Sharedwww / tables / charpoly_s2.gpOpen in CoCalc
Author: William A. Stein
(File too big to render nicely. Download...)

\\ charpoly_s2.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_2(Gamma_0(N)) 
\\ of weight 2 cusp forms for Gamma_0(N).
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(500,97,m,n,0);
T[11,2]=x + 2;
T[11,3]=x + 1;
T[11,5]=x -1;
T[11,7]=x + 2;
T[11,11]=x -1;
T[11,13]=x -4;
T[11,17]=x + 2;
T[11,19]=x ;
T[11,23]=x + 1;
T[11,29]=x ;
T[11,31]=x -7;
T[11,37]=x -3;
T[11,41]=x + 8;
T[11,43]=x + 6;
T[11,47]=x -8;
T[11,53]=x + 6;
T[11,59]=x -5;
T[11,61]=x -12;
T[11,67]=x + 7;
T[11,71]=x + 3;
T[11,73]=x -4;
T[11,79]=x + 10;
T[11,83]=x + 6;
T[11,89]=x -15;
T[11,97]=x + 7;

T[14,2]=x + 1;
T[14,3]=x + 2;
T[14,5]=x ;
T[14,7]=x -1;
T[14,11]=x ;
T[14,13]=x + 4;
T[14,17]=x -6;
T[14,19]=x -2;
T[14,23]=x ;
T[14,29]=x + 6;
T[14,31]=x + 4;
T[14,37]=x -2;
T[14,41]=x -6;
T[14,43]=x -8;
T[14,47]=x + 12;
T[14,53]=x -6;
T[14,59]=x + 6;
T[14,61]=x -8;
T[14,67]=x + 4;
T[14,71]=x ;
T[14,73]=x -2;
T[14,79]=x -8;
T[14,83]=x + 6;
T[14,89]=x + 6;
T[14,97]=x + 10;

T[15,2]=x + 1;
T[15,3]=x + 1;
T[15,5]=x -1;
T[15,7]=x ;
T[15,11]=x + 4;
T[15,13]=x + 2;
T[15,17]=x -2;
T[15,19]=x -4;
T[15,23]=x ;
T[15,29]=x + 2;
T[15,31]=x ;
T[15,37]=x + 10;
T[15,41]=x -10;
T[15,43]=x -4;
T[15,47]=x -8;
T[15,53]=x + 10;
T[15,59]=x + 4;
T[15,61]=x + 2;
T[15,67]=x -12;
T[15,71]=x + 8;
T[15,73]=x -10;
T[15,79]=x ;
T[15,83]=x -12;
T[15,89]=x + 6;
T[15,97]=x -2;

T[17,2]=x + 1;
T[17,3]=x ;
T[17,5]=x + 2;
T[17,7]=x -4;
T[17,11]=x ;
T[17,13]=x + 2;
T[17,17]=x -1;
T[17,19]=x + 4;
T[17,23]=x -4;
T[17,29]=x -6;
T[17,31]=x -4;
T[17,37]=x + 2;
T[17,41]=x + 6;
T[17,43]=x -4;
T[17,47]=x ;
T[17,53]=x -6;
T[17,59]=x + 12;
T[17,61]=x + 10;
T[17,67]=x -4;
T[17,71]=x + 4;
T[17,73]=x + 6;
T[17,79]=x -12;
T[17,83]=x + 4;
T[17,89]=x -10;
T[17,97]=x -2;

T[19,2]=x ;
T[19,3]=x + 2;
T[19,5]=x -3;
T[19,7]=x + 1;
T[19,11]=x -3;
T[19,13]=x + 4;
T[19,17]=x + 3;
T[19,19]=x -1;
T[19,23]=x ;
T[19,29]=x -6;
T[19,31]=x + 4;
T[19,37]=x -2;
T[19,41]=x + 6;
T[19,43]=x + 1;
T[19,47]=x + 3;
T[19,53]=x -12;
T[19,59]=x + 6;
T[19,61]=x + 1;
T[19,67]=x + 4;
T[19,71]=x -6;
T[19,73]=x + 7;
T[19,79]=x -8;
T[19,83]=x -12;
T[19,89]=x -12;
T[19,97]=x -8;

T[20,2]=x ;
T[20,3]=x + 2;
T[20,5]=x + 1;
T[20,7]=x -2;
T[20,11]=x ;
T[20,13]=x -2;
T[20,17]=x + 6;
T[20,19]=x + 4;
T[20,23]=x -6;
T[20,29]=x -6;
T[20,31]=x + 4;
T[20,37]=x -2;
T[20,41]=x -6;
T[20,43]=x + 10;
T[20,47]=x + 6;
T[20,53]=x + 6;
T[20,59]=x -12;
T[20,61]=x -2;
T[20,67]=x -2;
T[20,71]=x + 12;
T[20,73]=x -2;
T[20,79]=x -8;
T[20,83]=x -6;
T[20,89]=x + 6;
T[20,97]=x -2;

T[21,2]=x + 1;
T[21,3]=x -1;
T[21,5]=x + 2;
T[21,7]=x + 1;
T[21,11]=x -4;
T[21,13]=x + 2;
T[21,17]=x + 6;
T[21,19]=x -4;
T[21,23]=x ;
T[21,29]=x + 2;
T[21,31]=x ;
T[21,37]=x -6;
T[21,41]=x -2;
T[21,43]=x + 4;
T[21,47]=x ;
T[21,53]=x -6;
T[21,59]=x -12;
T[21,61]=x + 2;
T[21,67]=x -4;
T[21,71]=x ;
T[21,73]=x + 6;
T[21,79]=x + 16;
T[21,83]=x + 12;
T[21,89]=x + 14;
T[21,97]=x -18;

T[22,2]=x^2 + 2*x + 2;
T[22,3]=(x + 1)^2;
T[22,5]=(x -1)^2;
T[22,7]=(x + 2)^2;
T[22,11]=(x -1)^2;
T[22,13]=(x -4)^2;
T[22,17]=(x + 2)^2;
T[22,19]=(x )^2;
T[22,23]=(x + 1)^2;
T[22,29]=(x )^2;
T[22,31]=(x -7)^2;
T[22,37]=(x -3)^2;
T[22,41]=(x + 8)^2;
T[22,43]=(x + 6)^2;
T[22,47]=(x -8)^2;
T[22,53]=(x + 6)^2;
T[22,59]=(x -5)^2;
T[22,61]=(x -12)^2;
T[22,67]=(x + 7)^2;
T[22,71]=(x + 3)^2;
T[22,73]=(x -4)^2;
T[22,79]=(x + 10)^2;
T[22,83]=(x + 6)^2;
T[22,89]=(x -15)^2;
T[22,97]=(x + 7)^2;

T[23,2]=x^2 + x -1;
T[23,3]=x^2 -5;
T[23,5]=x^2 + 2*x -4;
T[23,7]=x^2 -2*x -4;
T[23,11]=x^2 + 6*x + 4;
T[23,13]=(x -3)^2;
T[23,17]=x^2 -6*x + 4;
T[23,19]=(x + 2)^2;
T[23,23]=(x -1)^2;
T[23,29]=(x + 3)^2;
T[23,31]=x^2 -45;
T[23,37]=x^2 -2*x -4;
T[23,41]=x^2 -2*x -19;
T[23,43]=(x )^2;
T[23,47]=x^2 -5;
T[23,53]=x^2 + 8*x -4;
T[23,59]=x^2 -4*x -16;
T[23,61]=x^2 -4*x -76;
T[23,67]=x^2 + 10*x + 20;
T[23,71]=x^2 -20*x + 95;
T[23,73]=x^2 -22*x + 101;
T[23,79]=x^2 + 4*x -76;
T[23,83]=x^2 + 22*x + 116;
T[23,89]=x^2 + 12*x + 16;
T[23,97]=x^2 -22*x + 76;

T[24,2]=x ;
T[24,3]=x + 1;
T[24,5]=x + 2;
T[24,7]=x ;
T[24,11]=x -4;
T[24,13]=x + 2;
T[24,17]=x -2;
T[24,19]=x + 4;
T[24,23]=x + 8;
T[24,29]=x -6;
T[24,31]=x -8;
T[24,37]=x -6;
T[24,41]=x + 6;
T[24,43]=x -4;
T[24,47]=x ;
T[24,53]=x + 2;
T[24,59]=x -4;
T[24,61]=x + 2;
T[24,67]=x + 4;
T[24,71]=x -8;
T[24,73]=x -10;
T[24,79]=x + 8;
T[24,83]=x + 4;
T[24,89]=x + 6;
T[24,97]=x -2;

T[26,2]=(x -1)*(x + 1);
T[26,3]=(x -1)*(x + 3);
T[26,5]=(x + 3)*(x + 1);
T[26,7]=(x + 1)*(x -1);
T[26,11]=(x -6)*(x + 2);
T[26,13]=(x -1)*(x + 1);
T[26,17]=(x + 3)^2;
T[26,19]=(x -2)*(x -6);
T[26,23]=(x + 4)*(x );
T[26,29]=(x -6)*(x -2);
T[26,31]=(x -4)*(x + 4);
T[26,37]=(x + 7)*(x -3);
T[26,41]=(x )^2;
T[26,43]=(x + 5)*(x + 1);
T[26,47]=(x -13)*(x -3);
T[26,53]=(x -12)*(x );
T[26,59]=(x + 10)*(x + 6);
T[26,61]=(x + 8)*(x -8);
T[26,67]=(x + 2)*(x -14);
T[26,71]=(x + 5)*(x + 3);
T[26,73]=(x + 10)*(x -2);
T[26,79]=(x + 4)*(x -8);
T[26,83]=(x -12)*(x );
T[26,89]=(x -6)*(x + 6);
T[26,97]=(x + 10)*(x -14);

T[27,2]=x ;
T[27,3]=x ;
T[27,5]=x ;
T[27,7]=x + 1;
T[27,11]=x ;
T[27,13]=x -5;
T[27,17]=x ;
T[27,19]=x + 7;
T[27,23]=x ;
T[27,29]=x ;
T[27,31]=x + 4;
T[27,37]=x -11;
T[27,41]=x ;
T[27,43]=x -8;
T[27,47]=x ;
T[27,53]=x ;
T[27,59]=x ;
T[27,61]=x + 1;
T[27,67]=x -5;
T[27,71]=x ;
T[27,73]=x + 7;
T[27,79]=x -17;
T[27,83]=x ;
T[27,89]=x ;
T[27,97]=x + 19;

T[28,2]=(x + 1)*(x );
T[28,3]=(x + 2)^2;
T[28,5]=(x )^2;
T[28,7]=(x -1)^2;
T[28,11]=(x )^2;
T[28,13]=(x + 4)^2;
T[28,17]=(x -6)^2;
T[28,19]=(x -2)^2;
T[28,23]=(x )^2;
T[28,29]=(x + 6)^2;
T[28,31]=(x + 4)^2;
T[28,37]=(x -2)^2;
T[28,41]=(x -6)^2;
T[28,43]=(x -8)^2;
T[28,47]=(x + 12)^2;
T[28,53]=(x -6)^2;
T[28,59]=(x + 6)^2;
T[28,61]=(x -8)^2;
T[28,67]=(x + 4)^2;
T[28,71]=(x )^2;
T[28,73]=(x -2)^2;
T[28,79]=(x -8)^2;
T[28,83]=(x + 6)^2;
T[28,89]=(x + 6)^2;
T[28,97]=(x + 10)^2;

T[29,2]=x^2 + 2*x -1;
T[29,3]=x^2 -2*x -1;
T[29,5]=(x + 1)^2;
T[29,7]=x^2 -8;
T[29,11]=x^2 -2*x -1;
T[29,13]=x^2 + 2*x -7;
T[29,17]=x^2 + 4*x -4;
T[29,19]=(x -6)^2;
T[29,23]=x^2 + 4*x -28;
T[29,29]=(x -1)^2;
T[29,31]=x^2 -6*x -41;
T[29,37]=(x + 4)^2;
T[29,41]=x^2 -8*x -56;
T[29,43]=x^2 -10*x + 23;
T[29,47]=x^2 -2*x -17;
T[29,53]=x^2 -2*x -71;
T[29,59]=x^2 -4*x -28;
T[29,61]=x^2 + 4*x -4;
T[29,67]=x^2 -32;
T[29,71]=x^2 + 12*x + 28;
T[29,73]=(x -4)^2;
T[29,79]=x^2 + 2*x -1;
T[29,83]=x^2 -4*x -28;
T[29,89]=x^2 + 8*x -56;
T[29,97]=x^2 + 8*x -56;

T[30,2]=(x + 1)*(x^2 + x + 2);
T[30,3]=(x -1)*(x + 1)^2;
T[30,5]=(x + 1)*(x -1)^2;
T[30,7]=(x + 4)*(x )^2;
T[30,11]=(x )*(x + 4)^2;
T[30,13]=(x -2)*(x + 2)^2;
T[30,17]=(x -6)*(x -2)^2;
T[30,19]=(x + 4)*(x -4)^2;
T[30,23]=(x )^3;
T[30,29]=(x + 6)*(x + 2)^2;
T[30,31]=(x -8)*(x )^2;
T[30,37]=(x -2)*(x + 10)^2;
T[30,41]=(x + 6)*(x -10)^2;
T[30,43]=(x + 4)*(x -4)^2;
T[30,47]=(x )*(x -8)^2;
T[30,53]=(x + 6)*(x + 10)^2;
T[30,59]=(x )*(x + 4)^2;
T[30,61]=(x + 10)*(x + 2)^2;
T[30,67]=(x + 4)*(x -12)^2;
T[30,71]=(x )*(x + 8)^2;
T[30,73]=(x -2)*(x -10)^2;
T[30,79]=(x -8)*(x )^2;
T[30,83]=(x -12)^3;
T[30,89]=(x -18)*(x + 6)^2;
T[30,97]=(x -2)^3;

T[31,2]=x^2 -x -1;
T[31,3]=x^2 + 2*x -4;
T[31,5]=(x -1)^2;
T[31,7]=x^2 + 4*x -1;
T[31,11]=(x -2)^2;
T[31,13]=x^2 + 2*x -4;
T[31,17]=x^2 -6*x + 4;
T[31,19]=x^2 -5;
T[31,23]=x^2 + 2*x -44;
T[31,29]=x^2 -10*x + 20;
T[31,31]=(x -1)^2;
T[31,37]=(x + 2)^2;
T[31,41]=(x -7)^2;
T[31,43]=x^2 + 2*x -4;
T[31,47]=x^2 + 4*x -16;
T[31,53]=x^2 + 12*x + 16;
T[31,59]=x^2 -5;
T[31,61]=x^2 + 6*x -116;
T[31,67]=(x -8)^2;
T[31,71]=x^2 -4*x -121;
T[31,73]=x^2 -8*x -4;
T[31,79]=x^2 + 10*x -20;
T[31,83]=x^2 + 12*x -44;
T[31,89]=x^2 -10*x -20;
T[31,97]=x^2 + 14*x -31;

T[32,2]=x ;
T[32,3]=x ;
T[32,5]=x + 2;
T[32,7]=x ;
T[32,11]=x ;
T[32,13]=x -6;
T[32,17]=x -2;
T[32,19]=x ;
T[32,23]=x ;
T[32,29]=x + 10;
T[32,31]=x ;
T[32,37]=x + 2;
T[32,41]=x -10;
T[32,43]=x ;
T[32,47]=x ;
T[32,53]=x -14;
T[32,59]=x ;
T[32,61]=x + 10;
T[32,67]=x ;
T[32,71]=x ;
T[32,73]=x + 6;
T[32,79]=x ;
T[32,83]=x ;
T[32,89]=x -10;
T[32,97]=x -18;

T[33,2]=(x -1)*(x + 2)^2;
T[33,3]=(x + 1)*(x^2 + x + 3);
T[33,5]=(x + 2)*(x -1)^2;
T[33,7]=(x -4)*(x + 2)^2;
T[33,11]=(x -1)^3;
T[33,13]=(x + 2)*(x -4)^2;
T[33,17]=(x + 2)^3;
T[33,19]=(x )^3;
T[33,23]=(x -8)*(x + 1)^2;
T[33,29]=(x + 6)*(x )^2;
T[33,31]=(x + 8)*(x -7)^2;
T[33,37]=(x -6)*(x -3)^2;
T[33,41]=(x + 2)*(x + 8)^2;
T[33,43]=(x )*(x + 6)^2;
T[33,47]=(x -8)^3;
T[33,53]=(x -6)*(x + 6)^2;
T[33,59]=(x + 4)*(x -5)^2;
T[33,61]=(x -6)*(x -12)^2;
T[33,67]=(x + 4)*(x + 7)^2;
T[33,71]=(x )*(x + 3)^2;
T[33,73]=(x + 14)*(x -4)^2;
T[33,79]=(x + 4)*(x + 10)^2;
T[33,83]=(x -12)*(x + 6)^2;
T[33,89]=(x + 6)*(x -15)^2;
T[33,97]=(x -2)*(x + 7)^2;

T[34,2]=(x -1)*(x^2 + x + 2);
T[34,3]=(x + 2)*(x )^2;
T[34,5]=(x )*(x + 2)^2;
T[34,7]=(x + 4)*(x -4)^2;
T[34,11]=(x -6)*(x )^2;
T[34,13]=(x -2)*(x + 2)^2;
T[34,17]=(x + 1)*(x -1)^2;
T[34,19]=(x + 4)^3;
T[34,23]=(x )*(x -4)^2;
T[34,29]=(x )*(x -6)^2;
T[34,31]=(x + 4)*(x -4)^2;
T[34,37]=(x + 4)*(x + 2)^2;
T[34,41]=(x -6)*(x + 6)^2;
T[34,43]=(x -8)*(x -4)^2;
T[34,47]=(x )^3;
T[34,53]=(x + 6)*(x -6)^2;
T[34,59]=(x )*(x + 12)^2;
T[34,61]=(x + 4)*(x + 10)^2;
T[34,67]=(x -8)*(x -4)^2;
T[34,71]=(x )*(x + 4)^2;
T[34,73]=(x -2)*(x + 6)^2;
T[34,79]=(x -8)*(x -12)^2;
T[34,83]=(x )*(x + 4)^2;
T[34,89]=(x + 6)*(x -10)^2;
T[34,97]=(x -14)*(x -2)^2;

T[35,2]=(x^2 + x -4)*(x );
T[35,3]=(x -1)*(x^2 + x -4);
T[35,5]=(x + 1)*(x -1)^2;
T[35,7]=(x -1)*(x + 1)^2;
T[35,11]=(x + 3)*(x^2 -x -4);
T[35,13]=(x -5)*(x^2 -5*x + 2);
T[35,17]=(x -3)*(x^2 + 5*x + 2);
T[35,19]=(x -2)*(x^2 + 6*x -8);
T[35,23]=(x + 6)*(x^2 + 2*x -16);
T[35,29]=(x -3)*(x^2 -x -38);
T[35,31]=(x + 4)*(x )^2;
T[35,37]=(x -2)*(x -6)^2;
T[35,41]=(x + 12)*(x^2 -2*x -16);
T[35,43]=(x + 10)*(x^2 -10*x + 8);
T[35,47]=(x -9)*(x^2 + 5*x -32);
T[35,53]=(x -12)*(x^2 + 2*x -16);
T[35,59]=(x )*(x + 4)^2;
T[35,61]=(x -8)*(x^2 -6*x -144);
T[35,67]=(x + 4)*(x^2 -4*x -64);
T[35,71]=(x )*(x -8)^2;
T[35,73]=(x -2)*(x^2 + 8*x -52);
T[35,79]=(x + 1)*(x^2 + 9*x + 16);
T[35,83]=(x -12)*(x -4)^2;
T[35,89]=(x + 12)*(x^2 -6*x -8);
T[35,97]=(x + 1)*(x^2 + 9*x -86);

T[36,2]=x ;
T[36,3]=x ;
T[36,5]=x ;
T[36,7]=x + 4;
T[36,11]=x ;
T[36,13]=x -2;
T[36,17]=x ;
T[36,19]=x -8;
T[36,23]=x ;
T[36,29]=x ;
T[36,31]=x + 4;
T[36,37]=x + 10;
T[36,41]=x ;
T[36,43]=x -8;
T[36,47]=x ;
T[36,53]=x ;
T[36,59]=x ;
T[36,61]=x -14;
T[36,67]=x + 16;
T[36,71]=x ;
T[36,73]=x + 10;
T[36,79]=x + 4;
T[36,83]=x ;
T[36,89]=x ;
T[36,97]=x -14;

T[37,2]=(x + 2)*(x );
T[37,3]=(x -1)*(x + 3);
T[37,5]=(x + 2)*(x );
T[37,7]=(x + 1)^2;
T[37,11]=(x -3)*(x + 5);
T[37,13]=(x + 2)*(x + 4);
T[37,17]=(x -6)*(x );
T[37,19]=(x -2)*(x );
T[37,23]=(x -6)*(x -2);
T[37,29]=(x -6)*(x + 6);
T[37,31]=(x + 4)^2;
T[37,37]=(x + 1)*(x -1);
T[37,41]=(x + 9)^2;
T[37,43]=(x -2)*(x -8);
T[37,47]=(x -3)*(x + 9);
T[37,53]=(x -1)*(x + 3);
T[37,59]=(x -12)*(x -8);
T[37,61]=(x + 8)*(x -8);
T[37,67]=(x -8)*(x + 4);
T[37,71]=(x + 15)*(x -9);
T[37,73]=(x -11)*(x + 1);
T[37,79]=(x + 10)*(x -4);
T[37,83]=(x -9)*(x + 15);
T[37,89]=(x -6)*(x -4);
T[37,97]=(x -4)*(x -8);

T[38,2]=(x + 1)*(x -1)*(x^2 + 2);
T[38,3]=(x + 1)*(x -1)*(x + 2)^2;
T[38,5]=(x + 4)*(x )*(x -3)^2;
T[38,7]=(x -3)*(x + 1)^3;
T[38,11]=(x -2)*(x + 6)*(x -3)^2;
T[38,13]=(x -5)*(x + 1)*(x + 4)^2;
T[38,17]=(x -3)^2*(x + 3)^2;
T[38,19]=(x + 1)*(x -1)^3;
T[38,23]=(x + 1)*(x -3)*(x )^2;
T[38,29]=(x + 5)*(x -9)*(x -6)^2;
T[38,31]=(x + 8)*(x + 4)^3;
T[38,37]=(x + 2)*(x -2)^3;
T[38,41]=(x + 8)*(x )*(x + 6)^2;
T[38,43]=(x -4)*(x -8)*(x + 1)^2;
T[38,47]=(x -8)*(x )*(x + 3)^2;
T[38,53]=(x + 1)*(x + 3)*(x -12)^2;
T[38,59]=(x -9)*(x -15)*(x + 6)^2;
T[38,61]=(x + 10)*(x -2)*(x + 1)^2;
T[38,67]=(x -3)*(x -5)*(x + 4)^2;
T[38,71]=(x -2)*(x + 6)*(x -6)^2;
T[38,73]=(x -9)*(x + 7)^3;
T[38,79]=(x + 10)^2*(x -8)^2;
T[38,83]=(x + 6)^2*(x -12)^2;
T[38,89]=(x + 12)*(x )*(x -12)^2;
T[38,97]=(x + 2)*(x + 10)*(x -8)^2;

T[39,2]=(x -1)*(x^2 + 2*x -1);
T[39,3]=(x + 1)*(x -1)^2;
T[39,5]=(x -2)*(x^2 -8);
T[39,7]=(x + 4)*(x^2 -8);
T[39,11]=(x -4)*(x + 2)^2;
T[39,13]=(x -1)*(x + 1)^2;
T[39,17]=(x -2)*(x^2 -4*x -28);
T[39,19]=(x^2 -8)*(x );
T[39,23]=(x )*(x + 4)^2;
T[39,29]=(x + 10)*(x -2)^2;
T[39,31]=(x -4)*(x^2 + 8*x + 8);
T[39,37]=(x + 2)*(x^2 + 4*x -28);
T[39,41]=(x -6)*(x^2 -16*x + 56);
T[39,43]=(x + 12)*(x^2 -8*x -16);
T[39,47]=(x^2 + 12*x + 4)*(x );
T[39,53]=(x -6)*(x + 2)^2;
T[39,59]=(x -12)*(x^2 -4*x -28);
T[39,61]=(x + 2)*(x^2 -4*x -124);
T[39,67]=(x + 8)*(x^2 -8*x + 8);
T[39,71]=(x )*(x -2)^2;
T[39,73]=(x -2)*(x^2 -12*x + 4);
T[39,79]=(x -8)*(x^2 -128);
T[39,83]=(x -4)*(x^2 + 4*x -28);
T[39,89]=(x + 2)*(x^2 -24*x + 136);
T[39,97]=(x -10)*(x^2 + 4*x -28);

T[40,2]=(x )^3;
T[40,3]=(x )*(x + 2)^2;
T[40,5]=(x -1)*(x + 1)^2;
T[40,7]=(x + 4)*(x -2)^2;
T[40,11]=(x -4)*(x )^2;
T[40,13]=(x + 2)*(x -2)^2;
T[40,17]=(x -2)*(x + 6)^2;
T[40,19]=(x -4)*(x + 4)^2;
T[40,23]=(x -4)*(x -6)^2;
T[40,29]=(x + 2)*(x -6)^2;
T[40,31]=(x + 8)*(x + 4)^2;
T[40,37]=(x -6)*(x -2)^2;
T[40,41]=(x + 6)*(x -6)^2;
T[40,43]=(x + 8)*(x + 10)^2;
T[40,47]=(x -4)*(x + 6)^2;
T[40,53]=(x -6)*(x + 6)^2;
T[40,59]=(x + 4)*(x -12)^2;
T[40,61]=(x + 2)*(x -2)^2;
T[40,67]=(x -8)*(x -2)^2;
T[40,71]=(x )*(x + 12)^2;
T[40,73]=(x + 6)*(x -2)^2;
T[40,79]=(x )*(x -8)^2;
T[40,83]=(x + 16)*(x -6)^2;
T[40,89]=(x + 6)^3;
T[40,97]=(x + 14)*(x -2)^2;

T[41,2]=x^3 + x^2 -5*x -1;
T[41,3]=x^3 -4*x + 2;
T[41,5]=x^3 + 2*x^2 -4*x -4;
T[41,7]=x^3 -6*x^2 + 8*x -2;
T[41,11]=x^3 -2*x^2 -20*x + 50;
T[41,13]=x^3 + 2*x^2 -12*x -8;
T[41,17]=(x + 2)^3;
T[41,19]=x^3 -4*x^2 -16*x -10;
T[41,23]=x^3 -4*x^2 -32*x -32;
T[41,29]=x^3 + 6*x^2 -4*x -40;
T[41,31]=x^3 -16*x^2 + 64*x -32;
T[41,37]=x^3 + 6*x^2 -36*x -108;
T[41,41]=(x -1)^3;
T[41,43]=x^3 + 4*x^2 -8*x -16;
T[41,47]=x^3 -120*x -502;
T[41,53]=x^3 -6*x^2 -4*x + 8;
T[41,59]=x^3 + 8*x^2 -16*x -160;
T[41,61]=x^3 -2*x^2 -52*x + 184;
T[41,67]=x^3 + 2*x^2 -20*x -50;
T[41,71]=x^3 -20*x^2 + 84*x + 134;
T[41,73]=x^3 + 2*x^2 -180*x + 244;
T[41,79]=x^3 -32*x^2 + 328*x -1090;
T[41,83]=x^3 -64*x -128;
T[41,89]=x^3 + 6*x^2 -148*x -920;
T[41,97]=x^3 -6*x^2 -52*x + 248;

T[42,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2;
T[42,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
T[42,5]=(x )^2*(x + 2)^3;
T[42,7]=(x -1)^2*(x + 1)^3;
T[42,11]=(x + 4)*(x -4)^2*(x )^2;
T[42,13]=(x -6)*(x + 4)^2*(x + 2)^2;
T[42,17]=(x -2)*(x -6)^2*(x + 6)^2;
T[42,19]=(x + 4)*(x -2)^2*(x -4)^2;
T[42,23]=(x -8)*(x )^4;
T[42,29]=(x + 6)^2*(x + 2)^3;
T[42,31]=(x + 4)^2*(x )^3;
T[42,37]=(x + 10)*(x -6)^2*(x -2)^2;
T[42,41]=(x + 6)*(x -2)^2*(x -6)^2;
T[42,43]=(x -8)^2*(x + 4)^3;
T[42,47]=(x + 12)^2*(x )^3;
T[42,53]=(x -6)^5;
T[42,59]=(x -4)*(x + 6)^2*(x -12)^2;
T[42,61]=(x -6)*(x + 2)^2*(x -8)^2;
T[42,67]=(x + 4)^2*(x -4)^3;
T[42,71]=(x -8)*(x )^4;
T[42,73]=(x -10)*(x -2)^2*(x + 6)^2;
T[42,79]=(x )*(x + 16)^2*(x -8)^2;
T[42,83]=(x + 4)*(x + 12)^2*(x + 6)^2;
T[42,89]=(x + 14)^2*(x + 6)^3;
T[42,97]=(x + 14)*(x -18)^2*(x + 10)^2;

T[43,2]=(x + 2)*(x^2 -2);
T[43,3]=(x + 2)*(x^2 -2);
T[43,5]=(x + 4)*(x^2 -4*x + 2);
T[43,7]=(x^2 + 4*x + 2)*(x );
T[43,11]=(x -3)*(x^2 + 2*x -7);
T[43,13]=(x + 5)*(x^2 -2*x -7);
T[43,17]=(x + 3)*(x^2 -10*x + 17);
T[43,19]=(x + 2)*(x^2 + 4*x -4);
T[43,23]=(x + 1)*(x^2 -2*x -31);
T[43,29]=(x + 6)*(x^2 -18);
T[43,31]=(x + 1)*(x + 3)^2;
T[43,37]=(x^2 -72)*(x );
T[43,41]=(x -5)*(x^2 + 2*x -7);
T[43,43]=(x + 1)*(x -1)^2;
T[43,47]=(x -4)*(x -6)^2;
T[43,53]=(x + 5)*(x^2 -22*x + 113);
T[43,59]=(x + 12)*(x^2 + 4*x -4);
T[43,61]=(x -2)*(x^2 -8*x -2);
T[43,67]=(x + 3)*(x^2 -2*x -71);
T[43,71]=(x -2)*(x^2 + 12*x + 28);
T[43,73]=(x -2)*(x^2 + 24*x + 126);
T[43,79]=(x + 8)*(x^2 -4*x -4);
T[43,83]=(x -15)*(x^2 -18*x + 49);
T[43,89]=(x + 4)*(x^2 + 12*x + 18);
T[43,97]=(x -7)*(x^2 + 2*x -7);

T[44,2]=(x^2 + 2*x + 2)*(x )^2;
T[44,3]=(x -1)*(x + 1)^3;
T[44,5]=(x + 3)*(x -1)^3;
T[44,7]=(x -2)*(x + 2)^3;
T[44,11]=(x + 1)*(x -1)^3;
T[44,13]=(x + 4)*(x -4)^3;
T[44,17]=(x -6)*(x + 2)^3;
T[44,19]=(x -8)*(x )^3;
T[44,23]=(x + 3)*(x + 1)^3;
T[44,29]=(x )^4;
T[44,31]=(x -5)*(x -7)^3;
T[44,37]=(x + 1)*(x -3)^3;
T[44,41]=(x )*(x + 8)^3;
T[44,43]=(x + 10)*(x + 6)^3;
T[44,47]=(x )*(x -8)^3;
T[44,53]=(x + 6)^4;
T[44,59]=(x -3)*(x -5)^3;
T[44,61]=(x + 4)*(x -12)^3;
T[44,67]=(x + 1)*(x + 7)^3;
T[44,71]=(x -15)*(x + 3)^3;
T[44,73]=(x + 4)*(x -4)^3;
T[44,79]=(x -2)*(x + 10)^3;
T[44,83]=(x -6)*(x + 6)^3;
T[44,89]=(x + 9)*(x -15)^3;
T[44,97]=(x + 7)^4;

T[45,2]=(x -1)*(x + 1)^2;
T[45,3]=(x + 1)*(x )^2;
T[45,5]=(x + 1)*(x -1)^2;
T[45,7]=(x )^3;
T[45,11]=(x -4)*(x + 4)^2;
T[45,13]=(x + 2)^3;
T[45,17]=(x + 2)*(x -2)^2;
T[45,19]=(x -4)^3;
T[45,23]=(x )^3;
T[45,29]=(x -2)*(x + 2)^2;
T[45,31]=(x )^3;
T[45,37]=(x + 10)^3;
T[45,41]=(x + 10)*(x -10)^2;
T[45,43]=(x -4)^3;
T[45,47]=(x + 8)*(x -8)^2;
T[45,53]=(x -10)*(x + 10)^2;
T[45,59]=(x -4)*(x + 4)^2;
T[45,61]=(x + 2)^3;
T[45,67]=(x -12)^3;
T[45,71]=(x -8)*(x + 8)^2;
T[45,73]=(x -10)^3;
T[45,79]=(x )^3;
T[45,83]=(x + 12)*(x -12)^2;
T[45,89]=(x -6)*(x + 6)^2;
T[45,97]=(x -2)^3;

T[46,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4);
T[46,3]=(x )*(x^2 -5)^2;
T[46,5]=(x -4)*(x^2 + 2*x -4)^2;
T[46,7]=(x + 4)*(x^2 -2*x -4)^2;
T[46,11]=(x -2)*(x^2 + 6*x + 4)^2;
T[46,13]=(x + 2)*(x -3)^4;
T[46,17]=(x + 2)*(x^2 -6*x + 4)^2;
T[46,19]=(x + 2)^5;
T[46,23]=(x -1)^5;
T[46,29]=(x -2)*(x + 3)^4;
T[46,31]=(x )*(x^2 -45)^2;
T[46,37]=(x + 4)*(x^2 -2*x -4)^2;
T[46,41]=(x -6)*(x^2 -2*x -19)^2;
T[46,43]=(x -10)*(x )^4;
T[46,47]=(x )*(x^2 -5)^2;
T[46,53]=(x + 4)*(x^2 + 8*x -4)^2;
T[46,59]=(x -12)*(x^2 -4*x -16)^2;
T[46,61]=(x + 8)*(x^2 -4*x -76)^2;
T[46,67]=(x + 10)*(x^2 + 10*x + 20)^2;
T[46,71]=(x )*(x^2 -20*x + 95)^2;
T[46,73]=(x -6)*(x^2 -22*x + 101)^2;
T[46,79]=(x + 12)*(x^2 + 4*x -76)^2;
T[46,83]=(x -14)*(x^2 + 22*x + 116)^2;
T[46,89]=(x + 6)*(x^2 + 12*x + 16)^2;
T[46,97]=(x -6)*(x^2 -22*x + 76)^2;

T[47,2]=x^4 -x^3 -5*x^2 + 5*x -1;
T[47,3]=x^4 -7*x^2 + 4*x + 1;
T[47,5]=x^4 + 2*x^3 -16*x^2 -16*x + 48;
T[47,7]=x^4 -4*x^3 -7*x^2 + 44*x -43;
T[47,11]=x^4 + 6*x^3 -4*x^2 -56*x -48;
T[47,13]=x^4 -8*x^3 + 56*x + 48;
T[47,17]=x^4 -6*x^3 -21*x^2 + 74*x + 141;
T[47,19]=x^4 -16*x^2 -8*x + 16;
T[47,23]=x^4 + 6*x^3 -20*x^2 -40*x -16;
T[47,29]=x^4 + 10*x^3 + 20*x^2 -8*x -16;
T[47,31]=x^4 + 8*x^3 -56*x + 48;
T[47,37]=x^4 -10*x^3 + 15*x^2 + 34*x + 9;
T[47,41]=x^4 -6*x^3 -8*x^2 + 32*x -16;
T[47,43]=x^4 -2*x^3 -80*x^2 -112*x + 432;
T[47,47]=(x -1)^4;
T[47,53]=x^4 + 6*x^3 -101*x^2 -314*x + 2429;
T[47,59]=x^4 -4*x^3 -115*x^2 + 704*x -519;
T[47,61]=x^4 + 6*x^3 -73*x^2 + 10*x + 337;
T[47,67]=x^4 -10*x^3 -120*x^2 + 752*x + 3184;
T[47,71]=x^4 + 12*x^3 -19*x^2 -320*x + 657;
T[47,73]=x^4 -22*x^3 + 60*x^2 + 1368*x -7664;
T[47,79]=x^4 -20*x^3 + 77*x^2 + 240*x -47;
T[47,83]=x^4 -20*x^3 + 80*x^2 + 192*x -256;
T[47,89]=x^4 + 6*x^3 -161*x^2 -206*x + 4841;
T[47,97]=x^4 -30*x^3 + 179*x^2 + 1634*x -14307;

T[48,2]=(x )^3;
T[48,3]=(x -1)*(x + 1)^2;
T[48,5]=(x + 2)^3;
T[48,7]=(x )^3;
T[48,11]=(x + 4)*(x -4)^2;
T[48,13]=(x + 2)^3;
T[48,17]=(x -2)^3;
T[48,19]=(x -4)*(x + 4)^2;
T[48,23]=(x -8)*(x + 8)^2;
T[48,29]=(x -6)^3;
T[48,31]=(x + 8)*(x -8)^2;
T[48,37]=(x -6)^3;
T[48,41]=(x + 6)^3;
T[48,43]=(x + 4)*(x -4)^2;
T[48,47]=(x )^3;
T[48,53]=(x + 2)^3;
T[48,59]=(x + 4)*(x -4)^2;
T[48,61]=(x + 2)^3;
T[48,67]=(x -4)*(x + 4)^2;
T[48,71]=(x + 8)*(x -8)^2;
T[48,73]=(x -10)^3;
T[48,79]=(x -8)*(x + 8)^2;
T[48,83]=(x -4)*(x + 4)^2;
T[48,89]=(x + 6)^3;
T[48,97]=(x -2)^3;

T[49,2]=x -1;
T[49,3]=x ;
T[49,5]=x ;
T[49,7]=x ;
T[49,11]=x -4;
T[49,13]=x ;
T[49,17]=x ;
T[49,19]=x ;
T[49,23]=x -8;
T[49,29]=x -2;
T[49,31]=x ;
T[49,37]=x + 6;
T[49,41]=x ;
T[49,43]=x + 12;
T[49,47]=x ;
T[49,53]=x + 10;
T[49,59]=x ;
T[49,61]=x ;
T[49,67]=x -4;
T[49,71]=x -16;
T[49,73]=x ;
T[49,79]=x -8;
T[49,83]=x ;
T[49,89]=x ;
T[49,97]=x ;

T[50,2]=(x -1)*(x + 1);
T[50,3]=(x -1)*(x + 1);
T[50,5]=(x )^2;
T[50,7]=(x -2)*(x + 2);
T[50,11]=(x + 3)^2;
T[50,13]=(x + 4)*(x -4);
T[50,17]=(x -3)*(x + 3);
T[50,19]=(x -5)^2;
T[50,23]=(x -6)*(x + 6);
T[50,29]=(x )^2;
T[50,31]=(x -2)^2;
T[50,37]=(x -2)*(x + 2);
T[50,41]=(x + 3)^2;
T[50,43]=(x + 4)*(x -4);
T[50,47]=(x + 12)*(x -12);
T[50,53]=(x + 6)*(x -6);
T[50,59]=(x )^2;
T[50,61]=(x -2)^2;
T[50,67]=(x + 13)*(x -13);
T[50,71]=(x -12)^2;
T[50,73]=(x -11)*(x + 11);
T[50,79]=(x + 10)^2;
T[50,83]=(x + 9)*(x -9);
T[50,89]=(x -15)^2;
T[50,97]=(x + 2)*(x -2);

T[51,2]=(x^2 + x -4)*(x )*(x + 1)^2;
T[51,3]=(x -1)*(x^2 + 3)*(x + 1)^2;
T[51,5]=(x -3)*(x^2 -3*x -2)*(x + 2)^2;
T[51,7]=(x + 4)*(x -4)^2*(x )^2;
T[51,11]=(x + 3)*(x^2 + x -4)*(x )^2;
T[51,13]=(x + 1)*(x^2 -5*x + 2)*(x + 2)^2;
T[51,17]=(x + 1)*(x -1)^4;
T[51,19]=(x + 1)*(x^2 -3*x -36)*(x + 4)^2;
T[51,23]=(x -9)*(x^2 + 9*x + 16)*(x -4)^2;
T[51,29]=(x^2 -68)*(x -6)^3;
T[51,31]=(x -2)*(x^2 + 2*x -16)*(x -4)^2;
T[51,37]=(x + 4)*(x^2 + 2*x -16)*(x + 2)^2;
T[51,41]=(x + 3)*(x^2 + 3*x -2)*(x + 6)^2;
T[51,43]=(x + 7)*(x^2 + 3*x -36)*(x -4)^2;
T[51,47]=(x + 6)*(x^2 + 14*x + 32)*(x )^2;
T[51,53]=(x + 6)*(x^2 -8*x -52)*(x -6)^2;
T[51,59]=(x -6)*(x^2 -6*x -8)*(x + 12)^2;
T[51,61]=(x -8)*(x^2 -10*x + 8)*(x + 10)^2;
T[51,67]=(x + 4)*(x -4)^4;
T[51,71]=(x -12)*(x^2 -4*x -64)*(x + 4)^2;
T[51,73]=(x -2)*(x^2 + 8*x -52)*(x + 6)^2;
T[51,79]=(x + 10)*(x^2 -6*x -144)*(x -12)^2;
T[51,83]=(x + 6)*(x^2 + 10*x + 8)*(x + 4)^2;
T[51,89]=(x^2 -6*x -8)*(x )*(x -10)^2;
T[51,97]=(x + 16)*(x^2 + 14*x + 32)*(x -2)^2;

T[52,2]=(x + 1)*(x -1)*(x )^3;
T[52,3]=(x )*(x -1)^2*(x + 3)^2;
T[52,5]=(x -2)*(x + 3)^2*(x + 1)^2;
T[52,7]=(x + 2)*(x -1)^2*(x + 1)^2;
T[52,11]=(x -6)^2*(x + 2)^3;
T[52,13]=(x -1)^2*(x + 1)^3;
T[52,17]=(x -6)*(x + 3)^4;
T[52,19]=(x + 6)*(x -2)^2*(x -6)^2;
T[52,23]=(x -8)*(x + 4)^2*(x )^2;
T[52,29]=(x -6)^2*(x -2)^3;
T[52,31]=(x -10)*(x -4)^2*(x + 4)^2;
T[52,37]=(x + 6)*(x -3)^2*(x + 7)^2;
T[52,41]=(x + 6)*(x )^4;
T[52,43]=(x -4)*(x + 5)^2*(x + 1)^2;
T[52,47]=(x + 2)*(x -13)^2*(x -3)^2;
T[52,53]=(x -6)*(x -12)^2*(x )^2;
T[52,59]=(x + 6)^2*(x + 10)^3;
T[52,61]=(x + 2)*(x + 8)^2*(x -8)^2;
T[52,67]=(x -10)*(x + 2)^2*(x -14)^2;
T[52,71]=(x -10)*(x + 3)^2*(x + 5)^2;
T[52,73]=(x + 10)^2*(x -2)^3;
T[52,79]=(x -8)^2*(x + 4)^3;
T[52,83]=(x + 6)*(x -12)^2*(x )^2;
T[52,89]=(x -6)^2*(x + 6)^3;
T[52,97]=(x -2)*(x -14)^2*(x + 10)^2;

T[53,2]=(x + 1)*(x^3 + x^2 -3*x -1);
T[53,3]=(x + 3)*(x^3 -3*x^2 -x + 1);
T[53,5]=(x^3 + 2*x^2 -4*x -4)*(x );
T[53,7]=(x + 4)*(x^3 -4*x^2 + 4);
T[53,11]=(x^3 + 4*x^2 -4*x -20)*(x );
T[53,13]=(x + 3)*(x -1)^3;
T[53,17]=(x + 3)*(x^3 + 5*x^2 -5*x -17);
T[53,19]=(x + 5)*(x^3 -11*x^2 + 37*x -37);
T[53,23]=(x -7)*(x^3 -3*x^2 -31*x -29);
T[53,29]=(x + 7)*(x^3 + 5*x^2 -37*x -61);
T[53,31]=(x -4)*(x^3 + 2*x^2 -76*x + 116);
T[53,37]=(x -5)*(x^3 + 5*x^2 -89*x -353);
T[53,41]=(x -6)*(x^3 + 10*x^2 + 20*x -8);
T[53,43]=(x + 2)*(x^3 -18*x^2 + 24*x + 556);
T[53,47]=(x + 2)*(x^3 + 10*x^2 -4*x -8);
T[53,53]=(x + 1)*(x -1)^3;
T[53,59]=(x + 2)*(x^3 -2*x^2 -60*x + 200);
T[53,61]=(x + 8)*(x^3 + 10*x^2 -56*x -556);
T[53,67]=(x + 12)*(x^3 -6*x^2 -72*x -108);
T[53,71]=(x -1)*(x^3 + 5*x^2 -105*x + 277);
T[53,73]=(x + 4)*(x^3 -6*x^2 -28*x -4);
T[53,79]=(x + 1)*(x^3 + 7*x^2 -77*x + 131);
T[53,83]=(x + 1)*(x^3 -27*x^2 + 213*x -457);
T[53,89]=(x + 14)*(x^3 + 2*x^2 -212*x + 1048);
T[53,97]=(x -1)*(x^3 + x^2 -133*x -137);

T[54,2]=(x + 1)*(x -1)*(x^2 + 2);
T[54,3]=(x )^4;
T[54,5]=(x + 3)*(x -3)*(x )^2;
T[54,7]=(x + 1)^4;
T[54,11]=(x + 3)*(x -3)*(x )^2;
T[54,13]=(x -5)^2*(x + 4)^2;
T[54,17]=(x )^4;
T[54,19]=(x + 7)^2*(x -2)^2;
T[54,23]=(x + 6)*(x -6)*(x )^2;
T[54,29]=(x -6)*(x + 6)*(x )^2;
T[54,31]=(x -5)^2*(x + 4)^2;
T[54,37]=(x -2)^2*(x -11)^2;
T[54,41]=(x + 6)*(x -6)*(x )^2;
T[54,43]=(x + 10)^2*(x -8)^2;
T[54,47]=(x + 6)*(x -6)*(x )^2;
T[54,53]=(x -9)*(x + 9)*(x )^2;
T[54,59]=(x -12)*(x + 12)*(x )^2;
T[54,61]=(x + 1)^2*(x -8)^2;
T[54,67]=(x -5)^2*(x -14)^2;
T[54,71]=(x )^4;
T[54,73]=(x + 7)^4;
T[54,79]=(x -17)^2*(x -8)^2;
T[54,83]=(x -3)*(x + 3)*(x )^2;
T[54,89]=(x -18)*(x + 18)*(x )^2;
T[54,97]=(x + 1)^2*(x + 19)^2;

T[55,2]=(x -1)*(x^2 -2*x -1)*(x + 2)^2;
T[55,3]=(x^2 -8)*(x )*(x + 1)^2;
T[55,5]=(x -1)*(x^2 -x + 5)*(x + 1)^2;
T[55,7]=(x )*(x + 2)^4;
T[55,11]=(x + 1)*(x -1)^4;
T[55,13]=(x -2)*(x^2 + 8*x + 8)*(x -4)^2;
T[55,17]=(x -6)*(x^2 -8*x + 8)*(x + 2)^2;
T[55,19]=(x + 4)*(x )^4;
T[55,23]=(x -4)*(x^2 -8)*(x + 1)^2;
T[55,29]=(x -6)*(x^2 -4*x -28)*(x )^2;
T[55,31]=(x + 8)*(x -7)^2*(x )^2;
T[55,37]=(x + 2)*(x^2 + 4*x -28)*(x -3)^2;
T[55,41]=(x -2)*(x + 8)^2*(x -6)^2;
T[55,43]=(x -4)*(x + 6)^4;
T[55,47]=(x + 12)*(x^2 -8)*(x -8)^2;
T[55,53]=(x + 2)*(x^2 -12*x + 4)*(x + 6)^2;
T[55,59]=(x -4)*(x^2 + 8*x -16)*(x -5)^2;
T[55,61]=(x + 10)*(x^2 -4*x -124)*(x -12)^2;
T[55,67]=(x + 16)*(x^2 -8*x -56)*(x + 7)^2;
T[55,71]=(x -8)*(x^2 -128)*(x + 3)^2;
T[55,73]=(x -14)*(x^2 + 8*x + 8)*(x -4)^2;
T[55,79]=(x -8)*(x -4)^2*(x + 10)^2;
T[55,83]=(x + 4)*(x + 6)^4;
T[55,89]=(x -10)*(x^2 + 4*x -124)*(x -15)^2;
T[55,97]=(x -10)*(x^2 + 4*x -28)*(x + 7)^2;

T[56,2]=(x + 1)*(x )^4;
T[56,3]=(x -2)*(x )*(x + 2)^3;
T[56,5]=(x -2)*(x + 4)*(x )^3;
T[56,7]=(x + 1)*(x -1)^4;
T[56,11]=(x + 4)*(x )^4;
T[56,13]=(x -2)*(x )*(x + 4)^3;
T[56,17]=(x + 6)*(x + 2)*(x -6)^3;
T[56,19]=(x -8)*(x + 2)*(x -2)^3;
T[56,23]=(x -8)*(x )^4;
T[56,29]=(x -2)*(x -6)*(x + 6)^3;
T[56,31]=(x -4)*(x -8)*(x + 4)^3;
T[56,37]=(x + 2)*(x + 6)*(x -2)^3;
T[56,41]=(x -2)*(x + 2)*(x -6)^3;
T[56,43]=(x + 4)*(x -8)^4;
T[56,47]=(x + 4)*(x + 8)*(x + 12)^3;
T[56,53]=(x + 10)*(x -6)^4;
T[56,59]=(x -6)*(x )*(x + 6)^3;
T[56,61]=(x -4)*(x + 6)*(x -8)^3;
T[56,67]=(x + 12)*(x + 4)^4;
T[56,71]=(x + 8)*(x )^4;
T[56,73]=(x -10)*(x + 14)*(x -2)^3;
T[56,79]=(x -16)*(x + 8)*(x -8)^3;
T[56,83]=(x -8)*(x -6)*(x + 6)^3;
T[56,89]=(x -10)*(x + 6)^4;
T[56,97]=(x + 6)*(x + 2)*(x + 10)^3;

T[57,2]=(x -1)*(x + 2)^2*(x )^2;
T[57,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
T[57,5]=(x + 2)*(x -1)*(x + 3)*(x -3)^2;
T[57,7]=(x + 5)*(x -3)*(x )*(x + 1)^2;
T[57,11]=(x -1)*(x + 3)*(x )*(x -3)^2;
T[57,13]=(x -2)*(x -6)*(x + 6)*(x + 4)^2;
T[57,17]=(x + 1)*(x + 6)*(x -3)*(x + 3)^2;
T[57,19]=(x -1)^2*(x + 1)^3;
T[57,23]=(x + 4)*(x -4)^2*(x )^2;
T[57,29]=(x + 2)*(x + 10)*(x -2)*(x -6)^2;
T[57,31]=(x -2)*(x + 6)*(x -8)*(x + 4)^2;
T[57,37]=(x + 10)*(x -8)*(x )*(x -2)^2;
T[57,41]=(x + 2)*(x + 8)*(x )*(x + 6)^2;
T[57,43]=(x + 4)*(x + 1)^4;
T[57,47]=(x -12)*(x + 9)*(x -3)*(x + 3)^2;
T[57,53]=(x -10)*(x -12)^2*(x + 6)^2;
T[57,59]=(x + 8)*(x + 12)*(x )*(x + 6)^2;
T[57,61]=(x + 2)*(x -7)*(x + 1)^3;
T[57,67]=(x -8)^2*(x + 4)^3;
T[57,71]=(x -12)*(x + 12)*(x )*(x -6)^2;
T[57,73]=(x -10)*(x + 11)^2*(x + 7)^2;
T[57,79]=(x -16)*(x -8)^2*(x )^2;
T[57,83]=(x -16)*(x -4)*(x -12)^3;
T[57,89]=(x + 6)*(x -10)*(x + 2)*(x -12)^2;
T[57,97]=(x + 10)*(x -10)*(x + 2)*(x -8)^2;

T[58,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4);
T[58,3]=(x + 3)*(x + 1)*(x^2 -2*x -1)^2;
T[58,5]=(x + 3)*(x -1)*(x + 1)^4;
T[58,7]=(x + 2)^2*(x^2 -8)^2;
T[58,11]=(x + 1)*(x + 3)*(x^2 -2*x -1)^2;
T[58,13]=(x -3)*(x + 1)*(x^2 + 2*x -7)^2;
T[58,17]=(x + 4)*(x -8)*(x^2 + 4*x -4)^2;
T[58,19]=(x + 8)*(x )*(x -6)^4;
T[58,23]=(x -4)*(x )*(x^2 + 4*x -28)^2;
T[58,29]=(x + 1)^2*(x -1)^4;
T[58,31]=(x + 3)*(x -3)*(x^2 -6*x -41)^2;
T[58,37]=(x + 8)*(x -8)*(x + 4)^4;
T[58,41]=(x + 2)*(x -2)*(x^2 -8*x -56)^2;
T[58,43]=(x -7)*(x + 11)*(x^2 -10*x + 23)^2;
T[58,47]=(x -13)*(x -11)*(x^2 -2*x -17)^2;
T[58,53]=(x -1)*(x + 11)*(x^2 -2*x -71)^2;
T[58,59]=(x + 4)*(x )*(x^2 -4*x -28)^2;
T[58,61]=(x + 8)*(x -4)*(x^2 + 4*x -4)^2;
T[58,67]=(x + 12)*(x + 4)*(x^2 -32)^2;
T[58,71]=(x -2)*(x + 2)*(x^2 + 12*x + 28)^2;
T[58,73]=(x + 12)*(x -4)^5;
T[58,79]=(x -15)*(x + 7)*(x^2 + 2*x -1)^2;
T[58,83]=(x -4)*(x )*(x^2 -4*x -28)^2;
T[58,89]=(x + 10)*(x + 6)*(x^2 + 8*x -56)^2;
T[58,97]=(x + 2)*(x + 6)*(x^2 + 8*x -56)^2;

T[59,2]=x^5 -9*x^3 + 2*x^2 + 16*x -8;
T[59,3]=x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1;
T[59,5]=x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1;
T[59,7]=x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71;
T[59,11]=x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64;
T[59,13]=x^5 -8*x^4 + 88*x^2 -48*x -224;
T[59,17]=x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412;
T[59,19]=x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469;
T[59,23]=x^5 + 8*x^4 -88*x^2 -112*x -32;
T[59,29]=x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757;
T[59,31]=x^5 -116*x^3 + 56*x^2 + 1280*x + 256;
T[59,37]=x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32;
T[59,41]=x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217;
T[59,43]=x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128;
T[59,47]=x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256;
T[59,53]=x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73;
T[59,59]=(x -1)^5;
T[59,61]=x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072;
T[59,67]=x^5 -188*x^3 -200*x^2 + 5472*x -8896;
T[59,71]=x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424;
T[59,73]=x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952;
T[59,79]=x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923;
T[59,83]=x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152;
T[59,89]=x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984;
T[59,97]=x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656;

T[60,2]=(x + 1)*(x^2 + x + 2)*(x )^4;
T[60,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3;
T[60,5]=(x -1)^3*(x + 1)^4;
T[60,7]=(x -2)^2*(x + 4)^2*(x )^3;
T[60,11]=(x + 4)^3*(x )^4;
T[60,13]=(x + 2)^3*(x -2)^4;
T[60,17]=(x -6)^2*(x + 6)^2*(x -2)^3;
T[60,19]=(x -4)^3*(x + 4)^4;
T[60,23]=(x -6)^2*(x )^5;
T[60,29]=(x -6)^2*(x + 6)^2*(x + 2)^3;
T[60,31]=(x -8)^2*(x + 4)^2*(x )^3;
T[60,37]=(x + 10)^3*(x -2)^4;
T[60,41]=(x + 6)^2*(x -6)^2*(x -10)^3;
T[60,43]=(x + 4)^2*(x + 10)^2*(x -4)^3;
T[60,47]=(x + 6)^2*(x )^2*(x -8)^3;
T[60,53]=(x + 10)^3*(x + 6)^4;
T[60,59]=(x -12)^2*(x )^2*(x + 4)^3;
T[60,61]=(x -2)^2*(x + 10)^2*(x + 2)^3;
T[60,67]=(x -2)^2*(x + 4)^2*(x -12)^3;
T[60,71]=(x + 12)^2*(x )^2*(x + 8)^3;
T[60,73]=(x -10)^3*(x -2)^4;
T[60,79]=(x )^3*(x -8)^4;
T[60,83]=(x -6)^2*(x -12)^5;
T[60,89]=(x -18)^2*(x + 6)^5;
T[60,97]=(x -2)^7;

T[61,2]=(x + 1)*(x^3 -x^2 -3*x + 1);
T[61,3]=(x + 2)*(x^3 -2*x^2 -4*x + 4);
T[61,5]=(x + 3)*(x^3 + x^2 -9*x -13);
T[61,7]=(x -1)*(x^3 + 3*x^2 -x -1);
T[61,11]=(x + 5)*(x^3 -13*x^2 + 53*x -67);
T[61,13]=(x -1)*(x^3 + 9*x^2 + 11*x -37);
T[61,17]=(x -4)*(x^3 + 2*x^2 -8*x + 4);
T[61,19]=(x + 4)*(x^3 -48*x -20);
T[61,23]=(x + 9)*(x^3 -5*x^2 + 5*x + 1);
T[61,29]=(x + 6)*(x^3 -4*x^2 -4*x + 20);
T[61,31]=(x^3 + 2*x^2 -76*x + 116)*(x );
T[61,37]=(x -8)*(x^3 + 6*x^2 -36*x -108);
T[61,41]=(x -5)*(x^3 -3*x^2 -61*x + 191);
T[61,43]=(x + 8)*(x^3 + 14*x^2 + 56*x + 68);
T[61,47]=(x -4)*(x^3 + 4*x^2 -88*x + 16);
T[61,53]=(x -6)*(x^3 + 2*x^2 -12*x -8);
T[61,59]=(x -9)*(x^3 -29*x^2 + 231*x -325);
T[61,61]=(x + 1)*(x -1)^3;
T[61,67]=(x + 7)*(x^3 -9*x^2 -85*x + 559);
T[61,71]=(x + 8)*(x^3 -14*x^2 -12*x + 92);
T[61,73]=(x + 11)*(x^3 + x^2 -45*x -25);
T[61,79]=(x -3)*(x^3 -13*x^2 -51*x + 625);
T[61,83]=(x -4)*(x^3 + 8*x^2 -64*x -256);
T[61,89]=(x + 4)*(x^3 + 4*x^2 -56*x + 80);
T[61,97]=(x + 14)*(x^3 -10*x^2 -116*x + 1096);

T[62,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2;
T[62,3]=(x^2 -2*x -2)*(x )*(x^2 + 2*x -4)^2;
T[62,5]=(x + 2)*(x^2 -12)*(x -1)^4;
T[62,7]=(x )*(x -2)^2*(x^2 + 4*x -1)^2;
T[62,11]=(x^2 + 6*x + 6)*(x )*(x -2)^4;
T[62,13]=(x -2)*(x^2 + 2*x -26)*(x^2 + 2*x -4)^2;
T[62,17]=(x + 6)*(x^2 -12)*(x^2 -6*x + 4)^2;
T[62,19]=(x -4)*(x + 4)^2*(x^2 -5)^2;
T[62,23]=(x -8)*(x^2 + 2*x -44)^2*(x )^2;
T[62,29]=(x -2)*(x^2 + 6*x -18)*(x^2 -10*x + 20)^2;
T[62,31]=(x + 1)*(x -1)^6;
T[62,37]=(x -10)*(x^2 -10*x -2)*(x + 2)^4;
T[62,41]=(x + 6)*(x^2 -12*x + 24)*(x -7)^4;
T[62,43]=(x -8)*(x^2 + 2*x -26)*(x^2 + 2*x -4)^2;
T[62,47]=(x + 8)*(x -6)^2*(x^2 + 4*x -16)^2;
T[62,53]=(x + 6)*(x^2 -6*x + 6)*(x^2 + 12*x + 16)^2;
T[62,59]=(x + 12)*(x^2 + 12*x + 24)*(x^2 -5)^2;
T[62,61]=(x + 6)*(x^2 + 2*x -26)*(x^2 + 6*x -116)^2;
T[62,67]=(x + 12)*(x -8)^6;
T[62,71]=(x -8)*(x^2 -192)*(x^2 -4*x -121)^2;
T[62,73]=(x -10)*(x + 10)^2*(x^2 -8*x -4)^2;
T[62,79]=(x + 8)*(x^2 -4*x -104)*(x^2 + 10*x -20)^2;
T[62,83]=(x -8)*(x^2 -6*x -66)*(x^2 + 12*x -44)^2;
T[62,89]=(x + 6)*(x -6)^2*(x^2 -10*x -20)^2;
T[62,97]=(x -2)*(x^2 -4*x -104)*(x^2 + 14*x -31)^2;

T[63,2]=(x -1)*(x^2 -3)*(x + 1)^2;
T[63,3]=(x -1)*(x )^4;
T[63,5]=(x -2)*(x^2 -12)*(x + 2)^2;
T[63,7]=(x -1)^2*(x + 1)^3;
T[63,11]=(x + 4)*(x^2 -12)*(x -4)^2;
T[63,13]=(x -2)^2*(x + 2)^3;
T[63,17]=(x -6)*(x^2 -12)*(x + 6)^2;
T[63,19]=(x + 4)^2*(x -4)^3;
T[63,23]=(x^2 -12)*(x )^3;
T[63,29]=(x -2)*(x + 2)^2*(x )^2;
T[63,31]=(x + 4)^2*(x )^3;
T[63,37]=(x -2)^2*(x -6)^3;
T[63,41]=(x + 2)*(x^2 -108)*(x -2)^2;
T[63,43]=(x + 4)^5;
T[63,47]=(x^2 -48)*(x )^3;
T[63,53]=(x + 6)*(x^2 -48)*(x -6)^2;
T[63,59]=(x + 12)*(x^2 -48)*(x -12)^2;
T[63,61]=(x + 10)^2*(x + 2)^3;
T[63,67]=(x + 4)^2*(x -4)^3;
T[63,71]=(x^2 -108)*(x )^3;
T[63,73]=(x -14)^2*(x + 6)^3;
T[63,79]=(x -8)^2*(x + 16)^3;
T[63,83]=(x -12)*(x + 12)^2*(x )^2;
T[63,89]=(x -14)*(x^2 -12)*(x + 14)^2;
T[63,97]=(x -14)^2*(x -18)^3;

T[64,2]=(x )^3;
T[64,3]=(x )^3;
T[64,5]=(x -2)*(x + 2)^2;
T[64,7]=(x )^3;
T[64,11]=(x )^3;
T[64,13]=(x + 6)*(x -6)^2;
T[64,17]=(x -2)^3;
T[64,19]=(x )^3;
T[64,23]=(x )^3;
T[64,29]=(x -10)*(x + 10)^2;
T[64,31]=(x )^3;
T[64,37]=(x -2)*(x + 2)^2;
T[64,41]=(x -10)^3;
T[64,43]=(x )^3;
T[64,47]=(x )^3;
T[64,53]=(x + 14)*(x -14)^2;
T[64,59]=(x )^3;
T[64,61]=(x -10)*(x + 10)^2;
T[64,67]=(x )^3;
T[64,71]=(x )^3;
T[64,73]=(x + 6)^3;
T[64,79]=(x )^3;
T[64,83]=(x )^3;
T[64,89]=(x -10)^3;
T[64,97]=(x -18)^3;

T[65,2]=(x + 1)*(x^2 + 2*x -1)*(x^2 -3);
T[65,3]=(x + 2)*(x^2 -2*x -2)*(x^2 -2);
T[65,5]=(x -1)^2*(x + 1)^3;
T[65,7]=(x + 4)*(x^2 -4*x -4)*(x -2)^2;
T[65,11]=(x -2)*(x^2 -4*x + 2)*(x^2 + 6*x + 6);
T[65,13]=(x -1)^2*(x + 1)^3;
T[65,17]=(x -2)*(x^2 + 4*x -4)*(x^2 -12);
T[65,19]=(x + 6)*(x^2 -4*x + 2)*(x^2 + 2*x -26);
T[65,23]=(x + 6)*(x^2 -2)*(x^2 -6*x + 6);
T[65,29]=(x -2)*(x^2 + 12*x + 24)*(x^2 -32);
T[65,31]=(x + 10)*(x^2 -10*x -2)*(x^2 -12*x + 18);
T[65,37]=(x + 2)*(x^2 -72)*(x + 4)^2;
T[65,41]=(x + 6)*(x^2 -12)*(x^2 + 12*x + 28);
T[65,43]=(x -10)*(x^2 -10*x -2)*(x^2 + 8*x -34);
T[65,47]=(x -4)*(x^2 + 4*x -4)*(x -6)^2;
T[65,53]=(x -2)*(x^2 + 12*x -36)*(x^2 -108);
T[65,59]=(x -6)*(x^2 -12*x + 18)*(x^2 + 6*x -138);
T[65,61]=(x -2)*(x^2 -4*x -104)*(x + 8)^2;
T[65,67]=(x + 4)*(x^2 + 8*x -92)*(x + 2)^2;
T[65,71]=(x -6)*(x^2 -6*x + 6)*(x^2 -4*x -94);
T[65,73]=(x + 6)*(x^2 -72)*(x + 4)^2;
T[65,79]=(x + 12)*(x^2 -4*x -104)*(x^2 -72);
T[65,83]=(x + 16)*(x^2 + 12*x + 28)*(x + 6)^2;
T[65,89]=(x -2)*(x^2 + 12*x -12)*(x -6)^2;
T[65,97]=(x + 2)*(x^2 + 4*x -28)*(x -2)^2;

T[66,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2;
T[66,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3;
T[66,5]=(x -2)*(x + 4)*(x )*(x + 2)^2*(x -1)^4;
T[66,7]=(x -2)*(x + 4)*(x -4)^2*(x + 2)^5;
T[66,11]=(x + 1)^2*(x -1)^7;
T[66,13]=(x + 4)*(x + 6)*(x + 2)^2*(x -4)^5;
T[66,17]=(x -2)*(x + 6)*(x + 2)^7;
T[66,19]=(x -4)*(x + 4)*(x )^7;
T[66,23]=(x + 6)*(x -4)*(x -6)*(x -8)^2*(x + 1)^4;
T[66,29]=(x -10)*(x -6)^2*(x + 6)^2*(x )^4;
T[66,31]=(x -8)*(x )*(x + 8)^3*(x -7)^4;
T[66,37]=(x + 10)*(x + 2)*(x -6)^3*(x -3)^4;
T[66,41]=(x -2)*(x + 6)*(x -6)*(x + 2)^2*(x + 8)^4;
T[66,43]=(x -8)*(x -4)^2*(x )^2*(x + 6)^4;
T[66,47]=(x + 6)*(x + 12)*(x + 2)*(x -8)^6;
T[66,53]=(x -2)*(x -4)*(x )*(x -6)^2*(x + 6)^4;
T[66,59]=(x -12)*(x + 4)^2*(x )^2*(x -5)^4;
T[66,61]=(x -8)*(x + 14)*(x + 8)*(x -6)^2*(x -12)^4;
T[66,67]=(x + 12)*(x -4)*(x + 4)^3*(x + 7)^4;
T[66,71]=(x -2)*(x + 12)*(x -6)*(x )^2*(x + 3)^4;
T[66,73]=(x -2)*(x + 14)^2*(x + 6)^2*(x -4)^4;
T[66,79]=(x -10)*(x -14)*(x + 4)^3*(x + 10)^4;
T[66,83]=(x + 12)*(x -4)^2*(x -12)^2*(x + 6)^4;
T[66,89]=(x -10)^2*(x + 6)^3*(x -15)^4;
T[66,97]=(x + 14)*(x + 2)*(x -14)*(x -2)^2*(x + 7)^4;

T[67,2]=(x -2)*(x^2 + 3*x + 1)*(x^2 + x -1);
T[67,3]=(x + 2)*(x^2 + 3*x + 1)*(x^2 -x -1);
T[67,5]=(x -2)*(x^2 -4*x -1)*(x + 3)^2;
T[67,7]=(x + 2)*(x^2 -x -1)*(x^2 + x -11);
T[67,11]=(x + 4)*(x^2 -5)*(x -1)^2;
T[67,13]=(x -2)*(x^2 + x -1)*(x^2 + 7*x + 1);
T[67,17]=(x -3)*(x^2 -6*x + 4)*(x^2 + 6*x + 4);
T[67,19]=(x -7)*(x^2 + 11*x + 29)*(x^2 -x -11);
T[67,23]=(x -9)*(x^2 -6*x -11)*(x^2 + 2*x -19);
T[67,29]=(x + 5)*(x^2 -10*x + 5)*(x^2 + 6*x -11);
T[67,31]=(x + 10)*(x^2 -45)*(x + 1)^2;
T[67,37]=(x + 1)*(x^2 -3*x + 1)*(x^2 + x -11);
T[67,41]=(x^2 -5*x -25)*(x^2 + 3*x + 1)*(x );
T[67,43]=(x + 2)*(x^2 -3*x -9)*(x^2 + 9*x -11);
T[67,47]=(x + 1)*(x^2 + 7*x + 11)*(x^2 + 15*x + 55);
T[67,53]=(x -10)*(x^2 -45)*(x + 9)^2;
T[67,59]=(x -9)*(x + 6)^2*(x -6)^2;
T[67,61]=(x + 2)*(x^2 + 9*x + 9)*(x^2 + 7*x -89);
T[67,67]=(x + 1)^2*(x -1)^3;
T[67,71]=(x^2 -245)*(x^2 -12*x + 31)*(x );
T[67,73]=(x + 7)*(x + 4)^2*(x -8)^2;
T[67,79]=(x + 8)*(x^2 + 7*x -89)*(x^2 + 11*x -31);
T[67,83]=(x -4)*(x^2 -13*x + 31)*(x^2 + 15*x -5);
T[67,89]=(x -7)*(x^2 + 16*x + 19)*(x^2 -5);
T[67,97]=(x^2 -45)*(x^2 -2*x -179)*(x );

T[68,2]=(x -1)*(x^2 + x + 2)*(x )^4;
T[68,3]=(x^2 -2*x -2)*(x + 2)^2*(x )^3;
T[68,5]=(x^2 -12)*(x )^2*(x + 2)^3;
T[68,7]=(x^2 + 2*x -2)*(x + 4)^2*(x -4)^3;
T[68,11]=(x^2 + 6*x + 6)*(x -6)^2*(x )^3;
T[68,13]=(x^2 -4*x -8)*(x -2)^2*(x + 2)^3;
T[68,17]=(x -1)^3*(x + 1)^4;
T[68,19]=(x^2 -4*x -8)*(x + 4)^5;
T[68,23]=(x^2 + 6*x + 6)*(x )^2*(x -4)^3;
T[68,29]=(x^2 -12)*(x )^2*(x -6)^3;
T[68,31]=(x^2 + 2*x -26)*(x + 4)^2*(x -4)^3;
T[68,37]=(x^2 -16*x + 52)*(x + 4)^2*(x + 2)^3;
T[68,41]=(x -6)^2*(x + 6)^5;
T[68,43]=(x^2 -4*x -104)*(x -8)^2*(x -4)^3;
T[68,47]=(x^2 -48)*(x )^5;
T[68,53]=(x^2 -12*x -12)*(x + 6)^2*(x -6)^3;
T[68,59]=(x^2 -12*x + 24)*(x )^2*(x + 12)^3;
T[68,61]=(x^2 + 8*x + 4)*(x + 4)^2*(x + 10)^3;
T[68,67]=(x^2 -16*x + 16)*(x -8)^2*(x -4)^3;
T[68,71]=(x^2 + 6*x -18)*(x )^2*(x + 4)^3;
T[68,73]=(x + 6)^3*(x -2)^4;
T[68,79]=(x^2 + 14*x + 22)*(x -8)^2*(x -12)^3;
T[68,83]=(x^2 + 12*x + 24)*(x )^2*(x + 4)^3;
T[68,89]=(x^2 -12*x + 24)*(x + 6)^2*(x -10)^3;
T[68,97]=(x^2 -4*x -44)*(x -14)^2*(x -2)^3;

T[69,2]=(x -1)*(x^2 -5)*(x^2 + x -1)^2;
T[69,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2;
T[69,5]=(x )*(x^2 + 2*x -4)^3;
T[69,7]=(x + 2)*(x^2 -2*x -4)^3;
T[69,11]=(x^2 + 6*x + 4)^2*(x -4)^3;
T[69,13]=(x + 6)*(x^2 -20)*(x -3)^4;
T[69,17]=(x -4)*(x^2 + 10*x + 20)*(x^2 -6*x + 4)^2;
T[69,19]=(x -2)*(x^2 -10*x + 20)*(x + 2)^4;
T[69,23]=(x + 1)*(x -1)^6;
T[69,29]=(x -2)*(x^2 -20)*(x + 3)^4;
T[69,31]=(x -4)*(x^2 + 4*x -16)*(x^2 -45)^2;
T[69,37]=(x -2)*(x^2 -20)*(x^2 -2*x -4)^2;
T[69,41]=(x -2)*(x^2 + 4*x -76)*(x^2 -2*x -19)^2;
T[69,43]=(x -10)*(x^2 -2*x -44)*(x )^4;
T[69,47]=(x )*(x + 4)^2*(x^2 -5)^2;
T[69,53]=(x + 12)*(x^2 + 6*x + 4)*(x^2 + 8*x -4)^2;
T[69,59]=(x + 12)*(x^2 -8*x -64)*(x^2 -4*x -16)^2;
T[69,61]=(x + 6)*(x^2 -20)*(x^2 -4*x -76)^2;
T[69,67]=(x + 10)*(x^2 -6*x + 4)*(x^2 + 10*x + 20)^2;
T[69,71]=(x -8)*(x + 8)^2*(x^2 -20*x + 95)^2;
T[69,73]=(x + 14)*(x^2 + 4*x -76)*(x^2 -22*x + 101)^2;
T[69,79]=(x -10)*(x^2 -6*x -36)*(x^2 + 4*x -76)^2;
T[69,83]=(x -12)*(x -4)^2*(x^2 + 22*x + 116)^2;
T[69,89]=(x + 16)*(x^2 -2*x -4)*(x^2 + 12*x + 16)^2;
T[69,97]=(x + 10)*(x^2 -8*x -4)*(x^2 -22*x + 76)^2;

T[70,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2;
T[70,3]=(x )*(x + 2)^2*(x -1)^2*(x^2 + x -4)^2;
T[70,5]=(x^2 + 5)*(x + 1)^3*(x -1)^4;
T[70,7]=(x -1)^4*(x + 1)^5;
T[70,11]=(x -4)*(x + 3)^2*(x^2 -x -4)^2*(x )^2;
T[70,13]=(x + 6)*(x + 4)^2*(x -5)^2*(x^2 -5*x + 2)^2;
T[70,17]=(x -2)*(x -6)^2*(x -3)^2*(x^2 + 5*x + 2)^2;
T[70,19]=(x )*(x^2 + 6*x -8)^2*(x -2)^4;
T[70,23]=(x + 6)^2*(x^2 + 2*x -16)^2*(x )^3;
T[70,29]=(x -6)*(x + 6)^2*(x -3)^2*(x^2 -x -38)^2;
T[70,31]=(x -8)*(x + 4)^4*(x )^4;
T[70,37]=(x + 10)*(x -6)^4*(x -2)^4;
T[70,41]=(x -2)*(x -6)^2*(x + 12)^2*(x^2 -2*x -16)^2;
T[70,43]=(x -4)*(x + 10)^2*(x -8)^2*(x^2 -10*x + 8)^2;
T[70,47]=(x -8)*(x + 12)^2*(x -9)^2*(x^2 + 5*x -32)^2;
T[70,53]=(x + 2)*(x -6)^2*(x -12)^2*(x^2 + 2*x -16)^2;
T[70,59]=(x + 8)*(x + 6)^2*(x )^2*(x + 4)^4;
T[70,61]=(x + 14)*(x^2 -6*x -144)^2*(x -8)^4;
T[70,67]=(x + 12)*(x^2 -4*x -64)^2*(x + 4)^4;
T[70,71]=(x + 16)*(x -8)^4*(x )^4;
T[70,73]=(x^2 + 8*x -52)^2*(x -2)^5;
T[70,79]=(x + 8)*(x -8)^2*(x + 1)^2*(x^2 + 9*x + 16)^2;
T[70,83]=(x -8)*(x -12)^2*(x + 6)^2*(x -4)^4;
T[70,89]=(x -10)*(x + 6)^2*(x + 12)^2*(x^2 -6*x -8)^2;
T[70,97]=(x -2)*(x + 1)^2*(x + 10)^2*(x^2 + 9*x -86)^2;

T[71,2]=(x^3 + x^2 -4*x -3)*(x^3 -5*x + 3);
T[71,3]=(x^3 + x^2 -8*x -3)*(x^3 -x^2 -4*x + 3);
T[71,5]=(x^3 -5*x^2 -2*x + 25)*(x^3 + 3*x^2 -2*x -7);
T[71,7]=(x^3 -2*x^2 -16*x + 24)^2;
T[71,11]=(x^3 -20*x + 24)*(x^3 + 2*x^2 -16*x -24);
T[71,13]=(x^3 + 6*x^2 -8*x -56)*(x -4)^3;
T[71,17]=(x^3 -2*x^2 -16*x + 24)*(x^3 + 2*x^2 -32*x -24);
T[71,19]=(x^3 -x^2 -20*x -25)*(x^3 -11*x^2 + 36*x -35);
T[71,23]=(x^3 -8*x^2 -12*x + 72)*(x + 4)^3;
T[71,29]=(x^3 -11*x^2 + 14*x + 71)*(x^3 + 5*x^2 -2*x -25);
T[71,31]=(x^3 + 6*x^2 -8*x -56)*(x -4)^3;
T[71,37]=(x^3 + 15*x^2 + 70*x + 97)*(x^3 -9*x^2 -26*x + 37);
T[71,41]=(x^3 + 2*x^2 -68*x + 56)*(x^3 -14*x^2 + 48*x -8);
T[71,43]=(x^3 -13*x^2 + 48*x -45)*(x^3 + 17*x^2 + 72*x + 81);
T[71,47]=(x^3 + 10*x^2 -72)*(x^3 -4*x^2 -28*x + 40);
T[71,53]=(x^3 -20*x -24)*(x^3 + 18*x^2 + 28*x -456);
T[71,59]=(x^3 + 22*x^2 + 144*x + 280)*(x^3 + 4*x^2 -36*x -152);
T[71,61]=(x^3 -8*x^2 -76*x + 536)*(x^3 -16*x^2 + 16*x + 320);
T[71,67]=(x^3 + 12*x^2 -32*x -64)*(x^3 + 12*x^2 + 28*x -40);
T[71,71]=(x -1)^6;
T[71,73]=(x^3 -27*x^2 + 202*x -461)*(x^3 -3*x^2 -2*x + 7);
T[71,79]=(x^3 + 3*x^2 -44*x + 15)*(x^3 -7*x^2 -136*x + 525);
T[71,83]=(x^3 + 19*x^2 + 96*x + 63)*(x^3 -23*x^2 + 172*x -419);
T[71,89]=(x^3 -13*x^2 -82*x + 45)*(x^3 -x^2 -22*x -27);
T[71,97]=(x^3 -4*x^2 -36*x + 152)*(x^3 -22*x^2 + 144*x -280);

T[72,2]=(x )^5;
T[72,3]=(x + 1)*(x )^4;
T[72,5]=(x -2)*(x + 2)^2*(x )^2;
T[72,7]=(x + 4)^2*(x )^3;
T[72,11]=(x + 4)*(x -4)^2*(x )^2;
T[72,13]=(x -2)^2*(x + 2)^3;
T[72,17]=(x + 2)*(x -2)^2*(x )^2;
T[72,19]=(x -8)^2*(x + 4)^3;
T[72,23]=(x -8)*(x + 8)^2*(x )^2;
T[72,29]=(x + 6)*(x -6)^2*(x )^2;
T[72,31]=(x + 4)^2*(x -8)^3;
T[72,37]=(x + 10)^2*(x -6)^3;
T[72,41]=(x -6)*(x + 6)^2*(x )^2;
T[72,43]=(x -8)^2*(x -4)^3;
T[72,47]=(x )^5;
T[72,53]=(x -2)*(x + 2)^2*(x )^2;
T[72,59]=(x + 4)*(x -4)^2*(x )^2;
T[72,61]=(x -14)^2*(x + 2)^3;
T[72,67]=(x + 16)^2*(x + 4)^3;
T[72,71]=(x + 8)*(x -8)^2*(x )^2;
T[72,73]=(x + 10)^2*(x -10)^3;
T[72,79]=(x + 4)^2*(x + 8)^3;
T[72,83]=(x -4)*(x + 4)^2*(x )^2;
T[72,89]=(x -6)*(x + 6)^2*(x )^2;
T[72,97]=(x -14)^2*(x -2)^3;

T[73,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 -x -3);
T[73,3]=(x^2 + 3*x + 1)*(x^2 -x -3)*(x );
T[73,5]=(x -2)*(x^2 + x -3)*(x^2 + 3*x + 1);
T[73,7]=(x -2)*(x + 1)^2*(x + 3)^2;
T[73,11]=(x + 2)*(x^2 -7*x + 9)*(x^2 + 3*x + 1);
T[73,13]=(x + 6)*(x^2 + x -3)*(x^2 -x -11);
T[73,17]=(x -2)*(x^2 + 4*x -9)*(x^2 -45);
T[73,19]=(x -8)*(x -1)^2*(x + 7)^2;
T[73,23]=(x -4)*(x^2 -13*x + 39)*(x^2 + 15*x + 55);
T[73,29]=(x -2)*(x^2 -6*x -11)*(x^2 -2*x -51);
T[73,31]=(x + 2)*(x^2 -2*x -44)*(x^2 -6*x -4);
T[73,37]=(x + 6)*(x^2 + 4*x -41)*(x^2 -8*x + 3);
T[73,41]=(x -6)*(x^2 -20)*(x + 6)^2;
T[73,43]=(x + 2)*(x^2 -6*x -43)*(x + 1)^2;
T[73,47]=(x -6)*(x^2 + 6*x -11)*(x -9)^2;
T[73,53]=(x -10)*(x^2 + 2*x -51)*(x^2 -6*x -71);
T[73,59]=(x + 6)*(x^2 + 12*x + 16)*(x )^2;
T[73,61]=(x + 14)*(x^2 + 9*x + 17)*(x^2 -7*x + 1);
T[73,67]=(x -8)*(x^2 -4*x -113)*(x^2 -16*x + 19);
T[73,71]=(x^2 -3*x -27)*(x^2 + 21*x + 109)*(x );
T[73,73]=(x + 1)^2*(x -1)^3;
T[73,79]=(x + 4)*(x^2 + 19*x + 79)*(x^2 -x -29);
T[73,83]=(x + 14)*(x^2 + 3*x -9)*(x^2 -7*x -69);
T[73,89]=(x + 6)*(x^2 -12*x -81)*(x^2 -12*x + 31);
T[73,97]=(x + 10)*(x^2 + 5*x -23)*(x^2 + 9*x + 9);

T[74,2]=(x^2 + 2)*(x^2 + 2*x + 2)*(x -1)^2*(x + 1)^2;
T[74,3]=(x^2 -3*x -1)*(x^2 + x -1)*(x -1)^2*(x + 3)^2;
T[74,5]=(x^2 -x -11)*(x^2 + x -3)*(x + 2)^2*(x )^2;
T[74,7]=(x^2 + 2*x -4)*(x^2 -2*x -12)*(x + 1)^4;
T[74,11]=(x^2 + x -3)*(x^2 + 5*x + 5)*(x + 5)^2*(x -3)^2;
T[74,13]=(x^2 -x -11)*(x^2 + x -3)*(x + 2)^2*(x + 4)^2;
T[74,17]=(x^2 -20)*(x + 6)^2*(x -6)^2*(x )^2;
T[74,19]=(x^2 -20)*(x )^2*(x -2)^4;
T[74,23]=(x^2 + x -11)*(x^2 + 3*x -27)*(x -6)^2*(x -2)^2;
T[74,29]=(x^2 + 3*x -59)*(x^2 -3*x -27)*(x -6)^2*(x + 6)^2;
T[74,31]=(x^2 -3*x -1)*(x^2 -17*x + 71)*(x + 4)^4;
T[74,37]=(x + 1)^4*(x -1)^4;
T[74,41]=(x^2 -17*x + 71)*(x^2 -9*x -9)*(x + 9)^4;
T[74,43]=(x^2 + 6*x -4)*(x^2 + 6*x + 4)*(x -8)^2*(x -2)^2;
T[74,47]=(x^2 -2*x -4)*(x^2 -2*x -12)*(x + 9)^2*(x -3)^2;
T[74,53]=(x^2 + 8*x -4)*(x -1)^2*(x + 6)^2*(x + 3)^2;
T[74,59]=(x^2 -14*x + 36)*(x^2 + 14*x + 44)*(x -12)^2*(x -8)^2;
T[74,61]=(x^2 + 3*x -79)*(x^2 -19*x + 89)*(x + 8)^2*(x -8)^2;
T[74,67]=(x^2 -11*x -51)*(x^2 + 9*x -11)*(x + 4)^2*(x -8)^2;
T[74,71]=(x^2 + 12*x -44)*(x -9)^2*(x + 15)^2*(x -6)^2;
T[74,73]=(x^2 -3*x -29)*(x^2 + 21*x + 107)*(x -11)^2*(x + 1)^2;
T[74,79]=(x^2 + 7*x -147)*(x^2 -3*x -99)*(x + 10)^2*(x -4)^2;
T[74,83]=(x^2 -20*x + 48)*(x^2 + 20*x + 80)*(x + 15)^2*(x -9)^2;
T[74,89]=(x^2 + 12*x + 16)*(x^2 + 4*x -48)*(x -4)^2*(x -6)^2;
T[74,97]=(x^2 -8*x -4)*(x^2 + 4*x -204)*(x -8)^2*(x -4)^2;

T[75,2]=(x + 2)*(x -2)*(x -1)*(x + 1)^2;
T[75,3]=(x -1)^2*(x + 1)^3;
T[75,5]=(x -1)*(x )^4;
T[75,7]=(x -3)*(x + 3)*(x )^3;
T[75,11]=(x -2)^2*(x + 4)^3;
T[75,13]=(x -1)*(x -2)*(x + 1)*(x + 2)^2;
T[75,17]=(x + 2)^2*(x -2)^3;
T[75,19]=(x + 5)^2*(x -4)^3;
T[75,23]=(x -6)*(x + 6)*(x )^3;
T[75,29]=(x -10)^2*(x + 2)^3;
T[75,31]=(x + 3)^2*(x )^3;
T[75,37]=(x -10)*(x -2)*(x + 2)*(x + 10)^2;
T[75,41]=(x + 8)^2*(x -10)^3;
T[75,43]=(x + 4)*(x + 1)*(x -1)*(x -4)^2;
T[75,47]=(x + 2)*(x -2)*(x + 8)*(x -8)^2;
T[75,53]=(x -10)*(x -4)*(x + 4)*(x + 10)^2;
T[75,59]=(x + 10)^2*(x + 4)^3;
T[75,61]=(x -7)^2*(x + 2)^3;
T[75,67]=(x -3)*(x + 12)*(x + 3)*(x -12)^2;
T[75,71]=(x + 8)^5;
T[75,73]=(x + 14)*(x -14)*(x + 10)*(x -10)^2;
T[75,79]=(x )^5;
T[75,83]=(x + 12)*(x -6)*(x + 6)*(x -12)^2;
T[75,89]=(x )^2*(x + 6)^3;
T[75,97]=(x -17)*(x + 2)*(x + 17)*(x -2)^2;

T[76,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^4;
T[76,3]=(x -2)*(x -1)^2*(x + 1)^2*(x + 2)^3;
T[76,5]=(x + 1)*(x + 4)^2*(x )^2*(x -3)^3;
T[76,7]=(x + 3)*(x -3)^2*(x + 1)^5;
T[76,11]=(x -5)*(x -2)^2*(x + 6)^2*(x -3)^3;
T[76,13]=(x + 1)^2*(x -5)^2*(x + 4)^4;
T[76,17]=(x -3)^4*(x + 3)^4;
T[76,19]=(x + 1)^3*(x -1)^5;
T[76,23]=(x -8)*(x -3)^2*(x + 1)^2*(x )^3;
T[76,29]=(x + 2)*(x -9)^2*(x + 5)^2*(x -6)^3;
T[76,31]=(x -4)*(x + 8)^2*(x + 4)^5;
T[76,37]=(x -10)*(x + 2)^2*(x -2)^5;
T[76,41]=(x -10)*(x + 8)^2*(x )^2*(x + 6)^3;
T[76,43]=(x -1)*(x -4)^2*(x -8)^2*(x + 1)^3;
T[76,47]=(x + 1)*(x -8)^2*(x )^2*(x + 3)^3;
T[76,53]=(x + 4)*(x + 3)^2*(x + 1)^2*(x -12)^3;
T[76,59]=(x -6)*(x -9)^2*(x -15)^2*(x + 6)^3;
T[76,61]=(x + 13)*(x -2)^2*(x + 10)^2*(x + 1)^3;
T[76,67]=(x + 12)*(x -5)^2*(x -3)^2*(x + 4)^3;
T[76,71]=(x + 6)^2*(x -2)^3*(x -6)^3;
T[76,73]=(x -9)^3*(x + 7)^5;
T[76,79]=(x -8)^4*(x + 10)^4;
T[76,83]=(x + 12)*(x -12)^3*(x + 6)^4;
T[76,89]=(x + 12)^2*(x )^2*(x -12)^4;
T[76,97]=(x + 8)*(x + 10)^2*(x + 2)^2*(x -8)^3;

T[77,2]=(x -1)*(x^2 -5)*(x + 2)^2*(x )^2;
T[77,3]=(x -1)*(x + 3)*(x -2)*(x^2 -2*x -4)*(x + 1)^2;
T[77,5]=(x + 1)*(x -3)*(x -1)^2*(x + 2)^3;
T[77,7]=(x^2 + 2*x + 7)*(x + 1)^2*(x -1)^3;
T[77,11]=(x -1)^3*(x + 1)^4;
T[77,13]=(x^2 -2*x -4)*(x + 4)^2*(x -4)^3;
T[77,17]=(x -4)*(x -2)*(x + 6)*(x^2 + 2*x -4)*(x + 2)^2;
T[77,19]=(x -2)*(x + 6)*(x^2 -4*x -16)*(x )^3;
T[77,23]=(x + 5)*(x + 4)*(x -3)*(x^2 + 4*x -16)*(x + 1)^2;
T[77,29]=(x -10)*(x^2 -8*x -4)*(x + 6)^2*(x )^2;
T[77,31]=(x -10)*(x -1)*(x -5)*(x^2 + 10*x + 20)*(x -7)^2;
T[77,37]=(x -11)*(x + 6)*(x + 5)*(x^2 + 8*x -4)*(x -3)^2;
T[77,41]=(x -4)*(x -6)*(x + 2)*(x^2 + 18*x + 76)*(x + 8)^2;
T[77,43]=(x -12)*(x + 8)*(x + 6)^2*(x -8)^3;
T[77,47]=(x + 10)*(x^2 -10*x + 20)*(x )*(x -8)^3;
T[77,53]=(x^2 -8*x -4)*(x + 6)^5;
T[77,59]=(x -3)*(x -2)*(x + 9)*(x^2 -2*x -4)*(x -5)^2;
T[77,61]=(x + 2)*(x + 10)*(x^2 + 10*x + 20)*(x )*(x -12)^2;
T[77,67]=(x -5)*(x + 3)*(x -8)*(x^2 -20*x + 80)*(x + 7)^2;
T[77,71]=(x -9)*(x -1)*(x + 12)*(x^2 + 12*x + 16)*(x + 3)^2;
T[77,73]=(x -2)*(x + 8)*(x -10)*(x^2 + 6*x + 4)*(x -4)^2;
T[77,79]=(x -6)*(x -8)*(x^2 -80)*(x + 10)^3;
T[77,83]=(x^2 -4*x -176)*(x )*(x -12)^2*(x + 6)^2;
T[77,89]=(x + 6)*(x + 3)*(x + 15)*(x -2)^2*(x -15)^2;
T[77,97]=(x + 10)*(x + 1)*(x + 5)*(x^2 -8*x -164)*(x + 7)^2;

T[78,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3;
T[78,3]=(x^2 -x + 3)*(x^2 + 3*x + 3)*(x + 1)^3*(x -1)^4;
T[78,5]=(x + 1)^2*(x + 3)^2*(x^2 -8)^2*(x -2)^3;
T[78,7]=(x -4)*(x -1)^2*(x + 1)^2*(x + 4)^2*(x^2 -8)^2;
T[78,11]=(x + 4)*(x -4)^2*(x -6)^2*(x + 2)^6;
T[78,13]=(x -1)^5*(x + 1)^6;
T[78,17]=(x^2 -4*x -28)^2*(x -2)^3*(x + 3)^4;
T[78,19]=(x + 8)*(x -2)^2*(x -6)^2*(x^2 -8)^2*(x )^2;
T[78,23]=(x )^5*(x + 4)^6;
T[78,29]=(x + 10)^2*(x -6)^3*(x -2)^6;
T[78,31]=(x^2 + 8*x + 8)^2*(x + 4)^3*(x -4)^4;
T[78,37]=(x + 7)^2*(x -3)^2*(x^2 + 4*x -28)^2*(x + 2)^3;
T[78,41]=(x + 10)*(x -6)^2*(x^2 -16*x + 56)^2*(x )^4;
T[78,43]=(x -4)*(x + 12)^2*(x + 1)^2*(x + 5)^2*(x^2 -8*x -16)^2;
T[78,47]=(x -8)*(x -13)^2*(x -3)^2*(x^2 + 12*x + 4)^2*(x )^2;
T[78,53]=(x + 10)*(x -6)^2*(x -12)^2*(x )^2*(x + 2)^4;
T[78,59]=(x -4)*(x + 6)^2*(x + 10)^2*(x -12)^2*(x^2 -4*x -28)^2;
T[78,61]=(x + 8)^2*(x -8)^2*(x^2 -4*x -124)^2*(x + 2)^3;
T[78,67]=(x + 16)*(x -14)^2*(x + 2)^2*(x + 8)^2*(x^2 -8*x + 8)^2;
T[78,71]=(x + 8)*(x + 5)^2*(x + 3)^2*(x )^2*(x -2)^4;
T[78,73]=(x + 10)^2*(x^2 -12*x + 4)^2*(x -2)^5;
T[78,79]=(x + 4)^2*(x^2 -128)^2*(x -8)^5;
T[78,83]=(x -4)^2*(x^2 + 4*x -28)^2*(x )^2*(x -12)^3;
T[78,89]=(x -14)*(x + 2)^2*(x -6)^2*(x + 6)^2*(x^2 -24*x + 136)^2;
T[78,97]=(x + 10)^2*(x -14)^2*(x^2 + 4*x -28)^2*(x -10)^3;

T[79,2]=(x + 1)*(x^5 -6*x^3 + 8*x -1);
T[79,3]=(x + 1)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16);
T[79,5]=(x + 3)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31);
T[79,7]=(x + 1)*(x^5 + 5*x^4 -6*x^3 -52*x^2 -56*x -16);
T[79,11]=(x + 2)*(x^5 -2*x^4 -35*x^3 + 34*x^2 + 185*x + 106);
T[79,13]=(x -3)*(x^5 + 3*x^4 -23*x^3 -123*x^2 -197*x -103);
T[79,17]=(x + 6)*(x^5 -10*x^4 + 16*x^3 + 88*x^2 -224*x + 32);
T[79,19]=(x -4)*(x^5 + 4*x^4 -47*x^3 -124*x^2 + 541*x + 488);
T[79,23]=(x -2)*(x^5 -2*x^4 -43*x^3 + 106*x^2 + 177*x -142);
T[79,29]=(x + 6)*(x^5 -6*x^4 -52*x^3 + 392*x^2 -496*x -32);
T[79,31]=(x + 10)*(x^5 -2*x^4 -63*x^3 + 6*x^2 + 397*x + 314);
T[79,37]=(x + 2)*(x^5 -84*x^3 -64*x^2 + 1264*x + 2272);
T[79,41]=(x + 10)*(x^5 -30*x^4 + 336*x^3 -1752*x^2 + 4256*x -3872);
T[79,43]=(x -4)*(x^5 + 14*x^4 + 44*x^3 -120*x^2 -688*x -704);
T[79,47]=(x -7)*(x^5 -5*x^4 -136*x^3 + 536*x^2 + 4176*x -13456);
T[79,53]=(x -8)*(x^5 -2*x^4 -136*x^3 -240*x^2 + 3792*x + 12352);
T[79,59]=(x + 3)*(x^5 -5*x^4 -70*x^3 + 368*x^2 + 864*x -4624);
T[79,61]=(x + 4)*(x^5 + 6*x^4 -196*x^3 -808*x^2 + 9840*x + 17984);
T[79,67]=(x -8)*(x^5 + 16*x^4 -47*x^3 -1084*x^2 + 865*x + 3368);
T[79,71]=(x -15)*(x^5 -3*x^4 -94*x^3 -68*x^2 + 1208*x + 848);
T[79,73]=(x -2)*(x^5 + 12*x^4 + 31*x^3 + 24*x^2 + x -2);
T[79,79]=(x + 1)*(x -1)^5;
T[79,83]=(x + 6)*(x^5 + 30*x^4 + 280*x^3 + 640*x^2 -1536*x + 512);
T[79,89]=(x + 7)*(x^5 -47*x^4 + 817*x^3 -6181*x^2 + 16507*x + 5951);
T[79,97]=(x + 19)*(x^5 + x^4 -211*x^3 -497*x^2 + 6847*x -1793);

T[80,2]=(x )^7;
T[80,3]=(x -2)*(x + 2)^3*(x )^3;
T[80,5]=(x -1)^3*(x + 1)^4;
T[80,7]=(x -4)*(x + 2)*(x + 4)^2*(x -2)^3;
T[80,11]=(x + 4)*(x -4)^2*(x )^4;
T[80,13]=(x + 2)^3*(x -2)^4;
T[80,17]=(x -2)^3*(x + 6)^4;
T[80,19]=(x -4)^3*(x + 4)^4;
T[80,23]=(x + 6)*(x + 4)*(x -4)^2*(x -6)^3;
T[80,29]=(x + 2)^3*(x -6)^4;
T[80,31]=(x -8)*(x -4)*(x + 8)^2*(x + 4)^3;
T[80,37]=(x -6)^3*(x -2)^4;
T[80,41]=(x + 6)^3*(x -6)^4;
T[80,43]=(x -8)*(x -10)*(x + 8)^2*(x + 10)^3;
T[80,47]=(x + 4)*(x -6)*(x -4)^2*(x + 6)^3;
T[80,53]=(x -6)^3*(x + 6)^4;
T[80,59]=(x + 12)*(x -4)*(x + 4)^2*(x -12)^3;
T[80,61]=(x + 2)^3*(x -2)^4;
T[80,67]=(x + 2)*(x + 8)*(x -8)^2*(x -2)^3;
T[80,71]=(x -12)*(x + 12)^3*(x )^3;
T[80,73]=(x + 6)^3*(x -2)^4;
T[80,79]=(x + 8)*(x -8)^3*(x )^3;
T[80,83]=(x + 6)*(x -16)*(x + 16)^2*(x -6)^3;
T[80,89]=(x + 6)^7;
T[80,97]=(x + 14)^3*(x -2)^4;

T[81,2]=(x^2 -3)*(x )^2;
T[81,3]=(x )^4;
T[81,5]=(x^2 -3)*(x )^2;
T[81,7]=(x + 1)^2*(x -2)^2;
T[81,11]=(x^2 -12)*(x )^2;
T[81,13]=(x + 1)^2*(x -5)^2;
T[81,17]=(x^2 -27)*(x )^2;
T[81,19]=(x -2)^2*(x + 7)^2;
T[81,23]=(x^2 -12)*(x )^2;
T[81,29]=(x^2 -3)*(x )^2;
T[81,31]=(x -8)^2*(x + 4)^2;
T[81,37]=(x + 7)^2*(x -11)^2;
T[81,41]=(x^2 -48)*(x )^2;
T[81,43]=(x -8)^2*(x -2)^2;
T[81,47]=(x^2 -48)*(x )^2;
T[81,53]=(x )^4;
T[81,59]=(x^2 -192)*(x )^2;
T[81,61]=(x + 7)^2*(x + 1)^2;
T[81,67]=(x -5)^2*(x + 10)^2;
T[81,71]=(x^2 -108)*(x )^2;
T[81,73]=(x + 7)^4;
T[81,79]=(x -2)^2*(x -17)^2;
T[81,83]=(x^2 -192)*(x )^2;
T[81,89]=(x^2 -27)*(x )^2;
T[81,97]=(x + 19)^2*(x -2)^2;

T[82,2]=(x + 1)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)*(x -1)^2;
T[82,3]=(x + 2)*(x^2 -2)*(x^3 -4*x + 2)^2;
T[82,5]=(x + 2)*(x^2 -8)*(x^3 + 2*x^2 -4*x -4)^2;
T[82,7]=(x + 4)*(x^2 + 4*x + 2)*(x^3 -6*x^2 + 8*x -2)^2;
T[82,11]=(x + 2)*(x^2 -18)*(x^3 -2*x^2 -20*x + 50)^2;
T[82,13]=(x -4)*(x^3 + 2*x^2 -12*x -8)^2*(x )^2;
T[82,17]=(x^2 -4*x -28)*(x + 2)^7;
T[82,19]=(x -6)*(x^2 + 8*x + 14)*(x^3 -4*x^2 -16*x -10)^2;
T[82,23]=(x + 8)*(x^2 -8*x + 8)*(x^3 -4*x^2 -32*x -32)^2;
T[82,29]=(x^2 -8*x -16)*(x )*(x^3 + 6*x^2 -4*x -40)^2;
T[82,31]=(x + 8)*(x^2 + 8*x + 8)*(x^3 -16*x^2 + 64*x -32)^2;
T[82,37]=(x -2)*(x^2 -72)*(x^3 + 6*x^2 -36*x -108)^2;
T[82,41]=(x + 1)^3*(x -1)^6;
T[82,43]=(x + 12)*(x^2 -8*x -16)*(x^3 + 4*x^2 -8*x -16)^2;
T[82,47]=(x -4)*(x^2 + 4*x -46)*(x^3 -120*x -502)^2;
T[82,53]=(x + 4)*(x -12)^2*(x^3 -6*x^2 -4*x + 8)^2;
T[82,59]=(x -8)*(x^2 + 8*x + 8)*(x^3 + 8*x^2 -16*x -160)^2;
T[82,61]=(x + 14)*(x -6)^2*(x^3 -2*x^2 -52*x + 184)^2;
T[82,67]=(x + 2)*(x^2 + 8*x -2)*(x^3 + 2*x^2 -20*x -50)^2;
T[82,71]=(x -8)*(x^2 + 4*x + 2)*(x^3 -20*x^2 + 84*x + 134)^2;
T[82,73]=(x -10)*(x^2 + 16*x + 32)*(x^3 + 2*x^2 -180*x + 244)^2;
T[82,79]=(x -4)*(x^2 + 12*x + 18)*(x^3 -32*x^2 + 328*x -1090)^2;
T[82,83]=(x -12)*(x^2 -24*x + 112)*(x^3 -64*x -128)^2;
T[82,89]=(x + 14)*(x^2 + 12*x + 4)*(x^3 + 6*x^2 -148*x -920)^2;
T[82,97]=(x -6)*(x^2 + 4*x -28)*(x^3 -6*x^2 -52*x + 248)^2;

T[83,2]=(x + 1)*(x^6 -x^5 -9*x^4 + 7*x^3 + 20*x^2 -12*x -8);
T[83,3]=(x + 1)*(x^6 -x^5 -10*x^4 + 5*x^3 + 30*x^2 -4*x -25);
T[83,5]=(x + 2)*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160);
T[83,7]=(x + 3)*(x^6 -3*x^5 -22*x^4 + 55*x^3 + 154*x^2 -228*x -409);
T[83,11]=(x -3)*(x^6 + 3*x^5 -26*x^4 -83*x^3 + 66*x^2 + 156*x -113);
T[83,13]=(x + 6)*(x^6 -14*x^5 + 44*x^4 + 108*x^3 -488*x^2 -288*x + 992);
T[83,17]=(x -5)*(x^6 + 5*x^5 -20*x^4 -77*x^3 + 162*x^2 + 188*x -275);
T[83,19]=(x -2)*(x^6 + 4*x^5 -68*x^4 -300*x^3 + 976*x^2 + 5648*x + 6176);
T[83,23]=(x + 4)*(x^6 + 5*x^5 -61*x^4 -377*x^3 + 608*x^2 + 7024*x + 10912);
T[83,29]=(x + 7)*(x^6 + x^5 -88*x^4 -181*x^3 + 578*x^2 -192*x -55);
T[83,31]=(x -5)*(x^6 -3*x^5 -66*x^4 -93*x^3 + 390*x^2 + 608*x -313);
T[83,37]=(x + 11)*(x^6 -39*x^5 + 576*x^4 -3785*x^3 + 7934*x^2 + 22268*x -91499);
T[83,41]=(x + 2)*(x^6 + x^5 -47*x^4 -x^3 + 482*x^2 -516*x -248);
T[83,43]=(x + 8)*(x^6 + 8*x^5 -44*x^4 -456*x^3 -192*x^2 + 4224*x + 6400);
T[83,47]=(x^6 + 12*x^5 -96*x^4 -1812*x^3 -6648*x^2 + 992*x + 25952)*(x );
T[83,53]=(x -6)*(x^6 -14*x^5 -64*x^4 + 1064*x^3 + 448*x^2 -10048*x -64);
T[83,59]=(x -5)*(x^6 + 17*x^5 + 10*x^4 -493*x^3 -1018*x^2 + 1768*x + 3527);
T[83,61]=(x -5)*(x^6 + 5*x^5 -208*x^4 -565*x^3 + 10086*x^2 + 1436*x -47347);
T[83,67]=(x + 2)*(x^6 -16*x^5 -128*x^4 + 3240*x^3 -10464*x^2 -57376*x + 264256);
T[83,71]=(x -2)*(x^6 + 26*x^5 + 168*x^4 -216*x^3 -2688*x^2 + 1344*x + 7232);
T[83,73]=(x^6 + 6*x^5 -268*x^4 -1484*x^3 + 17920*x^2 + 94416*x -39136)*(x );
T[83,79]=(x -14)*(x^6 + 12*x^5 -12*x^4 -268*x^3 + 112*x^2 + 304*x -160);
T[83,83]=(x + 1)*(x -1)^6;
T[83,89]=(x^6 + 22*x^5 -28*x^4 -2424*x^3 -3232*x^2 + 56960*x + 144896)*(x );
T[83,97]=(x + 8)*(x^6 -6*x^5 -300*x^4 + 1176*x^3 + 19296*x^2 + 9984*x -101120);

T[84,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2*(x )^6;
T[84,3]=(x^2 + 2*x + 3)^2*(x + 1)^3*(x -1)^4;
T[84,5]=(x -4)*(x + 2)^5*(x )^5;
T[84,7]=(x -1)^5*(x + 1)^6;
T[84,11]=(x + 6)*(x -2)*(x + 4)^2*(x -4)^3*(x )^4;
T[84,13]=(x + 6)*(x -2)*(x -6)^2*(x + 2)^3*(x + 4)^4;
T[84,17]=(x + 4)*(x )*(x -2)^2*(x + 6)^3*(x -6)^4;
T[84,19]=(x -4)^3*(x -2)^4*(x + 4)^4;
T[84,23]=(x + 6)*(x -2)*(x -8)^2*(x )^7;
T[84,29]=(x -6)*(x + 6)^4*(x + 2)^6;
T[84,31]=(x -8)*(x + 4)^4*(x )^6;
T[84,37]=(x + 10)^2*(x -6)^3*(x -2)^6;
T[84,41]=(x -12)*(x )*(x + 6)^2*(x -2)^3*(x -6)^4;
T[84,43]=(x -8)^4*(x + 4)^7;
T[84,47]=(x -12)^2*(x + 12)^4*(x )^5;
T[84,53]=(x + 6)^2*(x -6)^9;
T[84,59]=(x + 8)*(x )*(x -4)^2*(x -12)^3*(x + 6)^4;
T[84,61]=(x + 10)*(x -6)^3*(x + 2)^3*(x -8)^4;
T[84,67]=(x + 8)*(x -8)*(x + 4)^4*(x -4)^5;
T[84,71]=(x -14)*(x -6)*(x -8)^2*(x )^7;
T[84,73]=(x + 2)*(x + 10)*(x -10)^2*(x + 6)^3*(x -2)^4;
T[84,79]=(x -12)*(x + 4)*(x )^2*(x + 16)^3*(x -8)^4;
T[84,83]=(x + 4)^3*(x + 12)^4*(x + 6)^4;
T[84,89]=(x -12)*(x )*(x + 14)^3*(x + 6)^6;
T[84,97]=(x + 2)*(x + 14)^2*(x -18)^3*(x + 10)^5;

T[85,2]=(x -1)*(x^2 -3)*(x^2 + 2*x -1)*(x + 1)^2;
T[85,3]=(x -2)*(x^2 + 4*x + 2)*(x^2 -2*x -2)*(x )^2;
T[85,5]=(x^2 + 2*x + 5)*(x -1)^2*(x + 1)^3;
T[85,7]=(x + 2)*(x^2 + 4*x + 2)*(x^2 + 2*x -2)*(x -4)^2;
T[85,11]=(x -2)*(x^2 -6*x + 6)*(x^2 + 8*x + 14)*(x )^2;
T[85,13]=(x -2)*(x^2 -8)*(x + 4)^2*(x + 2)^2;
T[85,17]=(x -1)^3*(x + 1)^4;
T[85,19]=(x^2 -8)*(x^2 -4*x -8)*(x )*(x + 4)^2;
T[85,23]=(x -6)*(x^2 + 4*x + 2)*(x^2 + 6*x -18)*(x -4)^2;
T[85,29]=(x + 6)*(x^2 + 4*x -4)*(x^2 -12)*(x -6)^2;
T[85,31]=(x + 10)*(x^2 -10*x + 22)*(x^2 -18)*(x -4)^2;
T[85,37]=(x -2)*(x^2 + 4*x -68)*(x^2 + 8*x + 4)*(x + 2)^2;
T[85,41]=(x -10)*(x^2 -12)*(x^2 -4*x -68)*(x + 6)^2;
T[85,43]=(x^2 + 8*x + 4)*(x^2 -4*x -28)*(x -4)^3;
T[85,47]=(x -12)*(x^2 -12*x -12)*(x^2 + 4*x -4)*(x )^2;
T[85,53]=(x + 10)*(x^2 -12*x + 4)*(x -6)^4;
T[85,59]=(x -8)*(x^2 + 24*x + 136)*(x^2 -12*x + 24)*(x + 12)^2;
T[85,61]=(x + 14)*(x^2 -4*x -44)*(x^2 -4*x -28)*(x + 10)^2;
T[85,67]=(x -8)*(x^2 + 12*x + 28)*(x -4)^2*(x + 10)^2;
T[85,71]=(x + 2)*(x^2 -6*x -66)*(x^2 -18)*(x + 4)^2;
T[85,73]=(x + 14)*(x^2 + 8*x -92)*(x^2 + 4*x -4)*(x + 6)^2;
T[85,79]=(x + 14)*(x^2 -8*x + 14)*(x^2 + 2*x -242)*(x -12)^2;
T[85,83]=(x -4)*(x^2 + 4*x -124)*(x^2 -24*x + 132)*(x + 4)^2;
T[85,89]=(x -6)*(x^2 + 12*x -72)*(x^2 + 16*x + 32)*(x -10)^2;
T[85,97]=(x^2 -4*x -44)*(x^2 + 4*x -28)*(x -2)^3;

