x )^3;
1262
T[64,13]=(x + 6)*(x -6)^2;
1263
T[64,17]=(x -2)^3;
1264
T[64,19]=(x )^3;
1265
T[64,23]=(x )^3;
1266
T[64,29]=(x -10)*(x + 10)^2;
1267
T[64,31]=(x )^3;
1268
T[64,37]=(x -2)*(x + 2)^2;
1269
T[64,41]=(x -10)^3;
1270
T[64,43]=(x )^3;
1271
T[64,47]=(x )^3;
1272
T[64,53]=(x + 14)*(x -14)^2;
1273
T[64,59]=(x )^3;
1274
T[64,61]=(x -10)*(x + 10)^2;
1275
T[64,67]=(x )^3;
1276
T[64,71]=(x )^3;
1277
T[64,73]=(x + 6)^3;
1278
T[64,79]=(x )^3;
1279
T[64,83]=(x )^3;
1280
T[64,89]=(x -10)^3;
1281
T[64,97]=(x -18)^3;
1282
1283
T[65,2]=(x + 1)*(x^2 + 2*x -1)*(x^2 -3);
1284
T[65,3]=(x + 2)*(x^2 -2*x -2)*(x^2 -2);
1285
T[65,5]=(x -1)^2*(x + 1)^3;
1286
T[65,7]=(x + 4)*(x^2 -4*x -4)*(x -2)^2;
1287
T[65,11]=(x -2)*(x^2 -4*x + 2)*(x^2 + 6*x + 6);
1288
T[65,13]=(x -1)^2*(x + 1)^3;
1289
T[65,17]=(x -2)*(x^2 + 4*x -4)*(x^2 -12);
1290
T[65,19]=(x + 6)*(x^2 -4*x + 2)*(x^2 + 2*x -26);
1291
T[65,23]=(x + 6)*(x^2 -2)*(x^2 -6*x + 6);
1292
T[65,29]=(x -2)*(x^2 + 12*x + 24)*(x^2 -32);
1293
T[65,31]=(x + 10)*(x^2 -10*x -2)*(x^2 -12*x + 18);
1294
T[65,37]=(x + 2)*(x^2 -72)*(x + 4)^2;
1295
T[65,41]=(x + 6)*(x^2 -12)*(x^2 + 12*x + 28);
1296
T[65,43]=(x -10)*(x^2 -10*x -2)*(x^2 + 8*x -34);
1297
T[65,47]=(x -4)*(x^2 + 4*x -4)*(x -6)^2;
1298
T[65,53]=(x -2)*(x^2 + 12*x -36)*(x^2 -108);
1299
T[65,59]=(x -6)*(x^2 -12*x + 18)*(x^2 + 6*x -138);
1300
T[65,61]=(x -2)*(x^2 -4*x -104)*(x + 8)^2;
1301
T[65,67]=(x + 4)*(x^2 + 8*x -92)*(x + 2)^2;
1302
T[65,71]=(x -6)*(x^2 -6*x + 6)*(x^2 -4*x -94);
1303
T[65,73]=(x + 6)*(x^2 -72)*(x + 4)^2;
1304
T[65,79]=(x + 12)*(x^2 -4*x -104)*(x^2 -72);
1305
T[65,83]=(x + 16)*(x^2 + 12*x + 28)*(x + 6)^2;
1306
T[65,89]=(x -2)*(x^2 + 12*x -12)*(x -6)^2;
1307
T[65,97]=(x + 2)*(x^2 + 4*x -28)*(x -2)^2;
1308
1309
T[66,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2;
1310
T[66,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3;
1311
T[66,5]=(x -2)*(x + 4)*(x )*(x + 2)^2*(x -1)^4;
1312
T[66,7]=(x -2)*(x + 4)*(x -4)^2*(x + 2)^5;
1313
T[66,11]=(x + 1)^2*(x -1)^7;
1314
T[66,13]=(x + 4)*(x + 6)*(x + 2)^2*(x -4)^5;
1315
T[66,17]=(x -2)*(x + 6)*(x + 2)^7;
1316
T[66,19]=(x -4)*(x + 4)*(x )^7;
1317
T[66,23]=(x + 6)*(x -4)*(x -6)*(x -8)^2*(x + 1)^4;