T[86,2]=(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x + 1)^2*(x -1)^2;
T[86,3]=(x^2 + x -5)*(x^2 -x -1)*(x + 2)^2*(x^2 -2)^2;
T[86,5]=(x^2 -3*x -3)*(x^2 + 3*x + 1)*(x + 4)^2*(x^2 -4*x + 2)^2;
T[86,7]=(x^2 -20)*(x -2)^2*(x^2 + 4*x + 2)^2*(x )^2;
T[86,11]=(x^2 + 4*x -16)*(x -3)^2*(x^2 + 2*x -7)^2*(x )^2;
T[86,13]=(x^2 -20)*(x -2)^2*(x + 5)^2*(x^2 -2*x -7)^2;
T[86,17]=(x^2 + x -1)*(x^2 + 9*x + 15)*(x + 3)^2*(x^2 -10*x + 17)^2;
T[86,19]=(x^2 -11*x + 29)*(x^2 -x -47)*(x + 2)^2*(x^2 + 4*x -4)^2;
T[86,23]=(x^2 -3*x -9)*(x^2 + 9*x + 15)*(x + 1)^2*(x^2 -2*x -31)^2;
T[86,29]=(x^2 + 7*x + 1)*(x^2 -3*x -3)*(x + 6)^2*(x^2 -18)^2;
T[86,31]=(x^2 -x -47)*(x^2 -13*x + 41)*(x + 1)^2*(x + 3)^4;
T[86,37]=(x^2 -x -47)*(x^2 + 5*x + 5)*(x^2 -72)^2*(x )^2;
T[86,41]=(x^2 -3*x -45)*(x^2 + 5*x -5)*(x -5)^2*(x^2 + 2*x -7)^2;
T[86,43]=(x + 1)^4*(x -1)^6;
T[86,47]=(x^2 + 9*x -27)*(x^2 -3*x -59)*(x -4)^2*(x -6)^4;
T[86,53]=(x^2 + 10*x + 20)*(x^2 -6*x -12)*(x + 5)^2*(x^2 -22*x + 113)^2;
T[86,59]=(x^2 -16*x + 44)*(x + 12)^2*(x -6)^2*(x^2 + 4*x -4)^2;
T[86,61]=(x^2 -4*x -76)*(x^2 -8*x -2)^2*(x -2)^4;
T[86,67]=(x + 10)^2*(x -2)^2*(x + 3)^2*(x^2 -2*x -71)^2;
T[86,71]=(x^2 -84)*(x^2 + 16*x + 44)*(x -2)^2*(x^2 + 12*x + 28)^2;
T[86,73]=(x^2 -4*x -76)*(x -2)^2*(x -14)^2*(x^2 + 24*x + 126)^2;
T[86,79]=(x^2 + 5*x -41)*(x^2 + x -1)*(x + 8)^2*(x^2 -4*x -4)^2;
T[86,83]=(x^2 + 10*x -20)*(x^2 + 6*x -12)*(x -15)^2*(x^2 -18*x + 49)^2;
T[86,89]=(x^2 -2*x -44)*(x^2 -6*x -12)*(x + 4)^2*(x^2 + 12*x + 18)^2;
T[86,97]=(x^2 + 11*x -17)*(x^2 + 11*x -1)*(x -7)^2*(x^2 + 2*x -7)^2;

T[87,2]=(x^2 -x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + 2*x -1)^2;
T[87,3]=(x^4 -2*x^3 + 5*x^2 -6*x + 9)*(x -1)^2*(x + 1)^3;
T[87,5]=(x^2 -2*x -4)*(x^3 -16*x + 8)*(x + 1)^4;
T[87,7]=(x^2 + 4*x -1)*(x^3 -4*x^2 -x + 8)*(x^2 -8)^2;
T[87,11]=(x^2 -4*x -1)*(x^3 + 8*x^2 + 15*x + 4)*(x^2 -2*x -1)^2;
T[87,13]=(x^2 + 2*x -19)*(x^3 -4*x^2 -7*x + 26)*(x^2 + 2*x -7)^2;
T[87,17]=(x^3 -4*x^2 -27*x + 94)*(x -3)^2*(x^2 + 4*x -4)^2;
T[87,19]=(x^2 + 10*x + 20)*(x^3 + 2*x^2 -20*x + 16)*(x -6)^4;
T[87,23]=(x^2 + 2*x -44)*(x^3 -6*x^2 -4*x + 32)*(x^2 + 4*x -28)^2;
T[87,29]=(x + 1)^2*(x -1)^7;
T[87,31]=(x^2 + 6*x -36)*(x^3 -6*x^2 -4*x + 32)*(x^2 -6*x -41)^2;
T[87,37]=(x^2 -6*x + 4)*(x^3 -8*x^2 + 8)*(x + 4)^4;
T[87,41]=(x^3 + 2*x^2 -100*x + 56)*(x -2)^2*(x^2 -8*x -56)^2;
T[87,43]=(x^3 + 4*x^2 -96*x -256)*(x -4)^2*(x^2 -10*x + 23)^2;
T[87,47]=(x^2 + 4*x -41)*(x^3 + 12*x^2 -9*x -216)*(x^2 -2*x -17)^2;
T[87,53]=(x^2 -18*x + 76)*(x^3 -8*x^2 -104*x + 248)*(x^2 -2*x -71)^2;
T[87,59]=(x^2 -20)*(x^3 + 20*x^2 + 108*x + 112)*(x^2 -4*x -28)^2;
T[87,61]=(x^2 + 6*x + 4)*(x^3 -4*x^2 -16*x + 56)*(x^2 + 4*x -4)^2;
T[87,67]=(x^2 + 4*x -121)*(x^3 -57*x + 52)*(x^2 -32)^2;
T[87,71]=(x^2 + 6*x + 4)*(x^3 + 14*x^2 -60*x -416)*(x^2 + 12*x + 28)^2;
T[87,73]=(x^2 -18*x + 76)*(x^3 + 8*x^2 -8)*(x -4)^4;
T[87,79]=(x^2 + 30*x + 220)*(x^3 + 2*x^2 -60*x -224)*(x^2 + 2*x -1)^2;
T[87,83]=(x^2 + 12*x -44)*(x^3 + 8*x^2 -28*x -208)*(x^2 -4*x -28)^2;
T[87,89]=(x^3 + 8*x^2 -131*x -74)*(x -5)^2*(x^2 + 8*x -56)^2;
T[87,97]=(x^2 -6*x -236)*(x^3 -4*x^2 -72*x -104)*(x^2 + 8*x -56)^2;

T[88,2]=(x^2 + 2*x + 2)*(x )^7;
T[88,3]=(x + 3)*(x^2 -x -4)*(x -1)^2*(x + 1)^4;
T[88,5]=(x^2 -3*x -2)*(x + 3)^3*(x -1)^4;
T[88,7]=(x^2 + 2*x -16)*(x -2)^2*(x + 2)^5;
T[88,11]=(x -1)^4*(x + 1)^5;
T[88,13]=(x^2 + 2*x -16)*(x )*(x + 4)^2*(x -4)^4;
T[88,17]=(x + 6)*(x -2)^2*(x -6)^2*(x + 2)^4;
T[88,19]=(x -4)*(x -8)^2*(x + 4)^2*(x )^4;
T[88,23]=(x -1)*(x^2 -9*x + 16)*(x + 3)^2*(x + 1)^4;
T[88,29]=(x + 8)*(x^2 + 2*x -16)*(x )^6;
T[88,31]=(x + 7)*(x^2 + 7*x + 8)*(x -5)^2*(x -7)^4;
T[88,37]=(x^2 + 11*x + 26)*(x + 1)^3*(x -3)^4;
T[88,41]=(x -4)*(x^2 -6*x -8)*(x )^2*(x + 8)^4;
T[88,43]=(x -6)*(x^2 + 6*x -8)*(x + 10)^2*(x + 6)^4;
T[88,47]=(x + 8)*(x )^2*(x -8)^6;
T[88,53]=(x -2)*(x^2 -8*x -52)*(x + 6)^6;
T[88,59]=(x + 1)*(x^2 + 5*x -100)*(x -3)^2*(x -5)^4;
T[88,61]=(x -4)*(x^2 + 6*x -8)*(x + 4)^2*(x -12)^4;
T[88,67]=(x + 5)*(x^2 -15*x + 52)*(x + 1)^2*(x + 7)^4;
T[88,71]=(x -3)*(x^2 + 5*x -32)*(x -15)^2*(x + 3)^4;
T[88,73]=(x -16)*(x^2 -2*x -16)*(x + 4)^2*(x -4)^4;
T[88,79]=(x^2 + 14*x + 32)*(x -2)^3*(x + 10)^4;
T[88,83]=(x + 2)*(x^2 -10*x + 8)*(x -6)^2*(x + 6)^4;
T[88,89]=(x^2 + 7*x -26)*(x + 9)^2*(x -15)^5;
T[88,97]=(x^2 -27*x + 178)*(x + 7)^7;

T[89,2]=(x -1)*(x + 1)*(x^5 + x^4 -10*x^3 -10*x^2 + 21*x + 17);
T[89,3]=(x -2)*(x + 1)*(x^5 + 3*x^4 -4*x^3 -16*x^2 -9*x -1);
T[89,5]=(x + 2)*(x + 1)*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13);
T[89,7]=(x + 4)*(x -2)*(x^5 -8*x^4 + 10*x^3 + 36*x^2 -68*x + 28);
T[89,11]=(x + 2)*(x + 4)*(x^5 -6*x^4 -20*x^3 + 112*x^2 + 80*x -112);
T[89,13]=(x^5 -28*x^3 -56*x^2 + 16)*(x -2)^2;
T[89,17]=(x -3)*(x -6)*(x^5 + 13*x^4 + 34*x^3 -154*x^2 -791*x -883);
T[89,19]=(x + 5)*(x + 2)*(x^5 -13*x^4 + 42*x^3 + 42*x^2 -297*x + 199);
T[89,23]=(x -2)*(x -7)*(x^5 -x^4 -62*x^3 + 150*x^2 + 631*x -1657);
T[89,29]=(x + 6)*(x^5 -2*x^4 -72*x^3 + 312*x^2 -48*x -784)*(x );
T[89,31]=(x + 9)*(x -6)*(x^5 -19*x^4 + 102*x^3 -114*x^2 + 13*x + 7);
T[89,37]=(x + 2)*(x -10)*(x^5 + 14*x^4 + 8*x^3 -336*x^2 + 80*x + 1120);
T[89,41]=(x + 6)*(x^5 + 2*x^4 -60*x^3 -24*x^2 + 800*x -1072)*(x );
T[89,43]=(x -2)*(x + 7)*(x^5 -x^4 -68*x^3 -56*x^2 + 877*x + 1573);
T[89,47]=(x -12)*(x + 12)*(x^5 + 4*x^4 -44*x^3 + 32*x^2 + 112*x -16);
T[89,53]=(x + 3)*(x + 6)*(x^5 + 11*x^4 -6*x^3 -342*x^2 -547*x + 1319);
T[89,59]=(x -4)*(x + 10)*(x^5 -118*x^3 + 784*x^2 -1900*x + 1580);
T[89,61]=(x + 6)*(x -6)*(x^5 -4*x^4 -8*x^3 + 24*x^2 + 16*x -16);
T[89,67]=(x^5 -4*x^4 -136*x^3 + 240*x^2 + 4800*x + 2000)*(x -12)^2;
T[89,71]=(x -4)*(x + 10)*(x^5 + 2*x^4 -280*x^3 -624*x^2 + 19280*x + 47008);
T[89,73]=(x -7)*(x -10)*(x^5 + 25*x^4 + 186*x^3 + 234*x^2 -1595*x -3475);
T[89,79]=(x + 6)*(x + 12)*(x^5 -54*x^4 + 1096*x^3 -10352*x^2 + 45392*x -74464);
T[89,83]=(x -12)*(x + 6)*(x^5 + 20*x^4 + 78*x^3 -244*x^2 -172*x + 196);
T[89,89]=(x + 1)*(x -1)^6;
T[89,97]=(x -9)*(x + 18)*(x^5 -13*x^4 -130*x^3 + 2750*x^2 -13859*x + 21599);

T[90,2]=(x^2 -x + 2)*(x -1)^2*(x^2 + x + 2)^2*(x + 1)^3;
T[90,3]=(x -1)*(x + 1)^2*(x )^8;
T[90,5]=(x + 1)^5*(x -1)^6;
T[90,7]=(x -2)^2*(x + 4)^3*(x )^6;
T[90,11]=(x -6)*(x + 6)*(x -4)^2*(x )^3*(x + 4)^4;
T[90,13]=(x + 4)^2*(x -2)^3*(x + 2)^6;
T[90,17]=(x + 6)^2*(x + 2)^2*(x -6)^3*(x -2)^4;
T[90,19]=(x + 4)^5*(x -4)^6;
T[90,23]=(x )^11;
T[90,29]=(x -6)^2*(x -2)^2*(x + 6)^3*(x + 2)^4;
T[90,31]=(x + 4)^2*(x -8)^3*(x )^6;
T[90,37]=(x -8)^2*(x -2)^3*(x + 10)^6;
T[90,41]=(x -6)*(x + 6)^2*(x + 10)^2*(x )^2*(x -10)^4;
T[90,43]=(x -8)^2*(x + 4)^3*(x -4)^6;
T[90,47]=(x + 8)^2*(x -8)^4*(x )^5;
T[90,53]=(x -6)^2*(x -10)^2*(x + 6)^3*(x + 10)^4;
T[90,59]=(x -6)*(x + 6)*(x -4)^2*(x )^3*(x + 4)^4;
T[90,61]=(x -2)^2*(x + 10)^3*(x + 2)^6;
T[90,67]=(x + 4)^5*(x -12)^6;
T[90,71]=(x -12)*(x + 12)*(x -8)^2*(x )^3*(x + 8)^4;
T[90,73]=(x + 10)^2*(x -2)^3*(x -10)^6;
T[90,79]=(x + 4)^2*(x -8)^3*(x )^6;
T[90,83]=(x + 12)^4*(x -12)^7;
T[90,89]=(x + 18)*(x -12)*(x + 12)*(x -18)^2*(x -6)^2*(x + 6)^4;
T[90,97]=(x -2)^11;

T[91,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x );
T[91,3]=(x + 2)*(x^2 -2)*(x^3 + 2*x^2 -6*x -8)*(x );
T[91,5]=(x^2 -6*x + 7)*(x^3 -2*x^2 -3*x + 2)*(x + 3)^2;
T[91,7]=(x -1)^3*(x + 1)^4;
T[91,11]=(x + 6)*(x^2 -18)*(x^3 -2*x^2 -6*x + 8)*(x );
T[91,13]=(x + 1)^3*(x -1)^4;
T[91,17]=(x + 6)*(x -4)*(x^2 -2)*(x^3 -4*x^2 -10*x -4);
T[91,19]=(x -5)*(x + 7)*(x^2 + 6*x -9)*(x^3 + 4*x^2 + x -4);
T[91,23]=(x^2 + 6*x + 1)*(x^3 -10*x^2 + x + 136)*(x -3)^2;
T[91,29]=(x + 9)*(x + 5)*(x^2 -6*x + 1)*(x^3 -24*x^2 + 185*x -454);
T[91,31]=(x -5)*(x + 3)*(x^2 + 2*x -17)*(x^3 + 4*x^2 -19*x + 16);
T[91,37]=(x + 4)*(x -2)*(x^2 + 4*x -14)*(x^3 -58*x -124);
T[91,41]=(x^2 -12*x + 28)*(x^3 -2*x^2 -28*x -8)*(x + 6)^2;
T[91,43]=(x^3 -10*x^2 -71*x + 628)*(x + 5)^2*(x + 1)^2;
T[91,47]=(x -3)*(x -7)*(x^2 -6*x + 7)*(x^3 + 8*x^2 -79*x -544);
T[91,53]=(x^2 + 6*x + 1)*(x^3 -8*x^2 -35*x -22)*(x + 9)^2;
T[91,59]=(x -8)*(x^2 -12*x + 4)*(x^3 + 4*x^2 -156*x -688)*(x );
T[91,61]=(x -6)^2*(x + 10)^2*(x + 2)^3;
T[91,67]=(x -14)*(x + 6)*(x^2 + 12*x -36)*(x^3 + 12*x^2 -124*x -976);
T[91,71]=(x + 8)*(x + 6)*(x^2 + 12*x -14)*(x^3 + 6*x^2 -22*x + 16);
T[91,73]=(x + 13)*(x -11)*(x^2 + 10*x + 7)*(x^3 + 10*x^2 -99*x -274);
T[91,79]=(x -3)*(x + 1)*(x^2 -14*x -23)*(x^3 + 14*x^2 + 5*x -16);
T[91,83]=(x -3)*(x -15)*(x^2 -18*x + 63)*(x^3 + 12*x^2 -271*x -3268);
T[91,89]=(x -3)*(x -15)*(x^2 -6*x + 7)*(x^3 -2*x^2 -95*x + 422);
T[91,97]=(x -7)*(x + 1)*(x^2 + 2*x -161)*(x^3 + 10*x^2 + 29*x + 22);

T[92,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x )^5;
T[92,3]=(x + 3)*(x -1)*(x )^2*(x^2 -5)^3;
T[92,5]=(x + 2)*(x )*(x -4)^2*(x^2 + 2*x -4)^3;
T[92,7]=(x -2)*(x + 4)^3*(x^2 -2*x -4)^3;
T[92,11]=(x )*(x -2)^3*(x^2 + 6*x + 4)^3;
T[92,13]=(x + 1)*(x + 5)*(x + 2)^2*(x -3)^6;
T[92,17]=(x -4)*(x + 6)*(x + 2)^2*(x^2 -6*x + 4)^3;
T[92,19]=(x -2)*(x + 2)^9;
T[92,23]=(x + 1)*(x -1)^9;
T[92,29]=(x + 7)*(x -2)^2*(x + 3)^7;
T[92,31]=(x -5)*(x + 3)*(x )^2*(x^2 -45)^3;
T[92,37]=(x -2)*(x -8)*(x + 4)^2*(x^2 -2*x -4)^3;
T[92,41]=(x -3)*(x + 9)*(x -6)^2*(x^2 -2*x -19)^3;
T[92,43]=(x + 8)*(x -8)*(x -10)^2*(x )^6;
T[92,47]=(x -9)^2*(x )^2*(x^2 -5)^3;
T[92,53]=(x -6)*(x -2)*(x + 4)^2*(x^2 + 8*x -4)^3;
T[92,59]=(x + 12)*(x )*(x -12)^2*(x^2 -4*x -16)^3;
T[92,61]=(x -14)*(x + 2)*(x + 8)^2*(x^2 -4*x -76)^3;
T[92,67]=(x -8)*(x -14)*(x + 10)^2*(x^2 + 10*x + 20)^3;
T[92,71]=(x + 15)*(x + 3)*(x )^2*(x^2 -20*x + 95)^3;
T[92,73]=(x + 3)*(x + 7)*(x -6)^2*(x^2 -22*x + 101)^3;
T[92,79]=(x + 6)*(x + 10)*(x + 12)^2*(x^2 + 4*x -76)^3;
T[92,83]=(x -6)*(x -8)*(x -14)^2*(x^2 + 22*x + 116)^3;
T[92,89]=(x -12)*(x )*(x + 6)^2*(x^2 + 12*x + 16)^3;
T[92,97]=(x + 10)*(x )*(x -6)^2*(x^2 -22*x + 76)^3;

T[93,2]=(x^2 + 3*x + 1)*(x^3 -4*x + 1)*(x^2 -x -1)^2;
T[93,3]=(x^4 + 2*x^3 + 2*x^2 + 6*x + 9)*(x + 1)^2*(x -1)^3;
T[93,5]=(x^2 + 4*x -1)*(x^3 + 2*x^2 -5*x -2)*(x -1)^4;
T[93,7]=(x^3 -4*x^2 -x + 8)*(x^2 + 4*x -1)^3;
T[93,11]=(x^2 + 6*x + 4)*(x^3 + 2*x^2 -20*x + 16)*(x -2)^4;
T[93,13]=(x^3 -4*x^2 -16*x + 56)*(x^2 + 2*x -4)^3;
T[93,17]=(x^2 + 4*x -16)*(x^3 + 2*x^2 -24*x -32)*(x^2 -6*x + 4)^2;
T[93,19]=(x^2 + 8*x + 11)*(x^3 -4*x^2 -45*x + 196)*(x^2 -5)^2;
T[93,23]=(x^2 -2*x -4)*(x^3 + 6*x^2 -4*x -32)*(x^2 + 2*x -44)^2;
T[93,29]=(x^2 -2*x -4)*(x^3 + 8*x^2 -56*x -392)*(x^2 -10*x + 20)^2;
T[93,31]=(x -1)^4*(x + 1)^5;
T[93,37]=(x^2 -2*x -44)*(x^3 -16*x + 8)*(x + 2)^4;
T[93,41]=(x^2 -45)*(x^3 + 10*x^2 -17*x -262)*(x -7)^4;
T[93,43]=(x^2 + 6*x -36)*(x^3 -14*x^2 + 4*x + 368)*(x^2 + 2*x -4)^2;
T[93,47]=(x^2 -4*x -16)*(x^3 -12*x^2 -16*x + 256)*(x^2 + 4*x -16)^2;
T[93,53]=(x^2 -80)*(x^3 + 10*x^2 -16*x -32)*(x^2 + 12*x + 16)^2;
T[93,59]=(x^3 -26*x^2 + 213*x -556)*(x + 3)^2*(x^2 -5)^2;
T[93,61]=(x^3 + 2*x^2 -128*x -512)*(x -8)^2*(x^2 + 6*x -116)^2;
T[93,67]=(x + 12)^2*(x -4)^3*(x -8)^4;
T[93,71]=(x^3 + 10*x^2 -147*x -712)*(x -9)^2*(x^2 -4*x -121)^2;
T[93,73]=(x^2 -2*x -4)*(x^3 + 12*x^2 -96*x -728)*(x^2 -8*x -4)^2;
T[93,79]=(x^2 -8*x -4)*(x^3 -8*x^2 -4*x + 64)*(x^2 + 10*x -20)^2;
T[93,83]=(x^2 + 24*x + 124)*(x^3 -20*x^2 + 108*x -112)*(x^2 + 12*x -44)^2;
T[93,89]=(x^2 + 4*x -76)*(x^2 -10*x -20)^2*(x + 6)^3;
T[93,97]=(x^3 -4*x^2 -27*x + 94)*(x -9)^2*(x^2 + 14*x -31)^2;

T[94,2]=(x -1)*(x^8 -x^7 + 3*x^6 -x^5 + 3*x^4 -2*x^3 + 12*x^2 -8*x + 16)*(x + 1)^2;
T[94,3]=(x^2 -8)*(x )*(x^4 -7*x^2 + 4*x + 1)^2;
T[94,5]=(x^2 -4*x + 2)*(x )*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^2;
T[94,7]=(x^2 + 4*x -4)*(x )*(x^4 -4*x^3 -7*x^2 + 44*x -43)^2;
T[94,11]=(x -2)*(x^2 -8*x + 14)*(x^4 + 6*x^3 -4*x^2 -56*x -48)^2;
T[94,13]=(x + 4)*(x^2 + 4*x + 2)*(x^4 -8*x^3 + 56*x + 48)^2;
T[94,17]=(x + 2)*(x^4 -6*x^3 -21*x^2 + 74*x + 141)^2*(x )^2;
T[94,19]=(x + 2)*(x^2 + 8*x -2)*(x^4 -16*x^2 -8*x + 16)^2;
T[94,23]=(x -4)*(x^2 -8)*(x^4 + 6*x^3 -20*x^2 -40*x -16)^2;
T[94,29]=(x -4)*(x^2 -12*x + 18)*(x^4 + 10*x^3 + 20*x^2 -8*x -16)^2;
T[94,31]=(x -4)*(x^2 -72)*(x^4 + 8*x^3 -56*x + 48)^2;
T[94,37]=(x -2)*(x^2 -4*x -68)*(x^4 -10*x^3 + 15*x^2 + 34*x + 9)^2;
T[94,41]=(x -6)*(x^2 + 12*x + 28)*(x^4 -6*x^3 -8*x^2 + 32*x -16)^2;
T[94,43]=(x -6)*(x^2 + 8*x -2)*(x^4 -2*x^3 -80*x^2 -112*x + 432)^2;
T[94,47]=(x + 1)*(x -1)^10;
T[94,53]=(x -2)*(x^2 -4*x -4)*(x^4 + 6*x^3 -101*x^2 -314*x + 2429)^2;
T[94,59]=(x -12)*(x^2 + 8*x -16)*(x^4 -4*x^3 -115*x^2 + 704*x -519)^2;
T[94,61]=(x -2)*(x^2 + 4*x -68)*(x^4 + 6*x^3 -73*x^2 + 10*x + 337)^2;
T[94,67]=(x -2)*(x^2 + 8*x -34)*(x^4 -10*x^3 -120*x^2 + 752*x + 3184)^2;
T[94,71]=(x -8)*(x^2 -12*x + 28)*(x^4 + 12*x^3 -19*x^2 -320*x + 657)^2;
T[94,73]=(x + 14)*(x -6)^2*(x^4 -22*x^3 + 60*x^2 + 1368*x -7664)^2;
T[94,79]=(x + 16)*(x^4 -20*x^3 + 77*x^2 + 240*x -47)^2*(x )^2;
T[94,83]=(x + 16)*(x^2 -8)*(x^4 -20*x^3 + 80*x^2 + 192*x -256)^2;
T[94,89]=(x + 10)*(x^4 + 6*x^3 -161*x^2 -206*x + 4841)^2*(x )^2;
T[94,97]=(x + 14)*(x -6)^2*(x^4 -30*x^3 + 179*x^2 + 1634*x -14307)^2;

T[95,2]=(x^3 -x^2 -3*x + 1)*(x^4 + 2*x^3 -6*x^2 -8*x + 9)*(x )^2;
T[95,3]=(x^3 -2*x^2 -4*x + 4)*(x^4 -2*x^3 -8*x^2 + 16*x -4)*(x + 2)^2;
T[95,5]=(x^2 -3*x + 5)*(x -1)^3*(x + 1)^4;
T[95,7]=(x^3 -16*x + 16)*(x^4 -4*x^3 -16*x^2 + 48*x + 32)*(x + 1)^2;
T[95,11]=(x^3 + 8*x^2 + 8*x -16)*(x^4 -4*x^3 -16*x^2 + 32*x + 48)*(x -3)^2;
T[95,13]=(x^3 -8*x^2 + 12*x -4)*(x^4 -2*x^3 -24*x^2 + 32*x + 20)*(x + 4)^2;
T[95,17]=(x^3 -2*x^2 -36*x + 104)*(x^4 -4*x^3 -32*x^2 + 16*x + 48)*(x + 3)^2;
T[95,19]=(x + 1)^3*(x -1)^6;
T[95,23]=(x^3 + 4*x^2 -8*x -16)*(x^4 + 8*x^3 -24*x^2 -176*x + 288)*(x )^2;
T[95,29]=(x^3 + 10*x^2 + 12*x -40)*(x^4 -4*x^3 -32*x^2 + 16*x + 48)*(x -6)^2;
T[95,31]=(x^3 -4*x^2 -48*x + 64)*(x^4 -4*x^3 -80*x^2 + 512*x -640)*(x + 4)^2;
T[95,37]=(x^3 -20*x^2 + 124*x -244)*(x^4 + 6*x^3 -24*x^2 -40*x + 4)*(x -2)^2;
T[95,41]=(x^3 + 2*x^2 -36*x -104)*(x^4 -16*x^3 + 56*x^2 + 32*x -240)*(x + 6)^2;
T[95,43]=(x^3 + 4*x^2 -144*x -592)*(x^4 -4*x^3 -16*x^2 + 48*x + 32)*(x + 1)^2;
T[95,47]=(x^3 -16*x + 16)*(x^4 + 12*x^3 -64*x^2 -656*x + 1056)*(x + 3)^2;
T[95,53]=(x^3 -16*x^2 + 76*x -92)*(x^4 + 10*x^3 -184*x -348)*(x -12)^2;
T[95,59]=(x^3 + 20*x^2 + 112*x + 160)*(x^4 -64*x^2 -224*x -192)*(x + 6)^2;
T[95,61]=(x^3 + 2*x^2 -84*x + 232)*(x^4 -20*x^3 + 56*x^2 + 688*x -2656)*(x + 1)^2;
T[95,67]=(x^3 -2*x^2 -76*x -116)*(x^4 + 18*x^3 + 8*x^2 -488*x -1076)*(x + 4)^2;
T[95,71]=(x^3 + 4*x^2 -80*x -64)*(x^4 + 20*x^3 + 32*x^2 -1024*x -4224)*(x -6)^2;
T[95,73]=(x^3 -2*x^2 -20*x + 8)*(x^4 -28*x^3 + 256*x^2 -784*x + 176)*(x + 7)^2;
T[95,79]=(x^3 -192*x -160)*(x^4 + 16*x^3 + 32*x^2 -480*x -1856)*(x -8)^2;
T[95,83]=(x^3 + 32*x^2 + 328*x + 1072)*(x^4 -72*x^2 -112*x + 480)*(x -12)^2;
T[95,89]=(x^3 -2*x^2 -132*x + 680)*(x^4 -4*x^3 -144*x^2 -176*x + 240)*(x -12)^2;
T[95,97]=(x^3 -20*x^2 -60*x + 1748)*(x^4 -30*x^3 + 224*x^2 -8*x -1388)*(x -8)^2;

T[96,2]=(x )^9;
T[96,3]=(x^2 + 3)*(x -1)^3*(x + 1)^4;
T[96,5]=(x -2)^2*(x + 2)^7;
T[96,7]=(x + 4)*(x -4)*(x )^7;
T[96,11]=(x )^2*(x + 4)^3*(x -4)^4;
T[96,13]=(x -6)^2*(x + 2)^7;
T[96,17]=(x + 6)^2*(x -2)^7;
T[96,19]=(x )^2*(x -4)^3*(x + 4)^4;
T[96,23]=(x -8)^2*(x + 8)^3*(x )^4;
T[96,29]=(x + 10)^2*(x -2)^2*(x -6)^5;
T[96,31]=(x -4)*(x + 4)*(x + 8)^2*(x )^2*(x -8)^3;
T[96,37]=(x + 2)^4*(x -6)^5;
T[96,41]=(x -10)^2*(x -2)^2*(x + 6)^5;
T[96,43]=(x )^2*(x + 4)^3*(x -4)^4;
T[96,47]=(x + 8)*(x -8)*(x )^7;
T[96,53]=(x -10)^2*(x -14)^2*(x + 2)^5;
T[96,59]=(x )^2*(x + 4)^3*(x -4)^4;
T[96,61]=(x -6)^2*(x + 10)^2*(x + 2)^5;
T[96,67]=(x )^2*(x -4)^3*(x + 4)^4;
T[96,71]=(x -16)*(x + 16)*(x + 8)^2*(x )^2*(x -8)^3;
T[96,73]=(x + 6)^4*(x -10)^5;
T[96,79]=(x -4)*(x + 4)*(x -8)^2*(x )^2*(x + 8)^3;
T[96,83]=(x + 12)*(x -12)*(x -4)^2*(x )^2*(x + 4)^3;
T[96,89]=(x -10)^4*(x + 6)^5;
T[96,97]=(x -18)^2*(x + 14)^2*(x -2)^5;

T[97,2]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -3*x^3 -x^2 + 6*x -1);
T[97,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -5*x^2 -x + 4);
T[97,5]=(x^3 + 3*x^2 -4*x + 1)*(x^4 -x^3 -4*x^2 + x + 2);
T[97,7]=(x^3 + 7*x^2 + 14*x + 7)*(x^4 -3*x^3 -6*x^2 + 23*x -16);
T[97,11]=(x^3 + 7*x^2 + 14*x + 7)*(x^4 -5*x^3 -14*x^2 + 47*x + 92);
T[97,13]=(x^3 + 2*x^2 -x -1)*(x^4 + 6*x^3 -29*x^2 -167*x -122);
T[97,17]=(x^3 + 3*x^2 -4*x -13)*(x^4 -3*x^3 -20*x^2 + 15*x + 74);
T[97,19]=(x^3 -5*x^2 -57*x + 293)*(x^4 + 3*x^3 -5*x^2 -11*x + 4);
T[97,23]=(x^3 + 12*x^2 + 27*x -13)*(x^4 -22*x^3 + 151*x^2 -265*x -368);
T[97,29]=(x^3 -x^2 -65*x + 169)*(x^4 -7*x^3 -27*x^2 + 199*x -254);
T[97,31]=(x^3 + 8*x^2 + 5*x -43)*(x^4 + 4*x^3 -67*x^2 -79*x + 592);
T[97,37]=(x^3 + 2*x^2 -71*x + 97)*(x^4 + 6*x^3 -27*x^2 -81*x + 162);
T[97,41]=(x^3 -3*x^2 -4*x -1)*(x^4 -3*x^3 -158*x^2 + 131*x + 5506);
T[97,43]=(x^3 -x^2 -16*x + 29)*(x^4 -9*x^3 + 20*x^2 + 9*x -44);
T[97,47]=(x^3 + 17*x^2 + 59*x -13)*(x^4 -19*x^3 + 99*x^2 -161*x + 16);
T[97,53]=(x^3 -2*x^2 -155*x + 659)*(x^4 + 4*x^3 -75*x^2 -123*x + 1262);
T[97,59]=(x^3 -19*x^2 + 104*x -169)*(x^4 -x^3 -98*x^2 + 3*x + 772);
T[97,61]=(x^3 -3*x^2 -88*x + 377)*(x^4 + 7*x^3 -74*x^2 -627*x -1046);
T[97,67]=(x^3 + x^2 -86*x -337)*(x^4 + 11*x^3 -86*x^2 -1069*x -1604);
T[97,71]=(x^3 + 23*x^2 + 132*x + 13)*(x^4 -11*x^3 -24*x^2 + 413*x -656);
T[97,73]=(x^3 + x^2 -2*x -1)*(x^4 + 19*x^3 + 4*x^2 -1249*x -3982);
T[97,79]=(x^3 + 12*x^2 -x -223)*(x^4 + 16*x^3 -73*x^2 -1303*x + 1952);
T[97,83]=(x^3 -2*x^2 -148*x + 232)*(x^4 -14*x^3 -108*x^2 + 1592*x -4064);
T[97,89]=(x^3 -12*x^2 -x + 41)*(x^4 + 26*x^3 + 91*x^2 -1449*x -5762);
T[97,97]=(x + 1)^3*(x -1)^4;

T[98,2]=(x^2 -x + 2)*(x -1)^2*(x + 1)^3;
T[98,3]=(x -2)*(x^2 -2)*(x + 2)^2*(x )^2;
T[98,5]=(x^2 -8)*(x )^5;
T[98,7]=(x -1)*(x )^6;
T[98,11]=(x + 2)^2*(x -4)^2*(x )^3;
T[98,13]=(x -4)*(x + 4)^2*(x )^4;
T[98,17]=(x + 6)*(x^2 -2)*(x -6)^2*(x )^2;
T[98,19]=(x + 2)*(x^2 -50)*(x -2)^2*(x )^2;
T[98,23]=(x -8)^2*(x + 4)^2*(x )^3;
T[98,29]=(x + 6)^3*(x -2)^4;
T[98,31]=(x -4)*(x^2 -72)*(x + 4)^2*(x )^2;
T[98,37]=(x -10)^2*(x + 6)^2*(x -2)^3;
T[98,41]=(x + 6)*(x^2 -98)*(x -6)^2*(x )^2;
T[98,43]=(x -2)^2*(x + 12)^2*(x -8)^3;
T[98,47]=(x -12)*(x^2 -8)*(x + 12)^2*(x )^2;
T[98,53]=(x + 10)^2*(x + 2)^2*(x -6)^3;
T[98,59]=(x -6)*(x^2 -2)*(x + 6)^2*(x )^2;
T[98,61]=(x + 8)*(x^2 -8)*(x -8)^2*(x )^2;
T[98,67]=(x -4)^2*(x -12)^2*(x + 4)^3;
T[98,71]=(x + 12)^2*(x -16)^2*(x )^3;
T[98,73]=(x + 2)*(x^2 -2)*(x -2)^2*(x )^2;
T[98,79]=(x + 4)^2*(x -8)^5;
T[98,83]=(x -6)*(x^2 -98)*(x + 6)^2*(x )^2;
T[98,89]=(x -6)*(x^2 -50)*(x + 6)^2*(x )^2;
T[98,97]=(x -10)*(x^2 -98)*(x + 10)^2*(x )^2;

T[99,2]=(x -2)*(x + 1)^2*(x -1)^3*(x + 2)^3;
T[99,3]=(x + 1)*(x^2 + x + 3)*(x )^6;
T[99,5]=(x -4)*(x -2)*(x + 1)*(x + 4)*(x + 2)^2*(x -1)^3;
T[99,7]=(x -4)^3*(x + 2)^6;
T[99,11]=(x + 1)^3*(x -1)^6;
T[99,13]=(x -4)^4*(x + 2)^5;
T[99,17]=(x -2)^3*(x + 2)^6;
T[99,19]=(x + 6)^2*(x )^7;
T[99,23]=(x -1)*(x + 8)*(x + 4)*(x -4)*(x -8)^2*(x + 1)^3;
T[99,29]=(x -6)^2*(x + 6)^3*(x )^4;
T[99,31]=(x -4)^2*(x + 8)^3*(x -7)^4;
T[99,37]=(x + 6)^2*(x -6)^3*(x -3)^4;
T[99,41]=(x -8)*(x -10)*(x -2)*(x + 10)*(x + 2)^2*(x + 8)^3;
T[99,43]=(x -6)^2*(x )^3*(x + 6)^4;
T[99,47]=(x + 8)^3*(x -8)^6;
T[99,53]=(x )^2*(x -6)^3*(x + 6)^4;
T[99,59]=(x + 5)*(x -4)^2*(x + 4)^3*(x -5)^3;
T[99,61]=(x + 6)^2*(x -6)^3*(x -12)^4;
T[99,67]=(x -8)^2*(x + 4)^3*(x + 7)^4;
T[99,71]=(x -3)*(x + 3)^3*(x )^5;
T[99,73]=(x + 2)^2*(x + 14)^3*(x -4)^4;
T[99,79]=(x + 4)^3*(x + 10)^6;
T[99,83]=(x -6)*(x + 12)^2*(x + 6)^3*(x -12)^3;
T[99,89]=(x + 15)*(x -6)*(x + 6)^2*(x )^2*(x -15)^3;
T[99,97]=(x + 7)^4*(x -2)^5;

T[100,2]=(x -1)*(x + 1)*(x )^5;
T[100,3]=(x -2)*(x -1)^2*(x + 2)^2*(x + 1)^2;
T[100,5]=(x + 1)*(x )^6;
T[100,7]=(x + 2)^3*(x -2)^4;
T[100,11]=(x )^3*(x + 3)^4;
T[100,13]=(x + 2)*(x -4)^2*(x -2)^2*(x + 4)^2;
T[100,17]=(x -6)*(x + 3)^2*(x + 6)^2*(x -3)^2;
T[100,19]=(x + 4)^3*(x -5)^4;
T[100,23]=(x + 6)^3*(x -6)^4;
T[100,29]=(x -6)^3*(x )^4;
T[100,31]=(x + 4)^3*(x -2)^4;
T[100,37]=(x + 2)^3*(x -2)^4;
T[100,41]=(x -6)^3*(x + 3)^4;
T[100,43]=(x -10)*(x + 4)^2*(x -4)^2*(x + 10)^2;
T[100,47]=(x -6)*(x + 12)^2*(x + 6)^2*(x -12)^2;
T[100,53]=(x -6)^3*(x + 6)^4;
T[100,59]=(x -12)^3*(x )^4;
T[100,61]=(x -2)^7;
T[100,67]=(x + 2)*(x -13)^2*(x + 13)^2*(x -2)^2;
T[100,71]=(x + 12)^3*(x -12)^4;
T[100,73]=(x + 2)*(x -2)^2*(x -11)^2*(x + 11)^2;
T[100,79]=(x -8)^3*(x + 10)^4;
T[100,83]=(x + 6)*(x -9)^2*(x + 9)^2*(x -6)^2;
T[100,89]=(x + 6)^3*(x -15)^4;
T[100,97]=(x + 2)^3*(x -2)^4;

T[101,2]=(x^7 -13*x^5 + 2*x^4 + 47*x^3 -16*x^2 -43*x + 14)*(x );
T[101,3]=(x + 2)*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68);
T[101,5]=(x + 1)*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67);
T[101,7]=(x + 2)*(x^7 -2*x^6 -25*x^5 + 66*x^4 + 90*x^3 -326*x^2 + 165*x + 14);
T[101,11]=(x + 2)*(x^7 -8*x^6 -x^5 + 114*x^4 -72*x^3 -554*x^2 + 213*x + 878);
T[101,13]=(x -1)*(x^7 + x^6 -45*x^5 -59*x^4 + 664*x^3 + 1066*x^2 -3203*x -6001);
T[101,17]=(x -3)*(x^7 + 7*x^6 -33*x^5 -221*x^4 + 460*x^3 + 2038*x^2 -2747*x -3871);
T[101,19]=(x + 5)*(x^7 -19*x^6 + 108*x^5 + 24*x^4 -2032*x^3 + 4400*x^2 + 5824*x -18880);
T[101,23]=(x -1)*(x^7 + 7*x^6 -48*x^5 -304*x^4 + 432*x^3 + 2160*x^2 -1536*x -64);
T[101,29]=(x + 4)*(x^7 + 2*x^6 -60*x^5 -88*x^4 + 880*x^3 + 1248*x^2 -2112*x -640);
T[101,31]=(x + 9)*(x^7 -7*x^6 -92*x^5 + 900*x^4 -1472*x^3 -3872*x^2 + 11712*x -7616);
T[101,37]=(x + 2)*(x^7 -123*x^5 -100*x^4 + 2990*x^3 + 696*x^2 -5103*x -918);
T[101,41]=(x -8)*(x^7 + 2*x^6 -160*x^5 -256*x^4 + 3840*x^3 + 10112*x^2 + 6144*x + 1024);
T[101,43]=(x + 8)*(x^7 -32*x^6 + 280*x^5 + 896*x^4 -25616*x^3 + 121024*x^2 -120256*x -235264);
T[101,47]=(x -7)*(x^7 + 13*x^6 -36*x^5 -1120*x^4 -4832*x^3 -4176*x^2 + 9792*x + 12096);
T[101,53]=(x + 2)*(x^7 + 8*x^6 -252*x^5 -2032*x^4 + 17408*x^3 + 146944*x^2 -210624*x -2213632);
T[101,59]=(x + 14)*(x^7 -16*x^6 -49*x^5 + 1128*x^4 + 1338*x^3 -11046*x^2 -1023*x + 18680);
T[101,61]=(x -4)*(x^7 + 6*x^6 -180*x^5 -472*x^4 + 7152*x^3 + 12448*x^2 -45760*x + 17792);
T[101,67]=(x -2)*(x^7 -34*x^6 + 349*x^5 + 68*x^4 -23296*x^3 + 149424*x^2 -337723*x + 183394);
T[101,71]=(x -13)*(x^7 -9*x^6 -200*x^5 + 1588*x^4 + 7248*x^3 -39904*x^2 -35840*x + 189632);
T[101,73]=(x -8)*(x^7 + 2*x^6 -128*x^5 -320*x^4 + 3968*x^3 + 13184*x^2 -17408*x -68608);
T[101,79]=(x + 9)*(x^7 -15*x^6 -148*x^5 + 3496*x^4 -15520*x^3 -10832*x^2 + 177152*x -244160);
T[101,83]=(x + 4)*(x^7 + 22*x^6 -149*x^5 -6456*x^4 -28804*x^3 + 332730*x^2 + 3151505*x + 7092412);
T[101,89]=(x -14)*(x^7 + 22*x^6 + 96*x^5 -464*x^4 -2128*x^3 + 5472*x^2 + 4672*x -10880);
T[101,97]=(x -2)*(x^7 + 28*x^6 + 25*x^5 -5628*x^4 -62530*x^3 -249976*x^2 -314503*x + 59842);

T[102,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3;
T[102,3]=(x^2 + 2*x + 3)*(x^2 + 3)^2*(x -1)^4*(x + 1)^5;
T[102,5]=(x + 4)*(x -3)^2*(x^2 -3*x -2)^2*(x )^3*(x + 2)^5;
T[102,7]=(x + 2)*(x -2)*(x -4)^4*(x + 4)^4*(x )^5;
T[102,11]=(x + 4)*(x + 3)^2*(x -6)^2*(x^2 + x -4)^2*(x )^6;
T[102,13]=(x + 6)*(x + 1)^2*(x^2 -5*x + 2)^2*(x -2)^3*(x + 2)^5;
T[102,17]=(x + 1)^6*(x -1)^9;
T[102,19]=(x -4)^2*(x + 1)^2*(x^2 -3*x -36)^2*(x + 4)^7;
T[102,23]=(x -6)*(x + 6)*(x -9)^2*(x^2 + 9*x + 16)^2*(x )^3*(x -4)^4;
T[102,29]=(x + 4)*(x + 10)*(x^2 -68)^2*(x )^3*(x -6)^6;
T[102,31]=(x + 10)*(x -8)*(x + 6)*(x -2)^2*(x + 4)^2*(x^2 + 2*x -16)^2*(x -4)^4;
T[102,37]=(x -8)*(x^2 + 2*x -16)^2*(x + 4)^5*(x + 2)^5;
T[102,41]=(x -10)*(x + 10)*(x + 3)^2*(x^2 + 3*x -2)^2*(x -6)^3*(x + 6)^4;
T[102,43]=(x -12)*(x -8)^2*(x + 7)^2*(x + 4)^2*(x^2 + 3*x -36)^2*(x -4)^4;
T[102,47]=(x -12)*(x -4)*(x + 6)^2*(x^2 + 14*x + 32)^2*(x )^7;
T[102,53]=(x + 2)*(x^2 -8*x -52)^2*(x + 6)^4*(x -6)^6;
T[102,59]=(x -12)^2*(x -6)^2*(x^2 -6*x -8)^2*(x )^2*(x + 12)^5;
T[102,61]=(x^2 -10*x + 8)^2*(x -8)^3*(x + 4)^3*(x + 10)^5;
T[102,67]=(x -8)^2*(x + 12)^2*(x + 4)^3*(x -4)^8;
T[102,71]=(x -6)*(x + 6)*(x -12)^2*(x^2 -4*x -64)^2*(x )^3*(x + 4)^4;
T[102,73]=(x -10)*(x^2 + 8*x -52)^2*(x + 6)^4*(x -2)^6;
T[102,79]=(x -10)*(x + 8)*(x -8)^2*(x^2 -6*x -144)^2*(x + 10)^3*(x -12)^4;
T[102,83]=(x + 12)*(x -4)*(x -12)*(x + 6)^2*(x^2 + 10*x + 8)^2*(x )^2*(x + 4)^4;
T[102,89]=(x + 18)*(x + 2)*(x^2 -6*x -8)^2*(x )^2*(x + 6)^3*(x -10)^4;
T[102,97]=(x + 14)*(x -6)*(x + 16)^2*(x^2 + 14*x + 32)^2*(x -14)^3*(x -2)^4;

T[103,2]=(x^2 + 3*x + 1)*(x^6 -4*x^5 -x^4 + 17*x^3 -9*x^2 -16*x + 11);
T[103,3]=(x^6 -13*x^4 + 40*x^2 -8*x -16)*(x + 1)^2;
T[103,5]=(x^2 + 3*x + 1)*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16);
T[103,7]=(x^6 + 2*x^5 -18*x^4 -26*x^3 + 74*x^2 + 66*x + 1)*(x + 1)^2;
T[103,11]=(x^2 + 3*x + 1)*(x^6 + x^5 -41*x^4 -68*x^3 + 416*x^2 + 968*x + 272);
T[103,13]=(x^2 + 3*x -9)*(x^6 + x^5 -28*x^4 + 53*x^3 + 20*x^2 -103*x + 55);
T[103,17]=(x^2 + 9*x + 19)*(x^6 -21*x^5 + 144*x^4 -253*x^3 -912*x^2 + 3211*x -1745);
T[103,19]=(x^2 -5*x -5)*(x^6 + 7*x^5 -8*x^4 -173*x^3 -508*x^2 -589*x -241);
T[103,23]=(x^2 -20)*(x^6 -12*x^5 -23*x^4 + 640*x^3 -947*x^2 -6592*x + 12268);
T[103,29]=(x^2 + 6*x + 4)*(x^6 -12*x^5 + 27*x^4 + 28*x^3 -39*x^2 + 2*x + 4);
T[103,31]=(x^2 -45)*(x^6 + 16*x^5 + 57*x^4 -150*x^3 -1020*x^2 -1272*x -400);
T[103,37]=(x^2 -45)*(x^6 -83*x^4 -322*x^3 -336*x^2 + 64*x + 176);
T[103,41]=(x^2 -80)*(x^6 -14*x^5 -37*x^4 + 1574*x^3 -9687*x^2 + 22344*x -15152);
T[103,43]=(x^2 + 4*x -41)*(x^6 + 6*x^5 -171*x^4 -1160*x^3 + 3720*x^2 + 19520*x -23984);
T[103,47]=(x^2 + 3*x -29)*(x^6 -x^5 -143*x^4 -352*x^3 + 3048*x^2 + 5456*x -22384);
T[103,53]=(x^2 + 9*x -11)*(x^6 -19*x^5 + 109*x^4 -194*x^3 -88*x^2 + 384*x -80);
T[103,59]=(x^2 -15*x + 55)*(x^6 -3*x^5 -164*x^4 + 281*x^3 + 7632*x^2 -2167*x -78173);
T[103,61]=(x^2 -15*x + 45)*(x^6 -x^5 -194*x^4 -273*x^3 + 3602*x^2 + 1459*x -2495);
T[103,67]=(x^2 -2*x -179)*(x^6 + 12*x^5 -33*x^4 -752*x^3 -1016*x^2 + 9792*x + 22576);
T[103,71]=(x^2 -3*x -29)*(x^6 + 27*x^5 + 139*x^4 -1346*x^3 -10956*x^2 -872*x + 83632);
T[103,73]=(x^2 + 15*x + 45)*(x^6 + 7*x^5 -61*x^4 -428*x^3 + 760*x^2 + 4728*x -4624);
T[103,79]=(x^2 -7*x -89)*(x^6 + 21*x^5 -12*x^4 -1983*x^3 -5824*x^2 + 9033*x + 5779);
T[103,83]=(x^2 -3*x -59)*(x^6 + 9*x^5 -66*x^4 -819*x^3 -1462*x^2 + 4245*x + 9637);
T[103,89]=(x^2 + 18*x + 36)*(x^6 + 14*x^5 -372*x^4 -5720*x^3 + 16224*x^2 + 490560*x + 1667776);
T[103,97]=(x^2 -10*x -20)*(x^6 + 8*x^5 -337*x^4 -1292*x^3 + 28941*x^2 + 58914*x -560468);

T[104,2]=(x + 1)*(x -1)*(x )^9;
T[104,3]=(x^2 -x -4)*(x )^2*(x + 3)^3*(x -1)^4;
T[104,5]=(x^2 -3*x -2)*(x -2)^2*(x + 3)^3*(x + 1)^4;
T[104,7]=(x -5)*(x^2 + x -4)*(x + 2)^2*(x -1)^3*(x + 1)^3;
T[104,11]=(x^2 + 2*x -16)*(x -6)^3*(x + 2)^6;
T[104,13]=(x -1)^5*(x + 1)^6;
T[104,17]=(x^2 + x -38)*(x -6)^2*(x + 3)^7;
T[104,19]=(x + 2)*(x^2 -2*x -16)*(x + 6)^2*(x -2)^3*(x -6)^3;
T[104,23]=(x -4)*(x -8)^2*(x + 8)^2*(x + 4)^3*(x )^3;
T[104,29]=(x + 6)*(x + 2)^2*(x -6)^3*(x -2)^5;
T[104,31]=(x -10)^2*(x + 4)^4*(x -4)^5;
T[104,37]=(x -11)*(x^2 -7*x -26)*(x + 6)^2*(x + 7)^3*(x -3)^3;
T[104,41]=(x -8)*(x^2 -2*x -16)*(x + 6)^2*(x )^6;
T[104,43]=(x^2 -15*x + 52)*(x -4)^2*(x + 5)^3*(x + 1)^4;
T[104,47]=(x -9)*(x^2 + 13*x + 4)*(x + 2)^2*(x -3)^3*(x -13)^3;
T[104,53]=(x + 12)*(x^2 + 2*x -16)*(x -6)^2*(x -12)^3*(x )^3;
T[104,59]=(x -6)*(x^2 -2*x -16)*(x + 6)^3*(x + 10)^5;
T[104,61]=(x^2 -14*x + 32)*(x )*(x + 2)^2*(x + 8)^3*(x -8)^3;
T[104,67]=(x -6)*(x^2 + 2*x -16)*(x -10)^2*(x -14)^3*(x + 2)^3;
T[104,71]=(x -7)*(x^2 + 3*x -36)*(x -10)^2*(x + 3)^3*(x + 5)^3;
T[104,73]=(x + 2)*(x + 6)^2*(x + 10)^3*(x -2)^5;
T[104,79]=(x -12)*(x + 4)^5*(x -8)^5;
T[104,83]=(x + 16)*(x^2 + 12*x -32)*(x + 6)^2*(x -12)^3*(x )^3;
T[104,89]=(x + 10)*(x -10)^2*(x -6)^3*(x + 6)^5;
T[104,97]=(x^2 -68)*(x -2)^2*(x -14)^3*(x + 10)^4;

T[105,2]=(x -1)*(x^2 -5)*(x^2 + x -4)^2*(x )^2*(x + 1)^4;
T[105,3]=(x^2 -x + 3)*(x^4 + x^3 + 2*x^2 + 3*x + 9)*(x -1)^3*(x + 1)^4;
T[105,5]=(x^2 + 2*x + 5)*(x + 1)^4*(x -1)^7;
T[105,7]=(x^2 + 7)*(x -1)^5*(x + 1)^6;
T[105,11]=(x^2 -4*x -16)*(x )*(x -4)^2*(x + 4)^2*(x + 3)^2*(x^2 -x -4)^2;
T[105,13]=(x + 6)*(x^2 -20)*(x -5)^2*(x^2 -5*x + 2)^2*(x + 2)^4;
T[105,17]=(x + 6)^2*(x + 2)^2*(x -3)^2*(x^2 + 5*x + 2)^2*(x -2)^3;
T[105,19]=(x + 8)*(x^2 -4*x -16)*(x -2)^2*(x^2 + 6*x -8)^2*(x -4)^4;
T[105,23]=(x -8)*(x + 6)^2*(x -4)^2*(x^2 + 2*x -16)^2*(x )^4;
T[105,29]=(x -3)^2*(x^2 -x -38)^2*(x + 2)^7;
T[105,31]=(x -4)*(x^2 -12*x + 16)*(x + 4)^2*(x )^8;
T[105,37]=(x + 2)*(x^2 -4*x -76)*(x + 10)^2*(x -2)^2*(x -6)^6;
T[105,41]=(x + 6)*(x + 12)^2*(x + 2)^2*(x -2)^2*(x -10)^2*(x^2 -2*x -16)^2;
T[105,43]=(x^2 -80)*(x + 10)^2*(x + 4)^2*(x^2 -10*x + 8)^2*(x -4)^3;
T[105,47]=(x^2 -8*x -64)*(x -9)^2*(x^2 + 5*x -32)^2*(x )^2*(x -8)^3;
T[105,53]=(x -10)*(x^2 + 16*x + 44)*(x -6)^2*(x -12)^2*(x + 10)^2*(x^2 + 2*x -16)^2;
T[105,59]=(x -4)*(x^2 -80)*(x -12)^2*(x )^2*(x + 4)^6;
T[105,61]=(x -8)^2*(x^2 -6*x -144)^2*(x + 2)^7;
T[105,67]=(x -12)^2*(x^2 -4*x -64)^2*(x -4)^3*(x + 4)^4;
T[105,71]=(x + 12)*(x^2 -20*x + 80)*(x + 8)^2*(x -8)^4*(x )^4;
T[105,73]=(x + 2)*(x^2 + 16*x + 44)*(x -10)^2*(x -2)^2*(x + 6)^2*(x^2 + 8*x -52)^2;
T[105,79]=(x -8)*(x^2 -8*x -64)*(x + 16)^2*(x + 1)^2*(x^2 + 9*x + 16)^2*(x )^2;
T[105,83]=(x + 4)*(x^2 + 16*x -16)*(x + 12)^2*(x -12)^4*(x -4)^4;
T[105,89]=(x + 14)^2*(x + 2)^2*(x + 12)^2*(x^2 -6*x -8)^2*(x + 6)^3;
T[105,97]=(x + 18)*(x^2 -8*x -4)*(x + 1)^2*(x -18)^2*(x -2)^2*(x^2 + 9*x -86)^2;

T[106,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x + 1)^2*(x -1)^2;
T[106,3]=(x + 1)*(x -1)*(x -2)*(x + 2)*(x + 3)^2*(x^3 -3*x^2 -x + 1)^2;
T[106,5]=(x + 4)*(x -3)*(x -1)*(x^3 + 2*x^2 -4*x -4)^2*(x )^3;
T[106,7]=(x + 2)*(x -2)*(x )*(x^3 -4*x^2 + 4)^2*(x + 4)^3;
T[106,11]=(x -5)*(x + 4)*(x + 3)*(x^3 + 4*x^2 -4*x -20)^2*(x )^3;
T[106,13]=(x -5)*(x + 3)^2*(x + 4)^2*(x -1)^7;
T[106,17]=(x -5)*(x -3)^2*(x^3 + 5*x^2 -5*x -17)^2*(x + 3)^3;
T[106,19]=(x + 1)*(x + 7)*(x + 5)^2*(x + 4)^2*(x^3 -11*x^2 + 37*x -37)^2;
T[106,23]=(x + 3)*(x + 9)*(x -1)*(x -3)*(x -7)^2*(x^3 -3*x^2 -31*x -29)^2;
T[106,29]=(x -5)*(x + 6)*(x -6)*(x -9)*(x + 7)^2*(x^3 + 5*x^2 -37*x -61)^2;
T[106,31]=(x -7)*(x -5)*(x + 4)^2*(x -4)^2*(x^3 + 2*x^2 -76*x + 116)^2;
T[106,37]=(x -1)*(x + 6)*(x + 10)*(x^3 + 5*x^2 -89*x -353)^2*(x -5)^3;
T[106,41]=(x -2)*(x + 10)*(x^3 + 10*x^2 + 20*x -8)^2*(x -6)^4;
T[106,43]=(x + 1)*(x -7)*(x + 10)^2*(x + 2)^2*(x^3 -18*x^2 + 24*x + 556)^2;
T[106,47]=(x -4)*(x -6)*(x + 6)*(x )*(x + 2)^2*(x^3 + 10*x^2 -4*x -8)^2;
T[106,53]=(x + 1)^5*(x -1)^7;
T[106,59]=(x -15)*(x -6)*(x + 6)*(x -7)*(x + 2)^2*(x^3 -2*x^2 -60*x + 200)^2;
T[106,61]=(x -4)*(x -2)*(x + 10)*(x -8)*(x + 8)^2*(x^3 + 10*x^2 -56*x -556)^2;
T[106,67]=(x -4)*(x -16)*(x + 4)^2*(x + 12)^2*(x^3 -6*x^2 -72*x -108)^2;
T[106,71]=(x + 3)*(x -15)*(x -1)^2*(x -12)^2*(x^3 + 5*x^2 -105*x + 277)^2;
T[106,73]=(x + 12)*(x -8)*(x + 8)*(x^3 -6*x^2 -28*x -4)^2*(x + 4)^3;
T[106,79]=(x + 7)*(x -11)*(x + 13)*(x -1)*(x + 1)^2*(x^3 + 7*x^2 -77*x + 131)^2;
T[106,83]=(x + 6)*(x + 3)*(x -3)*(x + 14)*(x + 1)^2*(x^3 -27*x^2 + 213*x -457)^2;
T[106,89]=(x -2)*(x -17)*(x -18)*(x -9)*(x + 14)^2*(x^3 + 2*x^2 -212*x + 1048)^2;
T[106,97]=(x -17)*(x + 7)*(x -3)*(x + 13)*(x -1)^2*(x^3 + x^2 -133*x -137)^2;

T[107,2]=(x^2 + x -1)*(x^7 + x^6 -10*x^5 -7*x^4 + 29*x^3 + 12*x^2 -20*x -8);
T[107,3]=(x^2 + 3*x + 1)*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29);
T[107,5]=(x^2 + 3*x + 1)*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64);
T[107,7]=(x^2 + 4*x -1)*(x^7 -4*x^6 -23*x^5 + 114*x^4 -32*x^3 -360*x^2 + 448*x -128);
T[107,11]=(x^2 -4*x -1)*(x^7 + 2*x^6 -41*x^5 -95*x^4 + 361*x^3 + 950*x^2 + 519*x + 47);
T[107,13]=(x^7 -18*x^6 + 98*x^5 + x^4 -1649*x^3 + 4855*x^2 -3548*x -1244)*(x + 6)^2;
T[107,17]=(x^2 + 3*x + 1)*(x^7 + x^6 -41*x^5 -16*x^4 + 488*x^3 + 32*x^2 -1536*x -512);
T[107,19]=(x^2 -2*x -44)*(x^7 + 4*x^6 -52*x^5 -137*x^4 + 391*x^3 + 951*x^2 -694*x -1636);
T[107,23]=(x^2 -6*x -11)*(x^7 -123*x^5 -41*x^4 + 4295*x^3 + 1802*x^2 -34533*x + 21431);
T[107,29]=(x^2 + 2*x -19)*(x^7 + 3*x^6 -94*x^5 -382*x^4 + 1077*x^3 + 4927*x^2 -1896*x -11828);
T[107,31]=(x^2 + 2*x -19)*(x^7 -4*x^6 -45*x^5 + 224*x^4 -84*x^3 -576*x^2 + 320*x + 256);
T[107,37]=(x^2 + 13*x + 31)*(x^7 -25*x^6 + 219*x^5 -659*x^4 -1042*x^3 + 10321*x^2 -20000*x + 12113);
T[107,41]=(x^2 -10*x + 20)*(x^7 -82*x^5 + 155*x^4 + 893*x^3 -1965*x^2 -394*x + 724);
T[107,43]=(x^2 -9*x + 9)*(x^7 -11*x^6 -79*x^5 + 1026*x^4 + 140*x^3 -23568*x^2 + 59040*x -21856);
T[107,47]=(x^2 + 14*x + 44)*(x^7 + 9*x^6 -107*x^5 -1361*x^4 -2306*x^3 + 14076*x^2 + 30432*x -30848);
T[107,53]=(x^2 + 6*x -71)*(x^7 -8*x^6 -125*x^5 + 435*x^4 + 5683*x^3 -150*x^2 -79775*x -143149);
T[107,59]=(x^2 -3*x -99)*(x^7 + 19*x^6 + 81*x^5 -538*x^4 -6064*x^3 -21232*x^2 -31888*x -16736);
T[107,61]=(x^2 + 13*x + 31)*(x^7 -25*x^6 + 111*x^5 + 1195*x^4 -9280*x^3 + 2653*x^2 + 86150*x -123049);
T[107,67]=(x^2 + 10*x + 20)*(x^7 + 24*x^6 + 44*x^5 -3400*x^4 -36896*x^3 -136864*x^2 -88704*x + 333056);
T[107,71]=(x^2 + 3*x -99)*(x^7 + 19*x^6 -165*x^5 -4948*x^4 -15804*x^3 + 174696*x^2 + 1073984*x + 1370816);
T[107,73]=(x^2 + 8*x -29)*(x^7 -30*x^6 + 101*x^5 + 3540*x^4 -21896*x^3 -74968*x^2 + 357776*x + 79712);
T[107,79]=(x^2 -x -11)*(x^7 + 21*x^6 + 131*x^5 -13*x^4 -2664*x^3 -6337*x^2 + 5306*x + 19859);
T[107,83]=(x^2 -3*x -9)*(x^7 -12*x^6 -395*x^5 + 5505*x^4 + 25518*x^3 -554561*x^2 + 1427088*x + 2420672);
T[107,89]=(x^2 -20*x + 95)*(x^7 + 22*x^6 -87*x^5 -3053*x^4 -1107*x^3 + 33866*x^2 -27103*x -14123);
T[107,97]=(x^2 + 12*x -9)*(x^7 + 4*x^6 -207*x^5 -414*x^4 + 10036*x^3 + 8368*x^2 -124544*x + 139424);

T[108,2]=(x + 1)*(x -1)*(x^2 + 2)*(x )^6;
T[108,3]=(x )^10;
T[108,5]=(x + 3)^2*(x -3)^2*(x )^6;
T[108,7]=(x -5)*(x + 4)^2*(x + 1)^7;
T[108,11]=(x + 3)^2*(x -3)^2*(x )^6;
T[108,13]=(x + 7)*(x -2)^2*(x -5)^3*(x + 4)^4;
T[108,17]=(x )^10;
T[108,19]=(x + 1)*(x -8)^2*(x + 7)^3*(x -2)^4;
T[108,23]=(x -6)^2*(x + 6)^2*(x )^6;
T[108,29]=(x -6)^2*(x + 6)^2*(x )^6;
T[108,31]=(x -5)^4*(x + 4)^6;
T[108,37]=(x + 1)*(x + 10)^2*(x -11)^3*(x -2)^4;
T[108,41]=(x -6)^2*(x + 6)^2*(x )^6;
T[108,43]=(x + 10)^4*(x -8)^6;
T[108,47]=(x + 6)^2*(x -6)^2*(x )^6;
T[108,53]=(x -9)^2*(x + 9)^2*(x )^6;
T[108,59]=(x + 12)^2*(x -12)^2*(x )^6;
T[108,61]=(x + 13)*(x -14)^2*(x + 1)^3*(x -8)^4;
T[108,67]=(x -11)*(x + 16)^2*(x -5)^3*(x -14)^4;
T[108,71]=(x )^10;
T[108,73]=(x -17)*(x + 10)^2*(x + 7)^7;
T[108,79]=(x + 13)*(x + 4)^2*(x -17)^3*(x -8)^4;
T[108,83]=(x + 3)^2*(x -3)^2*(x )^6;
T[108,89]=(x -18)^2*(x + 18)^2*(x )^6;
T[108,97]=(x -5)*(x -14)^2*(x + 19)^3*(x + 1)^4;

T[109,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^4 + x^3 -5*x^2 -4*x + 3);
T[109,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -4*x^3 -x^2 + 15*x -8)*(x );
T[109,5]=(x -3)*(x^3 + 6*x^2 + 5*x -13)*(x^4 -x^3 -5*x^2 + 4*x + 3);
T[109,7]=(x -2)*(x^3 + x^2 -16*x + 13)*(x^4 + 3*x^3 -10*x^2 -23*x -2);
T[109,11]=(x -1)*(x^3 + 13*x^2 + 54*x + 71)*(x^4 -12*x^3 + 33*x^2 + 47*x -177);
T[109,13]=(x^3 + x^2 -16*x + 13)*(x^4 + 7*x^3 -10*x^2 -93*x + 16)*(x );
T[109,17]=(x + 8)*(x^3 -3*x^2 -4*x + 13)*(x^4 -11*x^3 + 10*x^2 + 215*x -576);
T[109,19]=(x + 5)*(x^3 + 5*x^2 -8*x -41)*(x^4 -10*x^3 + 27*x^2 + 3*x -59);
T[109,23]=(x -7)*(x^3 -x^2 -58*x -13)*(x^4 + 2*x^3 -31*x^2 -43*x + 177);
T[109,29]=(x + 5)*(x^3 + 6*x^2 -37*x -181)*(x^4 -x^3 -59*x^2 + 154*x -57);
T[109,31]=(x -6)*(x^3 + 7*x^2 -28*x + 7)*(x^4 + 5*x^3 -22*x^2 -69*x + 158);
T[109,37]=(x -2)*(x^3 -7*x -7)*(x^4 + 12*x^3 -65*x^2 -1031*x -2038);
T[109,41]=(x -2)*(x^3 + 6*x^2 -51*x + 71)*(x^4 -12*x^3 + 47*x^2 -61*x + 6);
T[109,43]=(x + 4)*(x^3 -9*x^2 -36*x + 351)*(x^4 -5*x^3 -40*x^2 + 75*x + 388);
T[109,47]=(x -9)*(x^3 + 10*x^2 -25*x -125)*(x^4 + x^3 -5*x^2 -4*x + 3);
T[109,53]=(x -12)*(x^3 -9*x^2 + 20*x -13)*(x^4 + 19*x^3 -24*x^2 -1351*x -684);
T[109,59]=(x -12)*(x^3 + 25*x^2 + 192*x + 461)*(x^4 -27*x^3 + 216*x^2 -513*x + 324);
T[109,61]=(x + 5)*(x^3 + 10*x^2 -144*x -1336)*(x^4 + 7*x^3 -102*x^2 + 72*x + 216);
T[109,67]=(x + 12)*(x^3 + 11*x^2 -25*x -43)*(x^4 -7*x^3 -53*x^2 + 455*x -772);
T[109,71]=(x + 6)*(x^3 + 10*x^2 -11*x -223)*(x^4 -32*x^3 + 209*x^2 + 1843*x -17298);
T[109,73]=(x + 5)*(x^3 -20*x^2 + 131*x -281)*(x^4 + 9*x^3 -77*x^2 -710*x -997);
T[109,79]=(x -8)*(x^3 + 6*x^2 -79*x -461)*(x^4 + 24*x^3 + 65*x^2 -935*x + 1264);
T[109,83]=(x + 2)*(x^3 + 13*x^2 -2*x -139)*(x^4 -21*x^3 + 80*x^2 + 301*x -534);
T[109,89]=(x -1)*(x^3 + 21*x^2 + 84*x + 91)*(x^4 + 16*x^3 -29*x^2 -349*x + 513);
T[109,97]=(x -1)*(x^3 + 20*x^2 + 75*x -125)*(x^4 + 11*x^3 -45*x^2 -96*x -23);

T[110,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3;
T[110,3]=(x^2 + x -8)*(x -1)^2*(x^2 -8)^2*(x )^2*(x + 1)^5;
T[110,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;
T[110,7]=(x -5)*(x + 1)*(x -3)*(x^2 -x -8)*(x )^2*(x + 2)^8;
T[110,11]=(x + 1)^5*(x -1)^10;
T[110,13]=(x + 6)*(x^2 + 8*x + 8)^2*(x -4)^4*(x -2)^6;
T[110,17]=(x -3)*(x + 3)*(x + 7)*(x^2 + 3*x -6)*(x -6)^2*(x^2 -8*x + 8)^2*(x + 2)^4;
T[110,19]=(x + 1)*(x + 7)*(x -5)*(x^2 -7*x + 4)*(x + 4)^2*(x )^8;
T[110,23]=(x -6)*(x^2 + 6*x -24)*(x -4)^2*(x + 6)^2*(x^2 -8)^2*(x + 1)^4;
T[110,29]=(x + 9)*(x + 3)*(x -5)*(x^2 + 3*x -6)*(x -6)^2*(x^2 -4*x -28)^2*(x )^4;
T[110,31]=(x -5)*(x + 7)*(x + 3)*(x^2 -x -8)*(x + 8)^2*(x -7)^4*(x )^4;
T[110,37]=(x + 7)*(x -5)*(x^2 -13*x + 34)*(x + 2)^2*(x^2 + 4*x -28)^2*(x -3)^5;
T[110,41]=(x + 6)*(x^2 -132)*(x -2)^3*(x + 8)^4*(x -6)^5;
T[110,43]=(x + 4)^2*(x -8)^2*(x -4)^3*(x + 6)^8;
T[110,47]=(x + 2)*(x^2 + 6*x -24)*(x -6)^2*(x + 12)^2*(x^2 -8)^2*(x -8)^4;
T[110,53]=(x + 1)*(x -9)*(x + 3)*(x^2 -9*x -54)*(x + 2)^2*(x^2 -12*x + 4)^2*(x + 6)^4;
T[110,59]=(x -6)*(x + 6)*(x + 10)*(x^2 -6*x -24)*(x -4)^2*(x^2 + 8*x -16)^2*(x -5)^4;
T[110,61]=(x -5)*(x + 1)*(x -7)*(x^2 + 5*x -2)*(x + 10)^2*(x^2 -4*x -124)^2*(x -12)^4;
T[110,67]=(x + 16)^2*(x^2 -8*x -56)^2*(x + 7)^4*(x -8)^5;
T[110,71]=(x -7)*(x -3)*(x + 9)*(x^2 -3*x -72)*(x -8)^2*(x^2 -128)^2*(x + 3)^4;
T[110,73]=(x -2)*(x + 10)*(x^2 + 8*x -116)*(x^2 + 8*x + 8)^2*(x -14)^3*(x -4)^4;
T[110,79]=(x -10)*(x -14)*(x^2 + 14*x + 16)*(x -8)^2*(x -4)^4*(x + 10)^5;
T[110,83]=(x^2 -6*x -24)*(x + 4)^2*(x + 6)^11;
T[110,89]=(x -9)*(x^2 -3*x -6)*(x + 15)^2*(x -10)^2*(x^2 + 4*x -124)^2*(x -15)^4;
T[110,97]=(x + 12)*(x -8)*(x + 4)*(x^2 + 14*x + 16)*(x -10)^2*(x^2 + 4*x -28)^2*(x + 7)^4;

T[111,2]=(x^3 -3*x^2 -x + 5)*(x^4 -6*x^2 + 2*x + 5)*(x + 2)^2*(x )^2;
T[111,3]=(x^2 + 3*x + 3)*(x^2 -x + 3)*(x + 1)^3*(x -1)^4;
T[111,5]=(x^3 -4*x^2 -4*x + 20)*(x^4 + 2*x^3 -8*x^2 + 4)*(x + 2)^2*(x )^2;
T[111,7]=(x^3 + 4*x^2 -8*x -16)*(x^4 -4*x^3 -16*x^2 + 64*x -16)*(x + 1)^4;
T[111,11]=(x^3 -4*x^2 -16*x + 32)*(x^4 -32*x^2 -32*x + 64)*(x -3)^2*(x + 5)^2;
T[111,13]=(x^3 + 2*x^2 -20*x -8)*(x^4 -4*x^3 -32*x^2 + 144*x -80)*(x + 4)^2*(x + 2)^2;
T[111,17]=(x^3 -4*x^2 -28*x + 116)*(x^4 + 2*x^3 -24*x^2 -72*x -28)*(x -6)^2*(x )^2;
T[111,19]=(x^3 + 8*x^2 + 8*x -16)*(x^4 -8*x^3 -8*x^2 + 144*x -224)*(x -2)^2*(x )^2;
T[111,23]=(x^3 + 2*x^2 -4*x -4)*(x^4 + 10*x^3 -32*x^2 -296*x + 652)*(x -2)^2*(x -6)^2;
T[111,29]=(x^3 -16*x^2 + 76*x -92)*(x^4 + 2*x^3 -56*x^2 -40*x + 724)*(x -6)^2*(x + 6)^2;
T[111,31]=(x^3 + 8*x^2 -32*x -272)*(x^4 -4*x^3 -16*x^2 + 16*x + 32)*(x + 4)^4;
T[111,37]=(x -1)^5*(x + 1)^6;
T[111,41]=(x^4 -12*x^3 + 304*x -400)*(x -6)^3*(x + 9)^4;
T[111,43]=(x^3 + 12*x^2 + 32*x -16)*(x^4 -4*x^3 -128*x^2 + 176*x + 3424)*(x -2)^2*(x -8)^2;
T[111,47]=(x^3 + 4*x^2 -48*x -64)*(x^4 + 12*x^3 + 16*x^2 -128*x -128)*(x -3)^2*(x + 9)^2;
T[111,53]=(x^3 + 6*x^2 -100*x -632)*(x^4 -8*x^3 -56*x^2 + 320*x + 464)*(x -1)^2*(x + 3)^2;
T[111,59]=(x^3 -6*x^2 -36*x + 108)*(x^4 + 10*x^3 -176*x^2 -2416*x -7156)*(x -12)^2*(x -8)^2;
T[111,61]=(x^4 + 8*x^3 -72*x^2 -480*x + 656)*(x + 8)^2*(x -8)^2*(x + 2)^3;
T[111,67]=(x^3 + 16*x^2 + 24*x -16)*(x^4 + 4*x^3 -16*x^2 -64*x -16)*(x -8)^2*(x + 4)^2;
T[111,71]=(x^3 -12*x^2 -16*x + 320)*(x^4 + 12*x^3 -48*x^2 -512*x + 1664)*(x -9)^2*(x + 15)^2;
T[111,73]=(x^3 + 6*x^2 -4*x -8)*(x^4 -12*x^3 -8*x^2 + 176*x -32)*(x + 1)^2*(x -11)^2;
T[111,79]=(x^3 -12*x^2 -72*x + 400)*(x^4 + 8*x^3 -56*x^2 -656*x -1504)*(x -4)^2*(x + 10)^2;
T[111,83]=(x^3 -112*x -416)*(x^4 + 20*x^3 + 112*x^2 + 192*x + 64)*(x -9)^2*(x + 15)^2;
T[111,89]=(x^3 + 4*x^2 -108*x -52)*(x^4 -26*x^3 + 128*x^2 + 944*x -5452)*(x -6)^2*(x -4)^2;
T[111,97]=(x^3 + 14*x^2 + 28*x -152)*(x^4 + 4*x^3 -272*x^2 -464*x + 17008)*(x -4)^2*(x -8)^2;

T[112,2]=(x + 1)*(x )^10;
T[112,3]=(x -2)^3*(x )^3*(x + 2)^5;
T[112,5]=(x + 4)^3*(x -2)^3*(x )^5;
T[112,7]=(x + 1)^4*(x -1)^7;
T[112,11]=(x -4)*(x + 4)^2*(x )^8;
T[112,13]=(x -2)^3*(x )^3*(x + 4)^5;
T[112,17]=(x + 6)^3*(x + 2)^3*(x -6)^5;
T[112,19]=(x + 8)*(x -8)^2*(x + 2)^3*(x -2)^5;
T[112,23]=(x + 8)*(x -8)^2*(x )^8;
T[112,29]=(x -2)^3*(x -6)^3*(x + 6)^5;
T[112,31]=(x + 8)*(x -8)^2*(x -4)^3*(x + 4)^5;
T[112,37]=(x + 6)^3*(x + 2)^3*(x -2)^5;
T[112,41]=(x + 2)^3*(x -2)^3*(x -6)^5;
T[112,43]=(x -4)*(x + 4)^2*(x + 8)^2*(x -8)^6;
T[112,47]=(x -8)*(x -4)*(x -12)*(x + 4)^2*(x + 8)^2*(x + 12)^4;
T[112,53]=(x + 10)^3*(x -6)^8;
T[112,59]=(x -6)^3*(x )^3*(x + 6)^5;
T[112,61]=(x -4)^3*(x + 6)^3*(x -8)^5;
T[112,67]=(x -12)*(x + 12)^2*(x -4)^2*(x + 4)^6;
T[112,71]=(x -8)*(x + 8)^2*(x )^8;
T[112,73]=(x + 14)^3*(x -10)^3*(x -2)^5;
T[112,79]=(x + 16)*(x -16)^2*(x + 8)^3*(x -8)^5;
T[112,83]=(x + 8)*(x -8)^2*(x -6)^3*(x + 6)^5;
T[112,89]=(x -10)^3*(x + 6)^8;
T[112,97]=(x + 2)^3*(x + 6)^3*(x + 10)^5;

T[113,2]=(x + 1)*(x^3 + 2*x^2 -5*x -9)*(x^3 + 2*x^2 -x -1)*(x -1)^2;
T[113,3]=(x -2)*(x^2 -2*x -2)*(x^3 + x^2 -4*x -1)*(x^3 + 5*x^2 + 6*x + 1);
T[113,5]=(x -2)*(x^2 -12)*(x^3 + x^2 -9*x -1)*(x + 1)^3;
T[113,7]=(x^3 -6*x^2 + 3*x + 9)*(x^3 + 10*x^2 + 31*x + 29)*(x )*(x -4)^2;
T[113,11]=(x^2 + 4*x -8)*(x^3 -2*x^2 -3*x + 3)*(x^3 -2*x^2 -15*x -13)*(x );
T[113,13]=(x -2)*(x^2 + 4*x -8)*(x^3 -8*x^2 + 17*x -7)*(x^3 + 8*x^2 + 5*x -43);
T[113,17]=(x + 6)*(x^3 -10*x^2 + 21*x -9)*(x^3 + 2*x^2 -29*x + 13)*(x + 2)^2;
T[113,19]=(x -6)*(x^2 + 6*x + 6)*(x^3 + 4*x^2 -11*x -1)*(x^3 -4*x^2 -45*x + 177);
T[113,23]=(x + 6)*(x^2 -2*x -2)*(x^3 + 6*x^2 -9*x -27)*(x^3 -4*x^2 -15*x -9);
T[113,29]=(x + 6)*(x^2 -8*x + 4)*(x^3 -5*x^2 -22*x + 97)*(x^3 + 7*x^2 + 12*x + 3);
T[113,31]=(x + 4)*(x^2 -4*x -8)*(x^3 -9*x^2 + 18*x + 1)*(x^3 + 15*x^2 + 26*x -211);
T[113,37]=(x -2)*(x^2 + 8*x + 4)*(x^3 -8*x^2 -61*x + 389)*(x^3 + 2*x^2 -71*x -113);
T[113,41]=(x + 2)*(x^2 + 4*x -8)*(x^3 -x^2 -16*x + 29)*(x^3 + 7*x^2 -68*x -63);
T[113,43]=(x -6)*(x^2 -6*x -66)*(x^3 -12*x^2 + 21*x -9)*(x^3 + 2*x^2 -29*x + 13);
T[113,47]=(x -6)*(x^2 -6*x -18)*(x^3 + 7*x^2 -28*x + 7)*(x^3 -9*x^2 -6*x + 81);
T[113,53]=(x -10)*(x^2 + 12*x + 24)*(x^3 + 5*x^2 -64*x + 29)*(x^3 + 21*x^2 + 120*x + 101);
T[113,59]=(x -6)*(x^2 -6*x -18)*(x^3 + 9*x^2 -42*x -369)*(x^3 -15*x^2 + 26*x + 169);
T[113,61]=(x -6)*(x^2 -12*x -12)*(x^3 + 21*x^2 + 108*x + 81)*(x^3 + 21*x^2 + 140*x + 301);
T[113,67]=(x -2)*(x^2 + 10*x + 22)*(x^3 -5*x^2 -36*x -43)*(x^3 + 3*x^2 -156*x -869);
T[113,71]=(x + 6)*(x^2 + 10*x + 22)*(x^3 -14*x^2 + 392)*(x^3 -22*x^2 + 144*x -264);
T[113,73]=(x -2)*(x^2 -4*x -188)*(x^3 + x^2 -40*x -109)*(x^3 + 11*x^2 -46*x + 41);
T[113,79]=(x -10)*(x^2 -10*x -50)*(x^3 -x^2 -40*x + 109)*(x^3 + 5*x^2 -50*x -125);
T[113,83]=(x + 4)*(x^2 -192)*(x^3 -14*x^2 + 63*x -91)*(x^3 -2*x^2 -193*x + 413);
T[113,89]=(x + 14)*(x^2 -12*x -12)*(x^3 + 6*x^2 -147*x + 401)*(x^3 + 16*x^2 -29*x -841);
T[113,97]=(x + 14)*(x^3 -12*x^2 -33*x + 287)*(x^3 -217*x + 1183)*(x + 2)^2;

T[114,2]=(x^2 -x + 2)*(x^2 + 2)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x -1)^4;
T[114,3]=(x^2 + x + 3)*(x^2 -x + 3)*(x^2 + 2*x + 3)^2*(x + 1)^4*(x -1)^5;
T[114,5]=(x -2)*(x + 4)^2*(x + 3)^2*(x -1)^2*(x + 2)^2*(x -3)^4*(x )^4;
T[114,7]=(x + 4)*(x -4)*(x + 5)^2*(x )^3*(x -3)^4*(x + 1)^6;
T[114,11]=(x + 4)*(x -4)*(x + 6)^2*(x -2)^2*(x + 3)^2*(x -1)^2*(x )^3*(x -3)^4;
T[114,13]=(x )*(x + 6)^2*(x -6)^2*(x -5)^2*(x + 1)^2*(x -2)^3*(x + 4)^5;
T[114,17]=(x + 2)*(x -6)*(x + 1)^2*(x + 6)^3*(x + 3)^4*(x -3)^6;
T[114,19]=(x -1)^8*(x + 1)^9;
T[114,23]=(x + 6)*(x + 2)*(x + 1)^2*(x -3)^2*(x + 4)^3*(x -4)^4*(x )^4;
T[114,29]=(x + 6)*(x -2)^2*(x + 10)^2*(x + 5)^2*(x -9)^2*(x + 2)^3*(x -6)^5;
T[114,31]=(x -6)*(x -4)*(x + 8)^2*(x + 6)^2*(x -8)^2*(x -2)^3*(x + 4)^6;
T[114,37]=(x + 4)*(x -10)*(x + 8)*(x -8)^2*(x + 10)^2*(x + 2)^2*(x )^2*(x -2)^6;
T[114,41]=(x -6)*(x -10)^2*(x + 2)^2*(x + 6)^4*(x + 8)^4*(x )^4;
T[114,43]=(x + 12)*(x -8)^2*(x + 4)^3*(x -4)^3*(x + 1)^8;
T[114,47]=(x -10)*(x -6)*(x + 4)*(x -12)^2*(x -3)^2*(x + 9)^2*(x -8)^2*(x )^2*(x + 3)^4;
T[114,53]=(x + 10)*(x -2)*(x -6)*(x + 1)^2*(x -10)^2*(x + 3)^2*(x + 6)^4*(x -12)^4;
T[114,59]=(x -4)*(x -12)*(x -15)^2*(x + 8)^2*(x -9)^2*(x )^2*(x + 12)^3*(x + 6)^4;
T[114,61]=(x -2)^2*(x + 2)^2*(x -14)^2*(x -7)^2*(x + 10)^3*(x + 1)^6;
T[114,67]=(x + 12)*(x )*(x -3)^2*(x -5)^2*(x -8)^5*(x + 4)^6;
T[114,71]=(x -8)*(x + 16)*(x -2)^2*(x + 6)^2*(x -12)^2*(x + 12)^2*(x )^3*(x -6)^4;
T[114,73]=(x + 6)*(x + 2)*(x -14)*(x -9)^2*(x -10)^2*(x + 11)^4*(x + 7)^6;
T[114,79]=(x + 4)*(x -10)*(x -16)^2*(x -8)^4*(x )^4*(x + 10)^5;
T[114,83]=(x + 12)*(x + 16)*(x -16)^2*(x -4)^2*(x + 6)^4*(x -12)^7;
T[114,89]=(x -10)^2*(x + 12)^2*(x )^2*(x + 2)^3*(x + 6)^4*(x -12)^4;
T[114,97]=(x -10)^3*(x + 2)^4*(x -8)^4*(x + 10)^6;

T[115,2]=(x -2)*(x^2 + 3*x + 1)*(x^4 -2*x^3 -4*x^2 + 5*x + 2)*(x^2 + x -1)^2;
T[115,3]=(x )*(x + 1)^2*(x^2 -5)^2*(x^2 + x -4)^2;
T[115,5]=(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)*(x + 1)^3*(x -1)^4;
T[115,7]=(x -1)*(x^2 + 2*x -4)*(x^4 + 3*x^3 -14*x^2 -52*x -32)*(x^2 -2*x -4)^2;
T[115,11]=(x -2)*(x^2 + 2*x -4)*(x^4 -4*x^3 -16*x^2 + 40*x + 32)*(x^2 + 6*x + 4)^2;
T[115,13]=(x + 2)*(x^2 + 8*x + 11)*(x^4 -41*x^2 + 212)*(x -3)^4;
T[115,17]=(x -3)*(x^2 + 4*x -16)*(x^4 + x^3 -18*x^2 -24*x + 32)*(x^2 -6*x + 4)^2;
T[115,19]=(x^2 -2*x -44)*(x^4 + 4*x^3 -16*x^2 -40*x + 32)*(x + 2)^5;
T[115,23]=(x -1)^5*(x + 1)^6;
T[115,29]=(x -7)*(x^2 + 10*x + 5)*(x^4 -19*x^3 + 117*x^2 -269*x + 202)*(x + 3)^4;
T[115,31]=(x + 5)*(x^2 -4*x -1)*(x^4 + x^3 -101*x^2 + 11*x + 2144)*(x^2 -45)^2;
T[115,37]=(x -11)*(x^2 + 6*x -36)*(x^4 + 3*x^3 -116*x^2 + 16*x + 2008)*(x^2 -2*x -4)^2;
T[115,41]=(x -1)*(x^2 + 6*x -11)*(x^4 -13*x^3 + 45*x^2 -3*x -94)*(x^2 -2*x -19)^2;
T[115,43]=(x^2 + 6*x -36)*(x^4 + 6*x^3 -36*x^2 -16*x + 128)*(x )^5;
T[115,47]=(x^2 -10*x + 5)*(x^4 -6*x^3 -83*x^2 + 548*x -128)*(x )*(x^2 -5)^2;
T[115,53]=(x -11)*(x^4 -19*x^3 -34*x^2 + 2092*x -8776)*(x + 6)^2*(x^2 + 8*x -4)^2;
T[115,59]=(x + 13)*(x^2 -80)*(x^4 -23*x^3 + 100*x^2 + 560*x -3136)*(x^2 -4*x -16)^2;
T[115,61]=(x + 8)*(x^2 -2*x -124)*(x^4 -56*x^2 + 136*x -32)*(x^2 -4*x -76)^2;
T[115,67]=(x -5)*(x^2 -6*x -36)*(x^4 + 3*x^3 -98*x^2 -212*x + 2032)*(x^2 + 10*x + 20)^2;
T[115,71]=(x -5)*(x^2 + 8*x + 11)*(x^4 + 3*x^3 -149*x^2 -535*x -8)*(x^2 -20*x + 95)^2;
T[115,73]=(x -6)*(x^2 -45)*(x^4 + 32*x^3 + 343*x^2 + 1392*x + 1684)*(x^2 -22*x + 101)^2;
T[115,79]=(x + 12)*(x^2 -22*x + 116)*(x^4 -2*x^3 -140*x^2 -352*x + 512)*(x^2 + 4*x -76)^2;
T[115,83]=(x -9)*(x^2 + 4*x -16)*(x^4 + 21*x^3 + 96*x^2 -224*x -1216)*(x^2 + 22*x + 116)^2;
T[115,89]=(x -4)*(x^2 -10*x + 20)*(x^4 -216*x^2 -1496*x -2752)*(x^2 + 12*x + 16)^2;
T[115,97]=(x + 14)*(x^2 -10*x -100)*(x^4 + 18*x^3 + 72*x^2 -200*x -1072)*(x^2 -22*x + 76)^2;

T[116,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^7;
T[116,3]=(x -1)*(x -2)*(x + 1)^2*(x + 3)^3*(x^2 -2*x -1)^3;
T[116,5]=(x + 2)*(x + 3)^2*(x -3)^2*(x -1)^2*(x + 1)^6;
T[116,7]=(x + 4)*(x -4)^2*(x^2 -8)^3*(x + 2)^4;
T[116,11]=(x + 6)*(x -3)*(x + 3)^2*(x + 1)^3*(x^2 -2*x -1)^3;
T[116,13]=(x -2)*(x + 3)*(x -5)*(x -3)^2*(x + 1)^2*(x^2 + 2*x -7)^3;
T[116,17]=(x + 6)*(x -2)^2*(x + 4)^2*(x -8)^2*(x^2 + 4*x -4)^3;
T[116,19]=(x -4)*(x + 4)*(x + 6)*(x + 8)^2*(x )^2*(x -6)^6;
T[116,23]=(x + 6)^2*(x )^2*(x -4)^3*(x^2 + 4*x -28)^3;
T[116,29]=(x -1)^6*(x + 1)^7;
T[116,31]=(x + 6)*(x -9)*(x -5)*(x + 3)^2*(x -3)^2*(x^2 -6*x -41)^3;
T[116,37]=(x -2)*(x -8)^3*(x + 8)^3*(x + 4)^6;
T[116,41]=(x + 8)*(x )*(x + 2)^2*(x -2)^3*(x^2 -8*x -56)^3;
T[116,43]=(x + 5)*(x + 1)*(x -10)*(x -7)^2*(x + 11)^2*(x^2 -10*x + 23)^3;
T[116,47]=(x + 2)*(x + 3)*(x + 7)*(x -11)^2*(x -13)^2*(x^2 -2*x -17)^3;
T[116,53]=(x -3)*(x -10)*(x + 5)*(x + 11)^2*(x -1)^2*(x^2 -2*x -71)^3;
T[116,59]=(x -6)*(x + 10)*(x + 4)^2*(x^2 -4*x -28)^3*(x )^3;
T[116,61]=(x -2)*(x -4)^2*(x -10)^2*(x + 8)^2*(x^2 + 4*x -4)^3;
T[116,67]=(x + 4)^2*(x -8)^2*(x + 12)^3*(x^2 -32)^3;
T[116,71]=(x -8)*(x -6)*(x -2)^2*(x + 2)^3*(x^2 + 12*x + 28)^3;
T[116,73]=(x + 16)*(x -10)*(x )*(x + 12)^2*(x -4)^8;
T[116,79]=(x -11)*(x + 1)*(x + 6)*(x + 7)^2*(x -15)^2*(x^2 + 2*x -1)^3;
T[116,83]=(x -16)*(x -4)^2*(x -6)^2*(x )^2*(x^2 -4*x -28)^3;
T[116,89]=(x -2)*(x -12)*(x + 12)*(x + 10)^2*(x + 6)^2*(x^2 + 8*x -56)^3;
T[116,97]=(x -10)*(x -8)*(x )*(x + 6)^2*(x + 2)^2*(x^2 + 8*x -56)^3;

T[117,2]=(x + 1)*(x^2 -3)*(x^2 -2*x -1)*(x -1)^2*(x^2 + 2*x -1)^2;
T[117,3]=(x + 1)*(x -1)^2*(x )^8;
T[117,5]=(x + 2)*(x -2)^2*(x )^2*(x^2 -8)^3;
T[117,7]=(x -2)^2*(x + 4)^3*(x^2 -8)^3;
T[117,11]=(x + 4)*(x^2 -12)*(x -2)^2*(x -4)^2*(x + 2)^4;
T[117,13]=(x -1)^5*(x + 1)^6;
T[117,17]=(x + 2)*(x^2 + 4*x -28)*(x^2 -48)*(x -2)^2*(x^2 -4*x -28)^2;
T[117,19]=(x -2)^2*(x^2 -8)^3*(x )^3;
T[117,23]=(x^2 -48)*(x -4)^2*(x )^3*(x + 4)^4;
T[117,29]=(x -10)*(x^2 -48)*(x + 10)^2*(x + 2)^2*(x -2)^4;
T[117,31]=(x -2)^2*(x -4)^3*(x^2 + 8*x + 8)^3;
T[117,37]=(x -2)^2*(x + 2)^3*(x^2 + 4*x -28)^3;
T[117,41]=(x + 6)*(x^2 -48)*(x^2 + 16*x + 56)*(x -6)^2*(x^2 -16*x + 56)^2;
T[117,43]=(x -8)^2*(x + 12)^3*(x^2 -8*x -16)^3;
T[117,47]=(x^2 -12*x + 4)*(x^2 -108)*(x^2 + 12*x + 4)^2*(x )^3;
T[117,53]=(x + 6)*(x -6)^2*(x -2)^2*(x )^2*(x + 2)^4;
T[117,59]=(x + 12)*(x^2 -12)*(x^2 + 4*x -28)*(x -12)^2*(x^2 -4*x -28)^2;
T[117,61]=(x + 10)^2*(x + 2)^3*(x^2 -4*x -124)^3;
T[117,67]=(x -14)^2*(x + 8)^3*(x^2 -8*x + 8)^3;
T[117,71]=(x^2 -12)*(x + 2)^2*(x )^3*(x -2)^4;
T[117,73]=(x + 10)^2*(x -2)^3*(x^2 -12*x + 4)^3;
T[117,79]=(x + 4)^2*(x -8)^3*(x^2 -128)^3;
T[117,83]=(x + 4)*(x^2 -108)*(x^2 -4*x -28)*(x -4)^2*(x^2 + 4*x -28)^2;
T[117,89]=(x -2)*(x^2 -48)*(x^2 + 24*x + 136)*(x + 2)^2*(x^2 -24*x + 136)^2;
T[117,97]=(x + 10)^2*(x -10)^3*(x^2 + 4*x -28)^3;

T[118,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x + 1)^2*(x -1)^2;
T[118,3]=(x + 1)^2*(x -2)^2*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^2;
T[118,5]=(x -1)*(x + 2)*(x -2)*(x + 3)*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;
T[118,7]=(x + 1)*(x -3)*(x + 3)^2*(x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71)^2;
T[118,11]=(x + 1)*(x -1)*(x -2)*(x + 2)*(x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64)^2;
T[118,13]=(x + 2)*(x + 3)*(x -3)*(x + 6)*(x^5 -8*x^4 + 88*x^2 -48*x -224)^2;
T[118,17]=(x -7)*(x + 1)*(x + 2)^2*(x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412)^2;
T[118,19]=(x + 5)*(x + 8)*(x -3)*(x -4)*(x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469)^2;
T[118,23]=(x -8)*(x )*(x -4)^2*(x^5 + 8*x^4 -88*x^2 -112*x -32)^2;
T[118,29]=(x + 5)*(x + 1)*(x -4)*(x + 4)*(x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757)^2;
T[118,31]=(x -2)*(x -10)*(x + 4)^2*(x^5 -116*x^3 + 56*x^2 + 1280*x + 256)^2;
T[118,37]=(x + 7)*(x + 12)*(x + 1)*(x -8)*(x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32)^2;
T[118,41]=(x + 11)*(x -5)*(x -7)^2*(x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217)^2;
T[118,43]=(x -9)*(x + 9)*(x + 6)^2*(x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128)^2;
T[118,47]=(x -10)*(x -2)*(x + 6)*(x + 2)*(x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256)^2;
T[118,53]=(x + 11)*(x -12)*(x -9)*(x )*(x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73)^2;
T[118,59]=(x + 1)^3*(x -1)^11;
T[118,61]=(x + 8)*(x + 2)*(x + 12)*(x -10)*(x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072)^2;
T[118,67]=(x + 2)*(x -10)*(x -4)^2*(x^5 -188*x^3 -200*x^2 + 5472*x -8896)^2;
T[118,71]=(x -12)*(x -9)*(x + 15)*(x -4)*(x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424)^2;
T[118,73]=(x -10)*(x -12)*(x -4)*(x + 14)*(x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952)^2;
T[118,79]=(x + 15)*(x -5)*(x -11)^2*(x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923)^2;
T[118,83]=(x + 14)*(x + 13)*(x -14)*(x + 11)*(x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152)^2;
T[118,89]=(x -18)*(x + 6)*(x -4)*(x )*(x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984)^2;
T[118,97]=(x -2)*(x -8)*(x -14)*(x )*(x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656)^2;

T[119,2]=(x^4 + x^3 -5*x^2 -x + 3)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 14*x -17)*(x + 1)^2;
T[119,3]=(x^4 -2*x^3 -7*x^2 + 12*x -1)*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)*(x )^2;
T[119,5]=(x^4 -2*x^3 -7*x^2 + 4*x + 3)*(x^5 -23*x^3 + 18*x^2 + 131*x -178)*(x + 2)^2;
T[119,7]=(x^2 -4*x + 7)*(x -1)^4*(x + 1)^5;
T[119,11]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 2*x^4 -44*x^3 -40*x^2 + 496*x -192)*(x )^2;
T[119,13]=(x^4 -8*x^3 -16*x^2 + 216*x -368)*(x^5 -2*x^4 -40*x^3 + 56*x^2 + 352*x -544)*(x + 2)^2;
T[119,17]=(x + 1)^4*(x -1)^7;
T[119,19]=(x^4 -10*x^3 -20*x^2 + 392*x -784)*(x^5 -6*x^4 -12*x^3 + 56*x^2 + 48*x -64)*(x + 4)^2;
T[119,23]=(x^4 + 6*x^3 -40*x^2 -224*x -240)*(x^5 + 10*x^4 -8*x^3 -144*x^2 + 272*x -128)*(x -4)^2;
T[119,29]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 8*x^4 -72*x^3 -464*x^2 + 1216*x + 2592)*(x -6)^2;
T[119,31]=(x^4 -12*x^3 -13*x^2 + 418*x -917)*(x^5 -33*x^3 -94*x^2 -77*x -16)*(x -4)^2;
T[119,37]=(x^4 -6*x^3 -44*x^2 -8*x + 80)*(x^5 -8*x^4 -104*x^3 + 432*x^2 + 3584*x + 4384)*(x + 2)^2;
T[119,41]=(x^4 -12*x^3 + 27*x^2 + 86*x -237)*(x^5 -18*x^4 + 79*x^3 -64*x^2 -137*x + 162)*(x + 6)^2;
T[119,43]=(x^4 + 12*x^3 -23*x^2 -212*x -115)*(x^5 -8*x^4 -31*x^3 + 216*x^2 + 157*x -1052)*(x -4)^2;
T[119,47]=(x^4 -2*x^3 -128*x^2 -64*x + 1776)*(x^5 + 10*x^4 -48*x^3 -816*x^2 -2704*x -2304)*(x )^2;
T[119,53]=(x^4 + 26*x^3 + 227*x^2 + 758*x + 801)*(x^5 -4*x^4 -33*x^3 + 76*x^2 + 301*x + 138)*(x -6)^2;
T[119,59]=(x^4 + 4*x^3 -192*x^2 -1408*x -768)*(x^5 -8*x^4 -80*x^3 + 640*x^2 + 256*x -3072)*(x + 12)^2;
T[119,61]=(x^4 -12*x^3 -157*x^2 + 1330*x + 6451)*(x^5 -22*x^4 + 143*x^3 -40*x^2 -2377*x + 5542)*(x + 10)^2;
T[119,67]=(x^4 + 12*x^3 -71*x^2 -548*x + 1949)*(x^5 -16*x^4 + 49*x^3 + 304*x^2 -1747*x + 1868)*(x -4)^2;
T[119,71]=(x^4 + 14*x^3 -44*x^2 -1160*x -3312)*(x^5 + 2*x^4 -236*x^3 -872*x^2 + 7472*x + 13696)*(x + 4)^2;
T[119,73]=(x^4 -20*x^3 + 123*x^2 -262*x + 131)*(x^5 -10*x^4 -177*x^3 + 2212*x^2 -4217*x -11118)*(x + 6)^2;
T[119,79]=(x^4 + 14*x^3 -56*x^2 -928*x -400)*(x^5 -18*x^4 + 40*x^3 + 544*x^2 -2672*x + 3072)*(x -12)^2;
T[119,83]=(x^4 + 28*x^3 + 264*x^2 + 968*x + 1200)*(x^5 + 12*x^4 -64*x^3 -952*x^2 -1872*x + 1984)*(x + 4)^2;
T[119,89]=(x^4 + 10*x^3 -176*x^2 -592*x + 720)*(x^5 -20*x^4 -100*x^3 + 3552*x^2 -14192*x + 7456)*(x -10)^2;
T[119,97]=(x^4 -26*x^3 + 177*x^2 + 4*x -1901)*(x^5 -12*x^4 -239*x^3 + 2766*x^2 + 2163*x + 218)*(x -2)^2;

T[120,2]=(x + 1)*(x^2 + x + 2)*(x )^14;
T[120,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x -1)^5*(x + 1)^6;
T[120,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;
T[120,7]=(x -4)*(x -2)^4*(x + 4)^5*(x )^7;
T[120,11]=(x -4)^4*(x + 4)^5*(x )^8;
T[120,13]=(x -6)*(x + 6)*(x -2)^7*(x + 2)^8;
T[120,17]=(x + 2)*(x -6)^3*(x + 6)^5*(x -2)^8;
T[120,19]=(x -4)^7*(x + 4)^10;
T[120,23]=(x -4)^2*(x + 8)^3*(x -6)^4*(x )^8;
T[120,29]=(x + 6)^4*(x -6)^6*(x + 2)^7;
T[120,31]=(x + 8)^3*(x + 4)^4*(x -8)^5*(x )^5;
T[120,37]=(x + 6)*(x + 2)*(x -6)^4*(x + 10)^4*(x -2)^7;
T[120,41]=(x -6)^4*(x -10)^5*(x + 6)^8;
T[120,43]=(x -12)*(x + 8)^2*(x + 4)^4*(x + 10)^4*(x -4)^6;
T[120,47]=(x -4)^2*(x + 6)^4*(x )^5*(x -8)^6;
T[120,53]=(x -10)*(x + 2)^2*(x -6)^3*(x + 10)^4*(x + 6)^7;
T[120,59]=(x -4)^2*(x )^4*(x -12)^5*(x + 4)^6;
T[120,61]=(x -6)*(x -14)*(x + 10)^3*(x -2)^4*(x + 2)^8;
T[120,67]=(x -4)*(x -8)^2*(x -12)^4*(x -2)^4*(x + 4)^6;
T[120,71]=(x -8)^3*(x + 8)^4*(x + 12)^4*(x )^6;
T[120,73]=(x + 14)*(x + 6)^3*(x -10)^6*(x -2)^7;
T[120,79]=(x -16)*(x + 8)^3*(x )^6*(x -8)^7;
T[120,83]=(x + 12)*(x + 16)^2*(x + 4)^2*(x -6)^4*(x -12)^8;
T[120,89]=(x -2)*(x -10)*(x -18)^3*(x + 6)^12;
T[120,97]=(x + 14)^2*(x -2)^15;

T[121,2]=(x -2)*(x + 1)*(x -1)*(x )*(x + 2)^2;
T[121,3]=(x -2)^2*(x + 1)^4;
T[121,5]=(x + 3)*(x -1)^5;
T[121,7]=(x )*(x -2)^2*(x + 2)^3;
T[121,11]=(x -1)*(x )^5;
T[121,13]=(x -1)*(x + 1)*(x + 4)*(x )*(x -4)^2;
T[121,17]=(x + 5)*(x -2)*(x -5)*(x )*(x + 2)^2;
T[121,19]=(x -6)*(x + 6)*(x )^4;
T[121,23]=(x + 9)*(x -2)^2*(x + 1)^3;
T[121,29]=(x + 9)*(x -9)*(x )^4;
T[121,31]=(x + 5)*(x + 2)^2*(x -7)^3;
T[121,37]=(x -7)*(x + 3)^2*(x -3)^3;
T[121,41]=(x -8)*(x + 5)*(x -5)*(x )*(x + 8)^2;
T[121,43]=(x -6)*(x + 6)^2*(x )^3;
T[121,47]=(x + 12)*(x -2)^2*(x -8)^3;
T[121,53]=(x -6)*(x -9)^2*(x + 6)^3;
T[121,59]=(x + 15)*(x -8)^2*(x -5)^3;
T[121,61]=(x -6)*(x + 6)*(x + 12)*(x )*(x -12)^2;
T[121,67]=(x -13)*(x -2)^2*(x + 7)^3;
T[121,71]=(x -12)^2*(x + 3)^4;
T[121,73]=(x -2)*(x + 4)*(x + 2)*(x )*(x -4)^2;
T[121,79]=(x )*(x -10)^2*(x + 10)^3;
T[121,83]=(x )*(x -6)^2*(x + 6)^3;
T[121,89]=(x -15)^3*(x + 9)^3;
T[121,97]=(x -17)*(x + 13)^2*(x + 7)^3;

T[122,2]=(x^2 + x + 2)*(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x + 1)^3*(x -1)^3;
T[122,3]=(x^2 -x -3)*(x^3 + x^2 -5*x + 2)*(x^3 -2*x^2 -4*x + 4)^2*(x + 2)^3;
T[122,5]=(x -1)*(x^3 -x^2 -12*x + 16)*(x + 3)^2*(x^3 + x^2 -9*x -13)^2*(x )^2;
T[122,7]=(x + 5)*(x^2 -5*x + 3)*(x^3 -4*x^2 -10*x + 41)*(x -1)^2*(x^3 + 3*x^2 -x -1)^2;
T[122,11]=(x + 3)*(x^2 -2*x -12)*(x^3 + 7*x^2 + 10*x -4)*(x + 5)^2*(x^3 -13*x^2 + 53*x -67)^2;
T[122,13]=(x + 3)*(x^2 -6*x -4)*(x^3 + x^2 -6*x -4)*(x -1)^2*(x^3 + 9*x^2 + 11*x -37)^2;
T[122,17]=(x^2 + 2*x -12)*(x^3 + 6*x^2 -4*x -16)*(x )*(x -4)^2*(x^3 + 2*x^2 -8*x + 4)^2;
T[122,19]=(x^2 -x -29)*(x^3 + 3*x^2 -x -4)*(x )*(x + 4)^2*(x^3 -48*x -20)^2;
T[122,23]=(x -5)*(x^2 + 3*x -27)*(x^3 -2*x^2 -38*x + 113)*(x + 9)^2*(x^3 -5*x^2 + 5*x + 1)^2;
T[122,29]=(x -6)*(x^2 + 11*x + 27)*(x^3 -x^2 -31*x + 2)*(x + 6)^2*(x^3 -4*x^2 -4*x + 20)^2;
T[122,31]=(x^2 + x -3)*(x^3 + 3*x^2 -43*x + 8)*(x^3 + 2*x^2 -76*x + 116)^2*(x )^3;
T[122,37]=(x + 12)*(x^2 + 3*x -1)*(x^3 -7*x^2 -65*x + 424)*(x -8)^2*(x^3 + 6*x^2 -36*x -108)^2;
T[122,41]=(x + 3)*(x^2 + 9*x -9)*(x^3 -4*x^2 -70*x -139)*(x -5)^2*(x^3 -3*x^2 -61*x + 191)^2;
T[122,43]=(x^3 -12*x^2 -16*x + 256)*(x -8)^2*(x^3 + 14*x^2 + 56*x + 68)^2*(x + 8)^3;
T[122,47]=(x -12)*(x^2 -8*x -36)*(x^3 + 8*x^2 -28*x -208)*(x -4)^2*(x^3 + 4*x^2 -88*x + 16)^2;
T[122,53]=(x + 2)*(x^2 + x -81)*(x^3 -11*x^2 -195*x + 2198)*(x -6)^2*(x^3 + 2*x^2 -12*x -8)^2;
T[122,59]=(x + 9)*(x^3 + 23*x^2 + 164*x + 368)*(x -9)^2*(x^3 -29*x^2 + 231*x -325)^2*(x )^2;
T[122,61]=(x + 1)^6*(x -1)^8;
T[122,67]=(x -7)*(x^2 -52)*(x^3 -21*x^2 + 44*x + 772)*(x + 7)^2*(x^3 -9*x^2 -85*x + 559)^2;
T[122,71]=(x + 16)*(x^2 -9*x -9)*(x^3 -27*x^2 + 207*x -432)*(x + 8)^2*(x^3 -14*x^2 -12*x + 92)^2;
T[122,73]=(x + 3)*(x^2 -x -29)*(x^3 -22*x^2 + 80*x + 449)*(x + 11)^2*(x^3 + x^2 -45*x -25)^2;
T[122,79]=(x -1)*(x^2 + 12*x -16)*(x^3 -3*x^2 -108*x + 432)*(x -3)^2*(x^3 -13*x^2 -51*x + 625)^2;
T[122,83]=(x + 12)*(x^2 -9*x -9)*(x^3 + 11*x^2 -85*x -28)*(x -4)^2*(x^3 + 8*x^2 -64*x -256)^2;
T[122,89]=(x -12)*(x^2 + 14*x + 36)*(x^3 + 10*x^2 -76*x + 112)*(x + 4)^2*(x^3 + 4*x^2 -56*x + 80)^2;
T[122,97]=(x -2)*(x^2 -17*x -9)*(x^3 + 5*x^2 -7*x + 2)*(x + 14)^2*(x^3 -10*x^2 -116*x + 1096)^2;

T[123,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x )*(x^3 + x^2 -5*x -1)^2;
T[123,3]=(x^6 + 5*x^4 + 2*x^3 + 15*x^2 + 27)*(x -1)^3*(x + 1)^4;
T[123,5]=(x + 2)*(x + 4)*(x^2 -4*x + 2)*(x^3 -4*x^2 -2*x + 4)*(x^3 + 2*x^2 -4*x -4)^2;
T[123,7]=(x + 4)*(x + 2)*(x^2 + 4*x + 2)*(x^3 -2*x^2 -14*x + 32)*(x^3 -6*x^2 + 8*x -2)^2;
T[123,11]=(x + 3)*(x -5)*(x^2 -2*x -1)*(x^3 + 4*x^2 + x -4)*(x^3 -2*x^2 -20*x + 50)^2;
T[123,13]=(x + 6)*(x + 4)*(x^2 -4*x -14)*(x^3 -8*x^2 + 14*x + 4)*(x^3 + 2*x^2 -12*x -8)^2;
T[123,17]=(x -3)*(x + 5)*(x^2 -2*x -1)*(x^3 -2*x^2 -23*x + 62)*(x + 2)^6;
T[123,19]=(x + 2)*(x^2 + 8*x + 14)*(x^3 -2*x^2 -6*x + 8)*(x )*(x^3 -4*x^2 -16*x -10)^2;
T[123,23]=(x -4)*(x + 6)*(x^2 -2)*(x^3 + 10*x^2 + 26*x + 16)*(x^3 -4*x^2 -32*x -32)^2;
T[123,29]=(x -1)*(x -5)*(x^2 -2*x -49)*(x^3 + 6*x^2 -27*x -86)*(x^3 + 6*x^2 -4*x -40)^2;
T[123,31]=(x -7)*(x + 5)*(x^3 + 2*x^2 -91*x -256)*(x + 3)^2*(x^3 -16*x^2 + 64*x -32)^2;
T[123,37]=(x^2 + 2*x -71)*(x^3 -20*x^2 + 117*x -166)*(x + 7)^2*(x^3 + 6*x^2 -36*x -108)^2;
T[123,41]=(x + 1)^3*(x -1)^10;
T[123,43]=(x -7)*(x + 1)*(x^3 -10*x^2 -119*x + 1156)*(x + 5)^2*(x^3 + 4*x^2 -8*x -16)^2;
T[123,47]=(x -7)*(x -3)*(x^2 -18*x + 79)*(x^3 -4*x^2 -35*x -8)*(x^3 -120*x -502)^2;
T[123,53]=(x + 6)*(x + 14)*(x^2 -8*x + 8)*(x^3 -14*x^2 + 32)*(x^3 -6*x^2 -4*x + 8)^2;
T[123,59]=(x + 12)*(x^2 -72)*(x^3 + 8*x^2 -40*x + 32)*(x )*(x^3 + 8*x^2 -16*x -160)^2;
T[123,61]=(x^2 -2*x -31)*(x^3 + 8*x^2 + 5*x -46)*(x + 3)^2*(x^3 -2*x^2 -52*x + 184)^2;
T[123,67]=(x^2 -4*x -68)*(x^3 -12*x^2 -124*x + 976)*(x + 2)^2*(x^3 + 2*x^2 -20*x -50)^2;
T[123,71]=(x^2 -6*x -41)*(x^3 + 32*x^2 + 337*x + 1168)*(x + 3)^2*(x^3 -20*x^2 + 84*x + 134)^2;
T[123,73]=(x -13)*(x + 11)*(x^2 -2*x -127)*(x^3 -4*x^2 -99*x + 454)*(x^3 + 2*x^2 -180*x + 244)^2;
T[123,79]=(x + 2)*(x -10)*(x^2 + 4*x -28)*(x^3 + 20*x^2 + 68*x + 32)*(x^3 -32*x^2 + 328*x -1090)^2;
T[123,83]=(x + 16)*(x + 2)*(x^2 + 12*x -14)*(x^3 + 14*x^2 + 10*x -296)*(x^3 -64*x -128)^2;
T[123,89]=(x -18)*(x + 10)*(x^2 + 12*x + 4)*(x^3 -14*x^2 -4*x + 184)*(x^3 + 6*x^2 -148*x -920)^2;
T[123,97]=(x + 14)*(x + 12)*(x^2 -24*x + 126)*(x^3 + 12*x^2 + 14*x -148)*(x^3 -6*x^2 -52*x + 248)^2;

T[124,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2*(x )^7;
T[124,3]=(x + 2)*(x^2 -2*x -2)^2*(x^2 + 2*x -4)^3*(x )^3;
T[124,5]=(x + 3)*(x + 2)^2*(x^2 -12)^2*(x -1)^7;
T[124,7]=(x + 1)*(x -3)*(x )^2*(x^2 + 4*x -1)^3*(x -2)^4;
T[124,11]=(x + 6)*(x -6)*(x^2 + 6*x + 6)^2*(x )^2*(x -2)^6;
T[124,13]=(x + 4)*(x^2 + 2*x -26)^2*(x -2)^3*(x^2 + 2*x -4)^3;
T[124,17]=(x -6)*(x )*(x + 6)^2*(x^2 -12)^2*(x^2 -6*x + 4)^3;
T[124,19]=(x + 1)*(x + 5)*(x -4)^2*(x^2 -5)^3*(x + 4)^4;
T[124,23]=(x + 6)*(x + 4)*(x -8)^2*(x^2 + 2*x -44)^3*(x )^4;
T[124,29]=(x )*(x^2 + 6*x -18)^2*(x -2)^3*(x^2 -10*x + 20)^3;
T[124,31]=(x + 1)^3*(x -1)^11;
T[124,37]=(x + 10)*(x -10)^2*(x^2 -10*x -2)^2*(x + 2)^7;
T[124,41]=(x + 6)^2*(x + 9)^2*(x^2 -12*x + 24)^2*(x -7)^6;
T[124,43]=(x -2)*(x^2 + 2*x -26)^2*(x -8)^3*(x^2 + 2*x -4)^3;
T[124,47]=(x -4)*(x )*(x + 8)^2*(x^2 + 4*x -16)^3*(x -6)^4;
T[124,53]=(x -12)*(x )*(x + 6)^2*(x^2 -6*x + 6)^2*(x^2 + 12*x + 16)^3;
T[124,59]=(x -9)*(x + 3)*(x + 12)^2*(x^2 + 12*x + 24)^2*(x^2 -5)^3;
T[124,61]=(x + 10)*(x -12)*(x + 6)^2*(x^2 + 2*x -26)^2*(x^2 + 6*x -116)^3;
T[124,67]=(x + 4)*(x + 12)^3*(x -8)^10;
T[124,71]=(x -5)*(x + 15)*(x -8)^2*(x^2 -192)^2*(x^2 -4*x -121)^3;
T[124,73]=(x -14)*(x + 14)*(x -10)^2*(x^2 -8*x -4)^3*(x + 10)^4;
T[124,79]=(x -10)*(x -8)*(x + 8)^2*(x^2 -4*x -104)^2*(x^2 + 10*x -20)^3;
T[124,83]=(x -6)*(x -2)*(x -8)^2*(x^2 -6*x -66)^2*(x^2 + 12*x -44)^3;
T[124,89]=(x -12)*(x + 6)^2*(x^2 -10*x -20)^3*(x -6)^5;
T[124,97]=(x + 7)^2*(x -2)^2*(x^2 -4*x -104)^2*(x^2 + 14*x -31)^3;

T[125,2]=(x^2 + x -1)*(x^2 -x -1)*(x^4 -8*x^2 + 11);
T[125,3]=(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^4 -7*x^2 + 11);
T[125,5]=(x )^8;
T[125,7]=(x^4 -13*x^2 + 11)*(x + 3)^2*(x -3)^2;
T[125,11]=(x + 3)^4*(x -2)^4;
T[125,13]=(x^2 + 3*x -9)*(x^2 -3*x -9)*(x^4 -32*x^2 + 176);
T[125,17]=(x^2 + 4*x -1)*(x^2 -4*x -1)*(x^4 -28*x^2 + 176);
T[125,19]=(x^2 + 5*x + 5)^2*(x^2 -10*x + 20)^2;
T[125,23]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x^4 -17*x^2 + 11);
T[125,29]=(x^2 -45)^2*(x^2 + 5*x -5)^2;
T[125,31]=(x^2 + x -31)^2*(x -2)^4;
T[125,37]=(x^2 + 6*x -36)*(x^2 -6*x -36)*(x^4 -68*x^2 + 176);
T[125,41]=(x^2 + x -31)^2*(x + 3)^4;
T[125,43]=(x^4 -107*x^2 + 1331)*(x -9)^2*(x + 9)^2;
T[125,47]=(x^2 -x -61)*(x^2 + x -61)*(x^4 -43*x^2 + 11);
T[125,53]=(x^2 -7*x + 11)*(x^2 + 7*x + 11)*(x^4 -112*x^2 + 2816);
T[125,59]=(x^2 -15*x + 45)^2*(x^2 -20)^2;
T[125,61]=(x^2 + x -31)^4;
T[125,67]=(x^2 + 21*x + 99)*(x^2 -21*x + 99)*(x^4 -28*x^2 + 176);
T[125,71]=(x^2 + 6*x -116)^2*(x + 3)^4;
T[125,73]=(x^2 -3*x -9)*(x^2 + 3*x -9)*(x^4 -352*x^2 + 21296);
T[125,79]=(x^2 -10*x + 20)^2*(x^2 -10*x + 5)^2;
T[125,83]=(x^2 + 8*x -4)*(x^2 -8*x -4)*(x^4 -77*x^2 + 1331);
T[125,89]=(x^2 -180)^2*(x^2 + 15*x + 55)^2;
T[125,97]=(x^2 -9*x + 9)*(x^2 + 9*x + 9)*(x^4 -128*x^2 + 176);

T[126,2]=(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x -1)^3*(x + 1)^4;
T[126,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
T[126,5]=(x^2 -12)^2*(x -2)^3*(x )^4*(x + 2)^6;
T[126,7]=(x -1)^8*(x + 1)^9;
T[126,11]=(x^2 -12)^2*(x + 4)^4*(x )^4*(x -4)^5;
T[126,13]=(x -6)^3*(x + 4)^4*(x -2)^4*(x + 2)^6;
T[126,17]=(x + 2)*(x -2)^2*(x^2 -12)^2*(x + 6)^5*(x -6)^5;
T[126,19]=(x -2)^4*(x -4)^6*(x + 4)^7;
T[126,23]=(x + 8)*(x -8)^2*(x^2 -12)^2*(x )^10;
T[126,29]=(x -6)*(x + 6)^3*(x -2)^3*(x )^4*(x + 2)^6;
T[126,31]=(x + 4)^8*(x )^9;
T[126,37]=(x + 10)^3*(x -6)^6*(x -2)^8;
T[126,41]=(x + 2)^2*(x^2 -108)^2*(x + 6)^3*(x -6)^4*(x -2)^4;
T[126,43]=(x -8)^4*(x + 4)^13;
T[126,47]=(x -12)*(x^2 -48)^2*(x + 12)^3*(x )^9;
T[126,53]=(x^2 -48)^2*(x + 6)^4*(x -6)^9;
T[126,59]=(x + 4)*(x -6)*(x + 12)^2*(x -4)^2*(x^2 -48)^2*(x + 6)^3*(x -12)^4;
T[126,61]=(x -6)^3*(x -8)^4*(x + 10)^4*(x + 2)^6;
T[126,67]=(x + 4)^8*(x -4)^9;
T[126,71]=(x + 8)*(x -8)^2*(x^2 -108)^2*(x )^10;
T[126,73]=(x -10)^3*(x -2)^4*(x -14)^4*(x + 6)^6;
T[126,79]=(x )^3*(x + 16)^6*(x -8)^8;
T[126,83]=(x -4)*(x -6)*(x + 4)^2*(x -12)^2*(x + 6)^3*(x + 12)^4*(x )^4;
T[126,89]=(x -14)^2*(x -6)^2*(x^2 -12)^2*(x + 14)^4*(x + 6)^5;
T[126,97]=(x + 14)^3*(x + 10)^4*(x -14)^4*(x -18)^6;

T[127,2]=(x^3 + 3*x^2 -3)*(x^7 -2*x^6 -8*x^5 + 15*x^4 + 17*x^3 -28*x^2 -11*x + 15);
T[127,3]=(x^3 + 3*x^2 -3)*(x^7 -3*x^6 -12*x^5 + 39*x^4 + 26*x^3 -128*x^2 + 64*x + 16);
T[127,5]=(x^3 + 6*x^2 + 9*x + 1)*(x^7 -8*x^6 + 11*x^5 + 53*x^4 -146*x^3 + 32*x^2 + 128*x -48);
T[127,7]=(x^3 + 3*x^2 -3)*(x^7 + 3*x^6 -20*x^5 -41*x^4 + 114*x^3 + 64*x^2 -112*x -16);
T[127,11]=(x^3 -21*x -37)*(x^7 -28*x^5 -17*x^4 + 88*x^3 -37*x^2 -5*x + 3);
T[127,13]=(x^3 + 3*x^2 -18*x -37)*(x^7 + x^6 -69*x^5 -38*x^4 + 1515*x^3 + 52*x^2 -10416*x + 5383);
T[127,17]=(x^3 + 18*x^2 + 105*x + 199)*(x^7 -24*x^6 + 200*x^5 -467*x^4 -2678*x^3 + 19593*x^2 -45913*x + 38235);
T[127,19]=(x^3 -3*x^2 + 1)*(x^7 + 5*x^6 -51*x^5 -206*x^4 + 685*x^3 + 1582*x^2 -2664*x + 853);
T[127,23]=(x^3 + 9*x^2 + 18*x -9)*(x^7 + x^6 -74*x^5 -279*x^4 + 812*x^3 + 6344*x^2 + 12376*x + 8016);
T[127,29]=(x^3 -3*x^2 -18*x + 3)*(x^7 + 7*x^6 -72*x^5 -359*x^4 + 1612*x^3 + 2512*x^2 -5368*x -5520);
T[127,31]=(x^3 -12*x^2 + 27*x -17)*(x^7 + 8*x^6 -68*x^5 -465*x^4 + 648*x^3 + 3651*x^2 -229*x -2845);
T[127,37]=(x^3 -84*x + 296)*(x^7 + 6*x^6 -81*x^5 -550*x^4 + 981*x^3 + 11180*x^2 + 16084*x -920);
T[127,41]=(x^3 + 12*x^2 -192)*(x^7 -14*x^6 + 23*x^5 + 494*x^4 -3199*x^3 + 8072*x^2 -9296*x + 4032);
T[127,43]=(x^3 + 9*x^2 -81*x -513)*(x^7 + x^6 -99*x^5 + 287*x^4 + 1374*x^3 -6236*x^2 + 2296*x + 10096);
T[127,47]=(x^3 + 3*x^2 -81*x -379)*(x^7 -25*x^6 + 100*x^5 + 1920*x^4 -16340*x^3 -12320*x^2 + 439559*x -1046391);
T[127,53]=(x^3 -3*x^2 -126*x + 57)*(x^7 -29*x^6 + 142*x^5 + 2659*x^4 -28158*x^3 + 43804*x^2 + 283688*x -755376);
T[127,59]=(x^3 -21*x + 37)*(x^7 + 12*x^6 -233*x^5 -3351*x^4 + 6446*x^3 + 206960*x^2 + 572048*x -339120);
T[127,61]=(x^3 + 3*x^2 -153*x -307)*(x^7 -7*x^6 -96*x^5 + 522*x^4 + 2454*x^3 -6956*x^2 -9711*x + 3625);
T[127,67]=(x^3 + 3*x^2 -1)*(x^7 + 25*x^6 + 26*x^5 -3183*x^4 -15628*x^3 + 90672*x^2 + 534864*x -64784);
T[127,71]=(x^3 -3*x^2 -153*x + 867)*(x^7 -7*x^6 -228*x^5 + 1424*x^4 + 9756*x^3 -79912*x^2 + 161143*x -84633);
T[127,73]=(x^3 -3*x^2 -114*x + 269)*(x^7 -13*x^6 -161*x^5 + 2198*x^4 + 2483*x^3 -58764*x^2 + 8644*x + 17401);
T[127,79]=(x^3 -9*x^2 -120*x + 71)*(x^7 + 23*x^6 -7*x^5 -3470*x^4 -19855*x^3 + 84554*x^2 + 916400*x + 1841711);
T[127,83]=(x^3 -12*x^2 -225*x + 2649)*(x^7 -26*x^6 -9*x^5 + 4299*x^4 -20636*x^3 -111104*x^2 + 542920*x + 16464);
T[127,89]=(x^3 + 33*x^2 + 306*x + 597)*(x^7 -13*x^6 -12*x^5 + 431*x^4 + 62*x^3 -2296*x^2 + 1184*x + 432);
T[127,97]=(x^3 + 15*x^2 -6*x -37)*(x^7 + 5*x^6 -280*x^5 -1263*x^4 + 14750*x^3 + 41452*x^2 -172648*x -12656);

T[128,2]=(x )^9;
T[128,3]=(x + 2)^2*(x -2)^2*(x )^5;
T[128,5]=(x -2)^4*(x + 2)^5;
T[128,7]=(x -4)^2*(x + 4)^2*(x )^5;
T[128,11]=(x -2)^2*(x + 2)^2*(x )^5;
T[128,13]=(x + 2)^2*(x -2)^2*(x + 6)^2*(x -6)^3;
T[128,17]=(x + 2)^4*(x -2)^5;
T[128,19]=(x -2)^2*(x + 2)^2*(x )^5;
T[128,23]=(x -4)^2*(x + 4)^2*(x )^5;
T[128,29]=(x -6)^2*(x -10)^2*(x + 6)^2*(x + 10)^3;
T[128,31]=(x )^9;
T[128,37]=(x -2)^2*(x + 10)^2*(x -10)^2*(x + 2)^3;
T[128,41]=(x + 6)^4*(x -10)^5;
T[128,43]=(x -6)^2*(x + 6)^2*(x )^5;
T[128,47]=(x -8)^2*(x + 8)^2*(x )^5;
T[128,53]=(x -6)^2*(x + 6)^2*(x + 14)^2*(x -14)^3;
T[128,59]=(x -14)^2*(x + 14)^2*(x )^5;
T[128,61]=(x -2)^2*(x -10)^2*(x + 2)^2*(x + 10)^3;
T[128,67]=(x + 10)^2*(x -10)^2*(x )^5;
T[128,71]=(x + 12)^2*(x -12)^2*(x )^5;
T[128,73]=(x -14)^4*(x + 6)^5;
T[128,79]=(x + 8)^2*(x -8)^2*(x )^5;
T[128,83]=(x -6)^2*(x + 6)^2*(x )^5;
T[128,89]=(x + 2)^4*(x -10)^5;
T[128,97]=(x + 2)^4*(x -18)^5;

T[129,2]=(x -1)*(x^2 -2*x -1)*(x^3 + 2*x^2 -5*x -8)*(x )*(x + 2)^2*(x^2 -2)^2;
T[129,3]=(x^2 + 2*x + 3)*(x^4 + 4*x^2 + 9)*(x + 1)^3*(x -1)^4;
T[129,5]=(x -2)*(x + 2)*(x^2 -2*x -1)*(x^3 + 4*x^2 -x -2)*(x + 4)^2*(x^2 -4*x + 2)^2;
T[129,7]=(x + 2)*(x^2 -2*x -7)*(x^3 -4*x^2 -3*x + 10)*(x^2 + 4*x + 2)^2*(x )^3;
T[129,11]=(x + 5)*(x^2 -6*x + 7)*(x^3 -x^2 -19*x -25)*(x )*(x -3)^2*(x^2 + 2*x -7)^2;
T[129,13]=(x + 2)*(x^2 -2*x -7)^2*(x -3)^4*(x + 5)^4;
T[129,17]=(x + 6)*(x^2 + 4*x -4)*(x^3 -x^2 -8*x + 4)*(x^2 -10*x + 17)^2*(x + 3)^3;
T[129,19]=(x -4)*(x -2)*(x^2 + 2*x -31)*(x^3 + 4*x^2 -19*x -2)*(x + 2)^2*(x^2 + 4*x -4)^2;
T[129,23]=(x + 4)*(x^3 -11*x^2 -32*x + 452)*(x -6)^2*(x^2 -2*x -31)^2*(x + 1)^3;
T[129,29]=(x^2 -6*x -9)*(x^3 -2*x^2 -5*x + 8)*(x )*(x^2 -18)^2*(x + 6)^3;
T[129,31]=(x -8)*(x + 5)*(x^3 + 5*x^2 -16*x -64)*(x -4)^2*(x + 1)^2*(x + 3)^4;
T[129,37]=(x -6)*(x -8)*(x^2 + 8*x + 8)*(x^3 -40*x + 64)*(x^2 -72)^2*(x )^2;
T[129,41]=(x + 7)*(x -2)*(x^2 -32)*(x^3 + 15*x^2 + 32*x -32)*(x -5)^2*(x^2 + 2*x -7)^2;
T[129,43]=(x -1)^6*(x + 1)^7;
T[129,47]=(x + 8)*(x^2 + 2*x -97)*(x^3 + 2*x^2 -133*x -664)*(x -4)^3*(x -6)^4;
T[129,53]=(x + 2)*(x -3)*(x^2 -128)*(x^3 + 5*x^2 -16*x -64)*(x + 5)^2*(x^2 -22*x + 113)^2;
T[129,59]=(x -12)*(x^2 -4*x -124)*(x^3 -8*x^2 -12*x + 80)*(x )*(x + 12)^2*(x^2 + 4*x -4)^2;
T[129,61]=(x + 8)*(x -14)*(x^2 + 8*x + 8)*(x^3 + 16*x^2 + 8*x -512)*(x -2)^2*(x^2 -8*x -2)^2;
T[129,67]=(x -12)*(x + 15)*(x^2 + 12*x -36)*(x^3 + 11*x^2 -80*x -332)*(x + 3)^2*(x^2 -2*x -71)^2;
T[129,71]=(x + 14)*(x -8)*(x^2 -12*x + 28)*(x^3 -22*x^2 + 84*x + 424)*(x -2)^2*(x^2 + 12*x + 28)^2;
T[129,73]=(x -12)*(x^2 -4*x -28)*(x^3 + 16*x^2 + 52*x -16)*(x^2 + 24*x + 126)^2*(x -2)^3;
T[129,79]=(x + 16)*(x^2 -8*x -56)*(x^3 -24*x^2 + 152*x -256)*(x^2 -4*x -4)^2*(x + 8)^3;
T[129,83]=(x^2 + 14*x + 47)*(x^3 + 7*x^2 -79*x -485)*(x )*(x^2 -18*x + 49)^2*(x -15)^3;
T[129,89]=(x -14)*(x -10)*(x^2 -72)*(x^3 + 38*x^2 + 456*x + 1744)*(x + 4)^2*(x^2 + 12*x + 18)^2;
T[129,97]=(x + 14)*(x -11)*(x^3 -x^2 -77*x + 277)*(x -7)^2*(x^2 + 2*x -7)^3;

T[130,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 + x + 2)*(x^4 + x^2 + 4)*(x + 1)^3*(x -1)^4;
T[130,3]=(x -2)*(x )*(x + 3)^2*(x -1)^2*(x^2 -2)^2*(x^2 -2*x -2)^2*(x + 2)^3;
T[130,5]=(x^2 + 3*x + 5)*(x^2 + x + 5)*(x -1)^6*(x + 1)^7;
T[130,7]=(x )*(x -1)^2*(x + 1)^2*(x^2 -4*x -4)^2*(x -2)^4*(x + 4)^4;
T[130,11]=(x + 6)*(x )*(x -6)^2*(x -2)^2*(x^2 + 6*x + 6)^2*(x^2 -4*x + 2)^2*(x + 2)^3;
T[130,13]=(x -1)^8*(x + 1)^9;
T[130,17]=(x + 6)*(x^2 + 4*x -4)^2*(x^2 -12)^2*(x -2)^4*(x + 3)^4;
T[130,19]=(x + 8)*(x + 6)^2*(x^2 -4*x + 2)^2*(x^2 + 2*x -26)^2*(x -2)^3*(x -6)^3;
T[130,23]=(x + 6)^2*(x -6)^2*(x^2 -6*x + 6)^2*(x^2 -2)^2*(x )^2*(x + 4)^3;
T[130,29]=(x + 2)*(x + 6)*(x -6)^2*(x^2 + 12*x + 24)^2*(x^2 -32)^2*(x -2)^5;
T[130,31]=(x + 6)*(x -2)*(x -4)^2*(x + 10)^2*(x^2 -12*x + 18)^2*(x^2 -10*x -2)^2*(x + 4)^3;
T[130,37]=(x -6)*(x -2)*(x -3)^2*(x + 7)^2*(x^2 -72)^2*(x + 2)^3*(x + 4)^4;
T[130,41]=(x -10)^2*(x^2 -12)^2*(x^2 + 12*x + 28)^2*(x + 6)^3*(x )^4;
T[130,43]=(x -2)*(x + 10)*(x )*(x + 1)^2*(x -10)^2*(x + 5)^2*(x^2 -10*x -2)^2*(x^2 + 8*x -34)^2;
T[130,47]=(x -8)*(x -4)^2*(x -3)^2*(x -13)^2*(x + 12)^2*(x^2 + 4*x -4)^2*(x -6)^4;
T[130,53]=(x -6)^2*(x -12)^2*(x^2 -108)^2*(x^2 + 12*x -36)^2*(x )^2*(x -2)^3;
T[130,59]=(x -10)*(x -8)*(x + 6)^2*(x + 10)^2*(x^2 -12*x + 18)^2*(x^2 + 6*x -138)^2*(x -6)^3;
T[130,61]=(x + 2)*(x -8)^2*(x^2 -4*x -104)^2*(x -2)^4*(x + 8)^6;
T[130,67]=(x -4)*(x + 12)*(x -14)^2*(x^2 + 8*x -92)^2*(x + 4)^3*(x + 2)^6;
T[130,71]=(x + 12)*(x -10)*(x + 6)*(x -6)^2*(x + 5)^2*(x + 3)^2*(x^2 -6*x + 6)^2*(x^2 -4*x -94)^2;
T[130,73]=(x + 6)^2*(x -2)^2*(x -10)^2*(x^2 -72)^2*(x + 10)^3*(x + 4)^4;
T[130,79]=(x + 8)*(x -8)^2*(x + 12)^2*(x^2 -4*x -104)^2*(x^2 -72)^2*(x + 4)^4;
T[130,83]=(x + 16)^2*(x^2 + 12*x + 28)^2*(x -12)^3*(x + 6)^4*(x )^4;
T[130,89]=(x + 14)*(x -10)*(x -2)^2*(x^2 + 12*x -12)^2*(x + 6)^3*(x -6)^6;
T[130,97]=(x + 14)*(x + 10)^2*(x + 2)^2*(x^2 + 4*x -28)^2*(x -14)^3*(x -2)^5;

T[131,2]=(x^10 -18*x^8 + 2*x^7 + 111*x^6 -18*x^5 -270*x^4 + 28*x^3 + 232*x^2 + 16*x -32)*(x );
T[131,3]=(x + 1)*(x^10 -x^9 -22*x^8 + 24*x^7 + 157*x^6 -184*x^5 -403*x^4 + 533*x^3 + 222*x^2 -390*x + 67);
T[131,5]=(x + 2)*(x^10 -4*x^9 -26*x^8 + 116*x^7 + 155*x^6 -988*x^5 + 138*x^4 + 2384*x^3 -763*x^2 -1856*x + 8);
T[131,7]=(x + 1)*(x^10 -x^9 -46*x^8 + 36*x^7 + 701*x^6 -376*x^5 -3971*x^4 + 929*x^3 + 7566*x^2 + 738*x -1213);
T[131,11]=(x^10 -2*x^9 -48*x^8 + 76*x^7 + 829*x^6 -1032*x^5 -6248*x^4 + 6058*x^3 + 19601*x^2 -12860*x -17852)*(x );
T[131,13]=(x + 3)*(x^10 -11*x^9 -4*x^8 + 386*x^7 -1069*x^6 -1056*x^5 + 5897*x^4 -2717*x^3 -6108*x^2 + 4764*x -31);
T[131,17]=(x -4)*(x^10 + 2*x^9 -82*x^8 -132*x^7 + 1656*x^6 + 176*x^5 -11104*x^4 + 12032*x^3 + 5376*x^2 -9216*x + 2048);
T[131,19]=(x + 2)*(x^10 -110*x^8 -136*x^7 + 4152*x^6 + 9248*x^5 -56832*x^4 -170752*x^3 + 150656*x^2 + 614400*x + 64000);
T[131,23]=(x + 2)*(x^10 + 10*x^9 -46*x^8 -772*x^7 -1368*x^6 + 11376*x^5 + 52416*x^4 + 71360*x^3 + 18304*x^2 -10240*x + 512);
T[131,29]=(x^10 -16*x^9 -28*x^8 + 1560*x^7 -5216*x^6 -32224*x^5 + 193344*x^4 -105856*x^3 -788224*x^2 + 921600*x + 40960)*(x );
T[131,31]=(x + 2)*(x^10 -6*x^9 -138*x^8 + 1140*x^7 + 3776*x^6 -58816*x^5 + 117184*x^4 + 545472*x^3 -2745856*x^2 + 4174336*x -2020864);
T[131,37]=(x + 8)*(x^10 -34*x^9 + 346*x^8 + 732*x^7 -38944*x^6 + 258400*x^5 -107200*x^4 -6420928*x^3 + 33150976*x^2 -69950464*x + 55889408);
T[131,41]=(x + 3)*(x^10 + 13*x^9 -100*x^8 -1474*x^7 + 2451*x^6 + 42952*x^5 -63507*x^4 -418677*x^3 + 956032*x^2 -92192*x -544027);
T[131,43]=(x -3)*(x^10 -9*x^9 -270*x^8 + 1512*x^7 + 28413*x^6 -43240*x^5 -1200559*x^4 -2158907*x^3 + 6257138*x^2 + 9962386*x -13498661);
T[131,47]=(x -10)*(x^10 + 6*x^9 -218*x^8 -1764*x^7 + 10960*x^6 + 131328*x^5 + 39840*x^4 -2784384*x^3 -7409920*x^2 + 4899584*x + 25248256);
T[131,53]=(x + 9)*(x^10 -30*x^9 + 263*x^8 -36*x^7 -7753*x^6 + 10242*x^5 + 90377*x^4 -48288*x^3 -420568*x^2 -300576*x -57328);
T[131,59]=(x -1)*(x^10 + 5*x^9 -202*x^8 -968*x^7 + 12461*x^6 + 62456*x^5 -226347*x^4 -1328161*x^3 -406374*x^2 + 2689190*x -272185);
T[131,61]=(x + 15)*(x^10 -51*x^9 + 984*x^8 -8138*x^7 + 11247*x^6 + 250360*x^5 -1330639*x^4 -134629*x^3 + 12807464*x^2 -11246072*x -32394611);
T[131,67]=(x + 6)*(x^10 + 10*x^9 -112*x^8 -928*x^7 + 3680*x^6 + 25312*x^5 -35136*x^4 -234752*x^3 + 62976*x^2 + 643072*x + 217088);
T[131,71]=(x -10)*(x^10 -324*x^8 + 384*x^7 + 34224*x^6 -69184*x^5 -1337408*x^4 + 3824384*x^3 + 13857024*x^2 -56783872*x + 43725824);
T[131,73]=(x -4)*(x^10 + 14*x^9 -380*x^8 -4408*x^7 + 60080*x^6 + 453504*x^5 -4729728*x^4 -13659648*x^3 + 151739392*x^2 -151855104*x -45719552);
T[131,79]=(x + 8)*(x^10 -24*x^9 -128*x^8 + 6952*x^7 -28016*x^6 -531776*x^5 + 4428032*x^4 + 4148736*x^3 -141518848*x^2 + 468480000*x -467968000);
T[131,83]=(x -4)*(x^10 + 22*x^9 -4*x^8 -2808*x^7 -13248*x^6 + 68384*x^5 + 442432*x^4 -380672*x^3 -3799808*x^2 -1224704*x + 5208064);
T[131,89]=(x + 11)*(x^10 -14*x^9 -305*x^8 + 4212*x^7 + 17431*x^6 -272542*x^5 + 383169*x^4 + 1705112*x^3 -1486936*x^2 -5165760*x -2616560);
T[131,97]=(x -12)*(x^10 -4*x^9 -506*x^8 + 2096*x^7 + 71320*x^6 -306768*x^5 -2406528*x^4 + 11060160*x^3 -12157824*x^2 + 910592*x + 1846784);

T[132,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2*(x )^10;
T[132,3]=(x^2 -x + 3)*(x^2 + x + 3)^3*(x -1)^5*(x + 1)^6;
T[132,5]=(x + 3)^2*(x + 4)^2*(x )^2*(x + 2)^3*(x -2)^4*(x -1)^6;
T[132,7]=(x + 4)^2*(x -4)^3*(x -2)^5*(x + 2)^9;
T[132,11]=(x + 1)^7*(x -1)^12;
T[132,13]=(x -6)*(x + 6)^2*(x + 2)^4*(x + 4)^4*(x -4)^8;
T[132,17]=(x + 4)*(x -4)*(x -2)^2*(x + 6)^2*(x -6)^2*(x + 2)^11;
T[132,19]=(x + 2)*(x + 6)*(x -4)^2*(x -8)^2*(x + 4)^2*(x )^11;
T[132,23]=(x + 8)*(x )*(x -4)^2*(x -6)^2*(x + 6)^2*(x + 3)^2*(x -8)^3*(x + 1)^6;
T[132,29]=(x + 8)*(x -10)^2*(x + 6)^3*(x -6)^4*(x )^9;
T[132,31]=(x -5)^2*(x -8)^2*(x )^3*(x + 8)^6*(x -7)^6;
T[132,37]=(x -10)*(x + 6)*(x + 2)^2*(x + 10)^2*(x + 1)^2*(x -6)^5*(x -3)^6;
T[132,41]=(x -8)*(x + 6)^2*(x -2)^2*(x -6)^2*(x + 2)^3*(x )^3*(x + 8)^6;
T[132,43]=(x -10)*(x + 2)*(x -8)^2*(x + 10)^2*(x )^3*(x -4)^4*(x + 6)^6;
T[132,47]=(x + 8)*(x + 12)^2*(x + 6)^2*(x + 2)^2*(x )^3*(x -8)^9;
T[132,53]=(x + 2)*(x -14)*(x -2)^2*(x -4)^2*(x )^2*(x -6)^3*(x + 6)^8;
T[132,59]=(x + 12)*(x -3)^2*(x -12)^3*(x + 4)^3*(x )^4*(x -5)^6;
T[132,61]=(x -10)*(x -8)^2*(x + 8)^2*(x + 4)^2*(x -6)^3*(x + 14)^3*(x -12)^6;
T[132,67]=(x -12)*(x + 1)^2*(x + 12)^2*(x -4)^3*(x + 4)^5*(x + 7)^6;
T[132,71]=(x -8)*(x -2)^2*(x -15)^2*(x + 12)^2*(x -6)^2*(x )^4*(x + 3)^6;
T[132,73]=(x -2)^2*(x -6)^2*(x + 4)^2*(x + 14)^3*(x + 6)^4*(x -4)^6;
T[132,79]=(x + 2)*(x -14)^2*(x -10)^2*(x -2)^3*(x + 4)^5*(x + 10)^6;
T[132,83]=(x -6)^2*(x + 12)^2*(x -16)^2*(x -12)^3*(x -4)^4*(x + 6)^6;
T[132,89]=(x + 9)^2*(x + 14)^2*(x -10)^4*(x + 6)^5*(x -15)^6;
T[132,97]=(x -14)^2*(x + 14)^2*(x -2)^3*(x + 2)^4*(x + 7)^8;

T[133,2]=(x^2 -x -1)*(x^2 + 3*x + 1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3)*(x )^2;
T[133,3]=(x^2 + 3*x + 1)*(x^2 -3*x + 1)*(x^2 + 3*x -1)*(x^3 -3*x^2 -x + 4)*(x + 2)^2;
T[133,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x + 3)^2*(x -1)^2*(x -3)^2;
T[133,7]=(x^2 + x + 7)*(x -1)^4*(x + 1)^5;
T[133,11]=(x^2 + 9*x + 19)*(x^2 + x -1)*(x^3 -7*x^2 + 11*x -4)*(x^2 + 5*x + 3)*(x -3)^2;
T[133,13]=(x^2 + 4*x -9)*(x^3 + 2*x^2 -5*x -2)*(x + 1)^2*(x + 4)^2*(x -1)^2;
T[133,17]=(x^2 + 7*x + 9)*(x^2 + 3*x -9)*(x^2 -x -11)*(x^3 -7*x^2 -11*x + 106)*(x + 3)^2;
T[133,19]=(x + 1)^4*(x -1)^7;
T[133,23]=(x^2 + 2*x -19)*(x^3 -14*x^2 + 53*x -56)*(x )^2*(x + 3)^4;
T[133,29]=(x^2 + 9*x + 19)*(x^2 -5*x + 5)*(x^3 + 3*x^2 -73*x -278)*(x^2 -9*x -9)*(x -6)^2;
T[133,31]=(x^2 + x -101)*(x^2 -5*x -5)*(x^3 + 11*x^2 + 25*x + 16)*(x^2 + x -3)*(x + 4)^2;
T[133,37]=(x^2 + 14*x + 29)*(x^2 + 8*x -29)*(x^3 -43*x + 106)*(x^2 -13)*(x -2)^2;
T[133,41]=(x^2 -9*x -11)*(x^2 -5*x + 3)*(x^2 -3*x + 1)*(x^3 + 7*x^2 -151*x -998)*(x + 6)^2;
T[133,43]=(x^2 -8*x -4)*(x^3 + 4*x^2 -20*x -16)*(x + 1)^2*(x + 2)^2*(x + 10)^2;
T[133,47]=(x^2 -6*x -11)*(x^2 -125)*(x^3 -8*x^2 -29*x -16)*(x^2 + 2*x -51)*(x + 3)^2;
T[133,53]=(x^2 + 3*x -27)*(x^2 -3*x -9)*(x^2 + 9*x -11)*(x^3 + x^2 -31*x -2)*(x -12)^2;
T[133,59]=(x^2 -20*x + 95)*(x^2 + 12*x -9)*(x^3 + 10*x^2 + x -124)*(x^2 -2*x -51)*(x + 6)^2;
T[133,61]=(x^2 -45)*(x^2 -6*x -43)*(x^2 + 6*x -71)*(x^3 + 6*x^2 -49*x -82)*(x + 1)^2;
T[133,67]=(x^2 -11*x -31)*(x^2 + 7*x -89)*(x^3 + 3*x^2 -79*x -188)*(x^2 -7*x -17)*(x + 4)^2;
T[133,71]=(x^2 -6*x -11)*(x^2 -4*x -41)*(x^2 -10*x -27)*(x^3 -61*x -32)*(x -6)^2;
T[133,73]=(x^2 -15*x + 45)*(x^2 + 7*x -49)*(x^3 -x^2 -101*x -98)*(x^2 + 15*x -25)*(x + 7)^2;
T[133,79]=(x^2 -20)*(x^3 + 4*x^2 -44*x + 32)*(x^2 -8*x -36)*(x + 10)^2*(x -8)^2;
T[133,83]=(x^2 -13*x + 31)*(x^2 + 15*x + 27)*(x^2 + 9*x + 9)*(x^3 -31*x^2 + 289*x -788)*(x -12)^2;
T[133,89]=(x^2 -10*x + 20)*(x^2 -18*x + 36)*(x^2 + 14*x + 36)*(x^3 + 28*x^2 + 104*x -1352)*(x -12)^2;
T[133,97]=(x^2 -12*x + 23)*(x^2 -2*x -179)*(x^2 -6*x -11)*(x^3 + 30*x^2 + 243*x + 482)*(x -8)^2;

T[134,2]=(x^2 -2*x + 2)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x + 1)^3*(x -1)^3;
T[134,3]=(x^3 -3*x^2 + 1)*(x^3 -x^2 -8*x + 11)*(x + 2)^2*(x^2 -x -1)^2*(x^2 + 3*x + 1)^2;
T[134,5]=(x^3 + 3*x^2 -6*x + 1)*(x^3 -3*x^2 -2*x + 3)*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^4;
T[134,7]=(x^3 -12*x -8)*(x^3 -20*x + 8)*(x + 2)^2*(x^2 -x -1)^2*(x^2 + x -11)^2;
T[134,11]=(x^3 + x^2 -16*x + 9)*(x^3 + 3*x^2 -24*x -53)*(x + 4)^2*(x^2 -5)^2*(x -1)^4;
T[134,13]=(x^3 + 3*x^2 -18*x -3)*(x^3 -11*x^2 + 30*x -9)*(x -2)^2*(x^2 + 7*x + 1)^2*(x^2 + x -1)^2;
T[134,17]=(x^3 + 3*x^2 -18*x -3)*(x^3 + 3*x^2 -2*x -3)*(x -3)^2*(x^2 -6*x + 4)^2*(x^2 + 6*x + 4)^2;
T[134,19]=(x^3 -6*x^2 -36*x + 152)*(x -7)^2*(x^2 -x -11)^2*(x^2 + 11*x + 29)^2*(x -2)^3;
T[134,23]=(x^3 + 11*x^2 + 32*x + 27)*(x^3 + 3*x^2 -36*x + 51)*(x -9)^2*(x^2 + 2*x -19)^2*(x^2 -6*x -11)^2;
T[134,29]=(x + 5)^2*(x^2 -10*x + 5)^2*(x^2 + 6*x -11)^2*(x + 4)^3*(x )^3;
T[134,31]=(x^3 -12*x^2 + 36*x -8)*(x^3 -4*x^2 -84*x + 440)*(x + 10)^2*(x^2 -45)^2*(x + 1)^4;
T[134,37]=(x^3 -84*x -136)*(x^3 -4*x^2 -60*x + 200)*(x + 1)^2*(x^2 + x -11)^2*(x^2 -3*x + 1)^2;
T[134,41]=(x^3 + 4*x^2 -124*x -600)*(x^3 -12*x -8)*(x^2 + 3*x + 1)^2*(x^2 -5*x -25)^2*(x )^2;
T[134,43]=(x^3 -3*x^2 -60*x + 53)*(x^3 -x^2 -60*x + 167)*(x + 2)^2*(x^2 -3*x -9)^2*(x^2 + 9*x -11)^2;
T[134,47]=(x^3 -21*x^2 + 144*x -321)*(x^3 -x^2 -16*x -9)*(x + 1)^2*(x^2 + 15*x + 55)^2*(x^2 + 7*x + 11)^2;
T[134,53]=(x^3 + 9*x^2 + 18*x -9)*(x^3 + 3*x^2 -74*x + 45)*(x -10)^2*(x^2 -45)^2*(x + 9)^4;
T[134,59]=(x^3 -12*x + 8)*(x^3 -180*x + 216)*(x -9)^2*(x + 6)^4*(x -6)^4;
T[134,61]=(x^3 -21*x^2 + 70*x + 317)*(x^3 -15*x^2 + 66*x -89)*(x + 2)^2*(x^2 + 7*x -89)^2*(x^2 + 9*x + 9)^2;
T[134,67]=(x + 1)^7*(x -1)^9;
T[134,71]=(x^3 -5*x^2 -88*x -165)*(x^3 -9*x^2 -12*x + 179)*(x^2 -245)^2*(x^2 -12*x + 31)^2*(x )^2;
T[134,73]=(x^3 + 23*x^2 + 114*x -211)*(x^3 -9*x^2 -54*x -27)*(x + 7)^2*(x -8)^4*(x + 4)^4;
T[134,79]=(x^3 + 6*x^2 -24*x + 8)*(x^3 -10*x^2 -96*x + 824)*(x + 8)^2*(x^2 + 7*x -89)^2*(x^2 + 11*x -31)^2;
T[134,83]=(x^3 + 22*x^2 + 32*x -984)*(x^3 -18*x^2 + 648)*(x -4)^2*(x^2 + 15*x -5)^2*(x^2 -13*x + 31)^2;
T[134,89]=(x^3 -3*x^2 -126*x -321)*(x^3 -19*x^2 + 98*x -153)*(x -7)^2*(x^2 -5)^2*(x^2 + 16*x + 19)^2;
T[134,97]=(x^3 -18*x^2 + 24*x + 584)*(x^3 + 2*x^2 -136*x + 520)*(x^2 -2*x -179)^2*(x^2 -45)^2*(x )^2;

T[135,2]=(x + 2)*(x -2)*(x^2 + x -3)*(x^2 -x -3)*(x -1)^2*(x )^2*(x + 1)^3;
T[135,3]=(x + 1)*(x )^12;
T[135,5]=(x^2 + 5)*(x + 1)^5*(x -1)^6;
T[135,7]=(x + 1)^2*(x + 3)^2*(x^2 -2*x -12)^2*(x )^5;
T[135,11]=(x -2)*(x + 2)*(x^2 + 2*x -12)*(x^2 -2*x -12)*(x -4)^2*(x )^2*(x + 4)^3;
T[135,13]=(x + 5)^2*(x -5)^2*(x^2 -6*x -4)^2*(x + 2)^5;
T[135,17]=(x + 8)*(x -8)*(x^2 -4*x -9)*(x^2 + 4*x -9)*(x + 2)^2*(x )^2*(x -2)^3;
T[135,19]=(x -1)^2*(x + 7)^2*(x^2 -13)^2*(x -4)^5;
T[135,23]=(x -6)*(x + 6)*(x + 3)^2*(x -3)^2*(x )^7;
T[135,29]=(x^2 + 10*x + 12)*(x^2 -10*x + 12)*(x )^2*(x -2)^3*(x + 2)^4;
T[135,31]=(x + 4)^2*(x^2 + 4*x -9)^2*(x )^7;
T[135,37]=(x -11)^2*(x -5)^2*(x -2)^4*(x + 10)^5;
T[135,41]=(x^2 -2*x -12)*(x^2 + 2*x -12)*(x )^2*(x + 10)^3*(x -10)^4;
T[135,43]=(x -8)^2*(x^2 + 6*x -4)^2*(x -4)^7;
T[135,47]=(x + 4)*(x -4)*(x^2 -4*x -48)*(x^2 + 4*x -48)*(x + 8)^2*(x )^2*(x -8)^3;
T[135,53]=(x -2)*(x + 2)*(x^2 -4*x -9)*(x^2 + 4*x -9)*(x -10)^2*(x )^2*(x + 10)^3;
T[135,59]=(x -8)*(x + 8)*(x^2 + 10*x + 12)*(x^2 -10*x + 12)*(x -4)^2*(x )^2*(x + 4)^3;
T[135,61]=(x -7)^2*(x + 1)^2*(x^2 -6*x -43)^2*(x + 2)^5;
T[135,67]=(x + 9)^2*(x -5)^2*(x^2 + 16*x + 12)^2*(x -12)^5;
T[135,71]=(x + 2)*(x -2)*(x^2 -22*x + 108)*(x^2 + 22*x + 108)*(x -8)^2*(x )^2*(x + 8)^3;
T[135,73]=(x + 5)^2*(x + 7)^2*(x^2 -18*x + 68)^2*(x -10)^5;
T[135,79]=(x + 3)^2*(x -17)^2*(x^2 + 16*x + 51)^2*(x )^5;
T[135,83]=(x + 6)*(x -6)*(x + 3)^2*(x -3)^2*(x + 12)^2*(x )^2*(x -12)^3;
T[135,89]=(x -12)*(x + 12)*(x^2 + 6*x -108)*(x^2 -6*x -108)*(x -6)^2*(x )^2*(x + 6)^3;
T[135,97]=(x + 13)^2*(x + 19)^2*(x -8)^4*(x -2)^5;

T[136,2]=(x -1)*(x^2 + x + 2)*(x )^12;
T[136,3]=(x -2)*(x^2 + 2*x -4)*(x^2 -2*x -2)^2*(x + 2)^4*(x )^4;
T[136,5]=(x -2)^2*(x^2 -12)^2*(x )^4*(x + 2)^5;
T[136,7]=(x + 2)*(x^2 -2*x -4)*(x )*(x^2 + 2*x -2)^2*(x + 4)^3*(x -4)^4;
T[136,11]=(x + 6)*(x -2)*(x^2 -2*x -4)*(x^2 + 6*x + 6)^2*(x -6)^3*(x )^4;
T[136,13]=(x + 6)*(x^2 -20)*(x^2 -4*x -8)^2*(x + 2)^4*(x -2)^4;
T[136,17]=(x -1)^7*(x + 1)^8;
T[136,19]=(x -4)*(x^2 + 4*x -16)*(x )*(x^2 -4*x -8)^2*(x + 4)^7;
T[136,23]=(x -6)*(x^2 -2*x -4)*(x^2 + 6*x + 6)^2*(x )^3*(x -4)^5;
T[136,29]=(x + 10)*(x -2)^2*(x^2 -12)^2*(x -6)^4*(x )^4;
T[136,31]=(x -2)*(x + 8)*(x^2 + 2*x -4)*(x^2 + 2*x -26)^2*(x + 4)^3*(x -4)^4;
T[136,37]=(x -6)*(x^2 + 4*x -76)*(x^2 -16*x + 52)^2*(x + 4)^4*(x + 2)^4;
T[136,41]=(x -2)^2*(x -6)^4*(x + 6)^9;
T[136,43]=(x + 8)*(x^2 + 12*x + 16)*(x^2 -4*x -104)^2*(x -4)^4*(x -8)^4;
T[136,47]=(x + 8)*(x^2 -8*x -64)*(x^2 -48)^2*(x )^8;
T[136,53]=(x -10)*(x + 10)*(x + 2)^2*(x^2 -12*x -12)^2*(x + 6)^3*(x -6)^4;
T[136,59]=(x + 8)*(x^2 -20*x + 80)*(x^2 -12*x + 24)^2*(x + 12)^4*(x )^4;
T[136,61]=(x -12)*(x -14)*(x^2 + 4*x -76)*(x^2 + 8*x + 4)^2*(x + 4)^3*(x + 10)^4;
T[136,67]=(x + 12)^2*(x^2 -16*x + 16)^2*(x -8)^4*(x -4)^5;
T[136,71]=(x -2)*(x -12)*(x^2 -14*x + 44)*(x^2 + 6*x -18)^2*(x )^3*(x + 4)^4;
T[136,73]=(x + 14)*(x^2 -12*x -44)*(x + 6)^4*(x -2)^8;
T[136,79]=(x + 10)*(x + 4)*(x^2 -10*x -20)*(x^2 + 14*x + 22)^2*(x -8)^3*(x -12)^4;
T[136,83]=(x -16)*(x -8)*(x^2 -12*x + 16)*(x^2 + 12*x + 24)^2*(x )^3*(x + 4)^4;
T[136,89]=(x + 10)*(x^2 + 24*x + 124)*(x^2 -12*x + 24)^2*(x + 6)^3*(x -10)^5;
T[136,97]=(x + 18)*(x^2 -4*x -44)^2*(x -14)^3*(x -2)^7;

T[137,2]=(x^4 + 3*x^3 -4*x -1)*(x^7 -10*x^5 + 28*x^3 + 3*x^2 -19*x -7);
T[137,3]=(x^4 + 5*x^3 + 4*x^2 -10*x -11)*(x^7 -3*x^6 -8*x^5 + 26*x^4 + 11*x^3 -58*x^2 + 16*x + 14);
T[137,5]=(x^4 + 2*x^3 -12*x^2 -23*x + 1)*(x^7 + 2*x^6 -18*x^5 -21*x^4 + 103*x^3 + 26*x^2 -188*x + 88);
T[137,7]=(x^4 + 13*x^3 + 60*x^2 + 116*x + 79)*(x^7 -15*x^6 + 80*x^5 -168*x^4 + 43*x^3 + 300*x^2 -352*x + 112);
T[137,11]=(x^4 -x^3 -38*x^2 + 76*x + 101)*(x^7 + 3*x^6 -26*x^5 -140*x^4 -219*x^3 -92*x^2 + 24*x + 16);
T[137,13]=(x^4 + 8*x^3 + 10*x^2 -49*x -101)*(x^7 -12*x^6 + 32*x^5 + 85*x^4 -351*x^3 -202*x^2 + 876*x + 488);
T[137,17]=(x^4 + 4*x^3 -28*x^2 -109*x + 31)*(x^7 + 6*x^6 -24*x^5 -69*x^4 + 185*x^3 + 154*x^2 -368*x -4);
T[137,19]=(x^4 + 10*x^3 -4*x^2 -235*x -431)*(x^7 -10*x^6 -20*x^5 + 317*x^4 -283*x^3 -540*x^2 -176*x -16);
T[137,23]=(x^4 + x^3 -38*x^2 -66*x + 121)*(x^7 + 3*x^6 -88*x^5 -206*x^4 + 2383*x^3 + 3920*x^2 -18796*x -11606);
T[137,29]=(x^4 -11*x^3 -25*x^2 + 377*x -551)*(x^7 + 9*x^6 -25*x^5 -439*x^4 -1065*x^3 + 1414*x^2 + 7980*x + 7576);
T[137,31]=(x^4 + 17*x^3 + 53*x^2 -203*x -319)*(x^7 -13*x^6 -29*x^5 + 1081*x^4 -5573*x^3 + 11106*x^2 -7794*x + 98);
T[137,37]=(x^4 + 4*x^3 -50*x^2 -213*x -191)*(x^7 + 2*x^6 -102*x^5 -17*x^4 + 2727*x^3 -3598*x^2 -8376*x + 2332);
T[137,41]=(x^4 + 7*x^3 -50*x^2 -286*x -121)*(x^7 + x^6 -194*x^5 -284*x^4 + 10059*x^3 + 20162*x^2 -86620*x + 7256);
T[137,43]=(x^4 + 13*x^3 -5*x^2 -239*x -191)*(x^7 -7*x^6 -95*x^5 + 463*x^4 + 2751*x^3 -4682*x^2 -25238*x -12146);
T[137,47]=(x^4 + 11*x^3 + 15*x^2 -67*x -41)*(x^7 -15*x^6 + 3*x^5 + 1081*x^4 -7385*x^3 + 20104*x^2 -23766*x + 9634);
T[137,53]=(x^4 + 2*x^3 -15*x^2 -36*x -1)*(x^7 + 8*x^6 -83*x^5 -730*x^4 + 3*x^3 + 10562*x^2 + 25012*x + 15464);
T[137,59]=(x^4 -2*x^3 -107*x^2 + 608*x -709)*(x^7 + 6*x^6 -215*x^5 -656*x^4 + 14451*x^3 + 13436*x^2 -308912*x + 232768);
T[137,61]=(x^4 -7*x^3 -17*x^2 + 133*x + 11)*(x^7 -x^6 -415*x^5 -121*x^4 + 54409*x^3 + 95790*x^2 -2244928*x -7285532);
T[137,67]=(x^4 + 6*x^3 -123*x^2 -536*x + 2831)*(x^7 -24*x^6 -23*x^5 + 3528*x^4 -15089*x^3 -59296*x^2 + 253180*x + 184654);
T[137,71]=(x^7 -16*x^6 -224*x^5 + 4410*x^4 -824*x^3 -208000*x^2 + 614144*x + 221696)*(x^2 -4*x -16)^2;
T[137,73]=(x^4 + 27*x^3 + 144*x^2 -1282*x -10219)*(x^7 + x^6 -310*x^5 + 1198*x^4 + 21357*x^3 -156630*x^2 + 207004*x + 298312);
T[137,79]=(x^4 -3*x^3 -255*x^2 + 89*x + 9329)*(x^7 -15*x^6 -143*x^5 + 2591*x^4 -1335*x^3 -91520*x^2 + 323146*x -185806);
T[137,83]=(x^4 + 3*x^3 -260*x^2 -354*x + 6449)*(x^7 -21*x^6 + 42*x^5 + 1714*x^4 -11437*x^3 + 84*x^2 + 118712*x -86338);
T[137,89]=(x^7 + 8*x^6 -517*x^5 -1764*x^4 + 100437*x^3 -98906*x^2 -7074228*x + 31528168)*(x^2 -7*x + 1)^2;
T[137,97]=(x^4 + 7*x^3 -206*x^2 + 658*x + 211)*(x^7 -x^6 -182*x^5 -604*x^4 + 5567*x^3 + 29074*x^2 + 18068*x -51016);

T[138,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^4 + x^3 + 3*x^2 + 2*x + 4)^2*(x -1)^3*(x + 1)^4;
T[138,3]=(x^2 + 3)*(x^4 + x^2 + 9)^2*(x -1)^5*(x + 1)^6;
T[138,5]=(x -2)*(x + 2)*(x -4)^2*(x )^3*(x^2 + 2*x -4)^7;
T[138,7]=(x -2)*(x^2 -20)*(x )*(x + 4)^2*(x + 2)^3*(x^2 -2*x -4)^6;
T[138,11]=(x + 6)*(x -2)^2*(x )^2*(x^2 + 6*x + 4)^5*(x -4)^6;
T[138,13]=(x -2)*(x + 6)^2*(x^2 -20)^3*(x + 2)^4*(x -3)^8;
T[138,17]=(x -2)*(x + 2)^2*(x -4)^2*(x + 4)^2*(x^2 + 10*x + 20)^2*(x )^2*(x^2 -6*x + 4)^4;
T[138,19]=(x + 8)*(x^2 + 2*x -44)*(x )*(x^2 -10*x + 20)^2*(x -2)^3*(x + 2)^10;
T[138,23]=(x + 1)^5*(x -1)^16;
T[138,29]=(x + 2)*(x -6)*(x + 6)*(x^2 -20)^3*(x -2)^4*(x + 3)^8;
T[138,31]=(x -8)*(x + 8)*(x + 4)*(x^2 -4*x -16)*(x -4)^2*(x^2 + 4*x -16)^2*(x )^2*(x^2 -45)^4;
T[138,37]=(x + 10)*(x^2 -18*x + 76)*(x )*(x + 4)^2*(x^2 -20)^2*(x -2)^3*(x^2 -2*x -4)^4;
T[138,41]=(x + 6)*(x + 2)^2*(x -10)^2*(x -2)^2*(x -6)^2*(x^2 + 4*x -76)^2*(x^2 -2*x -19)^4;
T[138,43]=(x -8)*(x -2)*(x + 12)*(x^2 + 14*x + 44)*(x^2 -2*x -44)^2*(x -10)^4*(x )^8;
T[138,47]=(x + 8)*(x -8)*(x -4)^2*(x + 4)^4*(x^2 -5)^4*(x )^5;
T[138,53]=(x -12)*(x^2 -6*x + 4)*(x + 12)^2*(x -2)^2*(x + 4)^2*(x^2 + 6*x + 4)^2*(x^2 + 8*x -4)^4;
T[138,59]=(x + 4)*(x^2 -80)*(x^2 -8*x -64)^2*(x + 12)^3*(x -12)^3*(x^2 -4*x -16)^4;
T[138,61]=(x -4)*(x -2)*(x + 10)*(x^2 -6*x + 4)*(x + 8)^2*(x + 6)^2*(x^2 -20)^2*(x^2 -4*x -76)^4;
T[138,67]=(x + 12)*(x -14)*(x -8)*(x^2 -6*x -36)*(x^2 -6*x + 4)^2*(x + 10)^4*(x^2 + 10*x + 20)^4;
T[138,71]=(x^2 -80)*(x -8)^2*(x + 8)^4*(x^2 -20*x + 95)^4*(x )^5;
T[138,73]=(x + 6)*(x -2)*(x + 10)*(x^2 -20)*(x + 14)^2*(x -6)^2*(x^2 + 4*x -76)^2*(x^2 -22*x + 101)^4;
T[138,79]=(x -8)*(x + 10)*(x + 6)*(x^2 -20)*(x + 12)^2*(x -10)^2*(x^2 -6*x -36)^2*(x^2 + 4*x -76)^4;
T[138,83]=(x + 16)*(x^2 -22*x + 116)*(x )*(x -12)^2*(x -14)^3*(x -4)^4*(x^2 + 22*x + 116)^4;
T[138,89]=(x -12)*(x -18)*(x )*(x + 16)^2*(x + 6)^2*(x^2 -2*x -4)^2*(x^2 + 12*x + 16)^5;
T[138,97]=(x + 6)*(x -10)*(x^2 + 8*x -4)*(x -6)^2*(x^2 -8*x -4)^2*(x + 10)^3*(x^2 -22*x + 76)^4;

T[139,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^7 -x^6 -11*x^5 + 8*x^4 + 35*x^3 -10*x^2 -32*x -8);
T[139,3]=(x -2)*(x^3 + 2*x^2 -x -1)*(x^7 + 2*x^6 -15*x^5 -25*x^4 + 56*x^3 + 52*x^2 -56*x -16);
T[139,5]=(x + 1)*(x^3 + 8*x^2 + 19*x + 13)*(x^7 -11*x^6 + 36*x^5 + 2*x^4 -211*x^3 + 319*x^2 -55*x -83);
T[139,7]=(x -3)*(x^3 -7*x + 7)*(x^7 + 5*x^6 -8*x^5 -82*x^4 -155*x^3 -109*x^2 -31*x -3);
T[139,11]=(x -5)*(x^3 + 7*x^2 -49)*(x^7 -2*x^6 -36*x^5 + 82*x^4 + 186*x^3 -314*x^2 -294*x + 229);
T[139,13]=(x + 7)*(x^3 -x^2 -16*x -13)*(x^7 -6*x^6 -2*x^5 + 64*x^4 -108*x^3 + 38*x^2 + 6*x -1);
T[139,17]=(x + 6)*(x^3 + 3*x^2 -4*x -13)*(x^7 -5*x^6 -42*x^5 + 363*x^4 -914*x^3 + 820*x^2 -80*x -144);
T[139,19]=(x + 2)*(x^3 + 2*x^2 -43*x -127)*(x^7 + 10*x^6 -3*x^5 -213*x^4 -202*x^3 + 1272*x^2 + 1024*x -2432);
T[139,23]=(x -2)*(x^3 + 7*x^2 -14*x -7)*(x^7 + x^6 -48*x^5 -135*x^4 + 248*x^3 + 908*x^2 -8*x -944);
T[139,29]=(x -9)*(x^3 + 15*x^2 + 54*x + 13)*(x^7 -30*x^6 + 300*x^5 -516*x^4 -11232*x^3 + 86188*x^2 -246544*x + 257409);
T[139,31]=(x -9)*(x^3 -3*x^2 -18*x + 13)*(x^7 + 20*x^6 + 96*x^5 -180*x^4 -1242*x^3 + 1458*x^2 + 1784*x -2001);
T[139,37]=(x -2)*(x^3 + 9*x^2 -22*x -71)*(x^7 -6*x^6 -156*x^5 + 435*x^4 + 7968*x^3 + 2145*x^2 -101457*x -151706);
T[139,41]=(x + 6)*(x^3 + 8*x^2 + 12*x -8)*(x^7 -19*x^6 -103*x^5 + 3587*x^4 -7462*x^3 -167116*x^2 + 779648*x -191472);
T[139,43]=(x + 4)*(x^3 -2*x^2 -29*x + 71)*(x^7 + 12*x^6 -55*x^5 -1445*x^4 -8092*x^3 -19012*x^2 -17464*x -2528);
T[139,47]=(x -8)*(x^3 -10*x^2 + 3*x + 13)*(x^7 + 3*x^6 -220*x^5 -883*x^4 + 15012*x^3 + 72268*x^2 -288629*x -1519088);
T[139,53]=(x^3 + 12*x^2 -15*x -377)*(x^7 -38*x^6 + 547*x^5 -3669*x^4 + 10772*x^3 -6604*x^2 -15032*x -3168)*(x );
T[139,59]=(x -6)*(x^3 + 12*x^2 + 41*x + 29)*(x^7 + 14*x^6 -55*x^5 -815*x^4 + 1348*x^3 + 11788*x^2 -18232*x + 3888);
T[139,61]=(x -4)*(x^3 + 4*x^2 -151*x -533)*(x^7 -4*x^6 -259*x^5 + 533*x^4 + 17850*x^3 -8224*x^2 -134920*x + 38176);
T[139,67]=(x -5)*(x^3 -16*x^2 + 76*x -104)*(x^7 -9*x^6 -217*x^5 + 1406*x^4 + 15267*x^3 -51512*x^2 -328916*x -70136);
T[139,71]=(x -5)*(x^3 -3*x^2 -144*x -351)*(x^7 -24*x^6 + 34*x^5 + 2322*x^4 -6972*x^3 -80898*x^2 + 159974*x + 1068511);
T[139,73]=(x + 6)*(x^3 -13*x^2 -86*x + 1189)*(x^7 + 5*x^6 -270*x^5 -727*x^4 + 16476*x^3 + 46404*x^2 -203608*x -443952);
T[139,79]=(x + 5)*(x^3 -13*x^2 + 12*x + 223)*(x^7 -8*x^6 -262*x^5 + 1250*x^4 + 17756*x^3 -70814*x^2 -332026*x + 1205557);
T[139,83]=(x -7)*(x^3 -28*x^2 + 217*x -497)*(x^7 + 9*x^6 -316*x^5 -2990*x^4 + 17929*x^3 + 168239*x^2 -80339*x -1088879);
T[139,89]=(x -7)*(x^3 -3*x^2 -144*x -491)*(x^7 -10*x^6 -238*x^5 + 1976*x^4 + 15828*x^3 -99390*x^2 -158894*x + 778513);
T[139,97]=(x + 12)*(x^3 + 7*x^2 -154*x -791)*(x^7 + 5*x^6 -166*x^5 -1215*x^4 + 3370*x^3 + 34300*x^2 -13832*x -260544);

T[140,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x )^10;
T[140,3]=(x -3)*(x )^2*(x^2 + x -4)^3*(x -1)^4*(x + 2)^6;
T[140,5]=(x^2 + 5)^2*(x -1)^7*(x + 1)^8;
T[140,7]=(x^2 -2*x + 7)*(x -1)^8*(x + 1)^9;
T[140,11]=(x -3)*(x + 5)*(x -4)^2*(x + 3)^3*(x^2 -x -4)^3*(x )^6;
T[140,13]=(x + 3)*(x + 1)*(x -2)^2*(x + 6)^2*(x -5)^3*(x^2 -5*x + 2)^3*(x + 4)^4;
T[140,17]=(x + 1)*(x + 3)*(x + 6)^2*(x -2)^2*(x -3)^3*(x^2 + 5*x + 2)^3*(x -6)^4;
T[140,19]=(x -6)*(x + 4)^2*(x )^2*(x^2 + 6*x -8)^3*(x -2)^8;
T[140,23]=(x -6)^3*(x^2 + 2*x -16)^3*(x + 6)^4*(x )^6;
T[140,29]=(x + 9)^2*(x -3)^3*(x^2 -x -38)^3*(x -6)^4*(x + 6)^4;
T[140,31]=(x -8)^3*(x )^6*(x + 4)^10;
T[140,37]=(x + 10)^3*(x -6)^6*(x -2)^10;
T[140,41]=(x + 4)*(x )*(x -2)^2*(x + 12)^3*(x^2 -2*x -16)^3*(x -6)^6;
T[140,43]=(x -10)*(x -2)*(x -4)^2*(x^2 -10*x + 8)^3*(x -8)^4*(x + 10)^5;
T[140,47]=(x + 3)*(x + 1)*(x -8)^2*(x + 6)^2*(x -9)^3*(x^2 + 5*x -32)^3*(x + 12)^4;
T[140,53]=(x -4)*(x )*(x + 6)^2*(x + 2)^2*(x -12)^3*(x^2 + 2*x -16)^3*(x -6)^4;
T[140,59]=(x -12)^3*(x + 8)^3*(x )^3*(x + 6)^4*(x + 4)^6;
T[140,61]=(x + 8)*(x -2)^2*(x + 14)^2*(x^2 -6*x -144)^3*(x -8)^8;
T[140,67]=(x -8)*(x -12)*(x -2)^2*(x + 12)^2*(x^2 -4*x -64)^3*(x + 4)^7;
T[140,71]=(x + 16)^2*(x + 12)^2*(x -8)^7*(x )^8;
T[140,73]=(x -14)*(x^2 + 8*x -52)^3*(x -2)^12;
T[140,79]=(x -5)*(x -13)*(x + 8)^2*(x + 1)^3*(x^2 + 9*x + 16)^3*(x -8)^6;
T[140,83]=(x + 12)*(x + 4)*(x -6)^2*(x -8)^2*(x -12)^3*(x + 6)^4*(x -4)^6;
T[140,89]=(x -12)*(x -4)*(x -10)^2*(x + 12)^3*(x^2 -6*x -8)^3*(x + 6)^6;
T[140,97]=(x + 13)*(x -17)*(x + 1)^3*(x^2 + 9*x -86)^3*(x + 10)^4*(x -2)^4;

T[141,2]=(x -2)*(x + 2)*(x^2 + x -4)*(x )*(x + 1)^2*(x^4 -x^3 -5*x^2 + 5*x -1)^2;
T[141,3]=(x^8 + 5*x^6 + 4*x^5 + 13*x^4 + 12*x^3 + 45*x^2 + 81)*(x -1)^3*(x + 1)^4;
T[141,5]=(x + 3)*(x -2)*(x^2 -x -4)*(x )*(x + 1)^2*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^2;
T[141,7]=(x -4)*(x^2 -x -4)*(x )*(x^4 -4*x^3 -7*x^2 + 44*x -43)^2*(x + 3)^3;
T[141,11]=(x -1)*(x + 5)*(x + 3)*(x -4)*(x^2 -7*x + 8)*(x )*(x^4 + 6*x^3 -4*x^2 -56*x -48)^2;
T[141,13]=(x -6)*(x + 4)*(x -2)*(x^2 + 6*x -8)*(x + 2)^2*(x^4 -8*x^3 + 56*x + 48)^2;
T[141,17]=(x -8)*(x^2 -2*x -16)*(x -2)^2*(x + 6)^2*(x^4 -6*x^3 -21*x^2 + 74*x + 141)^2;
T[141,19]=(x -2)*(x )*(x + 6)^2*(x^4 -16*x^2 -8*x + 16)^2*(x -6)^3;
T[141,23]=(x -9)*(x -4)*(x^2 + 3*x -36)*(x )*(x -3)^2*(x^4 + 6*x^3 -20*x^2 -40*x -16)^2;
T[141,29]=(x -1)*(x + 1)*(x + 6)*(x -8)*(x -3)*(x^2 + 15*x + 52)*(x^4 + 10*x^3 + 20*x^2 -8*x -16)^2;
T[141,31]=(x -2)*(x -6)*(x + 2)*(x + 4)*(x -4)*(x^2 -6*x -8)*(x^4 + 8*x^3 -56*x + 48)^2;
T[141,37]=(x + 7)*(x + 6)*(x + 10)*(x^2 -11*x + 26)*(x -1)^2*(x^4 -10*x^3 + 15*x^2 + 34*x + 9)^2;
T[141,41]=(x + 8)*(x -10)*(x + 10)*(x -6)*(x + 2)*(x^2 -6*x -8)*(x^4 -6*x^3 -8*x^2 + 32*x -16)^2;
T[141,43]=(x -2)*(x -8)*(x + 8)*(x + 10)*(x + 6)*(x^2 -14*x + 32)*(x^4 -2*x^3 -80*x^2 -112*x + 432)^2;
T[141,47]=(x + 1)^3*(x -1)^12;
T[141,53]=(x -4)*(x -2)*(x + 2)*(x -10)*(x^2 + 8*x -52)*(x )*(x^4 + 6*x^3 -101*x^2 -314*x + 2429)^2;
T[141,59]=(x -8)*(x + 4)*(x -12)*(x + 10)*(x + 12)*(x^2 -6*x -8)*(x^4 -4*x^3 -115*x^2 + 704*x -519)^2;
T[141,61]=(x + 10)*(x -14)*(x + 2)*(x^4 + 6*x^3 -73*x^2 + 10*x + 337)^2*(x -2)^4;
T[141,67]=(x -2)*(x + 8)*(x -10)*(x + 2)*(x -4)*(x^2 -2*x -16)*(x^4 -10*x^3 -120*x^2 + 752*x + 3184)^2;
T[141,71]=(x + 14)*(x -16)*(x + 6)*(x + 2)*(x^2 + 2*x -16)*(x )*(x^4 + 12*x^3 -19*x^2 -320*x + 657)^2;
T[141,73]=(x -2)*(x + 2)*(x + 8)*(x^2 -10*x + 8)*(x + 10)^2*(x^4 -22*x^3 + 60*x^2 + 1368*x -7664)^2;
T[141,79]=(x -8)*(x + 4)*(x -17)*(x + 15)*(x + 3)*(x^2 + 15*x + 52)*(x^4 -20*x^3 + 77*x^2 + 240*x -47)^2;
T[141,83]=(x -4)*(x -8)*(x + 18)*(x^2 -6*x -8)*(x + 4)^2*(x^4 -20*x^3 + 80*x^2 + 192*x -256)^2;
T[141,89]=(x -6)*(x -18)*(x + 10)*(x + 2)*(x -10)*(x^2 -68)*(x^4 + 6*x^3 -161*x^2 -206*x + 4841)^2;
T[141,97]=(x + 18)*(x + 14)*(x -5)*(x^2 + 5*x -202)*(x -1)^2*(x^4 -30*x^3 + 179*x^2 + 1634*x -14307)^2;

T[142,2]=(x^6 + x^5 + 2*x^4 + x^3 + 4*x^2 + 4*x + 8)*(x^6 + x^4 + 3*x^3 + 2*x^2 + 8)*(x -1)^2*(x + 1)^3;
T[142,3]=(x -1)*(x + 1)*(x -3)*(x + 3)*(x )*(x^3 -x^2 -4*x + 3)^2*(x^3 + x^2 -8*x -3)^2;
T[142,5]=(x + 2)*(x + 4)*(x )*(x -2)^2*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;
T[142,7]=(x )*(x + 3)^2*(x + 1)^2*(x^3 -2*x^2 -16*x + 24)^4;
T[142,11]=(x + 6)*(x -6)*(x + 2)*(x^3 -20*x + 24)^2*(x^3 + 2*x^2 -16*x -24)^2*(x )^2;
T[142,13]=(x -1)*(x + 3)*(x + 5)*(x + 1)*(x^3 + 6*x^2 -8*x -56)^2*(x -4)^7;
T[142,17]=(x + 6)*(x -6)^2*(x^3 + 2*x^2 -32*x -24)^2*(x^3 -2*x^2 -16*x + 24)^2*(x )^2;
T[142,19]=(x -1)*(x + 5)*(x + 1)*(x -5)*(x + 8)*(x^3 -x^2 -20*x -25)^2*(x^3 -11*x^2 + 36*x -35)^2;
T[142,23]=(x + 7)*(x -5)*(x -3)*(x + 1)*(x^3 -8*x^2 -12*x + 72)^2*(x + 4)^7;
T[142,29]=(x -6)*(x + 8)*(x )*(x + 2)^2*(x^3 + 5*x^2 -2*x -25)^2*(x^3 -11*x^2 + 14*x + 71)^2;
T[142,31]=(x -5)*(x + 5)*(x -1)*(x -7)*(x + 8)*(x^3 + 6*x^2 -8*x -56)^2*(x -4)^6;
T[142,37]=(x -10)*(x + 4)*(x -6)*(x -4)*(x + 2)*(x^3 -9*x^2 -26*x + 37)^2*(x^3 + 15*x^2 + 70*x + 97)^2;
T[142,41]=(x -4)*(x + 6)*(x -10)*(x + 2)*(x )*(x^3 + 2*x^2 -68*x + 56)^2*(x^3 -14*x^2 + 48*x -8)^2;
T[142,43]=(x + 1)*(x + 8)*(x -1)*(x + 5)*(x -5)*(x^3 -13*x^2 + 48*x -45)^2*(x^3 + 17*x^2 + 72*x + 81)^2;
T[142,47]=(x -9)*(x + 13)*(x + 3)*(x + 4)*(x + 1)*(x^3 -4*x^2 -28*x + 40)^2*(x^3 + 10*x^2 -72)^2;
T[142,53]=(x )*(x + 6)^2*(x -6)^2*(x^3 -20*x -24)^2*(x^3 + 18*x^2 + 28*x -456)^2;
T[142,59]=(x -2)*(x + 2)*(x -6)*(x -10)^2*(x^3 + 4*x^2 -36*x -152)^2*(x^3 + 22*x^2 + 144*x + 280)^2;
T[142,61]=(x -2)*(x + 8)*(x + 6)*(x + 2)^2*(x^3 -16*x^2 + 16*x + 320)^2*(x^3 -8*x^2 -76*x + 536)^2;
T[142,67]=(x + 14)*(x + 4)*(x -8)*(x -2)^2*(x^3 + 12*x^2 + 28*x -40)^2*(x^3 + 12*x^2 -32*x -64)^2;
T[142,71]=(x + 1)^2*(x -1)^15;
T[142,73]=(x + 1)*(x + 2)*(x + 17)*(x -7)^2*(x^3 -27*x^2 + 202*x -461)^2*(x^3 -3*x^2 -2*x + 7)^2;
T[142,79]=(x -10)*(x -8)*(x + 6)*(x^3 + 3*x^2 -44*x + 15)^2*(x^3 -7*x^2 -136*x + 525)^2*(x )^2;
T[142,83]=(x -4)*(x -12)*(x^3 + 19*x^2 + 96*x + 63)^2*(x^3 -23*x^2 + 172*x -419)^2*(x + 4)^3;
T[142,89]=(x -6)*(x + 3)^2*(x -9)^2*(x^3 -x^2 -22*x -27)^2*(x^3 -13*x^2 -82*x + 45)^2;
T[142,97]=(x + 6)*(x -2)*(x -14)*(x + 16)*(x + 4)*(x^3 -4*x^2 -36*x + 152)^2*(x^3 -22*x^2 + 144*x -280)^2;

T[143,2]=(x^4 -3*x^3 -x^2 + 5*x + 1)*(x^6 -10*x^4 + 2*x^3 + 24*x^2 -7*x -12)*(x )*(x + 2)^2;
T[143,3]=(x^4 -7*x^2 + 4*x + 1)*(x^6 -3*x^5 -11*x^4 + 33*x^3 + 25*x^2 -91*x + 28)*(x + 1)^3;
T[143,5]=(x + 1)*(x^4 -16*x^2 + 8*x + 16)*(x^6 -x^5 -26*x^4 + 32*x^3 + 152*x^2 -256*x + 96)*(x -1)^2;
T[143,7]=(x^4 -6*x^3 + x^2 + 44*x -61)*(x^6 -4*x^5 -23*x^4 + 66*x^3 + 187*x^2 -210*x -448)*(x + 2)^3;
T[143,11]=(x -1)^6*(x + 1)^7;
T[143,13]=(x^2 -4*x + 13)*(x + 1)^5*(x -1)^6;
T[143,17]=(x + 4)*(x^4 -6*x^3 -36*x^2 + 136*x + 496)*(x^6 -40*x^4 -16*x^3 + 384*x^2 + 224*x -768)*(x + 2)^2;
T[143,19]=(x -2)*(x^4 -8*x^3 -25*x^2 + 154*x + 387)*(x^6 + 10*x^5 + 3*x^4 -196*x^3 -561*x^2 -454*x -104)*(x )^2;
T[143,23]=(x -7)*(x^4 + 4*x^3 -7*x^2 -44*x -43)*(x^6 -11*x^5 -43*x^4 + 701*x^3 -447*x^2 -8635*x + 13176)*(x + 1)^2;
T[143,29]=(x + 2)*(x^4 + 10*x^3 + 16*x^2 -64*x -144)*(x^6 -2*x^5 -92*x^4 + 408*x^3 + 208*x^2 -2240*x + 1344)*(x )^2;
T[143,31]=(x + 3)*(x^4 -2*x^3 -96*x^2 + 96*x + 688)*(x^6 + 9*x^5 -62*x^4 -880*x^3 -3040*x^2 -3888*x -1664)*(x -7)^2;
T[143,37]=(x + 11)*(x^4 -12*x^3 -16*x^2 + 448*x -768)*(x^6 -15*x^5 -6*x^4 + 968*x^3 -4864*x^2 + 7680*x -2560)*(x -3)^2;
T[143,41]=(x -10)*(x^4 -8*x^3 -57*x^2 + 450*x -413)*(x^6 + 4*x^5 -105*x^4 -222*x^3 + 1655*x^2 -1568*x -252)*(x + 8)^2;
T[143,43]=(x + 4)*(x^4 -26*x^3 + 236*x^2 -872*x + 1104)*(x^6 + 2*x^5 -100*x^4 + 120*x^3 + 1584*x^2 -2496*x -1024)*(x + 6)^2;
T[143,47]=(x + 4)*(x^4 + 18*x^3 + 88*x^2 + 16*x -496)*(x^6 -6*x^5 -96*x^4 + 240*x^3 + 1712*x^2 -2240*x -7680)*(x -8)^2;
T[143,53]=(x -2)*(x^4 + 6*x^3 -13*x^2 -118*x -159)*(x^6 -2*x^5 -169*x^4 -294*x^3 + 5877*x^2 + 18088*x -10116)*(x + 6)^2;
T[143,59]=(x + 1)*(x^4 + 16*x^3 + 44*x^2 -336*x -1424)*(x^6 -11*x^5 -120*x^4 + 844*x^3 + 5968*x^2 -7952*x -57792)*(x -5)^2;
T[143,61]=(x + 2)*(x^4 + 12*x^3 -248*x -48)*(x^6 -16*x^5 -52*x^4 + 1496*x^3 -5232*x^2 -1632*x + 19648)*(x -12)^2;
T[143,67]=(x + 1)*(x^4 -2*x^3 -148*x^2 -792*x -1136)*(x^6 -9*x^5 -62*x^4 + 332*x^3 + 936*x^2 -112*x -832)*(x + 7)^2;
T[143,71]=(x + 9)*(x^4 + 14*x^3 -104*x^2 -1136*x -2256)*(x^6 + 15*x^5 -98*x^4 -1936*x^3 -4144*x^2 + 12592*x + 33024)*(x + 3)^2;
T[143,73]=(x + 16)*(x^4 -22*x^3 + 69*x^2 + 1112*x -6101)*(x^6 -32*x^5 + 349*x^4 -1222*x^3 -2093*x^2 + 12362*x + 17456)*(x -4)^2;
T[143,79]=(x -8)*(x^4 + 10*x^3 -220*x^2 -1272*x + 6544)*(x^6 -14*x^5 -12*x^4 + 904*x^3 -4048*x^2 + 4416*x + 2048)*(x + 10)^2;
T[143,83]=(x^4 + 2*x^3 -35*x^2 -104*x -21)*(x^6 + 26*x^5 + 33*x^4 -3460*x^3 -18629*x^2 + 90560*x + 584400)*(x )*(x + 6)^2;
T[143,89]=(x + 7)*(x^4 -10*x^3 -12*x^2 + 40*x + 48)*(x^6 + 23*x^5 -24*x^4 -3576*x^3 -22496*x^2 -21728*x + 61152)*(x -15)^2;
T[143,97]=(x + 13)*(x^4 -22*x^3 -168*x^2 + 6528*x -36848)*(x^6 -27*x^5 + 204*x^4 + 404*x^3 -11824*x^2 + 50384*x -65312)*(x + 7)^2;

T[144,2]=(x )^13;
T[144,3]=(x -1)*(x + 1)^2*(x )^10;
T[144,5]=(x -2)^3*(x )^4*(x + 2)^6;
T[144,7]=(x -4)*(x + 4)^3*(x )^9;
T[144,11]=(x + 4)^4*(x )^4*(x -4)^5;
T[144,13]=(x -2)^4*(x + 2)^9;
T[144,17]=(x + 2)^3*(x )^4*(x -2)^6;
T[144,19]=(x + 8)*(x -4)^3*(x -8)^3*(x + 4)^6;
T[144,23]=(x -8)^4*(x )^4*(x + 8)^5;
T[144,29]=(x + 6)^3*(x )^4*(x -6)^6;
T[144,31]=(x -4)*(x + 4)^3*(x + 8)^3*(x -8)^6;
T[144,37]=(x + 10)^4*(x -6)^9;
T[144,41]=(x -6)^3*(x )^4*(x + 6)^6;
T[144,43]=(x + 8)*(x + 4)^3*(x -8)^3*(x -4)^6;
T[144,47]=(x )^13;
T[144,53]=(x -2)^3*(x )^4*(x + 2)^6;
T[144,59]=(x + 4)^4*(x )^4*(x -4)^5;
T[144,61]=(x -14)^4*(x + 2)^9;
T[144,67]=(x -16)*(x + 16)^3*(x -4)^3*(x + 4)^6;
T[144,71]=(x + 8)^4*(x )^4*(x -8)^5;
T[144,73]=(x + 10)^4*(x -10)^9;
T[144,79]=(x -4)*(x -8)^3*(x + 4)^3*(x + 8)^6;
T[144,83]=(x -4)^4*(x )^4*(x + 4)^5;
T[144,89]=(x -6)^3*(x )^4*(x + 6)^6;
T[144,97]=(x -14)^4*(x -2)^9;

T[145,2]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^3 -3*x^2 -x + 5)*(x^2 + 2*x -1)^3;
T[145,3]=(x^3 + 2*x^2 -4*x -4)*(x^3 -2*x^2 -4*x + 4)*(x )*(x + 2)^2*(x^2 -2*x -1)^2;
T[145,5]=(x^2 + x + 5)^2*(x + 1)^4*(x -1)^5;
T[145,7]=(x + 2)*(x^2 + 4*x -4)*(x^3 + 2*x^2 -8*x + 4)*(x^3 -4*x^2 + 4)*(x^2 -8)^2;
T[145,11]=(x + 6)*(x^2 + 4*x -4)*(x^3 -8*x^2 + 16*x -4)*(x^3 -2*x^2 -8*x -4)*(x^2 -2*x -1)^2;
T[145,13]=(x -2)*(x^3 + 6*x^2 -4*x -8)*(x^3 + 2*x^2 -12*x -8)*(x + 2)^2*(x^2 + 2*x -7)^2;
T[145,17]=(x + 2)*(x^2 -8)*(x^3 -40*x + 76)*(x^3 + 4*x^2 -40*x -68)*(x^2 + 4*x -4)^2;
T[145,19]=(x + 2)*(x^2 + 4*x -4)*(x^3 + 10*x^2 + 28*x + 20)*(x^3 -28*x + 52)*(x -6)^4;
T[145,23]=(x -2)*(x^2 + 12*x + 28)*(x^3 -16*x^2 + 76*x -92)*(x^3 -14*x^2 + 60*x -76)*(x^2 + 4*x -28)^2;
T[145,29]=(x + 1)^4*(x -1)^9;
T[145,31]=(x -2)*(x^2 + 4*x -68)*(x^3 -12*x^2 + 20*x -4)*(x^3 + 14*x^2 + 60*x + 76)*(x^2 -6*x -41)^2;
T[145,37]=(x -10)*(x^2 -72)*(x^3 + 8*x^2 -24*x -92)*(x^3 -4*x^2 -40*x + 68)*(x + 4)^4;
T[145,41]=(x -2)*(x^3 + 10*x^2 + 20*x -8)*(x^3 + 2*x^2 -84*x + 232)*(x + 6)^2*(x^2 -8*x -56)^2;
T[145,43]=(x -8)*(x^3 + 10*x^2 + 28*x + 20)*(x^3 -2*x^2 -132*x -4)*(x + 6)^2*(x^2 -10*x + 23)^2;
T[145,47]=(x + 12)*(x^2 + 12*x + 4)*(x^3 -18*x^2 + 60*x + 92)*(x^3 -14*x^2 + 60*x -76)*(x^2 -2*x -17)^2;
T[145,53]=(x + 6)*(x^2 -4*x -28)*(x^3 -10*x^2 + 20*x + 8)*(x^3 -6*x^2 -4*x + 8)*(x^2 -2*x -71)^2;
T[145,59]=(x + 8)*(x^3 -8*x^2 -64*x -80)*(x^3 -4*x^2 -48*x -80)*(x^2 -4*x -28)^2*(x )^2;
T[145,61]=(x + 6)*(x^2 -4*x -28)*(x^3 + 6*x^2 -108*x -216)*(x^3 -6*x^2 -4*x + 40)*(x^2 + 4*x -4)^2;
T[145,67]=(x -2)*(x^2 + 4*x -68)*(x^3 + 10*x^2 + 28*x + 20)*(x^3 -28*x^2 + 252*x -716)*(x^2 -32)^2;
T[145,71]=(x + 12)*(x^2 + 8*x -112)*(x^3 -28*x^2 + 176*x + 272)*(x^3 -24*x^2 + 176*x -368)*(x^2 + 12*x + 28)^2;
T[145,73]=(x + 6)*(x^2 -72)*(x^3 + 16*x^2 -100*x -1700)*(x^3 + 4*x^2 -180*x -1108)*(x -4)^4;
T[145,79]=(x + 10)*(x^2 -12*x -36)*(x^3 -8*x^2 -56*x + 20)*(x^3 + 6*x^2 -88*x -460)*(x^2 + 2*x -1)^2;
T[145,83]=(x + 14)*(x^2 -20*x + 92)*(x^3 + 2*x^2 -32*x + 52)*(x^3 -12*x^2 + 148)*(x^2 -4*x -28)^2;
T[145,89]=(x -18)*(x^2 + 4*x -28)*(x^3 -22*x^2 + 124*x -200)*(x^3 + 10*x^2 + 12*x -40)*(x^2 + 8*x -56)^2;
T[145,97]=(x -2)*(x^3 + 36*x^2 + 348*x + 452)*(x^3 -8*x^2 -68*x -76)*(x^2 + 8*x -56)^3;

T[146,2]=(x^2 -x + 2)*(x^4 -x^3 + x^2 -2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x + 1)^3*(x -1)^4;
T[146,3]=(x^4 -8*x^2 + 4*x + 4)*(x^3 -8*x + 4)*(x^2 -x -3)^2*(x^2 + 3*x + 1)^2*(x )^2;
T[146,5]=(x^4 -2*x^3 -14*x^2 + 26*x + 2)*(x^3 + 2*x^2 -4*x -6)*(x -2)^2*(x^2 + x -3)^2*(x^2 + 3*x + 1)^2;
T[146,7]=(x^4 -22*x^2 + 6*x + 2)*(x^3 -8*x^2 + 16*x -2)*(x -2)^2*(x + 1)^4*(x + 3)^4;
T[146,11]=(x^4 -24*x^2 -16*x + 80)*(x^3 -2*x^2 -28*x + 72)*(x + 2)^2*(x^2 + 3*x + 1)^2*(x^2 -7*x + 9)^2;
T[146,13]=(x^4 + 4*x^3 -38*x^2 -106*x + 314)*(x^3 -4*x^2 + 2)*(x + 6)^2*(x^2 -x -11)^2*(x^2 + x -3)^2;
T[146,17]=(x^4 + 4*x^3 -16*x^2 -64*x -16)*(x^3 + 2*x^2 -28*x -72)*(x -2)^2*(x^2 + 4*x -9)^2*(x^2 -45)^2;
T[146,19]=(x^4 -32*x^2 -48*x -16)*(x^3 -8*x^2 -8*x + 112)*(x -8)^2*(x + 7)^4*(x -1)^4;
T[146,23]=(x^3 -4*x^2 -16*x + 48)*(x^4 + 12*x^3 + 8*x^2 -240*x -416)*(x -4)^2*(x^2 -13*x + 39)^2*(x^2 + 15*x + 55)^2;
T[146,29]=(x^4 -2*x^3 -50*x^2 -10*x + 218)*(x^3 + 6*x^2 -104*x -582)*(x -2)^2*(x^2 -6*x -11)^2*(x^2 -2*x -51)^2;
T[146,31]=(x^3 -2*x^2 -24*x -18)*(x^4 + 6*x^3 -42*x^2 -170*x + 362)*(x + 2)^2*(x^2 -2*x -44)^2*(x^2 -6*x -4)^2;
T[146,37]=(x^3 + 14*x^2 -4*x -344)*(x^4 -12*x^3 + 16*x^2 + 48*x -16)*(x + 6)^2*(x^2 -8*x + 3)^2*(x^2 + 4*x -41)^2;
T[146,41]=(x^3 + 6*x^2 + 4*x -12)*(x^4 -88*x^2 -396*x -404)*(x -6)^2*(x^2 -20)^2*(x + 6)^4;
T[146,43]=(x^4 -20*x^3 + 112*x^2 -48*x -656)*(x^3 + 6*x^2 -20*x -88)*(x + 2)^2*(x^2 -6*x -43)^2*(x + 1)^4;
T[146,47]=(x^3 -6*x^2 -36*x + 162)*(x^4 + 18*x^3 + 50*x^2 -378*x -790)*(x -6)^2*(x^2 + 6*x -11)^2*(x -9)^4;
T[146,53]=(x^3 + 4*x^2 -20*x -66)*(x^4 -8*x^3 -194*x^2 + 862*x + 8554)*(x -10)^2*(x^2 -6*x -71)^2*(x^2 + 2*x -51)^2;
T[146,59]=(x^4 -20*x^3 + 128*x^2 -256*x -16)*(x^3 -2*x^2 -28*x + 72)*(x + 6)^2*(x^2 + 12*x + 16)^2*(x )^4;
T[146,61]=(x^3 -22*x^2 + 132*x -232)*(x^4 -12*x^3 -64*x^2 + 864*x -1168)*(x + 14)^2*(x^2 -7*x + 1)^2*(x^2 + 9*x + 17)^2;
T[146,67]=(x^3 + 4*x^2 -80*x -212)*(x^4 + 4*x^3 -96*x^2 + 348*x -364)*(x -8)^2*(x^2 -16*x + 19)^2*(x^2 -4*x -113)^2;
T[146,71]=(x^3 -16*x^2 + 16*x + 96)*(x^4 + 24*x^3 + 96*x^2 -1120*x -6592)*(x^2 + 21*x + 109)^2*(x^2 -3*x -27)^2*(x )^2;
T[146,73]=(x + 1)^8*(x -1)^9;
T[146,79]=(x^3 -8*x^2 -176*x + 1552)*(x^4 -40*x^3 + 520*x^2 -2032*x -2144)*(x + 4)^2*(x^2 + 19*x + 79)^2*(x^2 -x -29)^2;
T[146,83]=(x^3 -10*x^2 -68*x + 24)*(x^4 + 4*x^3 -56*x^2 -32*x + 208)*(x + 14)^2*(x^2 -7*x -69)^2*(x^2 + 3*x -9)^2;
T[146,89]=(x^4 + 12*x^3 -96*x^2 -508*x -436)*(x^3 + 6*x^2 + 4*x -12)*(x + 6)^2*(x^2 -12*x -81)^2*(x^2 -12*x + 31)^2;
T[146,97]=(x^3 + 14*x^2 -132*x -1864)*(x^4 -96*x^2 -16*x + 2144)*(x + 10)^2*(x^2 + 9*x + 9)^2*(x^2 + 5*x -23)^2;

T[147,2]=(x -2)^2*(x -1)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
T[147,3]=(x^2 + 3)*(x + 1)^4*(x -1)^5;
T[147,5]=(x^2 -4*x + 2)*(x^2 + 4*x + 2)*(x -2)^2*(x )^2*(x + 2)^3;
T[147,7]=(x + 1)*(x )^10;
T[147,11]=(x -4)^5*(x + 2)^6;
T[147,13]=(x + 1)*(x -2)*(x -1)*(x^2 -8*x + 14)*(x^2 + 8*x + 14)*(x + 2)^2*(x )^2;
T[147,17]=(x -6)*(x^2 + 4*x -14)*(x^2 -4*x -14)*(x + 6)^2*(x )^4;
T[147,19]=(x + 4)*(x + 1)*(x -1)*(x -4)^2*(x^2 -8)^2*(x )^2;
T[147,23]=(x -8)^2*(x^2 + 4*x -28)^2*(x )^5;
T[147,29]=(x -2)^2*(x -4)^2*(x^2 + 8*x + 8)^2*(x + 2)^3;
T[147,31]=(x -9)*(x + 9)*(x^2 + 8*x + 8)*(x^2 -8*x + 8)*(x )^5;
T[147,37]=(x + 6)^2*(x -3)^2*(x -6)^3*(x + 4)^4;
T[147,41]=(x + 2)*(x + 10)*(x -10)*(x^2 -4*x -14)*(x^2 + 4*x -14)*(x -2)^2*(x )^2;
T[147,43]=(x -5)^2*(x + 12)^2*(x^2 -32)^2*(x + 4)^3;
T[147,47]=(x -6)*(x + 6)*(x^2 -8)^2*(x )^5;
T[147,53]=(x + 10)^2*(x -12)^2*(x -6)^3*(x + 2)^4;
T[147,59]=(x^2 + 8*x + 8)*(x^2 -8*x + 8)*(x + 12)^2*(x )^2*(x -12)^3;
T[147,61]=(x -10)*(x -2)*(x + 10)*(x^2 + 16*x + 46)*(x^2 -16*x + 46)*(x + 2)^2*(x )^2;
T[147,67]=(x + 5)^2*(x^2 -32)^2*(x -4)^5;
T[147,71]=(x -16)^2*(x + 6)^2*(x^2 + 4*x -124)^2*(x )^3;
T[147,73]=(x + 3)*(x -3)*(x -6)*(x^2 + 8*x -82)*(x^2 -8*x -82)*(x + 6)^2*(x )^2;
T[147,79]=(x + 1)^2*(x -8)^2*(x^2 -16*x + 32)^2*(x + 16)^3;
T[147,83]=(x -6)*(x -12)*(x + 6)*(x^2 -8*x -112)*(x^2 + 8*x -112)*(x + 12)^2*(x )^2;
T[147,89]=(x + 16)*(x -16)*(x -14)*(x^2 -20*x + 82)*(x^2 + 20*x + 82)*(x + 14)^2*(x )^2;
T[147,97]=(x + 18)*(x + 6)*(x -6)*(x^2 + 8*x + 14)*(x^2 -8*x + 14)*(x -18)^2*(x )^2;

T[148,2]=(x^2 + 2)*(x^2 + 2*x + 2)*(x -1)^2*(x + 1)^2*(x )^9;
T[148,3]=(x + 1)*(x^2 + x -4)*(x^2 + x -1)^2*(x^2 -3*x -1)^2*(x + 3)^3*(x -1)^3;
T[148,5]=(x + 4)*(x -2)^2*(x^2 + x -3)^2*(x^2 -x -11)^2*(x + 2)^3*(x )^3;
T[148,7]=(x + 3)*(x^2 -x -4)*(x^2 + 2*x -4)^2*(x^2 -2*x -12)^2*(x + 1)^6;
T[148,11]=(x -5)*(x^2 -x -4)*(x^2 + 5*x + 5)^2*(x^2 + x -3)^2*(x + 5)^3*(x -3)^3;
T[148,13]=(x )*(x -2)^2*(x^2 + x -3)^2*(x^2 -x -11)^2*(x + 4)^3*(x + 2)^3;
T[148,17]=(x^2 -6*x -8)*(x^2 -20)^2*(x -6)^3*(x )^3*(x + 6)^5;
T[148,19]=(x^2 + 6*x -8)*(x^2 -20)^2*(x )^3*(x -2)^8;
T[148,23]=(x + 6)*(x + 2)^2*(x^2 + x -11)^2*(x^2 + 3*x -27)^2*(x -2)^3*(x -6)^3;
T[148,29]=(x^2 -68)*(x^2 + 3*x -59)^2*(x^2 -3*x -27)^2*(x -6)^3*(x + 6)^4;
T[148,31]=(x -4)*(x^2 + 10*x + 8)*(x^2 -3*x -1)^2*(x^2 -17*x + 71)^2*(x + 4)^6;
T[148,37]=(x -1)^8*(x + 1)^9;
T[148,41]=(x^2 -5*x + 2)*(x^2 -17*x + 71)^2*(x^2 -9*x -9)^2*(x + 9)^7;
T[148,43]=(x -4)*(x^2 -68)*(x^2 + 6*x + 4)^2*(x^2 + 6*x -4)^2*(x -2)^3*(x -8)^3;
T[148,47]=(x + 7)*(x^2 -17*x + 68)*(x^2 -2*x -12)^2*(x^2 -2*x -4)^2*(x -3)^3*(x + 9)^3;
T[148,53]=(x -9)*(x^2 -7*x -94)*(x^2 + 8*x -4)^2*(x + 3)^3*(x -1)^3*(x + 6)^4;
T[148,59]=(x + 4)*(x^2 + 2*x -16)*(x^2 -14*x + 36)^2*(x^2 + 14*x + 44)^2*(x -12)^3*(x -8)^3;
T[148,61]=(x^2 + 14*x + 32)*(x^2 -19*x + 89)^2*(x^2 + 3*x -79)^2*(x -8)^3*(x + 8)^4;
T[148,67]=(x + 12)*(x^2 + 12*x -32)*(x^2 + 9*x -11)^2*(x^2 -11*x -51)^2*(x + 4)^3*(x -8)^3;
T[148,71]=(x -3)*(x^2 -15*x + 52)*(x^2 + 12*x -44)^2*(x -9)^3*(x + 15)^3*(x -6)^4;
T[148,73]=(x + 5)*(x^2 + 3*x -206)*(x^2 -3*x -29)^2*(x^2 + 21*x + 107)^2*(x + 1)^3*(x -11)^3;
T[148,79]=(x -6)*(x^2 -6*x -144)*(x^2 -3*x -99)^2*(x^2 + 7*x -147)^2*(x + 10)^3*(x -4)^3;
T[148,83]=(x + 1)*(x^2 -7*x + 8)*(x^2 -20*x + 48)^2*(x^2 + 20*x + 80)^2*(x -9)^3*(x + 15)^3;
T[148,89]=(x -2)*(x^2 -18*x + 64)*(x^2 + 12*x + 16)^2*(x^2 + 4*x -48)^2*(x -4)^3*(x -6)^3;
T[148,97]=(x^2 + 10*x + 8)*(x )*(x^2 + 4*x -204)^2*(x^2 -8*x -4)^2*(x -8)^3*(x -4)^3;

T[149,2]=(x^3 + x^2 -2*x -1)*(x^9 + x^8 -15*x^7 -12*x^6 + 75*x^5 + 48*x^4 -137*x^3 -76*x^2 + 68*x + 39);
T[149,3]=(x^3 + 4*x^2 + 3*x -1)*(x^9 -6*x^8 + 55*x^6 -67*x^5 -125*x^4 + 235*x^3 -6*x^2 -117*x + 27);
T[149,5]=(x^3 + 3*x^2 -4*x -13)*(x^9 + x^8 -25*x^7 -4*x^6 + 202*x^5 -83*x^4 -529*x^3 + 305*x^2 + 392*x -221);
T[149,7]=(x^3 + 5*x^2 + 6*x + 1)*(x^9 -3*x^8 -34*x^7 + 117*x^6 + 208*x^5 -916*x^4 + 144*x^3 + 1056*x^2 -128*x -64);
T[149,11]=(x^3 + 5*x^2 -8*x + 1)*(x^9 -5*x^8 -33*x^7 + 202*x^6 + 66*x^5 -1503*x^4 + 997*x^3 + 2817*x^2 -3392*x + 981);
T[149,13]=(x^3 + 3*x^2 -4*x -13)*(x^9 -7*x^8 -28*x^7 + 277*x^6 -152*x^5 -2028*x^4 + 3072*x^3 + 32*x^2 -512*x -64);
T[149,17]=(x^3 -5*x^2 -22*x + 97)*(x^9 + 5*x^8 -75*x^7 -342*x^6 + 1572*x^5 + 7471*x^4 -7485*x^3 -53675*x^2 -36298*x + 24053);
T[149,19]=(x^3 + 18*x^2 + 101*x + 167)*(x^9 -30*x^8 + 337*x^7 -1533*x^6 -768*x^5 + 38360*x^4 -171648*x^3 + 358384*x^2 -366592*x + 145856);
T[149,23]=(x^3 -8*x^2 + 19*x -13)*(x^9 + 4*x^8 -88*x^7 -135*x^6 + 2377*x^5 -1281*x^4 -10871*x^3 + 5476*x^2 + 11587*x -6341);
T[149,29]=(x^3 + 2*x^2 -29*x -71)*(x^9 + 16*x^8 + 52*x^7 -397*x^6 -3233*x^5 -7917*x^4 -6043*x^3 + 3944*x^2 + 7739*x + 2861);
T[149,31]=(x^3 + 18*x^2 + 87*x + 83)*(x^9 -22*x^8 + 91*x^7 + 991*x^6 -7564*x^5 -3356*x^4 + 98336*x^3 -32960*x^2 -312448*x + 161984);
T[149,37]=(x^3 -3*x^2 -81*x + 27)*(x^9 + 7*x^8 -142*x^7 -828*x^6 + 5789*x^5 + 18971*x^4 -88867*x^3 + 40715*x^2 + 104171*x -75969);
T[149,41]=(x^3 -6*x^2 -37*x + 181)*(x^9 -6*x^8 -185*x^7 + 1007*x^6 + 9700*x^5 -40160*x^4 -155136*x^3 + 317376*x^2 -186112*x + 35328);
T[149,43]=(x^3 + 4*x^2 -109*x -533)*(x^9 -4*x^8 -202*x^7 + 423*x^6 + 10581*x^5 + 9877*x^4 -113871*x^3 -256632*x^2 -68795*x + 109051);
T[149,47]=(x^3 + 2*x^2 -85*x -337)*(x^9 + 6*x^8 -273*x^7 -1593*x^6 + 21800*x^5 + 134552*x^4 -414736*x^3 -3462160*x^2 -4525952*x + 1225536);
T[149,53]=(x^3 -8*x^2 -23*x -13)*(x^9 + 2*x^8 -170*x^7 -1081*x^6 + 4013*x^5 + 59133*x^4 + 216201*x^3 + 327714*x^2 + 153685*x -43997);
T[149,59]=(x^3 -x^2 -30*x + 43)*(x^9 -43*x^8 + 711*x^7 -5710*x^6 + 23024*x^5 -40699*x^4 + 4089*x^3 + 67513*x^2 -45344*x -13589);
T[149,61]=(x^3 -3*x^2 -46*x -1)*(x^9 -x^8 -191*x^7 + 246*x^6 + 11156*x^5 -10667*x^4 -200993*x^3 -122141*x^2 + 830518*x + 1028703);
T[149,67]=(x^3 + 23*x^2 + 174*x + 433)*(x^9 -33*x^8 + 162*x^7 + 4853*x^6 -59204*x^5 + 97700*x^4 + 1357024*x^3 -7316416*x^2 + 13408448*x -8246976);
T[149,71]=(x^3 + 5*x^2 -106*x -97)*(x^9 -15*x^8 -55*x^7 + 1188*x^6 -1656*x^5 -17961*x^4 + 52241*x^3 -8251*x^2 -51176*x + 2931);
T[149,73]=(x^3 + x^2 -212*x -169)*(x^9 + 11*x^8 -145*x^7 -2102*x^6 + 706*x^5 + 89825*x^4 + 247339*x^3 -714453*x^2 -3446560*x -3257073);
T[149,79]=(x^3 + 9*x^2 -x -113)*(x^9 -x^8 -549*x^7 + 173*x^6 + 106772*x^5 + 52012*x^4 -8541904*x^3 -11412320*x^2 + 225852288*x + 468778432);
T[149,83]=(x^3 -2*x^2 -x + 1)*(x^9 + 4*x^8 -384*x^7 -1765*x^6 + 42213*x^5 + 217533*x^4 -1021329*x^3 -5009504*x^2 -3680845*x + 2245797);
T[149,89]=(x^3 + 9*x^2 -85*x -757)*(x^9 + 19*x^8 -37*x^7 -1467*x^6 + 2336*x^5 + 33412*x^4 -103920*x^3 -16720*x^2 + 313344*x -239936);
T[149,97]=(x^3 + 3*x^2 -298*x -2267)*(x^9 + x^8 -462*x^7 + 79*x^6 + 50736*x^5 + 9648*x^4 -1868176*x^3 -930512*x^2 + 17893120*x + 3173696);