1318
T[66,29]=(x -10)*(x -6)^2*(x + 6)^2*(x )^4;
1319
T[66,31]=(x -8)*(x )*(x + 8)^3*(x -7)^4;
1320
T[66,37]=(x + 10)*(x + 2)*(x -6)^3*(x -3)^4;
1321
T[66,41]=(x -2)*(x + 6)*(x -6)*(x + 2)^2*(x + 8)^4;
1322
T[66,43]=(x -8)*(x -4)^2*(x )^2*(x + 6)^4;
1323
T[66,47]=(x + 6)*(x + 12)*(x + 2)*(x -8)^6;
1324
T[66,53]=(x -2)*(x -4)*(x )*(x -6)^2*(x + 6)^4;
1325
T[66,59]=(x -12)*(x + 4)^2*(x )^2*(x -5)^4;
1326
T[66,61]=(x -8)*(x + 14)*(x + 8)*(x -6)^2*(x -12)^4;
1327
T[66,67]=(x + 12)*(x -4)*(x + 4)^3*(x + 7)^4;
1328
T[66,71]=(x -2)*(x + 12)*(x -6)*(x )^2*(x + 3)^4;
1329
T[66,73]=(x -2)*(x + 14)^2*(x + 6)^2*(x -4)^4;
1330
T[66,79]=(x -10)*(x -14)*(x + 4)^3*(x + 10)^4;
1331
T[66,83]=(x + 12)*(x -4)^2*(x -12)^2*(x + 6)^4;
1332
T[66,89]=(x -10)^2*(x + 6)^3*(x -15)^4;
1333
T[66,97]=(x + 14)*(x + 2)*(x -14)*(x -2)^2*(x + 7)^4;
1334
1335
T[67,2]=(x -2)*(x^2 + 3*x + 1)*(x^2 + x -1);
1336
T[67,3]=(x + 2)*(x^2 + 3*x + 1)*(x^2 -x -1);
1337
T[67,5]=(x -2)*(x^2 -4*x -1)*(x + 3)^2;
1338
T[67,7]=(x + 2)*(x^2 -x -1)*(x^2 + x -11);
1339
T[67,11]=(x + 4)*(x^2 -5)*(x -1)^2;
1340
T[67,13]=(x -2)*(x^2 + x -1)*(x^2 + 7*x + 1);
1341
T[67,17]=(x -3)*(x^2 -6*x + 4)*(x^2 + 6*x + 4);
1342
T[67,19]=(x -7)*(x^2 + 11*x + 29)*(x^2 -x -11);
1343
T[67,23]=(x -9)*(x^2 -6*x -11)*(x^2 + 2*x -19);
1344
T[67,29]=(x + 5)*(x^2 -10*x + 5)*(x^2 + 6*x -11);
1345
T[67,31]=(x + 10)*(x^2 -45)*(x + 1)^2;
1346
T[67,37]=(x + 1)*(x^2 -3*x + 1)*(x^2 + x -11);
1347
T[67,41]=(x^2 -5*x -25)*(x^2 + 3*x + 1)*(x );
1348
T[67,43]=(x + 2)*(x^2 -3*x -9)*(x^2 + 9*x -11);
1349
T[67,47]=(x + 1)*(x^2 + 7*x + 11)*(x^2 + 15*x + 55);
1350
T[67,53]=(x -10)*(x^2 -45)*(x + 9)^2;
1351
T[67,59]=(x -9)*(x + 6)^2*(x -6)^2;
1352
T[67,61]=(x + 2)*(x^2 + 9*x + 9)*(x^2 + 7*x -89);
1353
T[67,67]=(x + 1)^2*(x -1)^3;
1354
T[67,71]=(x^2 -245)*(x^2 -12*x + 31)*(x );
1355
T[67,73]=(x + 7)*(x + 4)^2*(x -8)^2;
1356
T[67,79]=(x + 8)*(x^2 + 7*x -89)*(x^2 + 11*x -31);
1357
T[67,83]=(x -4)*(x^2 -13*x + 31)*(x^2 + 15*x -5);
1358
T[67,89]=(x -7)*(x^2 + 16*x + 19)*(x^2 -5);
1359
T[67,97]=(x^2 -45)*(x^2 -2*x -179)*(x );
1360
1361
T[68,2]=(x -1)*(x^2 + x + 2)*(x )^4;
1362
T[68,3]=(x^2 -2*x -2)*(x + 2)^2*(x )^3;