T[150,2]=(x^2 + 2*x + 2)*(x^2 -2*x + 2)*(x^2 -x + 2)*(x^2 + x + 2)^2*(x -1)^4*(x + 1)^5;
T[150,3]=(x^2 -x + 3)*(x^2 + x + 3)*(x -1)^7*(x + 1)^8;
T[150,5]=(x + 1)*(x -1)^2*(x )^16;
T[150,7]=(x -4)*(x + 3)^2*(x + 4)^2*(x -3)^2*(x -2)^3*(x + 2)^3*(x )^6;
T[150,11]=(x )^3*(x + 3)^4*(x -2)^6*(x + 4)^6;
T[150,13]=(x -6)*(x + 6)*(x -4)^2*(x + 1)^2*(x + 4)^2*(x -1)^2*(x -2)^4*(x + 2)^5;
T[150,17]=(x + 6)*(x + 3)^2*(x -6)^2*(x -3)^2*(x + 2)^5*(x -2)^7;
T[150,19]=(x )^2*(x + 4)^3*(x -5)^4*(x + 5)^4*(x -4)^6;
T[150,23]=(x + 4)*(x -4)*(x -6)^4*(x + 6)^4*(x )^9;
T[150,29]=(x + 6)^3*(x -10)^4*(x + 2)^6*(x )^6;
T[150,31]=(x + 8)^2*(x -8)^3*(x -2)^4*(x + 3)^4*(x )^6;
T[150,37]=(x -10)^2*(x + 10)^4*(x + 2)^6*(x -2)^7;
T[150,41]=(x -2)^2*(x + 6)^3*(x + 3)^4*(x + 8)^4*(x -10)^6;
T[150,43]=(x + 1)^2*(x -1)^2*(x + 4)^7*(x -4)^8;
T[150,47]=(x + 12)^2*(x -2)^2*(x -12)^2*(x + 2)^2*(x + 8)^3*(x )^3*(x -8)^5;
T[150,53]=(x + 4)^2*(x -4)^2*(x -10)^2*(x -6)^4*(x + 10)^4*(x + 6)^5;
T[150,59]=(x -10)^2*(x + 10)^4*(x + 4)^6*(x )^7;
T[150,61]=(x + 10)^3*(x -7)^4*(x + 2)^6*(x -2)^6;
T[150,67]=(x -8)*(x -4)*(x + 8)*(x -13)^2*(x + 13)^2*(x + 12)^2*(x + 4)^2*(x + 3)^2*(x -3)^2*(x -12)^4;
T[150,71]=(x )^3*(x -12)^6*(x + 8)^10;
T[150,73]=(x -4)*(x + 2)*(x + 4)*(x + 10)^2*(x -11)^2*(x + 11)^2*(x + 14)^2*(x -2)^2*(x -14)^2*(x -10)^4;
T[150,79]=(x -8)^3*(x + 10)^4*(x )^12;
T[150,83]=(x + 4)*(x -4)*(x -9)^2*(x + 9)^2*(x + 6)^2*(x -6)^2*(x + 12)^3*(x -12)^6;
T[150,89]=(x + 10)^2*(x -18)^3*(x -15)^4*(x )^4*(x + 6)^6;
T[150,97]=(x + 8)*(x -8)*(x -17)^2*(x + 17)^2*(x + 2)^5*(x -2)^8;

T[151,2]=(x^3 -5*x + 3)*(x^3 + 2*x^2 -x -1)*(x^6 -x^5 -7*x^4 + 3*x^3 + 13*x^2 + 3*x -1);
T[151,3]=(x^3 + x^2 -2*x -1)*(x^6 + 5*x^5 -4*x^4 -51*x^3 -68*x^2 -12*x + 8)*(x -2)^3;
T[151,5]=(x^3 -5*x^2 -2*x + 25)*(x^3 + 7*x^2 + 14*x + 7)*(x^6 -6*x^5 + 5*x^4 + 16*x^3 -8*x^2 -12*x -1);
T[151,7]=(x^6 -3*x^5 -33*x^4 + 119*x^3 + 200*x^2 -1100*x + 1000)*(x + 1)^3*(x + 2)^3;
T[151,11]=(x^3 + x^2 -20*x + 25)*(x^3 + 5*x^2 -x -13)*(x^6 -8*x^5 + 14*x^4 + 23*x^3 -64*x^2 -7*x + 49);
T[151,13]=(x^3 + 2*x^2 -32*x -24)*(x^3 + x^2 -16*x + 13)*(x^6 + x^5 -40*x^4 -x^3 + 236*x^2 -36*x -328);
T[151,17]=(x^3 -9*x^2 + 22*x -15)*(x^3 + 8*x^2 + 5*x -43)*(x^6 -9*x^5 -21*x^4 + 245*x^3 + 117*x^2 -869*x + 253);
T[151,19]=(x^3 -3*x^2 -36*x + 81)*(x^3 + 3*x^2 -46*x -139)*(x^6 + 6*x^5 -45*x^4 -150*x^3 + 524*x^2 + 558*x + 115);
T[151,23]=(x^3 -20*x + 24)*(x^3 -21*x -7)*(x^6 + 4*x^5 -47*x^4 + 27*x^3 + 208*x^2 -208*x -64);
T[151,29]=(x^3 + x^2 -72*x + 41)*(x^3 -3*x^2 -62*x -129)*(x^6 + 2*x^5 -61*x^4 -18*x^3 + 244*x^2 -14*x -5);
T[151,31]=(x^3 + x^2 -8*x -3)*(x^3 + x^2 -30*x -43)*(x^6 + 8*x^5 -39*x^4 -386*x^3 -362*x^2 + 982*x + 271);
T[151,37]=(x^3 -13*x^2 + 40*x -29)*(x^3 -3*x^2 -42*x -37)*(x^6 + 12*x^5 -51*x^4 -1032*x^3 -1344*x^2 + 19774*x + 56789);
T[151,41]=(x^3 + 21*x^2 + 119*x + 91)*(x^6 -41*x^5 + 687*x^4 -6011*x^3 + 28912*x^2 -72348*x + 73432)*(x )^3;
T[151,43]=(x^3 -16*x^2 + 41*x + 197)*(x^3 + x^2 -8*x -3)*(x^6 -x^5 -163*x^4 + 107*x^3 + 4263*x^2 + 2315*x -11425);
T[151,47]=(x^3 -3*x^2 -109*x + 559)*(x^3 + 13*x^2 + 52*x + 61)*(x^6 -28*x^5 + 206*x^4 + 715*x^3 -14856*x^2 + 57597*x -65843);
T[151,53]=(x^3 + 8*x^2 -23*x -197)*(x^3 + 6*x^2 -144*x -648)*(x^6 -14*x^5 -53*x^4 + 1545*x^3 -6240*x^2 -524*x + 24664);
T[151,59]=(x^3 -23*x^2 + 168*x -387)*(x^3 + x^2 -100*x + 181)*(x^6 -12*x^5 -x^4 + 24*x^3 + 6*x^2 -12*x -5);
T[151,61]=(x^3 + 8*x^2 -112*x -320)*(x^3 + x^2 -58*x + 13)*(x^6 -5*x^5 -154*x^4 + 251*x^3 + 5490*x^2 + 3168*x -16984);
T[151,67]=(x^3 + x^2 -170*x + 41)*(x^3 -2*x^2 -132*x + 72)*(x^6 + 15*x^5 -122*x^4 -1709*x^3 + 5026*x^2 + 30272*x + 14696);
T[151,71]=(x^3 -20*x -24)*(x^3 + 14*x^2 -49*x -889)*(x^6 + 2*x^5 -151*x^4 + 327*x^3 + 1730*x^2 -1832*x -4024);
T[151,73]=(x^3 -10*x^2 + 72)*(x^3 + x^2 -65*x -169)*(x^6 + 7*x^5 -325*x^4 -1647*x^3 + 24708*x^2 + 35552*x -135872);
T[151,79]=(x^3 + 3*x^2 -88*x -293)*(x^3 + 26*x^2 + 192*x + 360)*(x^6 + 9*x^5 -270*x^4 -1667*x^3 + 18962*x^2 + 74696*x -195080);
T[151,83]=(x^3 + 3*x^2 -25*x -83)*(x^3 -28*x^2 + 172*x + 296)*(x^6 + 11*x^5 -155*x^4 -1371*x^3 + 9914*x^2 + 44944*x -260696);
T[151,89]=(x^3 -36*x^2 + 412*x -1464)*(x^6 -36*x^5 + 364*x^4 + 424*x^3 -22080*x^2 + 67200*x + 64000)*(x + 12)^3;
T[151,97]=(x^3 + 5*x^2 -238*x -965)*(x^3 -63*x + 189)*(x^6 -11*x^5 + 3*x^4 + 105*x^3 + 3*x^2 -291*x -193);

T[152,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^13;
T[152,3]=(x^3 -x^2 -10*x + 8)*(x -2)^2*(x + 1)^3*(x -1)^4*(x + 2)^5;
T[152,5]=(x^3 -x^2 -10*x + 8)*(x + 1)^3*(x + 4)^3*(x -3)^4*(x )^4;
T[152,7]=(x^3 -4*x^2 -5*x + 16)*(x + 3)^3*(x -3)^4*(x + 1)^7;
T[152,11]=(x + 3)*(x^3 + 5*x^2 -2*x -8)*(x -5)^2*(x + 6)^3*(x -2)^4*(x -3)^4;
T[152,13]=(x -1)*(x^3 -5*x^2 -2*x + 8)*(x + 1)^3*(x -5)^3*(x + 4)^7;
T[152,17]=(x + 5)*(x -5)*(x^3 -2*x^2 -9*x + 2)*(x + 3)^6*(x -3)^6;
T[152,19]=(x -1)^8*(x + 1)^9;
T[152,23]=(x^3 + 5*x^2 -64*x -256)*(x -8)^2*(x -3)^3*(x + 1)^4*(x )^5;
T[152,29]=(x + 3)*(x -2)*(x^3 + 9*x^2 -4*x -4)*(x + 2)^2*(x + 5)^3*(x -9)^3*(x -6)^4;
T[152,31]=(x -8)*(x -4)^3*(x + 8)^3*(x )^3*(x + 4)^7;
T[152,37]=(x + 10)*(x -10)^2*(x + 2)^6*(x -2)^8;
T[152,41]=(x -6)*(x^3 -8*x^2 -20*x + 128)*(x -10)^2*(x )^3*(x + 6)^4*(x + 8)^4;
T[152,43]=(x + 7)*(x + 8)*(x^3 -17*x^2 + 24*x + 368)*(x -1)^2*(x -4)^3*(x -8)^3*(x + 1)^4;
T[152,47]=(x + 8)*(x + 9)*(x^3 + x^2 -72*x -256)*(x + 1)^2*(x -8)^3*(x )^3*(x + 3)^4;
T[152,53]=(x + 8)*(x -9)*(x^3 -x^2 -134*x + 256)*(x + 4)^2*(x + 3)^3*(x + 1)^3*(x -12)^4;
T[152,59]=(x -14)*(x -1)*(x^3 + 23*x^2 + 166*x + 376)*(x -6)^2*(x -9)^3*(x -15)^3*(x + 6)^4;
T[152,61]=(x + 5)*(x -14)*(x^3 -3*x^2 -28*x + 92)*(x + 13)^2*(x + 10)^3*(x -2)^3*(x + 1)^4;
T[152,67]=(x -13)*(x^3 -15*x^2 + 44*x -32)*(x )*(x + 12)^2*(x -3)^3*(x -5)^3*(x + 4)^4;
T[152,71]=(x -10)*(x^3 + 12*x^2 -76*x -928)*(x -6)^4*(x + 6)^4*(x -2)^5;
T[152,73]=(x + 15)*(x^3 -4*x^2 -67*x + 326)*(x -9)^6*(x + 7)^7;
T[152,79]=(x + 4)*(x^3 -26*x^2 + 184*x -256)*(x -8)^6*(x + 10)^7;
T[152,83]=(x -10)*(x -4)*(x^3 + 6*x^2 -112*x -736)*(x + 12)^2*(x -12)^4*(x + 6)^6;
T[152,89]=(x^3 -18*x^2 -16*x + 1024)*(x + 12)^4*(x )^4*(x -12)^6;
T[152,97]=(x -16)*(x -14)*(x^3 + 8*x^2 -20*x -128)*(x + 8)^2*(x + 10)^3*(x + 2)^3*(x -8)^4;

T[153,2]=(x -2)*(x -1)*(x + 2)*(x^2 -x -4)*(x^2 + x -4)^2*(x + 1)^3*(x )^3;
T[153,3]=(x -1)*(x^2 + 3)*(x + 1)^2*(x )^10;
T[153,5]=(x -2)*(x -1)*(x + 1)*(x + 3)*(x^2 + 3*x -2)*(x -3)^2*(x^2 -3*x -2)^2*(x + 2)^3;
T[153,7]=(x + 2)^2*(x + 4)^3*(x -4)^4*(x )^6;
T[153,11]=(x^2 -x -4)*(x -3)^2*(x^2 + x -4)^2*(x + 3)^3*(x )^4;
T[153,13]=(x + 5)^2*(x + 1)^3*(x^2 -5*x + 2)^3*(x + 2)^4;
T[153,17]=(x + 1)^6*(x -1)^9;
T[153,19]=(x^2 -3*x -36)^3*(x + 4)^4*(x + 1)^5;
T[153,23]=(x + 9)*(x + 7)*(x + 4)*(x -7)*(x^2 -9*x + 16)*(x -9)^2*(x^2 + 9*x + 16)^2*(x -4)^3;
T[153,29]=(x + 6)^3*(x^2 -68)^3*(x -6)^6;
T[153,31]=(x -2)^3*(x^2 + 2*x -16)^3*(x -4)^6;
T[153,37]=(x -10)^2*(x + 4)^3*(x^2 + 2*x -16)^3*(x + 2)^4;
T[153,41]=(x -3)*(x + 9)*(x -6)*(x -9)*(x^2 -3*x -2)*(x + 3)^2*(x^2 + 3*x -2)^2*(x + 6)^3;
T[153,43]=(x -1)^2*(x + 7)^3*(x^2 + 3*x -36)^3*(x -4)^4;
T[153,47]=(x -6)*(x -12)*(x + 12)*(x^2 -14*x + 32)*(x + 6)^2*(x^2 + 14*x + 32)^2*(x )^4;
T[153,53]=(x -12)*(x + 12)*(x^2 + 8*x -52)*(x^2 -8*x -52)^2*(x + 6)^3*(x -6)^4;
T[153,59]=(x -12)*(x^2 + 6*x -8)*(x + 6)^2*(x^2 -6*x -8)^2*(x -6)^3*(x + 12)^3;
T[153,61]=(x -2)^2*(x -8)^3*(x^2 -10*x + 8)^3*(x + 10)^4;
T[153,67]=(x + 4)^3*(x -4)^12;
T[153,71]=(x -4)*(x + 12)*(x + 8)*(x -8)*(x^2 + 4*x -64)*(x -12)^2*(x^2 -4*x -64)^2*(x + 4)^3;
T[153,73]=(x )^2*(x -2)^3*(x^2 + 8*x -52)^3*(x + 6)^4;
T[153,79]=(x + 6)^2*(x + 10)^3*(x^2 -6*x -144)^3*(x -12)^4;
T[153,83]=(x -6)*(x^2 -10*x + 8)*(x -4)^2*(x + 6)^2*(x^2 + 10*x + 8)^2*(x + 4)^4;
T[153,89]=(x + 2)*(x -2)*(x + 10)*(x^2 + 6*x -8)*(x^2 -6*x -8)^2*(x -10)^3*(x )^3;
T[153,97]=(x -8)^2*(x + 16)^3*(x^2 + 14*x + 32)^3*(x -2)^4;

T[154,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2)^2*(x^2 + 2*x + 2)^2*(x -1)^3*(x + 1)^4;
T[154,3]=(x^2 + 2*x -4)*(x -1)^2*(x + 3)^2*(x + 2)^2*(x^2 -2*x -4)^2*(x )^2*(x -2)^3*(x + 1)^4;
T[154,5]=(x + 4)*(x^2 -2*x -4)*(x -2)^2*(x + 1)^2*(x -3)^2*(x )^2*(x -1)^4*(x + 2)^6;
T[154,7]=(x^2 + 2*x + 7)^2*(x + 1)^7*(x -1)^10;
T[154,11]=(x^2 + 11)*(x -1)^9*(x + 1)^10;
T[154,13]=(x^2 + 2*x -4)*(x -2)^2*(x^2 -2*x -4)^2*(x -4)^6*(x + 4)^7;
T[154,17]=(x + 4)*(x^2 + 4*x -16)*(x )*(x -6)^2*(x + 6)^2*(x -4)^2*(x^2 + 2*x -4)^2*(x -2)^3*(x + 2)^4;
T[154,19]=(x -4)*(x^2 + 10*x + 20)*(x^2 -4*x -16)^2*(x + 6)^3*(x -2)^4*(x )^7;
T[154,23]=(x + 8)*(x + 5)^2*(x -3)^2*(x + 4)^2*(x^2 + 4*x -16)^2*(x )^2*(x + 1)^4*(x -4)^4;
T[154,29]=(x -2)*(x^2 -20)*(x -10)^2*(x + 2)^2*(x^2 -8*x -4)^2*(x )^4*(x + 6)^6;
T[154,31]=(x + 8)*(x + 10)*(x + 2)*(x -10)^2*(x -1)^2*(x + 4)^2*(x -5)^2*(x -2)^2*(x^2 + 10*x + 20)^2*(x -7)^4;
T[154,37]=(x -10)*(x + 2)*(x^2 + 4*x -76)*(x -11)^2*(x -2)^2*(x + 5)^2*(x^2 + 8*x -4)^2*(x + 6)^3*(x -3)^4;
T[154,41]=(x -10)*(x^2 -4*x -16)*(x )*(x + 2)^2*(x^2 + 18*x + 76)^2*(x -4)^3*(x -6)^4*(x + 8)^4;
T[154,43]=(x + 4)*(x -4)*(x^2 + 12*x + 16)*(x -12)^2*(x + 8)^3*(x + 6)^4*(x -8)^8;
T[154,47]=(x -2)*(x -10)*(x + 12)^2*(x + 10)^2*(x + 2)^2*(x^2 -10*x + 20)^2*(x )^2*(x -8)^7;
T[154,53]=(x + 14)*(x^2 -8*x -4)^3*(x -6)^4*(x + 6)^10;
T[154,59]=(x -10)*(x + 12)*(x^2 -10*x + 20)*(x )*(x + 9)^2*(x -2)^2*(x + 6)^2*(x -3)^2*(x^2 -2*x -4)^2*(x -5)^4;
T[154,61]=(x + 14)*(x + 8)*(x -10)*(x^2 + 6*x + 4)*(x -8)^2*(x + 2)^2*(x + 10)^2*(x^2 + 10*x + 20)^2*(x )^2*(x -12)^4;
T[154,67]=(x^2 + 4*x -176)*(x + 3)^2*(x + 12)^2*(x + 4)^2*(x -5)^2*(x^2 -20*x + 80)^2*(x -8)^3*(x + 7)^4;
T[154,71]=(x -16)*(x + 4)*(x + 8)*(x^2 -4*x -16)*(x + 12)^2*(x -1)^2*(x -9)^2*(x^2 + 12*x + 16)^2*(x )^2*(x + 3)^4;
T[154,73]=(x + 14)*(x^2 -8*x -64)*(x -10)^2*(x + 8)^2*(x^2 + 6*x + 4)^2*(x -2)^4*(x -4)^6;
T[154,79]=(x -16)*(x -6)^2*(x^2 -80)^2*(x -8)^4*(x )^4*(x + 10)^6;
T[154,83]=(x -4)*(x^2 + 2*x -124)*(x^2 -4*x -176)^2*(x )^3*(x -12)^4*(x + 6)^7;
T[154,89]=(x + 15)^2*(x + 3)^2*(x -10)^3*(x -2)^4*(x -15)^4*(x + 6)^6;
T[154,97]=(x + 14)*(x -6)*(x -10)*(x^2 -16*x + 44)*(x + 5)^2*(x + 1)^2*(x^2 -8*x -164)^2*(x + 10)^4*(x + 7)^4;

T[155,2]=(x + 2)*(x + 1)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x^4 + x^3 -8*x^2 -4*x + 12)*(x )*(x^2 -x -1)^2;
T[155,3]=(x -2)*(x^4 + x^3 -9*x^2 -9*x -2)*(x^4 -x^3 -5*x^2 + 3*x + 4)*(x + 1)^2*(x^2 + 2*x -4)^2;
T[155,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;
T[155,7]=(x -4)*(x + 2)*(x^4 -2*x^3 -20*x^2 + 52*x -32)*(x^4 -12*x^2 -4*x + 16)*(x )*(x^2 + 4*x -1)^2;
T[155,11]=(x + 4)*(x -4)*(x^4 + 6*x^3 -16*x^2 -124*x -144)*(x^4 + 4*x^3 -8*x^2 -12*x + 16)*(x -2)^5;
T[155,13]=(x^4 -16*x^3 + 84*x^2 -156*x + 64)*(x^4 -10*x^3 + 20*x^2 + 52*x -136)*(x )*(x + 6)^2*(x^2 + 2*x -4)^2;
T[155,17]=(x + 8)*(x -5)*(x + 7)*(x^4 -11*x^3 + 35*x^2 -13*x -58)*(x^4 -x^3 -25*x^2 -49*x -24)*(x^2 -6*x + 4)^2;
T[155,19]=(x + 1)*(x -4)*(x + 5)*(x^4 + 3*x^3 -33*x^2 -107*x + 44)*(x^4 -5*x^3 -21*x^2 + 81*x + 108)*(x^2 -5)^2;
T[155,23]=(x -8)*(x -2)*(x -4)*(x^4 -64*x^2 + 196*x -24)*(x^4 + 2*x^3 -20*x^2 -52*x -32)*(x^2 + 2*x -44)^2;
T[155,29]=(x + 6)*(x + 10)*(x^4 + 8*x^3 -20*x^2 -292*x -584)*(x^4 -6*x^3 -40*x^2 + 308*x -456)*(x )*(x^2 -10*x + 20)^2;
T[155,31]=(x + 1)^5*(x -1)^10;
T[155,37]=(x + 7)*(x -1)*(x + 4)*(x^4 -3*x^3 -81*x^2 + 143*x + 1538)*(x^4 -9*x^3 + 7*x^2 + 7*x -4)*(x + 2)^4;
T[155,41]=(x + 6)*(x^4 -13*x^3 + 17*x^2 + 161*x -294)*(x^4 + 11*x^3 -31*x^2 -359*x + 506)*(x + 3)^2*(x -7)^4;
T[155,43]=(x + 7)*(x + 6)*(x -9)*(x^4 -7*x^3 -7*x^2 + 129*x -214)*(x^4 -17*x^3 + 73*x^2 + 21*x -236)*(x^2 + 2*x -4)^2;
T[155,47]=(x + 6)*(x -8)*(x + 2)*(x^4 + 14*x^3 + 36*x^2 -56*x -192)*(x^4 + 10*x^3 -52*x^2 -376*x + 1408)*(x^2 + 4*x -16)^2;
T[155,53]=(x -9)*(x -5)*(x + 12)*(x^4 -13*x^3 -71*x^2 + 783*x + 1306)*(x^4 -11*x^3 -75*x^2 + 1103*x -2892)*(x^2 + 12*x + 16)^2;
T[155,59]=(x + 4)*(x + 5)*(x -11)*(x^4 + 3*x^3 -97*x^2 + 129*x -44)*(x^4 -13*x^3 -65*x^2 + 625*x + 2484)*(x^2 -5)^2;
T[155,61]=(x + 12)*(x + 8)*(x -10)*(x^4 -22*x^3 + 160*x^2 -432*x + 352)*(x^4 -22*x^3 + 144*x^2 -288*x -32)*(x^2 + 6*x -116)^2;
T[155,67]=(x + 2)*(x^4 + 12*x^3 -72*x^2 -324*x + 1296)*(x^4 + 10*x^3 + 8*x^2 -36*x -32)*(x -8)^6;
T[155,71]=(x -9)*(x + 3)*(x^4 -3*x^3 -37*x^2 + 59*x + 384)*(x^4 + 21*x^3 + 159*x^2 + 511*x + 584)*(x )*(x^2 -4*x -121)^2;
T[155,73]=(x + 9)*(x + 1)*(x + 4)*(x^4 -19*x^3 + 85*x^2 -123*x + 34)*(x^4 -9*x^3 -95*x^2 + 649*x + 452)*(x^2 -8*x -4)^2;
T[155,79]=(x + 10)*(x^4 + 2*x^3 -260*x^2 + 404*x + 6592)*(x^4 + 16*x^3 -12*x^2 -500*x + 256)*(x^2 + 10*x -20)^2*(x )^2;
T[155,83]=(x -2)*(x -9)*(x + 11)*(x^4 + 15*x^3 -63*x^2 -1247*x -3364)*(x^4 + 17*x^3 -3*x^2 -455*x + 738)*(x^2 + 12*x -44)^2;
T[155,89]=(x -10)*(x -14)*(x^4 + 12*x^3 -124*x^2 -1348*x + 1656)*(x^4 + 10*x^3 -152*x^2 -420*x + 3688)*(x )*(x^2 -10*x -20)^2;
T[155,97]=(x -18)*(x + 14)*(x + 18)*(x^4 -4*x^3 -248*x^2 + 992*x -464)*(x^4 -16*x^3 + 56*x^2 + 48*x -16)*(x^2 + 14*x -31)^2;

T[156,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3*(x )^12;
T[156,3]=(x^2 + 3)*(x^2 + 3*x + 3)^2*(x^2 -x + 3)^2*(x + 1)^6*(x -1)^7;
T[156,5]=(x + 4)*(x )*(x^2 -8)^3*(x + 3)^4*(x + 1)^4*(x -2)^7;
T[156,7]=(x -2)*(x -4)^2*(x + 2)^3*(x + 4)^3*(x^2 -8)^3*(x + 1)^4*(x -1)^4;
T[156,11]=(x )*(x + 4)^3*(x -4)^3*(x -6)^4*(x + 2)^12;
T[156,13]=(x -1)^11*(x + 1)^12;
T[156,17]=(x + 6)*(x -6)^2*(x^2 -4*x -28)^3*(x -2)^6*(x + 3)^8;
T[156,19]=(x + 2)*(x + 6)^2*(x + 8)^2*(x^2 -8)^3*(x )^3*(x -6)^4*(x -2)^5;
T[156,23]=(x -8)^2*(x + 4)^10*(x )^11;
T[156,29]=(x + 6)^2*(x + 10)^3*(x -6)^6*(x -2)^12;
T[156,31]=(x -2)*(x + 10)*(x -10)^2*(x^2 + 8*x + 8)^3*(x + 4)^6*(x -4)^7;
T[156,37]=(x -2)*(x -10)*(x + 6)^2*(x^2 + 4*x -28)^3*(x -3)^4*(x + 7)^4*(x + 2)^5;
T[156,41]=(x -8)*(x + 12)*(x + 10)^2*(x + 6)^2*(x -6)^3*(x^2 -16*x + 56)^3*(x )^8;
T[156,43]=(x + 4)*(x + 12)^3*(x^2 -8*x -16)^3*(x + 1)^4*(x + 5)^4*(x -4)^5;
T[156,47]=(x + 4)*(x + 2)^2*(x -8)^2*(x^2 + 12*x + 4)^3*(x -3)^4*(x -13)^4*(x )^4;
T[156,53]=(x + 10)^3*(x -12)^4*(x )^4*(x -6)^6*(x + 2)^6;
T[156,59]=(x + 8)*(x -4)^2*(x^2 -4*x -28)^3*(x + 6)^4*(x -12)^4*(x + 10)^6;
T[156,61]=(x + 14)*(x -2)*(x^2 -4*x -124)^3*(x + 8)^4*(x -8)^4*(x + 2)^7;
T[156,67]=(x -2)*(x + 10)*(x + 16)^2*(x -10)^2*(x + 8)^3*(x^2 -8*x + 8)^3*(x -14)^4*(x + 2)^4;
T[156,71]=(x -16)*(x -12)*(x + 8)^2*(x -10)^2*(x )^3*(x + 3)^4*(x + 5)^4*(x -2)^6;
T[156,73]=(x -14)*(x^2 -12*x + 4)^3*(x + 10)^5*(x -2)^11;
T[156,79]=(x + 16)*(x^2 -128)^3*(x + 4)^6*(x -8)^10;
T[156,83]=(x + 6)^2*(x -4)^3*(x^2 + 4*x -28)^3*(x )^5*(x -12)^7;
T[156,89]=(x + 4)*(x )*(x -14)^2*(x + 2)^3*(x^2 -24*x + 136)^3*(x -6)^4*(x + 6)^6;
T[156,97]=(x + 2)*(x -2)^2*(x^2 + 4*x -28)^3*(x -14)^4*(x + 10)^5*(x -10)^5;

T[157,2]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -7*x + 1)*(x^7 -5*x^6 + 2*x^5 + 21*x^4 -22*x^3 -21*x^2 + 27*x -1);
T[157,3]=(x^5 + 7*x^4 + 15*x^3 + 7*x^2 -8*x -5)*(x^7 -5*x^6 -x^5 + 31*x^4 -20*x^3 -45*x^2 + 44*x -4);
T[157,5]=(x^5 + 3*x^4 -12*x^3 -39*x^2 -x + 25)*(x^7 + x^6 -16*x^5 + 3*x^4 + 73*x^3 -87*x^2 + 8*x + 16);
T[157,7]=(x^5 + 3*x^4 -15*x^3 -26*x^2 + 61*x + 17)*(x^7 -x^6 -16*x^5 + 19*x^4 + 56*x^3 -75*x^2 + 19*x -1);
T[157,11]=(x^5 + 14*x^4 + 64*x^3 + 91*x^2 -20*x + 1)*(x^7 -10*x^6 + 28*x^5 -9*x^4 -44*x^3 + 33*x^2 + 8*x -8);
T[157,13]=(x^5 + 7*x^4 + 9*x^3 -32*x^2 -89*x -59)*(x^7 + 5*x^6 -16*x^5 -63*x^4 + 128*x^3 + 187*x^2 -407*x + 113);
T[157,17]=(x^5 + 9*x^4 -23*x^3 -191*x^2 + 474*x -139)*(x^7 -5*x^6 -44*x^5 + 152*x^4 + 593*x^3 -890*x^2 -2384*x + 413);
T[157,19]=(x^5 + 3*x^4 -31*x^3 -88*x^2 + 213*x + 557)*(x^7 + 3*x^6 -95*x^5 -368*x^4 + 1717*x^3 + 9185*x^2 + 12552*x + 5296);
T[157,23]=(x^5 + 13*x^4 + 39*x^3 -81*x^2 -534*x -631)*(x^7 -15*x^6 + 54*x^5 + 190*x^4 -1529*x^3 + 1726*x^2 + 5352*x -10073);
T[157,29]=(x^5 + 2*x^4 -24*x^3 -75*x^2 -38*x -5)*(x^7 -8*x^6 -76*x^5 + 883*x^4 -1230*x^3 -10329*x^2 + 32680*x -18992);
T[157,31]=(x^5 -3*x^4 -139*x^3 + 338*x^2 + 3275*x + 2797)*(x^7 + 13*x^6 + 33*x^5 -150*x^4 -613*x^3 + 29*x^2 + 1152*x -436);
T[157,37]=(x^5 -3*x^4 -53*x^3 + 117*x^2 + 640*x -641)*(x^7 + 15*x^6 -46*x^5 -1020*x^4 + 2073*x^3 + 19900*x^2 -64910*x + 39539);
T[157,41]=(x^5 -5*x^4 -49*x^3 + 33*x^2 + 122*x -85)*(x^7 -3*x^6 -175*x^5 + 77*x^4 + 7678*x^3 + 6763*x^2 -70468*x -47404);
T[157,43]=(x^5 + 23*x^4 + 153*x^3 + 297*x^2 + 218*x + 53)*(x^7 -11*x^6 -100*x^5 + 1196*x^4 + 3193*x^3 -41900*x^2 -32356*x + 475171);
T[157,47]=(x^5 + 8*x^4 + 18*x^3 -x^2 -38*x -25)*(x^7 -8*x^6 -70*x^5 + 323*x^4 + 1874*x^3 -989*x^2 -12804*x -13444);
T[157,53]=(x^5 + 25*x^4 + 123*x^3 -1358*x^2 -14641*x -36997)*(x^7 -9*x^6 -23*x^5 + 350*x^4 -215*x^3 -3033*x^2 + 1920*x + 8612);
T[157,59]=(x^5 -7*x^4 -201*x^3 + 1676*x^2 + 4851*x -45421)*(x^7 -31*x^6 + 176*x^5 + 2659*x^4 -24666*x^3 -46015*x^2 + 515641*x + 863917);
T[157,61]=(x^5 -4*x^4 -64*x^3 + 207*x^2 + 204*x -145)*(x^7 + 6*x^6 -166*x^5 -1043*x^4 + 7088*x^3 + 46747*x^2 -47412*x -385772);
T[157,67]=(x^5 + 12*x^4 -85*x^3 -1310*x^2 -1538*x + 11339)*(x^7 -4*x^6 -161*x^5 + 662*x^4 + 7134*x^3 -32157*x^2 -66540*x + 317732);
T[157,71]=(x^5 + 18*x^4 + 64*x^3 -269*x^2 -952*x + 2105)*(x^7 -14*x^6 -220*x^5 + 2455*x^4 + 16584*x^3 -119771*x^2 -388488*x + 1683928);
T[157,73]=(x^7 + 3*x^6 -178*x^5 -386*x^4 + 3409*x^3 + 3787*x^2 -14816*x -11564)*(x^5 + 3*x^4 -198*x^3 -162*x^2 + 9477*x -14337);
T[157,79]=(x^5 -22*x^4 -75*x^3 + 3606*x^2 -16908*x + 21877)*(x^7 -6*x^6 -213*x^5 + 384*x^4 + 11138*x^3 + 2965*x^2 -141844*x -169324);
T[157,83]=(x^5 + 27*x^4 + 219*x^3 + 105*x^2 -5614*x -17375)*(x^7 -41*x^6 + 583*x^5 -2425*x^4 -18530*x^3 + 227645*x^2 -834084*x + 1053284);
T[157,89]=(x^5 -25*x^4 -112*x^3 + 7061*x^2 -53097*x + 86269)*(x^7 + 13*x^6 -225*x^5 -2952*x^4 + 12077*x^3 + 165800*x^2 + 59133*x + 4949);
T[157,97]=(x^5 -20*x^4 -69*x^3 + 2200*x^2 + 1014*x -37157)*(x^7 + 12*x^6 -421*x^5 -5594*x^4 + 42556*x^3 + 688139*x^2 + 33536*x -13926728);

T[158,2]=(x^2 + x + 2)*(x^10 + 4*x^8 + 12*x^6 -x^5 + 24*x^4 + 32*x^2 + 32)*(x -1)^3*(x + 1)^4;
T[158,3]=(x + 3)*(x -2)*(x -1)*(x^2 -6)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16)^2*(x + 1)^4;
T[158,5]=(x -3)*(x + 1)*(x -1)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31)^2*(x + 2)^3*(x + 3)^3;
T[158,7]=(x -3)*(x )*(x -4)^2*(x + 3)^2*(x^5 + 5*x^4 -6*x^3 -52*x^2 -56*x -16)^2*(x + 1)^3;
T[158,11]=(x + 4)*(x -4)*(x -2)*(x^5 -2*x^4 -35*x^3 + 34*x^2 + 185*x + 106)^2*(x + 2)^3*(x )^3;
T[158,13]=(x + 5)*(x + 1)*(x -5)*(x -2)*(x + 7)*(x^2 -4*x -20)*(x -3)^2*(x^5 + 3*x^4 -23*x^3 -123*x^2 -197*x -103)^2;
T[158,17]=(x + 4)*(x -6)*(x^2 -4*x -20)*(x )*(x + 6)^2*(x + 2)^2*(x^5 -10*x^4 + 16*x^3 + 88*x^2 -224*x + 32)^2;
T[158,19]=(x -2)*(x + 6)*(x^2 -24)*(x -4)^2*(x^5 + 4*x^4 -47*x^3 -124*x^2 + 541*x + 488)^2*(x )^3;
T[158,23]=(x + 2)*(x -6)*(x^2 -4*x -20)*(x )*(x -2)^2*(x + 6)^2*(x^5 -2*x^4 -43*x^3 + 106*x^2 + 177*x -142)^2;
T[158,29]=(x -8)*(x -6)*(x + 10)*(x -4)*(x^2 + 4*x -50)*(x )*(x + 6)^2*(x^5 -6*x^4 -52*x^3 + 392*x^2 -496*x -32)^2;
T[158,31]=(x -2)*(x + 4)*(x^2 + 4*x -20)*(x -8)^2*(x^5 -2*x^4 -63*x^3 + 6*x^2 + 397*x + 314)^2*(x + 10)^3;
T[158,37]=(x -2)*(x -4)*(x -10)*(x + 10)*(x^2 + 4*x -2)*(x^5 -84*x^3 -64*x^2 + 1264*x + 2272)^2*(x + 2)^3;
T[158,41]=(x + 8)*(x + 12)*(x^2 -12*x + 12)*(x -2)^2*(x^5 -30*x^4 + 336*x^3 -1752*x^2 + 4256*x -3872)^2*(x + 10)^3;
T[158,43]=(x -8)*(x + 8)*(x + 2)*(x^2 + 16*x + 58)*(x^5 + 14*x^4 + 44*x^3 -120*x^2 -688*x -704)^2*(x -4)^4;
T[158,47]=(x + 9)*(x -3)*(x^2 -96)*(x )*(x -7)^2*(x + 3)^2*(x^5 -5*x^4 -136*x^3 + 536*x^2 + 4176*x -13456)^2;
T[158,53]=(x + 8)*(x -4)*(x + 12)*(x -2)*(x -6)*(x^2 -4*x -2)*(x -8)^2*(x^5 -2*x^4 -136*x^3 -240*x^2 + 3792*x + 12352)^2;
T[158,59]=(x -5)*(x -1)*(x -14)*(x + 1)*(x + 9)*(x^2 -6)*(x + 3)^2*(x^5 -5*x^4 -70*x^3 + 368*x^2 + 864*x -4624)^2;
T[158,61]=(x -8)*(x^2 + 12*x + 30)*(x -12)^2*(x + 4)^2*(x^5 + 6*x^4 -196*x^3 -808*x^2 + 9840*x + 17984)^2*(x )^2;
T[158,67]=(x + 8)*(x^2 -16*x + 40)*(x + 4)^2*(x^5 + 16*x^4 -47*x^3 -1084*x^2 + 865*x + 3368)^2*(x -8)^4;
T[158,71]=(x -8)*(x + 13)*(x + 9)*(x + 11)*(x + 3)*(x -15)^2*(x + 4)^2*(x^5 -3*x^4 -94*x^3 -68*x^2 + 1208*x + 848)^2;
T[158,73]=(x -6)*(x -12)^2*(x^5 + 12*x^4 + 31*x^3 + 24*x^2 + x -2)^2*(x + 6)^3*(x -2)^3;
T[158,79]=(x + 1)^5*(x -1)^14;
T[158,83]=(x -14)*(x -6)*(x -12)*(x -18)*(x^2 -8*x -80)*(x^5 + 30*x^4 + 280*x^3 + 640*x^2 -1536*x + 512)^2*(x + 6)^3;
T[158,89]=(x -6)*(x -9)*(x -4)^2*(x + 15)^2*(x^5 -47*x^4 + 817*x^3 -6181*x^2 + 16507*x + 5951)^2*(x + 7)^3;
T[158,97]=(x -17)*(x -1)*(x -10)*(x -13)*(x + 11)*(x^2 + 4*x -92)*(x + 19)^2*(x^5 + x^4 -211*x^3 -497*x^2 + 6847*x -1793)^2;

T[159,2]=(x^4 -3*x^3 -x^2 + 7*x -3)*(x^5 -10*x^3 + 22*x + 5)*(x + 1)^2*(x^3 + x^2 -3*x -1)^2;
T[159,3]=(x^2 + 3*x + 3)*(x^6 -3*x^5 + 8*x^4 -17*x^3 + 24*x^2 -27*x + 27)*(x -1)^4*(x + 1)^5;
T[159,5]=(x^4 -2*x^3 -11*x^2 + 32*x -21)*(x^5 -19*x^3 + 6*x^2 + 67*x -2)*(x^3 + 2*x^2 -4*x -4)^2*(x )^2;
T[159,7]=(x^4 + 4*x^3 -7*x^2 -44*x -43)*(x^5 -4*x^4 -23*x^3 + 92*x^2 + 117*x -472)*(x + 4)^2*(x^3 -4*x^2 + 4)^2;
T[159,11]=(x^4 -6*x^3 -28*x^2 + 232*x -336)*(x^5 -2*x^4 -28*x^3 + 72*x^2 + 16*x -64)*(x^3 + 4*x^2 -4*x -20)^2*(x )^2;
T[159,13]=(x^4 + 6*x^3 -9*x^2 -70*x + 1)*(x^5 -8*x^4 -13*x^3 + 136*x^2 + 101*x -110)*(x + 3)^2*(x -1)^6;
T[159,17]=(x^4 -10*x^3 -12*x^2 + 280*x -432)*(x^5 -40*x^3 + 352*x -160)*(x + 3)^2*(x^3 + 5*x^2 -5*x -17)^2;
T[159,19]=(x^4 + 6*x^3 -36*x^2 -280*x -368)*(x^5 -2*x^4 -28*x^3 + 72*x^2 + 16*x -64)*(x + 5)^2*(x^3 -11*x^2 + 37*x -37)^2;
T[159,23]=(x^4 -2*x^3 -35*x^2 + 104*x -21)*(x^5 + 6*x^4 -39*x^3 -196*x^2 + 227*x + 272)*(x -7)^2*(x^3 -3*x^2 -31*x -29)^2;
T[159,29]=(x^4 -6*x^3 -28*x^2 + 232*x -336)*(x^5 -20*x^4 + 96*x^3 + 192*x^2 -1728*x + 1504)*(x + 7)^2*(x^3 + 5*x^2 -37*x -61)^2;
T[159,31]=(x^4 + 12*x^3 -24*x^2 -568*x -944)*(x^5 -8*x^4 -8*x^3 + 168*x^2 -336*x + 128)*(x -4)^2*(x^3 + 2*x^2 -76*x + 116)^2;
T[159,37]=(x^4 + 10*x^3 + 3*x^2 -94*x + 53)*(x^5 -4*x^4 -65*x^3 + 248*x^2 -215*x + 34)*(x -5)^2*(x^3 + 5*x^2 -89*x -353)^2;
T[159,41]=(x^4 -12*x^3 -85*x^2 + 742*x + 3243)*(x^5 -18*x^4 + 63*x^3 + 400*x^2 -2553*x + 3474)*(x -6)^2*(x^3 + 10*x^2 + 20*x -8)^2;
T[159,43]=(x^4 + 16*x^3 + 33*x^2 -356*x -1103)*(x^5 -12*x^4 -39*x^3 + 392*x^2 + 329*x -3004)*(x + 2)^2*(x^3 -18*x^2 + 24*x + 556)^2;
T[159,47]=(x^4 -64*x^2 -200*x -48)*(x^5 + 4*x^4 -104*x^3 -456*x^2 + 272*x + 2048)*(x + 2)^2*(x^3 + 10*x^2 -4*x -8)^2;
T[159,53]=(x + 1)^6*(x -1)^11;
T[159,59]=(x^4 -10*x^3 -116*x^2 + 904*x + 48)*(x^5 + 18*x^4 + 20*x^3 -1224*x^2 -7440*x -11968)*(x + 2)^2*(x^3 -2*x^2 -60*x + 200)^2;
T[159,61]=(x^4 -14*x^3 -4*x^2 + 456*x -752)*(x^5 -12*x^4 -192*x^3 + 1216*x^2 + 13632*x + 18272)*(x + 8)^2*(x^3 + 10*x^2 -56*x -556)^2;
T[159,67]=(x^4 + 6*x^3 -84*x^2 -280*x + 496)*(x^5 -6*x^4 -188*x^3 + 968*x^2 + 7472*x -34240)*(x + 12)^2*(x^3 -6*x^2 -72*x -108)^2;
T[159,71]=(x^4 + 8*x^3 -25*x^2 -154*x + 387)*(x^5 -4*x^4 -293*x^3 + 822*x^2 + 12603*x -24992)*(x -1)^2*(x^3 + 5*x^2 -105*x + 277)^2;
T[159,73]=(x^4 -10*x^3 -136*x^2 + 864*x + 5072)*(x^5 -8*x^4 -300*x^3 + 1424*x^2 + 22832*x -8800)*(x + 4)^2*(x^3 -6*x^2 -28*x -4)^2;
T[159,79]=(x^4 -10*x^3 + 4*x^2 + 152*x -304)*(x^5 + 2*x^4 -116*x^3 -88*x^2 + 1296*x -1408)*(x + 1)^2*(x^3 + 7*x^2 -77*x + 131)^2;
T[159,83]=(x^4 -12*x^3 -21*x^2 + 2*x + 3)*(x^5 + 36*x^4 + 327*x^3 -1618*x^2 -35733*x -128420)*(x + 1)^2*(x^3 -27*x^2 + 213*x -457)^2;
T[159,89]=(x^4 + 4*x^3 -200*x^2 -376*x + 1008)*(x^5 -26*x^4 + 88*x^3 + 2520*x^2 -22176*x + 41504)*(x + 14)^2*(x^3 + 2*x^2 -212*x + 1048)^2;
T[159,97]=(x^4 -6*x^3 -73*x^2 + 502*x -431)*(x^5 + 16*x^4 -245*x^3 -3232*x^2 + 15797*x + 148286)*(x -1)^2*(x^3 + x^2 -133*x -137)^2;

T[160,2]=(x )^17;
T[160,3]=(x^2 -8)*(x -2)^3*(x + 2)^5*(x )^7;
T[160,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;
T[160,7]=(x^2 -8)*(x -4)^2*(x )^2*(x + 2)^3*(x + 4)^3*(x -2)^5;
T[160,11]=(x^2 -32)*(x + 4)^3*(x -4)^4*(x )^8;
T[160,13]=(x + 6)^2*(x -6)^2*(x -2)^6*(x + 2)^7;
T[160,17]=(x + 6)^6*(x -2)^11;
T[160,19]=(x -8)*(x + 8)*(x )^4*(x -4)^5*(x + 4)^6;
T[160,23]=(x^2 -8)*(x + 4)^2*(x )^2*(x + 6)^3*(x -4)^3*(x -6)^5;
T[160,29]=(x + 10)^2*(x + 2)^7*(x -6)^8;
T[160,31]=(x^2 -32)*(x -8)^2*(x )^2*(x + 8)^3*(x -4)^3*(x + 4)^5;
T[160,37]=(x + 10)^2*(x + 2)^2*(x -6)^5*(x -2)^8;
T[160,41]=(x -2)^2*(x + 10)^2*(x -10)^2*(x + 6)^5*(x -6)^6;
T[160,43]=(x -2)*(x + 2)*(x^2 -72)*(x -10)^2*(x -8)^2*(x )^2*(x + 8)^3*(x + 10)^4;
T[160,47]=(x -2)*(x + 2)*(x^2 -8)*(x -6)^2*(x + 4)^2*(x )^2*(x -4)^3*(x + 6)^4;
T[160,53]=(x -14)^2*(x -2)^2*(x + 6)^6*(x -6)^7;
T[160,59]=(x^2 -128)*(x + 12)^2*(x -4)^2*(x + 4)^3*(x -12)^4*(x )^4;
T[160,61]=(x + 10)^2*(x + 2)^7*(x -2)^8;
T[160,67]=(x + 6)*(x -6)*(x^2 -8)*(x + 2)^2*(x + 8)^2*(x )^2*(x -8)^3*(x -2)^4;
T[160,71]=(x^2 -32)*(x -12)^3*(x + 12)^5*(x )^7;
T[160,73]=(x -10)^2*(x -2)^6*(x + 6)^9;
T[160,79]=(x^2 -128)*(x + 8)^3*(x -8)^5*(x )^7;
T[160,83]=(x -10)*(x + 10)*(x^2 -8)*(x -16)^2*(x + 6)^2*(x )^2*(x + 16)^3*(x -6)^4;
T[160,89]=(x -10)^4*(x + 6)^13;
T[160,97]=(x -18)^2*(x -10)^2*(x + 14)^5*(x -2)^8;

T[161,2]=(x + 1)*(x^3 + x^2 -5*x -1)*(x^5 -2*x^4 -9*x^3 + 17*x^2 + 16*x -27)*(x^2 + x -1)^3;
T[161,3]=(x^3 -2*x^2 -2*x + 2)*(x^5 -13*x^3 + 38*x + 10)*(x )*(x + 1)^2*(x^2 -5)^2;
T[161,5]=(x -2)*(x^3 -2*x^2 -2*x + 2)*(x^5 + 4*x^4 -14*x^3 -54*x^2 + 52*x + 168)*(x^2 + 2*x -4)^3;
T[161,7]=(x^4 -2*x^3 + 10*x^2 -14*x + 49)*(x + 1)^5*(x -1)^6;
T[161,11]=(x -4)*(x^2 -20)*(x^3 -4*x^2 + 4)*(x^5 + 4*x^4 -28*x^3 -148*x^2 -160*x -48)*(x^2 + 6*x + 4)^2;
T[161,13]=(x -6)*(x^2 + 4*x -1)*(x^3 -2*x^2 -12*x + 8)*(x^5 + 6*x^4 -9*x^3 -46*x^2 + 12*x + 56)*(x -3)^4;
T[161,17]=(x + 2)*(x^3 -4*x^2 + 2*x + 2)*(x^5 + 12*x^4 + 6*x^3 -386*x^2 -1504*x -1536)*(x^2 -6*x + 4)^2*(x )^2;
T[161,19]=(x -4)*(x^2 + 10*x + 20)*(x^3 -8*x^2 -16*x + 160)*(x^5 -6*x^4 -28*x^3 + 96*x^2 + 320*x + 128)*(x + 2)^4;
T[161,23]=(x -1)^7*(x + 1)^8;
T[161,29]=(x + 2)*(x^2 -6*x -11)*(x^3 + 2*x^2 -8*x + 4)*(x^5 + 4*x^4 -111*x^3 -250*x^2 + 2464*x -1452)*(x + 3)^4;
T[161,31]=(x + 4)*(x^3 -16*x^2 + 26*x + 338)*(x^5 -30*x^4 + 347*x^3 -1926*x^2 + 5114*x -5206)*(x + 9)^2*(x^2 -45)^2;
T[161,37]=(x + 2)*(x^3 + 6*x^2 -4*x -40)*(x^2 -2*x -44)*(x^5 -4*x^4 -76*x^3 + 376*x^2 -128*x -32)*(x^2 -2*x -4)^2;
T[161,41]=(x + 6)*(x^2 -5)*(x^3 + 14*x^2 + 12*x -152)*(x^5 -6*x^4 -29*x^3 + 146*x^2 + 52*x -456)*(x^2 -2*x -19)^2;
T[161,43]=(x -12)*(x^2 + 4*x -16)*(x^3 + 8*x^2 -40*x -304)*(x^5 + 12*x^4 -24*x^3 -368*x^2 + 832*x + 256)*(x )^4;
T[161,47]=(x + 12)*(x^2 -2*x -19)*(x^3 -16*x^2 + 62*x -10)*(x^5 -10*x^4 -125*x^3 + 1918*x^2 -8074*x + 11142)*(x^2 -5)^2;
T[161,53]=(x + 10)*(x^2 -18*x + 76)*(x^3 -6*x^2 -52*x + 248)*(x^5 -16*x^4 + 52*x^3 + 152*x^2 -416*x -480)*(x^2 + 8*x -4)^2;
T[161,59]=(x^2 + 12*x + 16)*(x^3 + 10*x^2 -102*x -970)*(x^5 -22*x^4 + 118*x^3 -2*x^2 -1096*x + 1440)*(x )*(x^2 -4*x -16)^2;
T[161,61]=(x -2)*(x^2 -180)*(x^3 -10*x^2 -46*x + 494)*(x^5 + 18*x^4 + 34*x^3 -438*x^2 + 312*x + 56)*(x^2 -4*x -76)^2;
T[161,67]=(x -12)*(x^2 + 2*x -124)*(x^3 -16*x^2 -8*x + 676)*(x^5 + 2*x^4 -300*x^3 -740*x^2 + 22200*x + 61936)*(x^2 + 10*x + 20)^2;
T[161,71]=(x -8)*(x^2 + 16*x + 59)*(x^3 -4*x^2 -80*x + 64)*(x^5 -4*x^4 -101*x^3 + 276*x^2 + 1936*x -5184)*(x^2 -20*x + 95)^2;
T[161,73]=(x + 14)*(x^2 -45)*(x^3 + 6*x^2 -108*x -216)*(x^5 + 2*x^4 -197*x^3 + 362*x^2 + 8028*x -27656)*(x^2 -22*x + 101)^2;
T[161,79]=(x -8)*(x^2 + 10*x + 20)*(x^3 -16*x^2 + 8*x + 428)*(x^5 -30*x^4 + 308*x^3 -1196*x^2 + 968*x + 1936)*(x^2 + 4*x -76)^2;
T[161,83]=(x + 4)*(x^2 -4*x -16)*(x^3 -20*x^2 -104*x + 2672)*(x^5 -8*x^4 -56*x^3 + 432*x^2 + 832*x -5376)*(x^2 + 22*x + 116)^2;
T[161,89]=(x -6)*(x^2 -80)*(x^3 -4*x^2 -114*x -278)*(x^5 + 20*x^4 + 66*x^3 -698*x^2 -4160*x -4704)*(x^2 + 12*x + 16)^2;
T[161,97]=(x + 10)*(x^2 + 6*x -36)*(x^3 -6*x^2 -22*x -2)*(x^5 + 12*x^4 -114*x^3 -1362*x^2 + 516*x + 4120)*(x^2 -22*x + 76)^2;

T[162,2]=(x^4 + x^2 + 4)*(x^2 + 2)^2*(x -1)^4*(x + 1)^4;
T[162,3]=(x )^16;
T[162,5]=(x^2 -3)^2*(x + 3)^3*(x -3)^3*(x )^6;
T[162,7]=(x + 4)^2*(x -2)^6*(x + 1)^8;
T[162,11]=(x^2 -12)^2*(x + 3)^3*(x -3)^3*(x )^6;
T[162,13]=(x -2)^2*(x -5)^4*(x + 4)^4*(x + 1)^6;
T[162,17]=(x -3)^2*(x + 3)^2*(x^2 -27)^2*(x )^8;
T[162,19]=(x + 1)^2*(x + 4)^2*(x + 7)^4*(x -2)^8;
T[162,23]=(x^2 -12)^2*(x -6)^3*(x + 6)^3*(x )^6;
T[162,29]=(x + 9)*(x -9)*(x^2 -3)^2*(x -6)^3*(x + 6)^3*(x )^4;
T[162,31]=(x -8)^4*(x -5)^4*(x + 4)^8;
T[162,37]=(x + 1)^2*(x + 4)^2*(x -2)^4*(x -11)^4*(x + 7)^4;
T[162,41]=(x -9)*(x + 9)*(x^2 -48)^2*(x -6)^3*(x + 6)^3*(x )^4;
T[162,43]=(x + 1)^2*(x + 10)^4*(x -2)^4*(x -8)^6;
T[162,47]=(x + 12)*(x -12)*(x^2 -48)^2*(x + 6)^3*(x -6)^3*(x )^4;
T[162,53]=(x -12)*(x + 6)*(x + 12)*(x -6)*(x + 9)^2*(x -9)^2*(x )^8;
T[162,59]=(x + 3)*(x -3)*(x -12)^2*(x + 12)^2*(x^2 -192)^2*(x )^6;
T[162,61]=(x + 7)^4*(x + 1)^6*(x -8)^6;
T[162,67]=(x + 4)^2*(x + 10)^4*(x -14)^4*(x -5)^6;
T[162,71]=(x -12)^2*(x + 12)^2*(x^2 -108)^2*(x )^8;
T[162,73]=(x -11)^4*(x + 7)^12;
T[162,79]=(x + 16)^2*(x + 4)^2*(x -2)^4*(x -8)^4*(x -17)^4;
T[162,83]=(x -12)^2*(x + 3)^2*(x + 12)^2*(x -3)^2*(x^2 -192)^2*(x )^4;
T[162,89]=(x + 6)*(x + 3)*(x -6)*(x -3)*(x -18)^2*(x + 18)^2*(x^2 -27)^2*(x )^4;
T[162,97]=(x -5)^2*(x + 19)^4*(x + 1)^4*(x -2)^6;

T[163,2]=(x^5 + 5*x^4 + 3*x^3 -15*x^2 -16*x + 3)*(x^7 -3*x^6 -5*x^5 + 19*x^4 -23*x^2 + 4*x + 6)*(x );
T[163,3]=(x^5 + 5*x^4 + x^3 -23*x^2 -28*x -9)*(x^7 -x^6 -11*x^5 + 13*x^4 + 26*x^3 -39*x^2 + 16*x -2)*(x );
T[163,5]=(x + 4)*(x^5 + 9*x^4 + 23*x^3 + 12*x^2 -x -1)*(x^7 -11*x^6 + 41*x^5 -44*x^4 -73*x^3 + 199*x^2 -136*x + 24);
T[163,7]=(x -2)*(x^5 + 6*x^4 -5*x^3 -48*x^2 + 18*x -1)*(x^7 -21*x^5 -18*x^4 + 104*x^3 + 115*x^2 -136*x -158);
T[163,11]=(x + 6)*(x^5 -2*x^4 -26*x^3 + 57*x^2 -32*x + 3)*(x^7 -2*x^6 -20*x^5 + 67*x^4 -34*x^3 -49*x^2 + 20*x + 12);
T[163,13]=(x -4)*(x^5 + 14*x^4 + 73*x^3 + 173*x^2 + 179*x + 61)*(x^7 -10*x^6 + 11*x^5 + 149*x^4 -493*x^3 + 311*x^2 + 402*x -334);
T[163,17]=(x^5 + 21*x^4 + 169*x^3 + 651*x^2 + 1196*x + 831)*(x^7 -13*x^6 + 47*x^5 -3*x^4 -224*x^3 + 285*x^2 -4*x -90)*(x );
T[163,19]=(x + 6)*(x^5 -7*x^4 -44*x^3 + 347*x^2 -113*x -1011)*(x^7 + 5*x^6 -42*x^5 -101*x^4 + 347*x^3 + 723*x^2 -458*x -962);
T[163,23]=(x -6)*(x^5 + 8*x^4 -55*x^3 -554*x^2 -1234*x -813)*(x^7 -2*x^6 -43*x^5 + 26*x^4 + 444*x^3 -21*x^2 -1268*x -564);
T[163,29]=(x + 4)*(x^5 + 13*x^4 + 46*x^3 -2*x^2 -175*x -43)*(x^7 -7*x^6 -76*x^5 + 572*x^4 + 1457*x^3 -12935*x^2 -6278*x + 83922);
T[163,31]=(x + 6)*(x^5 -7*x^4 -74*x^3 + 233*x^2 + 1333*x + 1305)*(x^7 + 11*x^6 -76*x^5 -1057*x^4 -1059*x^3 + 9235*x^2 + 11218*x -16738);
T[163,37]=(x + 8)*(x^5 + x^4 -23*x^3 -50*x^2 + 39*x + 107)*(x^7 -3*x^6 -165*x^5 + 260*x^4 + 6759*x^3 + 2283*x^2 -12006*x + 1286);
T[163,41]=(x -3)*(x^5 + 9*x^4 -63*x^3 -665*x^2 -1504*x -783)*(x^7 -17*x^6 -4*x^5 + 1330*x^4 -5937*x^3 -3488*x^2 + 32558*x + 30237);
T[163,43]=(x -7)*(x^5 + 4*x^4 -49*x^3 -16*x^2 + 580*x -841)*(x^7 + 10*x^6 -160*x^5 -1518*x^4 + 4939*x^3 + 45395*x^2 -822*x -31793);
T[163,47]=(x -1)*(x^5 + 3*x^4 -25*x^3 -29*x^2 + 132*x + 53)*(x^7 -11*x^6 -286*x^5 + 3416*x^4 + 18017*x^3 -272340*x^2 + 275450*x + 2048493);
T[163,53]=(x + 9)*(x^5 + 16*x^4 + 59*x^3 -139*x^2 -913*x -687)*(x^7 -18*x^6 + 4*x^5 + 1719*x^4 -11908*x^3 + 22024*x^2 + 29177*x -93987);
T[163,59]=(x + 2)*(x^5 + 3*x^4 -185*x^3 + 120*x^2 + 5127*x -1679)*(x^7 -11*x^6 -161*x^5 + 1960*x^4 + 2481*x^3 -79867*x^2 + 268342*x -269034);
T[163,61]=(x -3)*(x^5 + 10*x^4 -25*x^3 -562*x^2 -1930*x -1917)*(x^7 -4*x^6 -240*x^5 + 954*x^4 + 11485*x^3 -52427*x^2 + 36192*x + 12119);
T[163,67]=(x + 2)*(x^5 + 2*x^4 -87*x^3 + 117*x^2 + 459*x -405)*(x^7 + 18*x^6 -67*x^5 -2287*x^4 -1207*x^3 + 87051*x^2 + 90584*x -839836);
T[163,71]=(x + 5)*(x^5 -31*x^4 + 206*x^3 + 1438*x^2 -12559*x -18143)*(x^7 + 3*x^6 -319*x^5 -485*x^4 + 20635*x^3 + 18433*x^2 -15133*x -13023);
T[163,73]=(x + 2)*(x^5 + 14*x^4 -94*x^3 -1985*x^2 -5452*x + 10537)*(x^7 -2*x^6 -148*x^5 -471*x^4 + 1784*x^3 + 5555*x^2 -3228*x -2554);
T[163,79]=(x + 8)*(x^5 + 14*x^4 -93*x^3 -1571*x^2 -2027*x + 919)*(x^7 -353*x^5 -121*x^4 + 29485*x^3 -46789*x^2 -511720*x + 1197688);
T[163,83]=(x -5)*(x^5 + 12*x^4 -31*x^3 -277*x^2 + 27*x + 349)*(x^7 -18*x^6 -70*x^5 + 2945*x^4 -14646*x^3 -12542*x^2 + 136717*x + 62745);
T[163,89]=(x + 14)*(x^5 -295*x^3 + 1530*x^2 + 7598*x -36545)*(x^7 -18*x^6 -5*x^5 + 1222*x^4 -4578*x^3 -4221*x^2 + 26908*x + 2340);
T[163,97]=(x + 11)*(x^5 -23*x^4 -71*x^3 + 5628*x^2 -48787*x + 125863)*(x^7 -21*x^6 -240*x^5 + 7343*x^4 -13106*x^3 -597283*x^2 + 4271847*x -8371133);

T[164,2]=(x + 1)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)*(x -1)^2*(x )^10;
T[164,3]=(x^4 -2*x^3 -10*x^2 + 22*x -2)*(x + 2)^2*(x^2 -2)^2*(x^3 -4*x + 2)^3;
T[164,5]=(x^4 -4*x^3 -8*x^2 + 44*x -36)*(x + 2)^2*(x^2 -8)^2*(x^3 + 2*x^2 -4*x -4)^3;
T[164,7]=(x^4 -22*x^2 + 26*x + 38)*(x + 4)^2*(x^2 + 4*x + 2)^2*(x^3 -6*x^2 + 8*x -2)^3;
T[164,11]=(x^4 -4*x^3 -18*x^2 + 18*x + 54)*(x + 2)^2*(x^2 -18)^2*(x^3 -2*x^2 -20*x + 50)^3;
T[164,13]=(x^4 -40*x^2 -48*x + 144)*(x -4)^2*(x^3 + 2*x^2 -12*x -8)^3*(x )^4;
T[164,17]=(x^4 + 4*x^3 -48*x^2 -80*x + 432)*(x^2 -4*x -28)^2*(x + 2)^11;
T[164,19]=(x^4 -6*x^3 -14*x^2 + 134*x -186)*(x -6)^2*(x^2 + 8*x + 14)^2*(x^3 -4*x^2 -16*x -10)^3;
T[164,23]=(x^4 + 12*x^3 + 16*x^2 -128*x -192)*(x + 8)^2*(x^2 -8*x + 8)^2*(x^3 -4*x^2 -32*x -32)^3;
T[164,29]=(x^4 + 4*x^3 -40*x^2 + 144)*(x^2 -8*x -16)^2*(x )^2*(x^3 + 6*x^2 -4*x -40)^3;
T[164,31]=(x^4 + 8*x^3 -32*x^2 -32*x + 64)*(x + 8)^2*(x^2 + 8*x + 8)^2*(x^3 -16*x^2 + 64*x -32)^3;
T[164,37]=(x^4 -16*x^3 + 64*x^2 + 36*x -324)*(x -2)^2*(x^2 -72)^2*(x^3 + 6*x^2 -36*x -108)^3;
T[164,41]=(x -1)^9*(x + 1)^10;
T[164,43]=(x^4 -4*x^3 -48*x^2 + 272*x -288)*(x + 12)^2*(x^2 -8*x -16)^2*(x^3 + 4*x^2 -8*x -16)^3;
T[164,47]=(x^4 + 6*x^3 -62*x^2 -206*x + 1182)*(x -4)^2*(x^2 + 4*x -46)^2*(x^3 -120*x -502)^3;
T[164,53]=(x^4 + 16*x^3 -720*x -1296)*(x + 4)^2*(x^3 -6*x^2 -4*x + 8)^3*(x -12)^4;
T[164,59]=(x^4 -12*x^3 + 16*x^2 + 128*x -192)*(x -8)^2*(x^2 + 8*x + 8)^2*(x^3 + 8*x^2 -16*x -160)^3;
T[164,61]=(x^4 -24*x^3 + 176*x^2 -432*x + 288)*(x + 14)^2*(x^3 -2*x^2 -52*x + 184)^3*(x -6)^4;
T[164,67]=(x^4 -28*x^3 + 270*x^2 -1010*x + 1094)*(x + 2)^2*(x^2 + 8*x -2)^2*(x^3 + 2*x^2 -20*x -50)^3;
T[164,71]=(x^4 + 2*x^3 -186*x^2 -694*x -426)*(x -8)^2*(x^2 + 4*x + 2)^2*(x^3 -20*x^2 + 84*x + 134)^3;
T[164,73]=(x^4 -8*x^3 -80*x^2 + 692*x -404)*(x -10)^2*(x^2 + 16*x + 32)^2*(x^3 + 2*x^2 -180*x + 244)^3;
T[164,79]=(x^4 + 18*x^3 + 50*x^2 -42*x -18)*(x -4)^2*(x^2 + 12*x + 18)^2*(x^3 -32*x^2 + 328*x -1090)^3;
T[164,83]=(x^4 + 12*x^3 -80*x^2 -1344*x -3456)*(x -12)^2*(x^2 -24*x + 112)^2*(x^3 -64*x -128)^3;
T[164,89]=(x^4 -4*x^3 -128*x^2 + 272*x + 4272)*(x + 14)^2*(x^2 + 12*x + 4)^2*(x^3 + 6*x^2 -148*x -920)^3;
T[164,97]=(x^4 -16*x^3 -120*x^2 + 1280*x + 4944)*(x -6)^2*(x^2 + 4*x -28)^2*(x^3 -6*x^2 -52*x + 248)^3;

T[165,2]=(x^2 -3)*(x^2 + 2*x -1)*(x^3 + x^2 -5*x -1)*(x + 1)^2*(x^2 -2*x -1)^2*(x + 2)^4*(x -1)^4;
T[165,3]=(x^2 + 3)*(x^4 -2*x^2 + 9)*(x^2 + x + 3)^2*(x -1)^5*(x + 1)^6;
T[165,5]=(x^2 + 2*x + 5)*(x^2 -x + 5)^2*(x -1)^7*(x + 1)^8;
T[165,7]=(x^2 + 4*x -4)*(x^3 -16*x + 16)*(x -2)^2*(x -4)^2*(x )^4*(x + 2)^8;
T[165,11]=(x^2 + 4*x + 11)*(x + 1)^6*(x -1)^13;
T[165,13]=(x^2 -4*x -8)*(x^3 + 2*x^2 -12*x -8)*(x^2 -32)*(x -2)^2*(x^2 + 8*x + 8)^2*(x -4)^4*(x + 2)^4;
T[165,17]=(x^2 + 8*x + 8)*(x^3 + 2*x^2 -52*x -184)*(x -6)^2*(x -2)^2*(x^2 -8*x + 8)^2*(x )^2*(x + 2)^6;
T[165,19]=(x^2 -4*x -8)*(x^2 + 8*x + 8)*(x^3 -8*x^2 -16*x + 160)*(x + 4)^2*(x -4)^2*(x )^10;
T[165,23]=(x^2 -48)*(x^3 -64*x -128)*(x -4)^2*(x + 4)^2*(x -8)^2*(x^2 -8)^2*(x )^2*(x + 1)^4;
T[165,29]=(x^2 + 4*x -4)*(x^2 -12)*(x^3 + 10*x^2 + 12*x -40)*(x + 2)^2*(x + 6)^2*(x -6)^2*(x^2 -4*x -28)^2*(x )^4;
T[165,31]=(x^2 + 8*x -32)*(x^3 -8*x^2 -32*x + 128)*(x + 8)^4*(x -7)^4*(x )^8;
T[165,37]=(x^2 -4*x -44)*(x^2 -12*x + 4)*(x -6)^2*(x + 10)^2*(x^2 + 4*x -28)^2*(x -3)^4*(x + 2)^5;
T[165,41]=(x^2 -12)*(x^3 + 14*x^2 + 44*x + 8)*(x^2 -4*x -4)*(x -2)^2*(x -10)^2*(x + 2)^2*(x -6)^4*(x + 8)^4;
T[165,43]=(x^2 -4*x -44)*(x^3 -4*x^2 -80*x + 400)*(x^2 + 12*x + 28)*(x )^2*(x -4)^4*(x + 6)^8;
T[165,47]=(x^2 -48)*(x^3 + 8*x^2 -32*x -128)*(x + 12)^2*(x + 4)^2*(x^2 -8)^2*(x -8)^8;
T[165,53]=(x^2 + 12*x -12)*(x^2 + 4*x -124)*(x^3 + 6*x^2 -52*x + 8)*(x + 2)^2*(x -6)^2*(x + 10)^2*(x^2 -12*x + 4)^2*(x + 6)^4;
T[165,59]=(x^2 -48)*(x^3 -12*x^2 -16*x + 320)*(x -4)^2*(x^2 + 8*x -16)^2*(x -5)^4*(x + 4)^6;
T[165,61]=(x^2 + 12*x + 4)*(x^3 + 6*x^2 -52*x -248)*(x -2)^2*(x + 10)^2*(x + 2)^2*(x -6)^2*(x^2 -4*x -124)^2*(x -12)^4;
T[165,67]=(x^2 -32)*(x^3 + 4*x^2 -48*x -64)*(x -8)^2*(x + 4)^2*(x + 16)^2*(x -12)^2*(x^2 -8*x -56)^2*(x + 7)^4;
T[165,71]=(x^2 -192)*(x^2 -16*x + 32)*(x^3 -8*x^2 -32*x + 128)*(x -8)^2*(x + 8)^2*(x^2 -128)^2*(x )^2*(x + 3)^4;
T[165,73]=(x^2 -4*x -104)*(x^3 + 14*x^2 + 4*x -344)*(x^2 -128)*(x -10)^2*(x -14)^2*(x + 14)^2*(x^2 + 8*x + 8)^2*(x -4)^4;
T[165,79]=(x^2 + 20*x + 88)*(x^3 -12*x^2 -64*x + 800)*(x^2 -72)*(x -8)^2*(x + 4)^2*(x )^2*(x + 10)^4*(x -4)^4;
T[165,83]=(x^2 -24*x + 132)*(x^3 -120*x + 16)*(x + 4)^2*(x + 10)^2*(x -12)^4*(x + 6)^8;
T[165,89]=(x^2 + 12*x -12)*(x^2 + 4*x -28)*(x^3 + 10*x^2 -52*x -200)*(x -10)^2*(x^2 + 4*x -124)^2*(x -15)^4*(x + 6)^4;
T[165,97]=(x^2 -12*x + 4)*(x^3 -22*x^2 + 108*x -8)*(x -10)^2*(x + 10)^2*(x^2 + 4*x -28)^2*(x -2)^4*(x + 7)^4;

T[166,2]=(x^2 + x + 2)*(x^12 -x^11 + 3*x^10 -3*x^9 + 8*x^8 -10*x^7 + 16*x^6 -20*x^5 + 32*x^4 -24*x^3 + 48*x^2 -32*x + 64)*(x -1)^3*(x + 1)^3;
T[166,3]=(x^2 + 2*x -4)*(x^3 -x^2 -6*x + 4)*(x^6 -x^5 -10*x^4 + 5*x^3 + 30*x^2 -4*x -25)^2*(x + 1)^3;
T[166,5]=(x^2 -3*x + 1)*(x^3 + x^2 -5*x + 2)*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160)^2*(x + 2)^3;
T[166,7]=(x -1)*(x^2 + 3*x + 1)*(x^3 -2*x^2 -14*x -13)*(x + 3)^2*(x^6 -3*x^5 -22*x^4 + 55*x^3 + 154*x^2 -228*x -409)^2;
T[166,11]=(x + 5)*(x^2 -6*x + 4)*(x^3 -5*x^2 + 2*x + 4)*(x -3)^2*(x^6 + 3*x^5 -26*x^4 -83*x^3 + 66*x^2 + 156*x -113)^2;
T[166,13]=(x + 2)*(x^2 -3*x + 1)*(x^3 + 9*x^2 + 23*x + 14)*(x + 6)^2*(x^6 -14*x^5 + 44*x^4 + 108*x^3 -488*x^2 -288*x + 992)^2;
T[166,17]=(x + 3)*(x^2 -7*x + 11)*(x^3 + 4*x^2 -26*x -31)*(x -5)^2*(x^6 + 5*x^5 -20*x^4 -77*x^3 + 162*x^2 + 188*x -275)^2;
T[166,19]=(x + 2)*(x^2 + x -1)*(x^3 + 5*x^2 -67*x -358)*(x -2)^2*(x^6 + 4*x^5 -68*x^4 -300*x^3 + 976*x^2 + 5648*x + 6176)^2;
T[166,23]=(x -4)*(x^2 -3*x -9)*(x^3 -7*x^2 + 11*x -4)*(x + 4)^2*(x^6 + 5*x^5 -61*x^4 -377*x^3 + 608*x^2 + 7024*x + 10912)^2;
T[166,29]=(x + 3)*(x^3 -13*x^2 + 44*x -16)*(x + 7)^2*(x -4)^2*(x^6 + x^5 -88*x^4 -181*x^3 + 578*x^2 -192*x -55)^2;
T[166,31]=(x -1)*(x^2 + 9*x + 19)*(x^3 + 4*x^2 -26*x -31)*(x -5)^2*(x^6 -3*x^5 -66*x^4 -93*x^3 + 390*x^2 + 608*x -313)^2;
T[166,37]=(x -1)*(x^2 + 4*x -76)*(x^3 + 19*x^2 + 108*x + 164)*(x + 11)^2*(x^6 -39*x^5 + 576*x^4 -3785*x^3 + 7934*x^2 + 22268*x -91499)^2;
T[166,41]=(x -6)*(x^2 + 3*x -29)*(x^3 -11*x^2 + x + 182)*(x + 2)^2*(x^6 + x^5 -47*x^4 -x^3 + 482*x^2 -516*x -248)^2;
T[166,43]=(x -8)*(x^2 -x -31)*(x^3 -3*x^2 -43*x -8)*(x + 8)^2*(x^6 + 8*x^5 -44*x^4 -456*x^3 -192*x^2 + 4224*x + 6400)^2;
T[166,47]=(x -12)*(x^2 -10*x -20)*(x^3 -2*x^2 -76*x + 256)*(x^6 + 12*x^5 -96*x^4 -1812*x^3 -6648*x^2 + 992*x + 25952)^2*(x )^2;
T[166,53]=(x + 14)*(x^2 -7*x -19)*(x^3 + 9*x^2 -73*x -398)*(x -6)^2*(x^6 -14*x^5 -64*x^4 + 1064*x^3 + 448*x^2 -10048*x -64)^2;
T[166,59]=(x + 3)*(x^2 -6*x -116)*(x^3 -7*x^2 -74*x + 316)*(x -5)^2*(x^6 + 17*x^5 + 10*x^4 -493*x^3 -1018*x^2 + 1768*x + 3527)^2;
T[166,61]=(x + 7)*(x^2 -8*x -64)*(x^3 + 15*x^2 -28*x -784)*(x -5)^2*(x^6 + 5*x^5 -208*x^4 -565*x^3 + 10086*x^2 + 1436*x -47347)^2;
T[166,67]=(x -2)*(x^2 + 21*x + 109)*(x^3 -15*x^2 -x + 458)*(x + 2)^2*(x^6 -16*x^5 -128*x^4 + 3240*x^3 -10464*x^2 -57376*x + 264256)^2;
T[166,71]=(x + 14)*(x^2 -180)*(x^6 + 26*x^5 + 168*x^4 -216*x^3 -2688*x^2 + 1344*x + 7232)^2*(x -2)^5;
T[166,73]=(x + 4)*(x^2 -18*x + 76)*(x^3 -6*x^2 -172*x -64)*(x^6 + 6*x^5 -268*x^4 -1484*x^3 + 17920*x^2 + 94416*x -39136)^2*(x )^2;
T[166,79]=(x + 6)*(x^2 -2*x -124)*(x^3 -12*x^2 + 32*x -8)*(x -14)^2*(x^6 + 12*x^5 -12*x^4 -268*x^3 + 112*x^2 + 304*x -160)^2;
T[166,83]=(x + 1)^6*(x -1)^14;
T[166,89]=(x -4)*(x^2 -20)*(x^3 -4*x^2 -44*x -32)*(x^6 + 22*x^5 -28*x^4 -2424*x^3 -3232*x^2 + 56960*x + 144896)^2*(x )^2;
T[166,97]=(x -12)*(x^2 + 10*x -20)*(x^3 + 10*x^2 -92*x -448)*(x + 8)^2*(x^6 -6*x^5 -300*x^4 + 1176*x^3 + 19296*x^2 + 9984*x -101120)^2;

T[167,2]=(x^2 + x -1)*(x^12 -2*x^11 -17*x^10 + 33*x^9 + 103*x^8 -189*x^7 -277*x^6 + 447*x^5 + 363*x^4 -433*x^3 -205*x^2 + 120*x + 9);
T[167,3]=(x^2 + x -1)*(x^12 -3*x^11 -22*x^10 + 71*x^9 + 145*x^8 -552*x^7 -243*x^6 + 1577*x^5 -122*x^4 -1737*x^3 + 384*x^2 + 599*x -91);
T[167,5]=(x^12 -4*x^11 -41*x^10 + 152*x^9 + 648*x^8 -2136*x^7 -4816*x^6 + 13568*x^5 + 15616*x^4 -37632*x^3 -12544*x^2 + 33792*x -9216)*(x + 1)^2;
T[167,7]=(x^2 + 5*x + 5)*(x^12 -11*x^11 + 4*x^10 + 335*x^9 -965*x^8 -2308*x^7 + 11629*x^6 -1491*x^5 -39468*x^4 + 30443*x^3 + 38438*x^2 -37689*x -1557);
T[167,11]=(x^12 -77*x^10 -12*x^9 + 2080*x^8 + 500*x^7 -24675*x^6 -6388*x^5 + 127975*x^4 + 29620*x^3 -237953*x^2 -23960*x + 86192)*(x )^2;
T[167,13]=(x^2 + 5*x + 5)*(x^12 -9*x^11 -47*x^10 + 642*x^9 -396*x^8 -12320*x^7 + 32400*x^6 + 35904*x^5 -180288*x^4 + 58880*x^3 + 179456*x^2 -38912*x -37888);
T[167,17]=(x^2 + 5*x + 5)*(x^12 -3*x^11 -115*x^10 + 290*x^9 + 4240*x^8 -6768*x^7 -58928*x^6 + 23552*x^5 + 219648*x^4 + 53504*x^3 -235520*x^2 -182784*x -37888);
T[167,19]=(x^2 -20)*(x^12 -105*x^10 -44*x^9 + 4048*x^8 + 2472*x^7 -71895*x^6 -45996*x^5 + 577911*x^4 + 278492*x^3 -1586817*x^2 + 92764*x + 53116);
T[167,23]=(x^2 -x -1)*(x^12 -x^11 -165*x^10 + 270*x^9 + 9080*x^8 -21544*x^7 -187296*x^6 + 605312*x^5 + 929280*x^4 -4542720*x^3 + 2064640*x^2 + 3611648*x -846848);
T[167,29]=(x^2 -8*x + 11)*(x^12 + 6*x^11 -136*x^10 -832*x^9 + 5035*x^8 + 28810*x^7 -80377*x^6 -386642*x^5 + 593524*x^4 + 1948164*x^3 -1746118*x^2 -1951914*x + 1467907);
T[167,31]=(x^2 -6*x + 4)*(x^12 -2*x^11 -157*x^10 + 130*x^9 + 9384*x^8 + 3080*x^7 -255355*x^6 -351630*x^5 + 2807731*x^4 + 6418902*x^3 -5090641*x^2 -19199886*x -9529468);
T[167,37]=(x^2 + 12*x + 31)*(x^12 -34*x^11 + 277*x^10 + 2844*x^9 -56708*x^8 + 186392*x^7 + 1840160*x^6 -16164384*x^5 + 32550592*x^4 + 77875840*x^3 -381885440*x^2 + 413890560*x -84354048);
T[167,41]=(x^2 -2*x -79)*(x^12 + 14*x^11 -153*x^10 -2726*x^9 + 5716*x^8 + 192088*x^7 + 135232*x^6 -5840384*x^5 -11570752*x^4 + 66094080*x^3 + 170291200*x^2 -57360896*x -65094656);
T[167,43]=(x^2 + 6*x -71)*(x^12 -6*x^11 -261*x^10 + 1090*x^9 + 22636*x^8 -37728*x^7 -815344*x^6 -488992*x^5 + 8852928*x^4 + 11935360*x^3 -26916864*x^2 -43177472*x + 2249728);
T[167,47]=(x^12 -2*x^11 -228*x^10 + 690*x^9 + 15823*x^8 -52612*x^7 -403911*x^6 + 1078270*x^5 + 4764260*x^4 -6143054*x^3 -22830058*x^2 -6376254*x + 5029119)*(x -7)^2;
T[167,53]=(x^2 + 10*x + 20)*(x^12 -10*x^11 -220*x^10 + 1864*x^9 + 17536*x^8 -106080*x^7 -704704*x^6 + 2355712*x^5 + 13545216*x^4 -22157824*x^3 -117528576*x^2 + 74051584*x + 363016192);
T[167,59]=(x^2 + 2*x -4)*(x^12 + 28*x^11 -40*x^10 -7976*x^9 -60432*x^8 + 511232*x^7 + 7857600*x^6 + 11692672*x^5 -231181568*x^4 -1003786752*x^3 + 1004135424*x^2 + 11749515264*x + 16274108416);
T[167,61]=(x^2 -5)*(x^12 -2*x^11 -296*x^10 + 304*x^9 + 31167*x^8 -3190*x^7 -1410501*x^6 -732102*x^5 + 26197676*x^4 + 18400300*x^3 -142676914*x^2 -5972514*x + 52291179);
T[167,67]=(x^2 + 4*x -1)*(x^12 -28*x^11 + 45*x^10 + 5286*x^9 -43572*x^8 -217376*x^7 + 3612768*x^6 -5480128*x^5 -74165888*x^4 + 277654400*x^3 + 30137088*x^2 -956012032*x + 742796288);
T[167,71]=(x^2 + 11*x -1)*(x^12 + 9*x^11 -285*x^10 -1718*x^9 + 26540*x^8 + 68856*x^7 -834336*x^6 -1274592*x^5 + 10718336*x^4 + 12128640*x^3 -50588672*x^2 -45652992*x + 30477312);
T[167,73]=(x^2 + 19*x + 79)*(x^12 -61*x^11 + 1387*x^10 -12470*x^9 -13540*x^8 + 989344*x^7 -4496864*x^6 -17026144*x^5 + 151099520*x^4 -21136512*x^3 -1422816768*x^2 + 864962048*x + 4539186176);
T[167,79]=(x^2 -2*x -19)*(x^12 -521*x^10 -1180*x^9 + 94976*x^8 + 364800*x^7 -7023232*x^6 -31040192*x^5 + 227270656*x^4 + 962447744*x^3 -3216951808*x^2 -9841861632*x + 16330576896);
T[167,83]=(x^2 + 2*x -79)*(x^12 + 16*x^11 -345*x^10 -5600*x^9 + 41380*x^8 + 733800*x^7 -1774304*x^6 -44322368*x^5 -8948544*x^4 + 1181787520*x^3 + 2077619200*x^2 -9710987776*x -23933785088);
T[167,89]=(x^2 + 2*x -124)*(x^12 + 12*x^11 -371*x^10 -5068*x^9 + 35136*x^8 + 666364*x^7 + 347635*x^6 -27249188*x^5 -106569273*x^4 + 57136816*x^3 + 785601361*x^2 + 758079950*x -347261236);
T[167,97]=(x^2 + 21*x + 99)*(x^12 -73*x^11 + 1846*x^10 -9211*x^9 -444479*x^8 + 9243110*x^7 -55446501*x^6 -307055419*x^5 + 5942712174*x^4 -24664344089*x^3 -39346347616*x^2 + 552469534459*x -1132990973381);

T[168,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2*(x )^20;
T[168,3]=(x^2 -2*x + 3)*(x^2 + 3)*(x^2 + 2*x + 3)^3*(x -1)^7*(x + 1)^8;
T[168,5]=(x -4)^2*(x + 4)^2*(x -2)^4*(x )^8*(x + 2)^9;
T[168,7]=(x^2 + 7)*(x -1)^11*(x + 1)^12;
T[168,11]=(x + 6)^2*(x -2)^2*(x + 4)^5*(x -4)^6*(x )^10;
T[168,13]=(x + 6)^2*(x )^2*(x -2)^4*(x -6)^4*(x + 4)^6*(x + 2)^7;
T[168,17]=(x + 4)^2*(x )^2*(x + 2)^3*(x -2)^5*(x + 6)^6*(x -6)^7;
T[168,19]=(x + 2)^2*(x -8)^2*(x -4)^5*(x -2)^6*(x + 4)^10;
T[168,23]=(x + 4)^2*(x + 8)^2*(x + 6)^2*(x -2)^2*(x -8)^5*(x )^12;
T[168,29]=(x + 10)*(x -2)^2*(x + 6)^6*(x -6)^7*(x + 2)^9;
T[168,31]=(x + 8)^2*(x -4)^2*(x + 4)^6*(x -8)^6*(x )^9;
T[168,37]=(x + 6)^2*(x + 2)^2*(x + 10)^4*(x -6)^7*(x -2)^10;
T[168,41]=(x + 10)*(x -12)^2*(x )^2*(x + 2)^3*(x + 6)^5*(x -2)^6*(x -6)^6;
T[168,43]=(x -12)*(x -4)^2*(x -8)^8*(x + 4)^14;
T[168,47]=(x -8)*(x + 4)^2*(x + 8)^3*(x -12)^4*(x + 12)^6*(x )^9;
T[168,53]=(x + 2)^2*(x + 10)^3*(x + 6)^4*(x -6)^16;
T[168,59]=(x + 8)^2*(x -6)^2*(x )^4*(x -12)^5*(x -4)^6*(x + 6)^6;
T[168,61]=(x + 6)^2*(x -4)^2*(x + 10)^3*(x -6)^5*(x -8)^6*(x + 2)^7;
T[168,67]=(x + 12)^2*(x + 8)^2*(x -8)^2*(x -12)^2*(x -4)^7*(x + 4)^10;
T[168,71]=(x + 12)*(x -4)*(x -14)^2*(x -6)^2*(x + 8)^2*(x -8)^5*(x )^12;
T[168,73]=(x + 10)^2*(x + 2)^2*(x + 14)^3*(x + 6)^4*(x -10)^7*(x -2)^7;
T[168,79]=(x -12)^2*(x + 4)^2*(x -16)^2*(x )^3*(x + 16)^4*(x + 8)^5*(x -8)^7;
T[168,83]=(x -12)*(x -4)*(x -6)^2*(x -8)^2*(x + 6)^6*(x + 12)^6*(x + 4)^7;
T[168,89]=(x + 2)*(x -6)*(x -10)^2*(x -12)^2*(x )^2*(x + 14)^4*(x + 6)^13;
T[168,97]=(x -2)^2*(x + 6)^2*(x -10)^2*(x + 14)^3*(x -18)^4*(x + 2)^4*(x + 10)^8;

T[169,2]=(x^2 -3)*(x^3 + 2*x^2 -x -1)*(x^3 -2*x^2 -x + 1);
T[169,3]=(x -2)^2*(x^3 + 2*x^2 -x -1)^2;
T[169,5]=(x^2 -3)*(x^3 + 4*x^2 + 3*x -1)*(x^3 -4*x^2 + 3*x + 1);
T[169,7]=(x^3 + 3*x^2 -4*x -13)*(x^3 -3*x^2 -4*x + 13)*(x )^2;
T[169,11]=(x^3 + 8*x^2 + 19*x + 13)*(x^3 -8*x^2 + 19*x -13)*(x )^2;
T[169,13]=(x )^8;
T[169,17]=(x -3)^2*(x^3 + 2*x^2 -15*x + 13)^2;
T[169,19]=(x^2 -12)*(x^3 -4*x^2 -11*x + 1)*(x^3 + 4*x^2 -11*x -1);
T[169,23]=(x -6)^2*(x^3 + 5*x^2 -x -13)^2;
T[169,29]=(x -3)^2*(x^3 + x^2 -44*x + 83)^2;
T[169,31]=(x^2 -12)*(x^3 -5*x^2 -36*x + 167)*(x^3 + 5*x^2 -36*x -167);
T[169,37]=(x^2 -75)*(x^3 + 12*x^2 + 41*x + 29)*(x^3 -12*x^2 + 41*x -29);
T[169,41]=(x^2 -27)*(x^3 -7*x^2 -49*x -49)*(x^3 + 7*x^2 -49*x + 49);
T[169,43]=(x + 8)^2*(x^3 -13*x^2 + 40*x + 13)^2;
T[169,47]=(x^2 -12)*(x^3 -18*x^2 + 101*x -167)*(x^3 + 18*x^2 + 101*x + 167);
T[169,53]=(x + 3)^2*(x^3 -x^2 -86*x + 337)^2;
T[169,59]=(x^2 -48)*(x^3 + 19*x^2 + 83*x + 1)*(x^3 -19*x^2 + 83*x -1);
T[169,61]=(x -1)^2*(x^3 -4*x^2 -67*x + 239)^2;
T[169,67]=(x^2 -12)*(x^3 -x^2 -72*x -41)*(x^3 + x^2 -72*x + 41);
T[169,71]=(x^2 -12)*(x^3 -27*x^2 + 222*x -547)*(x^3 + 27*x^2 + 222*x + 547);
T[169,73]=(x^2 -3)*(x^3 -9*x^2 -120*x + 911)*(x^3 + 9*x^2 -120*x -911);
T[169,79]=(x -4)^2*(x^3 + 5*x^2 -162*x + 127)^2;
T[169,83]=(x^2 -192)*(x^3 + 7*x^2 -140*x + 203)*(x^3 -7*x^2 -140*x -203);
T[169,89]=(x^2 -48)*(x^3 -11*x^2 -74*x + 281)*(x^3 + 11*x^2 -74*x -281);
T[169,97]=(x^2 -48)*(x^3 -7*x^2 -84*x + 301)*(x^3 + 7*x^2 -84*x -301);

T[170,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x + 1)^4*(x -1)^5;
T[170,3]=(x -3)*(x^2 + x -4)*(x -2)^2*(x -1)^2*(x^2 -2*x -2)^2*(x^2 + 4*x + 2)^2*(x + 2)^4*(x )^4;
T[170,5]=(x^2 + 5)*(x^2 + 2*x + 5)^2*(x -1)^8*(x + 1)^9;
T[170,7]=(x^2 -2*x -16)*(x + 4)^2*(x^2 + 4*x + 2)^2*(x^2 + 2*x -2)^2*(x + 2)^3*(x -2)^4*(x -4)^4;
T[170,11]=(x + 2)*(x -2)^2*(x^2 + 8*x + 14)^2*(x^2 -6*x + 6)^2*(x -6)^3*(x + 4)^3*(x )^6;
T[170,13]=(x + 3)*(x + 6)*(x -5)*(x + 1)*(x^2 -5*x + 2)*(x^2 -8)^2*(x + 2)^4*(x + 4)^4*(x -2)^5;
T[170,17]=(x -1)^11*(x + 1)^12;
T[170,19]=(x -8)*(x + 8)*(x -3)*(x^2 + x -4)*(x + 1)^2*(x^2 -4*x -8)^2*(x^2 -8)^2*(x )^2*(x + 4)^6;
T[170,23]=(x + 2)*(x^2 + 2*x -16)*(x^2 + 6*x -18)^2*(x^2 + 4*x + 2)^2*(x )^2*(x -6)^3*(x + 6)^3*(x -4)^4;
T[170,29]=(x + 9)*(x -9)*(x + 3)*(x^2 -x -38)*(x^2 -12)^2*(x^2 + 4*x -4)^2*(x )^2*(x + 6)^3*(x -6)^5;
T[170,31]=(x + 2)*(x -5)*(x -2)*(x + 1)*(x + 3)*(x^2 + 9*x + 16)*(x + 10)^2*(x + 4)^2*(x^2 -18)^2*(x^2 -10*x + 22)^2*(x -4)^4;
T[170,37]=(x -8)*(x + 8)*(x -6)*(x^2 + 6*x -8)*(x^2 + 8*x + 4)^2*(x^2 + 4*x -68)^2*(x -2)^3*(x + 4)^3*(x + 2)^4;
T[170,41]=(x -2)*(x^2 + 8*x -52)*(x -10)^2*(x^2 -12)^2*(x^2 -4*x -68)^2*(x -6)^3*(x + 6)^7;
T[170,43]=(x -2)*(x + 10)*(x -6)*(x^2 -6*x -8)*(x + 4)^2*(x -8)^2*(x^2 + 8*x + 4)^2*(x^2 -4*x -28)^2*(x -4)^6;
T[170,47]=(x + 13)*(x + 3)*(x + 9)*(x -4)*(x^2 -9*x + 16)*(x^2 -12*x -12)^2*(x^2 + 4*x -4)^2*(x -12)^3*(x )^6;
T[170,53]=(x + 3)*(x^2 -3*x -2)*(x + 9)^2*(x + 6)^2*(x^2 -12*x + 4)^2*(x + 10)^3*(x -6)^9;
T[170,59]=(x -15)*(x^2 + 13*x + 4)*(x -3)^2*(x -8)^2*(x^2 + 24*x + 136)^2*(x^2 -12*x + 24)^2*(x + 12)^4*(x )^4;
T[170,61]=(x -11)*(x -7)*(x + 7)*(x -2)*(x^2 -19*x + 86)*(x + 4)^2*(x + 14)^2*(x^2 -4*x -28)^2*(x^2 -4*x -44)^2*(x + 10)^5;
T[170,67]=(x -2)*(x -14)*(x + 2)*(x^2 + 10*x + 8)*(x^2 + 12*x + 28)^2*(x + 10)^4*(x -4)^4*(x -8)^6;
T[170,71]=(x -14)*(x + 6)*(x -3)*(x^2 + 21*x + 72)*(x -9)^2*(x + 2)^2*(x^2 -18)^2*(x^2 -6*x -66)^2*(x )^2*(x + 4)^4;
T[170,73]=(x -10)*(x + 3)*(x^2 -7*x -94)*(x + 14)^2*(x -11)^2*(x^2 + 4*x -4)^2*(x^2 + 8*x -92)^2*(x -2)^3*(x + 6)^4;
T[170,79]=(x + 10)*(x^2 + 2*x -242)^2*(x^2 -8*x + 14)^2*(x + 14)^3*(x )^3*(x -12)^4*(x -8)^4;
T[170,83]=(x + 12)*(x^2 -4*x -64)*(x -12)^2*(x -4)^2*(x^2 -24*x + 132)^2*(x^2 + 4*x -124)^2*(x )^3*(x + 4)^5;
T[170,89]=(x -15)*(x^2 + 7*x -26)*(x + 9)^2*(x + 6)^2*(x^2 + 16*x + 32)^2*(x^2 + 12*x -72)^2*(x -10)^4*(x -6)^4;
T[170,97]=(x -7)*(x + 14)*(x^2 -9*x -18)*(x -14)^2*(x + 7)^2*(x^2 -4*x -44)^2*(x^2 + 4*x -28)^2*(x -2)^7;

T[171,2]=(x + 1)*(x^4 -9*x^2 + 12)*(x -1)^2*(x -2)^2*(x + 2)^4*(x )^4;
T[171,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
T[171,5]=(x -2)*(x + 1)*(x^4 -15*x^2 + 48)*(x -1)^2*(x + 2)^2*(x + 3)^3*(x -3)^4;
T[171,7]=(x^2 -x -8)^2*(x + 5)^3*(x -3)^3*(x )^3*(x + 1)^4;
T[171,11]=(x + 1)*(x^4 -27*x^2 + 108)*(x -1)^2*(x + 3)^3*(x )^3*(x -3)^4;
T[171,13]=(x -6)^3*(x + 6)^3*(x + 4)^4*(x -2)^7;
T[171,17]=(x -1)*(x -6)*(x^4 -15*x^2 + 48)*(x + 1)^2*(x + 6)^2*(x -3)^3*(x + 3)^4;
T[171,19]=(x -1)^8*(x + 1)^9;
T[171,23]=(x^4 -48*x^2 + 48)*(x + 4)^4*(x )^4*(x -4)^5;
T[171,29]=(x + 6)*(x -10)*(x^4 -48*x^2 + 48)*(x + 10)^2*(x + 2)^3*(x -2)^3*(x -6)^3;
T[171,31]=(x^2 + 2*x -32)^2*(x -8)^3*(x -2)^3*(x + 6)^3*(x + 4)^4;
T[171,37]=(x^2 -10*x -8)^2*(x -8)^3*(x + 10)^3*(x )^3*(x -2)^4;
T[171,41]=(x -6)*(x -8)*(x -2)*(x^4 -36*x^2 + 192)*(x + 8)^2*(x + 2)^2*(x + 6)^3*(x )^3;
T[171,43]=(x^2 + 5*x -68)^2*(x + 4)^3*(x + 1)^10;
T[171,47]=(x + 12)*(x -9)*(x^4 -99*x^2 + 1452)*(x + 9)^2*(x -12)^2*(x -3)^3*(x + 3)^4;
T[171,53]=(x + 12)*(x + 10)*(x^4 -240*x^2 + 13872)*(x -10)^2*(x -6)^2*(x -12)^3*(x + 6)^4;
T[171,59]=(x -8)*(x -6)*(x -12)*(x^4 -144*x^2 + 3072)*(x + 12)^2*(x + 8)^2*(x + 6)^3*(x )^3;
T[171,61]=(x^2 -7*x -62)^2*(x + 2)^3*(x -7)^3*(x + 1)^7;
T[171,67]=(x -8)^6*(x + 4)^11;
T[171,71]=(x + 6)*(x^4 -192*x^2 + 768)*(x -12)^3*(x + 12)^3*(x -6)^3*(x )^3;
T[171,73]=(x^2 -7*x -62)^2*(x -10)^3*(x + 7)^4*(x + 11)^6;
T[171,79]=(x -16)^3*(x + 4)^4*(x -8)^4*(x )^6;
T[171,83]=(x + 16)*(x + 4)*(x^4 -144*x^2 + 432)*(x -16)^2*(x + 12)^2*(x -4)^2*(x -12)^5;
T[171,89]=(x -2)*(x + 10)*(x -6)*(x + 12)*(x^4 -240*x^2 + 13872)*(x -10)^2*(x + 6)^2*(x + 2)^2*(x -12)^3;
T[171,97]=(x^2 + 8*x -116)^2*(x -10)^3*(x + 2)^3*(x + 10)^3*(x -8)^4;

T[172,2]=(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x + 1)^2*(x -1)^2*(x )^10;
T[172,3]=(x^2 -4*x + 2)*(x^2 + x -5)^2*(x^2 -x -1)^2*(x^2 -2)^3*(x + 2)^4;
T[172,5]=(x^2 -2)*(x )*(x^2 + 3*x + 1)^2*(x^2 -3*x -3)^2*(x + 4)^3*(x^2 -4*x + 2)^3;
T[172,7]=(x + 4)*(x^2 -2)*(x^2 -20)^2*(x^2 + 4*x + 2)^3*(x )^3*(x -2)^4;
T[172,11]=(x + 3)*(x^2 -2*x -7)*(x^2 + 4*x -16)^2*(x -3)^3*(x^2 + 2*x -7)^3*(x )^4;
T[172,13]=(x + 1)*(x^2 + 6*x + 1)*(x^2 -20)^2*(x + 5)^3*(x^2 -2*x -7)^3*(x -2)^4;
T[172,17]=(x^2 -2*x -7)*(x^2 + x -1)^2*(x^2 + 9*x + 15)^2*(x^2 -10*x + 17)^3*(x + 3)^4;
T[172,19]=(x -2)*(x^2 -11*x + 29)^2*(x^2 -x -47)^2*(x + 2)^3*(x^2 + 4*x -4)^4;
T[172,23]=(x + 3)*(x -3)^2*(x^2 -3*x -9)^2*(x^2 + 9*x + 15)^2*(x + 1)^3*(x^2 -2*x -31)^3;
T[172,29]=(x -6)*(x^2 + 4*x -14)*(x^2 -3*x -3)^2*(x^2 + 7*x + 1)^2*(x + 6)^3*(x^2 -18)^3;
T[172,31]=(x -5)*(x^2 + 2*x -31)*(x^2 -x -47)^2*(x^2 -13*x + 41)^2*(x + 1)^3*(x + 3)^6;
T[172,37]=(x -8)*(x^2 + 8*x + 8)*(x^2 -x -47)^2*(x^2 + 5*x + 5)^2*(x^2 -72)^3*(x )^3;
T[172,41]=(x + 3)*(x^2 + 2*x -71)*(x^2 + 5*x -5)^2*(x^2 -3*x -45)^2*(x -5)^3*(x^2 + 2*x -7)^3;
T[172,43]=(x + 1)^9*(x -1)^11;
T[172,47]=(x + 12)*(x^2 -12*x + 4)*(x^2 + 9*x -27)^2*(x^2 -3*x -59)^2*(x -4)^3*(x -6)^6;
T[172,53]=(x + 9)*(x^2 + 10*x + 17)*(x^2 -6*x -12)^2*(x^2 + 10*x + 20)^2*(x + 5)^3*(x^2 -22*x + 113)^3;
T[172,59]=(x^2 -4*x -4)*(x^2 -16*x + 44)^2*(x^2 + 4*x -4)^3*(x + 12)^4*(x -6)^4;
T[172,61]=(x + 10)*(x^2 -4*x -94)*(x^2 -4*x -76)^2*(x^2 -8*x -2)^3*(x -2)^7;
T[172,67]=(x -11)*(x^2 + 2*x -71)*(x + 3)^3*(x^2 -2*x -71)^3*(x + 10)^4*(x -2)^4;
T[172,71]=(x -6)*(x^2 -20*x + 92)*(x^2 + 16*x + 44)^2*(x^2 -84)^2*(x -2)^3*(x^2 + 12*x + 28)^3;
T[172,73]=(x + 10)*(x^2 -4*x + 2)*(x^2 -4*x -76)^2*(x -2)^3*(x^2 + 24*x + 126)^3*(x -14)^4;
T[172,79]=(x -8)*(x^2 + 4*x -4)*(x^2 + x -1)^2*(x^2 + 5*x -41)^2*(x + 8)^3*(x^2 -4*x -4)^3;
T[172,83]=(x + 15)*(x -7)^2*(x^2 + 6*x -12)^2*(x^2 + 10*x -20)^2*(x -15)^3*(x^2 -18*x + 49)^3;
T[172,89]=(x^2 -8*x -2)*(x )*(x^2 -2*x -44)^2*(x^2 -6*x -12)^2*(x + 4)^3*(x^2 + 12*x + 18)^3;
T[172,97]=(x + 1)*(x^2 -22*x + 113)*(x^2 + 11*x -1)^2*(x^2 + 11*x -17)^2*(x -7)^3*(x^2 + 2*x -7)^3;

T[173,2]=(x^4 + x^3 -3*x^2 -x + 1)*(x^10 -x^9 -16*x^8 + 16*x^7 + 85*x^6 -80*x^5 -175*x^4 + 136*x^3 + 138*x^2 -71*x -25);
T[173,3]=(x^4 + 6*x^3 + 10*x^2 + 3*x -1)*(x^10 -8*x^9 + 11*x^8 + 59*x^7 -165*x^6 -55*x^5 + 484*x^4 -202*x^3 -390*x^2 + 169*x + 113);
T[173,5]=(x^4 + x^3 -5*x^2 -7*x -1)*(x^10 -x^9 -29*x^8 + 41*x^7 + 253*x^6 -452*x^5 -548*x^4 + 1344*x^3 -544*x^2 -128*x + 64);
T[173,7]=(x^4 + 9*x^3 + 27*x^2 + 31*x + 11)*(x^10 -11*x^9 + 20*x^8 + 168*x^7 -704*x^6 + 235*x^5 + 2126*x^4 -1607*x^3 -2023*x^2 + 1319*x + 577);
T[173,11]=(x^4 + 5*x^3 -11*x^2 -65*x -31)*(x^10 -5*x^9 -34*x^8 + 188*x^7 + 194*x^6 -1935*x^5 + 1554*x^4 + 2983*x^3 -2373*x^2 -1687*x -25);
T[173,13]=(x^4 + 5*x^3 -30*x^2 -200*x -275)*(x^10 -x^9 -63*x^8 + 59*x^7 + 1259*x^6 -1496*x^5 -9134*x^4 + 13207*x^3 + 14308*x^2 -19944*x + 5285);
T[173,17]=(x^4 -2*x^3 -42*x^2 + 23*x + 331)*(x^10 + 2*x^9 -96*x^8 -223*x^7 + 2377*x^6 + 7604*x^5 -7004*x^4 -43200*x^3 -37216*x^2 + 1728*x + 6464);
T[173,19]=(x^4 + 7*x^3 -5*x^2 -101*x -131)*(x^10 -7*x^9 -30*x^8 + 206*x^7 + 278*x^6 -1771*x^5 -1198*x^4 + 4849*x^3 + 2195*x^2 -2815*x + 7);
T[173,23]=(x^4 + 11*x^3 + 22*x^2 -86*x -229)*(x^10 -5*x^9 -62*x^8 + 170*x^7 + 1091*x^6 -1852*x^5 -6116*x^4 + 6064*x^3 + 7584*x^2 -3072*x -832);
T[173,29]=(x^4 -9*x^3 + 12*x^2 + 34*x -19)*(x^10 + 5*x^9 -97*x^8 -169*x^7 + 3029*x^6 -2570*x^5 -16026*x^4 + 13917*x^3 + 18606*x^2 -18894*x + 4141);
T[173,31]=(x^4 -3*x^3 -32*x^2 -58*x -29)*(x^10 -3*x^9 -144*x^8 + 134*x^7 + 6715*x^6 + 1088*x^5 -123724*x^4 -92288*x^3 + 770064*x^2 + 659840*x -583744);
T[173,37]=(x^4 + 14*x^3 -5*x^2 -618*x -1691)*(x^10 -8*x^9 -112*x^8 + 920*x^7 + 3950*x^6 -34894*x^5 -47832*x^4 + 515624*x^3 + 27177*x^2 -2472986*x + 2245561);
T[173,41]=(x^4 -9*x^3 -98*x^2 + 834*x + 101)*(x^10 + 21*x^9 -59*x^8 -4045*x^7 -19545*x^6 + 176226*x^5 + 1630986*x^4 + 486953*x^3 -30978968*x^2 -96942550*x -74423567);
T[173,43]=(x^4 + 24*x^3 + 190*x^2 + 537*x + 359)*(x^10 -48*x^9 + 810*x^8 -3363*x^7 -64405*x^6 + 905684*x^5 -3213692*x^4 -16233296*x^3 + 181186064*x^2 -599227200*x + 710485184);
T[173,47]=(x^4 + 6*x^3 + 10*x^2 + 3*x -1)*(x^10 + 18*x^9 -158*x^8 -4285*x^7 -1401*x^6 + 314728*x^5 + 950132*x^4 -7279024*x^3 -27205616*x^2 + 23986048*x + 1469120);
T[173,53]=(x^4 -4*x^3 -50*x^2 -92*x -31)*(x^10 -6*x^9 -304*x^8 + 1770*x^7 + 28955*x^6 -150276*x^5 -1035068*x^4 + 4379488*x^3 + 10008832*x^2 -29829312*x + 10368704);
T[173,59]=(x^4 + 10*x^3 -60*x^2 -600*x -400)*(x^10 + 2*x^9 -271*x^8 -1176*x^7 + 20268*x^6 + 133604*x^5 -200739*x^4 -2736450*x^3 -2574556*x^2 + 13217816*x + 22113776);
T[173,61]=(x^4 + 3*x^3 -146*x^2 -388*x -209)*(x^10 + 3*x^9 -226*x^8 -300*x^7 + 16857*x^6 -7212*x^5 -411476*x^4 + 836096*x^3 -244752*x^2 -197952*x + 60224);
T[173,67]=(x^4 + 34*x^3 + 335*x^2 + 362*x -5731)*(x^10 -62*x^9 + 1635*x^8 -23834*x^7 + 208221*x^6 -1095940*x^5 + 3224908*x^4 -3785248*x^3 -3680336*x^2 + 12313920*x -5737408);
T[173,71]=(x^10 -6*x^9 -290*x^8 + 1652*x^7 + 28180*x^6 -148774*x^5 -1011866*x^4 + 4433694*x^3 + 9080443*x^2 -11062120*x + 2198771)*(x^2 -9*x -41)^2;
T[173,73]=(x^4 -x^3 -183*x^2 + 81*x + 7901)*(x^10 -7*x^9 -244*x^8 + 2352*x^7 + 11992*x^6 -195801*x^5 + 379526*x^4 + 2583679*x^3 -8863077*x^2 -7568607*x + 39229645);
T[173,79]=(x^4 + 7*x^3 -140*x^2 -196*x -61)*(x^10 -17*x^9 -401*x^8 + 8041*x^7 + 36489*x^6 -1154444*x^5 + 439314*x^4 + 65444429*x^3 -159934854*x^2 -1275180248*x + 4525919897);
T[173,83]=(x^4 + 8*x^3 -206*x^2 -688*x + 10021)*(x^10 -4*x^9 -398*x^8 + 1100*x^7 + 37361*x^6 -101568*x^5 -875996*x^4 + 1405088*x^3 + 5659744*x^2 -5829120*x -5440448);
T[173,89]=(x^4 -6*x^3 -120*x^2 + 847*x -931)*(x^10 + 20*x^9 -147*x^8 -4733*x^7 -7035*x^6 + 302225*x^5 + 1244904*x^4 -4653382*x^3 -24091534*x^2 + 21012731*x + 124693673);
T[173,97]=(x^4 -7*x^3 -272*x^2 + 1068*x + 7921)*(x^10 + x^9 -780*x^8 -602*x^7 + 201419*x^6 + 173076*x^5 -19687636*x^4 -21063680*x^3 + 568879360*x^2 + 213226368*x -3716511808);

T[174,2]=(x^4 -x^3 + 3*x^2 -2*x + 4)*(x^6 -2*x^5 + 2*x^4 -x^3 + 4*x^2 -8*x + 8)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)^2*(x -1)^4*(x + 1)^5;
T[174,3]=(x^2 + x + 3)*(x^2 + 3*x + 3)*(x^4 -2*x^3 + 5*x^2 -6*x + 9)^2*(x -1)^7*(x + 1)^8;
T[174,5]=(x -3)*(x -2)*(x^2 -2*x -4)^2*(x^3 -16*x + 8)^2*(x + 3)^3*(x -1)^3*(x + 1)^9;
T[174,7]=(x + 3)*(x -5)*(x )*(x -1)^2*(x^2 + 4*x -1)^2*(x^3 -4*x^2 -x + 8)^2*(x + 2)^4*(x^2 -8)^4;
T[174,11]=(x + 4)*(x + 2)*(x + 1)^2*(x + 3)^2*(x^2 -4*x -1)^2*(x^3 + 8*x^2 + 15*x + 4)^2*(x -6)^3*(x^2 -2*x -1)^4;
T[174,13]=(x -6)*(x -3)^2*(x + 1)^2*(x + 4)^2*(x^2 + 2*x -19)^2*(x^3 -4*x^2 -7*x + 26)^2*(x )^2*(x^2 + 2*x -7)^4;
T[174,17]=(x + 3)*(x -7)*(x + 2)*(x + 7)*(x -8)^2*(x + 4)^2*(x^3 -4*x^2 -27*x + 94)^2*(x^2 + 4*x -4)^4*(x -3)^5;
T[174,19]=(x -5)*(x + 3)*(x -4)*(x + 8)^2*(x + 1)^2*(x^2 + 10*x + 20)^2*(x^3 + 2*x^2 -20*x + 16)^2*(x )^2*(x -6)^8;
T[174,23]=(x + 8)*(x + 4)*(x^2 + 2*x -44)^2*(x^3 -6*x^2 -4*x + 32)^2*(x -4)^3*(x^2 + 4*x -28)^4*(x )^4;
T[174,29]=(x + 1)^11*(x -1)^16;
T[174,31]=(x -4)*(x + 8)*(x )*(x -3)^2*(x + 4)^2*(x + 3)^2*(x^2 + 6*x -36)^2*(x^3 -6*x^2 -4*x + 32)^2*(x^2 -6*x -41)^4;
T[174,37]=(x + 6)*(x + 3)*(x + 7)*(x + 1)*(x -3)*(x -8)^2*(x + 8)^2*(x^2 -6*x + 4)^2*(x^3 -8*x^2 + 8)^2*(x + 4)^8;
T[174,41]=(x + 7)*(x + 5)*(x + 9)*(x -6)*(x -5)*(x + 2)^2*(x^3 + 2*x^2 -100*x + 56)^2*(x^2 -8*x -56)^4*(x -2)^6;
T[174,43]=(x -9)*(x + 12)*(x + 5)*(x + 7)*(x -3)*(x + 11)^2*(x -7)^2*(x^3 + 4*x^2 -96*x -256)^2*(x -4)^4*(x^2 -10*x + 23)^4;
T[174,47]=(x + 1)*(x + 3)*(x + 5)*(x + 8)*(x -9)*(x -13)^2*(x -11)^2*(x^2 + 4*x -41)^2*(x^3 + 12*x^2 -9*x -216)^2*(x^2 -2*x -17)^4;
T[174,53]=(x -10)*(x + 11)^2*(x + 6)^2*(x -1)^2*(x + 2)^2*(x^2 -18*x + 76)^2*(x^3 -8*x^2 -104*x + 248)^2*(x^2 -2*x -71)^4;
T[174,59]=(x -8)*(x + 3)*(x + 11)*(x + 4)^2*(x -3)^2*(x^2 -20)^2*(x^3 + 20*x^2 + 108*x + 112)^2*(x )^2*(x^2 -4*x -28)^4;
T[174,61]=(x + 10)*(x -6)*(x + 6)*(x + 8)^2*(x -4)^2*(x -10)^2*(x^2 + 6*x + 4)^2*(x^3 -4*x^2 -16*x + 56)^2*(x^2 + 4*x -4)^4;
T[174,67]=(x -12)*(x + 12)^2*(x^2 + 4*x -121)^2*(x^3 -57*x + 52)^2*(x )^2*(x + 4)^4*(x^2 -32)^4;
T[174,71]=(x -12)*(x + 8)*(x -16)*(x + 4)*(x )*(x + 2)^2*(x -2)^2*(x^2 + 6*x + 4)^2*(x^3 + 14*x^2 -60*x -416)^2*(x^2 + 12*x + 28)^4;
T[174,73]=(x -10)*(x + 12)^2*(x -2)^2*(x + 10)^2*(x^2 -18*x + 76)^2*(x^3 + 8*x^2 -8)^2*(x -4)^10;
T[174,79]=(x + 6)*(x -4)*(x -10)*(x + 2)*(x -14)*(x -15)^2*(x + 7)^2*(x^2 + 30*x + 220)^2*(x^3 + 2*x^2 -60*x -224)^2*(x^2 + 2*x -1)^4;
T[174,83]=(x -16)*(x -4)^2*(x^2 + 12*x -44)^2*(x^3 + 8*x^2 -28*x -208)^2*(x^2 -4*x -28)^4*(x )^6;
T[174,89]=(x -6)*(x -14)*(x -10)*(x^3 + 8*x^2 -131*x -74)^2*(x + 6)^3*(x + 10)^3*(x -5)^4*(x^2 + 8*x -56)^4;
T[174,97]=(x -8)*(x -18)*(x + 8)*(x + 6)^2*(x + 2)^2*(x^2 -6*x -236)^2*(x^3 -4*x^2 -72*x -104)^2*(x )^2*(x^2 + 8*x -56)^4;

T[175,2]=(x -2)*(x + 2)*(x^2 -x -4)*(x^2 -x -1)*(x^2 + x -1)*(x^2 + x -4)^2*(x )^3;
T[175,3]=(x^2 -x -4)*(x^2 + 2*x -4)*(x^2 -2*x -4)*(x + 1)^2*(x^2 + x -4)^2*(x -1)^3;
T[175,5]=(x + 1)*(x -1)^2*(x )^12;
T[175,7]=(x -1)^7*(x + 1)^8;
T[175,11]=(x^2 -4*x -1)^2*(x^2 -x -4)^3*(x + 3)^5;
T[175,13]=(x -1)*(x + 5)*(x + 1)*(x^2 -2*x -4)*(x^2 + 2*x -4)*(x^2 + 5*x + 2)*(x -5)^2*(x^2 -5*x + 2)^2;
T[175,17]=(x + 3)*(x -7)*(x + 7)*(x^2 + 4*x -16)*(x^2 -4*x -16)*(x^2 -5*x + 2)*(x -3)^2*(x^2 + 5*x + 2)^2;
T[175,19]=(x^2 -20)^2*(x )^2*(x -2)^3*(x^2 + 6*x -8)^3;
T[175,23]=(x^2 + 8*x + 11)*(x^2 -8*x + 11)*(x^2 -2*x -16)*(x -6)^2*(x^2 + 2*x -16)^2*(x + 6)^3;
T[175,29]=(x + 5)^2*(x -3)^3*(x^2 -x -38)^3*(x -5)^4;
T[175,31]=(x -2)^2*(x^2 + 6*x -36)^2*(x + 4)^3*(x )^6;
T[175,37]=(x + 3)^2*(x + 2)^2*(x + 6)^2*(x -3)^2*(x -2)^3*(x -6)^4;
T[175,41]=(x -2)^2*(x^2 -14*x + 44)^2*(x + 12)^3*(x^2 -2*x -16)^3;
T[175,43]=(x -4)*(x -10)*(x + 4)*(x^2 -8*x + 11)*(x^2 + 10*x + 8)*(x^2 + 8*x + 11)*(x + 10)^2*(x^2 -10*x + 8)^2;
T[175,47]=(x + 3)*(x + 9)*(x -3)*(x^2 -5*x -32)*(x + 2)^2*(x -2)^2*(x -9)^2*(x^2 + 5*x -32)^2;
T[175,53]=(x + 12)*(x + 6)*(x -6)*(x^2 -8*x -4)*(x^2 -2*x -16)*(x^2 + 8*x -4)*(x -12)^2*(x^2 + 2*x -16)^2;
T[175,59]=(x -10)^2*(x^2 -10*x -20)^2*(x )^3*(x + 4)^6;
T[175,61]=(x + 8)^2*(x^2 + 6*x -36)^2*(x -8)^3*(x^2 -6*x -144)^3;
T[175,67]=(x + 2)*(x -2)*(x -4)*(x^2 -4*x -1)*(x^2 + 4*x -1)*(x^2 + 4*x -64)*(x + 4)^2*(x^2 -4*x -64)^2;
T[175,71]=(x + 8)^2*(x^2 -4*x -41)^2*(x )^3*(x -8)^6;
T[175,73]=(x + 2)*(x + 6)*(x -6)*(x^2 -8*x -52)*(x^2 + 22*x + 116)*(x^2 -22*x + 116)*(x -2)^2*(x^2 + 8*x -52)^2;
T[175,79]=(x + 5)^2*(x^2 -125)^2*(x + 1)^3*(x^2 + 9*x + 16)^3;
T[175,83]=(x + 12)*(x^2 -2*x -44)*(x^2 + 2*x -44)*(x -12)^2*(x + 4)^3*(x -4)^5;
T[175,89]=(x^2 -30*x + 220)^2*(x )^2*(x + 12)^3*(x^2 -6*x -8)^3;
T[175,97]=(x -7)*(x -1)*(x + 7)*(x^2 -6*x + 4)*(x^2 + 6*x + 4)*(x^2 -9*x -86)*(x + 1)^2*(x^2 + 9*x -86)^2;

T[176,2]=(x^2 + 2*x + 2)*(x )^17;
T[176,3]=(x -3)*(x^2 + x -4)*(x + 3)^2*(x^2 -x -4)^2*(x -1)^4*(x + 1)^6;
T[176,5]=(x^2 -3*x -2)^3*(x -1)^6*(x + 3)^7;
T[176,7]=(x^2 -2*x -16)*(x^2 + 2*x -16)^2*(x -2)^5*(x + 2)^8;
T[176,11]=(x -1)^9*(x + 1)^10;
T[176,13]=(x^2 + 2*x -16)^3*(x )^3*(x + 4)^4*(x -4)^6;
T[176,17]=(x + 6)^3*(x -6)^4*(x + 2)^6*(x -2)^6;
T[176,19]=(x + 8)*(x -8)^3*(x -4)^4*(x + 4)^5*(x )^6;
T[176,23]=(x -3)*(x^2 + 9*x + 16)*(x^2 -9*x + 16)^2*(x + 3)^3*(x -1)^3*(x + 1)^6;
T[176,29]=(x + 8)^3*(x^2 + 2*x -16)^3*(x )^10;
T[176,31]=(x + 5)*(x^2 -7*x + 8)*(x^2 + 7*x + 8)^2*(x + 7)^3*(x -5)^3*(x -7)^6;
T[176,37]=(x^2 + 11*x + 26)^3*(x -3)^6*(x + 1)^7;
T[176,41]=(x -4)^3*(x^2 -6*x -8)^3*(x )^4*(x + 8)^6;
T[176,43]=(x -10)*(x^2 -6*x -8)*(x^2 + 6*x -8)^2*(x -6)^3*(x + 10)^3*(x + 6)^6;
T[176,47]=(x )^4*(x + 8)^5*(x -8)^10;
T[176,53]=(x -2)^3*(x^2 -8*x -52)^3*(x + 6)^10;
T[176,59]=(x + 3)*(x -1)*(x + 5)*(x^2 -5*x -100)*(x + 1)^2*(x^2 + 5*x -100)^2*(x -3)^3*(x -5)^5;
T[176,61]=(x -4)^3*(x^2 + 6*x -8)^3*(x + 4)^4*(x -12)^6;
T[176,67]=(x -5)*(x -1)*(x -7)*(x^2 + 15*x + 52)*(x + 5)^2*(x^2 -15*x + 52)^2*(x + 1)^3*(x + 7)^5;
T[176,71]=(x + 15)*(x^2 -5*x -32)*(x^2 + 5*x -32)^2*(x -15)^3*(x -3)^3*(x + 3)^6;
T[176,73]=(x -16)^3*(x^2 -2*x -16)^3*(x + 4)^4*(x -4)^6;
T[176,79]=(x -10)*(x^2 -14*x + 32)*(x + 2)^2*(x^2 + 14*x + 32)^2*(x + 10)^5*(x -2)^5;
T[176,83]=(x -2)*(x^2 + 10*x + 8)*(x + 2)^2*(x^2 -10*x + 8)^2*(x -6)^4*(x + 6)^6;
T[176,89]=(x^2 + 7*x -26)^3*(x + 9)^4*(x -15)^9;
T[176,97]=(x^2 -27*x + 178)^3*(x + 7)^13;

T[177,2]=(x^2 + x -1)*(x^2 -x -1)*(x^2 + 3*x + 1)*(x^3 -4*x -1)*(x^5 -9*x^3 + 2*x^2 + 16*x -8)^2;
T[177,3]=(x^10 + 2*x^9 + 7*x^8 + 13*x^7 + 31*x^6 + 41*x^5 + 93*x^4 + 117*x^3 + 189*x^2 + 162*x + 243)*(x -1)^4*(x + 1)^5;
T[177,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x -1)^2*(x + 3)^2*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;
T[177,7]=(x^2 -x -1)*(x^3 -9*x^2 + 23*x -16)*(x^2 + 7*x + 11)^2*(x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71)^2;
T[177,11]=(x^2 -5)*(x^2 + 2*x -19)*(x^2 -4*x -1)*(x^3 + 2*x^2 -11*x + 4)*(x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64)^2;
T[177,13]=(x^2 + 8*x + 11)*(x^2 -45)*(x^3 -4*x^2 -7*x + 26)*(x + 1)^2*(x^5 -8*x^4 + 88*x^2 -48*x -224)^2;
T[177,17]=(x^2 -x -11)*(x^2 + 3*x -9)*(x^2 + 3*x + 1)*(x^3 -3*x^2 -43*x + 98)*(x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412)^2;
T[177,19]=(x^2 + 5*x -25)*(x^3 -7*x^2 + 11*x -4)*(x^2 + 5*x -5)^2*(x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469)^2;
T[177,23]=(x^2 + 5*x + 5)*(x^2 + 7*x + 11)*(x^2 -3*x -9)*(x^3 -x^2 -27*x + 64)*(x^5 + 8*x^4 -88*x^2 -112*x -32)^2;
T[177,29]=(x^2 -15*x + 55)*(x^2 -5*x + 5)*(x^2 + 11*x + 29)*(x^3 + 11*x^2 + 9*x -74)*(x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757)^2;
T[177,31]=(x^2 + 7*x + 11)*(x^2 + x -11)*(x^2 + x -101)*(x^3 -13*x^2 + 37*x + 28)*(x^5 -116*x^3 + 56*x^2 + 1280*x + 256)^2;
T[177,37]=(x^2 + x -31)*(x^2 + 9*x + 19)*(x^2 + 7*x + 1)*(x^3 + 5*x^2 -19*x + 14)*(x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32)^2;
T[177,41]=(x^2 -5*x -25)*(x^3 + x^2 -39*x + 74)*(x^2 + x -31)^2*(x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217)^2;
T[177,43]=(x^2 -12*x -9)*(x^2 + 4*x -41)*(x^2 + 2*x -79)*(x^3 -6*x^2 -91*x + 592)*(x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128)^2;
T[177,47]=(x^2 -11*x + 29)*(x^2 + 15*x + 45)*(x^2 + 3*x -9)*(x^3 -11*x^2 -37*x + 496)*(x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256)^2;
T[177,53]=(x^2 + 2*x -79)*(x^2 -8*x + 11)*(x^2 -2*x -19)*(x^3 -2*x^2 -89*x -58)*(x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73)^2;
T[177,59]=(x + 1)^4*(x -1)^15;
T[177,61]=(x^2 + x -11)*(x^2 -13*x + 11)*(x^2 + 13*x + 31)*(x^3 + x^2 -101*x + 98)*(x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072)^2;
T[177,67]=(x^2 -6*x -71)*(x^2 + 4*x -1)*(x^2 -8*x -29)*(x^3 -10*x^2 -119*x + 784)*(x^5 -188*x^3 -200*x^2 + 5472*x -8896)^2;
T[177,71]=(x^2 -4*x -41)*(x^2 -2*x -79)*(x^2 -4*x -1)*(x^3 -26*x^2 + 193*x -424)*(x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424)^2;
T[177,73]=(x^2 -5*x -25)*(x^2 -3*x + 1)*(x^2 + 5*x -5)*(x^3 -7*x^2 -141*x + 718)*(x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952)^2;
T[177,79]=(x^2 -10*x -55)*(x^3 -2*x^2 -31*x -32)*(x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923)^2*(x + 3)^4;
T[177,83]=(x^2 + x -1)*(x^2 -13*x + 31)*(x^2 + 9*x + 9)*(x^3 + 3*x^2 -199*x -148)*(x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152)^2;
T[177,89]=(x^2 + 3*x -149)*(x^2 + 5*x -25)*(x^2 -x -31)*(x^3 + 23*x^2 + 91*x -278)*(x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984)^2;
T[177,97]=(x^2 + 10*x + 5)*(x^2 + 4*x -41)*(x^3 -14*x^2 -25*x + 202)*(x -3)^2*(x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656)^2;

T[178,2]=(x^2 -x + 2)*(x^2 + x + 2)*(x^10 + x^9 -2*x^7 + x^6 + x^5 + 2*x^4 -8*x^3 + 16*x + 32)*(x + 1)^3*(x -1)^4;
T[178,3]=(x -1)*(x^2 + 2*x -1)*(x^3 -x^2 -8*x + 4)*(x + 1)^2*(x^5 + 3*x^4 -4*x^3 -16*x^2 -9*x -1)^2*(x -2)^3;
T[178,5]=(x -2)*(x -3)*(x^2 + 2*x -7)*(x^3 + x^2 -8*x -4)*(x + 2)^2*(x + 1)^2*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13)^2;
T[178,7]=(x^3 -10*x + 8)*(x )*(x -2)^2*(x + 2)^2*(x^5 -8*x^4 + 10*x^3 + 36*x^2 -68*x + 28)^2*(x + 4)^3;
T[178,11]=(x + 6)*(x^2 + 4*x -4)*(x )*(x + 4)^2*(x + 2)^2*(x^5 -6*x^4 -20*x^3 + 112*x^2 + 80*x -112)^2*(x -2)^3;
T[178,13]=(x + 4)*(x^3 + 2*x^2 -18*x -44)*(x + 2)^2*(x^5 -28*x^3 -56*x^2 + 16)^2*(x -2)^5;
T[178,17]=(x -2)*(x^2 + 6*x + 1)*(x^3 + 5*x^2 -16*x -64)*(x -6)^2*(x^5 + 13*x^4 + 34*x^3 -154*x^2 -791*x -883)^2*(x -3)^3;
T[178,19]=(x -5)*(x^2 -2*x -1)*(x^3 + 11*x^2 + 32*x + 20)*(x + 5)^2*(x^5 -13*x^4 + 42*x^3 + 42*x^2 -297*x + 199)^2*(x + 2)^3;
T[178,23]=(x + 3)*(x -8)*(x^2 + 14*x + 47)*(x^3 -5*x^2 -54*x + 122)*(x -7)^2*(x -2)^2*(x^5 -x^4 -62*x^3 + 150*x^2 + 631*x -1657)^2;
T[178,29]=(x^2 -32)*(x^3 -4*x^2 -74*x + 160)*(x + 6)^2*(x^5 -2*x^4 -72*x^3 + 312*x^2 -48*x -784)^2*(x )^4;
T[178,31]=(x -5)*(x^2 -6*x + 7)*(x^3 + 19*x^2 + 114*x + 218)*(x )*(x -6)^2*(x + 9)^2*(x^5 -19*x^4 + 102*x^3 -114*x^2 + 13*x + 7)^2;
T[178,37]=(x + 10)*(x^2 -12*x + 4)*(x^3 -10*x^2 + 14*x -4)*(x )*(x + 2)^2*(x -10)^2*(x^5 + 14*x^4 + 8*x^3 -336*x^2 + 80*x + 1120)^2;
T[178,41]=(x + 10)*(x^2 -32)*(x^3 + 4*x^2 -20*x -64)*(x + 6)^2*(x^5 + 2*x^4 -60*x^3 -24*x^2 + 800*x -1072)^2*(x )^3;
T[178,43]=(x + 2)*(x + 1)*(x^2 -6*x -41)*(x^3 + 9*x^2 -16*x -44)*(x -2)^2*(x + 7)^2*(x^5 -x^4 -68*x^3 -56*x^2 + 877*x + 1573)^2;
T[178,47]=(x + 8)*(x^3 -12*x^2 + 8*x + 32)*(x + 12)^2*(x^5 + 4*x^4 -44*x^3 + 32*x^2 + 112*x -16)^2*(x )^2*(x -12)^3;
T[178,53]=(x -6)*(x -9)*(x^2 + 10*x -7)*(x^3 -21*x^2 + 56*x + 628)*(x + 6)^2*(x + 3)^2*(x^5 + 11*x^4 -6*x^3 -342*x^2 -547*x + 1319)^2;
T[178,59]=(x -10)*(x -12)*(x^2 + 4*x -124)*(x^3 + 8*x^2 -12*x -80)*(x -4)^2*(x + 10)^2*(x^5 -118*x^3 + 784*x^2 -1900*x + 1580)^2;
T[178,61]=(x + 10)*(x + 4)*(x^2 -12*x + 4)*(x^3 -2*x^2 -50*x -100)*(x + 6)^2*(x -6)^2*(x^5 -4*x^4 -8*x^3 + 24*x^2 + 16*x -16)^2;
T[178,67]=(x + 4)*(x + 8)*(x^2 + 16*x + 32)*(x^3 -16*x^2 + 52*x + 16)*(x^5 -4*x^4 -136*x^3 + 240*x^2 + 4800*x + 2000)^2*(x -12)^4;
T[178,71]=(x + 6)*(x -8)*(x^2 + 4*x -68)*(x^3 -10*x^2 -88*x + 848)*(x + 10)^2*(x -4)^2*(x^5 + 2*x^4 -280*x^3 -624*x^2 + 19280*x + 47008)^2;
T[178,73]=(x + 2)*(x + 1)*(x^2 + 2*x -127)*(x^3 + x^2 -128*x + 512)*(x -10)^2*(x -7)^2*(x^5 + 25*x^4 + 186*x^3 + 234*x^2 -1595*x -3475)^2;
T[178,79]=(x -8)*(x + 10)*(x^2 + 12*x + 28)*(x^3 + 10*x^2 + 8*x -80)*(x + 6)^2*(x + 12)^2*(x^5 -54*x^4 + 1096*x^3 -10352*x^2 + 45392*x -74464)^2;
T[178,83]=(x + 12)*(x -14)*(x^2 -4*x -124)*(x^3 -172*x + 464)*(x -12)^2*(x + 6)^2*(x^5 + 20*x^4 + 78*x^3 -244*x^2 -172*x + 196)^2;
T[178,89]=(x + 1)^8*(x -1)^13;
T[178,97]=(x -17)*(x + 2)*(x^2 + 2*x -199)*(x^3 + 19*x^2 -8*x -4)*(x + 18)^2*(x -9)^2*(x^5 -13*x^4 -130*x^3 + 2750*x^2 -13859*x + 21599)^2;

T[179,2]=(x -2)*(x^3 + x^2 -2*x -1)*(x^11 + 3*x^10 -14*x^9 -45*x^8 + 59*x^7 + 225*x^6 -58*x^5 -427*x^4 -76*x^3 + 240*x^2 + 56*x -16);
T[179,3]=(x^3 + 2*x^2 -x -1)*(x^11 -25*x^9 + 5*x^8 + 219*x^7 -98*x^6 -781*x^5 + 589*x^4 + 901*x^3 -1000*x^2 + 185*x -9)*(x );
T[179,5]=(x -3)*(x^3 + 4*x^2 + 3*x -1)*(x^11 -3*x^10 -28*x^9 + 65*x^8 + 310*x^7 -499*x^6 -1680*x^5 + 1613*x^4 + 4325*x^3 -1977*x^2 -4019*x + 663);
T[179,7]=(x + 4)*(x^3 + 4*x^2 + 3*x -1)*(x^11 -8*x^10 -19*x^9 + 281*x^8 -202*x^7 -2904*x^6 + 4160*x^5 + 12464*x^4 -18560*x^3 -26624*x^2 + 25728*x + 27392);
T[179,11]=(x -4)*(x^3 + 3*x^2 -4*x + 1)*(x^11 + 9*x^10 -24*x^9 -359*x^8 + 4*x^7 + 5052*x^6 + 2592*x^5 -32352*x^4 -15552*x^3 + 94144*x^2 + 21504*x -95488);
T[179,13]=(x + 1)*(x^3 + 11*x^2 + 38*x + 41)*(x^11 -24*x^10 + 206*x^9 -583*x^8 -1712*x^7 + 14840*x^6 -30091*x^5 + 2233*x^4 + 47058*x^3 -11030*x^2 -30872*x -7499);
T[179,17]=(x -1)*(x^3 -2*x^2 -43*x + 127)*(x^11 -7*x^10 -96*x^9 + 805*x^8 + 1944*x^7 -27517*x^6 + 30516*x^5 + 231223*x^4 -638875*x^3 + 439149*x^2 -66785*x -4981);
T[179,19]=(x + 3)*(x^3 + 9*x^2 + 6*x -29)*(x^11 -20*x^10 + 100*x^9 + 383*x^8 -4298*x^7 + 4108*x^6 + 41581*x^5 -77559*x^4 -111868*x^3 + 220520*x^2 + 90194*x -171723);
T[179,23]=(x -6)*(x^3 -9*x^2 + 6*x + 43)*(x^11 + 9*x^10 -92*x^9 -961*x^8 + 1564*x^7 + 30088*x^6 + 30024*x^5 -262416*x^4 -548928*x^3 -24960*x^2 + 315904*x + 113664);
T[179,29]=(x -3)*(x^3 + x^2 -58*x + 13)*(x^11 -6*x^10 -228*x^9 + 1115*x^8 + 17466*x^7 -52516*x^6 -579673*x^5 + 358935*x^4 + 7408874*x^3 + 9821980*x^2 -7414748*x -13759239);
T[179,31]=(x + 8)*(x^3 + x^2 -58*x + 13)*(x^11 -13*x^10 -84*x^9 + 1381*x^8 + 931*x^7 -39311*x^6 + 28090*x^5 + 324335*x^4 -426833*x^3 + 15077*x^2 + 109600*x -25063);
T[179,37]=(x -2)*(x^3 + 2*x^2 -85*x -337)*(x^11 -161*x^9 -105*x^8 + 8216*x^7 + 8376*x^6 -147336*x^5 -134928*x^4 + 736576*x^3 -44416*x^2 -266752*x -44032);
T[179,41]=(x -12)*(x^3 -x^2 -44*x -83)*(x^11 + 17*x^10 -72*x^9 -2367*x^8 -6252*x^7 + 58960*x^6 + 255992*x^5 -220480*x^4 -2035136*x^3 -1133312*x^2 + 4046464*x + 4086528);
T[179,43]=(x + 11)*(x^3 -10*x^2 + 3*x + 97)*(x^11 -15*x^10 -36*x^9 + 1511*x^8 -7566*x^7 + 4997*x^6 + 44864*x^5 -63639*x^4 -104583*x^3 + 117809*x^2 + 134681*x + 19759);
T[179,47]=(x -1)*(x^3 -13*x^2 + 40*x -29)*(x^11 -x^10 -274*x^9 -7*x^8 + 23393*x^7 + 10005*x^6 -753528*x^5 -387301*x^4 + 9203424*x^3 + 704544*x^2 -38439424*x + 22950656);
T[179,53]=(x^3 + 10*x^2 -11*x -223)*(x^11 + 10*x^10 -181*x^9 -2219*x^8 + 6744*x^7 + 153552*x^6 + 273208*x^5 -3101648*x^4 -14468288*x^3 -13472640*x^2 + 23959040*x + 32504832)*(x );
T[179,59]=(x + 5)*(x^3 + 3*x^2 -81*x -139)*(x^11 + 8*x^10 -135*x^9 -754*x^8 + 6261*x^7 + 19185*x^6 -107703*x^5 -141278*x^4 + 497447*x^3 + 310636*x^2 -231223*x + 29467);
T[179,61]=(x -14)*(x^3 + 32*x^2 + 332*x + 1112)*(x^11 -64*x^10 + 1674*x^9 -22088*x^8 + 133151*x^7 + 80712*x^6 -6089158*x^5 + 32270440*x^4 -41755759*x^3 -117705640*x^2 + 212838996*x + 187333336);
T[179,67]=(x + 9)*(x^3 -12*x^2 -85*x + 769)*(x^11 -15*x^10 -246*x^9 + 3357*x^8 + 23650*x^7 -256447*x^6 -984832*x^5 + 8103725*x^4 + 15758763*x^3 -96823617*x^2 -78695095*x + 350960499);
T[179,71]=(x^3 + x^2 -114*x -421)*(x^11 + 25*x^10 -94*x^9 -5665*x^8 -13010*x^7 + 390428*x^6 + 1706216*x^5 -7504480*x^4 -46138336*x^3 -13691840*x^2 + 169387264*x + 135247104)*(x );
T[179,73]=(x -10)*(x^3 + 3*x^2 -214*x -1399)*(x^11 + 13*x^10 -266*x^9 -3535*x^8 + 20850*x^7 + 273708*x^6 -747464*x^5 -7766672*x^4 + 12136256*x^3 + 73580672*x^2 -67933696*x -128201728);
T[179,79]=(x -10)*(x^3 + 12*x^2 -99*x -1021)*(x^11 + 12*x^10 -225*x^9 -3003*x^8 + 11498*x^7 + 220236*x^6 + 85608*x^5 -5339120*x^4 -12196672*x^3 + 16404864*x^2 + 51256832*x + 10611712);
T[179,83]=(x -17)*(x^3 + x^2 -72*x + 41)*(x^11 + 8*x^10 -342*x^9 -3801*x^8 + 29830*x^7 + 523964*x^6 + 476515*x^5 -20842409*x^4 -85838780*x^3 + 141690578*x^2 + 1378827160*x + 2069302267);
T[179,89]=(x + 1)*(x^3 -12*x^2 -43*x + 587)*(x^11 + 5*x^10 -306*x^9 -1093*x^8 + 27380*x^7 + 49539*x^6 -821396*x^5 -687149*x^4 + 8098447*x^3 + 1132839*x^2 -24780817*x + 11430107);
T[179,97]=(x + 14)*(x^3 + 8*x^2 -205*x -1681)*(x^11 -20*x^10 -459*x^9 + 12383*x^8 + 4032*x^7 -1948468*x^6 + 14474496*x^5 + 13633968*x^4 -532162432*x^3 + 1981373440*x^2 -1699558400*x -1934823424);

T[180,2]=(x^2 -x + 2)*(x -1)^2*(x^2 + x + 2)^2*(x + 1)^3*(x )^14;
T[180,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3*(x )^18;
T[180,5]=(x^2 + 5)*(x -1)^11*(x + 1)^12;
T[180,7]=(x -2)^8*(x + 4)^8*(x )^9;
T[180,11]=(x + 6)^2*(x -6)^2*(x -4)^3*(x + 4)^6*(x )^12;
T[180,13]=(x + 4)^4*(x + 2)^9*(x -2)^12;
T[180,17]=(x )^2*(x + 2)^3*(x -2)^6*(x + 6)^7*(x -6)^7;
T[180,19]=(x -8)^2*(x -4)^9*(x + 4)^14;
T[180,23]=(x + 6)*(x -6)^3*(x )^21;
T[180,29]=(x )^2*(x -2)^3*(x + 2)^6*(x + 6)^7*(x -6)^7;
T[180,31]=(x -8)^6*(x )^9*(x + 4)^10;
T[180,37]=(x -8)^4*(x -2)^10*(x + 10)^11;
T[180,41]=(x + 10)^3*(x -6)^5*(x + 6)^5*(x -10)^6*(x )^6;
T[180,43]=(x + 10)^4*(x -8)^6*(x + 4)^6*(x -4)^9;
T[180,47]=(x -6)*(x + 8)^3*(x + 6)^3*(x -8)^6*(x )^12;
T[180,53]=(x )^2*(x -10)^3*(x -6)^5*(x + 10)^6*(x + 6)^9;
T[180,59]=(x + 12)*(x + 6)^2*(x -6)^2*(x -12)^3*(x -4)^3*(x + 4)^6*(x )^8;
T[180,61]=(x -14)^2*(x + 10)^6*(x -2)^8*(x + 2)^9;
T[180,67]=(x + 16)^2*(x -2)^4*(x -12)^9*(x + 4)^10;
T[180,71]=(x -8)^3*(x -12)^3*(x + 12)^5*(x + 8)^6*(x )^8;
T[180,73]=(x + 10)^6*(x -10)^9*(x -2)^10;
T[180,79]=(x + 4)^6*(x )^9*(x -8)^10;
T[180,83]=(x + 6)*(x )^2*(x -6)^3*(x + 12)^7*(x -12)^12;
T[180,89]=(x + 18)^2*(x -12)^2*(x + 12)^2*(x )^2*(x -6)^4*(x -18)^4*(x + 6)^9;
T[180,97]=(x -14)^2*(x -2)^23;

T[181,2]=(x^5 + 3*x^4 -x^3 -7*x^2 -2*x + 1)*(x^9 -3*x^8 -9*x^7 + 29*x^6 + 23*x^5 -84*x^4 -23*x^3 + 89*x^2 + 8*x -27);
T[181,3]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -9*x -1)*(x^9 -3*x^8 -15*x^7 + 46*x^6 + 63*x^5 -213*x^4 -32*x^3 + 272*x^2 -144*x + 16);
T[181,5]=(x^5 + 5*x^4 -5*x^3 -55*x^2 -88*x -43)*(x^9 -x^8 -24*x^7 + 28*x^6 + 170*x^5 -181*x^4 -441*x^3 + 340*x^2 + 326*x -3);
T[181,7]=(x^5 + 2*x^4 -19*x^3 -42*x^2 + 66*x + 149)*(x^9 -2*x^8 -26*x^7 + 42*x^6 + 152*x^5 -195*x^4 -331*x^3 + 259*x^2 + 268*x -31);
T[181,11]=(x^5 + 20*x^4 + 153*x^3 + 554*x^2 + 936*x + 575)*(x^9 -24*x^8 + 221*x^7 -898*x^6 + 832*x^5 + 5259*x^4 -15404*x^3 + 5356*x^2 + 22256*x -19056);
T[181,13]=(x^5 + 2*x^4 -40*x^3 -53*x^2 + 222*x + 293)*(x^9 + 8*x^8 -17*x^7 -333*x^6 -1035*x^5 -252*x^4 + 4742*x^3 + 10438*x^2 + 9148*x + 2993);
T[181,17]=(x^5 + 5*x^4 -x^3 -27*x^2 -24*x -1)*(x^9 + x^8 -117*x^7 -317*x^6 + 4386*x^5 + 20151*x^4 -33452*x^3 -355684*x^2 -741488*x -503952);
T[181,19]=(x^5 + 6*x^4 -25*x^3 -85*x^2 + 201*x -97)*(x^9 -4*x^8 -70*x^7 + 295*x^6 + 1293*x^5 -6874*x^4 -1978*x^3 + 44230*x^2 -54325*x + 5575);
T[181,23]=(x^5 + 6*x^4 -25*x^3 -34*x^2 + 98*x -47)*(x^9 -14*x^8 -18*x^7 + 670*x^6 + 422*x^5 -10811*x^4 -16489*x^3 + 33179*x^2 + 71626*x + 32553);
T[181,29]=(x^5 + 17*x^4 + 91*x^3 + 118*x^2 -329*x -725)*(x^9 -13*x^8 -32*x^7 + 873*x^6 -2177*x^5 -5530*x^4 + 18646*x^3 + 5*x^2 -19415*x -1245);
T[181,31]=(x^5 -5*x^4 -59*x^3 + 327*x^2 -278*x -353)*(x^9 + 7*x^8 -150*x^7 -1346*x^6 + 4532*x^5 + 66591*x^4 + 58679*x^3 -929800*x^2 -2565510*x -1174577);
T[181,37]=(x^5 -2*x^4 -118*x^3 + 403*x^2 + 804*x -2623)*(x^9 + 20*x^8 + 61*x^7 -717*x^6 -3095*x^5 + 5728*x^4 + 36382*x^3 + 8430*x^2 -117474*x -118307);
T[181,41]=(x^5 -2*x^4 -133*x^3 -82*x^2 + 4602*x + 12643)*(x^9 -10*x^8 -47*x^7 + 704*x^6 -502*x^5 -11437*x^4 + 22476*x^3 + 41828*x^2 -85456*x -43344);
T[181,43]=(x^5 + 5*x^4 -84*x^3 -21*x^2 + 691*x -107)*(x^9 + 5*x^8 -216*x^7 -601*x^6 + 14803*x^5 + 18441*x^4 -283456*x^3 -452164*x^2 + 674176*x + 516752);
T[181,47]=(x^5 -4*x^4 -37*x^3 + 78*x^2 + 180*x + 53)*(x^9 + 2*x^8 -206*x^7 -200*x^6 + 12938*x^5 + 4467*x^4 -278549*x^3 + 168945*x^2 + 1851254*x -2500083);
T[181,53]=(x^5 -3*x^4 -181*x^3 + 331*x^2 + 7514*x -12427)*(x^9 + x^8 -195*x^7 + 345*x^6 + 10938*x^5 -40891*x^4 -127536*x^3 + 645576*x^2 + 177760*x -2156208);
T[181,59]=(x^5 + 24*x^4 + 88*x^3 -893*x^2 -2484*x -1579)*(x^9 -24*x^8 + 44*x^7 + 2627*x^6 -16196*x^5 -47695*x^4 + 459572*x^3 -33460*x^2 -3083440*x + 3673680);
T[181,61]=(x^5 + 20*x^4 + 8*x^3 -1529*x^2 -4974*x + 9175)*(x^9 + 16*x^8 -116*x^7 -3097*x^6 -12692*x^5 + 30855*x^4 + 231000*x^3 + 18392*x^2 -877664*x + 103472);
T[181,67]=(x^5 -13*x^4 -176*x^3 + 2303*x^2 -2455*x -21403)*(x^9 -9*x^8 -264*x^7 + 2123*x^6 + 11089*x^5 -31991*x^4 -73320*x^3 + 168872*x^2 -24256*x -11584);
T[181,71]=(x^5 + 29*x^4 + 162*x^3 -1126*x^2 -4867*x + 18505)*(x^9 -21*x^8 + 41*x^7 + 1501*x^6 -6598*x^5 -33850*x^4 + 166413*x^3 + 307809*x^2 -1193137*x -1005903);
T[181,73]=(x^5 -17*x^4 -87*x^3 + 2113*x^2 -1254*x -38375)*(x^9 + 5*x^8 -214*x^7 -1682*x^6 + 6086*x^5 + 83337*x^4 + 159751*x^3 -268152*x^2 -536452*x + 488789);
T[181,79]=(x^5 + 6*x^4 -126*x^3 -837*x^2 + 2106*x + 14337)*(x^9 -10*x^8 -94*x^7 + 1095*x^6 + 1410*x^5 -30847*x^4 + 29912*x^3 + 145200*x^2 -93120*x -148160);
T[181,83]=(x^5 + 21*x^4 -223*x^3 -6416*x^2 -17531*x + 140345)*(x^9 -23*x^8 -206*x^7 + 6089*x^6 + 12849*x^5 -476334*x^4 -414336*x^3 + 10316185*x^2 -158255*x -52184619);
T[181,89]=(x^5 -5*x^4 -85*x^3 + 89*x^2 + 954*x + 955)*(x^9 + x^8 -415*x^7 -1569*x^6 + 51956*x^5 + 306343*x^4 -1499628*x^3 -10393820*x^2 + 4062800*x + 36027600);
T[181,97]=(x^5 -11*x^4 -135*x^3 + 1182*x^2 + 5075*x -20879)*(x^9 + 3*x^8 -403*x^7 + 260*x^6 + 38755*x^5 -93395*x^4 -966552*x^3 + 2673624*x^2 + 2473072*x + 478352);

T[182,2]=(x^2 + 2)*(x^6 -x^5 + 2*x^4 -2*x^3 + 4*x^2 -4*x + 8)*(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x -1)^5*(x + 1)^6;
T[182,3]=(x -3)^2*(x + 3)^2*(x^2 -2)^2*(x^3 + 2*x^2 -6*x -8)^2*(x )^3*(x + 2)^4*(x -1)^4;
T[182,5]=(x -4)*(x + 4)*(x -2)*(x + 1)^2*(x^2 -6*x + 7)^2*(x^3 -2*x^2 -3*x + 2)^2*(x )^4*(x + 3)^6;
T[182,7]=(x^2 -x + 7)*(x^2 + x + 7)*(x -1)^10*(x + 1)^11;
T[182,11]=(x + 3)*(x -1)*(x + 1)*(x + 5)*(x -4)*(x + 2)^2*(x -6)^2*(x + 6)^2*(x^2 -18)^2*(x^3 -2*x^2 -6*x + 8)^2*(x )^4;
T[182,13]=(x^2 + 4*x + 13)*(x + 1)^11*(x -1)^12;
T[182,17]=(x + 4)*(x -6)^2*(x^2 -2)^2*(x^3 -4*x^2 -10*x -4)^2*(x )^2*(x + 6)^3*(x -4)^3*(x + 3)^4;
T[182,19]=(x + 6)*(x )*(x -5)^2*(x + 7)^2*(x -6)^2*(x^2 + 6*x -9)^2*(x^3 + 4*x^2 + x -4)^2*(x -2)^7;
T[182,23]=(x -8)*(x -5)*(x + 3)*(x + 4)^2*(x + 7)^2*(x^2 + 6*x + 1)^2*(x^3 -10*x^2 + x + 136)^2*(x -3)^4*(x )^4;
T[182,29]=(x + 10)*(x + 8)*(x -4)*(x + 4)*(x )*(x -6)^2*(x + 9)^2*(x -2)^2*(x + 6)^2*(x + 5)^2*(x^2 -6*x + 1)^2*(x^3 -24*x^2 + 185*x -454)^2;
T[182,31]=(x -3)*(x + 8)*(x -7)*(x -1)*(x + 3)^2*(x -4)^2*(x^2 + 2*x -17)^2*(x^3 + 4*x^2 -19*x + 16)^2*(x -5)^3*(x + 4)^4;
T[182,37]=(x -6)*(x -9)*(x -3)^2*(x -7)^2*(x + 4)^2*(x^2 + 4*x -14)^2*(x^3 -58*x -124)^2*(x + 7)^3*(x -2)^4;
T[182,41]=(x -3)*(x + 7)*(x + 3)*(x + 9)*(x -6)^2*(x^2 -12*x + 28)^2*(x^3 -2*x^2 -28*x -8)^2*(x )^4*(x + 6)^5;
T[182,43]=(x + 8)*(x + 12)*(x -4)^2*(x^3 -10*x^2 -71*x + 628)^2*(x -8)^3*(x + 1)^6*(x + 5)^6;
T[182,47]=(x + 8)*(x + 3)*(x + 7)*(x + 12)^2*(x -13)^2*(x^2 -6*x + 7)^2*(x^3 + 8*x^2 -79*x -544)^2*(x -7)^3*(x -3)^5;
T[182,53]=(x + 12)*(x + 4)*(x -12)^2*(x^2 + 6*x + 1)^2*(x^3 -8*x^2 -35*x -22)^2*(x -6)^3*(x + 9)^4*(x )^4;
T[182,59]=(x -6)*(x^2 -12*x + 4)^2*(x^3 + 4*x^2 -156*x -688)^2*(x )^2*(x -8)^3*(x + 10)^3*(x + 6)^6;
T[182,61]=(x -10)*(x + 13)*(x -1)*(x + 1)*(x -13)*(x + 8)^2*(x + 10)^4*(x -8)^4*(x -6)^4*(x + 2)^6;
T[182,67]=(x -5)*(x -7)*(x -11)*(x -1)*(x -4)*(x + 2)^2*(x + 4)^2*(x + 6)^2*(x^2 + 12*x -36)^2*(x^3 + 12*x^2 -124*x -976)^2*(x -14)^4;
T[182,71]=(x -4)*(x -12)*(x -16)*(x + 5)^2*(x + 6)^2*(x + 3)^2*(x^2 + 12*x -14)^2*(x^3 + 6*x^2 -22*x + 16)^2*(x + 8)^3*(x )^3;
T[182,73]=(x -9)*(x -5)*(x -7)*(x + 13)^2*(x + 10)^2*(x^2 + 10*x + 7)^2*(x^3 + 10*x^2 -99*x -274)^2*(x -11)^3*(x -2)^5;
T[182,79]=(x -11)*(x + 17)*(x + 13)*(x -3)^2*(x + 4)^2*(x^2 -14*x -23)^2*(x^3 + 14*x^2 + 5*x -16)^2*(x + 1)^3*(x -8)^5;
T[182,83]=(x + 16)*(x -4)*(x + 6)^2*(x -3)^2*(x -15)^2*(x^2 -18*x + 63)^2*(x^3 + 12*x^2 -271*x -3268)^2*(x -12)^3*(x )^4;
T[182,89]=(x + 18)*(x -14)*(x -18)*(x -6)^2*(x -15)^2*(x -3)^2*(x^2 -6*x + 7)^2*(x^3 -2*x^2 -95*x + 422)^2*(x + 6)^6;
T[182,97]=(x -2)*(x -11)*(x -17)*(x -5)*(x -14)^2*(x -7)^2*(x^2 + 2*x -161)^2*(x^3 + 10*x^2 + 29*x + 22)^2*(x + 1)^3*(x + 10)^4;

T[183,2]=(x^2 + 2*x -1)*(x^6 -11*x^4 + 2*x^3 + 31*x^2 -10*x -17)*(x + 1)^2*(x^3 -x^2 -3*x + 1)^3;
T[183,3]=(x^2 + 2*x + 3)*(x^6 -2*x^5 + 5*x^4 -8*x^3 + 15*x^2 -18*x + 27)*(x + 1)^5*(x -1)^6;
T[183,5]=(x^6 -2*x^5 -23*x^4 + 28*x^3 + 144*x^2 -80*x -144)*(x + 1)^2*(x + 3)^2*(x^3 + x^2 -9*x -13)^2*(x -2)^3;
T[183,7]=(x^2 + 2*x -1)*(x^3 -16*x -16)*(x^6 -2*x^5 -25*x^4 + 60*x^3 + 128*x^2 -432*x + 288)*(x -1)^2*(x^3 + 3*x^2 -x -1)^2;
T[183,11]=(x^2 + 2*x -1)*(x^3 -2*x^2 -4*x + 4)*(x^6 + 8*x^5 -5*x^4 -110*x^3 -68*x^2 + 8*x + 4)*(x + 5)^2*(x^3 -13*x^2 + 53*x -67)^2;
T[183,13]=(x^3 -6*x^2 -4*x + 40)*(x^6 -6*x^5 -23*x^4 + 116*x^3 + 168*x^2 -464*x -608)*(x + 3)^2*(x -1)^2*(x^3 + 9*x^2 + 11*x -37)^2;
T[183,17]=(x^3 -12*x^2 + 20*x + 100)*(x^6 -10*x^5 -12*x^4 + 368*x^3 -684*x^2 -2352*x + 5968)*(x + 6)^2*(x -4)^2*(x^3 + 2*x^2 -8*x + 4)^2;
T[183,19]=(x^2 -4*x -28)*(x^3 + 8*x^2 + 8*x -16)*(x^6 -8*x^5 -60*x^4 + 656*x^3 -592*x^2 -7232*x + 15808)*(x + 4)^2*(x^3 -48*x -20)^2;
T[183,23]=(x^2 + 2*x -17)*(x^3 -2*x^2 -44*x + 20)*(x^6 -45*x^4 + 2*x^3 + 420*x^2 + 208*x -204)*(x + 9)^2*(x^3 -5*x^2 + 5*x + 1)^2;
T[183,29]=(x^2 -32)*(x^6 + 10*x^5 -56*x^4 -832*x^3 -1740*x^2 + 4032*x + 10368)*(x + 6)^2*(x^3 -4*x^2 -4*x + 20)^3;
T[183,31]=(x^2 -4*x -28)*(x^3 + 8*x^2 -32*x -272)*(x^6 -108*x^4 + 256*x^3 + 2016*x^2 -8128*x + 7296)*(x^3 + 2*x^2 -76*x + 116)^2*(x )^2;
T[183,37]=(x^2 + 4*x -4)*(x^3 + 6*x^2 -52*x + 8)*(x^6 + 4*x^5 -124*x^4 -416*x^3 + 2096*x^2 + 5184*x -7488)*(x -8)^2*(x^3 + 6*x^2 -36*x -108)^2;
T[183,41]=(x^2 + 6*x + 1)*(x^3 -2*x^2 -36*x + 104)*(x^6 + 10*x^5 -55*x^4 -700*x^3 -144*x^2 + 7568*x + 2864)*(x -5)^2*(x^3 -3*x^2 -61*x + 191)^2;
T[183,43]=(x^2 -12*x + 4)*(x^3 -120*x + 16)*(x^6 -4*x^5 -52*x^4 + 176*x^3 + 512*x^2 -1728*x + 1152)*(x + 8)^2*(x^3 + 14*x^2 + 56*x + 68)^2;
T[183,47]=(x^2 + 8*x -56)*(x^3 -4*x^2 -48*x + 64)*(x^6 + 4*x^5 -104*x^4 -32*x^3 + 2048*x^2 -9216)*(x -4)^2*(x^3 + 4*x^2 -88*x + 16)^2;
T[183,53]=(x^2 + 4*x -68)*(x^3 -12*x^2 -36*x + 540)*(x^6 + 2*x^5 -172*x^4 -208*x^3 + 4612*x^2 + 5680*x -22416)*(x -6)^2*(x^3 + 2*x^2 -12*x -8)^2;
T[183,59]=(x^2 + 10*x + 7)*(x^3 -6*x^2 -172*x + 1268)*(x^6 + 16*x^5 + 35*x^4 -614*x^3 -3892*x^2 -7376*x -4332)*(x -9)^2*(x^3 -29*x^2 + 231*x -325)^2;
T[183,61]=(x -1)^9*(x + 1)^10;
T[183,67]=(x^2 -6*x -41)*(x^3 -136*x -496)*(x^6 + 2*x^5 -241*x^4 -64*x^3 + 14152*x^2 -9008*x -51104)*(x + 7)^2*(x^3 -9*x^2 -85*x + 559)^2;
T[183,71]=(x^3 -14*x^2 + 20*x + 100)*(x^6 + 18*x^5 + 12*x^4 -984*x^3 -2292*x^2 + 11632*x + 27952)*(x -6)^2*(x + 8)^2*(x^3 -14*x^2 -12*x + 92)^2;
T[183,73]=(x^2 + 10*x -47)*(x^3 + 2*x^2 -148*x + 536)*(x^6 -30*x^5 + 281*x^4 -664*x^3 -1784*x^2 + 4480*x + 2192)*(x + 11)^2*(x^3 + x^2 -45*x -25)^2;
T[183,79]=(x^2 + 2*x -1)*(x^3 + 12*x^2 -88*x + 16)*(x^6 -6*x^5 -73*x^4 + 720*x^3 -1848*x^2 + 656*x + 1632)*(x -3)^2*(x^3 -13*x^2 -51*x + 625)^2;
T[183,83]=(x^2 + 8*x + 8)*(x^6 + 12*x^5 -264*x^4 -2592*x^3 + 18944*x^2 + 110080*x -228352)*(x -4)^2*(x^3 + 8*x^2 -64*x -256)^3;
T[183,89]=(x^2 + 16*x + 32)*(x^3 + 4*x^2 -108*x -52)*(x^6 -26*x^5 + 16*x^4 + 3584*x^3 -20188*x^2 -4672*x + 22144)*(x + 4)^2*(x^3 + 4*x^2 -56*x + 80)^2;
T[183,97]=(x^2 + 12*x + 4)*(x^3 -18*x^2 + 92*x -104)*(x^6 -16*x^5 -180*x^4 + 2208*x^3 + 4864*x^2 -22976*x + 16768)*(x + 14)^2*(x^3 -10*x^2 -116*x + 1096)^2;

T[184,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x )^16;
T[184,3]=(x -3)*(x^2 + x -4)*(x + 3)^2*(x -1)^2*(x + 1)^2*(x^2 -5)^4*(x )^4;
T[184,5]=(x + 4)*(x -2)^2*(x + 2)^3*(x -4)^3*(x^2 + 2*x -4)^4*(x )^4;
T[184,7]=(x -4)*(x + 2)*(x )^2*(x -2)^3*(x^2 -2*x -4)^4*(x + 4)^6;
T[184,11]=(x + 4)*(x + 2)*(x -6)*(x^2 -2*x -16)*(x )^3*(x^2 + 6*x + 4)^4*(x -2)^5;
T[184,13]=(x -7)*(x^2 -5*x + 2)*(x + 1)^2*(x + 2)^4*(x + 5)^4*(x -3)^8;
T[184,17]=(x + 4)*(x -6)*(x^2 -2*x -16)*(x -4)^2*(x + 6)^3*(x + 2)^4*(x^2 -6*x + 4)^4;
T[184,19]=(x^2 -2*x -16)*(x -6)^2*(x -2)^2*(x + 6)^2*(x + 2)^13;
T[184,23]=(x + 1)^5*(x -1)^16;
T[184,29]=(x -9)*(x + 6)*(x -5)*(x -1)*(x^2 -3*x -2)*(x + 7)^2*(x -2)^3*(x + 3)^10;
T[184,31]=(x + 9)*(x^2 + 9*x + 16)*(x + 3)^2*(x -3)^2*(x -5)^2*(x^2 -45)^4*(x )^4;
T[184,37]=(x^2 -68)*(x + 8)^2*(x -8)^2*(x -2)^3*(x + 4)^4*(x^2 -2*x -4)^4;
T[184,41]=(x^2 -x -106)*(x + 9)^3*(x -6)^4*(x -3)^4*(x^2 -2*x -19)^4;
T[184,43]=(x + 2)*(x -10)^3*(x -8)^4*(x + 8)^5*(x )^8;
T[184,47]=(x + 5)*(x -7)*(x + 8)*(x + 1)*(x^2 -11*x -8)*(x )^3*(x -9)^4*(x^2 -5)^4;
T[184,53]=(x + 6)*(x + 2)*(x + 8)*(x -6)^3*(x + 4)^3*(x -2)^4*(x^2 + 8*x -4)^4;
T[184,59]=(x + 4)*(x + 8)*(x^2 -4*x -64)*(x + 12)^2*(x -4)^2*(x )^2*(x -12)^3*(x^2 -4*x -16)^4;
T[184,61]=(x + 4)*(x^2 -8*x -52)*(x -14)^2*(x + 2)^2*(x + 10)^3*(x + 8)^3*(x^2 -4*x -76)^4;
T[184,67]=(x + 4)*(x^2 + 2*x -16)*(x -2)^2*(x -14)^2*(x -8)^3*(x + 10)^3*(x^2 + 10*x + 20)^4;
T[184,71]=(x -7)*(x + 5)*(x + 8)*(x + 13)*(x^2 -23*x + 128)*(x + 3)^2*(x + 15)^2*(x )^3*(x^2 -20*x + 95)^4;
T[184,73]=(x -9)*(x + 15)*(x^2 + 17*x + 34)*(x + 7)^2*(x + 3)^3*(x -6)^4*(x^2 -22*x + 101)^4;
T[184,79]=(x -12)*(x -6)*(x^2 + 2*x -16)*(x + 10)^2*(x + 12)^3*(x + 6)^4*(x^2 + 4*x -76)^4;
T[184,83]=(x -10)*(x + 14)*(x^2 -12*x -32)*(x )*(x -8)^2*(x -14)^3*(x -6)^3*(x^2 + 22*x + 116)^4;
T[184,89]=(x + 4)*(x -10)*(x + 8)*(x -16)*(x^2 + 2*x -152)*(x -12)^2*(x )^2*(x + 6)^3*(x^2 + 12*x + 16)^4;
T[184,97]=(x + 8)*(x -10)*(x + 18)*(x^2 + 2*x -152)*(x + 10)^2*(x )^2*(x -6)^4*(x^2 -22*x + 76)^4;

T[185,2]=(x -1)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 11*x -12)*(x^5 -8*x^3 + 2*x^2 + 11*x -2)*(x + 2)^3*(x )^3;
T[185,3]=(x + 2)*(x + 1)*(x^5 -3*x^4 -6*x^3 + 20*x^2 + 4*x -22)*(x^5 + x^4 -8*x^3 -4*x^2 + 4*x + 2)*(x + 3)^2*(x -1)^3;
T[185,5]=(x^2 + 2*x + 5)*(x^2 + 5)*(x -1)^6*(x + 1)^7;
T[185,7]=(x + 3)*(x + 5)*(x + 2)*(x^5 -7*x^4 + 6*x^3 + 24*x^2 -2)*(x^5 -11*x^4 + 32*x^3 + 32*x^2 -268*x + 302)*(x + 1)^4;
T[185,11]=(x^5 + 5*x^4 -8*x^3 -48*x^2 + 16*x + 96)*(x^5 -7*x^4 -12*x^3 + 144*x^2 -176*x -32)*(x )*(x -3)^3*(x + 5)^3;
T[185,13]=(x -4)*(x^5 -2*x^4 -20*x^3 + 20*x^2 + 76*x -88)*(x^5 -4*x^4 -28*x^3 + 60*x^2 + 148*x -256)*(x + 4)^2*(x + 2)^4;
T[185,17]=(x -2)*(x^5 -52*x^3 + 12*x^2 + 356*x + 192)*(x^5 + 8*x^4 + 12*x^3 -36*x^2 -92*x -32)*(x + 4)^2*(x -6)^2*(x )^2;
T[185,19]=(x + 8)*(x + 4)*(x^5 -14*x^4 + 26*x^3 + 362*x^2 -1782*x + 2224)*(x^5 + 4*x^4 -38*x^3 -66*x^2 + 78*x -8)*(x )^2*(x -2)^3;
T[185,23]=(x + 2)*(x + 8)*(x -4)*(x^5 -2*x^4 -56*x^3 + 880*x + 1504)*(x^5 -4*x^4 -72*x^3 + 208*x^2 + 784*x + 192)*(x -6)^2*(x -2)^2;
T[185,29]=(x -4)*(x^5 + 4*x^4 -32*x^3 -48*x^2 + 304*x -192)*(x^5 -2*x^4 -80*x^3 + 272*x^2 -176*x + 32)*(x -2)^2*(x -6)^2*(x + 6)^2;
T[185,31]=(x -2)*(x + 6)*(x^5 -8*x^4 -38*x^3 + 314*x^2 + 346*x -3016)*(x^5 -8*x^4 -30*x^3 + 342*x^2 -702*x + 324)*(x )*(x + 4)^4;
T[185,37]=(x -1)^8*(x + 1)^9;
T[185,41]=(x + 5)*(x -10)*(x -7)*(x^5 + 5*x^4 -8*x^3 -48*x^2 + 16*x + 96)*(x^5 + 9*x^4 -64*x^3 -304*x^2 + 1488*x -928)*(x + 9)^4;
T[185,43]=(x + 6)*(x + 4)*(x + 10)*(x^5 -14*x^4 -16*x^3 + 560*x^2 -432*x -1312)*(x^5 -10*x^4 -80*x^3 + 752*x^2 + 336*x -2528)*(x -2)^2*(x -8)^2;
T[185,47]=(x + 10)*(x -11)*(x -9)*(x^5 + 5*x^4 -114*x^3 + 128*x^2 + 1740*x -3994)*(x^5 -7*x^4 -92*x^3 + 592*x^2 -520*x -978)*(x + 9)^2*(x -3)^2;
T[185,53]=(x -3)*(x + 6)*(x^5 + x^4 -144*x^3 -40*x^2 + 4816*x + 528)*(x^5 + 15*x^4 + 64*x^3 + 40*x^2 -112*x -16)*(x -1)^2*(x + 3)^3;
T[185,59]=(x + 6)*(x + 8)*(x^5 -12*x^4 -94*x^3 + 526*x^2 + 3842*x + 5456)*(x^5 + 30*x^4 + 302*x^3 + 1134*x^2 + 998*x -576)*(x )*(x -8)^2*(x -12)^2;
T[185,61]=(x + 4)*(x + 10)*(x -2)*(x^5 + 14*x^4 -8*x^3 -432*x^2 -112*x + 3296)*(x^5 -12*x^4 -32*x^3 + 176*x^2 + 240*x -512)*(x + 8)^2*(x -8)^2;
T[185,67]=(x -16)*(x + 14)*(x^5 -24*x^4 + 94*x^3 + 1314*x^2 -9486*x + 10952)*(x^5 + 2*x^4 -174*x^3 -70*x^2 + 7166*x -7568)*(x -8)^2*(x + 4)^3;
T[185,71]=(x -5)*(x^5 -13*x^4 -348*x^3 + 4176*x^2 + 28352*x -291136)*(x^5 + 7*x^4 -132*x^3 -1632*x^2 -6016*x -7104)*(x )*(x -9)^2*(x + 15)^3;
T[185,73]=(x -2)*(x + 15)*(x^5 + 5*x^4 -68*x^3 -336*x^2 + 16*x + 176)*(x^5 -5*x^4 -192*x^3 -200*x^2 + 2592*x + 368)*(x + 1)^2*(x -11)^3;
T[185,79]=(x + 6)*(x + 12)*(x + 14)*(x^5 -28*x^4 + 134*x^3 + 1562*x^2 -8542*x -19508)*(x^5 -36*x^4 + 430*x^3 -1938*x^2 + 1594*x + 5912)*(x + 10)^2*(x -4)^2;
T[185,83]=(x -11)*(x -18)*(x + 3)*(x^5 -27*x^4 + 178*x^3 + 376*x^2 -4820*x + 4818)*(x^5 + 9*x^4 -104*x^3 -1040*x^2 -1828*x + 314)*(x -9)^2*(x + 15)^2;
T[185,89]=(x + 4)*(x -2)*(x + 2)*(x^5 -6*x^4 -248*x^3 + 528*x^2 + 16400*x + 22944)*(x^5 + 16*x^4 -240*x^3 -5136*x^2 -21008*x + 1856)*(x -6)^2*(x -4)^2;
T[185,97]=(x -10)*(x + 10)*(x^5 + 26*x^4 -88*x^3 -7184*x^2 -63680*x -166976)*(x^5 -464*x^3 + 496*x^2 + 44384*x -193408)*(x -4)^2*(x -8)^3;

T[186,2]=(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x^6 + 2*x^4 + x^3 + 4*x^2 + 8)*(x^4 -x^3 + 3*x^2 -2*x + 4)^2*(x -1)^5*(x + 1)^6;
T[186,3]=(x^2 + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 2*x^3 + 2*x^2 + 6*x + 9)^2*(x + 1)^7*(x -1)^8;
T[186,5]=(x + 1)*(x -3)*(x^2 -3*x -2)*(x + 2)^2*(x^2 + 4*x -1)^2*(x^2 -12)^2*(x^3 + 2*x^2 -5*x -2)^2*(x -1)^9;
T[186,7]=(x^2 -2*x -16)*(x + 2)^2*(x^3 -4*x^2 -x + 8)^2*(x )^2*(x -2)^5*(x^2 + 4*x -1)^6;
T[186,11]=(x -3)*(x -5)*(x + 3)*(x^2 + x -4)*(x^2 + 6*x + 4)^2*(x^2 + 6*x + 6)^2*(x^3 + 2*x^2 -20*x + 16)^2*(x )^2*(x -2)^8;
T[186,13]=(x + 7)*(x + 1)*(x -3)*(x^2 -3*x -2)*(x -2)^2*(x^2 + 2*x -26)^2*(x^3 -4*x^2 -16*x + 56)^2*(x^2 + 2*x -4)^6;
T[186,17]=(x -3)*(x -1)*(x + 1)*(x^2 + x -38)*(x + 6)^2*(x^2 + 4*x -16)^2*(x^2 -12)^2*(x^3 + 2*x^2 -24*x -32)^2*(x^2 -6*x + 4)^4;
T[186,19]=(x + 5)*(x^2 + x -4)*(x -7)^2*(x -4)^2*(x^2 + 8*x + 11)^2*(x^3 -4*x^2 -45*x + 196)^2*(x + 4)^4*(x^2 -5)^4;
T[186,23]=(x + 8)^2*(x -4)^2*(x -8)^2*(x^2 -2*x -4)^2*(x^3 + 6*x^2 -4*x -32)^2*(x^2 + 2*x -44)^4*(x )^5;
T[186,29]=(x + 8)*(x -4)*(x^2 + 6*x -8)*(x )*(x -2)^2*(x^2 + 6*x -18)^2*(x^2 -2*x -4)^2*(x^3 + 8*x^2 -56*x -392)^2*(x^2 -10*x + 20)^4;
T[186,31]=(x -1)^14*(x + 1)^15;
T[186,37]=(x + 10)*(x + 6)*(x^2 -68)*(x -10)^2*(x^2 -10*x -2)^2*(x^2 -2*x -44)^2*(x^3 -16*x + 8)^2*(x + 2)^9;
T[186,41]=(x + 2)*(x -2)*(x^2 + 8*x -52)*(x^2 -12*x + 24)^2*(x^2 -45)^2*(x^3 + 10*x^2 -17*x -262)^2*(x + 6)^3*(x -7)^8;
T[186,43]=(x + 10)*(x + 6)*(x -6)*(x^2 + 10*x + 8)*(x -8)^2*(x^2 + 2*x -26)^2*(x^2 + 6*x -36)^2*(x^3 -14*x^2 + 4*x + 368)^2*(x^2 + 2*x -4)^4;
T[186,47]=(x + 1)*(x + 5)*(x + 7)*(x^2 -5*x -32)*(x + 8)^2*(x^2 -4*x -16)^2*(x^3 -12*x^2 -16*x + 256)^2*(x -6)^4*(x^2 + 4*x -16)^4;
T[186,53]=(x -14)*(x -6)*(x + 6)^2*(x^2 -80)^2*(x^2 -6*x + 6)^2*(x^3 + 10*x^2 -16*x -32)^2*(x + 2)^3*(x^2 + 12*x + 16)^4;
T[186,59]=(x -10)*(x -6)*(x + 10)*(x^2 -6*x -8)*(x + 12)^2*(x^2 + 12*x + 24)^2*(x^3 -26*x^2 + 213*x -556)^2*(x + 3)^4*(x^2 -5)^4;
T[186,61]=(x -7)*(x -1)*(x -3)*(x^2 -3*x -2)*(x + 6)^2*(x^2 + 2*x -26)^2*(x^3 + 2*x^2 -128*x -512)^2*(x -8)^4*(x^2 + 6*x -116)^4;
T[186,67]=(x + 7)*(x^2 -13*x + 4)*(x + 3)^2*(x -4)^6*(x + 12)^6*(x -8)^12;
T[186,71]=(x + 3)*(x -7)*(x -3)*(x^2 + 7*x + 8)*(x -8)^2*(x^2 -192)^2*(x^3 + 10*x^2 -147*x -712)^2*(x -9)^4*(x^2 -4*x -121)^4;
T[186,73]=(x -14)*(x + 6)*(x^2 -2*x -4)^2*(x^3 + 12*x^2 -96*x -728)^2*(x -10)^4*(x^2 -8*x -4)^4*(x + 10)^5;
T[186,79]=(x + 1)*(x + 11)*(x -15)*(x^2 -5*x -32)*(x + 8)^2*(x^2 -8*x -4)^2*(x^2 -4*x -104)^2*(x^3 -8*x^2 -4*x + 64)^2*(x^2 + 10*x -20)^4;
T[186,83]=(x -7)*(x -17)*(x + 1)*(x^2 -5*x -100)*(x -8)^2*(x^2 + 24*x + 124)^2*(x^2 -6*x -66)^2*(x^3 -20*x^2 + 108*x -112)^2*(x^2 + 12*x -44)^4;
T[186,89]=(x -10)*(x^2 -16*x -4)*(x^2 + 4*x -76)^2*(x^2 -10*x -20)^4*(x -6)^5*(x + 6)^9;
T[186,97]=(x -13)*(x -5)*(x + 3)*(x^2 + 9*x -86)*(x -2)^2*(x^2 -4*x -104)^2*(x^3 -4*x^2 -27*x + 94)^2*(x -9)^4*(x^2 + 14*x -31)^4;

T[187,2]=(x^2 + 2*x -2)*(x^3 + 2*x^2 -2*x -2)*(x^4 -x^3 -6*x^2 + 2*x + 2)*(x )*(x + 1)^2*(x + 2)^2*(x -2)^3;
T[187,3]=(x -1)*(x^2 + x -4)*(x^2 -3)*(x^3 + 3*x^2 -x -5)*(x^4 -x^3 -11*x^2 + 9*x + 20)*(x + 1)^2*(x )^3;
T[187,5]=(x -4)*(x -3)*(x^2 + 4*x + 1)*(x^2 -x -4)*(x^3 + 7*x^2 + 13*x + 5)*(x^4 -3*x^3 -3*x^2 + 9*x -2)*(x -1)^2*(x + 2)^2;
T[187,7]=(x -2)*(x + 5)*(x^2 -3*x -2)*(x^3 -16*x + 16)*(x -4)^2*(x + 2)^4*(x )^4;
T[187,11]=(x^2 + 11)*(x -1)^7*(x + 1)^8;
T[187,13]=(x -2)*(x^2 + 10*x + 22)*(x^3 -30*x -2)*(x^4 + 2*x^3 -28*x^2 -90*x -36)*(x + 2)^2*(x )^2*(x -4)^3;
T[187,17]=(x^2 + 2*x + 17)*(x + 1)^6*(x -1)^9;
T[187,19]=(x^2 + 2*x -26)*(x^2 + 6*x -8)*(x^3 -6*x^2 -22*x + 122)*(x^4 + 2*x^3 -28*x^2 + 34*x -8)*(x + 4)^2*(x -2)^2*(x )^2;
T[187,23]=(x + 3)*(x + 2)*(x^2 -x -38)*(x^2 + 4*x + 1)*(x^3 + 15*x^2 + 71*x + 103)*(x^4 -5*x^3 -19*x^2 + 57*x + 144)*(x -4)^2*(x + 1)^2;
T[187,29]=(x + 3)*(x + 6)*(x^2 -15*x + 52)*(x^2 + 6*x + 6)*(x^3 + 14*x^2 + 52*x + 58)*(x^4 -12*x^3 + 38*x^2 -14*x -4)*(x -6)^2*(x )^2;
T[187,31]=(x + 7)*(x^2 + x -4)*(x^2 -8*x + 13)*(x^3 + 9*x^2 -7*x -137)*(x^4 + 17*x^3 + 7*x^2 -1071*x -4392)*(x -7)^2*(x -4)^3;
T[187,37]=(x + 7)*(x^2 -5*x + 2)*(x^2 + 4*x + 1)*(x^3 + 11*x^2 -53*x -629)*(x^4 -19*x^3 + 107*x^2 -153*x + 18)*(x -3)^2*(x + 2)^3;
T[187,41]=(x -12)*(x + 3)*(x^2 + 5*x -32)*(x^2 -12*x + 24)*(x^3 -16*x + 16)*(x^4 -6*x^3 -32*x^2 + 96*x + 288)*(x + 6)^2*(x + 8)^2;
T[187,43]=(x + 10)*(x^3 -8*x^2 -64*x + 256)*(x^4 + 4*x^3 -112*x^2 -720*x -576)*(x + 6)^2*(x -4)^2*(x -2)^2*(x + 2)^3;
T[187,47]=(x -3)*(x^2 + 5*x -32)*(x^2 + 12*x -12)*(x^3 -16*x^2 + 52*x + 100)*(x^4 -4*x^3 -16*x^2 + 44*x + 64)*(x -8)^2*(x )^3;
T[187,53]=(x -9)*(x^2 -11*x + 26)*(x^2 + 12*x + 24)*(x^3 + 30*x^2 + 272*x + 668)*(x^4 -28*x^3 + 272*x^2 -1060*x + 1384)*(x + 6)^2*(x -6)^3;
T[187,59]=(x^3 + x^2 -97*x + 163)*(x^4 -15*x^3 -x^2 + 543*x -1028)*(x + 12)^2*(x -5)^2*(x -3)^2*(x + 3)^4;
T[187,61]=(x -8)*(x^2 + 8*x -32)*(x^2 + 10*x + 8)*(x^3 + 6*x^2 -4*x -40)*(x^4 -12*x^3 -48*x^2 + 432*x -80)*(x -12)^2*(x + 10)^3;
T[187,67]=(x -7)*(x^2 -17)*(x^3 + 13*x^2 -5*x -25)*(x^4 + x^3 -121*x^2 -253*x + 2116)*(x -1)^2*(x -4)^2*(x + 7)^3;
T[187,71]=(x + 9)*(x -2)*(x^2 -4*x + 1)*(x^2 -7*x -26)*(x^3 + 3*x^2 -27*x -31)*(x^4 -17*x^3 -161*x^2 + 3975*x -15696)*(x + 3)^2*(x + 4)^2;
T[187,73]=(x -2)*(x + 3)*(x^2 -18*x + 54)*(x^2 -11*x -8)*(x^3 + 12*x^2 + 44*x + 46)*(x^4 + 6*x^3 -174*x^2 -1266*x -596)*(x + 6)^2*(x -4)^2;
T[187,79]=(x -8)*(x^2 + 6*x -144)*(x^2 + 6*x -18)*(x^3 -14*x^2 + 44*x + 34)*(x^4 + 22*x^3 + 58*x^2 -486*x -720)*(x )*(x + 10)^2*(x -12)^2;
T[187,83]=(x -14)*(x -6)*(x^2 -4*x -188)*(x^2 -68)*(x^3 -8*x^2 -32*x + 128)*(x^4 -8*x^3 -288*x^2 + 1744*x + 10688)*(x + 6)^2*(x + 4)^2;
T[187,89]=(x -1)*(x^2 + 10*x -23)*(x^2 -8*x -137)*(x^3 -x^2 -93*x -107)*(x^4 + 13*x^3 -243*x^2 -3329*x -7762)*(x -10)^2*(x -15)^3;
T[187,97]=(x + 10)*(x -11)*(x^2 + 17*x + 34)*(x^2 -28*x + 193)*(x^3 + 17*x^2 + 75*x + 25)*(x^4 -17*x^3 -45*x^2 + 949*x + 3170)*(x -2)^2*(x + 7)^2;

T[188,2]=(x -1)*(x^8 -x^7 + 3*x^6 -x^5 + 3*x^4 -2*x^3 + 12*x^2 -8*x + 16)*(x + 1)^2*(x )^11;
T[188,3]=(x^2 -x -3)*(x^2 + 3*x + 1)*(x^2 -8)^2*(x )^2*(x^4 -7*x^2 + 4*x + 1)^3;
T[188,5]=(x^2 + 2*x -4)*(x^2 -4*x + 2)^2*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^3*(x )^4;
T[188,7]=(x^2 -5*x + 3)*(x^2 + 7*x + 11)*(x^2 + 4*x -4)^2*(x )^2*(x^4 -4*x^3 -7*x^2 + 44*x -43)^3;
T[188,11]=(x^2 -2*x -12)*(x^2 + 4*x -16)*(x -2)^2*(x^2 -8*x + 14)^2*(x^4 + 6*x^3 -4*x^2 -56*x -48)^3;
T[188,13]=(x^2 + 4*x -16)*(x + 4)^2*(x -2)^2*(x^2 + 4*x + 2)^2*(x^4 -8*x^3 + 56*x + 48)^3;
T[188,17]=(x^2 -3*x -9)*(x^2 + 5*x + 3)*(x + 2)^2*(x^4 -6*x^3 -21*x^2 + 74*x + 141)^3*(x )^4;
T[188,19]=(x^2 -6*x -4)*(x^2 + 2*x -44)*(x + 2)^2*(x^2 + 8*x -2)^2*(x^4 -16*x^2 -8*x + 16)^3;
T[188,23]=(x^2 + 2*x -12)*(x^2 -20)*(x -4)^2*(x^2 -8)^2*(x^4 + 6*x^3 -20*x^2 -40*x -16)^3;
T[188,29]=(x^2 + 2*x -12)*(x -4)^2*(x^2 -12*x + 18)^2*(x )^2*(x^4 + 10*x^3 + 20*x^2 -8*x -16)^3;
T[188,31]=(x^2 -52)*(x -4)^2*(x^2 -72)^2*(x )^2*(x^4 + 8*x^3 -56*x + 48)^3;
T[188,37]=(x^2 -x -29)*(x^2 + 11*x + 19)*(x -2)^2*(x^2 -4*x -68)^2*(x^4 -10*x^3 + 15*x^2 + 34*x + 9)^3;
T[188,41]=(x^2 -18*x + 76)*(x + 6)^2*(x -6)^2*(x^2 + 12*x + 28)^2*(x^4 -6*x^3 -8*x^2 + 32*x -16)^3;
T[188,43]=(x^2 -2*x -12)*(x + 10)^2*(x -6)^2*(x^2 + 8*x -2)^2*(x^4 -2*x^3 -80*x^2 -112*x + 432)^3;
T[188,47]=(x + 1)^4*(x -1)^18;
T[188,53]=(x^2 + 7*x -69)*(x^2 + 11*x -1)*(x -2)^2*(x^2 -4*x -4)^2*(x^4 + 6*x^3 -101*x^2 -314*x + 2429)^3;
T[188,59]=(x^2 -x -1)*(x^2 + 15*x + 27)*(x -12)^2*(x^2 + 8*x -16)^2*(x^4 -4*x^3 -115*x^2 + 704*x -519)^3;
T[188,61]=(x^2 -5*x -5)*(x^2 -x -29)*(x -2)^2*(x^2 + 4*x -68)^2*(x^4 + 6*x^3 -73*x^2 + 10*x + 337)^3;
T[188,67]=(x^2 + 14*x + 44)*(x -8)^2*(x -2)^2*(x^2 + 8*x -34)^2*(x^4 -10*x^3 -120*x^2 + 752*x + 3184)^3;
T[188,71]=(x^2 -15*x + 25)*(x^2 -11*x -51)*(x -8)^2*(x^2 -12*x + 28)^2*(x^4 + 12*x^3 -19*x^2 -320*x + 657)^3;
T[188,73]=(x^2 -6*x -36)*(x^2 -52)*(x + 14)^2*(x^4 -22*x^3 + 60*x^2 + 1368*x -7664)^3*(x -6)^4;
T[188,79]=(x^2 + 9*x + 9)*(x^2 -19*x + 61)*(x + 16)^2*(x^4 -20*x^3 + 77*x^2 + 240*x -47)^3*(x )^4;
T[188,83]=(x^2 + 4*x -48)*(x^2 -80)*(x + 16)^2*(x^2 -8)^2*(x^4 -20*x^3 + 80*x^2 + 192*x -256)^3;
T[188,89]=(x^2 + 3*x -9)*(x^2 -5*x -153)*(x + 10)^2*(x^4 + 6*x^3 -161*x^2 -206*x + 4841)^3*(x )^4;
T[188,97]=(x^2 -3*x -1)*(x^2 + 21*x + 99)*(x + 14)^2*(x^4 -30*x^3 + 179*x^2 + 1634*x -14307)^3*(x -6)^4;

T[189,2]=(x + 2)*(x -2)*(x^2 -7)*(x -1)^2*(x + 1)^3*(x^2 -3)^3*(x )^4;
T[189,3]=(x -1)*(x )^18;
T[189,5]=(x -3)*(x -1)*(x + 1)*(x + 3)*(x^2 -7)*(x^2 -3)*(x -2)^2*(x^2 -12)^2*(x )^2*(x + 2)^3;
T[189,7]=(x^2 + x + 7)*(x -1)^8*(x + 1)^9;
T[189,11]=(x + 6)*(x -6)*(x^2 -7)*(x^2 -3)*(x^2 -12)^2*(x )^2*(x + 4)^3*(x -4)^4;
T[189,13]=(x -5)^2*(x + 4)^2*(x -2)^6*(x + 2)^9;
T[189,17]=(x^2 -48)*(x -6)^2*(x + 3)^2*(x -3)^2*(x^2 -12)^2*(x + 6)^3*(x )^4;
T[189,19]=(x + 8)^2*(x -7)^2*(x -5)^2*(x + 7)^2*(x -2)^2*(x + 4)^4*(x -4)^5;
T[189,23]=(x^2 -3)*(x^2 -63)*(x -6)^2*(x + 6)^2*(x^2 -12)^2*(x )^7;
T[189,29]=(x -6)*(x + 4)*(x -4)*(x + 6)*(x^2 -108)*(x^2 -28)*(x -2)^2*(x + 2)^3*(x )^6;
T[189,31]=(x -6)^2*(x -3)^2*(x -5)^2*(x )^5*(x + 4)^8;
T[189,37]=(x -11)^2*(x + 7)^4*(x -2)^4*(x + 3)^4*(x -6)^5;
T[189,41]=(x -1)*(x + 3)*(x -3)*(x + 1)*(x^2 -7)*(x^2 -27)*(x + 2)^2*(x^2 -108)^2*(x )^2*(x -2)^3;
T[189,43]=(x -11)^2*(x + 1)^2*(x -8)^4*(x + 4)^11;
T[189,47]=(x + 9)^2*(x -9)^2*(x^2 -48)^3*(x )^9;
T[189,53]=(x^2 -192)*(x^2 -48)^2*(x + 6)^4*(x )^4*(x -6)^5;
T[189,59]=(x + 9)*(x -9)*(x + 15)*(x -15)*(x + 12)^2*(x -12)^3*(x^2 -48)^3*(x )^4;
T[189,61]=(x + 8)^2*(x -8)^2*(x -4)^2*(x + 1)^2*(x + 2)^5*(x + 10)^6;
T[189,67]=(x + 2)^2*(x -5)^2*(x + 8)^2*(x -14)^2*(x -4)^5*(x + 4)^6;
T[189,71]=(x -12)*(x + 12)*(x^2 -63)*(x^2 -27)*(x^2 -108)^2*(x )^9;
T[189,73]=(x -6)^2*(x -2)^2*(x + 4)^2*(x + 7)^2*(x )^2*(x -14)^4*(x + 6)^5;
T[189,79]=(x + 4)^2*(x -17)^2*(x + 1)^4*(x + 16)^5*(x -8)^6;
T[189,83]=(x -3)*(x + 3)*(x -9)*(x + 9)*(x^2 -252)*(x^2 -108)*(x -12)^2*(x + 12)^3*(x )^6;
T[189,89]=(x + 6)*(x + 2)*(x -6)*(x -2)*(x^2 -75)*(x^2 -343)*(x -14)^2*(x^2 -12)^2*(x )^2*(x + 14)^3;
T[189,97]=(x + 10)^2*(x + 19)^2*(x -12)^2*(x + 4)^2*(x + 12)^2*(x -14)^4*(x -18)^5;

T[190,2]=(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x^8 + 2*x^7 + 2*x^6 + 4*x^5 + 9*x^4 + 8*x^3 + 8*x^2 + 16*x + 16)*(x^2 + 2)^2*(x -1)^4*(x + 1)^5;
T[190,3]=(x + 3)*(x^2 + x -4)*(x^3 -2*x^2 -4*x + 4)^2*(x^4 -2*x^3 -8*x^2 + 16*x -4)^2*(x + 1)^3*(x -1)^3*(x + 2)^4;
T[190,5]=(x^2 + 5)*(x^2 + 4*x + 5)*(x^2 -3*x + 5)^2*(x -1)^9*(x + 1)^10;
T[190,7]=(x + 5)*(x^2 + x -4)*(x -3)^2*(x^3 -16*x + 16)^2*(x^4 -4*x^3 -16*x^2 + 48*x + 32)^2*(x + 1)^8;
T[190,11]=(x + 4)*(x -4)^2*(x + 6)^2*(x -2)^2*(x^3 + 8*x^2 + 8*x -16)^2*(x^4 -4*x^3 -16*x^2 + 32*x + 48)^2*(x )^2*(x -3)^4;
T[190,13]=(x + 3)*(x^2 + x -38)*(x -5)^2*(x^3 -8*x^2 + 12*x -4)^2*(x^4 -2*x^3 -24*x^2 + 32*x + 20)^2*(x + 4)^4*(x + 1)^4;
T[190,17]=(x + 7)*(x^2 -11*x + 26)*(x^3 -2*x^2 -36*x + 104)^2*(x^4 -4*x^3 -32*x^2 + 16*x + 48)^2*(x -3)^4*(x + 3)^6;
T[190,19]=(x + 1)^11*(x -1)^16;
T[190,23]=(x -7)*(x + 5)*(x^2 -3*x -36)*(x + 1)^2*(x^3 + 4*x^2 -8*x -16)^2*(x^4 + 8*x^3 -24*x^2 -176*x + 288)^2*(x -3)^3*(x )^4;
T[190,29]=(x^2 -x -38)*(x + 3)^2*(x -9)^2*(x^3 + 10*x^2 + 12*x -40)^2*(x^4 -4*x^3 -32*x^2 + 16*x + 48)^2*(x + 5)^3*(x -6)^4;
T[190,31]=(x -2)*(x -10)*(x + 2)*(x^2 + 2*x -16)*(x + 8)^2*(x^3 -4*x^2 -48*x + 64)^2*(x^4 -4*x^3 -80*x^2 + 512*x -640)^2*(x + 4)^6;
T[190,37]=(x + 10)*(x + 6)^2*(x^3 -20*x^2 + 124*x -244)^2*(x^4 + 6*x^3 -24*x^2 -40*x + 4)^2*(x + 2)^3*(x -2)^7;
T[190,41]=(x -6)*(x -2)*(x^2 -8*x -52)*(x + 8)^2*(x^3 + 2*x^2 -36*x -104)^2*(x^4 -16*x^3 + 56*x^2 + 32*x -240)^2*(x )^2*(x + 6)^5;
T[190,43]=(x -2)*(x^2 + 14*x + 32)*(x -6)^2*(x -4)^2*(x -8)^2*(x^3 + 4*x^2 -144*x -592)^2*(x^4 -4*x^3 -16*x^2 + 48*x + 32)^2*(x + 1)^4;
T[190,47]=(x^2 + 4*x -64)*(x -8)^2*(x^3 -16*x + 16)^2*(x^4 + 12*x^3 -64*x^2 -656*x + 1056)^2*(x + 3)^4*(x )^5;
T[190,53]=(x + 13)*(x -9)*(x -3)*(x^2 + 5*x + 2)*(x + 1)^2*(x + 3)^2*(x^3 -16*x^2 + 76*x -92)^2*(x^4 + 10*x^3 -184*x -348)^2*(x -12)^4;
T[190,59]=(x + 9)*(x + 7)*(x -3)*(x^2 -x -4)*(x -9)^2*(x -15)^2*(x^3 + 20*x^2 + 112*x + 160)^2*(x^4 -64*x^2 -224*x -192)^2*(x + 6)^4;
T[190,61]=(x + 4)*(x + 12)*(x -8)*(x^2 -14*x + 32)*(x -2)^2*(x + 10)^2*(x^3 + 2*x^2 -84*x + 232)^2*(x^4 -20*x^3 + 56*x^2 + 688*x -2656)^2*(x + 1)^4;
T[190,67]=(x + 3)*(x + 7)*(x -7)*(x^2 + x -4)*(x -5)^2*(x -3)^2*(x^3 -2*x^2 -76*x -116)^2*(x^4 + 18*x^3 + 8*x^2 -488*x -1076)^2*(x + 4)^4;
T[190,71]=(x -12)*(x^2 -4*x -64)*(x + 6)^2*(x -2)^2*(x^3 + 4*x^2 -80*x -64)^2*(x^4 + 20*x^3 + 32*x^2 -1024*x -4224)^2*(x )^2*(x -6)^4;
T[190,73]=(x + 9)*(x + 13)*(x -11)*(x^2 -9*x -18)*(x -9)^2*(x^3 -2*x^2 -20*x + 8)^2*(x^4 -28*x^3 + 256*x^2 -784*x + 176)^2*(x + 7)^6;
T[190,79]=(x -14)*(x + 2)*(x^2 + 2*x -16)*(x^3 -192*x -160)^2*(x^4 + 16*x^3 + 32*x^2 -480*x -1856)^2*(x -8)^4*(x + 10)^5;
T[190,83]=(x -6)*(x + 2)*(x + 10)*(x^2 -14*x + 32)*(x^3 + 32*x^2 + 328*x + 1072)^2*(x^4 -72*x^2 -112*x + 480)^2*(x -12)^4*(x + 6)^4;
T[190,89]=(x + 10)*(x -6)*(x + 12)^2*(x^3 -2*x^2 -132*x + 680)^2*(x^4 -4*x^3 -144*x^2 -176*x + 240)^2*(x )^2*(x -2)^3*(x -12)^4;
T[190,97]=(x + 18)*(x -6)^2*(x^3 -20*x^2 -60*x + 1748)^2*(x^4 -30*x^3 + 224*x^2 -8*x -1388)^2*(x + 2)^3*(x + 10)^3*(x -8)^4;

T[191,2]=(x^2 + x -1)*(x^14 -23*x^12 + x^11 + 205*x^10 -13*x^9 -895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 -2135*x^4 -465*x^3 + 853*x^2 + 374*x + 41);
T[191,3]=(x^14 -2*x^13 -30*x^12 + 58*x^11 + 334*x^10 -630*x^9 -1667*x^8 + 3160*x^7 + 3418*x^6 -7088*x^5 -1483*x^4 + 5142*x^3 -940*x^2 -122*x + 5)*(x + 1)^2;
T[191,5]=(x^2 + x -1)*(x^14 -x^13 -48*x^12 + 63*x^11 + 860*x^10 -1339*x^9 -6923*x^8 + 11842*x^7 + 23938*x^6 -41166*x^5 -31785*x^4 + 51275*x^3 + 6610*x^2 -21509*x + 5527);
T[191,7]=(x^2 + x -1)*(x^14 -3*x^13 -71*x^12 + 236*x^11 + 1872*x^10 -7064*x^9 -21808*x^8 + 101248*x^7 + 85248*x^6 -691840*x^5 + 303360*x^4 + 1703424*x^3 -2363392*x^2 + 942080*x -69632);
T[191,11]=(x^2 + x -1)*(x^14 + 3*x^13 -103*x^12 -332*x^11 + 3764*x^10 + 13152*x^9 -56816*x^8 -222400*x^7 + 288512*x^6 + 1458688*x^5 + 131840*x^4 -2122240*x^3 -254976*x^2 + 892928*x -167936);
T[191,13]=(x^2 + 7*x + 1)*(x^14 -19*x^13 + 62*x^12 + 949*x^11 -7606*x^10 + 503*x^9 + 166303*x^8 -478782*x^7 -645034*x^6 + 5011874*x^5 -6716001*x^4 -1704311*x^3 + 7511848*x^2 -1293835*x -1553539);
T[191,17]=(x^14 -14*x^13 -45*x^12 + 1378*x^11 -2555*x^10 -40042*x^9 + 140924*x^8 + 378520*x^7 -1793962*x^6 -827476*x^5 + 5982505*x^4 + 1642426*x^3 -2700939*x^2 -1365804*x -162224)*(x )^2;
T[191,19]=(x^14 -20*x^13 + 55*x^12 + 1348*x^11 -10548*x^10 -1720*x^9 + 282224*x^8 -993664*x^7 -375744*x^6 + 10460416*x^5 -29189120*x^4 + 38902784*x^3 -26870784*x^2 + 8589312*x -798720)*(x + 3)^2;
T[191,23]=(x^2 + x -1)*(x^14 + 13*x^13 -76*x^12 -1303*x^11 + 2420*x^10 + 51345*x^9 -58289*x^8 -979752*x^7 + 1197522*x^6 + 8844014*x^5 -12897807*x^4 -32496397*x^3 + 51753762*x^2 + 36189057*x -57083181);
T[191,29]=(x^2 -5)*(x^14 -6*x^13 -243*x^12 + 992*x^11 + 23012*x^10 -46008*x^9 -1025728*x^8 + 202496*x^7 + 19922176*x^6 + 18331392*x^5 -136512512*x^4 -192888832*x^3 + 189421568*x^2 + 208599040*x -86528000);
T[191,31]=(x^2 + 5*x -25)*(x^14 -15*x^13 -137*x^12 + 3126*x^11 -2124*x^10 -197728*x^9 + 823248*x^8 + 3631008*x^7 -29054336*x^6 + 25866496*x^5 + 199140096*x^4 -510331904*x^3 + 246706176*x^2 + 246890496*x -183554048);
T[191,37]=(x^2 -2*x -19)*(x^14 + 8*x^13 -213*x^12 -1280*x^11 + 18256*x^10 + 67296*x^9 -768928*x^8 -1316704*x^7 + 15431040*x^6 + 8668416*x^5 -137800448*x^4 -7447040*x^3 + 444389376*x^2 -28053504*x + 233472);
T[191,41]=(x^2 + 8*x + 11)*(x^14 -16*x^13 -71*x^12 + 2598*x^11 -9352*x^10 -105336*x^9 + 879616*x^8 -616000*x^7 -15135744*x^6 + 55510016*x^5 -18334976*x^4 -230815232*x^3 + 362406912*x^2 -14364672*x -156094464);
T[191,43]=(x^2 -8*x -4)*(x^14 -4*x^13 -275*x^12 + 1192*x^11 + 28205*x^10 -130336*x^9 -1313860*x^8 + 6341152*x^7 + 27162310*x^6 -131581896*x^5 -227542521*x^4 + 968483108*x^3 + 808946725*x^2 -1369384960*x -770211604);
T[191,47]=(x^2 -3*x -59)*(x^14 + 25*x^13 -27*x^12 -5106*x^11 -27884*x^10 + 292568*x^9 + 2772720*x^8 -1666592*x^7 -74195904*x^6 -156470784*x^5 + 362220544*x^4 + 1231374336*x^3 + 99470336*x^2 -1600794624*x -685993984);
T[191,53]=(x^2 -x -31)*(x^14 + 5*x^13 -243*x^12 -1294*x^11 + 15636*x^10 + 78576*x^9 -351504*x^8 -1551392*x^7 + 2903424*x^6 + 12131712*x^5 -4736768*x^4 -34044928*x^3 -21297152*x^2 + 612352*x + 192512);
T[191,59]=(x^2 -12*x -9)*(x^14 -8*x^13 -420*x^12 + 3204*x^11 + 59412*x^10 -440340*x^9 -3215153*x^8 + 25176388*x^7 + 47247070*x^6 -513600316*x^5 + 338002709*x^4 + 1841064056*x^3 -2346256998*x^2 + 190082484*x + 60884595);
T[191,61]=(x^2 + 16*x + 44)*(x^14 -44*x^13 + 588*x^12 + 1072*x^11 -93152*x^10 + 649248*x^9 + 2184960*x^8 -45216768*x^7 + 142413312*x^6 + 553457152*x^5 -4630460416*x^4 + 9209772032*x^3 + 3611668480*x^2 -31275163648*x + 26250199040);
T[191,67]=(x^2 -45)*(x^14 + 16*x^13 -348*x^12 -4928*x^11 + 49028*x^10 + 535272*x^9 -3314269*x^8 -27006880*x^7 + 115632542*x^6 + 666665756*x^5 -2080186303*x^4 -7404166480*x^3 + 17299550058*x^2 + 26726168780*x -39548104417);
T[191,71]=(x^2 -3*x -29)*(x^14 + 25*x^13 -105*x^12 -5778*x^11 -6780*x^10 + 461824*x^9 + 1090832*x^8 -14497344*x^7 -37181504*x^6 + 145217280*x^5 + 400356864*x^4 -62124032*x^3 -563410944*x^2 -99932160*x + 163147776);
T[191,73]=(x^14 -58*x^13 + 1128*x^12 -3608*x^11 -155424*x^10 + 1707840*x^9 + 4238784*x^8 -142422144*x^7 + 285433856*x^6 + 5234479616*x^5 -20981831680*x^4 -90520332288*x^3 + 490975883264*x^2 + 595734044672*x -4055098179584)*(x + 10)^2;
T[191,79]=(x^2 + 4*x -41)*(x^14 -24*x^13 -292*x^12 + 9956*x^11 + 12384*x^10 -1497316*x^9 + 3079207*x^8 + 100404688*x^7 -325162178*x^6 -3111792248*x^5 + 10320818005*x^4 + 44869429268*x^3 -112977728862*x^2 -251163706404*x + 189779678115);
T[191,83]=(x^2 -6*x -11)*(x^14 + 16*x^13 -213*x^12 -3772*x^11 + 15884*x^10 + 321232*x^9 -463824*x^8 -12253280*x^7 + 1367616*x^6 + 212029312*x^5 + 172670208*x^4 -1331686912*x^3 -2336120832*x^2 -206610432*x + 931835904);
T[191,89]=(x^2 + 18*x + 61)*(x^14 -14*x^13 -401*x^12 + 4730*x^11 + 65488*x^10 -544640*x^9 -5636128*x^8 + 23089600*x^7 + 256347264*x^6 -83853184*x^5 -4689935872*x^4 -11331404800*x^3 -3568848896*x^2 + 10879055872*x + 5055918080);
T[191,97]=(x^2 + 8*x -164)*(x^14 -22*x^13 -213*x^12 + 7746*x^11 -14275*x^10 -784202*x^9 + 4404448*x^8 + 20769252*x^7 -162064738*x^6 -209050520*x^5 + 1917045429*x^4 + 1570513630*x^3 -5189966991*x^2 -4780370452*x -898382620);

T[192,2]=(x )^21;
T[192,3]=(x^2 + 3)^3*(x -1)^7*(x + 1)^8;
T[192,5]=(x -2)^8*(x + 2)^13;
T[192,7]=(x -4)^3*(x + 4)^3*(x )^15;
T[192,11]=(x )^6*(x + 4)^7*(x -4)^8;
T[192,13]=(x + 6)^2*(x -2)^4*(x -6)^4*(x + 2)^11;
T[192,17]=(x + 6)^6*(x -2)^15;
T[192,19]=(x )^6*(x -4)^7*(x + 4)^8;
T[192,23]=(x -8)^4*(x + 8)^5*(x )^12;
T[192,29]=(x + 2)^2*(x -10)^2*(x + 6)^2*(x -2)^4*(x + 10)^4*(x -6)^7;
T[192,31]=(x + 4)^3*(x -4)^3*(x + 8)^4*(x -8)^5*(x )^6;
T[192,37]=(x + 6)^2*(x -2)^4*(x -6)^7*(x + 2)^8;
T[192,41]=(x -10)^6*(x -2)^6*(x + 6)^9;
T[192,43]=(x )^6*(x + 4)^7*(x -4)^8;
T[192,47]=(x -8)^3*(x + 8)^3*(x )^15;
T[192,53]=(x + 10)^2*(x -2)^2*(x + 14)^2*(x -14)^4*(x -10)^4*(x + 2)^7;
T[192,59]=(x )^6*(x + 4)^7*(x -4)^8;
T[192,61]=(x + 6)^2*(x -10)^2*(x -2)^2*(x -6)^4*(x + 10)^4*(x + 2)^7;
T[192,67]=(x )^6*(x -4)^7*(x + 4)^8;
T[192,71]=(x -16)^3*(x + 16)^3*(x + 8)^4*(x -8)^5*(x )^6;
T[192,73]=(x -10)^9*(x + 6)^12;
T[192,79]=(x + 4)^3*(x -4)^3*(x -8)^4*(x + 8)^5*(x )^6;
T[192,83]=(x -12)^3*(x + 12)^3*(x -4)^4*(x + 4)^5*(x )^6;
T[192,89]=(x + 6)^9*(x -10)^12;
T[192,97]=(x + 14)^6*(x -18)^6*(x -2)^9;

T[193,2]=(x^2 + 3*x + 1)*(x^8 -2*x^7 -9*x^6 + 18*x^5 + 21*x^4 -44*x^3 -11*x^2 + 27*x + 1)*(x^5 + 2*x^4 -5*x^3 -7*x^2 + 7*x + 1);
T[193,3]=(x^5 + 5*x^4 -x^3 -27*x^2 -10*x + 23)*(x^8 -5*x^7 -2*x^6 + 40*x^5 -37*x^4 -48*x^3 + 36*x^2 + 31*x + 4)*(x + 1)^2;
T[193,5]=(x^2 -5)*(x^8 -8*x^7 + 16*x^6 + 8*x^5 -35*x^4 + x^3 + 16*x^2 -x -2)*(x^5 + 8*x^4 + 15*x^3 -26*x^2 -106*x -83);
T[193,7]=(x^5 + 10*x^4 + 27*x^3 + 5*x^2 -25*x -11)*(x^2 + x -11)*(x^8 -5*x^7 -10*x^6 + 62*x^5 -9*x^4 -71*x^3 + 28*x^2 + 17*x -8);
T[193,11]=(x^5 + 10*x^4 + 5*x^3 -162*x^2 -162*x + 729)*(x^2 -3*x -9)*(x^8 -9*x^7 + 8*x^6 + 121*x^5 -279*x^4 -301*x^3 + 1067*x^2 -333*x -4);
T[193,13]=(x^8 + 4*x^7 -18*x^6 -70*x^5 + 49*x^4 + 307*x^3 + 144*x^2 -199*x -118)*(x^5 -2*x^4 -45*x^3 + 50*x^2 + 350*x -23)*(x + 3)^2;
T[193,17]=(x^5 + 9*x^4 -3*x^3 -128*x^2 -9*x + 81)*(x^2 + 6*x + 4)*(x^8 -7*x^7 -45*x^6 + 438*x^5 -247*x^4 -4799*x^3 + 9056*x^2 + 6608*x -15992);
T[193,19]=(x^8 -100*x^6 -45*x^5 + 2814*x^4 + 1922*x^3 -17165*x^2 + 549*x -4)*(x^5 -14*x^4 + 55*x^3 -41*x^2 -17*x + 17)*(x + 7)^2;
T[193,23]=(x^5 + 20*x^4 + 130*x^3 + 231*x^2 -484*x -1331)*(x^2 + 9*x + 9)*(x^8 -23*x^7 + 191*x^6 -551*x^5 -1211*x^4 + 12028*x^3 -28887*x^2 + 23869*x + 104);
T[193,29]=(x^2 -9*x + 19)*(x^8 + 2*x^7 -160*x^6 -627*x^5 + 6387*x^4 + 37772*x^3 + 19674*x^2 -111643*x -30670)*(x^5 + 3*x^4 -90*x^3 -22*x^2 + 2073*x -4109);
T[193,31]=(x^5 + 6*x^4 -8*x^3 -121*x^2 -272*x -187)*(x^2 -x -11)*(x^8 -7*x^7 -141*x^6 + 777*x^5 + 6473*x^4 -22104*x^3 -96493*x^2 + 55497*x + 205120);
T[193,37]=(x^5 + 6*x^4 -51*x^3 -173*x^2 + 215*x + 121)*(x^2 -x -11)*(x^8 + 13*x^7 -58*x^6 -998*x^5 -211*x^4 + 19635*x^3 + 38156*x^2 -17119*x -52750);
T[193,41]=(x^5 + 6*x^4 -60*x^3 -271*x^2 + 764*x + 371)*(x^2 -9*x + 19)*(x^8 + 3*x^7 -185*x^6 + 7*x^5 + 8913*x^4 -20420*x^3 -68415*x^2 + 263923*x -220306);
T[193,43]=(x^5 -11*x^4 -83*x^3 + 1012*x^2 + 51*x -8483)*(x^2 + 3*x -9)*(x^8 + 4*x^7 -157*x^6 -354*x^5 + 6354*x^4 + 7710*x^3 -93148*x^2 -47861*x + 451036);
T[193,47]=(x^2 + 9*x + 19)*(x^8 -40*x^7 + 523*x^6 -803*x^5 -39310*x^4 + 317968*x^3 -376803*x^2 -4269377*x + 12804416)*(x^5 + 41*x^4 + 639*x^3 + 4651*x^2 + 15404*x + 17941);
T[193,53]=(x^2 + 6*x -116)*(x^8 -8*x^7 -184*x^6 + 1345*x^5 + 7732*x^4 -64141*x^3 + 1800*x^2 + 470416*x -300136)*(x^5 -8*x^4 -120*x^3 + 527*x^2 + 2534*x + 683);
T[193,59]=(x^5 + 20*x^4 + 53*x^3 -987*x^2 -5697*x -4887)*(x^2 -20)*(x^8 -175*x^6 -191*x^5 + 8211*x^4 + 17729*x^3 -96856*x^2 -269924*x -91856);
T[193,61]=(x^5 -x^4 -85*x^3 + 176*x^2 + 467*x + 179)*(x^2 -13*x + 31)*(x^8 + 6*x^7 -441*x^6 -1736*x^5 + 63438*x^4 + 107966*x^3 -3367184*x^2 -1203083*x + 54119770);
T[193,67]=(x^5 -89*x^3 -134*x^2 + 2080*x + 5803)*(x^2 + 9*x -81)*(x^8 -3*x^7 -146*x^6 + 485*x^5 + 5351*x^4 -16739*x^3 -48741*x^2 + 93609*x + 161740);
T[193,71]=(x^2 + 18*x + 76)*(x^8 -25*x^7 + 125*x^6 + 1535*x^5 -17282*x^4 + 30091*x^3 + 221230*x^2 -840660*x + 531808)*(x^5 -x^4 -149*x^3 + 105*x^2 + 4136*x + 2407);
T[193,73]=(x^5 + 23*x^4 + 163*x^3 + 351*x^2 -52*x -23)*(x^2 + 2*x -44)*(x^8 + 9*x^7 -109*x^6 -997*x^5 + 3528*x^4 + 33141*x^3 -34160*x^2 -334432*x + 13016);
T[193,79]=(x^5 + 16*x^4 + 34*x^3 -367*x^2 -1086*x + 603)*(x^2 -13*x + 31)*(x^8 + 9*x^7 -327*x^6 -1459*x^5 + 40555*x^4 -16906*x^3 -1760895*x^2 + 7796993*x -9776512);
T[193,83]=(x^5 -9*x^4 -273*x^3 + 2791*x^2 -8710*x + 8869)*(x^2 + 21*x + 79)*(x^8 -44*x^7 + 629*x^6 -1641*x^5 -37394*x^4 + 317756*x^3 -526877*x^2 -2318389*x + 6755860);
T[193,89]=(x^5 -17*x^4 -185*x^3 + 4660*x^2 -20645*x -193)*(x^2 + 21*x + 99)*(x^8 -24*x^7 -225*x^6 + 10204*x^5 -56262*x^4 -776810*x^3 + 11060572*x^2 -50162063*x + 79682630);
T[193,97]=(x^5 + 19*x^4 -197*x^3 -5210*x^2 -15125*x + 81161)*(x^2 -2*x -44)*(x^8 + 11*x^7 -353*x^6 -3630*x^5 + 31335*x^4 + 322937*x^3 -349992*x^2 -7273392*x -12477752);

T[194,2]=(x^6 + 4*x^5 + 9*x^4 + 15*x^3 + 18*x^2 + 16*x + 8)*(x^8 -3*x^7 + 7*x^6 -12*x^5 + 19*x^4 -24*x^3 + 28*x^2 -24*x + 16)*(x + 1)^4*(x -1)^5;
T[194,3]=(x^4 -2*x^3 -9*x^2 + 18*x -7)*(x^4 -2*x^3 -9*x^2 + 18*x + 1)*(x )*(x^3 + 4*x^2 + 3*x -1)^2*(x^4 -5*x^2 -x + 4)^2;
T[194,5]=(x -4)*(x^4 + 2*x^3 -5*x^2 -6*x + 7)*(x^4 + 2*x^3 -15*x^2 -26*x + 27)*(x^3 + 3*x^2 -4*x + 1)^2*(x^4 -x^3 -4*x^2 + x + 2)^2;
T[194,7]=(x + 4)*(x^4 -2*x^3 -19*x^2 + 62*x -49)*(x^4 -6*x^3 + 7*x^2 + 10*x -13)*(x^3 + 7*x^2 + 14*x + 7)^2*(x^4 -3*x^3 -6*x^2 + 23*x -16)^2;
T[194,11]=(x -4)*(x^4 -2*x^3 -9*x^2 + 2*x + 9)*(x^4 + 2*x^3 -41*x^2 -66*x + 193)*(x^3 + 7*x^2 + 14*x + 7)^2*(x^4 -5*x^3 -14*x^2 + 47*x + 92)^2;
T[194,13]=(x + 4)*(x^4 -4*x^3 -20*x^2 + 80*x -16)*(x^4 -4*x^3 -20*x^2 + 48*x + 112)*(x^3 + 2*x^2 -x -1)^2*(x^4 + 6*x^3 -29*x^2 -167*x -122)^2;
T[194,17]=(x -6)*(x^4 + 8*x^3 -32*x^2 -320*x -528)*(x^2 + 4*x -4)^2*(x^3 + 3*x^2 -4*x -13)^2*(x^4 -3*x^3 -20*x^2 + 15*x + 74)^2;
T[194,19]=(x + 6)*(x^4 -8*x^3 -40*x^2 + 448*x -832)*(x^2 -8)^2*(x^3 -5*x^2 -57*x + 293)^2*(x^4 + 3*x^3 -5*x^2 -11*x + 4)^2;
T[194,23]=(x + 4)*(x^4 -10*x^3 -27*x^2 + 526*x -1317)*(x^4 + 10*x^3 + 15*x^2 -34*x -41)*(x^3 + 12*x^2 + 27*x -13)^2*(x^4 -22*x^3 + 151*x^2 -265*x -368)^2;
T[194,29]=(x^4 -6*x^3 -95*x^2 + 318*x + 1799)*(x^4 + 6*x^3 -37*x^2 -110*x -69)*(x )*(x^3 -x^2 -65*x + 169)^2*(x^4 -7*x^3 -27*x^2 + 199*x -254)^2;
T[194,31]=(x^4 -8*x^3 -72*x^2 + 576*x -448)*(x^4 -8*x^3 -88*x^2 + 576*x + 1216)*(x )*(x^3 + 8*x^2 + 5*x -43)^2*(x^4 + 4*x^3 -67*x^2 -79*x + 592)^2;
T[194,37]=(x + 8)*(x^4 + 2*x^3 -97*x^2 -78*x + 1979)*(x^4 -14*x^3 + 21*x^2 + 386*x -1337)*(x^3 + 2*x^2 -71*x + 97)^2*(x^4 + 6*x^3 -27*x^2 -81*x + 162)^2;
T[194,41]=(x + 2)*(x^4 -56*x^2 + 64*x + 448)*(x^4 + 16*x^3 + 56*x^2 -128*x -576)*(x^3 -3*x^2 -4*x -1)^2*(x^4 -3*x^3 -158*x^2 + 131*x + 5506)^2;
T[194,43]=(x + 8)*(x^4 -10*x^3 -69*x^2 + 430*x + 1657)*(x^4 + 10*x^3 -61*x^2 -446*x -223)*(x^3 -x^2 -16*x + 29)^2*(x^4 -9*x^3 + 20*x^2 + 9*x -44)^2;
T[194,47]=(x^4 + 4*x^3 -20*x^2 -16*x + 48)*(x^4 + 28*x^3 + 244*x^2 + 560*x -784)*(x )*(x^3 + 17*x^2 + 59*x -13)^2*(x^4 -19*x^3 + 99*x^2 -161*x + 16)^2;
T[194,53]=(x -6)*(x^4 + 4*x^3 -44*x^2 -208*x -112)*(x^4 + 4*x^3 -180*x^2 -784*x -528)*(x^3 -2*x^2 -155*x + 659)^2*(x^4 + 4*x^3 -75*x^2 -123*x + 1262)^2;
T[194,59]=(x -6)*(x^4 + 20*x^3 + 108*x^2 + 16*x -752)*(x^4 -4*x^3 -36*x^2 + 16*x + 144)*(x^3 -19*x^2 + 104*x -169)^2*(x^4 -x^3 -98*x^2 + 3*x + 772)^2;
T[194,61]=(x -10)*(x^4 + 4*x^3 -148*x^2 + 16*x + 3344)*(x^4 -12*x^3 -196*x^2 + 1968*x + 5392)*(x^3 -3*x^2 -88*x + 377)^2*(x^4 + 7*x^3 -74*x^2 -627*x -1046)^2;
T[194,67]=(x -6)*(x^4 -16*x^3 -112*x^2 + 1408*x + 5696)*(x^4 -16*x^3 + 40*x^2 + 320*x -1216)*(x^3 + x^2 -86*x -337)^2*(x^4 + 11*x^3 -86*x^2 -1069*x -1604)^2;
T[194,71]=(x^4 -12*x^3 -60*x^2 + 272*x -112)*(x^4 -28*x^3 + 228*x^2 -368*x -816)*(x )*(x^3 + 23*x^2 + 132*x + 13)^2*(x^4 -11*x^3 -24*x^2 + 413*x -656)^2;
T[194,73]=(x + 10)*(x^4 -10*x^3 -41*x^2 -22*x + 1)*(x^4 + 6*x^3 -121*x^2 -230*x + 97)*(x^3 + x^2 -2*x -1)^2*(x^4 + 19*x^3 + 4*x^2 -1249*x -3982)^2;
T[194,79]=(x -8)*(x^4 -32*x^3 + 320*x^2 -800*x -1936)*(x^2 -4*x -4)^2*(x^3 + 12*x^2 -x -223)^2*(x^4 + 16*x^3 -73*x^2 -1303*x + 1952)^2;
T[194,83]=(x + 2)*(x^4 + 12*x^3 -92*x^2 -1680*x -5488)*(x^4 + 20*x^3 + 124*x^2 + 208*x -144)*(x^3 -2*x^2 -148*x + 232)^2*(x^4 -14*x^3 -108*x^2 + 1592*x -4064)^2;
T[194,89]=(x -14)*(x^4 -14*x^3 -x^2 + 670*x -2223)*(x^4 + 18*x^3 + 31*x^2 -98*x + 49)*(x^3 -12*x^2 -x + 41)^2*(x^4 + 26*x^3 + 91*x^2 -1449*x -5762)^2;
T[194,97]=(x + 1)^11*(x -1)^12;