1363
T[68,5]=(x^2 -12)*(x )^2*(x + 2)^3;
1364
T[68,7]=(x^2 + 2*x -2)*(x + 4)^2*(x -4)^3;
1365
T[68,11]=(x^2 + 6*x + 6)*(x -6)^2*(x )^3;
1366
T[68,13]=(x^2 -4*x -8)*(x -2)^2*(x + 2)^3;
1367
T[68,17]=(x -1)^3*(x + 1)^4;
1368
T[68,19]=(x^2 -4*x -8)*(x + 4)^5;
1369
T[68,23]=(x^2 + 6*x + 6)*(x )^2*(x -4)^3;
1370
T[68,29]=(x^2 -12)*(x )^2*(x -6)^3;
1371
T[68,31]=(x^2 + 2*x -26)*(x + 4)^2*(x -4)^3;
1372
T[68,37]=(x^2 -16*x + 52)*(x + 4)^2*(x + 2)^3;
1373
T[68,41]=(x -6)^2*(x + 6)^5;
1374
T[68,43]=(x^2 -4*x -104)*(x -8)^2*(x -4)^3;
1375
T[68,47]=(x^2 -48)*(x )^5;
1376
T[68,53]=(x^2 -12*x -12)*(x + 6)^2*(x -6)^3;
1377
T[68,59]=(x^2 -12*x + 24)*(x )^2*(x + 12)^3;
1378
T[68,61]=(x^2 + 8*x + 4)*(x + 4)^2*(x + 10)^3;
1379
T[68,67]=(x^2 -16*x + 16)*(x -8)^2*(x -4)^3;
1380
T[68,71]=(x^2 + 6*x -18)*(x )^2*(x + 4)^3;
1381
T[68,73]=(x + 6)^3*(x -2)^4;
1382
T[68,79]=(x^2 + 14*x + 22)*(x -8)^2*(x -12)^3;
1383
T[68,83]=(x^2 + 12*x + 24)*(x )^2*(x + 4)^3;
1384
T[68,89]=(x^2 -12*x + 24)*(x + 6)^2*(x -10)^3;
1385
T[68,97]=(x^2 -4*x -44)*(x -14)^2*(x -2)^3;
1386
1387
T[69,2]=(x -1)*(x^2 -5)*(x^2 + x -1)^2;
1388
T[69,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2;
1389
T[69,5]=(x )*(x^2 + 2*x -4)^3;
1390
T[69,7]=(x + 2)*(x^2 -2*x -4)^3;
1391
T[69,11]=(x^2 + 6*x + 4)^2*(x -4)^3;
1392
T[69,13]=(x + 6)*(x^2 -20)*(x -3)^4;
1393
T[69,17]=(x -4)*(x^2 + 10*x + 20)*(x^2 -6*x + 4)^2;
1394
T[69,19]=(x -2)*(x^2 -10*x + 20)*(x + 2)^4;
1395
T[69,23]=(x + 1)*(x -1)^6;
1396
T[69,29]=(x -2)*(x^2 -20)*(x + 3)^4;
1397
T[69,31]=(x -4)*(x^2 + 4*x -16)*(x^2 -45)^2;
1398
T[69,37]=(x -2)*(x^2 -20)*(x^2 -2*x -4)^2;
1399
T[69,41]=(x -2)*(x^2 + 4*x -76)*(x^2 -2*x -19)^2;
1400
T[69,43]=(x -10)*(x^2 -2*x -44)*(x )^4;
1401
T[69,47]=(x )*(x + 4)^2*(x^2 -5)^2;
1402
T[69,53]=(x + 12)*(x^2 + 6*x + 4)*(x^2 + 8*x -4)^2;
1403
T[69,59]=(x + 12)*(x^2 -8*x -64)*(x^2 -4*x -16)^2;
1404
T[69,61]=(x + 6)*(x^2 -20)*(x^2 -4*x -76)^2;
1405
T[69,67]=(x + 10)*(x^2 -6*x + 4)*(x^2 + 10*x + 20)^2;
1406
T[69,71]=(x -8)*(x + 8)^2*(x^2 -20*x + 95)^2;
1407
T[69,73]=(x + 14)*(x^2 + 4*x -76)*(x^2 -22*x + 101)^2;
1408
T[69,79]=(x -10)*(x^2 -6*x -36)*(x^2 + 4*x -76)^2;
1409