T[195,2]=(x^3 -7*x -2)*(x -1)^2*(x^2 -3)^2*(x -2)^3*(x^2 + 2*x -1)^4*(x + 1)^5;
T[195,3]=(x^2 + 2*x + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 4*x^2 + 9)*(x -1)^7*(x + 1)^8;
T[195,5]=(x^2 -2*x + 5)*(x^4 + 2*x^2 + 25)*(x -1)^9*(x + 1)^10;
T[195,7]=(x -3)*(x + 1)*(x + 3)*(x^3 -x^2 -16*x -16)*(x^2 -8)^2*(x^2 -4*x -4)^2*(x )^3*(x -2)^4*(x + 4)^4;
T[195,11]=(x -5)*(x + 1)*(x + 5)*(x^3 -x^2 -16*x -16)*(x -2)^2*(x + 4)^2*(x^2 + 6*x + 6)^2*(x^2 -4*x + 2)^2*(x -4)^3*(x + 2)^4;
T[195,13]=(x^2 + 2*x + 13)*(x -1)^11*(x + 1)^12;
T[195,17]=(x + 7)*(x -5)*(x + 1)*(x^3 + x^2 -32*x -76)*(x^2 -12)^2*(x^2 + 4*x -4)^2*(x^2 -4*x -28)^2*(x -2)^7;
T[195,19]=(x + 4)*(x + 2)*(x -2)*(x^3 -6*x^2 -16*x + 64)*(x -4)^2*(x^2 -4*x + 2)^2*(x^2 -8)^2*(x^2 + 2*x -26)^2*(x )^2*(x + 6)^3;
T[195,23]=(x -8)*(x -3)*(x + 1)*(x + 3)*(x^3 + 7*x^2 -16*x -128)*(x + 6)^2*(x^2 -2)^2*(x^2 -6*x + 6)^2*(x + 4)^4*(x )^4;
T[195,29]=(x -10)*(x + 10)^2*(x^2 + 12*x + 24)^2*(x^2 -32)^2*(x -6)^3*(x + 2)^4*(x -2)^7;
T[195,31]=(x + 6)*(x -2)*(x + 8)*(x + 2)*(x^3 -6*x^2 -16*x + 32)*(x + 10)^2*(x -4)^2*(x^2 + 8*x + 8)^2*(x^2 -10*x -2)^2*(x^2 -12*x + 18)^2*(x )^2;
T[195,37]=(x -11)*(x -7)*(x + 3)*(x -6)*(x^3 -13*x^2 + 316)*(x + 10)^2*(x^2 -72)^2*(x^2 + 4*x -28)^2*(x + 4)^4*(x + 2)^4;
T[195,41]=(x -9)*(x + 9)*(x + 5)*(x^3 -x^2 -32*x + 76)*(x -10)^2*(x -6)^2*(x^2 -16*x + 56)^2*(x^2 + 12*x + 28)^2*(x^2 -12)^2*(x + 6)^3;
T[195,43]=(x + 8)*(x^3 -112*x -128)*(x + 4)^2*(x + 12)^2*(x -10)^2*(x^2 + 8*x -34)^2*(x^2 -10*x -2)^2*(x^2 -8*x -16)^2*(x -4)^3;
T[195,47]=(x + 8)*(x + 10)*(x^3 + 18*x^2 + 80*x + 64)*(x -10)^2*(x -4)^2*(x -8)^2*(x^2 + 4*x -4)^2*(x^2 + 12*x + 4)^2*(x )^2*(x -6)^4;
T[195,53]=(x -11)*(x -9)*(x -5)*(x^3 -11*x^2 + 8*x + 4)*(x + 10)^2*(x -2)^2*(x^2 + 12*x -36)^2*(x^2 -108)^2*(x -6)^3*(x + 2)^4;
T[195,59]=(x -8)*(x + 12)*(x^3 + 8*x^2 -48*x -128)*(x -6)^2*(x + 4)^2*(x -12)^2*(x^2 -4*x -28)^2*(x^2 + 6*x -138)^2*(x^2 -12*x + 18)^2*(x )^2;
T[195,61]=(x + 11)*(x -5)*(x -13)*(x^3 -9*x^2 -112*x + 844)*(x -2)^2*(x^2 -4*x -124)^2*(x^2 -4*x -104)^2*(x + 8)^4*(x + 2)^5;
T[195,67]=(x^3 -4*x^2 -64*x + 128)*(x + 8)^2*(x^2 -8*x + 8)^2*(x^2 + 8*x -92)^2*(x -12)^3*(x + 2)^4*(x + 4)^5;
T[195,71]=(x + 5)*(x -9)*(x -15)*(x^3 + 11*x^2 + 24*x -32)*(x + 8)^2*(x -6)^2*(x^2 -6*x + 6)^2*(x^2 -4*x -94)^2*(x )^3*(x -2)^4;
T[195,73]=(x -6)*(x^3 + 6*x^2 -100*x -344)*(x -2)^2*(x^2 -72)^2*(x^2 -12*x + 4)^2*(x -10)^3*(x + 6)^4*(x + 4)^4;
T[195,79]=(x + 11)*(x -16)*(x^3 -5*x^2 -48*x -64)*(x + 3)^2*(x + 12)^2*(x -8)^2*(x^2 -128)^2*(x^2 -72)^2*(x^2 -4*x -104)^2*(x )^2;
T[195,83]=(x + 12)*(x -8)*(x^3 -8*x^2 -48*x + 128)*(x + 4)^2*(x + 16)^2*(x -12)^2*(x -4)^2*(x^2 + 4*x -28)^2*(x^2 + 12*x + 28)^2*(x + 6)^4;
T[195,89]=(x + 15)*(x + 11)*(x -11)*(x -10)*(x^3 -11*x^2 + 8*x + 4)*(x + 2)^2*(x -2)^2*(x + 6)^2*(x^2 -24*x + 136)^2*(x^2 + 12*x -12)^2*(x -6)^4;
T[195,97]=(x + 9)*(x -18)*(x -17)*(x + 11)*(x^3 + 25*x^2 + 176*x + 244)*(x + 2)^2*(x -10)^2*(x^2 + 4*x -28)^4*(x -2)^6;

T[196,2]=(x^2 -x + 2)*(x -1)^2*(x + 1)^3*(x )^10;
T[196,3]=(x -1)*(x + 1)*(x^2 -8)*(x -2)^2*(x^2 -2)^2*(x )^3*(x + 2)^4;
T[196,5]=(x -3)*(x + 3)*(x^2 -2)*(x^2 -8)^2*(x )^9;
T[196,7]=(x -1)^2*(x )^15;
T[196,11]=(x + 3)^2*(x + 2)^4*(x -4)^5*(x )^6;
T[196,13]=(x + 2)*(x -2)*(x^2 -18)*(x -4)^2*(x + 4)^4*(x )^7;
T[196,17]=(x -3)*(x + 3)*(x + 6)^2*(x^2 -2)^3*(x )^3*(x -6)^4;
T[196,19]=(x + 1)*(x -1)*(x^2 -8)*(x + 2)^2*(x^2 -50)^2*(x )^3*(x -2)^4;
T[196,23]=(x -3)^2*(x -8)^3*(x + 4)^6*(x )^6;
T[196,29]=(x -8)^2*(x -2)^7*(x + 6)^8;
T[196,31]=(x + 7)*(x -7)*(x -4)^2*(x^2 -72)^2*(x + 4)^4*(x )^5;
T[196,37]=(x + 8)^2*(x + 1)^2*(x + 6)^3*(x -10)^4*(x -2)^6;
T[196,41]=(x^2 -50)*(x^2 -98)^2*(x + 6)^3*(x )^3*(x -6)^5;
T[196,43]=(x + 12)^3*(x + 4)^4*(x -2)^4*(x -8)^6;
T[196,47]=(x + 9)*(x -9)*(x^2 -32)*(x -12)^2*(x^2 -8)^2*(x )^3*(x + 12)^4;
T[196,53]=(x -3)^2*(x -10)^2*(x + 10)^3*(x + 2)^4*(x -6)^6;
T[196,59]=(x -9)*(x + 9)*(x^2 -200)*(x -6)^2*(x^2 -2)^2*(x )^3*(x + 6)^4;
T[196,61]=(x + 1)*(x -1)*(x^2 -50)*(x + 8)^2*(x^2 -8)^2*(x )^3*(x -8)^4;
T[196,67]=(x + 7)^2*(x )^2*(x -4)^3*(x -12)^4*(x + 4)^6;
T[196,71]=(x -16)^3*(x + 12)^4*(x )^10;
T[196,73]=(x + 1)*(x -1)*(x^2 -50)*(x + 2)^2*(x^2 -2)^2*(x )^3*(x -2)^4;
T[196,79]=(x + 13)^2*(x + 4)^4*(x -8)^11;
T[196,83]=(x + 12)*(x -12)*(x^2 -200)*(x -6)^2*(x^2 -98)^2*(x )^3*(x + 6)^4;
T[196,89]=(x -15)*(x + 15)*(x -6)^2*(x^2 -50)^3*(x )^3*(x + 6)^4;
T[196,97]=(x^2 -2)*(x^2 -98)^2*(x -10)^3*(x )^3*(x + 10)^5;

T[197,2]=(x + 2)*(x^5 -5*x^3 + x^2 + 3*x -1)*(x^10 -15*x^8 + x^7 + 78*x^6 -7*x^5 -165*x^4 + 15*x^3 + 123*x^2 -9*x -26);
T[197,3]=(x^5 + 8*x^4 + 18*x^3 -x^2 -38*x -25)*(x^10 -10*x^9 + 29*x^8 + 17*x^7 -227*x^6 + 316*x^5 + 184*x^4 -784*x^3 + 646*x^2 -175*x + 2)*(x );
T[197,5]=(x^5 + 4*x^4 -8*x^3 -37*x^2 + 16*x + 85)*(x^10 -2*x^9 -26*x^8 + 59*x^7 + 180*x^6 -465*x^5 -194*x^4 + 804*x^3 -200*x^2 -176*x + 32)*(x );
T[197,7]=(x + 3)*(x^10 -11*x^9 + 25*x^8 + 100*x^7 -420*x^6 -24*x^5 + 1485*x^4 -1136*x^3 -496*x^2 + 384*x + 64)*(x^5 + 10*x^4 + 27*x^3 -9*x^2 -97*x -53);
T[197,11]=(x -4)*(x^5 + 8*x^4 + x^3 -68*x^2 + 22*x + 59)*(x^10 -2*x^9 -48*x^8 + 128*x^7 + 590*x^6 -1633*x^5 -2727*x^4 + 6561*x^3 + 5866*x^2 -7319*x -5906);
T[197,13]=(x + 2)*(x^5 + 8*x^4 -18*x^3 -163*x^2 + 188*x + 493)*(x^10 -8*x^9 -14*x^8 + 189*x^7 -28*x^6 -1145*x^5 + 116*x^4 + 2160*x^3 -352*x^2 -1264*x + 448);
T[197,17]=(x + 8)*(x^5 -9*x^4 + 3*x^3 + 105*x^2 -34*x -289)*(x^10 + 3*x^9 -77*x^8 -135*x^7 + 1946*x^6 + 1297*x^5 -16940*x^4 -8*x^3 + 35744*x^2 + 3776*x -11008);
T[197,19]=(x + 3)*(x^5 + 16*x^4 + 80*x^3 + 81*x^2 -378*x -761)*(x^10 -17*x^9 + 76*x^8 + 217*x^7 -2575*x^6 + 4369*x^5 + 14921*x^4 -57736*x^3 + 47488*x^2 + 21888*x -26944);
T[197,23]=(x + 3)*(x^5 + x^4 -27*x^3 + 18*x^2 + 61*x -1)*(x^10 + 4*x^9 -144*x^8 -543*x^7 + 6487*x^6 + 20118*x^5 -102435*x^4 -144484*x^3 + 661108*x^2 -346800*x -55696);
T[197,29]=(x -7)*(x^5 -2*x^4 -42*x^3 + 9*x^2 + 18*x -1)*(x^10 + 9*x^9 -35*x^8 -502*x^7 -392*x^6 + 7235*x^5 + 16932*x^4 -14806*x^3 -66514*x^2 -43305*x -1849);
T[197,31]=(x + 10)*(x^5 -2*x^4 -31*x^3 + 9*x^2 + 249*x + 235)*(x^10 -20*x^9 + 122*x^8 -43*x^7 -1825*x^6 + 3816*x^5 + 4406*x^4 -9464*x^3 + 183*x^2 + 3967*x -1018);
T[197,37]=(x -7)*(x^5 + 17*x^4 -x^3 -1275*x^2 -6400*x -7121)*(x^10 -12*x^9 -153*x^8 + 1716*x^7 + 8394*x^6 -65825*x^5 -245040*x^4 + 611177*x^3 + 1793316*x^2 -1567431*x -1031837);
T[197,41]=(x -9)*(x^5 + 5*x^4 -162*x^3 -847*x^2 + 4273*x + 16859)*(x^10 + 18*x^9 -32*x^8 -2301*x^7 -9354*x^6 + 73605*x^5 + 571732*x^4 + 189871*x^3 -7320245*x^2 -19192528*x -12249251);
T[197,43]=(x -1)*(x^5 + 26*x^4 + 213*x^3 + 492*x^2 -660*x -2027)*(x^10 -11*x^9 -121*x^8 + 1383*x^7 + 3444*x^6 -51739*x^5 + 12207*x^4 + 500040*x^3 -261784*x^2 -1206576*x + 958064);
T[197,47]=(x + 11)*(x^5 -16*x^4 + 50*x^3 + 167*x^2 -494*x -169)*(x^10 -5*x^9 -226*x^8 + 1173*x^7 + 13591*x^6 -52879*x^5 -318703*x^4 + 512768*x^3 + 2642712*x^2 -1037072*x -6076144);
T[197,53]=(x -10)*(x^5 -2*x^4 -139*x^3 + 483*x^2 + 1683*x -5615)*(x^10 + 6*x^9 -220*x^8 -739*x^7 + 15835*x^6 + 3138*x^5 -350470*x^4 + 990644*x^3 -916187*x^2 + 181083*x + 24986);
T[197,59]=(x^5 + 13*x^4 -46*x^3 -867*x^2 -643*x + 7055)*(x^10 + x^9 -338*x^8 -339*x^7 + 36805*x^6 + 34799*x^5 -1432560*x^4 -946828*x^3 + 12098912*x^2 -8585872*x -2663552)*(x );
T[197,61]=(x -5)*(x^5 + 3*x^4 -125*x^3 -88*x^2 + 3683*x -4835)*(x^10 -4*x^9 -265*x^8 + 1601*x^7 + 20942*x^6 -180267*x^5 -255598*x^4 + 5872323*x^3 -17056652*x^2 + 11676600*x + 7550167);
T[197,67]=(x + 10)*(x^5 + 40*x^4 + 571*x^3 + 3340*x^2 + 6302*x + 745)*(x^10 -46*x^9 + 754*x^8 -3152*x^7 -60904*x^6 + 1002661*x^5 -6499905*x^4 + 19481415*x^3 -10759642*x^2 -79238917*x + 142552394);
T[197,71]=(x -8)*(x^5 + 5*x^4 -121*x^3 -1038*x^2 -2149*x -617)*(x^10 + 5*x^9 -450*x^8 -3071*x^7 + 61093*x^6 + 604068*x^5 -1478314*x^4 -36020573*x^3 -151865757*x^2 -241118521*x -112062458);
T[197,73]=(x -6)*(x^5 + 9*x^4 -149*x^3 -1692*x^2 -2003*x + 10889)*(x^10 -25*x^9 -71*x^8 + 6014*x^7 -31477*x^6 -273297*x^5 + 2126400*x^4 + 2481468*x^3 -29341120*x^2 -9049168*x + 28387712);
T[197,79]=(x -2)*(x^5 -13*x^4 -163*x^3 + 3068*x^2 -14357*x + 20567)*(x^10 + x^9 -302*x^8 + 505*x^7 + 27409*x^6 -82390*x^5 -747136*x^4 + 1733729*x^3 + 8956725*x^2 -6591775*x -29837000);
T[197,83]=(x + 7)*(x^5 + 17*x^4 -22*x^3 -1143*x^2 -2107*x + 4447)*(x^10 -28*x^9 + 25*x^8 + 4755*x^7 -26636*x^6 -149210*x^5 + 577025*x^4 + 3181768*x^3 + 4340312*x^2 + 2039680*x + 303296);
T[197,89]=(x + 8)*(x^5 -10*x^4 -90*x^3 + 833*x^2 + 1152*x -9043)*(x^10 + 6*x^9 -410*x^8 -2437*x^7 + 40864*x^6 + 217907*x^5 -1431218*x^4 -6973192*x^3 + 13883856*x^2 + 69163248*x + 57477472);
T[197,97]=(x + 2)*(x^5 + 42*x^4 + 653*x^3 + 4612*x^2 + 14610*x + 16711)*(x^10 -2*x^9 -464*x^8 + 154*x^7 + 63470*x^6 + 17283*x^5 -2998665*x^4 -132197*x^3 + 48684390*x^2 -30209973*x -151216646);

T[198,2]=(x^2 -2*x + 2)*(x^2 + x + 2)^2*(x^2 + 2*x + 2)^3*(x^2 -x + 2)^3*(x + 1)^5*(x -1)^6;
T[198,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3*(x )^20;
T[198,5]=(x + 1)^2*(x -4)^3*(x + 4)^4*(x -2)^4*(x + 2)^5*(x )^5*(x -1)^6;
T[198,7]=(x + 4)^3*(x -2)^5*(x -4)^6*(x + 2)^15;
T[198,11]=(x + 1)^12*(x -1)^17;
T[198,13]=(x -2)^2*(x + 6)^3*(x + 4)^3*(x + 2)^10*(x -4)^11;
T[198,17]=(x -6)^2*(x + 6)^3*(x -2)^9*(x + 2)^15;
T[198,19]=(x -2)^2*(x -4)^3*(x + 4)^3*(x + 6)^4*(x )^17;
T[198,23]=(x + 8)^2*(x -1)^2*(x )^2*(x -6)^3*(x + 6)^3*(x + 4)^3*(x -4)^4*(x -8)^4*(x + 1)^6;
T[198,29]=(x + 10)*(x -10)^2*(x )^8*(x + 6)^9*(x -6)^9;
T[198,31]=(x + 4)^2*(x -8)^3*(x )^3*(x -4)^4*(x -7)^8*(x + 8)^9;
T[198,37]=(x -2)^2*(x + 10)^3*(x + 2)^3*(x + 6)^4*(x -3)^8*(x -6)^9;
T[198,41]=(x -8)^2*(x + 10)^2*(x -10)^2*(x -6)^4*(x + 6)^4*(x -2)^4*(x + 2)^5*(x + 8)^6;
T[198,43]=(x + 10)^2*(x -8)^3*(x -6)^4*(x -4)^6*(x )^6*(x + 6)^8;
T[198,47]=(x -6)*(x -2)*(x -12)^2*(x + 2)^2*(x + 6)^2*(x + 12)^3*(x + 8)^6*(x -8)^12;
T[198,53]=(x + 2)*(x -12)*(x + 4)*(x + 12)*(x -2)^2*(x -4)^2*(x -6)^6*(x )^7*(x + 6)^8;
T[198,59]=(x + 5)^2*(x + 12)^2*(x -12)^3*(x -4)^4*(x -5)^6*(x + 4)^6*(x )^6;
T[198,61]=(x + 10)^2*(x -8)^3*(x + 8)^3*(x + 14)^3*(x + 6)^4*(x -6)^6*(x -12)^8;
T[198,67]=(x -4)^3*(x + 12)^3*(x -8)^6*(x + 7)^8*(x + 4)^9;
T[198,71]=(x + 2)*(x + 6)*(x -6)^2*(x -3)^2*(x -12)^2*(x -2)^2*(x + 12)^3*(x + 3)^6*(x )^10;
T[198,73]=(x -14)^2*(x -2)^3*(x + 2)^4*(x + 14)^6*(x + 6)^6*(x -4)^8;
T[198,79]=(x -2)^2*(x -10)^3*(x -14)^3*(x + 4)^9*(x + 10)^12;
T[198,83]=(x -6)^2*(x + 4)^2*(x -4)^4*(x + 6)^6*(x + 12)^7*(x -12)^8;
T[198,89]=(x + 15)^2*(x + 10)^2*(x -6)^3*(x -10)^4*(x -15)^6*(x + 6)^6*(x )^6;
T[198,97]=(x -14)^3*(x + 2)^3*(x + 14)^3*(x + 7)^8*(x -2)^12;

T[199,2]=(x^2 + x -1)*(x^4 + 3*x^3 -4*x -1)*(x^10 -5*x^9 -4*x^8 + 51*x^7 -32*x^6 -154*x^5 + 151*x^4 + 168*x^3 -168*x^2 -54*x + 27);
T[199,3]=(x^10 + 4*x^9 -19*x^8 -88*x^7 + 73*x^6 + 552*x^5 + 200*x^4 -784*x^3 -480*x^2 + 96*x + 64)*(x -2)^2*(x^2 + x -1)^2;
T[199,5]=(x^4 + 5*x^3 + 4*x^2 -10*x -11)*(x^10 + x^9 -26*x^8 -26*x^7 + 216*x^6 + 219*x^5 -607*x^4 -571*x^3 + 317*x^2 + 156*x -63)*(x -3)^2;
T[199,7]=(x^4 + 3*x^3 -10*x^2 + 6*x -1)*(x^10 + 3*x^9 -41*x^8 -135*x^7 + 504*x^6 + 2027*x^5 -1160*x^4 -10173*x^3 -8697*x^2 + 1110*x + 497)*(x )^2;
T[199,11]=(x^2 + 6*x + 4)*(x^4 + 7*x^3 + 10*x^2 -6*x -11)*(x^10 -17*x^9 + 84*x^8 + 80*x^7 -1875*x^6 + 4370*x^5 + 4696*x^4 -27992*x^3 + 16544*x^2 + 42144*x -45504);
T[199,13]=(x^2 -2*x -19)*(x^4 -14*x^2 + 25*x -11)*(x^10 -60*x^8 -21*x^7 + 1174*x^6 + 364*x^5 -9433*x^4 -593*x^3 + 30585*x^2 -5033*x -26803);
T[199,17]=(x^2 -2*x -4)*(x^4 + 13*x^3 + 53*x^2 + 83*x + 41)*(x^10 -13*x^9 -33*x^8 + 903*x^7 -931*x^6 -18888*x^5 + 35108*x^4 + 127856*x^3 -200288*x^2 -289728*x + 136512);
T[199,19]=(x^2 -2*x -44)*(x^4 -26*x^2 + 15*x + 89)*(x^10 + 8*x^9 -74*x^8 -681*x^7 + 1255*x^6 + 18102*x^5 + 9484*x^4 -155232*x^3 -260048*x^2 + 28416*x + 47808);
T[199,23]=(x^2 -45)*(x^4 + 4*x^3 -50*x^2 -108*x + 409)*(x^10 -4*x^9 -80*x^8 + 192*x^7 + 2058*x^6 -3068*x^5 -22337*x^4 + 18540*x^3 + 100087*x^2 -32676*x -126969);
T[199,29]=(x^2 -8*x -4)*(x^4 + 19*x^3 + 87*x^2 -149*x -1109)*(x^10 -31*x^9 + 344*x^8 -1298*x^7 -3683*x^6 + 41082*x^5 -71279*x^4 -154274*x^3 + 430738*x^2 + 50745*x -214521);
T[199,31]=(x^2 + 4*x -1)*(x^4 + 2*x^3 -15*x^2 -36*x -1)*(x^10 + 10*x^9 -117*x^8 -884*x^7 + 6198*x^6 + 20286*x^5 -144318*x^4 + 30846*x^3 + 555826*x^2 -473788*x + 50969);
T[199,37]=(x^2 + 6*x -36)*(x^4 -11*x^3 + 27*x^2 + 21*x -49)*(x^10 + x^9 -107*x^8 + 91*x^7 + 3397*x^6 -6026*x^5 -39664*x^4 + 103936*x^3 + 116960*x^2 -552960*x + 430272);
T[199,41]=(x^2 -6*x + 4)*(x^4 + 22*x^3 + 128*x^2 -118*x -1969)*(x^10 -36*x^9 + 344*x^8 + 2130*x^7 -55221*x^6 + 207810*x^5 + 1570380*x^4 -13244592*x^3 + 15580960*x^2 + 92425824*x -201558336);
T[199,43]=(x^2 + 20*x + 95)*(x^4 -3*x^3 -45*x^2 + 149*x -61)*(x^10 + x^9 -251*x^8 -357*x^7 + 19058*x^6 + 54883*x^5 -430476*x^4 -2236604*x^3 -3181720*x^2 -1542745*x -231451);
T[199,47]=(x^2 -4*x -1)*(x^4 -10*x^3 -44*x^2 + 520*x -496)*(x^10 + 14*x^9 -78*x^8 -1216*x^7 + 3573*x^6 + 33370*x^5 -105889*x^4 -185978*x^3 + 846484*x^2 -746376*x + 183792);
T[199,53]=(x^2 + 14*x + 29)*(x^4 + 3*x^3 -137*x^2 -627*x -109)*(x^10 -29*x^9 + 237*x^8 + 389*x^7 -16432*x^6 + 96273*x^5 -216614*x^4 + 25224*x^3 + 586668*x^2 -454725*x -359181);
T[199,59]=(x^2 -20)*(x^4 -2*x^3 -155*x^2 -264*x + 2299)*(x^10 -10*x^9 -145*x^8 + 1976*x^7 -4229*x^6 -27378*x^5 + 142384*x^4 -212704*x^3 + 62192*x^2 + 48864*x -576);
T[199,61]=(x^2 -10*x -55)*(x^4 -5*x^3 -44*x^2 + 140*x + 539)*(x^10 + 3*x^9 -382*x^8 -1440*x^7 + 49318*x^6 + 223949*x^5 -2309051*x^4 -12332431*x^3 + 20326235*x^2 + 138347022*x + 82389159);
T[199,67]=(x^4 -17*x^3 + 28*x^2 + 598*x -1859)*(x^10 + x^9 -274*x^8 + 658*x^7 + 18521*x^6 -59936*x^5 -415800*x^4 + 1342784*x^3 + 2746400*x^2 -5862048*x -6682688)*(x -2)^2;
T[199,71]=(x^2 + 6*x + 4)*(x^4 + 18*x^3 -80*x^2 -2674*x -10241)*(x^10 -20*x^9 -320*x^8 + 7758*x^7 + 23371*x^6 -971146*x^5 + 764932*x^4 + 43082800*x^3 -89118496*x^2 -377840352*x -49590336);
T[199,73]=(x^2 -10*x + 20)*(x^4 + 2*x^3 -47*x^2 -148*x -89)*(x^10 + 24*x^9 -37*x^8 -5278*x^7 -39961*x^6 + 132584*x^5 + 2893520*x^4 + 11844400*x^3 + 4084160*x^2 -74823712*x -126156224);
T[199,79]=(x^2 + 12*x -9)*(x^4 + 11*x^3 -110*x^2 -622*x + 769)*(x^10 -17*x^9 -248*x^8 + 4056*x^7 + 18474*x^6 -242713*x^5 -634593*x^4 + 2487023*x^3 + 6096603*x^2 -4831474*x -11972809);
T[199,83]=(x^2 -18*x + 76)*(x^4 -7*x^3 -60*x^2 + 246*x + 1109)*(x^10 + 33*x^9 + 260*x^8 -2128*x^7 -35867*x^6 -46656*x^5 + 1111528*x^4 + 3914568*x^3 -5001536*x^2 -20158080*x + 19171008);
T[199,89]=(x^4 + 9*x^3 -140*x^2 -1218*x + 899)*(x^10 -15*x^9 -162*x^8 + 4238*x^7 -24670*x^6 + 18267*x^5 + 196513*x^4 -274091*x^3 -385793*x^2 + 502632*x -12561)*(x -9)^2;
T[199,97]=(x^2 -8*x -64)*(x^4 + 10*x^3 -161*x^2 -1910*x -4091)*(x^10 -2*x^9 -679*x^8 + 998*x^7 + 163445*x^6 -200814*x^5 -16661184*x^4 + 18134792*x^3 + 659961200*x^2 -503055872*x -8275375168);

T[200,2]=(x -1)*(x + 1)*(x )^17;
T[200,3]=(x + 3)*(x -3)*(x -1)^3*(x + 1)^3*(x -2)^3*(x )^3*(x + 2)^5;
T[200,5]=(x -1)*(x + 1)^2*(x )^16;
T[200,7]=(x -4)*(x + 4)^2*(x + 2)^7*(x -2)^9;
T[200,11]=(x -1)^2*(x + 4)^2*(x -4)^3*(x + 3)^6*(x )^6;
T[200,13]=(x + 2)^4*(x -4)^5*(x + 4)^5*(x -2)^5;
T[200,17]=(x -5)*(x + 2)*(x + 5)*(x -2)^2*(x -6)^2*(x )^2*(x + 3)^3*(x -3)^3*(x + 6)^4;
T[200,19]=(x -1)^2*(x -4)^3*(x -5)^6*(x + 4)^8;
T[200,23]=(x + 4)*(x + 2)^2*(x -2)^2*(x -4)^2*(x + 6)^5*(x -6)^7;
T[200,29]=(x -2)^2*(x + 8)^2*(x + 2)^3*(x -6)^6*(x )^6;
T[200,31]=(x -10)^2*(x )^2*(x + 8)^3*(x + 4)^6*(x -2)^6;
T[200,37]=(x -4)*(x + 4)*(x + 6)^2*(x -6)^3*(x + 2)^5*(x -2)^7;
T[200,41]=(x -2)^2*(x + 6)^3*(x -6)^6*(x + 3)^8;
T[200,43]=(x -8)*(x -6)*(x + 6)*(x -10)^2*(x + 8)^2*(x + 10)^4*(x -4)^4*(x + 4)^4;
T[200,47]=(x + 4)^2*(x -12)^3*(x -4)^3*(x + 12)^3*(x -6)^3*(x + 6)^5;
T[200,53]=(x + 4)*(x -4)*(x -6)^8*(x + 6)^9;
T[200,59]=(x -8)^2*(x + 12)^2*(x + 4)^3*(x -12)^6*(x )^6;
T[200,61]=(x -10)^2*(x + 10)^2*(x + 2)^3*(x -2)^12;
T[200,67]=(x + 14)*(x -14)*(x -1)*(x + 8)*(x + 1)*(x -8)^2*(x + 2)^2*(x + 13)^3*(x -13)^3*(x -2)^4;
T[200,71]=(x -8)^2*(x )^3*(x -12)^6*(x + 12)^8;
T[200,73]=(x -3)*(x + 8)*(x + 3)*(x -6)*(x -8)*(x + 6)^2*(x + 2)^2*(x -11)^3*(x + 11)^3*(x -2)^4;
T[200,79]=(x -16)^2*(x -6)^2*(x )^3*(x + 10)^6*(x -8)^6;
T[200,83]=(x -2)*(x -16)*(x -13)*(x + 13)*(x + 2)*(x + 16)^2*(x + 6)^2*(x + 9)^3*(x -9)^3*(x -6)^4;
T[200,89]=(x -6)^2*(x + 9)^2*(x -15)^6*(x + 6)^9;
T[200,97]=(x -16)*(x + 16)*(x -14)^2*(x + 14)^3*(x + 2)^5*(x -2)^7;

T[201,2]=(x + 2)*(x -1)*(x + 1)*(x^3 -3*x^2 -x + 5)*(x^5 -8*x^3 + 13*x + 2)*(x -2)^2*(x^2 + 3*x + 1)^2*(x^2 + x -1)^2;
T[201,3]=(x^2 + 2*x + 3)*(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x^4 -x^3 + 5*x^2 -3*x + 9)*(x + 1)^5*(x -1)^6;
T[201,5]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^5 + 3*x^4 -9*x^3 -19*x^2 + 10*x + 16)*(x )*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^5;
T[201,7]=(x + 3)*(x + 5)*(x^3 -x^2 -5*x + 1)*(x^5 -7*x^4 + 3*x^3 + 63*x^2 -128*x + 64)*(x )*(x + 2)^2*(x^2 -x -1)^2*(x^2 + x -11)^2;
T[201,11]=(x + 6)*(x^3 -10*x^2 + 24*x + 4)*(x^5 -20*x^3 -4*x^2 + 56*x -32)*(x )*(x^2 -5)^2*(x + 4)^3*(x -1)^4;
T[201,13]=(x + 4)*(x^3 + 8*x^2 + 12*x + 4)*(x^5 -10*x^4 + 20*x^3 + 36*x^2 -88*x -32)*(x -2)^2*(x -4)^2*(x^2 + x -1)^2*(x^2 + 7*x + 1)^2;
T[201,17]=(x -6)*(x + 7)*(x -2)*(x^3 -28*x + 52)*(x^5 + 5*x^4 -46*x^3 -96*x^2 + 636*x -568)*(x -3)^2*(x^2 + 6*x + 4)^2*(x^2 -6*x + 4)^2;
T[201,19]=(x + 5)*(x^3 + 2*x^2 -44*x -20)*(x^5 -5*x^4 -46*x^3 + 248*x^2 -180*x -16)*(x -7)^2*(x + 2)^2*(x^2 -x -11)^2*(x^2 + 11*x + 29)^2;
T[201,23]=(x + 1)*(x + 3)*(x + 7)*(x^3 -3*x^2 -31*x + 95)*(x^5 + 2*x^4 -14*x^3 + 8*x^2 + 11*x -4)*(x -9)^2*(x^2 + 2*x -19)^2*(x^2 -6*x -11)^2;
T[201,29]=(x -4)*(x + 8)*(x -1)*(x^3 -4*x^2 -48*x + 64)*(x^5 -3*x^4 -98*x^3 + 224*x^2 + 2048*x -2048)*(x + 5)^2*(x^2 -10*x + 5)^2*(x^2 + 6*x -11)^2;
T[201,31]=(x + 4)*(x + 7)*(x^3 -11*x^2 -13*x + 295)*(x^5 -9*x^4 -x^3 + 173*x^2 -332*x -32)*(x + 10)^2*(x^2 -45)^2*(x + 1)^5;
T[201,37]=(x -5)*(x -3)*(x + 3)*(x^3 + 9*x^2 -13*x -169)*(x^5 -8*x^4 -68*x^3 + 438*x^2 + 655*x -818)*(x + 1)^2*(x^2 + x -11)^2*(x^2 -3*x + 1)^2;
T[201,41]=(x + 3)*(x + 9)*(x^3 -x^2 -61*x -97)*(x^5 + 7*x^4 -15*x^3 -129*x^2 -14*x + 32)*(x^2 -5*x -25)^2*(x^2 + 3*x + 1)^2*(x )^3;
T[201,43]=(x -7)*(x + 6)*(x -9)*(x^5 -x^4 -91*x^3 + 205*x^2 + 1974*x -6056)*(x + 2)^2*(x^2 + 9*x -11)^2*(x^2 -3*x -9)^2*(x + 1)^3;
T[201,47]=(x -9)*(x -8)*(x^3 -18*x^2 + 60*x + 52)*(x^5 + 5*x^4 -46*x^3 -248*x^2 -180*x + 16)*(x )*(x + 1)^2*(x^2 + 7*x + 11)^2*(x^2 + 15*x + 55)^2;
T[201,53]=(x -1)*(x + 5)*(x^3 -7*x^2 -77*x -131)*(x^5 + 15*x^4 -97*x^3 -1933*x^2 -4176*x -1588)*(x^2 -45)^2*(x -10)^3*(x + 9)^4;
T[201,59]=(x + 9)*(x^3 -15*x^2 -25*x + 625)*(x^5 + 6*x^4 -104*x^3 -284*x^2 + 2465*x -496)*(x -9)^2*(x -3)^2*(x + 6)^4*(x -6)^4;
T[201,61]=(x -2)*(x -14)*(x^3 + 2*x^2 -76*x + 116)*(x^5 -6*x^4 -96*x^3 + 1044*x^2 -3472*x + 3856)*(x^2 + 7*x -89)^2*(x^2 + 9*x + 9)^2*(x + 2)^3;
T[201,67]=(x -1)^10*(x + 1)^11;
T[201,71]=(x + 4)*(x + 16)*(x + 12)*(x^3 -18*x^2 + 68*x + 100)*(x^5 -22*x^4 + 20*x^3 + 2148*x^2 -12592*x + 10624)*(x^2 -245)^2*(x^2 -12*x + 31)^2*(x )^2;
T[201,73]=(x -11)*(x + 13)*(x^3 + 19*x^2 + 83*x + 97)*(x^5 -284*x^3 + 534*x^2 + 19963*x -78838)*(x + 7)^3*(x + 4)^4*(x -8)^4;
T[201,79]=(x + 16)*(x -8)*(x^3 -28*x^2 + 248*x -688)*(x^5 -28*x^4 -24*x^3 + 5936*x^2 -39680*x -1024)*(x^2 + 7*x -89)^2*(x^2 + 11*x -31)^2*(x + 8)^3;
T[201,83]=(x -5)*(x + 4)*(x -1)*(x^3 + 7*x^2 -21*x -25)*(x^5 -9*x^4 -229*x^3 + 2819*x^2 -6284*x + 3904)*(x -4)^2*(x^2 -13*x + 31)^2*(x^2 + 15*x -5)^2;
T[201,89]=(x -4)*(x + 15)*(x^3 + 6*x^2 -148*x + 116)*(x^5 + 11*x^4 -80*x^3 -284*x^2 + 1900*x -2264)*(x )*(x -7)^2*(x^2 -5)^2*(x^2 + 16*x + 19)^2;
T[201,97]=(x -16)*(x -4)*(x + 12)*(x^3 + 8*x^2 -240*x -932)*(x^5 + 14*x^4 -176*x^3 -3964*x^2 -21880*x -36832)*(x^2 -2*x -179)^2*(x^2 -45)^2*(x )^2;

T[202,2]=(x^2 + 2)*(x^14 + x^12 + 2*x^11 + x^10 -x^8 -2*x^7 -2*x^6 + 8*x^4 + 32*x^3 + 32*x^2 + 128)*(x + 1)^4*(x -1)^4;
T[202,3]=(x^3 + 3*x^2 -1)*(x^4 + x^3 -8*x^2 + x + 8)*(x )*(x + 2)^2*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68)^2;
T[202,5]=(x -2)*(x^3 + 3*x^2 -6*x -17)*(x^4 -3*x^3 -4*x^2 + 7*x -2)*(x + 1)^2*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67)^2;
T[202,7]=(x -1)*(x^3 + 3*x^2 -18*x -37)*(x^4 -2*x^3 -9*x^2 + 3*x + 13)*(x + 2)^2*(x^7 -2*x^6 -25*x^5 + 66*x^4 + 90*x^3 -326*x^2 + 165*x + 14)^2;
T[202,11]=(x -4)*(x^3 + 9*x^2 + 24*x + 17)*(x^4 -x^3 -28*x^2 + 39*x -8)*(x + 2)^2*(x^7 -8*x^6 -x^5 + 114*x^4 -72*x^3 -554*x^2 + 213*x + 878)^2;
T[202,13]=(x^3 + 3*x^2 -36*x -127)*(x^4 -x^3 -16*x^2 -19*x -4)*(x )*(x -1)^2*(x^7 + x^6 -45*x^5 -59*x^4 + 664*x^3 + 1066*x^2 -3203*x -6001)^2;
T[202,17]=(x -5)*(x^3 + 9*x^2 + 18*x -9)*(x^4 -4*x^3 -59*x^2 + 133*x + 813)*(x -3)^2*(x^7 + 7*x^6 -33*x^5 -221*x^4 + 460*x^3 + 2038*x^2 -2747*x -3871)^2;
T[202,19]=(x -1)*(x^4 + 13*x^3 + 30*x^2 -84*x -8)*(x + 5)^2*(x^7 -19*x^6 + 108*x^5 + 24*x^4 -2032*x^3 + 4400*x^2 + 5824*x -18880)^2*(x + 2)^3;
T[202,23]=(x -6)*(x^3 + 12*x^2 + 36*x + 8)*(x^4 -2*x^3 -28*x^2 + 48*x -16)*(x -1)^2*(x^7 + 7*x^6 -48*x^5 -304*x^4 + 432*x^3 + 2160*x^2 -1536*x -64)^2;
T[202,29]=(x + 5)*(x^3 -84*x + 136)*(x^4 -9*x^3 -4*x^2 + 196*x -392)*(x + 4)^2*(x^7 + 2*x^6 -60*x^5 -88*x^4 + 880*x^3 + 1248*x^2 -2112*x -640)^2;
T[202,31]=(x^3 -12*x^2 + 192)*(x^4 + 8*x^3 -80*x^2 -704*x -768)*(x )*(x + 9)^2*(x^7 -7*x^6 -92*x^5 + 900*x^4 -1472*x^3 -3872*x^2 + 11712*x -7616)^2;
T[202,37]=(x + 8)*(x^3 -3*x^2 -60*x + 53)*(x^4 + x^3 -8*x^2 + x + 8)*(x + 2)^2*(x^7 -123*x^5 -100*x^4 + 2990*x^3 + 696*x^2 -5103*x -918)^2;
T[202,41]=(x + 4)*(x^3 -6*x^2 -24*x -8)*(x^4 + 2*x^3 -32*x^2 + 8*x + 128)*(x -8)^2*(x^7 + 2*x^6 -160*x^5 -256*x^4 + 3840*x^3 + 10112*x^2 + 6144*x + 1024)^2;
T[202,43]=(x + 5)*(x^4 + 3*x^3 -30*x^2 -44*x + 232)*(x + 8)^2*(x^7 -32*x^6 + 280*x^5 + 896*x^4 -25616*x^3 + 121024*x^2 -120256*x -235264)^2*(x + 2)^3;
T[202,47]=(x -6)*(x^3 + 6*x^2 -96*x + 8)*(x^4 + 4*x^3 -76*x^2 -504*x -784)*(x -7)^2*(x^7 + 13*x^6 -36*x^5 -1120*x^4 -4832*x^3 -4176*x^2 + 9792*x + 12096)^2;
T[202,53]=(x -3)*(x^3 -12*x + 8)*(x^4 -21*x^3 + 120*x^2 + 28*x -1256)*(x + 2)^2*(x^7 + 8*x^6 -252*x^5 -2032*x^4 + 17408*x^3 + 146944*x^2 -210624*x -2213632)^2;
T[202,59]=(x + 12)*(x^3 -9*x^2 -12*x + 179)*(x^4 -15*x^3 -60*x^2 + 1165*x -1268)*(x + 14)^2*(x^7 -16*x^6 -49*x^5 + 1128*x^4 + 1338*x^3 -11046*x^2 -1023*x + 18680)^2;
T[202,61]=(x + 1)*(x^3 -192*x + 512)*(x^4 -x^3 -124*x^2 -160*x + 1856)*(x -4)^2*(x^7 + 6*x^6 -180*x^5 -472*x^4 + 7152*x^3 + 12448*x^2 -45760*x + 17792)^2;
T[202,67]=(x^3 + 21*x^2 + 84*x -107)*(x^4 + 17*x^3 + 34*x^2 -469*x -1666)*(x^7 -34*x^6 + 349*x^5 + 68*x^4 -23296*x^3 + 149424*x^2 -337723*x + 183394)^2*(x -2)^3;
T[202,71]=(x + 10)*(x^3 + 6*x^2 -132*x -856)*(x^4 -168*x^2 + 448*x + 3088)*(x -13)^2*(x^7 -9*x^6 -200*x^5 + 1588*x^4 + 7248*x^3 -39904*x^2 -35840*x + 189632)^2;
T[202,73]=(x + 16)*(x^3 -84*x + 136)*(x^4 -16*x^3 + 36*x^2 + 168*x -416)*(x -8)^2*(x^7 + 2*x^6 -128*x^5 -320*x^4 + 3968*x^3 + 13184*x^2 -17408*x -68608)^2;
T[202,79]=(x + 2)*(x^3 -6*x^2 -144*x -408)*(x^4 + 12*x^3 -180*x^2 -1688*x + 2256)*(x + 9)^2*(x^7 -15*x^6 -148*x^5 + 3496*x^4 -15520*x^3 -10832*x^2 + 177152*x -244160)^2;
T[202,83]=(x -16)*(x^3 + 15*x^2 -125)*(x^4 -27*x^3 + 88*x^2 + 1933*x -9556)*(x + 4)^2*(x^7 + 22*x^6 -149*x^5 -6456*x^4 -28804*x^3 + 332730*x^2 + 3151505*x + 7092412)^2;
T[202,89]=(x^3 + 6*x^2 -216*x -1304)*(x^4 + 6*x^3 -264*x^2 -904*x + 17344)*(x )*(x -14)^2*(x^7 + 22*x^6 + 96*x^5 -464*x^4 -2128*x^3 + 5472*x^2 + 4672*x -10880)^2;
T[202,97]=(x -13)*(x^3 -15*x^2 -114*x + 1819)*(x^4 -4*x^3 -159*x^2 + 285*x + 3121)*(x -2)^2*(x^7 + 28*x^6 + 25*x^5 -5628*x^4 -62530*x^3 -249976*x^2 -314503*x + 59842)^2;

T[203,2]=(x -1)*(x + 2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 9*x -6)*(x^3 + x^2 -3*x -1)*(x -2)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
T[203,3]=(x -2)*(x^2 + x -4)*(x^5 + 2*x^4 -10*x^3 -18*x^2 + 11*x + 2)*(x^3 + 3*x^2 -x -5)*(x + 1)^2*(x^2 -2*x -1)^3;
T[203,5]=(x + 4)*(x -2)*(x -1)*(x^2 -8)*(x^2 -3*x -2)*(x^3 + 5*x^2 + 3*x -5)*(x^5 -5*x^4 -3*x^3 + 29*x^2 + 6*x -24)*(x + 1)^4;
T[203,7]=(x^4 + 6*x^2 + 49)*(x + 1)^7*(x -1)^8;
T[203,11]=(x -2)*(x + 5)*(x + 4)*(x^2 + 4*x -4)*(x^2 + x -4)*(x^3 -5*x^2 -5*x -1)*(x^5 -3*x^4 -39*x^3 + 117*x^2 + 270*x -648)*(x^2 -2*x -1)^2;
T[203,13]=(x + 2)*(x -4)*(x^2 -5*x + 2)*(x^2 -8*x + 8)*(x^5 -15*x^4 + 53*x^3 + 147*x^2 -1082*x + 1432)*(x^2 + 2*x -7)^2*(x + 5)^4;
T[203,17]=(x + 2)*(x + 4)*(x -4)*(x^2 -8)*(x^2 -6*x -8)*(x^3 -2*x^2 -32*x -52)*(x^5 + 4*x^4 -28*x^3 -68*x^2 + 168*x + 96)*(x^2 + 4*x -4)^2;
T[203,19]=(x -2)*(x + 4)*(x -5)*(x^2 -2*x -17)*(x^5 + 15*x^4 + 68*x^3 + 84*x^2 + 4*x -8)*(x^3 + 6*x^2 -28*x -148)*(x -4)^2*(x -6)^4;
T[203,23]=(x -6)*(x -9)*(x^2 + 2*x -7)*(x^2 + 2*x -16)*(x^5 + 5*x^4 -34*x^3 -196*x^2 + 24*x + 768)*(x^3 -2*x^2 -52*x + 40)*(x )*(x^2 + 4*x -28)^2;
T[203,29]=(x -1)^9*(x + 1)^10;
T[203,31]=(x + 2)*(x -7)*(x + 8)*(x^2 + 5*x -32)*(x^3 + 5*x^2 -7*x -1)*(x^5 -9*x^4 -73*x^3 + 837*x^2 -1106*x -3824)*(x -2)^2*(x^2 -6*x -41)^2;
T[203,37]=(x -8)*(x + 10)*(x -2)*(x^2 -72)*(x^3 + 12*x^2 + 20*x -100)*(x^5 -14*x^4 -20*x^3 + 692*x^2 -216*x -8896)*(x -6)^2*(x + 4)^4;
T[203,41]=(x + 3)*(x^2 -10*x + 23)*(x^2 + 14*x + 32)*(x^3 -16*x -16)*(x^5 + 11*x^4 -16*x^3 -448*x^2 -816*x + 1152)*(x^2 -8*x -56)^2*(x )^2;
T[203,43]=(x + 9)*(x^2 -3*x -36)*(x^3 + 7*x^2 -5*x -1)*(x^5 -19*x^4 + 93*x^3 -79*x^2 -14*x + 16)*(x )*(x^2 -10*x + 23)^2*(x + 6)^3;
T[203,47]=(x -7)*(x + 10)*(x + 7)*(x^2 + 5*x -32)*(x^2 -10*x + 7)*(x^3 + 3*x^2 -33*x -89)*(x^5 -4*x^4 -68*x^3 + 304*x^2 + 837*x -3918)*(x^2 -2*x -17)^2;
T[203,53]=(x -6)*(x -9)*(x -3)*(x^2 + 7*x -94)*(x^2 -2*x -127)*(x^3 + 15*x^2 + 47*x + 37)*(x^5 + 16*x^4 + 52*x^3 -322*x^2 -2193*x -3282)*(x^2 -2*x -71)^2;
T[203,59]=(x -12)*(x^2 + 16*x + 56)*(x^2 + 4*x -64)*(x^5 + 12*x^4 -16*x^3 -620*x^2 -1968*x -768)*(x^3 + 8*x^2 -72*x + 100)*(x^2 -4*x -28)^2*(x )^2;
T[203,61]=(x + 4)*(x -2)*(x -14)*(x^2 -72)*(x^5 -20*x^4 -56*x^3 + 2048*x^2 + 144*x -26176)*(x^3 + 26*x^2 + 204*x + 472)*(x -6)^2*(x^2 + 4*x -4)^2;
T[203,67]=(x + 6)*(x -3)*(x -12)*(x^2 -10*x -47)*(x^2 + 2*x -152)*(x^3 -14*x^2 -168*x + 2228)*(x^5 + 3*x^4 -162*x^3 -108*x^2 + 2068*x -2416)*(x^2 -32)^2;
T[203,71]=(x -8)*(x^5 + x^4 -108*x^3 -424*x^2 + 684*x + 2592)*(x^3 -84*x + 268)*(x^2 + 12*x + 28)^2*(x -7)^3*(x + 8)^3;
T[203,73]=(x + 1)*(x + 16)*(x + 4)*(x^2 -18*x + 64)*(x^3 + 8*x^2 -16*x -160)*(x^5 -35*x^4 + 388*x^3 -880*x^2 -8544*x + 35456)*(x^2 + 6*x -89)*(x -4)^4;
T[203,79]=(x -12)*(x + 9)*(x^2 + 8*x + 8)*(x^2 -7*x + 8)*(x^3 -23*x^2 + 101*x + 151)*(x^5 + 13*x^4 + 17*x^3 -69*x^2 -28*x + 64)*(x )*(x^2 + 2*x -1)^2;
T[203,83]=(x + 16)*(x -16)*(x -14)*(x^2 -4*x -64)*(x^3 + 8*x^2 + 16*x + 4)*(x^5 + 10*x^4 -152*x^3 -28*x^2 + 1128*x + 1152)*(x^2 -4*x -28)^3;
T[203,89]=(x -12)*(x -15)*(x + 6)*(x^2 -10*x + 7)*(x^3 -12*x^2 -136*x + 1580)*(x^5 + 25*x^4 + 128*x^3 -356*x^2 -276*x -48)*(x -2)^2*(x^2 + 8*x -56)^2;
T[203,97]=(x -12)*(x -3)*(x^2 -10*x -128)*(x^2 -22*x + 103)*(x^3 + 8*x^2 -320*x -3200)*(x^5 + 25*x^4 -12*x^3 -4576*x^2 -38784*x -92672)*(x )*(x^2 + 8*x -56)^2;

T[204,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3*(x )^16;
T[204,3]=(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^2 + 2*x + 3)^2*(x^2 + 3)^3*(x -1)^8*(x + 1)^9;
T[204,5]=(x -1)*(x + 1)*(x + 4)^2*(x^2 -12)^2*(x -3)^3*(x^2 -3*x -2)^3*(x )^6*(x + 2)^8;
T[204,7]=(x -2)^2*(x + 2)^2*(x^2 + 2*x -2)^2*(x + 4)^7*(x -4)^7*(x )^9;
T[204,11]=(x -3)*(x -5)*(x + 4)^2*(x^2 + 6*x + 6)^2*(x + 3)^3*(x^2 + x -4)^3*(x -6)^4*(x )^10;
T[204,13]=(x + 5)*(x -3)*(x + 6)^2*(x^2 -4*x -8)^2*(x + 1)^3*(x^2 -5*x + 2)^3*(x -2)^6*(x + 2)^8;
T[204,17]=(x -1)^15*(x + 1)^16;
T[204,19]=(x -1)^2*(x^2 -4*x -8)^2*(x + 1)^3*(x^2 -3*x -36)^3*(x -4)^4*(x + 4)^12;
T[204,23]=(x + 3)*(x -3)*(x + 6)^2*(x -6)^2*(x^2 + 6*x + 6)^2*(x -9)^3*(x^2 + 9*x + 16)^3*(x -4)^6*(x )^6;
T[204,29]=(x -2)*(x + 4)^2*(x^2 -12)^2*(x + 10)^3*(x^2 -68)^3*(x )^6*(x -6)^9;
T[204,31]=(x -6)*(x + 10)^2*(x -8)^2*(x + 6)^2*(x^2 + 2*x -26)^2*(x^2 + 2*x -16)^3*(x -2)^4*(x + 4)^4*(x -4)^6;
T[204,37]=(x + 8)*(x -8)^2*(x^2 -16*x + 52)^2*(x^2 + 2*x -16)^3*(x + 2)^8*(x + 4)^10;
T[204,41]=(x -5)*(x + 5)*(x -10)^2*(x + 10)^2*(x + 3)^3*(x^2 + 3*x -2)^3*(x -6)^6*(x + 6)^10;
T[204,43]=(x + 9)*(x + 1)*(x -12)^2*(x^2 -4*x -104)^2*(x + 7)^3*(x^2 + 3*x -36)^3*(x + 4)^4*(x -8)^4*(x -4)^6;
T[204,47]=(x + 2)*(x -6)*(x -12)^2*(x -4)^2*(x^2 -48)^2*(x + 6)^3*(x^2 + 14*x + 32)^3*(x )^12;
T[204,53]=(x + 14)*(x + 2)^2*(x^2 -12*x -12)^2*(x^2 -8*x -52)^3*(x + 6)^8*(x -6)^10;
T[204,59]=(x + 6)*(x^2 -12*x + 24)^2*(x^2 -6*x -8)^3*(x -12)^4*(x -6)^4*(x )^4*(x + 12)^8;
T[204,61]=(x^2 + 8*x + 4)^2*(x^2 -10*x + 8)^3*(x -8)^6*(x + 4)^7*(x + 10)^8;
T[204,67]=(x -12)*(x^2 -16*x + 16)^2*(x -8)^4*(x + 12)^5*(x + 4)^5*(x -4)^12;
T[204,71]=(x + 12)*(x + 6)^2*(x -6)^2*(x^2 + 6*x -18)^2*(x^2 -4*x -64)^3*(x -12)^4*(x + 4)^6*(x )^6;
T[204,73]=(x + 2)*(x -10)^2*(x^2 + 8*x -52)^3*(x + 6)^6*(x -2)^16;
T[204,79]=(x + 14)*(x + 8)^2*(x^2 + 14*x + 22)^2*(x -10)^3*(x^2 -6*x -144)^3*(x -8)^4*(x + 10)^5*(x -12)^6;
T[204,83]=(x -6)*(x + 2)*(x + 12)^2*(x -4)^2*(x -12)^2*(x^2 + 12*x + 24)^2*(x + 6)^3*(x^2 + 10*x + 8)^3*(x )^4*(x + 4)^6;
T[204,89]=(x -16)*(x -12)*(x + 18)^2*(x + 2)^2*(x^2 -12*x + 24)^2*(x^2 -6*x -8)^3*(x )^3*(x + 6)^6*(x -10)^6;
T[204,97]=(x -16)*(x )*(x + 14)^2*(x -6)^2*(x^2 -4*x -44)^2*(x + 16)^3*(x^2 + 14*x + 32)^3*(x -14)^6*(x -2)^6;

T[205,2]=(x -1)*(x^2 + x -1)*(x^3 -2*x^2 -4*x + 7)*(x^3 -4*x -1)*(x^2 + x -3)*(x + 1)^2*(x^3 + x^2 -5*x -1)^2;
T[205,3]=(x )*(x + 3)^2*(x -2)^2*(x + 1)^2*(x^3 -4*x + 2)^2*(x^3 -2*x^2 -5*x + 2)^2;
T[205,5]=(x^6 + 2*x^5 + 11*x^4 + 16*x^3 + 55*x^2 + 50*x + 125)*(x + 1)^6*(x -1)^7;
T[205,7]=(x + 4)*(x^2 + 3*x -1)*(x^3 + 9*x^2 + 23*x + 14)*(x^3 -x^2 -5*x -2)*(x^2 -3*x -9)*(x -2)^2*(x^3 -6*x^2 + 8*x -2)^2;
T[205,11]=(x -6)*(x^2 + 8*x + 11)*(x^3 -4*x^2 -7*x + 26)*(x^3 -4*x^2 -x + 8)*(x + 3)^2*(x^3 -2*x^2 -20*x + 50)^2*(x )^2;
T[205,13]=(x + 4)*(x + 2)*(x -2)*(x^2 + x -29)*(x^3 -x^2 -15*x + 28)*(x^3 + 3*x^2 -x -2)*(x^2 + 3*x -9)*(x^3 + 2*x^2 -12*x -8)^2;
T[205,17]=(x -4)*(x + 6)*(x -2)*(x^2 -5)*(x^3 + 2*x^2 -11*x + 4)*(x^3 -4*x^2 -27*x + 94)*(x^2 + 4*x -9)*(x + 2)^6;
T[205,19]=(x + 6)*(x^2 + 3*x -27)*(x^3 -15*x^2 + 71*x -106)*(x^3 + 5*x^2 + 3*x -8)*(x^2 + 5*x -5)*(x^3 -4*x^2 -16*x -10)^2*(x )^2;
T[205,23]=(x + 4)*(x^2 -4*x -9)*(x^3 -20*x^2 + 127*x -256)*(x^3 -6*x^2 -31*x -28)*(x + 8)^2*(x + 3)^2*(x^3 -4*x^2 -32*x -32)^2;
T[205,29]=(x -6)*(x -10)*(x -2)*(x^2 + 5*x + 3)*(x^3 + 13*x^2 + 51*x + 62)*(x^3 -x^2 -31*x + 2)*(x^2 + 3*x + 1)*(x^3 + 6*x^2 -4*x -40)^2;
T[205,31]=(x^2 + 3*x -27)*(x^3 -x^2 -27*x + 64)*(x^3 + 11*x^2 -35*x -464)*(x^2 + 7*x -19)*(x^3 -16*x^2 + 64*x -32)^2*(x )^3;
T[205,37]=(x -6)*(x^2 + 3*x -27)*(x^3 + 17*x^2 + 77*x + 98)*(x^3 -11*x^2 + 35*x -26)*(x^2 -x -1)*(x + 6)^2*(x^3 + 6*x^2 -36*x -108)^2;
T[205,41]=(x + 1)^6*(x -1)^13;
T[205,43]=(x -4)*(x + 4)*(x -8)*(x^2 + 3*x -79)*(x^3 + 3*x^2 -x -4)*(x^3 -x^2 -27*x + 64)*(x^2 + 3*x -9)*(x^3 + 4*x^2 -8*x -16)^2;
T[205,47]=(x -2)*(x + 4)*(x + 2)*(x^2 + x -1)*(x^3 -7*x^2 -109*x + 662)*(x^3 -9*x^2 -21*x + 218)*(x^2 + 19*x + 87)*(x^3 -120*x -502)^2;
T[205,53]=(x -8)*(x + 14)*(x -6)*(x^2 + 2*x -4)*(x^3 + 10*x^2 + 12*x -64)*(x^3 -8*x^2 -88*x + 712)*(x^2 + 10*x + 12)*(x^3 -6*x^2 -4*x + 8)^2;
T[205,59]=(x + 12)*(x -12)*(x + 4)*(x^2 + 17*x + 71)*(x^3 -31*x^2 + 315*x -1052)*(x^3 -15*x^2 + 39*x + 28)*(x^2 + 17*x + 43)*(x^3 + 8*x^2 -16*x -160)^2;
T[205,61]=(x + 10)*(x -14)*(x -2)*(x^2 + 12*x + 23)*(x^3 + 14*x^2 + 59*x + 74)*(x^3 -6*x^2 -45*x + 158)*(x^2 + 4*x -41)*(x^3 -2*x^2 -52*x + 184)^2;
T[205,67]=(x + 2)*(x -10)*(x + 8)*(x^2 + 7*x -17)*(x^3 + 15*x^2 -73*x -1234)*(x^3 + 5*x^2 -117*x + 178)*(x^2 -7*x + 11)*(x^3 + 2*x^2 -20*x -50)^2;
T[205,71]=(x + 2)*(x + 12)*(x -8)*(x^2 + 6*x -171)*(x^3 + 10*x^2 + 27*x + 14)*(x^3 + 2*x^2 -31*x + 32)*(x^2 -20*x + 87)*(x^3 -20*x^2 + 84*x + 134)^2;
T[205,73]=(x -6)*(x^2 + 3*x -27)*(x^3 + 3*x^2 -43*x -98)*(x^3 -11*x^2 -61*x + 454)*(x^2 -19*x + 79)*(x + 6)^2*(x^3 + 2*x^2 -180*x + 244)^2;
T[205,79]=(x + 4)*(x + 8)*(x + 2)*(x^2 -15*x + 53)*(x^3 + 13*x^2 -249*x -3184)*(x^3 -9*x^2 -21*x + 218)*(x^2 + 17*x + 11)*(x^3 -32*x^2 + 328*x -1090)^2;
T[205,83]=(x -12)*(x -4)*(x^2 + 15*x + 53)*(x^3 -13*x^2 + 37*x + 28)*(x^3 -19*x^2 + 115*x -224)*(x^2 + 21*x + 79)*(x )*(x^3 -64*x -128)^2;
T[205,89]=(x + 6)*(x -14)*(x -10)*(x^2 + 2*x -207)*(x^3 + 12*x^2 -55*x + 46)*(x^3 + 6*x^2 -49*x -82)*(x^2 -5)*(x^3 + 6*x^2 -148*x -920)^2;
T[205,97]=(x + 8)*(x + 6)*(x -10)*(x^2 -6*x -108)*(x^3 + 10*x^2 -92*x -448)*(x^3 + 8*x^2 -104*x -248)*(x^2 -14*x + 44)*(x^3 -6*x^2 -52*x + 248)^2;

T[206,2]=(x^12 -4*x^11 + 11*x^10 -23*x^9 + 43*x^8 -74*x^7 + 111*x^6 -148*x^5 + 172*x^4 -184*x^3 + 176*x^2 -128*x + 64)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x -1)^4*(x + 1)^5;
T[206,3]=(x -2)*(x^2 -x -7)*(x^2 + 3*x -1)*(x^4 -2*x^3 -5*x^2 + 12*x -5)*(x^6 -13*x^4 + 40*x^2 -8*x -16)^2*(x + 1)^4;
T[206,5]=(x -4)*(x^2 -x -7)*(x^2 + 5*x + 3)*(x^4 -7*x^2 + 6*x -1)*(x^2 + 3*x + 1)^2*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16)^2;
T[206,7]=(x^2 -5*x + 3)*(x^2 + 3*x -5)*(x^4 -2*x^3 -17*x^2 + 50*x -31)*(x )*(x^6 + 2*x^5 -18*x^4 -26*x^3 + 74*x^2 + 66*x + 1)^2*(x + 1)^4;
T[206,11]=(x + 6)*(x^4 -4*x^3 -24*x^2 + 48*x + 80)*(x -4)^2*(x^2 + 3*x + 1)^2*(x^6 + x^5 -41*x^4 -68*x^3 + 416*x^2 + 968*x + 272)^2*(x )^2;
T[206,13]=(x + 2)*(x^2 -6*x -4)*(x^2 -2*x -28)*(x^4 -28*x^2 -48*x -16)*(x^2 + 3*x -9)^2*(x^6 + x^5 -28*x^4 + 53*x^3 + 20*x^2 -103*x + 55)^2;
T[206,17]=(x -2)*(x^2 + 3*x -5)*(x^2 -5*x + 3)*(x^4 + 14*x^3 + 31*x^2 -270*x -1007)*(x^2 + 9*x + 19)^2*(x^6 -21*x^5 + 144*x^4 -253*x^3 -912*x^2 + 3211*x -1745)^2;
T[206,19]=(x + 4)*(x^4 -48*x^2 + 64*x -16)*(x -6)^2*(x -2)^2*(x^2 -5*x -5)^2*(x^6 + 7*x^5 -8*x^4 -173*x^3 -508*x^2 -589*x -241)^2;
T[206,23]=(x^2 + 3*x -27)*(x^2 + 7*x + 5)*(x^4 -2*x^3 -65*x^2 -66*x + 265)*(x )*(x^2 -20)^2*(x^6 -12*x^5 -23*x^4 + 640*x^3 -947*x^2 -6592*x + 12268)^2;
T[206,29]=(x^4 -48*x^2 -128*x -16)*(x -6)^2*(x^2 + 6*x + 4)^2*(x^6 -12*x^5 + 27*x^4 + 28*x^3 -39*x^2 + 2*x + 4)^2*(x + 6)^3;
T[206,31]=(x^4 -8*x^3 -24*x^2 + 32*x + 64)*(x + 4)^2*(x^2 -45)^2*(x^6 + 16*x^5 + 57*x^4 -150*x^3 -1020*x^2 -1272*x -400)^2*(x -8)^3;
T[206,37]=(x -8)*(x^2 + 7*x + 5)*(x^2 -x -29)*(x^4 -10*x^3 -81*x^2 + 528*x + 2795)*(x^2 -45)^2*(x^6 -83*x^4 -322*x^3 -336*x^2 + 64*x + 176)^2;
T[206,41]=(x -2)*(x^2 + 13*x + 35)*(x^2 -11*x + 27)*(x^4 + 18*x^3 + 31*x^2 -914*x -4175)*(x^2 -80)^2*(x^6 -14*x^5 -37*x^4 + 1574*x^3 -9687*x^2 + 22344*x -15152)^2;
T[206,43]=(x -2)*(x^2 + 3*x -5)*(x^2 + 5*x -23)*(x^4 -4*x^3 -83*x^2 + 110*x + 1231)*(x^2 + 4*x -41)^2*(x^6 + 6*x^5 -171*x^4 -1160*x^3 + 3720*x^2 + 19520*x -23984)^2;
T[206,47]=(x + 8)*(x^2 + 14*x + 36)*(x^2 + 2*x -28)*(x^4 -92*x^2 + 352*x -80)*(x^2 + 3*x -29)^2*(x^6 -x^5 -143*x^4 -352*x^3 + 3048*x^2 + 5456*x -22384)^2;
T[206,53]=(x + 12)*(x^2 -9*x + 13)*(x^2 + 9*x -9)*(x^4 + 4*x^3 -67*x^2 -466*x -785)*(x^2 + 9*x -11)^2*(x^6 -19*x^5 + 109*x^4 -194*x^3 -88*x^2 + 384*x -80)^2;
T[206,59]=(x -12)*(x^2 + 10*x -4)*(x^2 + 6*x -108)*(x^4 -8*x^3 -116*x^2 + 464*x + 3920)*(x^2 -15*x + 55)^2*(x^6 -3*x^5 -164*x^4 + 281*x^3 + 7632*x^2 -2167*x -78173)^2;
T[206,61]=(x -10)*(x^2 + 6*x -4)*(x^2 + 6*x -20)*(x^4 + 4*x^3 -68*x^2 -400*x -496)*(x^2 -15*x + 45)^2*(x^6 -x^5 -194*x^4 -273*x^3 + 3602*x^2 + 1459*x -2495)^2;
T[206,67]=(x + 2)*(x^2 -5*x -59)*(x^2 + 3*x -157)*(x^4 -18*x^3 + 103*x^2 -224*x + 163)*(x^2 -2*x -179)^2*(x^6 + 12*x^5 -33*x^4 -752*x^3 -1016*x^2 + 9792*x + 22576)^2;
T[206,71]=(x^2 -8*x -100)*(x^4 -4*x^3 -32*x^2 + 48*x + 112)*(x )*(x -6)^2*(x^2 -3*x -29)^2*(x^6 + 27*x^5 + 139*x^4 -1346*x^3 -10956*x^2 -872*x + 83632)^2;
T[206,73]=(x -10)*(x^2 -18*x + 68)*(x^2 + 6*x -20)*(x^4 -12*x^3 + 28*x^2 -16)*(x^2 + 15*x + 45)^2*(x^6 + 7*x^5 -61*x^4 -428*x^3 + 760*x^2 + 4728*x -4624)^2;
T[206,79]=(x^2 -9*x -45)*(x^2 -5*x + 3)*(x^4 -18*x^3 + 3*x^2 + 146*x -7)*(x )*(x^2 -7*x -89)^2*(x^6 + 21*x^5 -12*x^4 -1983*x^3 -5824*x^2 + 9033*x + 5779)^2;
T[206,83]=(x^2 -20*x + 48)*(x^4 -12*x^3 -152*x^2 + 2432*x -7616)*(x^2 -3*x -59)^2*(x^6 + 9*x^5 -66*x^4 -819*x^3 -1462*x^2 + 4245*x + 9637)^2*(x + 4)^3;
T[206,89]=(x -2)*(x^2 -14*x + 36)*(x^2 + 2*x -28)*(x^4 -4*x^3 -180*x^2 -944*x -1328)*(x^2 + 18*x + 36)^2*(x^6 + 14*x^5 -372*x^4 -5720*x^3 + 16224*x^2 + 490560*x + 1667776)^2;
T[206,97]=(x -14)*(x^2 + 19*x + 83)*(x^2 -x -29)*(x^4 + 6*x^3 -205*x^2 -1878*x -4135)*(x^2 -10*x -20)^2*(x^6 + 8*x^5 -337*x^4 -1292*x^3 + 28941*x^2 + 58914*x -560468)^2;

T[207,2]=(x + 1)*(x^2 -2*x -1)*(x^2 -x -1)*(x^2 + 2*x -1)*(x -1)^2*(x^2 + x -1)^3*(x^2 -5)^3;
T[207,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2*(x )^14;
T[207,5]=(x^2 -4*x + 2)*(x^2 + 4*x + 2)*(x^2 -2*x -4)^2*(x )^3*(x^2 + 2*x -4)^5;
T[207,7]=(x^2 + 4*x + 2)^2*(x + 2)^3*(x^2 -2*x -4)^7;
T[207,11]=(x^2 -6*x + 4)*(x^2 -8)^2*(x + 4)^3*(x^2 + 6*x + 4)^3*(x -4)^6;
T[207,13]=(x + 6)^3*(x^2 -20)^3*(x )^4*(x -3)^8;
T[207,17]=(x + 4)*(x^2 + 12*x + 34)*(x^2 + 6*x + 4)*(x^2 -12*x + 34)*(x^2 -10*x + 20)*(x -4)^2*(x^2 + 10*x + 20)^2*(x^2 -6*x + 4)^3;
T[207,19]=(x^2 + 4*x -14)^2*(x -2)^3*(x^2 -10*x + 20)^3*(x + 2)^8;
T[207,23]=(x + 1)^8*(x -1)^13;
T[207,29]=(x + 2)*(x -2)^2*(x -3)^2*(x^2 -72)^2*(x^2 -20)^3*(x + 3)^6;
T[207,31]=(x^2 -72)^2*(x -4)^3*(x^2 + 4*x -16)^3*(x^2 -45)^4;
T[207,37]=(x^2 + 4*x -4)^2*(x -2)^3*(x^2 -20)^3*(x^2 -2*x -4)^4;
T[207,41]=(x + 2)*(x^2 -4*x -76)*(x^2 + 2*x -19)*(x^2 + 8*x -16)*(x^2 -8*x -16)*(x -2)^2*(x^2 + 4*x -76)^2*(x^2 -2*x -19)^3;
T[207,43]=(x^2 + 12*x + 18)^2*(x -10)^3*(x^2 -2*x -44)^3*(x )^8;
T[207,47]=(x^2 + 12*x + 4)*(x^2 -12*x + 4)*(x -4)^2*(x )^3*(x + 4)^4*(x^2 -5)^4;
T[207,53]=(x -12)*(x^2 -6*x + 4)*(x^2 + 4*x -46)*(x^2 -4*x -46)*(x^2 -8*x -4)*(x + 12)^2*(x^2 + 6*x + 4)^2*(x^2 + 8*x -4)^3;
T[207,59]=(x -12)*(x^2 + 4*x -16)*(x^2 + 8*x -64)*(x^2 -4*x -28)*(x^2 + 4*x -28)*(x + 12)^2*(x^2 -8*x -64)^2*(x^2 -4*x -16)^3;
T[207,61]=(x^2 -4*x -4)^2*(x + 6)^3*(x^2 -20)^3*(x^2 -4*x -76)^4;
T[207,67]=(x^2 -20*x + 98)^2*(x + 10)^3*(x^2 -6*x + 4)^3*(x^2 + 10*x + 20)^4;
T[207,71]=(x^2 + 16*x + 32)*(x^2 + 20*x + 95)*(x^2 -16*x + 32)*(x^2 -20*x + 95)^3*(x -8)^4*(x + 8)^5;
T[207,73]=(x^2 -4*x -124)^2*(x + 14)^3*(x^2 + 4*x -76)^3*(x^2 -22*x + 101)^4;
T[207,79]=(x^2 + 4*x -94)^2*(x -10)^3*(x^2 -6*x -36)^3*(x^2 + 4*x -76)^4;
T[207,83]=(x + 12)*(x^2 + 8*x + 8)*(x^2 -22*x + 116)*(x^2 -8*x + 8)*(x -12)^2*(x + 4)^2*(x^2 + 22*x + 116)^3*(x -4)^4;
T[207,89]=(x -16)*(x^2 -12*x -14)*(x^2 + 2*x -4)*(x^2 + 12*x -14)*(x^2 -12*x + 16)*(x + 16)^2*(x^2 -2*x -4)^2*(x^2 + 12*x + 16)^3;
T[207,97]=(x^2 -8*x -4)^3*(x^2 -22*x + 76)^4*(x + 10)^7;

T[208,2]=(x -1)*(x + 1)*(x )^21;
T[208,3]=(x -3)*(x^2 + x -4)*(x + 1)^2*(x^2 -x -4)^2*(x + 3)^4*(x )^4*(x -1)^6;
T[208,5]=(x^2 -3*x -2)^3*(x -2)^4*(x + 3)^5*(x + 1)^8;
T[208,7]=(x + 5)*(x -2)*(x^2 -x -4)*(x -5)^2*(x^2 + x -4)^2*(x + 2)^3*(x -1)^5*(x + 1)^5;
T[208,11]=(x + 6)*(x^2 -2*x -16)*(x^2 + 2*x -16)^2*(x -2)^3*(x -6)^4*(x + 2)^9;
T[208,13]=(x -1)^11*(x + 1)^12;
T[208,17]=(x^2 + x -38)^3*(x -6)^4*(x + 3)^13;
T[208,19]=(x^2 + 2*x -16)*(x^2 -2*x -16)^2*(x + 2)^3*(x + 6)^4*(x -2)^5*(x -6)^5;
T[208,23]=(x -4)^3*(x + 8)^5*(x -8)^5*(x + 4)^5*(x )^5;
T[208,29]=(x + 6)^3*(x -6)^5*(x + 2)^6*(x -2)^9;
T[208,31]=(x + 10)*(x -10)^3*(x + 4)^9*(x -4)^10;
T[208,37]=(x -11)^3*(x^2 -7*x -26)^3*(x + 6)^4*(x -3)^5*(x + 7)^5;
T[208,41]=(x -8)^3*(x^2 -2*x -16)^3*(x + 6)^4*(x )^10;
T[208,43]=(x -5)*(x + 4)*(x^2 + 15*x + 52)*(x -1)^2*(x^2 -15*x + 52)^2*(x -4)^3*(x + 5)^4*(x + 1)^6;
T[208,47]=(x + 13)*(x + 9)*(x -2)*(x + 3)*(x^2 -13*x + 4)*(x -9)^2*(x^2 + 13*x + 4)^2*(x + 2)^3*(x -13)^4*(x -3)^4;
T[208,53]=(x + 12)^3*(x^2 + 2*x -16)^3*(x -6)^4*(x -12)^5*(x )^5;
T[208,59]=(x^2 + 2*x -16)*(x -10)^2*(x^2 -2*x -16)^2*(x -6)^3*(x + 6)^5*(x + 10)^7;
T[208,61]=(x^2 -14*x + 32)^3*(x )^3*(x + 2)^4*(x + 8)^5*(x -8)^5;
T[208,67]=(x -2)*(x + 6)*(x + 10)*(x + 14)*(x^2 -2*x -16)*(x -6)^2*(x^2 + 2*x -16)^2*(x -10)^3*(x -14)^4*(x + 2)^4;
T[208,71]=(x -5)*(x + 10)*(x -3)*(x + 7)*(x^2 -3*x -36)*(x -7)^2*(x^2 + 3*x -36)^2*(x -10)^3*(x + 5)^4*(x + 3)^4;
T[208,73]=(x + 2)^3*(x + 10)^5*(x + 6)^6*(x -2)^9;
T[208,79]=(x + 12)*(x -4)^2*(x -12)^2*(x + 8)^3*(x + 4)^7*(x -8)^8;
T[208,83]=(x -6)*(x -16)*(x + 12)*(x^2 -12*x -32)*(x + 16)^2*(x^2 + 12*x -32)^2*(x + 6)^3*(x -12)^4*(x )^5;
T[208,89]=(x + 10)^3*(x -6)^5*(x -10)^6*(x + 6)^9;
T[208,97]=(x^2 -68)^3*(x -2)^4*(x -14)^5*(x + 10)^8;

T[209,2]=(x^2 -2)*(x^5 -2*x^4 -6*x^3 + 10*x^2 + 5*x -4)*(x^7 + x^6 -14*x^5 -10*x^4 + 59*x^3 + 27*x^2 -66*x -30)*(x + 2)^2*(x )^3;
T[209,3]=(x -1)*(x^2 + 2*x -1)*(x^5 -x^4 -9*x^3 + 11*x^2 + 7*x -1)*(x^7 -2*x^6 -14*x^5 + 28*x^4 + 46*x^3 -100*x^2 -17*x + 64)*(x + 2)^2*(x + 1)^2;
T[209,5]=(x + 3)*(x^5 + 5*x^4 -3*x^3 -33*x^2 -9*x + 19)*(x^7 -2*x^6 -20*x^5 + 34*x^4 + 88*x^3 -156*x^2 + 57*x -6)*(x -3)^2*(x + 1)^2*(x -1)^2;
T[209,7]=(x + 4)*(x^2 + 4*x + 2)*(x^5 -6*x^4 -x^3 + 62*x^2 -119*x + 64)*(x^7 -10*x^6 + 17*x^5 + 86*x^4 -185*x^3 -316*x^2 + 394*x + 512)*(x + 2)^2*(x + 1)^2;
T[209,11]=(x^2 -3*x + 11)*(x -1)^8*(x + 1)^9;
T[209,13]=(x -2)*(x^2 + 4*x -14)*(x^5 -4*x^4 -9*x^3 + 26*x^2 + 37*x + 2)*(x^7 + 4*x^6 -51*x^5 -194*x^4 + 639*x^3 + 2082*x^2 -2550*x -5716)*(x + 4)^2*(x -4)^2;
T[209,17]=(x^2 -4*x + 2)*(x^5 + 4*x^4 -32*x^3 -64*x^2 + 304*x -64)*(x^7 -2*x^6 -70*x^5 + 44*x^4 + 1552*x^3 + 864*x^2 -11424*x -17088)*(x )*(x + 2)^2*(x + 3)^2;
T[209,19]=(x^2 + 19)*(x + 1)^7*(x -1)^10;
T[209,23]=(x -3)*(x^5 -3*x^4 -76*x^3 + 388*x^2 -224*x -784)*(x^7 -10*x^6 -51*x^5 + 648*x^4 -316*x^3 -5136*x^2 + 3312*x + 1920)*(x + 1)^2*(x + 3)^2*(x )^2;
T[209,29]=(x + 6)*(x^2 + 4*x -14)*(x^5 -10*x^4 -37*x^3 + 656*x^2 -1827*x + 490)*(x^7 + 18*x^6 + 117*x^5 + 340*x^4 + 383*x^3 -114*x^2 -534*x -276)*(x -6)^2*(x )^2;
T[209,31]=(x + 7)*(x^2 + 10*x + 23)*(x^5 -11*x^4 -3*x^3 + 193*x^2 -31*x -757)*(x^7 -24*x^6 + 214*x^5 -904*x^4 + 1918*x^3 -1934*x^2 + 715*x + 4)*(x -7)^2*(x + 4)^2;
T[209,37]=(x + 7)*(x^2 -6*x -41)*(x^5 -x^4 -80*x^3 + 104*x^2 + 1520*x -3088)*(x^7 -121*x^5 -194*x^4 + 3512*x^3 + 9296*x^2 -1680*x -8992)*(x -3)^2*(x -2)^2;
T[209,41]=(x^2 -8*x -16)*(x^5 -2*x^4 -189*x^3 + 252*x^2 + 7253*x -4112)*(x^7 + 12*x^6 -5*x^5 -526*x^4 -1823*x^3 -174*x^2 + 3840*x -1824)*(x )*(x + 8)^2*(x + 6)^2;
T[209,43]=(x + 10)*(x^2 -12*x + 4)*(x^5 -20*x^4 + 23*x^3 + 1640*x^2 -9843*x + 11266)*(x^7 -2*x^6 -89*x^5 + 150*x^4 + 1677*x^3 -1208*x^2 -6988*x + 4976)*(x + 6)^2*(x + 1)^2;
T[209,47]=(x^2 -12*x + 28)*(x^5 + 20*x^4 + 28*x^3 -1088*x^2 -2192*x + 13184)*(x^7 -8*x^6 -152*x^5 + 1344*x^4 + 1024*x^3 -22848*x^2 + 12096*x + 79872)*(x )*(x -8)^2*(x + 3)^2;
T[209,53]=(x -6)*(x^2 -8*x -56)*(x^5 + 14*x^4 -88*x^3 -1392*x^2 + 1808*x + 30304)*(x^7 -2*x^6 -160*x^5 + 32*x^4 + 6032*x^3 + 13920*x^2 + 8832*x + 768)*(x -12)^2*(x + 6)^2;
T[209,59]=(x -3)*(x^2 + 6*x + 7)*(x^5 -3*x^4 -164*x^3 + 908*x^2 -496*x -2000)*(x^7 + 10*x^6 -345*x^5 -2976*x^4 + 36164*x^3 + 249792*x^2 -1125936*x -6552192)*(x + 6)^2*(x -5)^2;
T[209,61]=(x + 10)*(x^2 + 8*x -34)*(x^5 + 10*x^4 -24*x^3 -464*x^2 -1264*x -736)*(x^7 -14*x^6 -34*x^5 + 1044*x^4 -1728*x^3 -17920*x^2 + 60512*x -36544)*(x -12)^2*(x + 1)^2;
T[209,67]=(x -11)*(x^2 + 18*x + 79)*(x^5 -9*x^4 -195*x^3 + 827*x^2 + 10633*x + 17689)*(x^7 -8*x^6 -170*x^5 + 1308*x^4 + 6342*x^3 -33086*x^2 -115621*x + 13544)*(x + 4)^2*(x + 7)^2;
T[209,71]=(x -15)*(x^2 + 22*x + 119)*(x^5 -23*x^4 -17*x^3 + 2929*x^2 -14485*x + 19081)*(x^7 -10*x^6 -134*x^5 + 944*x^4 + 2278*x^3 -11928*x^2 -9057*x + 39756)*(x + 3)^2*(x -6)^2;
T[209,73]=(x -8)*(x^2 -8*x -56)*(x^5 -340*x^3 -1168*x^2 + 27728*x + 155392)*(x^7 + 6*x^6 -220*x^5 -1592*x^4 + 3536*x^3 + 44576*x^2 + 100224*x + 67328)*(x + 7)^2*(x -4)^2;
T[209,79]=(x + 16)*(x^2 + 32*x + 254)*(x^5 -44*x^4 + 748*x^3 -6128*x^2 + 24176*x -36800)*(x^7 -52*x^6 + 970*x^5 -7152*x^4 + 7992*x^3 + 90880*x^2 -26464*x -203264)*(x + 10)^2*(x -8)^2;
T[209,83]=(x^2 -4*x + 2)*(x^5 + 14*x^4 -69*x^3 -1242*x^2 -4103*x -3908)*(x^7 + 10*x^6 -219*x^5 -3362*x^4 -8273*x^3 + 71352*x^2 + 410346*x + 576936)*(x )*(x + 6)^2*(x -12)^2;
T[209,89]=(x -9)*(x^2 + 10*x -73)*(x^5 + 27*x^4 + 268*x^3 + 1168*x^2 + 1952*x + 320)*(x^7 -401*x^5 -698*x^4 + 50392*x^3 + 161184*x^2 -1951104*x -8199552)*(x -15)^2*(x -12)^2;
T[209,97]=(x + 1)*(x^2 -2*x -1)*(x^5 -15*x^4 -124*x^3 + 2116*x^2 + 304*x -37456)*(x^7 + 24*x^6 -189*x^5 -6678*x^4 + 8156*x^3 + 605448*x^2 -49072*x -17393056)*(x -8)^2*(x + 7)^2;

T[210,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2)^2*(x^4 + x^3 + 2*x + 4)^2*(x^2 + x + 2)^4*(x -1)^7*(x + 1)^8;
T[210,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x^2 -x + 3)^2*(x^4 + x^3 + 2*x^2 + 3*x + 9)^2*(x -1)^11*(x + 1)^12;
T[210,5]=(x^2 + 5)^2*(x^2 + 2*x + 5)^3*(x + 1)^14*(x -1)^17;
T[210,7]=(x^2 + 4*x + 7)*(x^2 + 7)^2*(x -1)^17*(x + 1)^18;
T[210,11]=(x^2 -4*x -16)^2*(x + 3)^4*(x^2 -x -4)^4*(x -4)^7*(x + 4)^8*(x )^10;
T[210,13]=(x -6)^2*(x^2 -20)^2*(x -2)^4*(x + 6)^4*(x + 4)^4*(x -5)^4*(x^2 -5*x + 2)^4*(x + 2)^11;
T[210,17]=(x + 2)^4*(x -3)^4*(x^2 + 5*x + 2)^4*(x -6)^6*(x + 6)^7*(x -2)^12;
T[210,19]=(x -8)*(x + 8)^2*(x^2 -4*x -16)^2*(x )^3*(x^2 + 6*x -8)^4*(x + 4)^6*(x -2)^8*(x -4)^9;
T[210,23]=(x + 8)^3*(x + 6)^4*(x -4)^4*(x -8)^4*(x^2 + 2*x -16)^4*(x )^18;
T[210,29]=(x -10)*(x -6)^4*(x -3)^4*(x^2 -x -38)^4*(x + 6)^7*(x + 2)^17;
T[210,31]=(x -4)^2*(x + 8)^2*(x^2 -12*x + 16)^2*(x -8)^4*(x + 4)^10*(x )^19;
T[210,37]=(x^2 -4*x -76)^2*(x + 2)^3*(x + 10)^9*(x -2)^12*(x -6)^13;
T[210,41]=(x -10)^4*(x + 12)^4*(x^2 -2*x -16)^4*(x + 2)^5*(x -6)^5*(x -2)^7*(x + 6)^8;
T[210,43]=(x + 12)*(x^2 -80)^2*(x + 10)^4*(x^2 -10*x + 8)^4*(x -8)^6*(x -4)^8*(x + 4)^10;
T[210,47]=(x -4)*(x + 8)*(x^2 -8*x -64)^2*(x -9)^4*(x^2 + 5*x -32)^4*(x + 12)^5*(x -8)^8*(x )^10;
T[210,53]=(x + 2)^2*(x^2 + 16*x + 44)^2*(x -10)^3*(x + 6)^3*(x -12)^4*(x^2 + 2*x -16)^4*(x + 10)^5*(x -6)^12;
T[210,59]=(x + 8)^2*(x + 12)^2*(x^2 -80)^2*(x + 6)^4*(x -12)^5*(x -4)^6*(x )^6*(x + 4)^12;
T[210,61]=(x + 6)*(x -14)*(x -2)*(x -6)^2*(x + 14)^2*(x + 10)^3*(x^2 -6*x -144)^4*(x -8)^8*(x + 2)^15;
T[210,67]=(x -8)*(x )*(x + 12)^3*(x^2 -4*x -64)^4*(x -12)^5*(x -4)^8*(x + 4)^15;
T[210,71]=(x -12)*(x + 16)^2*(x^2 -20*x + 80)^2*(x + 12)^3*(x + 8)^5*(x -8)^11*(x )^15;
T[210,73]=(x -14)*(x + 10)*(x + 14)*(x + 2)^2*(x^2 + 16*x + 44)^2*(x^2 + 8*x -52)^4*(x + 6)^5*(x -10)^7*(x -2)^12;
T[210,79]=(x -16)*(x^2 -8*x -64)^2*(x + 8)^3*(x + 1)^4*(x^2 + 9*x + 16)^4*(x + 16)^5*(x )^7*(x -8)^9;
T[210,83]=(x -8)^2*(x^2 + 16*x -16)^2*(x + 6)^4*(x + 12)^5*(x + 4)^5*(x -4)^8*(x -12)^13;
T[210,89]=(x -2)*(x -14)*(x -6)*(x -18)^2*(x -10)^3*(x + 2)^4*(x + 14)^4*(x + 12)^4*(x^2 -6*x -8)^4*(x + 6)^13;
T[210,97]=(x -10)*(x -14)*(x + 18)^2*(x + 14)^2*(x^2 -8*x -4)^2*(x + 1)^4*(x -18)^4*(x^2 + 9*x -86)^4*(x + 10)^5*(x -2)^10;

T[211,2]=(x^2 -x -1)*(x^3 -4*x + 1)*(x^3 + 2*x^2 -x -1)*(x^9 + x^8 -14*x^7 -11*x^6 + 66*x^5 + 36*x^4 -123*x^3 -38*x^2 + 72*x + 8);
T[211,3]=(x^2 -3*x + 1)*(x^3 + x^2 -2*x -1)*(x^3 + 3*x^2 -x -4)*(x^9 + x^8 -20*x^7 -17*x^6 + 128*x^5 + 80*x^4 -292*x^3 -72*x^2 + 224*x -32);
T[211,5]=(x^2 -2*x -4)*(x^3 + 8*x^2 + 19*x + 13)*(x^3 + 5*x^2 + 2*x -4)*(x^9 -15*x^8 + 83*x^7 -189*x^6 + 63*x^5 + 377*x^4 -410*x^3 + 10*x^2 + 51*x -3);
T[211,7]=(x^2 -x -1)*(x^3 -2*x^2 -15*x + 29)*(x^3 + 3*x^2 -x -2)*(x^9 + 2*x^8 -35*x^7 -57*x^6 + 322*x^5 + 200*x^4 -984*x^3 + 352*x^2 + 384*x -192);
T[211,11]=(x^3 + 2*x^2 -29*x -71)*(x^9 -13*x^8 + 31*x^7 + 235*x^6 -1233*x^5 + 671*x^4 + 5452*x^3 -9568*x^2 + 3705*x -333)*(x + 3)^5;
T[211,13]=(x^2 -8*x + 11)*(x^3 + 3*x^2 -4*x + 1)*(x^3 -x^2 -21*x + 37)*(x^9 + 4*x^8 -37*x^7 -52*x^6 + 480*x^5 -186*x^4 -1768*x^3 + 2169*x^2 + 272*x -931);
T[211,17]=(x^2 -11*x + 29)*(x^3 -6*x^2 + 5*x -1)*(x^3 + 17*x^2 + 91*x + 148)*(x^9 -4*x^8 -69*x^7 + 345*x^6 + 738*x^5 -5900*x^4 + 7484*x^3 + 1408*x^2 -4032*x -768);
T[211,19]=(x^2 + 5*x -5)*(x^3 + 7*x^2 -7)*(x^3 -2*x^2 -4*x + 7)*(x^9 + 2*x^8 -77*x^7 -212*x^6 + 1604*x^5 + 4576*x^4 -13004*x^3 -35693*x^2 + 36636*x + 92579);
T[211,23]=(x^2 -8*x + 11)*(x^3 + 19*x^2 + 118*x + 239)*(x^3 -16*x^2 + 73*x -74)*(x^9 + 3*x^8 -72*x^7 -217*x^6 + 962*x^5 + 4716*x^4 + 6264*x^3 + 2272*x^2 -896*x -512);
T[211,29]=(x^2 -5)*(x^3 + 6*x^2 -79*x -377)*(x^3 + 20*x^2 + 121*x + 226)*(x^9 -26*x^8 + 221*x^7 -307*x^6 -5526*x^5 + 29420*x^4 -32120*x^3 -84032*x^2 + 125568*x + 102912);
T[211,31]=(x^2 + 11*x -1)*(x^3 + 5*x^2 -22*x -13)*(x^3 -3*x^2 -45*x -54)*(x^9 -5*x^8 -118*x^7 + 647*x^6 + 1914*x^5 -8640*x^4 -2476*x^3 + 23112*x^2 -18112*x + 4064);
T[211,37]=(x^2 + 4*x -76)*(x^3 -5*x^2 -4*x + 4)*(x^3 + 2*x^2 -43*x + 83)*(x^9 -5*x^8 -89*x^7 + 335*x^6 + 2747*x^5 -6013*x^4 -33456*x^3 + 29164*x^2 + 107073*x -70173);
T[211,41]=(x^3 + 18*x^2 + 80*x -8)*(x^3 + 2*x^2 -89*x + 58)*(x^9 -20*x^8 -56*x^7 + 3180*x^6 -11408*x^5 -113040*x^4 + 708480*x^3 -418944*x^2 -1769984*x + 34048)*(x + 3)^2;
T[211,43]=(x^3 -4*x^2 -11*x + 1)*(x^3 -3*x^2 -61*x -1)*(x^9 + 37*x^8 + 507*x^7 + 2637*x^6 -5007*x^5 -123007*x^4 -557908*x^3 -1001422*x^2 -408357*x + 385587)*(x -9)^2;
T[211,47]=(x^2 -x -1)*(x^3 -11*x^2 + 24*x -13)*(x^3 + 4*x^2 -10*x -41)*(x^9 -4*x^8 -319*x^7 + 1262*x^6 + 31464*x^5 -105436*x^4 -936858*x^3 + 1034537*x^2 + 6489348*x + 4961361);
T[211,53]=(x^2 -13*x + 41)*(x^3 + 10*x^2 -25*x -125)*(x^3 + x^2 -5*x + 2)*(x^9 -13*x^8 -54*x^7 + 1223*x^6 -1606*x^5 -29060*x^4 + 93763*x^3 + 29470*x^2 -219804*x -101352);
T[211,59]=(x^2 -45)*(x^3 -5*x^2 -78*x -169)*(x^3 + 12*x^2 -13*x -148)*(x^9 -14*x^8 -258*x^7 + 4207*x^6 + 10906*x^5 -299365*x^4 + 55011*x^3 + 7249088*x^2 -5458656*x -48901984);
T[211,61]=(x^3 + 23*x^2 + 139*x + 181)*(x^3 -57*x + 52)*(x^9 -23*x^8 + 97*x^7 + 1143*x^6 -8310*x^5 -13352*x^4 + 149060*x^3 + 111952*x^2 -857808*x -1016544)*(x + 3)^2;
T[211,67]=(x^3 -7*x^2 + 49)*(x^9 + 3*x^8 -364*x^7 -1591*x^6 + 39210*x^5 + 166680*x^4 -1674108*x^3 -5664160*x^2 + 24857840*x + 45391648)*(x + 12)^2*(x )^3;
T[211,71]=(x^2 + 6*x -116)*(x^3 + 11*x^2 -118*x -772)*(x^3 -18*x^2 + 59*x + 127)*(x^9 -19*x^8 -105*x^7 + 4069*x^6 -19137*x^5 -86723*x^4 + 766520*x^3 -512588*x^2 -5766975*x + 10015233);
T[211,73]=(x^2 + 7*x -19)*(x^3 -3*x^2 -x + 2)*(x^3 + 2*x^2 -176*x + 664)*(x^9 -17*x^8 -201*x^7 + 3277*x^6 + 17444*x^5 -198328*x^4 -643640*x^3 + 4504064*x^2 + 7355616*x -35767104);
T[211,79]=(x^2 + 10*x -20)*(x^3 -8*x^2 -100*x + 568)*(x^3 + 5*x^2 -226*x -1612)*(x^9 -7*x^8 -210*x^7 + 791*x^6 + 14034*x^5 -21748*x^4 -397881*x^3 -92604*x^2 + 4179108*x + 6812632);
T[211,83]=(x^2 -8*x -4)*(x^3 + 21*x^2 + 98*x + 49)*(x^3 -28*x^2 + 212*x -448)*(x^9 -6*x^8 -322*x^7 + 1613*x^6 + 37418*x^5 -149415*x^4 -1828829*x^3 + 5682692*x^2 + 30256368*x -81789792);
T[211,89]=(x^2 -15*x + 45)*(x^3 + 31*x^2 + 304*x + 953)*(x^3 -5*x^2 -189*x -736)*(x^9 -33*x^8 + 54*x^7 + 8297*x^6 -77858*x^5 -257132*x^4 + 5068540*x^3 -8855680*x^2 -41815248*x + 45488928);
T[211,97]=(x^2 -x -11)*(x^3 -7*x^2 -69*x + 112)*(x^3 + 7*x^2 -98*x -637)*(x^9 + 11*x^8 -168*x^7 -1961*x^6 + 6854*x^5 + 101540*x^4 + 27956*x^3 -1372768*x^2 -2813232*x -1454432);

T[212,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x + 1)^2*(x -1)^2*(x )^13;
T[212,3]=(x^3 + 3*x^2 -3*x -7)*(x + 2)^2*(x -1)^2*(x -2)^3*(x + 1)^3*(x + 3)^3*(x^3 -3*x^2 -x + 1)^3;
T[212,5]=(x -2)*(x + 2)*(x^3 -12*x -12)*(x -1)^2*(x -3)^2*(x + 4)^2*(x^3 + 2*x^2 -4*x -4)^3*(x )^5;
T[212,7]=(x^3 -6*x^2 + 28)*(x -2)^2*(x + 2)^3*(x^3 -4*x^2 + 4)^3*(x )^3*(x + 4)^5;
T[212,11]=(x -2)*(x^3 -6*x^2 -12*x + 84)*(x -5)^2*(x + 3)^2*(x + 4)^3*(x^3 + 4*x^2 -4*x -20)^3*(x )^5;
T[212,13]=(x + 7)*(x + 2)*(x + 3)^3*(x + 4)^4*(x -5)^5*(x -1)^11;
T[212,17]=(x -2)*(x^3 -3*x^2 -21*x + 39)*(x -5)^2*(x^3 + 5*x^2 -5*x -17)^3*(x -3)^4*(x + 3)^6;
T[212,19]=(x -2)*(x -5)*(x^3 + 3*x^2 -45*x -161)*(x + 1)^2*(x + 7)^2*(x + 5)^3*(x^3 -11*x^2 + 37*x -37)^3*(x + 4)^4;
T[212,23]=(x + 2)*(x^3 + 3*x^2 -21*x + 3)*(x -1)^2*(x -3)^2*(x + 9)^2*(x + 3)^3*(x -7)^3*(x^3 -3*x^2 -31*x -29)^3;
T[212,29]=(x -2)*(x^3 + 9*x^2 + 15*x + 3)*(x -6)^2*(x + 6)^2*(x -5)^2*(x -9)^3*(x + 7)^3*(x^3 + 5*x^2 -37*x -61)^3;
T[212,31]=(x + 8)*(x -2)*(x^3 + 6*x^2 -36*x -212)*(x -5)^2*(x -7)^2*(x -4)^3*(x^3 + 2*x^2 -76*x + 116)^3*(x + 4)^4;
T[212,37]=(x -10)*(x + 3)*(x^3 + 9*x^2 + 3*x -89)*(x + 10)^2*(x -1)^2*(x + 6)^2*(x^3 + 5*x^2 -89*x -353)^3*(x -5)^5;
T[212,41]=(x^3 + 6*x^2 -36*x -72)*(x + 10)^2*(x^3 + 10*x^2 + 20*x -8)^3*(x -2)^4*(x -6)^7;
T[212,43]=(x + 4)*(x -4)*(x^3 -48*x + 124)*(x -7)^2*(x + 1)^2*(x + 2)^3*(x^3 -18*x^2 + 24*x + 556)^3*(x + 10)^4;
T[212,47]=(x + 12)*(x -10)*(x^3 -18*x^2 + 60*x + 168)*(x + 6)^2*(x -4)^2*(x -6)^2*(x )^2*(x + 2)^3*(x^3 + 10*x^2 -4*x -8)^3;
T[212,53]=(x -1)^12*(x + 1)^13;
T[212,59]=(x + 12)*(x^3 + 6*x^2 -36*x -72)*(x -15)^2*(x -7)^2*(x -6)^2*(x + 6)^2*(x^3 -2*x^2 -60*x + 200)^3*(x + 2)^4;
T[212,61]=(x -10)*(x^3 -48*x + 124)*(x -4)^2*(x -2)^2*(x -8)^2*(x + 8)^3*(x + 10)^3*(x^3 + 10*x^2 -56*x -556)^3;
T[212,67]=(x + 2)*(x^3 + 6*x^2 -72*x -356)*(x -16)^2*(x + 12)^3*(x -4)^3*(x^3 -6*x^2 -72*x -108)^3*(x + 4)^4;
T[212,71]=(x -6)*(x + 9)*(x^3 + 3*x^2 -39*x + 57)*(x + 3)^2*(x -15)^2*(x -1)^3*(x^3 + 5*x^2 -105*x + 277)^3*(x -12)^4;
T[212,73]=(x -10)*(x + 6)*(x^3 -24*x^2 + 180*x -428)*(x -8)^2*(x + 12)^2*(x + 8)^2*(x^3 -6*x^2 -28*x -4)^3*(x + 4)^5;
T[212,79]=(x -5)*(x -10)*(x^3 -3*x^2 -219*x + 643)*(x -11)^2*(x + 13)^2*(x -1)^2*(x + 7)^2*(x + 1)^3*(x^3 + 7*x^2 -77*x + 131)^3;
T[212,83]=(x + 11)*(x^3 + 3*x^2 -9*x -9)*(x + 14)^2*(x -3)^2*(x + 3)^2*(x + 1)^3*(x + 6)^3*(x^3 -27*x^2 + 213*x -457)^3;
T[212,89]=(x^3 + 6*x^2 -180*x -504)*(x + 10)^2*(x -17)^2*(x -9)^2*(x -2)^2*(x -18)^2*(x + 14)^3*(x^3 + 2*x^2 -212*x + 1048)^3;
T[212,97]=(x -14)*(x + 3)*(x^3 + 9*x^2 -105*x -917)*(x -3)^2*(x + 13)^2*(x + 7)^2*(x -17)^2*(x -1)^3*(x^3 + x^2 -133*x -137)^3;

T[213,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 + x -1)*(x^2 -x -3)*(x^4 -3*x^3 -2*x^2 + 7*x + 1)*(x^3 -5*x + 3)^2*(x^3 + x^2 -4*x -3)^2;
T[213,3]=(x^6 -x^5 + 5*x^4 -3*x^3 + 15*x^2 -9*x + 27)*(x^6 + x^5 + x^4 + 3*x^3 + 3*x^2 + 9*x + 27)*(x -1)^5*(x + 1)^6;
T[213,5]=(x -2)*(x^2 + x -3)*(x^2 + 5*x + 5)*(x^2 -x -1)*(x^4 + 3*x^3 -5*x^2 -4*x + 4)*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;
T[213,7]=(x -2)*(x^2 + 4*x -1)*(x^4 -6*x^3 + 7*x^2 + 6*x -4)*(x + 3)^2*(x + 1)^2*(x^3 -2*x^2 -16*x + 24)^4;
T[213,11]=(x^2 + 8*x + 11)*(x^2 + 4*x -1)*(x^4 -2*x^3 -15*x^2 + 36*x -16)*(x )*(x -3)^2*(x^3 -20*x + 24)^2*(x^3 + 2*x^2 -16*x -24)^2;
T[213,13]=(x + 2)*(x^2 + 3*x -1)*(x^2 + x -11)*(x^2 + 5*x -5)*(x^4 -5*x^3 -11*x^2 + 40*x + 4)*(x^3 + 6*x^2 -8*x -56)^2*(x -4)^6;
T[213,17]=(x^2 -5)*(x^2 + 4*x -1)*(x^4 + 8*x^3 -31*x^2 -338*x -604)*(x )*(x -3)^2*(x^3 + 2*x^2 -32*x -24)^2*(x^3 -2*x^2 -16*x + 24)^2;
T[213,19]=(x^2 + 4*x -9)*(x^4 -8*x^3 -57*x^2 + 492*x -304)*(x )*(x^2 + 8*x + 11)^2*(x^3 -x^2 -20*x -25)^2*(x^3 -11*x^2 + 36*x -35)^2;
T[213,23]=(x^2 + 3*x -9)*(x^2 -3*x -27)*(x^2 + 3*x -29)*(x^4 + x^3 -43*x^2 + 104*x -64)*(x )*(x^3 -8*x^2 -12*x + 72)^2*(x + 4)^6;
T[213,29]=(x + 2)*(x^2 -3*x -9)*(x^2 -3*x -59)*(x^2 -7*x + 9)*(x^4 + 5*x^3 -69*x^2 -560*x -1076)*(x^3 + 5*x^2 -2*x -25)^2*(x^3 -11*x^2 + 14*x + 71)^2;
T[213,31]=(x + 10)*(x^2 -8*x -4)*(x^4 -2*x^3 -96*x^2 + 72*x + 2096)*(x -2)^2*(x + 2)^2*(x^3 + 6*x^2 -8*x -56)^2*(x -4)^6;
T[213,37]=(x + 6)*(x^2 + x -3)*(x^2 -3*x -99)*(x^2 + x -31)*(x^4 -19*x^3 + 125*x^2 -332*x + 284)*(x^3 -9*x^2 -26*x + 37)^2*(x^3 + 15*x^2 + 70*x + 97)^2;
T[213,41]=(x^2 -3*x -27)*(x^2 + 17*x + 71)*(x^2 -15*x + 55)*(x^4 + 19*x^3 + 115*x^2 + 282*x + 244)*(x )*(x^3 -14*x^2 + 48*x -8)^2*(x^3 + 2*x^2 -68*x + 56)^2;
T[213,43]=(x + 4)*(x^2 -13*x + 13)*(x^2 + 3*x -99)*(x^2 + 15*x + 45)*(x^4 -25*x^3 + 205*x^2 -600*x + 400)*(x^3 + 17*x^2 + 72*x + 81)^2*(x^3 -13*x^2 + 48*x -45)^2;
T[213,47]=(x -12)*(x^2 + 5*x -55)*(x^2 -15*x + 45)*(x^2 + 9*x -9)*(x^4 -7*x^3 -85*x^2 + 436*x -496)*(x^3 -4*x^2 -28*x + 40)^2*(x^3 + 10*x^2 -72)^2;
T[213,53]=(x + 4)*(x^2 + 3*x -29)*(x^2 -9*x + 19)*(x^2 -5*x -75)*(x^4 + 5*x^3 -81*x^2 -390*x + 524)*(x^3 + 18*x^2 + 28*x -456)^2*(x^3 -20*x -24)^2;
T[213,59]=(x -12)*(x^2 -45)*(x^2 -4*x -121)*(x^4 -10*x^3 -71*x^2 + 880*x -1936)*(x + 3)^2*(x^3 + 4*x^2 -36*x -152)^2*(x^3 + 22*x^2 + 144*x + 280)^2;
T[213,61]=(x -10)*(x^2 -45)*(x^2 + 24*x + 131)*(x^4 -2*x^3 -135*x^2 -184*x + 604)*(x -5)^2*(x^3 -8*x^2 -76*x + 536)^2*(x^3 -16*x^2 + 16*x + 320)^2;
T[213,67]=(x -2)*(x^2 -13*x + 13)*(x^2 + 5*x -145)*(x^2 + 17*x + 41)*(x^4 -35*x^3 + 421*x^2 -2050*x + 3284)*(x^3 + 12*x^2 + 28*x -40)^2*(x^3 + 12*x^2 -32*x -64)^2;
T[213,71]=(x + 1)^5*(x -1)^18;
T[213,73]=(x + 10)*(x^2 + 2*x -116)*(x^2 + 10*x + 20)*(x^2 -2*x -4)*(x^4 -2*x^3 -80*x^2 + 456*x -656)*(x^3 -3*x^2 -2*x + 7)^2*(x^3 -27*x^2 + 202*x -461)^2;
T[213,79]=(x -4)*(x^2 + 9*x + 17)*(x^2 + 5*x + 5)*(x^2 + x -31)*(x^4 + x^3 -175*x^2 -892*x -656)*(x^3 -7*x^2 -136*x + 525)^2*(x^3 + 3*x^2 -44*x + 15)^2;
T[213,83]=(x + 4)*(x^2 + 12*x + 31)*(x^2 -20*x + 87)*(x^4 -18*x^3 -95*x^2 + 2944*x -11216)*(x + 3)^2*(x^3 -23*x^2 + 172*x -419)^2*(x^3 + 19*x^2 + 96*x + 63)^2;
T[213,89]=(x -6)*(x^2 + 14*x + 29)*(x^2 -12*x -9)*(x^4 + 16*x^3 -73*x^2 -1456*x -3644)*(x -3)^2*(x^3 -13*x^2 -82*x + 45)^2*(x^3 -x^2 -22*x -27)^2;
T[213,97]=(x + 2)*(x^2 -9*x -61)*(x^2 -5*x -55)*(x^2 + 9*x -81)*(x^4 + x^3 -83*x^2 -116*x + 76)*(x^3 -22*x^2 + 144*x -280)^2*(x^3 -4*x^2 -36*x + 152)^2;

T[214,2]=(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^14 + x^13 + 4*x^12 + 5*x^11 + 13*x^10 + 16*x^9 + 34*x^8 + 32*x^7 + 68*x^6 + 64*x^5 + 104*x^4 + 80*x^3 + 128*x^2 + 64*x + 128)*(x -1)^4*(x + 1)^4;
T[214,3]=(x^2 + 2*x -2)*(x^2 -2*x -2)*(x + 2)^2*(x -1)^2*(x^2 + 3*x + 1)^2*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29)^2;
T[214,5]=(x + 3)*(x + 4)*(x + 1)*(x^2 -4*x + 1)*(x^2 -3)*(x )*(x^2 + 3*x + 1)^2*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64)^2;
T[214,7]=(x + 2)*(x -2)*(x -4)*(x + 4)*(x^2 + 2*x -2)^2*(x^2 + 4*x -1)^2*(x^7 -4*x^6 -23*x^5 + 114*x^4 -32*x^3 -360*x^2 + 448*x -128)^2;
T[214,11]=(x + 6)*(x + 2)*(x^2 -2*x -2)*(x^2 -6*x + 6)*(x + 3)^2*(x^2 -4*x -1)^2*(x^7 + 2*x^6 -41*x^5 -95*x^4 + 361*x^3 + 950*x^2 + 519*x + 47)^2;
T[214,13]=(x -4)*(x + 4)*(x^2 + 2*x -2)*(x^2 -2*x -2)*(x + 1)^2*(x^7 -18*x^6 + 98*x^5 + x^4 -1649*x^3 + 4855*x^2 -3548*x -1244)^2*(x + 6)^4;
T[214,17]=(x + 2)*(x + 6)*(x^2 + 6*x + 6)*(x^2 -10*x + 22)*(x -6)^2*(x^2 + 3*x + 1)^2*(x^7 + x^6 -41*x^5 -16*x^4 + 488*x^3 + 32*x^2 -1536*x -512)^2;
T[214,19]=(x + 7)*(x -1)*(x + 2)^2*(x^2 -2*x -44)^2*(x^7 + 4*x^6 -52*x^5 -137*x^4 + 391*x^3 + 951*x^2 -694*x -1636)^2*(x -2)^4;
T[214,23]=(x -5)*(x -9)*(x -1)*(x + 7)*(x^2 + 12*x + 33)*(x^2 -3)*(x^2 -6*x -11)^2*(x^7 -123*x^5 -41*x^4 + 4295*x^3 + 1802*x^2 -34533*x + 21431)^2;
T[214,29]=(x + 4)*(x^2 -6*x -18)*(x^2 -10*x + 22)*(x )*(x + 6)^2*(x^2 + 2*x -19)^2*(x^7 + 3*x^6 -94*x^5 -382*x^4 + 1077*x^3 + 4927*x^2 -1896*x -11828)^2;
T[214,31]=(x + 2)*(x + 10)*(x + 4)*(x -4)*(x^2 + 4*x -44)*(x -2)^2*(x^2 + 2*x -19)^2*(x^7 -4*x^6 -45*x^5 + 224*x^4 -84*x^3 -576*x^2 + 320*x + 256)^2;
T[214,37]=(x -12)*(x + 9)*(x + 1)*(x^2 + 8*x -32)*(x )*(x + 4)^2*(x^2 + 13*x + 31)^2*(x^7 -25*x^6 + 219*x^5 -659*x^4 -1042*x^3 + 10321*x^2 -20000*x + 12113)^2;
T[214,41]=(x -3)*(x + 5)*(x + 11)^2*(x^2 -10*x + 20)^2*(x^2 -6*x -39)^2*(x^7 -82*x^5 + 155*x^4 + 893*x^3 -1965*x^2 -394*x + 724)^2;
T[214,43]=(x -12)*(x -8)*(x -1)*(x + 7)^2*(x^2 -9*x + 9)^2*(x^7 -11*x^6 -79*x^5 + 1026*x^4 + 140*x^3 -23568*x^2 + 59040*x -21856)^2*(x + 9)^3;
T[214,47]=(x -11)*(x -8)*(x + 1)*(x^2 -12*x + 33)*(x^2 -3)*(x )*(x^2 + 14*x + 44)^2*(x^7 + 9*x^6 -107*x^5 -1361*x^4 -2306*x^3 + 14076*x^2 + 30432*x -30848)^2;
T[214,53]=(x -7)*(x + 9)*(x -10)*(x -6)*(x^2 -108)*(x^2 -8*x + 4)*(x^2 + 6*x -71)^2*(x^7 -8*x^6 -125*x^5 + 435*x^4 + 5683*x^3 -150*x^2 -79775*x -143149)^2;
T[214,59]=(x + 5)*(x -6)*(x + 3)*(x + 6)*(x^2 -6*x -99)*(x^2 -10*x + 13)*(x^2 -3*x -99)^2*(x^7 + 19*x^6 + 81*x^5 -538*x^4 -6064*x^3 -21232*x^2 -31888*x -16736)^2;
T[214,61]=(x + 7)*(x -4)*(x -1)*(x + 8)*(x^2 -2*x -74)*(x^2 + 2*x -2)*(x^2 + 13*x + 31)^2*(x^7 -25*x^6 + 111*x^5 + 1195*x^4 -9280*x^3 + 2653*x^2 + 86150*x -123049)^2;
T[214,67]=(x -5)*(x -14)*(x + 10)*(x + 5)*(x^2 -10*x -23)*(x + 1)^2*(x^2 + 10*x + 20)^2*(x^7 + 24*x^6 + 44*x^5 -3400*x^4 -36896*x^3 -136864*x^2 -88704*x + 333056)^2;
T[214,71]=(x + 12)*(x^2 -6*x -66)*(x^2 -6*x -138)*(x )*(x -6)^2*(x^2 + 3*x -99)^2*(x^7 + 19*x^6 -165*x^5 -4948*x^4 -15804*x^3 + 174696*x^2 + 1073984*x + 1370816)^2;
T[214,73]=(x + 16)*(x -8)*(x^2 + 2*x -146)*(x^2 + 10*x + 22)*(x + 4)^2*(x^2 + 8*x -29)^2*(x^7 -30*x^6 + 101*x^5 + 3540*x^4 -21896*x^3 -74968*x^2 + 357776*x + 79712)^2;
T[214,79]=(x -11)*(x -7)*(x^2 -16*x -11)*(x^2 + 4*x -239)*(x + 7)^2*(x^2 -x -11)^2*(x^7 + 21*x^6 + 131*x^5 -13*x^4 -2664*x^3 -6337*x^2 + 5306*x + 19859)^2;
T[214,83]=(x + 16)*(x -12)*(x^2 -18*x + 54)*(x^2 + 18*x + 6)*(x -4)^2*(x^2 -3*x -9)^2*(x^7 -12*x^6 -395*x^5 + 5505*x^4 + 25518*x^3 -554561*x^2 + 1427088*x + 2420672)^2;
T[214,89]=(x + 15)^2*(x -9)^2*(x^2 -20*x + 95)^2*(x^2 -6*x -99)^2*(x^7 + 22*x^6 -87*x^5 -3053*x^4 -1107*x^3 + 33866*x^2 -27103*x -14123)^2;
T[214,97]=(x + 6)*(x + 12)*(x -12)*(x -14)*(x^2 -6*x -234)*(x^2 + 2*x -2)*(x^2 + 12*x -9)^2*(x^7 + 4*x^6 -207*x^5 -414*x^4 + 10036*x^3 + 8368*x^2 -124544*x + 139424)^2;

T[215,2]=(x^5 -2*x^4 -7*x^3 + 13*x^2 + 5*x -4)*(x^6 -3*x^5 -5*x^4 + 17*x^3 + 3*x^2 -17*x -3)*(x^3 + 2*x^2 -3*x -3)*(x )*(x + 2)^2*(x^2 -2)^2;
T[215,3]=(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 -4*x^5 -5*x^4 + 30*x^3 -20*x^2 + 1)*(x^3 -x^2 -4*x + 1)*(x )*(x + 2)^2*(x^2 -2)^2;
T[215,5]=(x^2 + 4*x + 5)*(x^4 -4*x^3 + 12*x^2 -20*x + 25)*(x + 1)^7*(x -1)^8;
T[215,7]=(x + 2)*(x^5 -5*x^4 -14*x^3 + 97*x^2 -58*x -160)*(x^6 -8*x^5 + x^4 + 92*x^3 -72*x^2 -194*x -31)*(x^3 + 3*x^2 -6*x -7)*(x^2 + 4*x + 2)^2*(x )^2;
T[215,11]=(x + 1)*(x^5 + 6*x^4 + x^3 -43*x^2 -59*x -12)*(x^6 -41*x^4 + 12*x^3 + 322*x^2 + 88*x -93)*(x^3 -9*x^2 + 107)*(x -3)^2*(x^2 + 2*x -7)^2;
T[215,13]=(x + 1)*(x^5 -5*x^4 -50*x^3 + 284*x^2 + 224*x -2000)*(x^6 -6*x^5 -20*x^4 + 104*x^3 + 144*x^2 -352*x -448)*(x^3 + 2*x^2 -16*x -8)*(x + 5)^2*(x^2 -2*x -7)^2;
T[215,17]=(x^5 + 17*x^4 + 94*x^3 + 180*x^2 + 80*x -16)*(x^6 -6*x^5 -60*x^4 + 408*x^3 + 272*x^2 -3616*x + 1344)*(x^3 -10*x^2 + 16*x + 24)*(x^2 -10*x + 17)^2*(x + 3)^3;
T[215,19]=(x^5 + 6*x^4 -72*x^3 -352*x^2 + 1280*x + 4608)*(x^6 -6*x^5 -32*x^4 + 152*x^3 + 224*x^2 -768*x -512)*(x^3 -6*x^2 -24*x + 72)*(x^2 + 4*x -4)^2*(x + 2)^3;
T[215,23]=(x^5 -x^4 -54*x^3 + 132*x^2 + 200*x -384)*(x^6 -96*x^4 + 8*x^3 + 2368*x^2 -800*x -5952)*(x^3 + 6*x^2 -24*x -72)*(x^2 -2*x -31)^2*(x + 1)^3;
T[215,29]=(x -4)*(x^5 -6*x^4 -84*x^3 + 752*x^2 -1744*x + 1152)*(x^6 + 10*x^5 -36*x^4 -680*x^3 -2000*x^2 + 544*x + 5952)*(x^3 -2*x^2 -16*x + 8)*(x + 6)^2*(x^2 -18)^2;
T[215,31]=(x -3)*(x^5 -6*x^4 -67*x^3 + 529*x^2 -903*x + 128)*(x^6 -97*x^4 -28*x^3 + 2386*x^2 + 1584*x -10133)*(x^3 -13*x^2 + 44*x -41)*(x + 1)^2*(x + 3)^4;
T[215,37]=(x + 8)*(x^5 -5*x^4 -28*x^3 + 127*x^2 + 86*x -400)*(x^6 -28*x^5 + 221*x^4 + 278*x^3 -10350*x^2 + 37566*x -29813)*(x^3 -9*x^2 + 1)*(x^2 -72)^2*(x )^2;
T[215,41]=(x^5 -2*x^4 -99*x^3 + 247*x^2 + 211*x + 30)*(x^6 + 6*x^5 -139*x^4 -874*x^3 + 3702*x^2 + 21968*x -10911)*(x^3 -15*x^2 + 42*x + 31)*(x^2 + 2*x -7)^2*(x -5)^3;
T[215,43]=(x -1)^10*(x + 1)^11;
T[215,47]=(x^5 -124*x^3 + 72*x^2 + 3392*x -2048)*(x^6 + 6*x^5 -60*x^4 -504*x^3 -688*x^2 + 2080*x + 4416)*(x^3 + 22*x^2 + 112*x -72)*(x )*(x -4)^2*(x -6)^4;
T[215,53]=(x^5 + 23*x^4 + 190*x^3 + 668*x^2 + 912*x + 400)*(x^6 + 4*x^5 -200*x^4 -592*x^3 + 8240*x^2 + 33536*x + 17088)*(x^3 -8*x^2 + 4*x + 24)*(x^2 -22*x + 113)^2*(x + 5)^3;
T[215,59]=(x -12)*(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 + 20*x^5 + 59*x^4 -940*x^3 -6450*x^2 -9416*x + 6987)*(x^3 -13*x^2 -56*x + 579)*(x + 12)^2*(x^2 + 4*x -4)^2;
T[215,61]=(x + 4)*(x^3 + 10*x^2 -72*x -648)*(x^6 + 8*x^5 -192*x^4 -1064*x^3 + 6080*x^2 + 13856*x + 6848)*(x^5 -20*x^4 -80*x^3 + 3152*x^2 -7504*x -60672)*(x -2)^2*(x^2 -8*x -2)^2;
T[215,67]=(x^5 -21*x^4 + 44*x^3 + 732*x^2 + 584*x + 96)*(x^6 -22*x^5 + 52*x^4 + 1176*x^3 -3600*x^2 -17632*x + 32192)*(x^3 + 6*x^2 -24*x -72)*(x^2 -2*x -71)^2*(x + 3)^3;
T[215,71]=(x -6)*(x^3 + 6*x^2 -120*x -328)*(x^6 -8*x^5 -92*x^4 + 464*x^3 + 928*x^2 -4288*x + 192)*(x^5 -4*x^4 -212*x^3 + 632*x^2 + 10576*x -20352)*(x -2)^2*(x^2 + 12*x + 28)^2;
T[215,73]=(x + 8)*(x^5 -5*x^4 -84*x^3 + 191*x^2 + 1222*x + 1112)*(x^6 -34*x^5 + 401*x^4 -1956*x^3 + 3000*x^2 + 3668*x -10133)*(x^3 -3*x^2 -30*x + 41)*(x -2)^2*(x^2 + 24*x + 126)^2;
T[215,79]=(x^5 -41*x^4 + 644*x^3 -4765*x^2 + 16120*x -18688)*(x^6 + 16*x^5 -189*x^4 -2736*x^3 + 7802*x^2 + 106132*x + 194267)*(x^3 + 17*x^2 + 32*x -287)*(x )*(x + 8)^2*(x^2 -4*x -4)^2;
T[215,83]=(x + 9)*(x^5 + 7*x^4 -98*x^3 -888*x^2 -1256*x + 2400)*(x^6 + 14*x^5 -156*x^4 -2104*x^3 + 4080*x^2 + 43616*x -101952)*(x^3 + 12*x^2 -108*x -648)*(x -15)^2*(x^2 -18*x + 49)^2;
T[215,89]=(x + 6)*(x^5 -20*x^4 + 8*x^3 + 1000*x^2 -688*x -2656)*(x^6 -264*x^4 + 1088*x^3 + 16528*x^2 -132992*x + 265152)*(x^3 -8*x^2 -84*x -72)*(x + 4)^2*(x^2 + 12*x + 18)^2;
T[215,97]=(x + 17)*(x^5 -37*x^4 + 410*x^3 -1208*x^2 -160*x + 1152)*(x^6 -34*x^5 + 348*x^4 -728*x^3 -4480*x^2 + 16256*x -11776)*(x^3 -6*x^2 -132*x + 216)*(x -7)^2*(x^2 + 2*x -7)^2;

T[216,2]=(x + 1)*(x -1)*(x^2 + 2)*(x )^21;
T[216,3]=(x + 1)*(x )^24;
T[216,5]=(x -4)*(x + 4)*(x -1)*(x + 1)*(x -2)^2*(x -3)^3*(x + 2)^3*(x + 3)^3*(x )^10;
T[216,7]=(x -3)^2*(x -5)^2*(x + 3)^2*(x + 4)^4*(x )^5*(x + 1)^10;
T[216,11]=(x + 5)*(x -5)*(x + 4)^3*(x -3)^3*(x + 3)^3*(x -4)^4*(x )^10;
T[216,13]=(x -1)^2*(x + 7)^2*(x -4)^2*(x -5)^4*(x -2)^4*(x + 2)^5*(x + 4)^6;
T[216,17]=(x -8)*(x + 4)*(x -4)*(x + 8)*(x + 2)^2*(x -2)^3*(x )^16;
T[216,19]=(x -8)^4*(x + 7)^4*(x + 1)^4*(x + 4)^5*(x -2)^8;
T[216,23]=(x + 4)*(x -4)*(x + 2)*(x -2)*(x -8)^2*(x + 8)^3*(x + 6)^3*(x -6)^3*(x )^10;
T[216,29]=(x + 6)^6*(x -6)^7*(x )^12;
T[216,31]=(x + 7)^2*(x -8)^5*(x -5)^6*(x + 4)^12;
T[216,37]=(x + 6)^2*(x + 9)^2*(x + 1)^2*(x -11)^4*(x + 10)^4*(x -6)^5*(x -2)^6;
T[216,41]=(x -6)^6*(x + 6)^7*(x )^12;
T[216,43]=(x + 8)^2*(x + 2)^2*(x -4)^5*(x + 10)^6*(x -8)^10;
T[216,47]=(x -12)*(x + 12)*(x + 6)^4*(x -6)^4*(x )^15;
T[216,53]=(x -5)*(x + 5)*(x -8)*(x + 8)*(x -2)^2*(x + 9)^3*(x -9)^3*(x + 2)^3*(x )^10;
T[216,59]=(x + 12)^3*(x -12)^3*(x + 4)^4*(x -4)^5*(x )^10;
T[216,61]=(x + 13)^2*(x + 8)^2*(x + 5)^2*(x + 1)^4*(x -14)^4*(x + 2)^5*(x -8)^6;
T[216,67]=(x + 10)^2*(x -5)^4*(x + 16)^4*(x -11)^4*(x + 4)^5*(x -14)^6;
T[216,71]=(x + 8)^4*(x -8)^5*(x )^16;
T[216,73]=(x -17)^2*(x -1)^4*(x + 10)^4*(x -10)^5*(x + 7)^10;
T[216,79]=(x -16)^2*(x + 13)^2*(x + 5)^2*(x + 4)^4*(x -17)^4*(x + 8)^5*(x -8)^6;
T[216,83]=(x -8)*(x -11)*(x + 11)*(x + 8)*(x -4)^2*(x + 3)^3*(x -3)^3*(x + 4)^3*(x )^10;
T[216,89]=(x + 12)*(x -12)*(x -6)^3*(x -18)^3*(x + 18)^3*(x + 6)^4*(x )^10;
T[216,97]=(x -14)^4*(x -5)^4*(x + 19)^4*(x -2)^5*(x + 1)^8;

T[217,2]=(x^4 -5*x^2 + x + 1)*(x^5 -3*x^4 -5*x^3 + 16*x^2 + 6*x -19)*(x^2 -x -1)^2*(x^3 + 3*x^2 -3)^2;
T[217,3]=(x^3 + 3*x^2 -1)*(x^3 + 3*x^2 -3)*(x^5 -3*x^4 -6*x^3 + 15*x^2 + 8*x -16)*(x^4 -3*x^3 -2*x^2 + 9*x -4)*(x^2 + 2*x -4)^2;
T[217,5]=(x^3 -9*x -9)*(x^3 + 6*x^2 + 9*x + 3)*(x^5 -17*x^3 -5*x^2 + 56*x -4)*(x^4 -4*x^3 + x^2 + 5*x -2)*(x -1)^4;
T[217,7]=(x^4 + 4*x^3 + 13*x^2 + 28*x + 49)*(x -1)^7*(x + 1)^8;
T[217,11]=(x^3 -27*x + 27)*(x^3 + 6*x^2 + 3*x -19)*(x^5 -4*x^4 -13*x^3 + 39*x^2 + 48*x + 8)*(x^4 -2*x^3 -23*x^2 + 81*x -68)*(x -2)^4;
T[217,13]=(x^3 + 3*x^2 -24*x + 1)*(x^3 + 3*x^2 -18*x -37)*(x^5 + 3*x^4 -14*x^3 -47*x^2 -36*x -4)*(x^4 + x^3 -18*x^2 -37*x -2)*(x^2 + 2*x -4)^2;
T[217,17]=(x^3 + 12*x^2 + 45*x + 51)*(x^3 + 6*x^2 + 9*x + 1)*(x^5 + 4*x^4 -33*x^3 -173*x^2 -104*x + 244)*(x^4 -8*x^3 -17*x^2 + 123*x + 214)*(x^2 -6*x + 4)^2;
T[217,19]=(x^3 -3*x^2 + 3)*(x^3 + 3*x^2 -24*x -53)*(x^5 + 9*x^4 -28*x^3 -257*x^2 + 408*x + 976)*(x^4 -5*x^3 -32*x^2 + 159*x + 4)*(x^2 -5)^2;
T[217,23]=(x^3 + 12*x^2 + 27*x -57)*(x^3 + 18*x^2 + 99*x + 153)*(x^5 -18*x^4 + 97*x^3 -73*x^2 -568*x + 664)*(x^4 -20*x^3 + 129*x^2 -243*x -160)*(x^2 + 2*x -44)^2;
T[217,29]=(x^3 -9*x^2 + 27)*(x^3 + 15*x^2 + 54*x + 37)*(x^5 + x^4 -88*x^3 -177*x^2 + 1484*x + 2732)*(x^4 + 7*x^3 -24*x^2 -187*x -110)*(x^2 -10*x + 20)^2;
T[217,31]=(x + 1)^7*(x -1)^12;
T[217,37]=(x^3 -21*x + 17)*(x^3 -6*x^2 + 3*x + 19)*(x^5 + 12*x^4 -43*x^3 -529*x^2 + 1184*x + 1996)*(x^4 -179*x^2 -9*x + 7058)*(x + 2)^4;
T[217,41]=(x^3 -15*x^2 + 48*x -17)*(x^3 + 21*x^2 + 126*x + 159)*(x^4 -5*x^3 -60*x^2 + 263*x -254)*(x^5 + 21*x^4 + 88*x^3 -497*x^2 -2620*x + 1484)*(x -7)^4;
T[217,43]=(x^3 + 3*x^2 -60*x -71)*(x^3 + 3*x^2 -36*x -57)*(x^5 -5*x^4 -106*x^3 + 249*x^2 + 2280*x -2888)*(x^4 + 15*x^3 + 78*x^2 + 163*x + 116)*(x^2 + 2*x -4)^2;
T[217,47]=(x^3 + 9*x^2 -57*x -89)*(x^3 + 21*x^2 + 135*x + 267)*(x^4 -19*x^3 + 111*x^2 -213*x + 32)*(x^5 -39*x^4 + 519*x^3 -2281*x^2 -3632*x + 35104)*(x^2 + 4*x -16)^2;
T[217,53]=(x^3 -9*x^2 + 81)*(x^3 + 9*x^2 + 6*x -73)*(x^5 -19*x^4 -46*x^3 + 1825*x^2 -1044*x -25708)*(x^4 -3*x^3 -166*x^2 -81*x + 2390)*(x^2 + 12*x + 16)^2;
T[217,59]=(x^3 + 3*x^2 -198*x -327)*(x^3 + 3*x^2 -108*x -543)*(x^5 -x^4 -100*x^3 + 469*x^2 -216*x -1072)*(x^4 -5*x^3 -138*x^2 + 981*x -556)*(x^2 -5)^2;
T[217,61]=(x^3 -3*x^2 -18*x + 3)*(x^3 + 3*x^2 -60*x -71)*(x^5 + x^4 -140*x^3 -67*x^2 + 3844*x + 8588)*(x^4 + 5*x^3 -108*x^2 + 187*x + 22)*(x^2 + 6*x -116)^2;
T[217,67]=(x^3 + 18*x^2 + 51*x -233)*(x^3 -6*x^2 + 3*x + 19)*(x^5 + 2*x^4 -97*x^3 + 87*x^2 + 2328*x -6064)*(x^4 + 14*x^3 -137*x^2 -2761*x -10076)*(x -8)^4;
T[217,71]=(x^3 + 9*x^2 -84*x -739)*(x^3 + 21*x^2 + 144*x + 321)*(x^5 -23*x^4 + 24*x^3 + 2041*x^2 -7632*x -12608)*(x^4 + 5*x^3 -92*x^2 -307*x + 1720)*(x^2 -4*x -121)^2;
T[217,73]=(x^3 + 9*x^2 -84*x + 127)*(x^3 + 3*x^2 -6*x + 1)*(x^5 + 5*x^4 -150*x^3 -1179*x^2 -2412*x -788)*(x^4 + 9*x^3 -74*x^2 -845*x -1766)*(x^2 -8*x -4)^2;
T[217,79]=(x^3 -12*x^2 + 36*x -8)*(x^3 + 12*x^2 + 12*x -152)*(x^5 -12*x^4 -140*x^3 + 1096*x^2 + 1632*x -9664)*(x^4 + 4*x^3 -92*x^2 -648*x -1088)*(x^2 + 10*x -20)^2;
T[217,83]=(x^3 + 3*x^2 -198*x + 807)*(x^3 -3*x^2 -180*x + 901)*(x^4 -25*x^3 + 116*x^2 + 961*x -5732)*(x^5 -11*x^4 -138*x^3 + 1039*x^2 + 200*x -304)*(x^2 + 12*x -44)^2;
T[217,89]=(x^3 -21*x^2 -90*x + 2703)*(x^3 + 3*x^2 -54*x -219)*(x^5 + 13*x^4 -104*x^3 -2031*x^2 -9140*x -13028)*(x^4 -21*x^3 + 90*x^2 -61*x -118)*(x^2 -10*x -20)^2;
T[217,97]=(x^3 -9*x^2 -246*x + 2413)*(x^3 + 21*x^2 + 138*x + 289)*(x^4 + 15*x^3 + 16*x^2 -451*x -1298)*(x^5 + 7*x^4 -54*x^3 -407*x^2 -652*x -76)*(x^2 + 14*x -31)^2;

T[218,2]=(x^2 -x + 2)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^8 + x^7 + 3*x^6 + 2*x^5 + 7*x^4 + 4*x^3 + 12*x^2 + 8*x + 16)*(x -1)^5*(x + 1)^5;
T[218,3]=(x + 2)*(x^2 + 4*x + 2)*(x^2 -3*x + 1)*(x^3 -3*x^2 -3*x + 8)*(x^2 + 2*x -2)*(x^3 + 4*x^2 + 3*x -1)^2*(x^4 -4*x^3 -x^2 + 15*x -8)^2*(x )^2;
T[218,5]=(x + 3)*(x^2 -2*x -1)*(x^2 -2*x -4)*(x^3 + 3*x^2 -6*x -12)*(x^2 -3)*(x -3)^2*(x^3 + 6*x^2 + 5*x -13)^2*(x^4 -x^3 -5*x^2 + 4*x + 3)^2;
T[218,7]=(x + 4)*(x^2 + 4*x + 2)*(x^2 -6*x + 6)*(x + 2)^2*(x^3 + x^2 -16*x + 13)^2*(x^4 + 3*x^3 -10*x^2 -23*x -2)^2*(x -2)^5;
T[218,11]=(x -3)*(x^2 + 6*x + 4)*(x^2 + 2*x -7)*(x^3 -3*x^2 -6*x + 12)*(x^3 + 13*x^2 + 54*x + 71)^2*(x^4 -12*x^3 + 33*x^2 + 47*x -177)^2*(x -1)^4;
T[218,13]=(x + 4)*(x^2 -3*x -9)*(x^2 + 8*x + 8)*(x^3 -9*x^2 + 15*x + 16)*(x^2 -4*x -8)*(x^3 + x^2 -16*x + 13)^2*(x^4 + 7*x^3 -10*x^2 -93*x + 16)^2*(x )^2;
T[218,17]=(x + 6)*(x^2 + 4*x + 2)*(x^2 + 4*x -16)*(x^2 -2*x -2)*(x + 8)^2*(x^3 -3*x^2 -4*x + 13)^2*(x^4 -11*x^3 + 10*x^2 + 215*x -576)^2*(x )^3;
T[218,19]=(x -5)*(x^2 + 2*x -11)*(x^2 + 10*x + 17)*(x^3 -3*x^2 -36*x + 112)*(x + 5)^2*(x^3 + 5*x^2 -8*x -41)^2*(x^4 -10*x^3 + 27*x^2 + 3*x -59)^2*(x )^2;
T[218,23]=(x -3)*(x^2 + 2*x -49)*(x^2 -3*x -9)*(x^3 -54*x -81)*(x^2 + 8*x + 13)*(x -7)^2*(x^3 -x^2 -58*x -13)^2*(x^4 + 2*x^3 -31*x^2 -43*x + 177)^2;
T[218,29]=(x + 3)*(x^2 -10*x + 20)*(x^2 -6*x -9)*(x^3 + 3*x^2 -6*x -12)*(x^2 + 16*x + 61)*(x + 5)^2*(x^3 + 6*x^2 -37*x -181)^2*(x^4 -x^3 -59*x^2 + 154*x -57)^2;
T[218,31]=(x + 4)*(x^2 + 4*x -14)*(x^2 + 6*x -36)*(x^3 -48*x -56)*(x^2 -6*x -18)*(x -6)^2*(x^3 + 7*x^2 -28*x + 7)^2*(x^4 + 5*x^3 -22*x^2 -69*x + 158)^2;
T[218,37]=(x + 4)*(x^2 -x -1)*(x^2 -2*x -26)*(x^2 + 4*x -14)*(x^3 + 3*x^2 -51*x -134)*(x -2)^2*(x^3 -7*x -7)^2*(x^4 + 12*x^3 -65*x^2 -1031*x -2038)^2;
T[218,41]=(x^2 -4*x -76)*(x^2 -6*x + 6)*(x^2 -8*x -34)*(x )*(x -2)^2*(x^3 + 6*x^2 -51*x + 71)^2*(x^4 -12*x^3 + 47*x^2 -61*x + 6)^2*(x + 6)^3;
T[218,43]=(x + 10)*(x^2 + 4*x -14)*(x^2 -3*x -9)*(x^3 -3*x^2 -9*x + 4)*(x^2 + 10*x + 22)*(x + 4)^2*(x^3 -9*x^2 -36*x + 351)^2*(x^4 -5*x^3 -40*x^2 + 75*x + 388)^2;
T[218,47]=(x + 3)*(x^2 + 9*x + 9)*(x^2 -6*x + 7)*(x^3 + 6*x^2 -42*x -249)*(x^2 -27)*(x -9)^2*(x^3 + 10*x^2 -25*x -125)^2*(x^4 + x^3 -5*x^2 -4*x + 3)^2;
T[218,53]=(x^2 -8*x + 8)*(x^2 -3*x -29)*(x^3 + 3*x^2 -105*x -516)*(x^2 + 4*x -8)*(x^3 -9*x^2 + 20*x -13)^2*(x^4 + 19*x^3 -24*x^2 -1351*x -684)^2*(x -12)^3;
T[218,59]=(x^2 + 4*x -68)*(x^2 -80)*(x^3 -12*x^2 -96*x + 768)*(x + 6)^2*(x^3 + 25*x^2 + 192*x + 461)^2*(x^4 -27*x^3 + 216*x^2 -513*x + 324)^2*(x -12)^3;
T[218,61]=(x + 7)*(x^2 -14*x + 4)*(x^2 -4*x + 1)*(x^3 + 3*x^2 -78*x + 28)*(x^2 -2*x -17)*(x + 5)^2*(x^3 + 10*x^2 -144*x -1336)^2*(x^4 + 7*x^3 -102*x^2 + 72*x + 216)^2;
T[218,67]=(x + 4)*(x^2 -16*x + 44)*(x^2 -4*x -4)*(x^3 -156*x + 592)*(x^2 + 4*x -188)*(x + 12)^2*(x^3 + 11*x^2 -25*x -43)^2*(x^4 -7*x^3 -53*x^2 + 455*x -772)^2;
T[218,71]=(x + 12)*(x^2 -6*x -66)*(x^2 + 16*x + 44)*(x^2 -4*x + 2)*(x^3 + 10*x^2 -11*x -223)^2*(x^4 -32*x^3 + 209*x^2 + 1843*x -17298)^2*(x + 6)^5;
T[218,73]=(x + 1)*(x^2 + 26*x + 161)*(x^2 -3*x -9)*(x^3 -6*x^2 -96*x + 19)*(x^2 -10*x -83)*(x + 5)^2*(x^3 -20*x^2 + 131*x -281)^2*(x^4 + 9*x^3 -77*x^2 -710*x -997)^2;
T[218,79]=(x + 16)*(x^2 -4*x -124)*(x^2 -5*x -55)*(x^3 -15*x^2 + 21*x + 64)*(x^2 -8*x + 4)*(x -8)^2*(x^3 + 6*x^2 -79*x -461)^2*(x^4 + 24*x^3 + 65*x^2 -935*x + 1264)^2;
T[218,83]=(x -6)*(x^2 + 27*x + 171)*(x^2 -4*x -68)*(x^3 -15*x^2 + 21*x + 294)*(x^2 -16*x + 52)*(x + 2)^2*(x^3 + 13*x^2 -2*x -139)^2*(x^4 -21*x^3 + 80*x^2 + 301*x -534)^2;
T[218,89]=(x + 3)*(x^2 -5*x -145)*(x^2 -10*x -83)*(x^3 -6*x^2 -60*x + 249)*(x -1)^2*(x -7)^2*(x^3 + 21*x^2 + 84*x + 91)^2*(x^4 + 16*x^3 -29*x^2 -349*x + 513)^2;
T[218,97]=(x + 19)*(x^2 -22*x + 109)*(x^2 -18*x + 9)*(x^2 -31*x + 239)*(x^3 -138*x + 529)*(x -1)^2*(x^3 + 20*x^2 + 75*x -125)^2*(x^4 + 11*x^3 -45*x^2 -96*x -23)^2;

T[219,2]=(x + 2)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x^6 + x^5 -9*x^4 -5*x^3 + 20*x^2 + 4*x -4)*(x )*(x^2 + 3*x + 1)^2*(x^2 -x -3)^2*(x -1)^3;
T[219,3]=(x^4 -x^3 + 3*x^2 -3*x + 9)*(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x^2 + 3)*(x + 1)^6*(x -1)^7;
T[219,5]=(x + 4)*(x + 3)*(x + 1)*(x^4 -9*x^3 + 25*x^2 -21*x + 2)*(x^6 -5*x^5 -7*x^4 + 49*x^3 + 20*x^2 -128*x -64)*(x -2)^2*(x^2 + 3*x + 1)^2*(x^2 + x -3)^2;
T[219,7]=(x + 4)*(x^4 + 4*x^3 -8*x^2 -12*x + 16)*(x^6 -8*x^5 + 4*x^4 + 92*x^3 -216*x^2 + 160*x -32)*(x + 3)^4*(x -2)^4*(x + 1)^4;
T[219,11]=(x^4 -2*x^3 -20*x^2 + 52*x -32)*(x^6 + 2*x^5 -40*x^4 -20*x^3 + 336*x^2 -240*x + 32)*(x )*(x + 2)^2*(x + 4)^2*(x^2 + 3*x + 1)^2*(x^2 -7*x + 9)^2;
T[219,13]=(x + 4)*(x^4 -6*x^3 -4*x^2 + 12*x + 8)*(x^6 -4*x^5 -28*x^4 + 108*x^3 + 88*x^2 -240*x + 32)*(x + 6)^2*(x + 2)^2*(x^2 + x -3)^2*(x^2 -x -11)^2;
T[219,17]=(x + 3)*(x -3)*(x^4 -9*x^3 -5*x^2 + 141*x -22)*(x^6 + 3*x^5 -29*x^4 -149*x^3 -200*x^2 -16*x + 64)*(x )*(x -2)^2*(x^2 -45)^2*(x^2 + 4*x -9)^2;
T[219,19]=(x + 4)*(x^4 -x^3 -57*x^2 + 145*x -92)*(x^6 -5*x^5 -13*x^4 + 57*x^3 + 52*x^2 -144*x -64)*(x + 1)^2*(x -8)^2*(x + 7)^4*(x -1)^4;
T[219,23]=(x -6)*(x^4 -4*x^3 -36*x^2 + 156*x -64)*(x^6 + 6*x^5 -36*x^4 -140*x^3 + 448*x^2 + 704*x -1792)*(x -4)^2*(x^2 + 15*x + 55)^2*(x^2 -13*x + 39)^2*(x )^2;
T[219,29]=(x + 6)*(x -8)*(x + 10)*(x^4 -10*x^3 + 20*x^2 + 52*x -136)*(x^6 + 4*x^5 -60*x^4 -132*x^3 + 960*x^2 + 192*x -256)*(x -2)^2*(x^2 -6*x -11)^2*(x^2 -2*x -51)^2;
T[219,31]=(x + 6)*(x -6)*(x + 10)*(x^4 + 10*x^3 -4*x^2 -40*x + 32)*(x^6 -4*x^5 -136*x^4 + 344*x^3 + 6208*x^2 -7392*x -94912)*(x + 2)^2*(x^2 -6*x -4)^2*(x^2 -2*x -44)^2;
T[219,37]=(x + 7)*(x + 2)*(x -1)*(x^4 + 11*x^3 -47*x^2 -735*x -1682)*(x^6 -13*x^5 + 13*x^4 + 281*x^3 -330*x^2 -1652*x + 664)*(x + 6)^2*(x^2 + 4*x -41)^2*(x^2 -8*x + 3)^2;
T[219,41]=(x + 10)*(x -2)*(x^4 -4*x^3 -76*x^2 + 196*x + 664)*(x^6 + 6*x^5 -172*x^4 -596*x^3 + 6904*x^2 + 1392*x -11104)*(x )*(x -6)^2*(x^2 -20)^2*(x + 6)^4;
T[219,43]=(x -6)*(x + 6)*(x -2)*(x^4 + 10*x^3 -52*x^2 -376*x + 1408)*(x^6 + 12*x^5 -160*x^4 -2072*x^3 + 3808*x^2 + 80160*x + 156608)*(x + 2)^2*(x^2 -6*x -43)^2*(x + 1)^4;
T[219,47]=(x + 8)*(x -7)*(x + 3)*(x^4 -7*x^3 -25*x^2 + 145*x + 44)*(x^6 + 19*x^5 -15*x^4 -1735*x^3 -4068*x^2 + 31308*x + 34648)*(x -6)^2*(x^2 + 6*x -11)^2*(x -9)^4;
T[219,53]=(x + 12)*(x -9)*(x -3)*(x^4 -11*x^3 -45*x^2 + 371*x -374)*(x^6 + 5*x^5 -109*x^4 -19*x^3 + 3004*x^2 -8672*x + 6464)*(x -10)^2*(x^2 -6*x -71)^2*(x^2 + 2*x -51)^2;
T[219,59]=(x + 9)*(x -4)*(x -1)*(x^4 -11*x^3 -23*x^2 + 239*x + 272)*(x^6 + 3*x^5 -113*x^4 -445*x^3 + 2664*x^2 + 13652*x + 10744)*(x + 6)^2*(x^2 + 12*x + 16)^2*(x )^4;
T[219,61]=(x + 5)*(x + 1)*(x^4 -23*x^3 + 121*x^2 + 443*x -3574)*(x^6 -11*x^5 -219*x^4 + 2371*x^3 + 4318*x^2 -62108*x + 42296)*(x^2 -7*x + 1)^2*(x^2 + 9*x + 17)^2*(x + 14)^3;
T[219,67]=(x^4 + 23*x^3 + 175*x^2 + 509*x + 484)*(x^6 -5*x^5 -125*x^4 + 521*x^3 + 2832*x^2 -6320*x -22208)*(x + 13)^2*(x^2 -4*x -113)^2*(x^2 -16*x + 19)^2*(x -8)^3;
T[219,71]=(x + 8)*(x -12)*(x -10)*(x^4 -22*x^3 -28*x^2 + 2380*x -6304)*(x^6 + 8*x^5 -172*x^4 -1380*x^3 + 7168*x^2 + 54592*x -25856)*(x^2 -3*x -27)^2*(x^2 + 21*x + 109)^2*(x )^2;
T[219,73]=(x -1)^11*(x + 1)^12;
T[219,79]=(x -11)*(x + 1)*(x -8)*(x^4 + 3*x^3 -89*x^2 -447*x -472)*(x^6 -5*x^5 -181*x^4 + 333*x^3 + 8368*x^2 + 17088*x + 3584)*(x + 4)^2*(x^2 -x -29)^2*(x^2 + 19*x + 79)^2;
T[219,83]=(x -15)*(x -16)*(x + 11)*(x^4 -13*x^3 -29*x^2 + 467*x -872)*(x^6 + 5*x^5 -239*x^4 -1809*x^3 + 6076*x^2 + 77428*x + 159464)*(x + 14)^2*(x^2 + 3*x -9)^2*(x^2 -7*x -69)^2;
T[219,89]=(x + 14)*(x + 2)*(x + 18)*(x^4 -8*x^3 -176*x^2 + 720*x + 8656)*(x^6 -20*x^5 + 28*x^4 + 1072*x^3 -1136*x^2 -20096*x -29248)*(x + 6)^2*(x^2 -12*x -81)^2*(x^2 -12*x + 31)^2;
T[219,97]=(x -5)*(x + 2)*(x + 11)*(x^4 -5*x^3 -159*x^2 + 1073*x -638)*(x^6 -13*x^5 -67*x^4 + 573*x^3 + 2926*x^2 + 3420*x + 248)*(x + 10)^2*(x^2 + 9*x + 9)^2*(x^2 + 5*x -23)^2;

T[220,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x )^16;
T[220,3]=(x -2)*(x^2 + x -8)^2*(x + 2)^3*(x^2 -8)^3*(x )^3*(x -1)^6*(x + 1)^8;
T[220,5]=(x^2 + 3*x + 5)*(x^2 -x + 5)^3*(x -1)^11*(x + 1)^12;
T[220,7]=(x + 4)*(x + 1)^2*(x -3)^2*(x -5)^2*(x^2 -x -8)^2*(x -2)^4*(x )^4*(x + 2)^12;
T[220,11]=(x^2 + 11)*(x + 1)^12*(x -1)^17;
T[220,13]=(x )*(x + 6)^2*(x + 4)^3*(x^2 + 8*x + 8)^3*(x -4)^6*(x -2)^13;
T[220,17]=(x + 4)*(x )*(x + 7)^2*(x + 3)^2*(x + 6)^2*(x -3)^2*(x^2 + 3*x -6)^2*(x^2 -8*x + 8)^3*(x -6)^5*(x + 2)^6;
T[220,19]=(x + 7)^2*(x + 1)^2*(x -8)^2*(x -5)^2*(x^2 -7*x + 4)^2*(x + 4)^7*(x )^12;
T[220,23]=(x + 3)^2*(x^2 + 6*x -24)^2*(x -4)^3*(x^2 -8)^3*(x + 6)^5*(x -6)^5*(x + 1)^6;
T[220,29]=(x + 6)*(x -2)*(x + 3)^2*(x -5)^2*(x + 9)^2*(x^2 + 3*x -6)^2*(x^2 -4*x -28)^3*(x -6)^5*(x )^8;
T[220,31]=(x -8)*(x + 3)^2*(x + 7)^2*(x + 4)^2*(x^2 -x -8)^2*(x + 8)^3*(x -5)^4*(x -7)^6*(x )^7;
T[220,37]=(x + 6)*(x + 1)^2*(x -5)^2*(x + 7)^2*(x^2 -13*x + 34)^2*(x -2)^3*(x + 2)^3*(x^2 + 4*x -28)^3*(x -3)^8;
T[220,41]=(x + 10)*(x + 6)^2*(x^2 -132)^2*(x )^2*(x -2)^5*(x + 8)^6*(x -6)^11;
T[220,43]=(x + 10)^4*(x + 4)^4*(x -8)^5*(x -4)^6*(x + 6)^12;
T[220,47]=(x -10)*(x + 2)^2*(x + 6)^2*(x^2 + 6*x -24)^2*(x )^2*(x + 12)^3*(x^2 -8)^3*(x -6)^5*(x -8)^6;
T[220,53]=(x -2)*(x + 1)^2*(x -9)^2*(x + 3)^2*(x^2 -9*x -54)^2*(x + 2)^3*(x^2 -12*x + 4)^3*(x + 6)^11;
T[220,59]=(x + 12)*(x + 4)*(x -3)^2*(x + 10)^2*(x + 6)^2*(x -6)^2*(x -12)^2*(x^2 -6*x -24)^2*(x -4)^3*(x^2 + 8*x -16)^3*(x -5)^6;
T[220,61]=(x + 14)*(x -5)^2*(x -7)^2*(x + 4)^2*(x + 1)^2*(x^2 + 5*x -2)^2*(x + 10)^3*(x -2)^3*(x^2 -4*x -124)^3*(x -12)^6;
T[220,67]=(x + 10)*(x + 1)^2*(x + 16)^3*(x -2)^3*(x^2 -8*x -56)^3*(x + 7)^6*(x -8)^10;
T[220,71]=(x -4)*(x -3)^2*(x -15)^2*(x + 9)^2*(x -7)^2*(x^2 -3*x -72)^2*(x + 12)^3*(x -8)^3*(x^2 -128)^3*(x + 3)^6;
T[220,73]=(x + 16)*(x + 10)^2*(x^2 + 8*x -116)^2*(x + 4)^3*(x^2 + 8*x + 8)^3*(x -2)^4*(x -14)^5*(x -4)^6;
T[220,79]=(x + 8)*(x -10)^2*(x -2)^2*(x -14)^2*(x^2 + 14*x + 16)^2*(x -4)^6*(x -8)^6*(x + 10)^8;
T[220,83]=(x -12)*(x )*(x^2 -6*x -24)^2*(x + 4)^3*(x -6)^4*(x + 6)^18;
T[220,89]=(x -6)^2*(x + 9)^2*(x + 6)^2*(x -9)^2*(x^2 -3*x -6)^2*(x -10)^3*(x^2 + 4*x -124)^3*(x + 15)^4*(x -15)^6;
T[220,97]=(x -6)*(x -14)*(x -2)^2*(x + 12)^2*(x -8)^2*(x + 4)^2*(x^2 + 14*x + 16)^2*(x -10)^3*(x^2 + 4*x -28)^3*(x + 7)^8;

T[221,2]=(x -1)*(x^2 + x -1)*(x^2 -5)*(x^3 -4*x + 1)*(x^6 -x^5 -9*x^4 + 6*x^3 + 19*x^2 -5*x -3)*(x^2 + x -5)*(x + 1)^3;
T[221,3]=(x -2)*(x^2 -2*x -4)*(x^2 + 3*x + 1)*(x^3 + 3*x^2 -x -4)*(x^6 -x^5 -11*x^4 + 12*x^3 + 28*x^2 -36*x + 4)*(x^2 -x -5)*(x )^3;
T[221,5]=(x -4)*(x -2)*(x^2 -5)*(x^2 + 2*x -4)*(x^3 + 2*x^2 -5*x -2)*(x^6 + 2*x^5 -15*x^4 -16*x^3 + 60*x^2 -16*x -12)*(x + 2)^2*(x + 1)^2;
T[221,7]=(x + 2)*(x^2 + x -1)*(x^3 + 9*x^2 + 23*x + 16)*(x^6 -7*x^5 -7*x^4 + 112*x^3 -56*x^2 -400*x + 208)*(x^2 + 5*x + 1)*(x -4)^2*(x -2)^3;
T[221,11]=(x -6)*(x + 6)*(x^2 -3*x -3)*(x^3 + 7*x^2 + 11*x + 4)*(x^6 + x^5 -19*x^4 -8*x^3 + 88*x^2 + 16*x -48)*(x^2 + 3*x -9)*(x -2)^2*(x )^2;
T[221,13]=(x^2 + 2*x + 13)*(x + 1)^8*(x -1)^9;
T[221,17]=(x + 1)^8*(x -1)^11;
T[221,19]=(x -4)*(x -8)*(x^2 + 7*x + 1)*(x^2 -4*x -16)*(x^3 + 17*x^2 + 91*x + 148)*(x^6 -23*x^5 + 167*x^4 -176*x^3 -2712*x^2 + 9968*x -8528)*(x^2 -5*x + 1)*(x + 4)^2;
T[221,23]=(x -6)*(x^2 -6*x + 4)*(x^2 + 6*x + 4)*(x^3 -2*x^2 -76*x + 256)*(x^6 + 10*x^5 -44*x^4 -624*x^3 -1148*x^2 + 2104*x + 4944)*(x^2 -6*x -12)*(x -4)^3;
T[221,29]=(x^2 + 8*x + 11)*(x^3 -4*x^2 -7*x + 26)*(x^6 + 4*x^5 -25*x^4 -80*x^3 + 168*x^2 + 320*x + 48)*(x -9)^2*(x -6)^2*(x + 6)^4;
T[221,31]=(x^2 -20)*(x^3 + 6*x^2 -31*x -184)*(x^6 -16*x^5 + 27*x^4 + 528*x^3 -1352*x^2 -4864*x + 6704)*(x^2 -8*x -5)*(x + 7)^2*(x + 2)^2*(x -4)^2;
T[221,37]=(x -2)*(x + 8)*(x^2 -10*x + 5)*(x^2 -10*x + 20)*(x^3 + 4*x^2 -115*x -566)*(x^6 -4*x^5 -49*x^4 + 168*x^3 + 204*x^2 -72*x -52)*(x^2 + 8*x -5)*(x + 2)^2;
T[221,41]=(x^2 -10*x + 20)*(x^2 -4*x -16)*(x^3 -2*x^2 -48*x + 128)*(x^6 + 4*x^5 -72*x^4 -152*x^3 + 1076*x^2 -976*x -192)*(x + 6)^3*(x )^3;
T[221,43]=(x^2 + 12*x + 16)*(x^3 -6*x^2 -31*x -28)*(x^6 -10*x^5 -63*x^4 + 664*x^3 + 416*x^2 -10624*x + 14912)*(x )*(x -9)^2*(x + 11)^2*(x -4)^3;
T[221,47]=(x + 4)*(x^2 -2*x -4)*(x^2 + 4*x -16)*(x^3 + 2*x^2 -76*x -256)*(x^6 + 6*x^5 -164*x^4 -464*x^3 + 5936*x^2 -12064*x + 5952)*(x^2 + 2*x -20)*(x )^3;
T[221,53]=(x + 6)*(x -14)*(x^2 + 3*x + 1)*(x^2 -20)*(x^3 -11*x^2 -45*x + 338)*(x^6 + 27*x^5 + 181*x^4 -360*x^3 -3680*x^2 + 9152*x -5184)*(x^2 + 11*x + 25)*(x -6)^2;
T[221,59]=(x -4)*(x^2 + 8*x + 11)*(x^2 + 4*x -16)*(x^3 -6*x^2 -99*x -108)*(x^6 -10*x^5 -171*x^4 + 1784*x^3 + 3512*x^2 -36224*x -56688)*(x^2 -8*x -5)*(x )*(x + 12)^2;
T[221,61]=(x -2)*(x^2 -3*x -9)*(x^2 -8*x -4)*(x^2 -19*x + 85)*(x^6 -11*x^5 -177*x^4 + 1160*x^3 + 10632*x^2 -2032*x -4112)*(x^3 + 15*x^2 + 71*x + 106)*(x + 10)^3;
T[221,67]=(x + 8)*(x^2 -80)*(x^2 + 2*x -124)*(x^3 + 18*x^2 + 92*x + 112)*(x^6 -18*x^5 -4*x^4 + 1280*x^3 -3136*x^2 -17536*x + 38144)*(x^2 + 18*x + 60)*(x )*(x -4)^2;
T[221,71]=(x + 10)*(x^2 -16*x + 44)*(x^2 -4*x -76)*(x^3 + 20*x^2 + 84*x -128)*(x^6 -300*x^4 -1024*x^3 + 22000*x^2 + 156160*x + 268992)*(x + 4)^2*(x -2)^3;
T[221,73]=(x -10)*(x^2 + 14*x + 4)*(x^2 + 10*x -55)*(x^3 -4*x^2 -119*x + 478)*(x^6 -12*x^5 -177*x^4 + 1592*x^3 + 7676*x^2 -7096*x -18068)*(x^2 -8*x -5)*(x )*(x + 6)^2;
T[221,79]=(x -14)*(x^2 -14*x + 44)*(x^2 + 2*x -19)*(x^3 + 24*x^2 + 131*x + 56)*(x^6 + 6*x^5 -131*x^4 -828*x^3 -884*x^2 + 2024*x + 3188)*(x^2 + 8*x -5)*(x )*(x -12)^2;
T[221,83]=(x -12)*(x^2 -8*x -64)*(x^2 + 8*x + 11)*(x^3 -22*x^2 + 149*x -292)*(x^6 -26*x^5 -171*x^4 + 7552*x^3 -15488*x^2 -298304*x -510528)*(x^2 -21)*(x + 4)^3;
T[221,89]=(x + 18)*(x^2 + 9*x -111)*(x^3 + 17*x^2 + 69*x + 82)*(x^6 -21*x^5 -17*x^4 + 2256*x^3 -7688*x^2 -20656*x + 55152)*(x^2 -15*x + 45)*(x -10)^2*(x + 2)^3;
T[221,97]=(x + 4)*(x^2 -7*x -89)*(x^2 + 18*x + 76)*(x^3 -x^2 -175*x -502)*(x^6 -3*x^5 -211*x^4 + 504*x^3 + 8788*x^2 -7108*x -40988)*(x^2 -7*x -119)*(x -2)^3;

T[222,2]=(x^6 -3*x^5 + 5*x^4 -7*x^3 + 10*x^2 -12*x + 8)*(x^8 + 2*x^6 + 2*x^5 + 5*x^4 + 4*x^3 + 8*x^2 + 16)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x -1)^6*(x + 1)^7;
T[222,3]=(x^4 -3*x^3 + 5*x^2 -9*x + 9)*(x^4 + x^3 + 5*x^2 + 3*x + 9)*(x^2 + 3*x + 3)^2*(x^2 -x + 3)^2*(x + 1)^9*(x -1)^10;
T[222,5]=(x -4)*(x -2)*(x + 4)*(x^2 -x -11)^2*(x^2 + x -3)^2*(x^3 -4*x^2 -4*x + 20)^2*(x^4 + 2*x^3 -8*x^2 + 4)^2*(x + 2)^4*(x )^6;
T[222,7]=(x )*(x -3)^2*(x^2 + 2*x -4)^2*(x^2 -2*x -12)^2*(x^3 + 4*x^2 -8*x -16)^2*(x^4 -4*x^3 -16*x^2 + 64*x -16)^2*(x + 1)^10;
T[222,11]=(x -5)*(x + 4)*(x -1)*(x + 1)*(x^2 + 5*x + 5)^2*(x^3 -4*x^2 -16*x + 32)^2*(x^4 -32*x^2 -32*x + 64)^2*(x^2 + x -3)^2*(x + 5)^4*(x -3)^5;
T[222,13]=(x -1)*(x + 3)*(x + 1)*(x -6)*(x -3)*(x^2 + x -3)^2*(x^2 -x -11)^2*(x^3 + 2*x^2 -20*x -8)^2*(x^4 -4*x^3 -32*x^2 + 144*x -80)^2*(x + 4)^4*(x + 2)^4;
T[222,17]=(x -3)^2*(x + 3)^2*(x^2 -20)^2*(x^3 -4*x^2 -28*x + 116)^2*(x^4 + 2*x^3 -24*x^2 -72*x -28)^2*(x + 6)^4*(x )^4*(x -6)^5;
T[222,19]=(x -8)*(x -3)*(x + 5)*(x + 7)^2*(x^2 -20)^2*(x^3 + 8*x^2 + 8*x -16)^2*(x^4 -8*x^3 -8*x^2 + 144*x -224)^2*(x )^4*(x -2)^8;
T[222,23]=(x + 1)*(x -5)*(x -3)*(x -9)*(x )*(x^2 + x -11)^2*(x^2 + 3*x -27)^2*(x^3 + 2*x^2 -4*x -4)^2*(x^4 + 10*x^3 -32*x^2 -296*x + 652)^2*(x -6)^4*(x -2)^4;
T[222,29]=(x + 4)*(x -4)*(x^2 -3*x -27)^2*(x^3 -16*x^2 + 76*x -92)^2*(x^2 + 3*x -59)^2*(x^4 + 2*x^3 -56*x^2 -40*x + 724)^2*(x )^2*(x -6)^4*(x + 6)^5;
T[222,31]=(x -2)*(x + 10)*(x + 2)*(x -4)*(x + 6)*(x^2 -17*x + 71)^2*(x^3 + 8*x^2 -32*x -272)^2*(x^4 -4*x^3 -16*x^2 + 16*x + 32)^2*(x^2 -3*x -1)^2*(x + 4)^8;
T[222,37]=(x -1)^17*(x + 1)^18;
T[222,41]=(x + 10)*(x^2 -17*x + 71)^2*(x^2 -9*x -9)^2*(x^4 -12*x^3 + 304*x -400)^2*(x + 6)^3*(x -6)^7*(x + 9)^8;
T[222,43]=(x -12)*(x + 4)*(x + 8)*(x -4)^2*(x^2 + 6*x -4)^2*(x^2 + 6*x + 4)^2*(x^3 + 12*x^2 + 32*x -16)^2*(x^4 -4*x^3 -128*x^2 + 176*x + 3424)^2*(x -8)^4*(x -2)^4;
T[222,47]=(x -2)*(x + 6)*(x -8)*(x + 10)*(x -6)*(x^2 -2*x -4)^2*(x^3 + 4*x^2 -48*x -64)^2*(x^4 + 12*x^3 + 16*x^2 -128*x -128)^2*(x^2 -2*x -12)^2*(x -3)^4*(x + 9)^4;
T[222,53]=(x -9)*(x + 11)*(x + 1)*(x -3)*(x -6)*(x^2 + 8*x -4)^2*(x^3 + 6*x^2 -100*x -632)^2*(x^4 -8*x^3 -56*x^2 + 320*x + 464)^2*(x + 3)^4*(x + 6)^4*(x -1)^4;
T[222,59]=(x + 12)*(x + 4)^2*(x^2 -14*x + 36)^2*(x^2 + 14*x + 44)^2*(x^3 -6*x^2 -36*x + 108)^2*(x^4 + 10*x^3 -176*x^2 -2416*x -7156)^2*(x )^2*(x -12)^4*(x -8)^4;
T[222,61]=(x -2)*(x + 10)*(x -10)*(x^2 -19*x + 89)^2*(x^4 + 8*x^3 -72*x^2 -480*x + 656)^2*(x^2 + 3*x -79)^2*(x -8)^4*(x + 8)^4*(x + 2)^8;
T[222,67]=(x + 12)*(x -6)*(x -14)*(x -2)^2*(x^2 + 9*x -11)^2*(x^2 -11*x -51)^2*(x^3 + 16*x^2 + 24*x -16)^2*(x^4 + 4*x^3 -16*x^2 -64*x -16)^2*(x -8)^4*(x + 4)^4;
T[222,71]=(x -12)*(x + 12)*(x^2 + 12*x -44)^2*(x^3 -12*x^2 -16*x + 320)^2*(x^4 + 12*x^3 -48*x^2 -512*x + 1664)^2*(x )^3*(x + 15)^4*(x -9)^4*(x -6)^4;
T[222,73]=(x + 3)*(x -5)*(x -10)*(x + 11)*(x -13)*(x^2 -3*x -29)^2*(x^3 + 6*x^2 -4*x -8)^2*(x^4 -12*x^3 -8*x^2 + 176*x -32)^2*(x^2 + 21*x + 107)^2*(x + 1)^4*(x -11)^4;
T[222,79]=(x + 6)*(x -14)*(x -2)*(x + 12)*(x^2 + 7*x -147)^2*(x^3 -12*x^2 -72*x + 400)^2*(x^2 -3*x -99)^2*(x^4 + 8*x^3 -56*x^2 -656*x -1504)^2*(x -4)^4*(x + 10)^5;
T[222,83]=(x + 4)*(x -5)*(x -3)*(x + 9)*(x^2 + 20*x + 80)^2*(x^3 -112*x -416)^2*(x^4 + 20*x^3 + 112*x^2 + 192*x + 64)^2*(x^2 -20*x + 48)^2*(x + 15)^4*(x -9)^5;
T[222,89]=(x + 10)*(x -11)^2*(x + 3)^2*(x^2 + 12*x + 16)^2*(x^3 + 4*x^2 -108*x -52)^2*(x^4 -26*x^3 + 128*x^2 + 944*x -5452)^2*(x^2 + 4*x -48)^2*(x -6)^4*(x -4)^4;
T[222,97]=(x -2)*(x -10)*(x + 10)*(x -6)*(x + 6)*(x^2 -8*x -4)^2*(x^3 + 14*x^2 + 28*x -152)^2*(x^4 + 4*x^3 -272*x^2 -464*x + 17008)^2*(x^2 + 4*x -204)^2*(x -4)^4*(x -8)^4;

T[223,2]=(x^2 + 2*x -1)*(x^4 + 4*x^3 + 2*x^2 -5*x -3)*(x^12 -7*x^11 + 6*x^10 + 57*x^9 -122*x^8 -105*x^7 + 430*x^6 -73*x^5 -499*x^4 + 242*x^3 + 143*x^2 -52*x -19);
T[223,3]=(x^2 + 2*x -1)*(x^4 -4*x^2 + x + 1)*(x^12 -27*x^10 + 7*x^9 + 263*x^8 -131*x^7 -1091*x^6 + 816*x^5 + 1600*x^4 -1752*x^3 + 128*x^2 + 288*x -64);
T[223,5]=(x^2 + 4*x + 2)*(x^4 + 3*x^3 -x^2 -7*x -3)*(x^12 -7*x^11 -11*x^10 + 157*x^9 -97*x^8 -1096*x^7 + 1354*x^6 + 2692*x^5 -3952*x^4 -1744*x^3 + 3200*x^2 -512*x -128);
T[223,7]=(x^2 -2)*(x^4 + 6*x^3 -31*x -3)*(x^12 -2*x^11 -35*x^10 + 55*x^9 + 385*x^8 -527*x^7 -1444*x^6 + 2034*x^5 + 1158*x^4 -2761*x^3 + 1299*x^2 -174*x + 2);
T[223,11]=(x^2 -2*x -1)*(x^4 + 10*x^3 + 24*x^2 -21*x -83)*(x^12 -6*x^11 -53*x^10 + 329*x^9 + 919*x^8 -6597*x^7 -4941*x^6 + 58510*x^5 -14616*x^4 -213896*x^3 + 167520*x^2 + 204800*x -194048);
T[223,13]=(x^2 -4*x + 2)*(x^4 + 9*x^3 + 13*x^2 -19*x -31)*(x^12 -x^11 -81*x^10 + 89*x^9 + 2061*x^8 -2766*x^7 -17434*x^6 + 27992*x^5 + 28880*x^4 -34320*x^3 -26304*x^2 -1216*x + 896);
T[223,17]=(x^2 + 6*x + 1)*(x^4 + 17*x^3 + 90*x^2 + 144*x + 27)*(x^12 -27*x^11 + 252*x^10 -508*x^9 -7116*x^8 + 52949*x^7 -108567*x^6 -194913*x^5 + 1165330*x^4 -1243001*x^3 -1269805*x^2 + 2704634*x -757573);
T[223,19]=(x^2 + 4*x + 2)*(x^4 -7*x^3 -8*x^2 + 8*x -1)*(x^12 + 5*x^11 -79*x^10 -383*x^9 + 1699*x^8 + 6016*x^7 -20714*x^6 -24689*x^5 + 115346*x^4 -57150*x^3 -92671*x^2 + 86124*x -16326);
T[223,23]=(x^2 + 6*x -9)*(x^4 + 2*x^3 -72*x^2 -18*x + 999)*(x^12 -12*x^11 -63*x^10 + 1494*x^9 -5057*x^8 -30104*x^7 + 294235*x^6 -1013594*x^5 + 1815780*x^4 -1737720*x^3 + 754304*x^2 -17280*x -61952);
T[223,29]=(x^4 -7*x^3 + 6*x^2 + 40*x -63)*(x^12 -3*x^11 -168*x^10 + 540*x^9 + 10678*x^8 -37643*x^7 -313935*x^6 + 1258975*x^5 + 3977224*x^4 -20037017*x^3 -9235291*x^2 + 119753958*x -122885703)*(x + 7)^2;
T[223,31]=(x^2 -8*x + 8)*(x^4 -58*x^2 -143*x -89)*(x^12 + 12*x^11 -91*x^10 -1811*x^9 -3445*x^8 + 63467*x^7 + 369084*x^6 + 223114*x^5 -3145496*x^4 -7397129*x^3 + 2640293*x^2 + 23079000*x + 18400024);
T[223,37]=(x^2 -2*x -7)*(x^4 + 2*x^3 -32*x^2 -23*x + 9)*(x^12 -2*x^11 -242*x^10 + 595*x^9 + 19840*x^8 -66050*x^7 -627205*x^6 + 2794317*x^5 + 4894398*x^4 -34569801*x^3 + 13599377*x^2 + 110425239*x -122755563);
T[223,41]=(x^2 + 10*x + 17)*(x^4 -2*x^3 -11*x^2 -8*x -1)*(x^12 -22*x^11 -21*x^10 + 3022*x^9 -8632*x^8 -149422*x^7 + 564428*x^6 + 3296748*x^5 -12484695*x^4 -30278530*x^3 + 93187234*x^2 + 64076546*x -19176701);
T[223,43]=(x^2 + 12*x + 18)*(x^4 -16*x^3 + 21*x^2 + 412*x -927)*(x^12 -194*x^10 -212*x^9 + 12478*x^8 + 23884*x^7 -297452*x^6 -625512*x^5 + 2752085*x^4 + 5535288*x^3 -7381107*x^2 -16672172*x -5565434);
T[223,47]=(x^2 + 16*x + 56)*(x^4 -16*x^3 -23*x^2 + 952*x -1851)*(x^12 -12*x^11 -260*x^10 + 2964*x^9 + 23562*x^8 -221344*x^7 -1188024*x^6 + 6432720*x^5 + 32654385*x^4 -54263996*x^3 -338372721*x^2 -92572040*x + 476068792);
T[223,53]=(x^4 + 26*x^3 + 212*x^2 + 521*x -27)*(x^12 -26*x^11 -14*x^10 + 5591*x^9 -41236*x^8 -181378*x^7 + 2801419*x^6 -4448999*x^5 -41268498*x^4 + 146836539*x^3 + 5620737*x^2 -540044165*x + 536166637)*(x -5)^2;
T[223,59]=(x^2 -22*x + 119)*(x^4 + 15*x^3 + 80*x^2 + 178*x + 139)*(x^12 -3*x^11 -237*x^10 + 687*x^9 + 20343*x^8 -51012*x^7 -783413*x^6 + 1373832*x^5 + 13375352*x^4 -7451696*x^3 -77521552*x^2 -86837568*x -27683136);
T[223,61]=(x^2 + 4*x -46)*(x^4 -x^3 -138*x^2 -108*x + 999)*(x^12 + 21*x^11 -122*x^10 -4684*x^9 -9131*x^8 + 283316*x^7 + 1129138*x^6 -5189496*x^5 -24453024*x^4 + 38747040*x^3 + 183372960*x^2 -117920768*x -392641664);
T[223,67]=(x^2 + 10*x -73)*(x^4 -4*x^3 -60*x^2 -161*x -129)*(x^12 -6*x^11 -485*x^10 + 2653*x^9 + 85069*x^8 -392997*x^7 -6842199*x^6 + 24049318*x^5 + 250701056*x^4 -546404008*x^3 -3347808608*x^2 + 2114733312*x + 10237082112);
T[223,71]=(x^2 + 8*x + 8)*(x^4 -4*x^3 -106*x^2 + 461*x + 1049)*(x^12 + 6*x^11 -450*x^10 -1889*x^9 + 71409*x^8 + 165266*x^7 -4440800*x^6 -2997736*x^5 + 72868160*x^4 + 46771264*x^3 -381703104*x^2 -287350272*x + 355672576);
T[223,73]=(x^2 -2*x -71)*(x^4 -212*x^2 + 1235*x -817)*(x^12 -16*x^11 -262*x^10 + 5293*x^9 + 12326*x^8 -574156*x^7 + 1281723*x^6 + 21980089*x^5 -98354404*x^4 -195381229*x^3 + 1393466027*x^2 -269975207*x -3439576721);
T[223,79]=(x^4 + 12*x^3 -28*x^2 -95*x + 141)*(x^12 + 12*x^11 -498*x^10 -5805*x^9 + 84407*x^8 + 910652*x^7 -6616028*x^6 -59286520*x^5 + 262301888*x^4 + 1520782080*x^3 -4723265728*x^2 -8755209856*x + 10545684224)*(x -2)^2;
T[223,83]=(x^2 -8*x -56)*(x^4 + 13*x^3 -45*x^2 -439*x + 659)*(x^12 -39*x^11 + 294*x^10 + 6316*x^9 -107834*x^8 + 146409*x^7 + 6675938*x^6 -39040995*x^5 -65968837*x^4 + 1083452899*x^3 -1976708551*x^2 -4627371096*x + 13182025336);
T[223,89]=(x^4 -9*x^3 -39*x^2 + 139*x + 97)*(x^12 -13*x^11 -301*x^10 + 4203*x^9 + 19708*x^8 -370673*x^7 + 407144*x^6 + 7350884*x^5 -25036509*x^4 + 14948252*x^3 + 23079674*x^2 -18569123*x + 1681957)*(x + 13)^2;
T[223,97]=(x^2 -12*x -126)*(x^4 + 34*x^3 + 200*x^2 -3413*x -32101)*(x^12 -2*x^11 -638*x^10 + 949*x^9 + 146063*x^8 -93668*x^7 -15018630*x^6 -10275916*x^5 + 708351800*x^4 + 1536365872*x^3 -11642037568*x^2 -41868703232*x -23867444224);

T[224,2]=(x + 1)*(x )^24;
T[224,3]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x -2)^6*(x )^7*(x + 2)^8;
T[224,5]=(x + 2)^2*(x^2 -2*x -4)^2*(x -2)^5*(x + 4)^5*(x )^9;
T[224,7]=(x^2 + 7)*(x + 1)^10*(x -1)^13;
T[224,11]=(x^2 -4*x -16)*(x^2 + 4*x -16)*(x -4)^3*(x + 4)^4*(x )^14;
T[224,13]=(x -6)^2*(x^2 -6*x + 4)^2*(x -2)^5*(x )^5*(x + 4)^9;
T[224,17]=(x -2)^2*(x^2 -20)^2*(x + 6)^5*(x -6)^7*(x + 2)^7;
T[224,19]=(x -6)*(x + 6)*(x^2 + 2*x -4)*(x^2 -2*x -4)*(x + 8)^2*(x )^2*(x -8)^3*(x + 2)^5*(x -2)^7;
T[224,23]=(x -4)^2*(x + 4)^2*(x + 8)^3*(x -8)^4*(x )^14;
T[224,29]=(x + 10)^2*(x^2 -20)^2*(x -6)^5*(x -2)^7*(x + 6)^7;
T[224,31]=(x^2 + 4*x -16)*(x^2 -4*x -16)*(x + 8)^2*(x )^2*(x -8)^3*(x -4)^6*(x + 4)^8;
T[224,37]=(x -10)^2*(x^2 -20)^2*(x + 6)^5*(x -2)^7*(x + 2)^7;
T[224,41]=(x -10)^2*(x + 10)^2*(x^2 + 8*x -4)^2*(x + 2)^5*(x -2)^5*(x -6)^7;
T[224,43]=(x^2 -4*x -16)*(x^2 + 4*x -16)*(x )^2*(x -4)^3*(x + 8)^4*(x + 4)^4*(x -8)^8;
T[224,47]=(x^2 -12*x + 16)*(x^2 + 12*x + 16)*(x -8)^2*(x -12)^2*(x )^2*(x + 8)^3*(x -4)^3*(x + 4)^4*(x + 12)^5;
T[224,53]=(x + 2)^2*(x -14)^2*(x + 10)^9*(x -6)^12;
T[224,59]=(x -10)*(x + 10)*(x^2 + 14*x + 44)*(x^2 -14*x + 44)*(x -6)^5*(x + 6)^7*(x )^7;
T[224,61]=(x + 8)^2*(x + 10)^2*(x^2 -18*x + 76)^2*(x -4)^5*(x + 6)^5*(x -8)^7;
T[224,67]=(x -8)*(x + 8)*(x -12)^2*(x )^2*(x + 12)^3*(x -4)^6*(x + 4)^10;
T[224,71]=(x^2 -8*x -64)*(x^2 + 8*x -64)*(x -8)^2*(x + 8)^3*(x )^16;
T[224,73]=(x^2 -12*x -44)^2*(x + 6)^4*(x -10)^5*(x + 14)^5*(x -2)^7;
T[224,79]=(x^2 -8*x -64)*(x^2 + 8*x -64)*(x )^2*(x + 16)^3*(x -16)^4*(x + 8)^5*(x -8)^7;
T[224,83]=(x + 2)*(x -2)*(x^2 + 14*x + 44)*(x^2 -14*x + 44)*(x + 8)^2*(x )^2*(x -8)^3*(x -6)^5*(x + 6)^7;
T[224,89]=(x -18)^2*(x -10)^7*(x + 6)^16;
T[224,97]=(x -18)^2*(x^2 -16*x + 44)^2*(x + 6)^5*(x + 2)^7*(x + 10)^7;

T[225,2]=(x^2 -5)*(x )^2*(x + 2)^3*(x -2)^3*(x -1)^4*(x + 1)^5;
T[225,3]=(x -1)^2*(x + 1)^3*(x )^14;
T[225,5]=(x + 1)*(x -1)^2*(x )^16;
T[225,7]=(x + 5)*(x -5)*(x -3)^3*(x + 3)^3*(x )^11;
T[225,11]=(x + 2)^2*(x -4)^3*(x -2)^4*(x )^4*(x + 4)^6;
T[225,13]=(x -5)*(x + 5)*(x )^2*(x -2)^3*(x + 1)^3*(x -1)^3*(x + 2)^6;
T[225,17]=(x^2 -20)*(x )^2*(x + 2)^7*(x -2)^8;
T[225,19]=(x + 1)^2*(x + 5)^6*(x -4)^11;
T[225,23]=(x^2 -80)*(x + 6)^3*(x -6)^3*(x )^11;
T[225,29]=(x + 10)^2*(x -2)^3*(x -10)^4*(x )^4*(x + 2)^6;
T[225,31]=(x -8)^2*(x + 7)^2*(x + 3)^6*(x )^9;
T[225,37]=(x )^2*(x + 2)^3*(x -2)^3*(x -10)^4*(x + 10)^7;
T[225,41]=(x -8)^2*(x + 10)^3*(x + 8)^4*(x )^4*(x -10)^6;
T[225,43]=(x -5)*(x + 5)*(x )^2*(x -1)^3*(x + 4)^3*(x + 1)^3*(x -4)^6;
T[225,47]=(x^2 -80)*(x )^2*(x -2)^3*(x + 2)^3*(x + 8)^4*(x -8)^5;
T[225,53]=(x^2 -20)*(x )^2*(x -4)^3*(x + 4)^3*(x -10)^4*(x + 10)^5;
T[225,59]=(x -10)^2*(x -4)^3*(x + 10)^4*(x )^4*(x + 4)^6;
T[225,61]=(x + 13)^2*(x -2)^2*(x -7)^6*(x + 2)^9;
T[225,67]=(x -5)*(x + 5)*(x )^2*(x -3)^3*(x + 12)^3*(x + 3)^3*(x -12)^6;
T[225,71]=(x )^4*(x -8)^5*(x + 8)^10;
T[225,73]=(x )^2*(x -14)^3*(x + 14)^3*(x + 10)^4*(x -10)^7;
T[225,79]=(x + 4)^2*(x -16)^2*(x )^15;
T[225,83]=(x^2 -320)*(x )^2*(x -6)^3*(x + 6)^3*(x + 12)^4*(x -12)^5;
T[225,89]=(x -6)^3*(x + 6)^6*(x )^10;
T[225,97]=(x -5)*(x + 5)*(x )^2*(x + 17)^3*(x + 2)^3*(x -17)^3*(x -2)^6;

T[226,2]=(x^2 + x + 2)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^6 + 2*x^5 + x^4 -x^3 + 2*x^2 + 8*x + 8)*(x^2 -x + 2)^2*(x + 1)^4*(x -1)^5;
T[226,3]=(x + 2)*(x^2 -2)*(x^4 -2*x^3 -6*x^2 + 12*x -4)*(x -2)^2*(x^3 + 5*x^2 + 6*x + 1)^2*(x^3 + x^2 -4*x -1)^2*(x^2 -2*x -2)^3;
T[226,5]=(x + 4)*(x^2 + 4*x + 2)*(x^4 -4*x^3 -4*x^2 + 16*x -4)*(x^2 -12)^2*(x^3 + x^2 -9*x -1)^2*(x -2)^4*(x + 1)^6;
T[226,7]=(x^2 + 4*x -4)*(x^2 + 2*x -4)^2*(x^3 -6*x^2 + 3*x + 9)^2*(x^3 + 10*x^2 + 31*x + 29)^2*(x -4)^4*(x )^5;
T[226,11]=(x^2 -4*x -8)*(x^4 -20*x^2 + 80)*(x^2 + 4*x -8)^2*(x^3 -2*x^2 -15*x -13)^2*(x^3 -2*x^2 -3*x + 3)^2*(x )^2*(x + 4)^3;
T[226,13]=(x + 2)*(x^4 -4*x^3 -24*x^2 + 96*x -64)*(x^3 -8*x^2 + 17*x -7)^2*(x^3 + 8*x^2 + 5*x -43)^2*(x^2 + 4*x -8)^3*(x -2)^4;
T[226,17]=(x^2 + 4*x -4)*(x + 6)^2*(x^2 -20)^2*(x^3 -10*x^2 + 21*x -9)^2*(x^3 + 2*x^2 -29*x + 13)^2*(x + 2)^7;
T[226,19]=(x + 2)*(x^2 -2*x -26)*(x^4 + 6*x^3 -14*x^2 -84*x -4)*(x^2 -50)*(x -6)^2*(x^2 + 6*x + 6)^2*(x^3 + 4*x^2 -11*x -1)^2*(x^3 -4*x^2 -45*x + 177)^2;
T[226,23]=(x -4)*(x^2 -14*x + 46)*(x^4 + 6*x^3 -54*x^2 -324*x -324)*(x^2 -32)*(x + 6)^2*(x^2 -2*x -2)^2*(x^3 + 6*x^2 -9*x -27)^2*(x^3 -4*x^2 -15*x -9)^2;
T[226,29]=(x + 4)*(x^2 + 4*x -46)*(x^4 -20*x^2 -40*x -20)*(x -2)^2*(x + 6)^2*(x^2 -8*x + 4)^2*(x^3 -5*x^2 -22*x + 97)^2*(x^3 + 7*x^2 + 12*x + 3)^2;
T[226,31]=(x -8)*(x^2 + 12*x + 28)*(x^4 -60*x^2 -80*x + 80)*(x + 4)^2*(x^3 + 15*x^2 + 26*x -211)^2*(x^3 -9*x^2 + 18*x + 1)^2*(x^2 -4*x -8)^3;
T[226,37]=(x + 8)*(x^2 + 4*x -44)*(x^4 + 8*x^3 -36*x^2 -8*x + 76)*(x^2 -12*x + 18)*(x -2)^2*(x^2 + 8*x + 4)^2*(x^3 -8*x^2 -61*x + 389)^2*(x^3 + 2*x^2 -71*x -113)^2;
T[226,41]=(x + 6)*(x^2 -12*x + 24)*(x^4 -8*x^3 -76*x^2 + 368*x -304)*(x^2 + 4*x -8)^2*(x^3 -x^2 -16*x + 29)^2*(x^3 + 7*x^2 -68*x -63)^2*(x + 2)^4;
T[226,43]=(x^2 + 18*x + 78)*(x^4 + 6*x^3 -54*x^2 -44*x -4)*(x^2 -2)*(x^2 -6*x -66)^2*(x^3 + 2*x^2 -29*x + 13)^2*(x^3 -12*x^2 + 21*x -9)^2*(x -6)^3;
T[226,47]=(x + 12)*(x^2 + 6*x -66)*(x^4 + 6*x^3 -14*x^2 -84*x -4)*(x -6)^2*(x^2 -6*x -18)^2*(x^3 -9*x^2 -6*x + 81)^2*(x^3 + 7*x^2 -28*x + 7)^2*(x )^2;
T[226,53]=(x^2 + 4*x -104)*(x^4 -4*x^3 -104*x^2 + 416*x + 1216)*(x^2 -4*x -4)*(x^2 + 12*x + 24)^2*(x^3 + 5*x^2 -64*x + 29)^2*(x^3 + 21*x^2 + 120*x + 101)^2*(x -10)^3;
T[226,59]=(x + 6)*(x^2 -6*x -66)*(x^4 -22*x^3 + 154*x^2 -348*x + 76)*(x^2 + 16*x + 14)*(x -6)^2*(x^2 -6*x -18)^2*(x^3 + 9*x^2 -42*x -369)^2*(x^3 -15*x^2 + 26*x + 169)^2;
T[226,61]=(x^2 -12*x + 28)*(x^4 -16*x^3 -104*x^2 + 1344*x + 6736)*(x -6)^2*(x^2 -12*x -12)^2*(x^3 + 21*x^2 + 140*x + 301)^2*(x^3 + 21*x^2 + 108*x + 81)^2*(x + 6)^3;
T[226,67]=(x^2 + 2*x -26)*(x^4 + 18*x^3 + 114*x^2 + 292*x + 236)*(x^2 -2)*(x^2 + 10*x + 22)^2*(x^3 + 3*x^2 -156*x -869)^2*(x^3 -5*x^2 -36*x -43)^2*(x -2)^3;
T[226,71]=(x + 8)*(x^2 -2*x -74)*(x^4 -22*x^3 + 114*x^2 + 52*x -164)*(x^2 + 16*x + 56)*(x + 6)^2*(x^2 + 10*x + 22)^2*(x^3 -22*x^2 + 144*x -264)^2*(x^3 -14*x^2 + 392)^2;
T[226,73]=(x + 14)*(x^2 + 4*x -44)*(x^4 -200*x^2 + 2000)*(x^2 -12*x + 4)*(x -2)^2*(x^2 -4*x -188)^2*(x^3 + 11*x^2 -46*x + 41)^2*(x^3 + x^2 -40*x -109)^2;
T[226,79]=(x -8)*(x^2 + 2*x -2)*(x^4 + 2*x^3 -246*x^2 + 428*x + 7996)*(x^2 + 24*x + 136)*(x -10)^2*(x^2 -10*x -50)^2*(x^3 -x^2 -40*x + 109)^2*(x^3 + 5*x^2 -50*x -125)^2;
T[226,83]=(x -16)*(x^2 -8*x -176)*(x^4 -12*x^3 + 4*x^2 + 32*x + 16)*(x^2 + 8*x -56)*(x + 4)^2*(x^2 -192)^2*(x^3 -14*x^2 + 63*x -91)^2*(x^3 -2*x^2 -193*x + 413)^2;
T[226,89]=(x^2 + 4*x -44)*(x^2 -12*x + 4)*(x^2 -12*x -12)^2*(x^3 + 6*x^2 -147*x + 401)^2*(x^3 + 16*x^2 -29*x -841)^2*(x + 14)^3*(x -14)^4;
T[226,97]=(x^2 + 4*x -188)*(x^4 -16*x^3 -144*x^2 + 3264*x -11584)*(x + 14)^2*(x^3 -217*x + 1183)^2*(x^3 -12*x^2 -33*x + 287)^2*(x )^2*(x + 2)^5;

T[227,2]=(x^2 -5)*(x^3 + 2*x^2 -x -1)*(x^10 -17*x^8 -3*x^7 + 98*x^6 + 40*x^5 -218*x^4 -148*x^3 + 136*x^2 + 144*x + 32)*(x^2 -2)*(x -1)^2;
T[227,3]=(x^2 + x -7)*(x^2 -3*x + 1)*(x^3 -x^2 -2*x + 1)*(x^10 -x^9 -17*x^8 + 8*x^7 + 99*x^6 -8*x^5 -210*x^4 + 5*x^3 + 152*x^2 -20*x -4)*(x + 2)^2;
T[227,5]=(x^2 -2)*(x^3 + 5*x^2 + 6*x + 1)*(x^10 -7*x^9 -18*x^8 + 205*x^7 -66*x^6 -1746*x^5 + 1594*x^4 + 5648*x^3 -5408*x^2 -5712*x + 5472)*(x + 2)^2*(x -2)^2;
T[227,7]=(x^2 -7*x + 11)*(x^2 -3*x -5)*(x^3 + 6*x^2 + 5*x -13)*(x^10 -37*x^8 + 3*x^7 + 422*x^6 -37*x^5 -1575*x^4 -216*x^3 + 2014*x^2 + 774*x -265)*(x^2 + 2*x -7);
T[227,11]=(x^2 -x -1)*(x^2 -5*x -1)*(x^3 + x^2 -16*x -29)*(x^10 + 3*x^9 -64*x^8 -165*x^7 + 1442*x^6 + 2675*x^5 -14456*x^4 -11754*x^3 + 61970*x^2 -14195*x -38209)*(x^2 -2*x -7);
T[227,13]=(x^2 + 2*x -4)*(x^2 -2*x -28)*(x^10 -23*x^9 + 191*x^8 -505*x^7 -2032*x^6 + 17104*x^5 -37704*x^4 -11504*x^3 + 184640*x^2 -292992*x + 151808)*(x^2 + 8*x + 8)*(x + 3)^3;
T[227,17]=(x^2 + 8*x + 14)*(x^3 -7*x^2 + 14*x -7)*(x^10 -17*x^9 + 60*x^8 + 397*x^7 -2958*x^6 + 3226*x^5 + 14446*x^4 -31684*x^3 -824*x^2 + 29200*x -8672)*(x + 4)^4;
T[227,19]=(x^2 -x -7)*(x^2 -13*x + 41)*(x^3 + 10*x^2 + 3*x -97)*(x^10 + 16*x^9 + 25*x^8 -857*x^7 -5402*x^6 -4411*x^5 + 49213*x^4 + 130882*x^3 -26230*x^2 -403662*x -343539)*(x^2 -10*x + 17);
T[227,23]=(x^2 -11*x + 29)*(x^2 -7*x + 5)*(x^3 -2*x^2 -64*x + 232)*(x^10 + 16*x^9 -18*x^8 -1246*x^7 -3018*x^6 + 23937*x^5 + 86281*x^4 + 12605*x^3 -129482*x^2 -20712*x + 47160)*(x^2 + 6*x + 1);
T[227,29]=(x^2 + 3*x -9)*(x^2 -5*x -1)*(x^3 + x^2 -9*x -1)*(x^10 + 3*x^9 -79*x^8 -53*x^7 + 2296*x^6 -3157*x^5 -20302*x^4 + 64165*x^3 -57709*x^2 + 13378*x + 817)*(x^2 + 6*x -23);
T[227,31]=(x^2 -20)*(x^3 -2*x^2 -36*x + 8)*(x^10 -14*x^9 -30*x^8 + 1070*x^7 -2488*x^6 -18944*x^5 + 86016*x^4 -52864*x^3 -186432*x^2 + 251008*x -69376)*(x^2 + 4*x -14)*(x + 6)^2;
T[227,37]=(x^2 + 20*x + 98)*(x^3 + 14*x^2 + 49*x + 7)*(x^10 -38*x^9 + 415*x^8 + 1603*x^7 -65380*x^6 + 402060*x^5 + 824778*x^4 -20307248*x^3 + 93778392*x^2 -179103136*x + 116534752)*(x -4)^2*(x -8)^2;
T[227,41]=(x^2 + 16*x + 44)*(x^3 + 2*x^2 -29*x -71)*(x^10 -8*x^9 -81*x^8 + 599*x^7 + 2326*x^6 -13496*x^5 -27226*x^4 + 86140*x^3 + 86488*x^2 -180560*x -18784)*(x^2 -12*x + 18)*(x + 2)^2;
T[227,43]=(x^2 + 9*x + 13)*(x^2 -3*x -59)*(x^3 -2*x^2 -113*x -307)*(x^10 -12*x^9 -71*x^8 + 873*x^7 + 782*x^6 -15799*x^5 + 11433*x^4 + 69450*x^3 -78940*x^2 -40620*x + 35199)*(x^2 + 10*x + 17);
T[227,47]=(x^2 + 3*x -5)*(x^2 -x -101)*(x^3 + 10*x^2 + 31*x + 29)*(x^10 + 14*x^9 -120*x^8 -2225*x^7 + 44*x^6 + 81847*x^5 + 103227*x^4 -1010383*x^3 -1203472*x^2 + 3130536*x -413460)*(x -6)^2;
T[227,53]=(x^2 + 3*x -149)*(x^2 -13*x + 35)*(x^3 -x^2 -170*x -41)*(x^10 -7*x^9 -244*x^8 + 1149*x^7 + 17888*x^6 -31743*x^5 -355116*x^4 -235870*x^3 + 1176530*x^2 + 1597051*x + 399353)*(x^2 + 6*x + 1);
T[227,59]=(x^2 + 2*x -127)*(x^3 -13*x^2 + 26*x -1)*(x^10 + 12*x^9 -378*x^8 -4311*x^7 + 46415*x^6 + 462545*x^5 -2675451*x^4 -18826509*x^3 + 80102236*x^2 + 260848039*x -998939351)*(x -8)^2*(x + 8)^2;
T[227,61]=(x^2 -14*x + 20)*(x^2 + 14*x + 44)*(x^3 -3*x^2 -144*x + 783)*(x^10 -13*x^9 -142*x^8 + 2519*x^7 -244*x^6 -139340*x^5 + 572992*x^4 + 1483344*x^3 -15856704*x^2 + 40262656*x -34885120)*(x + 6)^2;
T[227,67]=(x^2 -2*x -44)*(x^2 + 10*x -4)*(x^3 + 18*x^2 + 87*x + 97)*(x^10 -18*x^9 -201*x^8 + 5463*x^7 -3426*x^6 -518932*x^5 + 2707208*x^4 + 11670608*x^3 -132504032*x^2 + 359554112*x -300104576)*(x^2 + 4*x -68);
T[227,71]=(x^2 -5*x -59)*(x^2 -9*x -11)*(x^3 + 16*x^2 + 20*x -8)*(x^10 + 14*x^9 -122*x^8 -1834*x^7 + 4102*x^6 + 68681*x^5 -34305*x^4 -703977*x^3 -594952*x^2 -23124*x + 7704)*(x^2 -10*x + 17);
T[227,73]=(x^2 + 13*x + 31)*(x^2 -11*x + 23)*(x^3 + 13*x^2 -44*x -433)*(x^10 -33*x^9 + 130*x^8 + 5689*x^7 -57628*x^6 -109201*x^5 + 3302996*x^4 -13198476*x^3 + 15314678*x^2 + 6343317*x -14903901)*(x^2 -2*x -71);
T[227,79]=(x^2 -7*x -89)*(x^2 + 5*x -1)*(x^3 -17*x^2 + 38*x + 181)*(x^10 -13*x^9 -73*x^8 + 1536*x^7 -1349*x^6 -51788*x^5 + 129278*x^4 + 687597*x^3 -2212904*x^2 -3191456*x + 11596796)*(x^2 + 4*x -124);
T[227,83]=(x^2 + 8*x -4)*(x^2 -8*x -100)*(x^3 -25*x^2 + 66*x + 1261)*(x^10 + 5*x^9 -260*x^8 -1063*x^7 + 19112*x^6 + 46310*x^5 -452114*x^4 -453900*x^3 + 2298408*x^2 -811472*x -795488)*(x^2 + 12*x + 18);
T[227,89]=(x^2 + 7*x -89)*(x^2 + 15*x -9)*(x^3 -12*x^2 -169*x + 1987)*(x^10 -18*x^9 -281*x^8 + 5959*x^7 + 10842*x^6 -513897*x^5 + 1188425*x^4 + 6352914*x^3 -10591688*x^2 -32752658*x -10685567)*(x^2 -10*x + 17);
T[227,97]=(x^2 + 9*x + 19)*(x^2 + x -181)*(x^3 + 33*x^2 + 300*x + 449)*(x^10 -39*x^9 + 171*x^8 + 9724*x^7 -103643*x^6 -589282*x^5 + 10157966*x^4 -2471379*x^3 -290370262*x^2 + 670972332*x + 357775412)*(x^2 -8*x + 8);

T[228,2]=(x^2 -x + 2)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x + 1)^3*(x -1)^4*(x )^18;
T[228,3]=(x^2 -2*x + 3)*(x^2 -x + 3)^2*(x^2 + x + 3)^2*(x^2 + 2*x + 3)^3*(x + 1)^9*(x -1)^10;
T[228,5]=(x^2 -3*x -6)*(x + 1)^2*(x -1)^3*(x -2)^3*(x + 2)^3*(x + 4)^4*(x + 3)^4*(x -3)^6*(x )^8;
T[228,7]=(x -1)*(x^2 -x -8)*(x + 4)^2*(x -4)^2*(x + 3)^2*(x + 5)^3*(x )^6*(x -3)^7*(x + 1)^10;
T[228,11]=(x + 5)*(x^2 + 3*x -6)*(x -5)^2*(x -4)^2*(x + 4)^2*(x -1)^3*(x + 3)^3*(x + 6)^4*(x -2)^5*(x )^5*(x -3)^6;
T[228,13]=(x )^2*(x -6)^3*(x + 1)^4*(x -5)^4*(x + 6)^4*(x -2)^8*(x + 4)^10;
T[228,17]=(x + 5)*(x^2 + 3*x -6)*(x + 2)^2*(x -6)^3*(x + 1)^3*(x + 6)^5*(x + 3)^8*(x -3)^11;
T[228,19]=(x -1)^17*(x + 1)^18;
T[228,23]=(x -2)*(x^2 + 6*x -24)*(x -8)^2*(x + 2)^2*(x + 6)^2*(x + 1)^4*(x -3)^4*(x + 4)^5*(x )^6*(x -4)^7;
T[228,29]=(x -4)*(x^2 + 6*x -24)*(x + 6)^2*(x + 10)^3*(x -2)^3*(x + 5)^4*(x -9)^4*(x + 2)^7*(x -6)^9;
T[228,31]=(x^2 + 2*x -32)*(x -6)^3*(x + 6)^3*(x -8)^3*(x -4)^4*(x + 8)^5*(x -2)^5*(x + 4)^10;
T[228,37]=(x^2 + 2*x -32)*(x + 4)^2*(x + 8)^3*(x -8)^3*(x + 10)^3*(x )^3*(x -10)^4*(x + 2)^5*(x -2)^10;
T[228,41]=(x -6)^2*(x + 2)^3*(x + 6)^6*(x -10)^6*(x + 8)^9*(x )^9;
T[228,43]=(x -9)*(x + 8)*(x^2 -x -8)*(x -1)^2*(x + 12)^2*(x -8)^4*(x + 4)^5*(x -4)^6*(x + 1)^12;
T[228,47]=(x -1)*(x -2)*(x^2 + 21*x + 102)*(x -6)^2*(x -10)^2*(x + 4)^2*(x + 1)^2*(x -12)^3*(x -3)^3*(x + 9)^3*(x -8)^4*(x )^4*(x + 3)^6;
T[228,53]=(x^2 -6*x -24)*(x -6)^2*(x + 10)^2*(x -2)^3*(x -10)^3*(x + 4)^3*(x + 3)^4*(x + 1)^4*(x + 6)^6*(x -12)^6;
T[228,59]=(x -4)^2*(x -12)^2*(x -6)^2*(x + 8)^4*(x -15)^4*(x -9)^4*(x + 12)^5*(x + 6)^6*(x )^6;
T[228,61]=(x -11)*(x^2 + 11*x + 22)*(x + 13)^2*(x -7)^3*(x + 2)^3*(x -14)^4*(x -2)^5*(x + 10)^6*(x + 1)^9;
T[228,67]=(x -12)*(x^2 -4*x -128)*(x )^3*(x + 12)^4*(x -5)^4*(x -3)^4*(x -8)^8*(x + 4)^9;
T[228,71]=(x + 16)^2*(x + 4)^2*(x -8)^2*(x -12)^3*(x + 6)^4*(x + 12)^5*(x )^5*(x -6)^6*(x -2)^6;
T[228,73]=(x -6)*(x^2 + 5*x -2)*(x + 2)^2*(x + 6)^2*(x -14)^2*(x -10)^3*(x -9)^6*(x + 11)^7*(x + 7)^10;
T[228,79]=(x + 16)*(x + 8)*(x + 4)^2*(x -10)^2*(x -16)^3*(x )^6*(x + 10)^10*(x -8)^10;
T[228,83]=(x + 4)*(x -6)*(x^2 -6*x -24)*(x + 16)^2*(x -4)^3*(x -16)^3*(x + 12)^4*(x + 6)^8*(x -12)^11;
T[228,89]=(x^2 -18*x + 48)*(x + 12)^4*(x -10)^4*(x + 2)^5*(x )^5*(x + 6)^7*(x -12)^8;
T[228,97]=(x + 8)^2*(x -14)^2*(x -10)^5*(x -8)^6*(x + 2)^8*(x + 10)^12;

T[229,2]=(x + 1)*(x^6 + 4*x^5 -12*x^3 -3*x^2 + 9*x -1)*(x^11 -5*x^10 -4*x^9 + 50*x^8 -26*x^7 -165*x^6 + 152*x^5 + 193*x^4 -207*x^3 -50*x^2 + 52*x + 1);
T[229,3]=(x -1)*(x^6 + 6*x^5 + 7*x^4 -17*x^3 -36*x^2 -6*x + 13)*(x^11 -3*x^10 -19*x^9 + 60*x^8 + 109*x^7 -402*x^6 -133*x^5 + 987*x^4 -332*x^3 -572*x^2 + 288*x -16);
T[229,5]=(x + 3)*(x^6 + 3*x^5 -12*x^4 -39*x^3 + 19*x^2 + 121*x + 79)*(x^11 -28*x^9 + 3*x^8 + 204*x^7 -23*x^6 -397*x^5 + 238*x^3 + 21*x^2 -44*x -7);
T[229,7]=(x -2)*(x^6 + 5*x^5 -16*x^4 -127*x^3 -155*x^2 + 213*x + 386)*(x^11 -x^10 -33*x^9 + 26*x^8 + 342*x^7 -293*x^6 -1477*x^5 + 1416*x^4 + 2679*x^3 -2815*x^2 -1556*x + 1736);
T[229,11]=(x + 3)*(x^6 + 22*x^5 + 190*x^4 + 815*x^3 + 1815*x^2 + 1996*x + 853)*(x^11 -27*x^10 + 288*x^9 -1447*x^8 + 2508*x^7 + 7057*x^6 -38171*x^5 + 44023*x^4 + 51012*x^3 -149100*x^2 + 103664*x -22384);
T[229,13]=(x + 6)*(x^6 -x^5 -34*x^4 + 121*x^3 -111*x^2 -21*x + 46)*(x^11 + 7*x^10 -28*x^9 -203*x^8 + 311*x^7 + 1849*x^6 -1432*x^5 -6708*x^4 + 1776*x^3 + 8528*x^2 + 1984*x -128);
T[229,17]=(x + 7)*(x^6 -6*x^5 -21*x^4 + 181*x^3 -284*x^2 + 138*x -17)*(x^11 -x^10 -106*x^9 + 165*x^8 + 3465*x^7 -6975*x^6 -40749*x^5 + 95593*x^4 + 141892*x^3 -420857*x^2 + 119471*x + 81733);
T[229,19]=(x -3)*(x^6 + 19*x^5 + 128*x^4 + 327*x^3 -11*x^2 -1213*x -1157)*(x^11 -8*x^10 -101*x^9 + 935*x^8 + 1960*x^7 -28800*x^6 + 4862*x^5 + 335879*x^4 -348144*x^3 -1326484*x^2 + 1917520*x + 19600);
T[229,23]=(x -4)*(x^6 + 10*x^5 -17*x^4 -345*x^3 -351*x^2 + 1675*x + 1996)*(x^11 + 2*x^10 -148*x^9 -305*x^8 + 6817*x^7 + 12756*x^6 -112236*x^5 -104512*x^4 + 739549*x^3 -232055*x^2 -946052*x + 562376);
T[229,29]=(x + 6)*(x^6 + 7*x^5 -89*x^4 -785*x^3 -676*x^2 + 3887*x + 4394)*(x^11 -17*x^10 + 23*x^9 + 755*x^8 -2734*x^7 -2277*x^6 + 9608*x^5 + 2432*x^4 -11184*x^3 -832*x^2 + 4288*x -64);
T[229,31]=(x -4)*(x^6 + 3*x^5 -46*x^4 -102*x^3 + 385*x^2 + 675*x -500)*(x^11 + 3*x^10 -111*x^9 -513*x^8 + 3354*x^7 + 23694*x^6 + 2337*x^5 -282049*x^4 -759961*x^3 -667251*x^2 + 13996*x + 191524);
T[229,37]=(x -2)*(x^6 -2*x^5 -192*x^4 + 295*x^3 + 9094*x^2 -15209*x -59758)*(x^11 + 14*x^10 -97*x^9 -1527*x^8 + 5507*x^7 + 63460*x^6 -223548*x^5 -1076328*x^4 + 4753066*x^3 + 4020127*x^2 -37163020*x + 41080508);
T[229,41]=(x -6)*(x^6 + 12*x^5 -25*x^4 -689*x^3 -2429*x^2 -2423*x -298)*(x^11 -18*x^10 -95*x^9 + 3021*x^8 -5685*x^7 -108653*x^6 + 259948*x^5 + 1546256*x^4 -2270080*x^3 -6952048*x^2 + 3208192*x + 1122560);
T[229,43]=(x -7)*(x^6 + 9*x^5 -204*x^4 -1435*x^3 + 13183*x^2 + 49003*x -315859)*(x^11 + 2*x^10 -235*x^9 -11*x^8 + 18272*x^7 -29842*x^6 -534016*x^5 + 1554229*x^4 + 4518460*x^3 -20809688*x^2 + 16930096*x + 4169872);
T[229,47]=(x -6)*(x^6 + 4*x^5 -227*x^4 -1106*x^3 + 11172*x^2 + 81317*x + 132082)*(x^11 -14*x^10 -184*x^9 + 3106*x^8 + 8234*x^7 -233509*x^6 + 175909*x^5 + 6362801*x^4 -14080436*x^3 -31129325*x^2 + 36799668*x + 44642108);
T[229,53]=(x + 10)*(x^6 -5*x^5 -48*x^4 + 114*x^3 + 645*x^2 -621*x -2614)*(x^11 + 11*x^10 -229*x^9 -2277*x^8 + 20322*x^7 + 167454*x^6 -844721*x^5 -5158845*x^4 + 15720963*x^3 + 58721573*x^2 -105260720*x -136935148);
T[229,59]=(x -4)*(x^6 + 32*x^5 + 361*x^4 + 1579*x^3 + 1073*x^2 -6617*x -4612)*(x^11 -52*x^10 + 1030*x^9 -8685*x^8 + 5535*x^7 + 457992*x^6 -3478462*x^5 + 10139170*x^4 -6359675*x^3 -24647039*x^2 + 42417916*x -15035468);
T[229,61]=(x -5)*(x^6 + 6*x^5 -288*x^4 -2118*x^3 + 17379*x^2 + 189157*x + 428339)*(x^11 + 23*x^10 + 59*x^9 -1461*x^8 -3766*x^7 + 43011*x^6 + 623*x^5 -485281*x^4 + 1109001*x^3 -770527*x^2 -113392*x + 224221);
T[229,67]=(x + 10)*(x^6 -2*x^5 -279*x^4 + 1248*x^3 + 16002*x^2 -101517*x + 87014)*(x^11 -18*x^10 -294*x^9 + 5454*x^8 + 28886*x^7 -502871*x^6 -1091017*x^5 + 13241753*x^4 + 3401090*x^3 -32401607*x^2 -26470224*x -5334400);
T[229,71]=(x + 9)*(x^6 + 32*x^5 + 210*x^4 -1460*x^3 -12929*x^2 -21139*x + 4399)*(x^11 -31*x^10 + 190*x^9 + 3270*x^8 -50321*x^7 + 176724*x^6 + 670788*x^5 -5725513*x^4 + 8613896*x^3 + 12639304*x^2 -25587680*x -6230800);
T[229,73]=(x + 2)*(x^6 -10*x^5 -126*x^4 + 1535*x^3 -1366*x^2 -15205*x + 9134)*(x^11 + 10*x^10 -374*x^9 -4317*x^8 + 36718*x^7 + 553411*x^6 -306732*x^5 -23586992*x^4 -62780016*x^3 + 209194016*x^2 + 1053971200*x + 1114523200);
T[229,79]=(x -6)*(x^6 + 5*x^5 -348*x^4 -2122*x^3 + 22117*x^2 + 113477*x -147178)*(x^11 -x^10 -417*x^9 + 613*x^8 + 54046*x^7 -68374*x^6 -2567065*x^5 + 2578813*x^4 + 38468351*x^3 -9278847*x^2 -157917636*x -33539084);
T[229,83]=(x -11)*(x^6 + 14*x^5 -278*x^4 -3831*x^3 + 1125*x^2 + 42900*x -50033)*(x^11 -37*x^10 + 24*x^9 + 15671*x^8 -208458*x^7 -544999*x^6 + 31495043*x^5 -253761173*x^4 + 666803044*x^3 + 844562880*x^2 -5816449824*x + 3519608000);
T[229,89]=(x + 18)*(x^6 + 4*x^5 -139*x^4 -344*x^3 + 2210*x^2 + 3577*x -5158)*(x^11 -4*x^10 -417*x^9 + 2164*x^8 + 54426*x^7 -342879*x^6 -2222952*x^5 + 16376668*x^4 + 17536592*x^3 -210717536*x^2 + 156038400*x + 67040000);
T[229,97]=(x + 5)*(x^6 -22*x^5 + 104*x^4 + 706*x^3 -6629*x^2 + 11083*x + 7199)*(x^11 + 17*x^10 -365*x^9 -6919*x^8 + 33478*x^7 + 911481*x^6 + 545175*x^5 -41179343*x^4 -129531919*x^3 + 289623635*x^2 + 1283436092*x + 985980119);

T[230,2]=(x^2 -2*x + 2)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x^8 -2*x^7 + 4*x^6 -7*x^5 + 10*x^4 -14*x^3 + 16*x^2 -16*x + 16)*(x^4 + x^3 + 3*x^2 + 2*x + 4)^2*(x -1)^5*(x + 1)^6;
T[230,3]=(x^2 + x -5)*(x^2 -3*x -1)*(x^3 -x^2 -9*x + 12)*(x^2 -x -1)*(x + 1)^4*(x^2 + x -4)^4*(x^2 -5)^4*(x )^4;
T[230,5]=(x^2 -4*x + 5)*(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)^2*(x + 1)^11*(x -1)^12;
T[230,7]=(x^2 -x -5)*(x^2 -3*x -1)*(x^3 -3*x^2 -21*x + 64)*(x^2 -x -1)*(x + 4)^2*(x -1)^2*(x^2 + 2*x -4)^2*(x^4 + 3*x^3 -14*x^2 -52*x -32)^2*(x^2 -2*x -4)^4;
T[230,11]=(x^2 -3*x -3)*(x^2 + 7*x + 9)*(x^3 -3*x^2 -39*x + 144)*(x^2 -x -11)*(x^2 + 2*x -4)^2*(x^4 -4*x^3 -16*x^2 + 40*x + 32)^2*(x -2)^4*(x^2 + 6*x + 4)^4;
T[230,13]=(x^2 -7*x + 7)*(x^2 -3*x -1)*(x^3 + x^2 -15*x -18)*(x^2 + 3*x -29)*(x^2 + 8*x + 11)^2*(x^4 -41*x^2 + 212)^2*(x + 2)^4*(x -3)^8;
T[230,17]=(x^2 -3*x -27)*(x^2 + 3*x -3)*(x^3 + 7*x^2 + 7*x -18)*(x^2 -x -31)*(x -3)^2*(x + 2)^2*(x^2 + 4*x -16)^2*(x^4 + x^3 -18*x^2 -24*x + 32)^2*(x^2 -6*x + 4)^4;
T[230,19]=(x^2 -x -29)*(x^2 -7*x + 7)*(x^3 -3*x^2 -21*x + 64)*(x^2 + 3*x -9)*(x^2 -2*x -44)^2*(x^4 + 4*x^3 -16*x^2 -40*x + 32)^2*(x + 2)^12;
T[230,23]=(x -1)^16*(x + 1)^17;
T[230,29]=(x^2 -6*x -12)*(x^2 -2*x -12)*(x^3 + 4*x^2 -32*x + 24)*(x^2 + 14*x + 44)*(x -2)^2*(x -7)^2*(x^2 + 10*x + 5)^2*(x^4 -19*x^3 + 117*x^2 -269*x + 202)^2*(x + 3)^8;
T[230,31]=(x^2 -7*x -35)*(x^2 + 5*x -23)*(x^3 + 5*x^2 -7*x -8)*(x^2 -7*x -19)*(x + 5)^2*(x^2 -4*x -1)^2*(x^4 + x^3 -101*x^2 + 11*x + 2144)^2*(x )^2*(x^2 -45)^4;
T[230,37]=(x^2 -4*x -16)*(x^3 + 2*x^2 -40*x -32)*(x -11)^2*(x -8)^2*(x^2 + 6*x -36)^2*(x^4 + 3*x^3 -116*x^2 + 16*x + 2008)^2*(x + 4)^4*(x^2 -2*x -4)^4;
T[230,41]=(x^2 + 9*x + 15)*(x^2 + 9*x -9)*(x^3 -x^2 -59*x + 186)*(x^2 + 9*x -41)*(x -6)^2*(x -1)^2*(x^2 + 6*x -11)^2*(x^4 -13*x^3 + 45*x^2 -3*x -94)^2*(x^2 -2*x -19)^4;
T[230,43]=(x^2 -4*x -80)*(x^2 + 4*x -48)*(x -10)^2*(x^2 + 6*x -36)^2*(x^4 + 6*x^3 -36*x^2 -16*x + 128)^2*(x -8)^3*(x )^12;
T[230,47]=(x^2 -2*x -12)*(x^2 + 18*x + 60)*(x^3 + 14*x^2 + 4*x -288)*(x^2 -6*x -36)*(x^2 -10*x + 5)^2*(x^4 -6*x^3 -83*x^2 + 548*x -128)^2*(x^2 -5)^4*(x )^4;
T[230,53]=(x^2 + 8*x -36)*(x -11)^2*(x + 4)^2*(x -6)^2*(x^4 -19*x^3 -34*x^2 + 2092*x -8776)^2*(x^2 + 8*x -4)^5*(x + 6)^7;
T[230,59]=(x^2 + 14*x + 36)*(x^2 + 18*x + 60)*(x^3 -14*x^2 + 28*x + 144)*(x^2 + 10*x -20)*(x -12)^2*(x + 13)^2*(x^2 -80)^2*(x^4 -23*x^3 + 100*x^2 + 560*x -3136)^2*(x^2 -4*x -16)^4;
T[230,61]=(x^2 -5*x -75)*(x^2 -7*x -35)*(x^3 -x^2 -157*x + 526)*(x^2 + 3*x -59)*(x^2 -2*x -124)^2*(x^4 -56*x^2 + 136*x -32)^2*(x + 8)^4*(x^2 -4*x -76)^4;
T[230,67]=(x^2 -4*x -80)*(x^2 -20*x + 80)*(x^3 -8*x^2 -144*x + 384)*(x -5)^2*(x + 10)^2*(x + 4)^2*(x^2 -6*x -36)^2*(x^4 + 3*x^3 -98*x^2 -212*x + 2032)^2*(x^2 + 10*x + 20)^4;
T[230,71]=(x^2 + 29*x + 207)*(x^2 -3*x -45)*(x^3 -11*x^2 + 31*x -24)*(x^2 -3*x -29)*(x -5)^2*(x^2 + 8*x + 11)^2*(x^4 + 3*x^3 -149*x^2 -535*x -8)^2*(x )^2*(x^2 -20*x + 95)^4;
T[230,73]=(x^2 + 2*x -188)*(x^2 -10*x -92)*(x^3 + 8*x^2 -40*x -248)*(x^2 -2*x -4)*(x^2 -45)^2*(x^4 + 32*x^3 + 343*x^2 + 1392*x + 1684)^2*(x -6)^4*(x^2 -22*x + 101)^4;
T[230,79]=(x^2 -12*x + 16)*(x^2 -208)*(x^3 + 4*x^2 -240*x -1152)*(x -8)^2*(x^2 -22*x + 116)^2*(x^4 -2*x^3 -140*x^2 -352*x + 512)^2*(x + 12)^4*(x^2 + 4*x -76)^4;
T[230,83]=(x^2 -4*x -76)*(x^2 -8*x -36)*(x^3 -8*x^2 -20*x + 96)*(x + 6)^2*(x -14)^2*(x -9)^2*(x^2 + 4*x -16)^2*(x^4 + 21*x^3 + 96*x^2 -224*x -1216)^2*(x^2 + 22*x + 116)^4;
T[230,89]=(x^2 -12*x -48)*(x^3 -18*x^2 -48*x + 1152)*(x -4)^2*(x + 6)^2*(x^2 -10*x + 20)^2*(x^4 -216*x^2 -1496*x -2752)^2*(x )^2*(x^2 + 12*x + 16)^5;
T[230,97]=(x^2 -7*x -119)*(x^2 -9*x + 17)*(x^3 + 33*x^2 + 279*x + 166)*(x^2 -27*x + 181)*(x -6)^2*(x + 14)^2*(x^2 -10*x -100)^2*(x^4 + 18*x^3 + 72*x^2 -200*x -1072)^2*(x^2 -22*x + 76)^4;