T[69,83]=(x -12)*(x -4)^2*(x^2 + 22*x + 116)^2;
1410
T[69,89]=(x + 16)*(x^2 -2*x -4)*(x^2 + 12*x + 16)^2;
1411
T[69,97]=(x + 10)*(x^2 -8*x -4)*(x^2 -22*x + 76)^2;
1412
1413
T[70,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2;
1414
T[70,3]=(x )*(x + 2)^2*(x -1)^2*(x^2 + x -4)^2;
1415
T[70,5]=(x^2 + 5)*(x + 1)^3*(x -1)^4;
1416
T[70,7]=(x -1)^4*(x + 1)^5;
1417
T[70,11]=(x -4)*(x + 3)^2*(x^2 -x -4)^2*(x )^2;
1418
T[70,13]=(x + 6)*(x + 4)^2*(x -5)^2*(x^2 -5*x + 2)^2;
1419
T[70,17]=(x -2)*(x -6)^2*(x -3)^2*(x^2 + 5*x + 2)^2;
1420
T[70,19]=(x )*(x^2 + 6*x -8)^2*(x -2)^4;
1421
T[70,23]=(x + 6)^2*(x^2 + 2*x -16)^2*(x )^3;
1422
T[70,29]=(x -6)*(x + 6)^2*(x -3)^2*(x^2 -x -38)^2;
1423
T[70,31]=(x -8)*(x + 4)^4*(x )^4;
1424
T[70,37]=(x + 10)*(x -6)^4*(x -2)^4;
1425
T[70,41]=(x -2)*(x -6)^2*(x + 12)^2*(x^2 -2*x -16)^2;
1426
T[70,43]=(x -4)*(x + 10)^2*(x -8)^2*(x^2 -10*x + 8)^2;
1427
T[70,47]=(x -8)*(x + 12)^2*(x -9)^2*(x^2 + 5*x -32)^2;
1428
T[70,53]=(x + 2)*(x -6)^2*(x -12)^2*(x^2 + 2*x -16)^2;
1429
T[70,59]=(x + 8)*(x + 6)^2*(x )^2*(x + 4)^4;
1430
T[70,61]=(x + 14)*(x^2 -6*x -144)^2*(x -8)^4;
1431
T[70,67]=(x + 12)*(x^2 -4*x -64)^2*(x + 4)^4;
1432
T[70,71]=(x + 16)*(x -8)^4*(x )^4;
1433
T[70,73]=(x^2 + 8*x -52)^2*(x -2)^5;
1434
T[70,79]=(x + 8)*(x -8)^2*(x + 1)^2*(x^2 + 9*x + 16)^2;
1435
T[70,83]=(x -8)*(x -12)^2*(x + 6)^2*(x -4)^4;
1436
T[70,89]=(x -10)*(x + 6)^2*(x + 12)^2*(x^2 -6*x -8)^2;
1437
T[70,97]=(x -2)*(x + 1)^2*(x + 10)^2*(x^2 + 9*x -86)^2;
1438
1439
T[71,2]=(x^3 + x^2 -4*x -3)*(x^3 -5*x + 3);
1440
T[71,3]=(x^3 + x^2 -8*x -3)*(x^3 -x^2 -4*x + 3);
1441
T[71,5]=(x^3 -5*x^2 -2*x + 25)*(x^3 + 3*x^2 -2*x -7);
1442
T[71,7]=(x^3 -2*x^2 -16*x + 24)^2;
1443
T[71,11]=(x^3 -20*x + 24)*(x^3 + 2*x^2 -16*x -24);
1444
T[71,13]=(x^3 + 6*x^2 -8*x -56)*(x -4)^3;
1445
T[71,17]=(x^3 -2*x^2 -16*x + 24)*(x^3 + 2*x^2 -32*x -24);
1446
T[71,19]=(x^3 -x^2 -20*x -25)*(x^3 -11*x^2 + 36*x -35);
1447
T[71,23]=(x^3 -8*x^2 -12*x + 72)*(x + 4)^3;
1448
T[71,29]=(x^3 -11*x^2 + 14*x + 71)*(x^3 + 5*x^2 -2*x -25);
1449
T[71,31]=(x^3 + 6*x^2 -8*x -56)*(x -4)^3;
1450
T[71,37]=(x^3 + 15*x^2 + 70*x + 97)*(x^3 -9*x^2 -26*x + 37);
1451
T[71,41]=(x^3 + 2*