T[231,2]=(x^2 + x -5)*(x^3 -6*x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 -x -1)*(x^2 -5)^2*(x + 1)^3*(x + 2)^4*(x -1)^4*(x )^4;
T[231,3]=(x^2 -2*x + 3)*(x^2 -x + 3)*(x^2 + 3*x + 3)*(x^4 -2*x^3 + 2*x^2 -6*x + 9)*(x^2 + x + 3)^2*(x -1)^7*(x + 1)^8;
T[231,5]=(x^3 -15*x + 2)*(x^3 -4*x^2 -7*x + 26)*(x + 1)^2*(x -3)^4*(x -1)^6*(x + 2)^11;
T[231,7]=(x^2 -4*x + 7)*(x^2 + 2*x + 7)^2*(x -1)^11*(x + 1)^12;
T[231,11]=(x^2 -4*x + 11)*(x -1)^13*(x + 1)^14;
T[231,13]=(x -6)*(x^2 + 2*x -19)*(x^3 -15*x + 2)*(x^3 + 4*x^2 -27*x -94)*(x -1)^2*(x^2 -2*x -4)^2*(x + 4)^4*(x + 2)^4*(x -4)^6;
T[231,17]=(x^2 -6*x -12)*(x^3 -24*x + 8)*(x^3 -8*x^2 -40*x + 328)*(x^2 -6*x + 4)*(x -4)^2*(x^2 + 2*x -4)^2*(x -2)^3*(x + 6)^4*(x + 2)^6;
T[231,19]=(x^2 + 4*x -17)*(x^3 + 8*x^2 + 15*x + 4)*(x^3 -12*x^2 + 27*x + 36)*(x^2 -45)*(x -2)^2*(x + 6)^2*(x^2 -4*x -16)^2*(x -4)^3*(x )^8;
T[231,23]=(x^2 + 2*x -20)*(x^3 + 6*x^2 -12*x -32)*(x^3 -10*x^2 + 12*x + 64)*(x^2 + 2*x -44)*(x + 5)^2*(x -8)^2*(x -3)^2*(x + 4)^2*(x^2 + 4*x -16)^2*(x )^3*(x + 1)^4;
T[231,29]=(x^2 -2*x -83)*(x^3 + 4*x^2 -27*x -94)*(x^3 -12*x^2 + 33*x -6)*(x -5)^2*(x -10)^2*(x^2 -8*x -4)^2*(x + 2)^3*(x )^4*(x + 6)^6;
T[231,31]=(x -8)*(x^2 + 2*x -20)*(x^3 + 2*x^2 -76*x -256)*(x^3 + 6*x^2 -36*x + 32)*(x^2 + 6*x + 4)*(x + 8)^2*(x -5)^2*(x -1)^2*(x -10)^2*(x^2 + 10*x + 20)^2*(x )^2*(x -7)^4;
T[231,37]=(x^3 -75*x -246)*(x^3 -43*x + 106)*(x + 6)^2*(x -11)^2*(x + 7)^2*(x -1)^2*(x + 5)^2*(x^2 + 8*x -4)^2*(x -3)^4*(x -6)^5;
T[231,41]=(x -10)*(x^2 -4*x -16)*(x^3 -6*x^2 -72*x + 32)*(x^3 -14*x^2 + 40*x + 32)*(x^2 + 4*x -80)*(x -2)^2*(x -6)^2*(x -4)^2*(x^2 + 18*x + 76)^2*(x + 8)^4*(x + 2)^4;
T[231,43]=(x^2 + 6*x -12)*(x^3 -6*x^2 -12*x + 48)*(x^3 + 14*x^2 -44*x -848)*(x^2 + 2*x -44)*(x -12)^2*(x + 8)^2*(x )^2*(x + 4)^3*(x + 6)^4*(x -8)^6;
T[231,47]=(x + 8)*(x^2 -12*x + 15)*(x^3 -61*x + 32)*(x^3 + 24*x^2 + 171*x + 328)*(x^2 + 4*x -1)*(x + 10)^2*(x^2 -10*x + 20)^2*(x )^4*(x -8)^8;
T[231,53]=(x^2 + 10*x + 4)*(x^3 -16*x + 8)*(x^3 -48*x -120)*(x^2 + 2*x -124)*(x^2 -8*x -4)^2*(x -6)^5*(x + 6)^10;
T[231,59]=(x -4)*(x^2 -21)*(x^3 -57*x -52)*(x^3 + 24*x^2 + 87*x -716)*(x^2 -125)*(x + 9)^2*(x -3)^2*(x -12)^2*(x + 4)^2*(x -2)^2*(x^2 -2*x -4)^2*(x -5)^4;
T[231,61]=(x -2)^2*(x -10)^2*(x^2 + 10*x + 20)^2*(x )^2*(x + 10)^3*(x -12)^4*(x -6)^5*(x + 2)^7;
T[231,67]=(x + 12)*(x^2 -8*x -5)*(x^3 + 4*x^2 -85*x -236)*(x^3 -12*x^2 + 27*x + 4)*(x^2 + 24*x + 139)*(x -8)^2*(x + 3)^2*(x -5)^2*(x -4)^2*(x + 4)^2*(x^2 -20*x + 80)^2*(x + 7)^4;
T[231,71]=(x^2 -4*x -80)*(x^3 -12*x^2 -48*x + 384)*(x^3 + 12*x^2 -16*x -256)*(x^2 -4*x -16)*(x -1)^2*(x + 12)^2*(x -9)^2*(x^2 + 12*x + 16)^2*(x + 3)^4*(x )^5;
T[231,73]=(x^2 -18*x + 61)*(x^3 -24*x^2 + 177*x -394)*(x^3 + 20*x^2 + 101*x + 134)*(x + 8)^2*(x -10)^2*(x -7)^2*(x + 6)^2*(x + 14)^2*(x^2 + 6*x + 4)^2*(x -2)^3*(x -4)^4;
T[231,79]=(x -16)*(x^2 + 4*x -80)*(x^3 -12*x^2 -48*x + 256)*(x^3 -12*x^2 -16*x + 256)*(x^2 + 20*x + 80)*(x -8)^2*(x + 4)^2*(x + 16)^2*(x -6)^2*(x^2 -80)^2*(x + 10)^6;
T[231,83]=(x -4)*(x^2 + 14*x + 28)*(x^3 -6*x^2 -132*x + 496)*(x^3 + 18*x^2 + 60*x + 48)*(x^2 -18*x + 76)*(x + 12)^2*(x^2 -4*x -176)^2*(x )^2*(x + 6)^4*(x -12)^6;
T[231,89]=(x -18)*(x^2 -84)*(x^3 -18*x^2 -84*x + 1896)*(x^3 -26*x^2 + 140*x + 328)*(x^2 -20)*(x + 14)^2*(x + 3)^2*(x + 15)^2*(x + 6)^4*(x -2)^4*(x -15)^4;
T[231,97]=(x^2 + 14*x + 28)*(x^3 + 4*x^2 -120*x -232)*(x^3 -24*x^2 + 144*x -8)*(x^2 -6*x -36)*(x + 1)^2*(x -18)^2*(x + 5)^2*(x + 10)^2*(x^2 -8*x -164)^2*(x -2)^3*(x + 7)^4;

T[232,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^21;
T[232,3]=(x^2 + 2*x -1)*(x^3 -2*x^2 -5*x + 8)*(x -2)^2*(x -1)^3*(x + 1)^4*(x^2 -2*x -1)^4*(x + 3)^5;
T[232,5]=(x^2 + 2*x -7)*(x^3 -4*x^2 -3*x + 10)*(x + 2)^2*(x -1)^4*(x -3)^4*(x + 3)^4*(x + 1)^8;
T[232,7]=(x -2)^2*(x )^3*(x + 4)^4*(x -4)^4*(x^2 -8)^4*(x + 2)^6;
T[232,11]=(x^2 + 2*x -1)*(x^3 -2*x^2 -29*x + 80)*(x + 6)^2*(x -3)^3*(x + 3)^4*(x^2 -2*x -1)^4*(x + 1)^5;
T[232,13]=(x + 5)*(x^2 + 2*x -31)*(x^3 -4*x^2 -19*x + 2)*(x + 3)^2*(x -2)^2*(x -5)^2*(x -3)^3*(x + 1)^4*(x^2 + 2*x -7)^4;
T[232,17]=(x^2 + 4*x -28)*(x )*(x + 6)^2*(x -8)^3*(x + 4)^4*(x^2 + 4*x -4)^4*(x -2)^7;
T[232,19]=(x^3 + 4*x^2 -28*x -32)*(x -4)^2*(x + 6)^2*(x -2)^2*(x + 4)^2*(x + 8)^3*(x )^5*(x -6)^8;
T[232,23]=(x^2 + 4*x -4)*(x^3 + 4*x^2 -20*x -64)*(x + 6)^4*(x^2 + 4*x -28)^4*(x )^4*(x -4)^6;
T[232,29]=(x -1)^13*(x + 1)^14;
T[232,31]=(x^2 + 14*x + 47)*(x^3 + 14*x^2 + 59*x + 68)*(x -5)^2*(x + 6)^2*(x -9)^3*(x + 3)^3*(x -3)^4*(x^2 -6*x -41)^4;
T[232,37]=(x^2 -8*x -16)*(x^3 + 2*x^2 -32*x -32)*(x -2)^2*(x -8)^6*(x + 8)^6*(x + 4)^8;
T[232,41]=(x + 6)*(x^2 + 8*x -16)*(x^3 -10*x^2 -64*x + 512)*(x + 8)^2*(x )^2*(x + 2)^4*(x^2 -8*x -56)^4*(x -2)^5;
T[232,43]=(x^2 -6*x + 7)*(x^3 + 6*x^2 -37*x + 32)*(x + 1)^2*(x -10)^2*(x -7)^3*(x + 5)^3*(x + 11)^4*(x^2 -10*x + 23)^4;
T[232,47]=(x -3)*(x^2 + 10*x -25)*(x^3 + 2*x^2 -117*x -452)*(x + 2)^2*(x + 3)^2*(x -13)^3*(x + 7)^3*(x -11)^3*(x^2 -2*x -17)^4;
T[232,53]=(x -5)*(x -9)*(x^3 -43*x + 58)*(x + 5)^2*(x + 7)^2*(x -3)^2*(x -10)^2*(x + 11)^3*(x -1)^3*(x^2 -2*x -71)^4;
T[232,59]=(x + 8)*(x -4)*(x^2 -4*x -68)*(x^3 -8*x^2 -4*x + 16)*(x -6)^2*(x + 10)^2*(x + 4)^3*(x^2 -4*x -28)^4*(x )^5;
T[232,61]=(x + 12)*(x^3 -2*x^2 -100*x + 328)*(x )*(x -6)^2*(x -2)^2*(x -4)^3*(x + 8)^3*(x -10)^4*(x^2 + 4*x -4)^4;
T[232,67]=(x -12)*(x^3 -20*x^2 + 32*x + 640)*(x + 4)^3*(x -8)^4*(x^2 -32)^5*(x + 12)^6;
T[232,71]=(x^2 + 4*x -68)*(x^3 -12*x^2 -148*x + 1696)*(x -8)^2*(x -6)^3*(x -2)^4*(x^2 + 12*x + 28)^4*(x + 2)^5;
T[232,73]=(x^3 -2*x^2 -96*x -160)*(x -10)^2*(x + 16)^2*(x + 4)^2*(x )^2*(x + 12)^3*(x -4)^13;
T[232,79]=(x -1)*(x -3)*(x^2 + 6*x -153)*(x^3 + 30*x^2 + 251*x + 388)*(x + 6)^2*(x + 1)^2*(x -11)^2*(x -15)^3*(x + 7)^3*(x^2 + 2*x -1)^4;
T[232,83]=(x + 12)*(x + 16)*(x^2 + 12*x + 28)*(x^3 -32*x^2 + 316*x -976)*(x -16)^2*(x -4)^3*(x )^3*(x -6)^4*(x^2 -4*x -28)^4;
T[232,89]=(x -6)*(x^2 + 8*x -16)*(x^3 -10*x^2 -256*x + 2816)*(x -12)^2*(x + 12)^2*(x + 6)^3*(x -2)^3*(x + 10)^3*(x^2 + 8*x -56)^4;
T[232,97]=(x + 14)*(x -14)*(x^2 -8*x -112)*(x^3 + 14*x^2 + 32*x -64)*(x -10)^2*(x -8)^2*(x )^2*(x + 2)^3*(x + 6)^3*(x^2 + 8*x -56)^4;

T[233,2]=(x -1)*(x^7 + 2*x^6 -6*x^5 -10*x^4 + 10*x^3 + 8*x^2 -7*x + 1)*(x^11 + 2*x^10 -16*x^9 -30*x^8 + 91*x^7 + 158*x^6 -213*x^5 -349*x^4 + 152*x^3 + 290*x^2 + 41*x -19);
T[233,3]=(x + 2)*(x^7 + 8*x^6 + 18*x^5 -3*x^4 -44*x^3 -20*x^2 + 12*x + 1)*(x^11 -10*x^10 + 28*x^9 + 29*x^8 -277*x^7 + 394*x^6 + 162*x^5 -716*x^4 + 250*x^3 + 312*x^2 -138*x -29);
T[233,5]=(x -2)*(x^7 + 3*x^6 -15*x^5 -40*x^4 + 41*x^3 + 79*x^2 -29*x -43)*(x^11 + x^10 -35*x^9 -20*x^8 + 429*x^7 + 109*x^6 -2119*x^5 -265*x^4 + 3880*x^3 + 336*x^2 -1280*x -128);
T[233,7]=(x -4)*(x^7 + 17*x^6 + 112*x^5 + 351*x^4 + 494*x^3 + 157*x^2 -182*x -41)*(x^11 -15*x^10 + 72*x^9 -53*x^8 -514*x^7 + 1169*x^6 + 434*x^5 -3161*x^4 + 1712*x^3 + 1552*x^2 -1056*x -144);
T[233,11]=(x -6)*(x^7 -x^6 -37*x^5 + 34*x^4 + 402*x^3 -271*x^2 -1242*x + 471)*(x^11 + 5*x^10 -23*x^9 -164*x^8 -92*x^7 + 1161*x^6 + 3112*x^5 + 2905*x^4 + 272*x^3 -1248*x^2 -720*x -108);
T[233,13]=(x -6)*(x^7 + 12*x^6 + 4*x^5 -464*x^4 -2100*x^3 -2956*x^2 -753*x + 687)*(x^11 -4*x^10 -50*x^9 + 188*x^8 + 557*x^7 -2440*x^6 -237*x^5 + 6067*x^4 -766*x^3 -4762*x^2 + 247*x + 687);
T[233,17]=(x + 6)*(x^7 + 5*x^6 -40*x^5 -216*x^4 + 65*x^3 + 1312*x^2 + 1287*x + 123)*(x^11 -7*x^10 -48*x^9 + 368*x^8 + 717*x^7 -6038*x^6 -6285*x^5 + 39577*x^4 + 43152*x^3 -79776*x^2 -132944*x -49008);
T[233,19]=(x + 4)*(x^7 + 8*x^6 -69*x^5 -580*x^4 + 1061*x^3 + 10526*x^2 + 4493*x -1831)*(x^11 -8*x^10 -81*x^9 + 700*x^8 + 2285*x^7 -22582*x^6 -25935*x^5 + 330929*x^4 + 95680*x^3 -2184536*x^2 + 33136*x + 5157136);
T[233,23]=(x^7 + 16*x^6 + 36*x^5 -695*x^4 -5290*x^3 -14446*x^2 -16158*x -5433)*(x^11 -8*x^10 -52*x^9 + 457*x^8 + 442*x^7 -5338*x^6 -2566*x^5 + 19507*x^4 + 10856*x^3 -15832*x^2 -5408*x + 864)*(x );
T[233,29]=(x + 2)*(x^7 -3*x^6 -93*x^5 + 298*x^4 + 1593*x^3 -2509*x^2 -6539*x -1321)*(x^11 + 9*x^10 -195*x^9 -1464*x^8 + 15524*x^7 + 79396*x^6 -634710*x^5 -1478457*x^4 + 12287027*x^3 + 279305*x^2 -68082231*x + 62702899);
T[233,31]=(x -4)*(x^7 + 24*x^6 + 184*x^5 + 346*x^4 -1131*x^3 -2174*x^2 + 3060*x + 599)*(x^11 -24*x^10 + 104*x^9 + 1746*x^8 -19307*x^7 + 44394*x^6 + 170780*x^5 -625481*x^4 -860368*x^3 + 2339032*x^2 + 3974208*x + 1523312);
T[233,37]=(x + 6)*(x^7 + 10*x^6 -79*x^5 -1231*x^4 -3927*x^3 + 265*x^2 + 9861*x -5391)*(x^11 -14*x^10 -137*x^9 + 2809*x^8 -1408*x^7 -165815*x^6 + 729892*x^5 + 1948744*x^4 -21015417*x^3 + 51880471*x^2 -43188275*x + 6019953);
T[233,41]=(x -2)*(x^7 -16*x^6 -5*x^5 + 1167*x^4 -4889*x^3 -6089*x^2 + 47197*x -14089)*(x^11 + 8*x^10 -155*x^9 -1361*x^8 + 4807*x^7 + 60707*x^6 + 37851*x^5 -765015*x^4 -2092064*x^3 -1419624*x^2 + 239360*x -2528);
T[233,43]=(x + 2)*(x^7 + 3*x^6 -209*x^5 -587*x^4 + 11916*x^3 + 29038*x^2 -115248*x -77263)*(x^11 -15*x^10 + x^9 + 965*x^8 -4101*x^7 -9387*x^6 + 86339*x^5 -112676*x^4 -158930*x^3 + 215644*x^2 + 199494*x + 27927);
T[233,47]=(x -2)*(x^7 + 8*x^6 -191*x^5 -1778*x^4 + 2859*x^3 + 39120*x^2 + 18911*x -91297)*(x^11 -8*x^10 -241*x^9 + 1596*x^8 + 19662*x^7 -99556*x^6 -638436*x^5 + 2391373*x^4 + 6983161*x^3 -19577380*x^2 -12308703*x + 1892617);
T[233,53]=(x + 6)*(x^7 -x^6 -210*x^5 + 324*x^4 + 11302*x^3 -25922*x^2 -100890*x + 229353)*(x^11 + 5*x^10 -388*x^9 -844*x^8 + 59580*x^7 -38412*x^6 -4129364*x^5 + 13625095*x^4 + 92834200*x^3 -623028728*x^2 + 1264168928*x -870031392);
T[233,59]=(x + 10)*(x^7 -9*x^6 -98*x^5 + 748*x^4 + 1809*x^3 -8366*x^2 -14037*x + 6563)*(x^11 -5*x^10 -190*x^9 + 422*x^8 + 12310*x^7 -7961*x^6 -338953*x^5 -143993*x^4 + 3593053*x^3 + 4359616*x^2 -5406011*x -7000891);
T[233,61]=(x + 6)*(x^7 + 6*x^6 -160*x^5 -562*x^4 + 4983*x^3 + 9893*x^2 -37863*x -36609)*(x^11 + 2*x^10 -364*x^9 -114*x^8 + 41601*x^7 -34225*x^6 -1697965*x^5 + 2463497*x^4 + 22115768*x^3 -44002712*x^2 -4103680*x + 8016672);
T[233,67]=(x -10)*(x^7 + 36*x^6 + 449*x^5 + 2039*x^4 -891*x^3 -31095*x^2 -77965*x -58147)*(x^11 + 2*x^10 -307*x^9 + 113*x^8 + 31994*x^7 -81785*x^6 -1226938*x^5 + 5537888*x^4 + 8051181*x^3 -76648923*x^2 + 119983005*x -51992033);
T[233,71]=(x + 8)*(x^7 + 9*x^6 -213*x^5 -1565*x^4 + 13870*x^3 + 54817*x^2 -343219*x + 302111)*(x^11 -3*x^10 -353*x^9 + 427*x^8 + 45030*x^7 + 13973*x^6 -2344871*x^5 -2996365*x^4 + 38720144*x^3 + 34937480*x^2 -138763280*x -64430032);
T[233,73]=(x + 14)*(x^7 + 7*x^6 -114*x^5 -500*x^4 + 1730*x^3 + 1918*x^2 -5074*x + 1849)*(x^11 -23*x^10 -316*x^9 + 11322*x^8 -18798*x^7 -1565648*x^6 + 10366778*x^5 + 61877307*x^4 -715069672*x^3 + 227486120*x^2 + 13737820064*x -33080017312);
T[233,79]=(x -2)*(x^7 + 26*x^6 + 108*x^5 -2704*x^4 -36309*x^3 -179939*x^2 -388161*x -281653)*(x^11 -36*x^10 + 254*x^9 + 5674*x^8 -104050*x^7 + 412865*x^6 + 2665349*x^5 -23032245*x^4 + 4173333*x^3 + 303957001*x^2 -358483305*x -961663275);
T[233,83]=(x -2)*(x^7 -2*x^6 -321*x^5 + 684*x^4 + 28777*x^3 -23054*x^2 -763935*x -1421689)*(x^11 -6*x^10 -395*x^9 + 2416*x^8 + 46836*x^7 -311886*x^6 -1563618*x^5 + 12549061*x^4 + 1899935*x^3 -100157872*x^2 + 32737837*x + 222409549);
T[233,89]=(x -10)*(x^7 -21*x^6 + 58*x^5 + 759*x^4 -2746*x^3 -6615*x^2 + 13086*x + 14479)*(x^11 + 19*x^10 -272*x^9 -5071*x^8 + 35931*x^7 + 468490*x^6 -2859532*x^5 -14625824*x^4 + 104917498*x^3 -37214213*x^2 -489275314*x + 581462879);
T[233,97]=(x -10)*(x^7 + 11*x^6 -284*x^5 -2718*x^4 + 11707*x^3 + 133120*x^2 + 32341*x -995461)*(x^11 -33*x^10 -176*x^9 + 13806*x^8 -31553*x^7 -2033740*x^6 + 8451583*x^5 + 119813981*x^4 -558554592*x^3 -2052109736*x^2 + 11694284864*x -11595349088);

T[234,2]=(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x^2 + x + 2)*(x^4 + x^2 + 4)*(x^2 -x + 2)^2*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)^2*(x -1)^6*(x + 1)^7;
T[234,3]=(x^2 -x + 3)*(x^2 + 3*x + 3)*(x + 1)^3*(x -1)^4*(x )^24;
T[234,5]=(x -1)*(x -3)*(x + 3)^3*(x + 1)^3*(x + 2)^4*(x )^4*(x^2 -8)^6*(x -2)^7;
T[234,7]=(x + 2)^2*(x -4)^3*(x -1)^4*(x -2)^4*(x + 1)^4*(x + 4)^6*(x^2 -8)^6;
T[234,11]=(x + 6)*(x^2 -12)^2*(x -6)^3*(x -2)^5*(x + 4)^5*(x -4)^6*(x + 2)^11;
T[234,13]=(x -1)^17*(x + 1)^18;
T[234,17]=(x -3)^2*(x^2 -48)^2*(x^2 + 4*x -28)^2*(x )^2*(x + 2)^3*(x^2 -4*x -28)^4*(x + 3)^6*(x -2)^6;
T[234,19]=(x + 6)^2*(x + 8)^3*(x -6)^4*(x^2 -8)^6*(x )^6*(x -2)^8;
T[234,23]=(x^2 -48)^2*(x -4)^6*(x + 4)^12*(x )^13;
T[234,29]=(x + 8)*(x -8)*(x -10)^2*(x + 6)^2*(x^2 -48)^2*(x + 10)^4*(x + 2)^5*(x -6)^5*(x -2)^11;
T[234,31]=(x + 2)^2*(x -2)^4*(x^2 + 8*x + 8)^6*(x + 4)^7*(x -4)^10;
T[234,37]=(x -6)^2*(x -3)^4*(x + 7)^4*(x -2)^4*(x^2 + 4*x -28)^6*(x + 2)^9;
T[234,41]=(x -10)*(x + 10)^2*(x^2 + 16*x + 56)^2*(x^2 -48)^2*(x + 6)^3*(x^2 -16*x + 56)^4*(x -6)^5*(x )^8;
T[234,43]=(x + 8)^2*(x -4)^3*(x + 5)^4*(x + 1)^4*(x -8)^4*(x + 12)^6*(x^2 -8*x -16)^6;
T[234,47]=(x + 3)*(x + 13)*(x + 8)^2*(x^2 -108)^2*(x^2 -12*x + 4)^2*(x -8)^3*(x -13)^3*(x -3)^3*(x^2 + 12*x + 4)^4*(x )^6;
T[234,53]=(x -10)*(x + 6)^2*(x + 12)^2*(x + 10)^2*(x -12)^4*(x -6)^4*(x -2)^4*(x + 2)^8*(x )^8;
T[234,59]=(x -10)*(x -6)*(x + 4)^2*(x + 12)^2*(x^2 + 4*x -28)^2*(x^2 -12)^2*(x -4)^3*(x + 10)^3*(x + 6)^3*(x -12)^4*(x^2 -4*x -28)^4;
T[234,61]=(x -10)^2*(x + 8)^4*(x + 10)^4*(x -8)^4*(x^2 -4*x -124)^6*(x + 2)^9;
T[234,67]=(x + 16)^3*(x + 2)^6*(x + 8)^6*(x^2 -8*x + 8)^6*(x -14)^8;
T[234,71]=(x -3)*(x -16)*(x + 16)*(x -8)*(x -5)*(x + 8)^2*(x^2 -12)^2*(x + 5)^3*(x + 3)^3*(x + 2)^4*(x )^6*(x -2)^8;
T[234,73]=(x -14)^2*(x^2 -12*x + 4)^6*(x + 10)^8*(x -2)^13;
T[234,79]=(x^2 -128)^6*(x + 4)^10*(x -8)^13;
T[234,83]=(x + 4)^2*(x^2 -4*x -28)^2*(x^2 -108)^2*(x + 12)^3*(x -4)^4*(x^2 + 4*x -28)^4*(x )^4*(x -12)^6;
T[234,89]=(x + 14)*(x -2)^2*(x -14)^2*(x^2 + 24*x + 136)^2*(x^2 -48)^2*(x + 2)^4*(x^2 -24*x + 136)^4*(x + 6)^5*(x -6)^5;
T[234,97]=(x -14)^4*(x^2 + 4*x -28)^6*(x -10)^9*(x + 10)^10;

T[235,2]=(x -2)*(x^5 + 4*x^4 -12*x^2 -4*x + 7)*(x^7 -x^6 -10*x^5 + 8*x^4 + 28*x^3 -17*x^2 -19*x + 2)*(x + 1)^2*(x^4 -x^3 -5*x^2 + 5*x -1)^2;
T[235,3]=(x -2)*(x^5 + 5*x^4 + 3*x^3 -13*x^2 -13*x + 1)*(x^7 -x^6 -15*x^5 + 13*x^4 + 57*x^3 -37*x^2 -42*x -8)*(x + 1)^2*(x^4 -7*x^2 + 4*x + 1)^2;
T[235,5]=(x^8 + 2*x^7 + 4*x^6 + 14*x^5 + 38*x^4 + 70*x^3 + 100*x^2 + 250*x + 625)*(x + 1)^7*(x -1)^8;
T[235,7]=(x + 2)*(x^5 + 5*x^4 -17*x^3 -83*x^2 + 61*x + 227)*(x^7 + 3*x^6 -23*x^5 -53*x^4 + 91*x^3 + 29*x^2 -66*x + 16)*(x -1)^2*(x^4 -4*x^3 -7*x^2 + 44*x -43)^2;
T[235,11]=(x -3)*(x + 3)*(x^5 + x^4 -46*x^3 -72*x^2 + 368*x + 656)*(x^7 -x^6 -46*x^5 + 40*x^4 + 512*x^3 -80*x^2 -1408*x -256)*(x )*(x^4 + 6*x^3 -4*x^2 -56*x -48)^2;
T[235,13]=(x + 3)*(x^5 + 11*x^4 + 18*x^3 -156*x^2 -632*x -656)*(x^7 -2*x^6 -35*x^5 + 36*x^4 + 128*x^3 -96*x^2 -96*x + 32)*(x -3)^2*(x^4 -8*x^3 + 56*x + 48)^2;
T[235,17]=(x -6)*(x + 6)*(x^5 + 14*x^4 + 55*x^3 + 56*x^2 -25*x + 2)*(x^7 -12*x^6 + 15*x^5 + 282*x^4 -1033*x^3 + 64*x^2 + 3604*x -3424)*(x )*(x^4 -6*x^3 -21*x^2 + 74*x + 141)^2;
T[235,19]=(x + 1)*(x + 4)*(x + 7)*(x^5 -5*x^4 -36*x^3 + 160*x^2 + 128*x -304)*(x^7 -3*x^6 -100*x^5 + 384*x^4 + 2304*x^3 -11024*x^2 + 5632*x + 4352)*(x^4 -16*x^2 -8*x + 16)^2;
T[235,23]=(x -1)*(x^5 + 6*x^4 -52*x^3 -296*x^2 + 688*x + 3584)*(x^7 -x^6 -130*x^5 -4*x^4 + 5608*x^3 + 5744*x^2 -80128*x -152576)*(x -4)^2*(x^4 + 6*x^3 -20*x^2 -40*x -16)^2;
T[235,29]=(x -2)*(x -8)*(x + 10)*(x^5 + 16*x^4 -32*x^3 -1552*x^2 -6656*x -3488)*(x^7 -26*x^6 + 248*x^5 -1024*x^4 + 1472*x^3 + 800*x^2 -2496*x + 1024)*(x^4 + 10*x^3 + 20*x^2 -8*x -16)^2;
T[235,31]=(x -6)*(x -3)*(x + 3)*(x^5 -3*x^4 -88*x^3 + 16*x^2 + 2296*x + 5072)*(x^7 + 5*x^6 -74*x^5 -632*x^4 -1560*x^3 -928*x^2 + 1056*x + 1024)*(x^4 + 8*x^3 -56*x + 48)^2;
T[235,37]=(x -12)*(x + 6)*(x^5 + 16*x^4 + 55*x^3 -130*x^2 -425*x + 604)*(x^7 -201*x^5 -74*x^4 + 11955*x^3 + 11768*x^2 -191308*x -397984)*(x )*(x^4 -10*x^3 + 15*x^2 + 34*x + 9)^2;
T[235,41]=(x + 2)*(x -4)*(x + 8)*(x^5 + 24*x^4 + 208*x^3 + 776*x^2 + 1136*x + 448)*(x^7 -12*x^6 -36*x^5 + 888*x^4 -2160*x^3 -9952*x^2 + 48704*x -54784)*(x^4 -6*x^3 -8*x^2 + 32*x -16)^2;
T[235,43]=(x -9)*(x^7 + 33*x^6 + 300*x^5 -848*x^4 -26560*x^3 -128256*x^2 -168960*x + 65536)*(x^4 -2*x^3 -80*x^2 -112*x + 432)^2*(x )^7;
T[235,47]=(x -1)^11*(x + 1)^12;
T[235,53]=(x + 4)*(x^5 + 14*x^4 -19*x^3 -628*x^2 + 51*x + 5668)*(x^7 -4*x^6 -131*x^5 -174*x^4 + 2539*x^3 + 5754*x^2 -7144*x -16448)*(x -8)^2*(x^4 + 6*x^3 -101*x^2 -314*x + 2429)^2;
T[235,59]=(x -6)*(x -3)*(x + 6)*(x^5 -10*x^4 -155*x^3 + 2306*x^2 -9271*x + 11618)*(x^7 -13*x^6 -197*x^5 + 2635*x^4 + 6331*x^3 -131953*x^2 + 302946*x -191656)*(x^4 -4*x^3 -115*x^2 + 704*x -519)^2;
T[235,61]=(x + 1)*(x^5 + 9*x^4 -143*x^3 -1585*x^2 -3393*x + 2107)*(x^7 -20*x^6 -18*x^5 + 1332*x^4 + 2286*x^3 -13322*x^2 -28689*x -6218)*(x -5)^2*(x^4 + 6*x^3 -73*x^2 + 10*x + 337)^2;
T[235,67]=(x -4)*(x^5 -4*x^4 -56*x^3 + 232*x^2 -80*x -256)*(x^7 + 32*x^6 + 304*x^5 + 168*x^4 -9616*x^3 -24320*x^2 + 67328*x + 200704)*(x + 8)^2*(x^4 -10*x^3 -120*x^2 + 752*x + 3184)^2;
T[235,71]=(x -3)*(x -12)*(x^5 -4*x^4 -299*x^3 + 1104*x^2 + 14425*x + 25664)*(x^7 -11*x^6 -227*x^5 + 2725*x^4 + 5637*x^3 -101535*x^2 + 64180*x + 550688)*(x )*(x^4 + 12*x^3 -19*x^2 -320*x + 657)^2;
T[235,73]=(x + 13)*(x^5 + 27*x^4 + 174*x^3 -440*x^2 -4208*x + 4592)*(x^7 + 8*x^6 -209*x^5 -1220*x^4 + 7812*x^3 + 7952*x^2 -44880*x + 31648)*(x -5)^2*(x^4 -22*x^3 + 60*x^2 + 1368*x -7664)^2;
T[235,79]=(x -14)*(x + 13)*(x + 10)*(x^5 + 18*x^4 + 25*x^3 -366*x^2 -1187*x -794)*(x^7 -17*x^6 -157*x^5 + 3199*x^4 + 4247*x^3 -148513*x^2 -7386*x + 1921952)*(x^4 -20*x^3 + 77*x^2 + 240*x -47)^2;
T[235,83]=(x + 14)*(x + 17)*(x -7)*(x^5 -17*x^4 -168*x^3 + 3136*x^2 -1472*x -15104)*(x^7 -19*x^6 -22*x^5 + 1048*x^4 + 832*x^3 -4480*x^2 -6144*x -2048)*(x^4 -20*x^3 + 80*x^2 + 192*x -256)^2;
T[235,89]=(x -14)*(x + 10)*(x + 1)*(x^7 -13*x^6 -187*x^5 + 1149*x^4 + 13315*x^3 + 16977*x^2 -38860*x + 14252)*(x^5 -4*x^4 -53*x^3 + 208*x^2 + 481*x -1862)*(x^4 + 6*x^3 -161*x^2 -206*x + 4841)^2;
T[235,97]=(x^5 + 30*x^4 + 297*x^3 + 1080*x^2 + 891*x -972)*(x^7 + 12*x^6 -431*x^5 -5394*x^4 + 31515*x^3 + 484458*x^2 + 947584*x + 473984)*(x )*(x -12)^2*(x^4 -30*x^3 + 179*x^2 + 1634*x -14307)^2;

T[236,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x -1)^2*(x + 1)^2*(x )^14;
T[236,3]=(x -1)*(x^3 -9*x + 1)*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^3*(x -2)^4*(x + 1)^5;
T[236,5]=(x -3)*(x + 1)*(x^3 + 4*x^2 + x -3)*(x -2)^2*(x + 3)^2*(x -1)^2*(x + 2)^2*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^3;
T[236,7]=(x^3 -8*x^2 + 15*x + 3)*(x -3)^2*(x + 1)^3*(x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71)^3*(x + 3)^5;
T[236,11]=(x -6)*(x^3 -2*x^2 -16*x + 8)*(x -1)^2*(x + 1)^2*(x -2)^2*(x + 2)^3*(x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64)^3;
T[236,13]=(x + 4)*(x^3 -4*x^2 -12*x + 24)*(x )*(x -3)^2*(x + 2)^2*(x + 3)^2*(x + 6)^2*(x^5 -8*x^4 + 88*x^2 -48*x -224)^3;
T[236,17]=(x + 6)*(x -2)*(x -7)^2*(x + 1)^2*(x -1)^3*(x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412)^3*(x + 2)^4;
T[236,19]=(x -5)*(x^3 -8*x^2 -5*x + 93)*(x -4)^2*(x -3)^2*(x + 8)^2*(x + 5)^3*(x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469)^3;
T[236,23]=(x + 4)*(x^3 + 4*x^2 -44*x -168)*(x -8)^2*(x^5 + 8*x^4 -88*x^2 -112*x -32)^3*(x )^3*(x -4)^4;
T[236,29]=(x -5)*(x -9)*(x^3 + 20*x^2 + 113*x + 127)*(x + 1)^2*(x -4)^2*(x + 4)^2*(x + 5)^2*(x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757)^3;
T[236,31]=(x^3 -8*x^2 -4*x + 8)*(x -2)^2*(x -10)^2*(x^5 -116*x^3 + 56*x^2 + 1280*x + 256)^3*(x + 4)^6;
T[236,37]=(x + 4)*(x^3 + 2*x^2 -68*x -72)*(x + 12)^2*(x + 1)^2*(x + 7)^2*(x -8)^3*(x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32)^3;
T[236,41]=(x + 1)*(x + 9)*(x^3 -111*x + 353)*(x + 11)^2*(x -5)^2*(x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217)^3*(x -7)^4;
T[236,43]=(x -8)*(x^3 -12*x^2 -60*x + 792)*(x )*(x -9)^2*(x + 9)^2*(x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128)^3*(x + 6)^4;
T[236,47]=(x -8)*(x + 12)*(x^3 -8*x^2 -80*x + 576)*(x + 6)^2*(x -10)^2*(x + 2)^2*(x -2)^2*(x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256)^3;
T[236,53]=(x + 9)*(x -3)*(x^3 + 8*x^2 + 9*x -27)*(x -12)^2*(x + 11)^2*(x -9)^2*(x )^2*(x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73)^3;
T[236,59]=(x + 1)^10*(x -1)^18;
T[236,61]=(x -2)*(x^3 + 10*x^2 + 16*x -24)*(x + 8)^2*(x + 12)^2*(x -10)^2*(x + 2)^3*(x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072)^3;
T[236,67]=(x + 14)*(x -2)*(x^3 -36*x + 8)*(x + 2)^2*(x -10)^2*(x^5 -188*x^3 -200*x^2 + 5472*x -8896)^3*(x -4)^4;
T[236,71]=(x^3 + 23*x^2 + 75*x -651)*(x -9)^2*(x -4)^2*(x + 15)^2*(x -12)^2*(x )^2*(x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424)^3;
T[236,73]=(x -14)*(x + 2)*(x^3 + 4*x^2 -44*x -168)*(x -10)^2*(x + 14)^2*(x -12)^2*(x -4)^2*(x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952)^3;
T[236,79]=(x + 13)*(x + 7)*(x^3 -28*x^2 + 211*x -231)*(x + 15)^2*(x -5)^2*(x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923)^3*(x -11)^4;
T[236,83]=(x -4)*(x^3 -14*x^2 -40*x + 56)*(x )*(x + 11)^2*(x -14)^2*(x + 13)^2*(x + 14)^2*(x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152)^3;
T[236,89]=(x + 18)*(x^3 -10*x^2 -72*x + 648)*(x -18)^2*(x -4)^2*(x )^2*(x + 6)^3*(x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984)^3;
T[236,97]=(x^3 + 2*x^2 -224*x -1416)*(x -14)^2*(x -8)^2*(x )^2*(x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656)^3*(x -2)^4;

T[237,2]=(x^2 -2*x -1)*(x^7 -2*x^6 -11*x^5 + 22*x^4 + 30*x^3 -65*x^2 -2*x + 23)*(x^4 + 3*x^3 -x^2 -5*x + 1)*(x + 1)^2*(x^5 -6*x^3 + 8*x -1)^2;
T[237,3]=(x^2 + x + 3)*(x^10 -x^9 + 3*x^8 -4*x^7 + 6*x^6 -22*x^5 + 18*x^4 -36*x^3 + 81*x^2 -81*x + 243)*(x + 1)^6*(x -1)^7;
T[237,5]=(x^7 + 2*x^6 -25*x^5 -32*x^4 + 191*x^3 + 102*x^2 -416*x + 32)*(x^4 + 4*x^3 -x^2 -14*x -9)*(x + 3)^2*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31)^2*(x )^2;
T[237,7]=(x^7 -4*x^6 -23*x^5 + 98*x^4 + 12*x^3 -264*x^2 + 48*x + 128)*(x^4 + 2*x^3 -20*x^2 -40*x -16)*(x + 1)^2*(x -1)^2*(x^5 + 5*x^4 -6*x^3 -52*x^2 -56*x -16)^2;
T[237,11]=(x^2 -6*x + 7)*(x^7 -2*x^6 -42*x^5 + 40*x^4 + 416*x^3 -52*x^2 -611*x + 116)*(x^4 + 8*x^3 + 11*x^2 -42*x -89)*(x + 2)^2*(x^5 -2*x^4 -35*x^3 + 34*x^2 + 185*x + 106)^2;
T[237,13]=(x^2 + 2*x -7)*(x^4 + 6*x^3 -21*x^2 -74*x + 141)*(x^7 -6*x^6 -16*x^5 + 194*x^4 -528*x^3 + 616*x^2 -315*x + 58)*(x -3)^2*(x^5 + 3*x^4 -23*x^3 -123*x^2 -197*x -103)^2;
T[237,17]=(x^2 -2*x -1)*(x^7 + 8*x^6 -61*x^5 -542*x^4 + 944*x^3 + 10808*x^2 -736*x -54176)*(x^4 + 8*x^3 -56*x + 48)*(x + 6)^2*(x^5 -10*x^4 + 16*x^3 + 88*x^2 -224*x + 32)^2;
T[237,19]=(x^7 -4*x^6 -71*x^5 + 144*x^4 + 1253*x^3 -776*x^2 -1324*x -80)*(x^4 + 4*x^3 -27*x^2 -120*x -47)*(x -4)^2*(x + 2)^2*(x^5 + 4*x^4 -47*x^3 -124*x^2 + 541*x + 488)^2;
T[237,23]=(x^2 -6*x -9)*(x^4 + 18*x^3 + 85*x^2 -32*x -613)*(x^7 -8*x^6 -24*x^5 + 332*x^4 -598*x^3 -1202*x^2 + 3825*x -1928)*(x -2)^2*(x^5 -2*x^4 -43*x^3 + 106*x^2 + 177*x -142)^2;
T[237,29]=(x^2 -6*x + 7)*(x^7 + 10*x^6 -89*x^5 -900*x^4 + 2688*x^3 + 25824*x^2 -27456*x -233440)*(x^4 + 2*x^3 -68*x^2 + 40*x + 48)*(x + 6)^2*(x^5 -6*x^4 -52*x^3 + 392*x^2 -496*x -32)^2;
T[237,31]=(x^2 + 4*x -4)*(x^7 -4*x^6 -79*x^5 + 396*x^4 + 1113*x^3 -8324*x^2 + 9996*x + 2560)*(x^4 -67*x^2 + 136*x + 373)*(x + 10)^2*(x^5 -2*x^4 -63*x^3 + 6*x^2 + 397*x + 314)^2;
T[237,37]=(x^2 -72)*(x^4 -4*x^3 -48*x^2 + 136*x + 368)*(x^7 -10*x^6 -96*x^5 + 888*x^4 + 2432*x^3 -22496*x^2 -11520*x + 133888)*(x + 2)^2*(x^5 -84*x^3 -64*x^2 + 1264*x + 2272)^2;
T[237,41]=(x^2 -8)*(x^7 + 20*x^6 + 16*x^5 -1456*x^4 -3648*x^3 + 36896*x^2 + 68608*x -344320)*(x^4 -2*x^3 -76*x^2 -8*x + 368)*(x + 10)^2*(x^5 -30*x^4 + 336*x^3 -1752*x^2 + 4256*x -3872)^2;
T[237,43]=(x^2 -14*x + 41)*(x^7 -22*x^6 + 61*x^5 + 1580*x^4 -10604*x^3 -13904*x^2 + 256080*x -519616)*(x^4 + 16*x^3 + 68*x^2 -304)*(x -4)^2*(x^5 + 14*x^4 + 44*x^3 -120*x^2 -688*x -704)^2;
T[237,47]=(x^2 -4*x -28)*(x^7 + 10*x^6 -104*x^5 -1152*x^4 -1376*x^3 + 2464*x^2 + 1344*x -1024)*(x^4 + 6*x^3 -68*x^2 -424*x -112)*(x -7)^2*(x^5 -5*x^4 -136*x^3 + 536*x^2 + 4176*x -13456)^2;
T[237,53]=(x^2 -8*x + 8)*(x^7 -236*x^5 -96*x^4 + 14832*x^3 -10720*x^2 -297600*x + 663808)*(x^4 + 6*x^3 -144*x^2 -832*x + 1168)*(x -8)^2*(x^5 -2*x^4 -136*x^3 -240*x^2 + 3792*x + 12352)^2;
T[237,59]=(x^2 -12*x + 4)*(x^7 + 2*x^6 -364*x^5 + 8*x^4 + 44816*x^3 -85952*x^2 -1854528*x + 6649600)*(x^4 + 2*x^3 -80*x^2 + 112*x + 432)*(x + 3)^2*(x^5 -5*x^4 -70*x^3 + 368*x^2 + 864*x -4624)^2;
T[237,61]=(x^2 + 12*x -36)*(x^4 -18*x^3 + 72*x^2 + 80*x + 16)*(x^7 -4*x^6 -192*x^5 + 528*x^4 + 10720*x^3 -15776*x^2 -134720*x -3712)*(x + 4)^2*(x^5 + 6*x^4 -196*x^3 -808*x^2 + 9840*x + 17984)^2;
T[237,67]=(x^2 -16*x + 56)*(x^4 + 40*x^3 + 525*x^2 + 2160*x -1323)*(x^7 -20*x^6 -91*x^5 + 2908*x^4 -491*x^3 -92212*x^2 + 119672*x -6368)*(x -8)^2*(x^5 + 16*x^4 -47*x^3 -1084*x^2 + 865*x + 3368)^2;
T[237,71]=(x^2 -8)*(x^7 + 20*x^6 + 40*x^5 -808*x^4 -880*x^3 + 10176*x^2 -13952*x + 5120)*(x^4 + 20*x^3 + 96*x^2 + 88*x -48)*(x -15)^2*(x^5 -3*x^4 -94*x^3 -68*x^2 + 1208*x + 848)^2;
T[237,73]=(x^2 + 6*x -63)*(x^4 -14*x^3 -73*x^2 + 402*x + 37)*(x^7 -2*x^6 -220*x^5 + 262*x^4 + 10860*x^3 -16368*x^2 -66843*x -8434)*(x -2)^2*(x^5 + 12*x^4 + 31*x^3 + 24*x^2 + x -2)^2;
T[237,79]=(x -1)^12*(x + 1)^13;
T[237,83]=(x^2 -14*x -1)*(x^7 -10*x^6 -169*x^5 + 484*x^4 + 7552*x^3 + 6656*x^2 -30720*x + 16384)*(x^4 + 8*x^3 -256*x^2 -1024*x + 12288)*(x + 6)^2*(x^5 + 30*x^4 + 280*x^3 + 640*x^2 -1536*x + 512)^2;
T[237,89]=(x^2 -128)*(x^7 + 20*x^6 + 21*x^5 -1614*x^4 -6825*x^3 + 30010*x^2 + 150848*x -55040)*(x^4 -2*x^3 -115*x^2 + 19)*(x + 7)^2*(x^5 -47*x^4 + 817*x^3 -6181*x^2 + 16507*x + 5951)^2;
T[237,97]=(x^2 + 2*x -287)*(x^4 -22*x^3 + 75*x^2 + 606*x -2471)*(x^7 -14*x^6 -136*x^5 + 1958*x^4 + 4716*x^3 -67280*x^2 -59999*x + 372254)*(x + 19)^2*(x^5 + x^4 -211*x^3 -497*x^2 + 6847*x -1793)^2;

T[238,2]=(x^8 + x^7 + 3*x^6 + 5*x^5 + 7*x^4 + 10*x^3 + 12*x^2 + 8*x + 16)*(x^10 -2*x^9 + 2*x^8 -2*x^7 + 6*x^6 -9*x^5 + 12*x^4 -8*x^3 + 16*x^2 -32*x + 32)*(x^2 + x + 2)^2*(x -1)^5*(x + 1)^6;
T[238,3]=(x^2 -2*x -4)*(x -2)^2*(x^4 -2*x^3 -7*x^2 + 12*x -1)^2*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)^2*(x + 2)^5*(x )^6;
T[238,5]=(x -2)*(x -4)*(x + 4)*(x^2 -2*x -4)*(x^4 -2*x^3 -7*x^2 + 4*x + 3)^2*(x^5 -23*x^3 + 18*x^2 + 131*x -178)^2*(x + 2)^5*(x )^5;
T[238,7]=(x^2 + 4*x + 7)*(x^2 -4*x + 7)^2*(x -1)^13*(x + 1)^14;
T[238,11]=(x + 6)*(x + 4)*(x^2 -6*x + 4)*(x -6)^2*(x + 2)^2*(x^4 -2*x^3 -20*x^2 + 8*x + 48)^2*(x^5 + 2*x^4 -44*x^3 -40*x^2 + 496*x -192)^2*(x )^7;
T[238,13]=(x^2 -4*x -16)*(x )*(x -2)^2*(x^4 -8*x^3 -16*x^2 + 216*x -368)^2*(x^5 -2*x^4 -40*x^3 + 56*x^2 + 352*x -544)^2*(x + 4)^3*(x + 2)^7;
T[238,17]=(x^2 -6*x + 17)*(x + 1)^14*(x -1)^17;
T[238,19]=(x -4)*(x + 2)*(x + 6)*(x^2 + 8*x -4)*(x -2)^2*(x^4 -10*x^3 -20*x^2 + 392*x -784)^2*(x^5 -6*x^4 -12*x^3 + 56*x^2 + 48*x -64)^2*(x )^2*(x + 4)^6;
T[238,23]=(x + 4)*(x + 8)*(x -8)^2*(x^4 + 6*x^3 -40*x^2 -224*x -240)^2*(x^5 + 10*x^4 -8*x^3 -144*x^2 + 272*x -128)^2*(x -4)^5*(x )^6;
T[238,29]=(x -8)*(x -4)*(x^2 -2*x -44)*(x^4 -2*x^3 -20*x^2 + 8*x + 48)^2*(x^5 + 8*x^4 -72*x^3 -464*x^2 + 1216*x + 2592)^2*(x + 6)^3*(x )^3*(x -6)^5;
T[238,31]=(x -8)*(x^2 + 12*x + 16)*(x^4 -12*x^3 -13*x^2 + 418*x -917)^2*(x^5 -33*x^3 -94*x^2 -77*x -16)^2*(x )^3*(x + 4)^4*(x -4)^5;
T[238,37]=(x -4)*(x + 6)*(x -8)*(x + 10)*(x^2 + 2*x -4)*(x -2)^2*(x^4 -6*x^3 -44*x^2 -8*x + 80)^2*(x^5 -8*x^4 -104*x^3 + 432*x^2 + 3584*x + 4384)^2*(x + 4)^3*(x + 2)^4;
T[238,41]=(x^2 + 16*x + 44)*(x + 2)^2*(x^4 -12*x^3 + 27*x^2 + 86*x -237)^2*(x^5 -18*x^4 + 79*x^3 -64*x^2 -137*x + 162)^2*(x -6)^5*(x + 6)^6;
T[238,43]=(x + 8)*(x + 12)*(x^2 + 4*x -16)*(x^4 + 12*x^3 -23*x^2 -212*x -115)^2*(x^5 -8*x^4 -31*x^3 + 216*x^2 + 157*x -1052)^2*(x )^2*(x -8)^4*(x -4)^5;
T[238,47]=(x + 8)*(x -4)*(x^2 -4*x -16)*(x + 12)^2*(x -8)^2*(x^4 -2*x^3 -128*x^2 -64*x + 1776)^2*(x^5 + 10*x^4 -48*x^3 -816*x^2 -2704*x -2304)^2*(x )^7;
T[238,53]=(x + 2)*(x -14)*(x -2)*(x^2 -20)*(x^4 + 26*x^3 + 227*x^2 + 758*x + 801)^2*(x^5 -4*x^4 -33*x^3 + 76*x^2 + 301*x + 138)^2*(x + 6)^4*(x -6)^6;
T[238,59]=(x -10)*(x + 4)*(x -4)^2*(x^4 + 4*x^3 -192*x^2 -1408*x -768)^2*(x^5 -8*x^4 -80*x^3 + 640*x^2 + 256*x -3072)^2*(x )^2*(x + 12)^4*(x + 6)^5;
T[238,61]=(x -2)*(x + 8)*(x -10)*(x^2 + 2*x -4)*(x -8)^2*(x + 4)^2*(x + 12)^2*(x^4 -12*x^3 -157*x^2 + 1330*x + 6451)^2*(x^5 -22*x^4 + 143*x^3 -40*x^2 -2377*x + 5542)^2*(x + 10)^4;
T[238,67]=(x + 8)*(x + 16)*(x -12)*(x^2 + 12*x + 16)*(x + 4)^2*(x^4 + 12*x^3 -71*x^2 -548*x + 1949)^2*(x^5 -16*x^4 + 49*x^3 + 304*x^2 -1747*x + 1868)^2*(x -8)^3*(x -4)^5;
T[238,71]=(x -12)*(x + 8)*(x^2 -4*x -16)*(x -4)^2*(x^4 + 14*x^3 -44*x^2 -1160*x -3312)^2*(x^5 + 2*x^4 -236*x^3 -872*x^2 + 7472*x + 13696)^2*(x + 4)^4*(x )^5;
T[238,73]=(x + 14)*(x + 10)*(x -10)*(x^2 -180)*(x^4 -20*x^3 + 123*x^2 -262*x + 131)^2*(x^5 -10*x^4 -177*x^3 + 2212*x^2 -4217*x -11118)^2*(x + 6)^4*(x -2)^6;
T[238,79]=(x + 12)*(x + 4)*(x + 8)*(x^2 + 12*x + 16)*(x )*(x^4 + 14*x^3 -56*x^2 -928*x -400)^2*(x^5 -18*x^4 + 40*x^3 + 544*x^2 -2672*x + 3072)^2*(x -8)^4*(x -12)^5;
T[238,83]=(x -10)*(x -4)*(x -12)^2*(x -2)^2*(x^4 + 28*x^3 + 264*x^2 + 968*x + 1200)^2*(x^5 + 12*x^4 -64*x^3 -952*x^2 -1872*x + 1984)^2*(x )^2*(x + 6)^3*(x + 4)^4;
T[238,89]=(x -2)^2*(x^4 + 10*x^3 -176*x^2 -592*x + 720)^2*(x^5 -20*x^4 -100*x^3 + 3552*x^2 -14192*x + 7456)^2*(x + 6)^6*(x -10)^7;
T[238,97]=(x^2 + 8*x -4)*(x -14)^2*(x + 10)^2*(x + 14)^2*(x^4 -26*x^3 + 177*x^2 + 4*x -1901)^2*(x^5 -12*x^4 -239*x^3 + 2766*x^2 + 2163*x + 218)^2*(x -6)^3*(x -2)^4;

T[239,2]=(x^3 + x^2 -2*x -1)*(x^17 -28*x^15 + x^14 + 319*x^13 -17*x^12 -1903*x^11 + 91*x^10 + 6377*x^9 -125*x^8 -11967*x^7 -233*x^6 + 11733*x^5 + 503*x^4 -5015*x^3 -94*x^2 + 609*x + 49);
T[239,3]=(x^3 + x^2 -2*x -1)*(x^17 -3*x^16 -35*x^15 + 110*x^14 + 468*x^13 -1573*x^12 -2977*x^11 + 11197*x^10 + 8880*x^9 -42041*x^8 -8213*x^7 + 80809*x^6 -11957*x^5 -70374*x^4 + 23710*x^3 + 20383*x^2 -9684*x + 592);
T[239,5]=(x^3 + 4*x^2 + 3*x -1)*(x^17 -6*x^16 -44*x^15 + 311*x^14 + 647*x^13 -6439*x^12 -1715*x^11 + 66664*x^10 -47987*x^9 -345487*x^8 + 500506*x^7 + 707930*x^6 -1708498*x^5 + 168922*x^4 + 1466245*x^3 -775724*x^2 -64969*x + 43871);
T[239,7]=(x^17 -5*x^16 -77*x^15 + 393*x^14 + 2276*x^13 -12292*x^12 -31088*x^11 + 193664*x^10 + 166432*x^9 -1590464*x^8 + 251392*x^7 + 6211328*x^6 -5164544*x^5 -8086528*x^4 + 10784768*x^3 -540672*x^2 -1900544*x -262144)*(x + 1)^3;
T[239,11]=(x^3 + x^2 -2*x -1)*(x^17 + x^16 -123*x^15 -202*x^14 + 6056*x^13 + 13619*x^12 -149697*x^11 -427543*x^10 + 1893660*x^9 + 6787983*x^8 -10803586*x^7 -53477248*x^6 + 15048164*x^5 + 195019206*x^4 + 50388863*x^3 -305552905*x^2 -115295798*x + 151629817);
T[239,13]=(x^3 + 7*x^2 + 14*x + 7)*(x^17 -15*x^16 -30*x^15 + 1407*x^14 -3250*x^13 -47272*x^12 + 199728*x^11 + 647712*x^10 -4205376*x^9 -2052928*x^8 + 38764288*x^7 -25163008*x^6 -147311616*x^5 + 180070400*x^4 + 144123904*x^3 -224333824*x^2 + 9224192*x + 11583488);
T[239,17]=(x^3 + 2*x^2 -x -1)*(x^17 -4*x^16 -152*x^15 + 591*x^14 + 8983*x^13 -33533*x^12 -263220*x^11 + 926590*x^10 + 4052487*x^9 -13043990*x^8 -32480912*x^7 + 90233331*x^6 + 129367089*x^5 -285355545*x^4 -226358836*x^3 + 405970976*x^2 + 133688896*x -207461296);
T[239,19]=(x^3 + 10*x^2 + 17*x -41)*(x^17 -24*x^16 + 79*x^15 + 2387*x^14 -20812*x^13 -45600*x^12 + 1079696*x^11 -1855152*x^10 -21557376*x^9 + 78598592*x^8 + 167344512*x^7 -1049447680*x^6 -134083584*x^5 + 5870931968*x^4 -3217784832*x^3 -12219383808*x^2 + 5990776832*x + 7399800832);
T[239,23]=(x^3 -3*x^2 -4*x + 13)*(x^17 + 9*x^16 -166*x^15 -1675*x^14 + 8334*x^13 + 108648*x^12 -76336*x^11 -2910240*x^10 -3644768*x^9 + 30197504*x^8 + 76211840*x^7 -65933568*x^6 -365522432*x^5 -230717440*x^4 + 385914880*x^3 + 617107456*x^2 + 299687936*x + 44744704);
T[239,29]=(x^3 -4*x^2 -67*x + 29)*(x^17 + 2*x^16 -318*x^15 -403*x^14 + 40629*x^13 + 19235*x^12 -2701703*x^11 + 764236*x^10 + 100075099*x^9 -91562821*x^8 -2046593758*x^7 + 2766604430*x^6 + 21789989174*x^5 -33927640430*x^4 -105602645079*x^3 + 155139854168*x^2 + 159446889949*x -117964056107);
T[239,31]=(x^3 + 8*x^2 + 12*x -8)*(x^17 -28*x^16 + 163*x^15 + 2520*x^14 -38474*x^13 + 118728*x^12 + 940291*x^11 -7817764*x^10 + 8634002*x^9 + 101848444*x^8 -387364142*x^7 + 738880*x^6 + 2499741368*x^5 -4262952656*x^4 -1523610965*x^3 + 10170134456*x^2 -8804785252*x + 2326460584);
T[239,37]=(x^3 + 3*x^2 -18*x -27)*(x^17 -11*x^16 -228*x^15 + 2009*x^14 + 23392*x^13 -135688*x^12 -1296560*x^11 + 4200736*x^10 + 39889664*x^9 -56346816*x^8 -657221888*x^7 + 166509824*x^6 + 5254270976*x^5 + 1578812416*x^4 -17874927616*x^3 -5820583936*x^2 + 22415851520*x + 491454464);
T[239,41]=(x^3 + 4*x^2 -81*x -421)*(x^17 -20*x^16 -161*x^15 + 5229*x^14 -494*x^13 -513604*x^12 + 1360800*x^11 + 23772464*x^10 -88828832*x^9 -534217984*x^8 + 2168443776*x^7 + 5627808256*x^6 -19639664128*x^5 -32843495424*x^4 + 62529579008*x^3 + 85114331136*x^2 -52417683456*x -65418838016);
T[239,43]=(x^3 -5*x^2 + 6*x -1)*(x^17 + 9*x^16 -320*x^15 -3125*x^14 + 39220*x^13 + 432332*x^12 -2227584*x^11 -30453536*x^10 + 49358464*x^9 + 1150844992*x^8 + 470870144*x^7 -21983748864*x^6 -38491359744*x^5 + 158549216256*x^4 + 463332448256*x^3 + 200707547136*x^2 -69611462656*x -36073422848);
T[239,47]=(x^3 -2*x^2 -71*x + 113)*(x^17 + 18*x^16 -215*x^15 -5309*x^14 + 4762*x^13 + 531508*x^12 + 1396648*x^11 -22658656*x^10 -106621920*x^9 + 379113216*x^8 + 2822249344*x^7 -523226624*x^6 -28413413888*x^5 -30316536832*x^4 + 100526370816*x^3 + 169164386304*x^2 -71265517568*x -170160357376);
T[239,53]=(x^3 -14*x^2 + 49*x -7)*(x^17 + 12*x^16 -411*x^15 -5055*x^14 + 62084*x^13 + 802128*x^12 -4269112*x^11 -60487120*x^10 + 133665504*x^9 + 2254024384*x^8 -1726466944*x^7 -40222431232*x^6 + 6610594816*x^5 + 307558466560*x^4 + 24783900672*x^3 -834801287168*x^2 + 316866560*x + 527283519488);
T[239,59]=(x^3 -7*x^2 + 7)*(x^17 -x^16 -500*x^15 + 843*x^14 + 98100*x^13 -190808*x^12 -9843704*x^11 + 17863552*x^10 + 556963584*x^9 -758621632*x^8 -18449862400*x^7 + 12804441600*x^6 + 352772897280*x^5 + 21410101248*x^4 -3558175051776*x^3 -2750319464448*x^2 + 14248361918464*x + 19084961644544);
T[239,61]=(x^3 + 10*x^2 -88*x -776)*(x^17 -24*x^16 -79*x^15 + 5442*x^14 -15038*x^13 -453008*x^12 + 2117498*x^11 + 17974572*x^10 -101816867*x^9 -347174032*x^8 + 2310209445*x^7 + 2481600130*x^6 -25199734720*x^5 + 7995198056*x^4 + 106557228880*x^3 -129393161888*x^2 -24800619392*x + 58961351552);
T[239,67]=(x^3 -8*x^2 -51*x + 29)*(x^17 -16*x^16 -472*x^15 + 8229*x^14 + 67257*x^13 -1444485*x^12 -2167240*x^11 + 100289634*x^10 -104716797*x^9 -2653566154*x^8 + 3962964864*x^7 + 29214612841*x^6 -34017276029*x^5 -101830715089*x^4 + 117268359136*x^3 + 41951832128*x^2 -38658688000*x -11993903104);
T[239,71]=(x^3 -49*x -91)*(x^17 -12*x^16 -502*x^15 + 4881*x^14 + 111699*x^13 -784533*x^12 -14012615*x^11 + 61570898*x^10 + 1044641799*x^9 -2292958505*x^8 -45361051067*x^7 + 26773856050*x^6 + 1068087411894*x^5 + 405386579543*x^4 -12037087655969*x^3 -9121864973643*x^2 + 49772205598296*x + 30800934780608);
T[239,73]=(x^3 + 16*x^2 + 27*x -127)*(x^17 -30*x^16 -73*x^15 + 8869*x^14 -41648*x^13 -710604*x^12 + 4294088*x^11 + 23853024*x^10 -139411072*x^9 -413644736*x^8 + 1815461376*x^7 + 3804327168*x^6 -9084362752*x^5 -14055530496*x^4 + 15965069312*x^3 + 14912864256*x^2 -5545435136*x -552452096);
T[239,79]=(x^3 + 2*x^2 -64*x + 104)*(x^17 + 10*x^16 -624*x^15 -7568*x^14 + 130416*x^13 + 1968736*x^12 -9545728*x^11 -220668416*x^10 -55051008*x^9 + 10432968704*x^8 + 27377273856*x^7 -173581430784*x^6 -667393114112*x^5 + 584358608896*x^4 + 3341205667840*x^3 + 783985672192*x^2 -3167862128640*x -1721480118272);
T[239,83]=(x^3 -84*x -56)*(x^17 + 16*x^16 -485*x^15 -9132*x^14 + 66874*x^13 + 1819116*x^12 -667869*x^11 -160847696*x^10 -492130250*x^9 + 6229269412*x^8 + 36464811486*x^7 -62151285660*x^6 -899123761152*x^5 -1573937038232*x^4 + 4827724743967*x^3 + 22466737725124*x^2 + 31956807913252*x + 16034570219864);
T[239,89]=(x^3 + 29*x^2 + 215*x + 83)*(x^17 -65*x^16 + 1405*x^15 -3987*x^14 -292854*x^13 + 4186196*x^12 -6758256*x^11 -254693792*x^10 + 1535500000*x^9 + 4407249984*x^8 -54115337088*x^7 + 5998902272*x^6 + 784484703232*x^5 -589404695552*x^4 -5178784634880*x^3 + 2096476672000*x^2 + 12748941312000*x + 6261514240000);
T[239,97]=(x^3 + 23*x^2 + 90*x + 97)*(x^17 -87*x^16 + 2766*x^15 -29283*x^14 -354762*x^13 + 11187916*x^12 -54847560*x^11 -891967104*x^10 + 9942474080*x^9 + 13850972480*x^8 -536421150592*x^7 + 1004676712960*x^6 + 11759087050240*x^5 -41718091262976*x^4 -70809334319104*x^3 + 445102724706304*x^2 -489372455059456*x + 111392870170624);

T[240,2]=(x + 1)*(x^2 + x + 2)*(x )^34;
T[240,3]=(x^2 -2*x + 3)*(x^2 + 3)^3*(x^2 + 2*x + 3)^3*(x -1)^11*(x + 1)^12;
T[240,5]=(x^2 + 2*x + 5)^3*(x -1)^15*(x + 1)^16;
T[240,7]=(x + 2)^2*(x -4)^5*(x -2)^6*(x + 4)^9*(x )^15;
T[240,11]=(x -4)^10*(x + 4)^11*(x )^16;
T[240,13]=(x + 6)^3*(x -6)^3*(x -2)^13*(x + 2)^18;
T[240,17]=(x + 2)^3*(x -6)^5*(x + 6)^11*(x -2)^18;
T[240,19]=(x -4)^17*(x + 4)^20;
T[240,23]=(x + 4)^2*(x + 6)^2*(x -8)^3*(x -4)^4*(x -6)^6*(x + 8)^6*(x )^14;
T[240,29]=(x + 6)^8*(x -6)^14*(x + 2)^15;
T[240,31]=(x -4)^2*(x + 4)^6*(x + 8)^9*(x )^9*(x -8)^11;
T[240,37]=(x + 6)^3*(x + 2)^3*(x + 10)^6*(x -6)^12*(x -2)^13;
T[240,41]=(x -6)^8*(x -10)^9*(x + 6)^20;
T[240,43]=(x + 12)*(x -8)^2*(x -10)^2*(x -12)^2*(x + 8)^4*(x + 10)^6*(x + 4)^9*(x -4)^11;
T[240,47]=(x + 4)^2*(x -6)^2*(x + 8)^3*(x -4)^4*(x + 6)^6*(x -8)^9*(x )^11;
T[240,53]=(x -10)^3*(x + 2)^6*(x + 10)^6*(x -6)^9*(x + 6)^13;
T[240,59]=(x + 12)^3*(x -4)^7*(x -12)^8*(x )^8*(x + 4)^11;
T[240,61]=(x -6)^3*(x -14)^3*(x + 10)^5*(x -2)^8*(x + 2)^18;
T[240,67]=(x + 12)*(x + 8)^2*(x + 2)^2*(x -8)^4*(x -12)^5*(x -4)^6*(x -2)^6*(x + 4)^11;
T[240,71]=(x -12)^2*(x + 12)^6*(x -8)^7*(x + 8)^8*(x )^14;
T[240,73]=(x + 14)^3*(x + 6)^9*(x -10)^12*(x -2)^13;
T[240,79]=(x + 16)*(x -16)^2*(x + 8)^9*(x )^12*(x -8)^13;
T[240,83]=(x -16)^2*(x -4)^2*(x + 6)^2*(x + 4)^4*(x + 16)^4*(x + 12)^5*(x -6)^6*(x -12)^12;
T[240,89]=(x -2)^3*(x -10)^3*(x -18)^5*(x + 6)^26;
T[240,97]=(x + 14)^6*(x -2)^31;

T[241,2]=(x^7 + 4*x^6 -14*x^4 -10*x^3 + 6*x^2 + 3*x -1)*(x^12 -3*x^11 -14*x^10 + 44*x^9 + 65*x^8 -219*x^7 -123*x^6 + 444*x^5 + 105*x^4 -328*x^3 -45*x^2 + 18*x -1);
T[241,3]=(x^7 + 3*x^6 -5*x^5 -19*x^4 -4*x^3 + 14*x^2 + 8*x + 1)*(x^12 -x^11 -25*x^10 + 25*x^9 + 224*x^8 -210*x^7 -888*x^6 + 725*x^5 + 1540*x^4 -960*x^3 -992*x^2 + 400*x + 64);
T[241,5]=(x^7 + 8*x^6 + 12*x^5 -50*x^4 -165*x^3 -93*x^2 + 137*x + 127)*(x^12 -6*x^11 -14*x^10 + 134*x^9 -68*x^8 -797*x^7 + 1301*x^6 + 497*x^5 -2193*x^4 + 1071*x^3 + 339*x^2 -347*x + 62);
T[241,7]=(x^7 + 7*x^6 -3*x^5 -98*x^4 -138*x^3 + 127*x^2 + 260*x + 61)*(x^12 -3*x^11 -33*x^10 + 96*x^9 + 245*x^8 -854*x^7 + 263*x^6 + 855*x^5 -588*x^4 -131*x^3 + 200*x^2 -53*x + 4);
T[241,11]=(x^7 + 18*x^6 + 117*x^5 + 283*x^4 -137*x^3 -1559*x^2 -1281*x + 1069)*(x^12 -22*x^11 + 177*x^10 -553*x^9 -215*x^8 + 5545*x^7 -12739*x^6 + 9811*x^5 + 3100*x^4 -9672*x^3 + 5900*x^2 -1460*x + 128);
T[241,13]=(x^7 + x^6 -48*x^5 -62*x^4 + 533*x^3 + 860*x^2 + 13*x -1)*(x^12 + 5*x^11 -62*x^10 -296*x^9 + 1425*x^8 + 6470*x^7 -15049*x^6 -64645*x^5 + 69802*x^4 + 288472*x^3 -90512*x^2 -441248*x -52672);
T[241,17]=(x^7 + 2*x^6 -65*x^5 -86*x^4 + 967*x^3 + 1382*x^2 -633*x -1039)*(x^12 + 4*x^11 -97*x^10 -370*x^9 + 2997*x^8 + 9972*x^7 -35221*x^6 -87027*x^5 + 159474*x^4 + 295792*x^3 -261264*x^2 -302576*x + 154144);
T[241,19]=(x^7 + 6*x^6 -56*x^5 -276*x^4 + 1067*x^3 + 3337*x^2 -6849*x -5983)*(x^12 + 6*x^11 -86*x^10 -524*x^9 + 2538*x^8 + 16891*x^7 -28947*x^6 -247081*x^5 + 58969*x^4 + 1614089*x^3 + 903711*x^2 -3617301*x -3556280);
T[241,23]=(x^7 + 22*x^6 + 168*x^5 + 463*x^4 -75*x^3 -1693*x^2 -532*x + 1369)*(x^12 -32*x^11 + 304*x^10 + 627*x^9 -28306*x^8 + 138011*x^7 + 372702*x^6 -5191210*x^5 + 11455889*x^4 + 31479187*x^3 -182523158*x^2 + 276824423*x -116949436);
T[241,29]=(x^7 + 16*x^6 + 25*x^5 -839*x^4 -6173*x^3 -17808*x^2 -23012*x -10769)*(x^12 -6*x^11 -213*x^10 + 1375*x^9 + 15216*x^8 -116722*x^7 -355685*x^6 + 4236578*x^5 -3169769*x^4 -50865568*x^3 + 164527164*x^2 -179077009*x + 58109390);
T[241,31]=(x^7 + 18*x^6 + 104*x^5 + 109*x^4 -1006*x^3 -3600*x^2 -3770*x -617)*(x^12 -8*x^11 -262*x^10 + 2167*x^9 + 22930*x^8 -208450*x^7 -688338*x^6 + 8192365*x^5 + 841016*x^4 -108211396*x^3 + 77270368*x^2 + 468437780*x -318193616);
T[241,37]=(x^7 -8*x^6 -119*x^5 + 1330*x^4 -828*x^3 -27243*x^2 + 88791*x -78167)*(x^12 + 8*x^11 -159*x^10 -928*x^9 + 10466*x^8 + 36249*x^7 -323567*x^6 -619307*x^5 + 4698614*x^4 + 5067040*x^3 -29177888*x^2 -18033984*x + 50796928);
T[241,41]=(x^7 + 15*x^6 -122*x^5 -1974*x^4 + 5058*x^3 + 58348*x^2 -157642*x + 101009)*(x^12 + x^11 -262*x^10 -708*x^9 + 21111*x^8 + 92737*x^7 -471938*x^6 -2920817*x^5 -976432*x^4 + 9341574*x^3 -930334*x^2 -4034251*x -63338);
T[241,43]=(x^7 -14*x^6 -141*x^5 + 2460*x^4 -49*x^3 -74048*x^2 + 67463*x + 296569)*(x^12 + 2*x^11 -237*x^10 -26*x^9 + 18808*x^8 -18272*x^7 -569920*x^6 + 657869*x^5 + 6500883*x^4 -4519982*x^3 -25360675*x^2 -1488169*x + 12503272);
T[241,47]=(x^7 + 10*x^6 -116*x^5 -997*x^4 + 3904*x^3 + 18600*x^2 -48600*x -7793)*(x^12 -34*x^11 + 332*x^10 + 851*x^9 -34508*x^8 + 179952*x^7 + 233524*x^6 -4772881*x^5 + 11628792*x^4 + 11362328*x^3 -69239488*x^2 + 37689968*x + 53297792);
T[241,53]=(x^7 -15*x^6 -123*x^5 + 2311*x^4 -35*x^3 -84407*x^2 + 281202*x -230663)*(x^12 -5*x^11 -195*x^10 + 1019*x^9 + 12170*x^8 -65448*x^7 -270515*x^6 + 1538756*x^5 + 1527793*x^4 -11787807*x^3 + 6874728*x^2 + 298853*x -3014);
T[241,59]=(x^7 + 18*x^6 -130*x^5 -3030*x^4 + 5036*x^3 + 152610*x^2 -114293*x -2076763)*(x^12 -26*x^11 + 22*x^10 + 5338*x^9 -57444*x^8 + 67258*x^7 + 2412075*x^6 -17302787*x^5 + 47289076*x^4 -36571744*x^3 -59605584*x^2 + 96501648*x -25476160);
T[241,61]=(x^7 -4*x^6 -254*x^5 + 1693*x^4 + 13144*x^3 -136478*x^2 + 291498*x + 23149)*(x^12 + 26*x^11 + 20*x^10 -3955*x^9 -22505*x^8 + 117122*x^7 + 801476*x^6 -1560634*x^5 -8091392*x^4 + 10617016*x^3 + 16419914*x^2 -29191311*x + 10893274);
T[241,67]=(x^7 -18*x^6 -157*x^5 + 3579*x^4 + 4503*x^3 -189536*x^2 + 4468*x + 2288147)*(x^12 -6*x^11 -429*x^10 + 2947*x^9 + 62307*x^8 -474596*x^7 -3555172*x^6 + 29459511*x^5 + 75258180*x^4 -669419464*x^3 -678403520*x^2 + 4714883120*x + 4538509504);
T[241,71]=(x^7 + 50*x^6 + 955*x^5 + 8586*x^4 + 34990*x^3 + 37139*x^2 -122885*x -255937)*(x^12 -94*x^11 + 3737*x^10 -79770*x^9 + 918997*x^8 -3647013*x^7 -46063490*x^6 + 801669175*x^5 -5606812300*x^4 + 21246049133*x^3 -42976926619*x^2 + 39886445545*x -12017198348);
T[241,73]=(x^7 -378*x^5 + 1068*x^4 + 37009*x^3 -192681*x^2 -5297*x + 11879)*(x^12 + 22*x^11 -208*x^10 -7860*x^9 -28097*x^8 + 533877*x^7 + 3607447*x^6 -7168229*x^5 -83908922*x^4 -76860088*x^3 + 64034288*x^2 + 25741920*x + 2219968);
T[241,79]=(x^7 + 15*x^6 -85*x^5 -1557*x^4 + 711*x^3 + 33855*x^2 + 79692*x + 52709)*(x^12 -9*x^11 -581*x^10 + 5783*x^9 + 109307*x^8 -1163461*x^7 -7904508*x^6 + 90986869*x^5 + 163831840*x^4 -2331826216*x^3 + 1017318496*x^2 + 3418562576*x -1277319040);
T[241,83]=(x^7 + 24*x^6 + 124*x^5 -14*x^4 -1238*x^3 -1594*x^2 + 2523*x + 4333)*(x^12 + 8*x^11 -548*x^10 -4386*x^9 + 100342*x^8 + 669374*x^7 -9197429*x^6 -42544271*x^5 + 452061900*x^4 + 1151271176*x^3 -10895951696*x^2 -10813065520*x + 98860915136);
T[241,89]=(x^7 + 13*x^6 -363*x^5 -4667*x^4 + 12156*x^3 + 119043*x^2 + 26169*x -89477)*(x^12 + 3*x^11 -479*x^10 -1663*x^9 + 79002*x^8 + 305681*x^7 -5233031*x^6 -21479633*x^5 + 124536598*x^4 + 490376448*x^3 -829552176*x^2 -3427797584*x -1500609440);
T[241,97]=(x^7 -x^6 -283*x^5 + 939*x^4 + 15061*x^3 -43003*x^2 -136236*x + 40121)*(x^12 + 29*x^11 + 85*x^10 -5577*x^9 -70766*x^8 -118070*x^7 + 3390903*x^6 + 27963948*x^5 + 85302025*x^4 + 64432913*x^3 -162786822*x^2 -194920563*x + 107861318);

T[242,2]=(x^2 + x + 2)*(x^2 -x + 2)*(x^2 + 2)*(x^2 -2*x + 2)*(x^2 + 2*x + 2)^2*(x + 1)^5*(x -1)^5;
T[242,3]=(x + 2)^2*(x^2 + 2*x -2)^2*(x^2 -3*x + 1)^2*(x -2)^4*(x + 1)^8;
T[242,5]=(x^2 -3)^2*(x^2 -2*x -4)^2*(x + 3)^4*(x -1)^10;
T[242,7]=(x^2 + 6*x + 6)*(x^2 -6*x + 6)*(x )^2*(x -2)^7*(x + 2)^9;
T[242,11]=(x -1)^2*(x )^20;
T[242,13]=(x + 5)*(x -5)*(x^2 + 2*x -4)*(x^2 -2*x -4)*(x + 3)^2*(x + 4)^2*(x -1)^2*(x + 1)^2*(x -3)^2*(x )^2*(x -4)^4;
T[242,17]=(x -3)*(x + 3)*(x^2 + x -1)*(x^2 -x -1)*(x + 5)^2*(x -2)^2*(x -5)^2*(x^2 -27)^2*(x )^2*(x + 2)^4;
T[242,19]=(x + 2)*(x -2)*(x^2 + 5*x -5)*(x^2 -6*x + 6)*(x^2 -5*x -5)*(x^2 + 6*x + 6)*(x + 6)^2*(x -6)^2*(x )^8;
T[242,23]=(x + 9)^2*(x -6)^2*(x^2 + 2*x -4)^2*(x^2 + 6*x + 6)^2*(x -2)^4*(x + 1)^6;
T[242,29]=(x + 9)^2*(x -9)^2*(x^2 -20)^2*(x + 3)^3*(x -3)^3*(x )^8;
T[242,31]=(x + 5)^2*(x^2 + 10*x -2)^2*(x + 2)^4*(x -2)^6*(x -7)^6;
T[242,37]=(x -7)^2*(x + 7)^2*(x^2 -6*x -36)^2*(x^2 + 4*x -23)^2*(x + 3)^4*(x -3)^6;
T[242,41]=(x + 3)*(x -3)*(x^2 + 12*x + 9)*(x^2 -9*x + 19)*(x^2 + 9*x + 19)*(x^2 -12*x + 9)*(x + 5)^2*(x -8)^2*(x -5)^2*(x )^2*(x + 8)^4;
T[242,43]=(x + 8)*(x -8)*(x^2 + 3*x -99)*(x^2 -3*x -99)*(x -6)^2*(x + 6)^4*(x )^10;
T[242,47]=(x + 12)^2*(x -6)^2*(x^2 + 4*x -16)^2*(x^2 + 6*x -18)^2*(x -2)^4*(x -8)^6;
T[242,53]=(x + 3)^2*(x -6)^2*(x^2 + 12*x + 16)^2*(x^2 -12*x + 9)^2*(x -9)^4*(x + 6)^6;
T[242,59]=(x + 15)^2*(x^2 -12*x + 24)^2*(x^2 + 15*x + 55)^2*(x )^2*(x -8)^4*(x -5)^6;
T[242,61]=(x -10)*(x + 10)*(x^2 -4*x -16)*(x^2 + 4*x -16)*(x^2 + 12*x + 24)*(x^2 -12*x + 24)*(x + 12)^2*(x + 6)^2*(x -6)^2*(x )^2*(x -12)^4;
T[242,67]=(x -13)^2*(x + 10)^2*(x^2 -11*x -1)^2*(x^2 + 10*x -2)^2*(x -2)^4*(x + 7)^6;
T[242,71]=(x^2 + 12*x + 24)^2*(x^2 + 6*x + 4)^2*(x -12)^6*(x + 3)^8;
T[242,73]=(x + 14)*(x -14)*(x^2 + 12*x -12)*(x^2 -23*x + 131)*(x^2 + 23*x + 131)*(x^2 -12*x -12)*(x + 2)^2*(x -2)^2*(x + 4)^2*(x )^2*(x -4)^4;
T[242,79]=(x -2)*(x + 2)*(x^2 + 6*x + 6)*(x^2 -6*x + 6)*(x^2 -180)^2*(x )^2*(x -10)^4*(x + 10)^6;
T[242,83]=(x -18)*(x + 18)*(x^2 -6*x -18)*(x^2 + 6*x -18)*(x^2 + 3*x -59)*(x^2 -3*x -59)*(x )^2*(x -6)^4*(x + 6)^6;
T[242,89]=(x^2 -6*x -3)^2*(x^2 + 5*x -25)^2*(x -15)^6*(x + 9)^8;
T[242,97]=(x -17)^2*(x -11)^2*(x^2 -21*x + 99)^2*(x + 13)^4*(x + 1)^4*(x + 7)^6;

T[243,2]=(x^2 -6)*(x^3 + 3*x^2 -3)*(x^3 -3*x^2 + 3)*(x^2 -3)^3*(x )^5;
T[243,3]=(x )^19;
T[243,5]=(x^2 -12)*(x^2 -6)*(x^3 + 6*x^2 + 9*x + 3)*(x^3 -6*x^2 + 9*x -3)*(x^2 -3)^2*(x )^5;
T[243,7]=(x -5)*(x + 4)*(x^3 + 3*x^2 -6*x -17)^2*(x + 1)^5*(x -2)^6;
T[243,11]=(x^2 -6)*(x^3 -3*x^2 -18*x + 3)*(x^3 + 3*x^2 -18*x -3)*(x^2 -12)^3*(x )^5;
T[243,13]=(x -2)*(x + 7)*(x^3 + 3*x^2 -6*x -17)^2*(x -5)^5*(x + 1)^6;
T[243,17]=(x^2 -54)*(x^2 -27)^2*(x -3)^3*(x + 3)^3*(x )^7;
T[243,19]=(x -8)*(x^3 + 3*x^2 -24*x + 1)^2*(x + 7)^3*(x -2)^4*(x + 1)^5;
T[243,23]=(x^2 -6)*(x^2 -48)*(x^3 + 6*x^2 -9*x -51)*(x^3 -6*x^2 -9*x + 51)*(x^2 -12)^2*(x )^5;
T[243,29]=(x^2 -12)*(x^2 -24)*(x^3 -12*x^2 + 27*x + 57)*(x^3 + 12*x^2 + 27*x -57)*(x^2 -3)^2*(x )^5;
T[243,31]=(x -11)*(x + 7)*(x -5)^2*(x + 1)^2*(x^3 + 12*x^2 + 39*x + 19)^2*(x + 4)^3*(x -8)^4;
T[243,37]=(x + 10)*(x -8)^2*(x^3 + 3*x^2 -24*x + 1)^2*(x + 1)^3*(x -11)^3*(x + 7)^4;
T[243,41]=(x^2 -12)*(x^2 -24)*(x^3 + 3*x^2 -54*x -219)*(x^3 -3*x^2 -54*x + 219)*(x^2 -48)^2*(x )^5;
T[243,43]=(x -5)*(x + 13)*(x -11)^2*(x + 1)^2*(x^3 + 12*x^2 + 39*x + 19)^2*(x -8)^3*(x -2)^4;
T[243,47]=(x^2 -12)*(x^2 -96)*(x^3 + 6*x^2 -63*x -267)*(x^3 -6*x^2 -63*x + 267)*(x^2 -48)^2*(x )^5;
T[243,53]=(x^2 -108)*(x^2 -54)*(x^3 -18*x^2 + 81*x -81)*(x^3 + 18*x^2 + 81*x + 81)*(x )^9;
T[243,59]=(x^2 -6)*(x^2 -12)*(x^3 -21*x^2 + 144*x -321)*(x^3 + 21*x^2 + 144*x + 321)*(x^2 -192)^2*(x )^5;
T[243,61]=(x -2)^2*(x -5)^2*(x^3 -6*x^2 -51*x -53)^2*(x + 7)^4*(x + 1)^5;
T[243,67]=(x -8)^2*(x + 7)^2*(x^3 -6*x^2 -51*x + 109)^2*(x + 10)^4*(x -5)^5;
T[243,71]=(x^2 -54)*(x^3 -9*x^2 -162*x + 999)*(x^3 + 9*x^2 -162*x -999)*(x^2 -108)^3*(x )^5;
T[243,73]=(x -2)^2*(x -11)^2*(x^3 -6*x^2 -69*x + 397)^2*(x + 7)^9;
T[243,79]=(x + 13)*(x + 4)*(x + 1)^2*(x + 7)^2*(x^3 -6*x^2 -51*x -53)^2*(x -17)^3*(x -2)^4;
T[243,83]=(x^2 -48)*(x^2 -150)*(x^3 + 6*x^2 -27*x -51)*(x^3 -6*x^2 -27*x + 51)*(x^2 -192)^2*(x )^5;
T[243,89]=(x^2 -108)*(x^3 -189*x -999)*(x^3 -189*x + 999)*(x^2 -27)^2*(x )^7;
T[243,97]=(x -5)*(x -14)*(x -17)^2*(x + 7)^2*(x^3 -15*x^2 -69*x + 19)^2*(x + 19)^3*(x -2)^4;

T[244,2]=(x^2 + x + 2)*(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x + 1)^3*(x -1)^3*(x )^15;
T[244,3]=(x^4 -12*x^2 + 4*x + 16)*(x )*(x^2 -x -3)^2*(x^3 + x^2 -5*x + 2)^2*(x^3 -2*x^2 -4*x + 4)^3*(x + 2)^5;
T[244,5]=(x^4 -5*x^3 + x^2 + 13*x + 2)*(x -1)^2*(x^3 -x^2 -12*x + 16)^2*(x^3 + x^2 -9*x -13)^3*(x + 3)^4*(x )^4;
T[244,7]=(x + 3)*(x^4 + x^3 -9*x^2 -9*x -2)*(x + 5)^2*(x^2 -5*x + 3)^2*(x^3 -4*x^2 -10*x + 41)^2*(x -1)^3*(x^3 + 3*x^2 -x -1)^3;
T[244,11]=(x + 1)*(x^4 + x^3 -23*x^2 + 41*x -18)*(x + 3)^2*(x^2 -2*x -12)^2*(x^3 + 7*x^2 + 10*x -4)^2*(x + 5)^3*(x^3 -13*x^2 + 53*x -67)^3;
T[244,13]=(x^4 -5*x^3 -3*x^2 + 17*x + 6)*(x + 3)^2*(x^2 -6*x -4)^2*(x^3 + x^2 -6*x -4)^2*(x^3 + 9*x^2 + 11*x -37)^3*(x -1)^4;
T[244,17]=(x + 2)*(x^4 -6*x^3 -40*x^2 + 308*x -456)*(x^2 + 2*x -12)^2*(x^3 + 6*x^2 -4*x -16)^2*(x )^2*(x -4)^3*(x^3 + 2*x^2 -8*x + 4)^3;
T[244,19]=(x -2)*(x^4 + 6*x^3 -16*x^2 -124*x -144)*(x^2 -x -29)^2*(x^3 + 3*x^2 -x -4)^2*(x )^2*(x + 4)^3*(x^3 -48*x -20)^3;
T[244,23]=(x -3)*(x^4 -7*x^3 -7*x^2 + 129*x -214)*(x -5)^2*(x^2 + 3*x -27)^2*(x^3 -2*x^2 -38*x + 113)^2*(x + 9)^3*(x^3 -5*x^2 + 5*x + 1)^3;
T[244,29]=(x + 8)*(x^4 -16*x^3 + 56*x^2 + 68*x -216)*(x -6)^2*(x^2 + 11*x + 27)^2*(x^3 -x^2 -31*x + 2)^2*(x + 6)^3*(x^3 -4*x^2 -4*x + 20)^3;
T[244,31]=(x^4 -64*x^2 -196*x -24)*(x^2 + x -3)^2*(x^3 + 3*x^2 -43*x + 8)^2*(x^3 + 2*x^2 -76*x + 116)^3*(x )^6;
T[244,37]=(x + 2)*(x^4 + 2*x^3 -92*x^2 -68*x + 1944)*(x + 12)^2*(x^2 + 3*x -1)^2*(x^3 -7*x^2 -65*x + 424)^2*(x -8)^3*(x^3 + 6*x^2 -36*x -108)^3;
T[244,41]=(x^4 -13*x^3 + 17*x^2 + 161*x -294)*(x^2 + 9*x -9)^2*(x^3 -4*x^2 -70*x -139)^2*(x -5)^3*(x + 3)^3*(x^3 -3*x^2 -61*x + 191)^3;
T[244,43]=(x^4 + 8*x^3 -124*x^2 -460*x + 4232)*(x^3 -12*x^2 -16*x + 256)^2*(x^3 + 14*x^2 + 56*x + 68)^3*(x -8)^5*(x + 8)^5;
T[244,47]=(x + 4)*(x^4 + 8*x^3 -16*x^2 -112*x + 192)*(x -12)^2*(x^2 -8*x -36)^2*(x^3 + 8*x^2 -28*x -208)^2*(x -4)^3*(x^3 + 4*x^2 -88*x + 16)^3;
T[244,53]=(x + 10)*(x^4 -40*x^2 -16*x + 304)*(x + 2)^2*(x^2 + x -81)^2*(x^3 -11*x^2 -195*x + 2198)^2*(x -6)^3*(x^3 + 2*x^2 -12*x -8)^3;
T[244,59]=(x^4 + 5*x^3 -49*x^2 -133*x + 738)*(x + 9)^2*(x^3 + 23*x^2 + 164*x + 368)^2*(x^3 -29*x^2 + 231*x -325)^3*(x -9)^4*(x )^4;
T[244,61]=(x -1)^14*(x + 1)^15;
T[244,67]=(x -13)*(x^4 + 17*x^3 + 47*x^2 -85*x -262)*(x -7)^2*(x^2 -52)^2*(x^3 -21*x^2 + 44*x + 772)^2*(x + 7)^3*(x^3 -9*x^2 -85*x + 559)^3;
T[244,71]=(x + 12)*(x^4 -20*x^3 + 1620*x -5832)*(x + 16)^2*(x^2 -9*x -9)^2*(x^3 -27*x^2 + 207*x -432)^2*(x + 8)^3*(x^3 -14*x^2 -12*x + 92)^3;
T[244,73]=(x -5)*(x^4 + 23*x^3 + 137*x^2 + 5*x -954)*(x + 3)^2*(x^2 -x -29)^2*(x^3 -22*x^2 + 80*x + 449)^2*(x + 11)^3*(x^3 + x^2 -45*x -25)^3;
T[244,79]=(x + 17)*(x^4 -7*x^3 -159*x^2 -423*x -54)*(x -1)^2*(x^2 + 12*x -16)^2*(x^3 -3*x^2 -108*x + 432)^2*(x -3)^3*(x^3 -13*x^2 -51*x + 625)^3;
T[244,83]=(x -12)*(x^4 -16*x^3 -64*x^2 + 896*x + 3072)*(x + 12)^2*(x^2 -9*x -9)^2*(x^3 + 11*x^2 -85*x -28)^2*(x -4)^3*(x^3 + 8*x^2 -64*x -256)^3;
T[244,89]=(x + 8)*(x^4 -2*x^3 -208*x^2 -272*x + 2592)*(x -12)^2*(x^2 + 14*x + 36)^2*(x^3 + 10*x^2 -76*x + 112)^2*(x + 4)^3*(x^3 + 4*x^2 -56*x + 80)^3;
T[244,97]=(x + 18)*(x^4 -12*x^3 -80*x^2 + 688*x + 2096)*(x -2)^2*(x^2 -17*x -9)^2*(x^3 + 5*x^2 -7*x + 2)^2*(x + 14)^3*(x^3 -10*x^2 -116*x + 1096)^3;

T[245,2]=(x + 2)^2*(x -1)^2*(x^2 -2*x -1)^2*(x^2 -2)^2*(x^2 + x -4)^3*(x )^3;
T[245,3]=(x + 3)*(x -3)*(x + 1)*(x^2 -x -4)*(x -1)^2*(x^2 + 2*x -1)^2*(x^2 -2*x -1)^2*(x^2 + x -4)^2*(x )^2;
T[245,5]=(x^2 + 5)*(x + 1)^9*(x -1)^10;
T[245,7]=(x -1)*(x + 1)^2*(x )^18;
T[245,11]=(x -1)^2*(x -4)^2*(x^2 -4*x -4)^2*(x^2 + 6*x + 1)^2*(x + 3)^3*(x^2 -x -4)^3;
T[245,13]=(x + 3)*(x + 5)*(x -3)*(x^2 -4*x -4)*(x^2 + 4*x -4)*(x^2 + 5*x + 2)*(x^2 + 6*x + 7)*(x^2 -6*x + 7)*(x -5)^2*(x^2 -5*x + 2)^2*(x )^2;
T[245,17]=(x^2 -4*x -4)*(x^2 + 4*x -4)*(x^2 -2*x -17)*(x^2 -5*x + 2)*(x^2 + 2*x -17)*(x + 3)^2*(x^2 + 5*x + 2)^2*(x )^2*(x -3)^3;
T[245,19]=(x + 2)*(x^2 -6*x -8)*(x -2)^2*(x^2 -8)^2*(x^2 + 6*x -8)^2*(x )^2*(x + 6)^3*(x -6)^3;
T[245,23]=(x -8)^2*(x + 4)^2*(x^2 + 2*x -1)^2*(x^2 -12*x + 34)^2*(x + 6)^3*(x^2 + 2*x -16)^3;
T[245,29]=(x -2)^2*(x^2 + 6*x -23)^2*(x -3)^3*(x^2 -x -38)^3*(x + 1)^6;
T[245,31]=(x -4)*(x^2 + 12*x + 18)*(x^2 -12*x + 18)*(x + 4)^2*(x + 6)^3*(x -6)^3*(x )^8;
T[245,37]=(x + 6)^2*(x^2 + 4*x -14)^2*(x -2)^3*(x -6)^6*(x )^6;
T[245,41]=(x + 6)*(x -12)*(x -6)*(x^2 + 10*x + 17)*(x^2 + 2*x -16)*(x^2 -10*x + 17)*(x^2 -4*x -14)*(x^2 + 4*x -14)*(x + 12)^2*(x^2 -2*x -16)^2*(x )^2;
T[245,43]=(x + 6)^2*(x + 12)^2*(x^2 -10*x + 23)^2*(x + 10)^3*(x^2 -10*x + 8)^3*(x -2)^4;
T[245,47]=(x^2 + 6*x -9)*(x^2 -6*x -9)*(x^2 -5*x -32)*(x -2)^2*(x + 2)^2*(x + 9)^2*(x^2 + 5*x -32)^2*(x )^2*(x -9)^3;
T[245,53]=(x^2 -18)^2*(x^2 + 8*x + 8)^2*(x -12)^3*(x^2 + 2*x -16)^3*(x + 10)^4;
T[245,59]=(x + 6)*(x -6)*(x^2 + 8*x -56)*(x^2 -4*x -14)*(x^2 + 4*x -14)*(x^2 -8*x -56)*(x -4)^2*(x + 4)^4*(x )^5;
T[245,61]=(x + 8)*(x^2 + 6*x -144)*(x^2 + 6*x -63)*(x^2 -6*x -63)*(x -8)^2*(x^2 -6*x -144)^2*(x^2 -8)^2*(x )^4;
T[245,67]=(x + 14)^2*(x -4)^2*(x^2 + 8*x -2)^2*(x^2 -22*x + 119)^2*(x + 4)^3*(x^2 -4*x -64)^3;
T[245,71]=(x -16)^2*(x + 8)^2*(x^2 + 12*x + 28)^2*(x^2 + 8*x -56)^2*(x )^3*(x -8)^6;
T[245,73]=(x -6)*(x + 2)*(x + 6)*(x^2 -4*x -4)*(x^2 -8*x -52)*(x^2 + 4*x -4)*(x -2)^2*(x^2 + 8*x -52)^2*(x^2 -72)^2*(x )^2;
T[245,79]=(x -8)^2*(x^2 + 14*x -23)^2*(x^2 -24*x + 136)^2*(x^2 + 9*x + 16)^3*(x + 1)^5;
T[245,83]=(x^2 -2*x -161)*(x^2 + 2*x -161)*(x + 12)^2*(x + 4)^2*(x -12)^3*(x -4)^4*(x )^6;
T[245,89]=(x^2 -6*x -23)*(x^2 + 6*x -8)*(x^2 + 6*x -23)*(x + 8)^2*(x -12)^2*(x -8)^2*(x^2 -6*x -8)^2*(x )^2*(x + 12)^3;
T[245,97]=(x -1)*(x + 15)*(x -15)*(x^2 -9*x -86)*(x^2 + 12*x + 4)*(x^2 + 18*x + 63)*(x^2 -18*x + 63)*(x^2 -12*x + 4)*(x + 1)^2*(x^2 + 9*x -86)^2*(x )^2;

T[246,2]=(x^2 + 2)*(x^6 -x^5 + 2*x^4 -2*x^3 + 4*x^2 -4*x + 8)*(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)^2*(x + 1)^6*(x -1)^7;
T[246,3]=(x^2 + 2*x + 3)*(x^4 + 4*x^2 + 9)*(x^6 + 5*x^4 + 2*x^3 + 15*x^2 + 27)^2*(x -1)^10*(x + 1)^11;
T[246,5]=(x -3)^2*(x -1)^2*(x + 4)^2*(x^2 -4*x + 2)^2*(x^2 -8)^2*(x^3 -4*x^2 -2*x + 4)^2*(x^3 + 2*x^2 -4*x -4)^4*(x + 2)^7;
T[246,7]=(x -4)*(x^3 -2*x^2 -14*x + 32)^2*(x + 4)^4*(x -2)^4*(x + 2)^4*(x^2 + 4*x + 2)^4*(x^3 -6*x^2 + 8*x -2)^4;
T[246,11]=(x + 6)*(x -4)*(x -5)^2*(x + 3)^2*(x + 4)^2*(x + 2)^2*(x^2 -18)^2*(x^2 -2*x -1)^2*(x^3 + 4*x^2 + x -4)^2*(x -2)^3*(x^3 -2*x^2 -20*x + 50)^4;
T[246,13]=(x -1)*(x + 7)*(x -2)*(x + 6)^2*(x + 1)^2*(x^2 -4*x -14)^2*(x^3 -8*x^2 + 14*x + 4)^2*(x -4)^3*(x + 4)^3*(x^3 + 2*x^2 -12*x -8)^4*(x )^4;
T[246,17]=(x -2)*(x + 7)*(x -7)*(x -5)*(x + 5)^2*(x^2 -2*x -1)^2*(x^2 -4*x -28)^2*(x^3 -2*x^2 -23*x + 62)^2*(x -3)^3*(x + 2)^16;
T[246,19]=(x + 8)*(x + 1)*(x -7)*(x + 4)*(x -5)^2*(x + 2)^2*(x -6)^2*(x^3 -2*x^2 -6*x + 8)^2*(x )^3*(x^2 + 8*x + 14)^4*(x^3 -4*x^2 -16*x -10)^4;
T[246,23]=(x + 2)*(x -6)*(x )*(x + 8)^2*(x^2 -2)^2*(x^2 -8*x + 8)^2*(x^3 + 10*x^2 + 26*x + 16)^2*(x + 6)^4*(x -4)^4*(x^3 -4*x^2 -32*x -32)^4;
T[246,29]=(x + 6)*(x -8)*(x + 8)^2*(x -5)^2*(x -1)^2*(x^2 -8*x -16)^2*(x^2 -2*x -49)^2*(x^3 + 6*x^2 -27*x -86)^2*(x^3 + 6*x^2 -4*x -40)^4*(x )^5;
T[246,31]=(x -3)*(x + 1)*(x -4)^2*(x^2 + 8*x + 8)^2*(x^3 + 2*x^2 -91*x -256)^2*(x + 8)^3*(x + 5)^3*(x -7)^3*(x + 3)^4*(x^3 -16*x^2 + 64*x -32)^4;
T[246,37]=(x + 6)*(x + 10)*(x + 2)^2*(x^2 -72)^2*(x^2 + 2*x -71)^2*(x^3 -20*x^2 + 117*x -166)^2*(x + 7)^4*(x^3 + 6*x^2 -36*x -108)^4*(x -2)^5;
T[246,41]=(x + 1)^16*(x -1)^23;
T[246,43]=(x + 8)*(x -8)*(x + 4)*(x -7)^2*(x + 1)^2*(x^2 -8*x -16)^2*(x^3 -10*x^2 -119*x + 1156)^2*(x -4)^3*(x + 12)^3*(x + 5)^4*(x^3 + 4*x^2 -8*x -16)^4;
T[246,47]=(x -12)*(x -7)^2*(x -3)^2*(x + 2)^2*(x^2 -18*x + 79)^2*(x^2 + 4*x -46)^2*(x^3 -4*x^2 -35*x -8)^2*(x + 12)^3*(x -4)^3*(x^3 -120*x -502)^4;
T[246,53]=(x -4)*(x -6)*(x + 2)*(x^2 -8*x + 8)^2*(x^3 -14*x^2 + 32)^2*(x + 14)^3*(x + 4)^3*(x -12)^4*(x + 6)^4*(x^3 -6*x^2 -4*x + 8)^4;
T[246,59]=(x -3)*(x + 9)*(x -12)*(x -9)*(x -5)*(x + 4)^2*(x + 12)^2*(x -8)^2*(x^2 -72)^2*(x^2 + 8*x + 8)^2*(x^3 + 8*x^2 -40*x + 32)^2*(x )^2*(x^3 + 8*x^2 -16*x -160)^4;
T[246,61]=(x -2)*(x + 6)*(x + 10)^2*(x -10)^2*(x + 14)^2*(x^2 -2*x -31)^2*(x^3 + 8*x^2 + 5*x -46)^2*(x + 3)^4*(x^3 -2*x^2 -52*x + 184)^4*(x -6)^5;
T[246,67]=(x + 13)*(x -1)*(x -3)*(x + 8)*(x -16)*(x -12)*(x + 7)*(x^2 + 8*x -2)^2*(x^2 -4*x -68)^2*(x^3 -12*x^2 -124*x + 976)^2*(x^3 + 2*x^2 -20*x -50)^4*(x + 2)^6;
T[246,71]=(x + 10)*(x + 12)*(x -6)*(x -8)^2*(x -15)^2*(x^2 -6*x -41)^2*(x^2 + 4*x + 2)^2*(x^3 + 32*x^2 + 337*x + 1168)^2*(x^3 -20*x^2 + 84*x + 134)^4*(x + 3)^6;
T[246,73]=(x -9)*(x + 7)*(x + 6)*(x -10)^2*(x + 11)^2*(x + 2)^2*(x -13)^2*(x -1)^2*(x^2 + 16*x + 32)^2*(x^2 -2*x -127)^2*(x^3 -4*x^2 -99*x + 454)^2*(x^3 + 2*x^2 -180*x + 244)^4;
T[246,79]=(x + 8)*(x + 4)*(x )*(x + 14)^2*(x + 2)^2*(x -12)^2*(x -4)^2*(x -10)^2*(x^2 + 12*x + 18)^2*(x^2 + 4*x -28)^2*(x^3 + 20*x^2 + 68*x + 32)^2*(x^3 -32*x^2 + 328*x -1090)^4;
T[246,83]=(x -3)*(x -4)*(x -9)*(x -7)*(x + 11)*(x + 12)*(x + 2)^2*(x + 16)^2*(x^2 -24*x + 112)^2*(x^2 + 12*x -14)^2*(x^3 + 14*x^2 + 10*x -296)^2*(x -12)^3*(x^3 -64*x -128)^4;
T[246,89]=(x -2)*(x -10)*(x -5)*(x -3)*(x + 6)*(x + 15)*(x -15)*(x + 10)^2*(x + 14)^2*(x -18)^2*(x^3 -14*x^2 -4*x + 184)^2*(x^2 + 12*x + 4)^4*(x^3 + 6*x^2 -148*x -920)^4;
T[246,97]=(x -2)*(x + 18)*(x + 10)*(x -10)^2*(x + 14)^2*(x + 12)^2*(x + 2)^2*(x -6)^2*(x^2 + 4*x -28)^2*(x^2 -24*x + 126)^2*(x^3 + 12*x^2 + 14*x -148)^2*(x^3 -6*x^2 -52*x + 248)^4;

T[247,2]=(x^2 -x -1)*(x^3 + 3*x^2 -3)*(x^5 -4*x^4 + 12*x^2 -5*x -5)*(x^5 -9*x^3 -x^2 + 19*x + 4)*(x^4 + 3*x^3 -2*x^2 -9*x -4)*(x )^2;
T[247,3]=(x^2 + 2*x -4)*(x^3 + 3*x^2 -1)*(x^5 -3*x^4 -4*x^3 + 11*x^2 + 6*x -4)*(x^5 -3*x^4 -8*x^3 + 25*x^2 -16)*(x^4 + x^3 -6*x^2 -3*x + 8)*(x + 2)^2;
T[247,5]=(x^2 -2*x -4)*(x^3 + 3*x^2 -3)*(x^5 -3*x^4 -8*x^3 + 17*x^2 + 18*x + 4)*(x^5 -2*x^4 -15*x^3 + 25*x^2 + 9*x -2)*(x^4 + 8*x^3 + 19*x^2 + 13*x -1)*(x -3)^2;
T[247,7]=(x^3 + 3*x^2 -6*x + 1)*(x^5 + x^4 -12*x^3 + x^2 + 12*x + 4)*(x^5 -4*x^4 -15*x^3 + 47*x^2 + 59*x -32)*(x^4 + 2*x^3 -11*x^2 -23*x -1)*(x + 1)^2*(x + 2)^2;
T[247,11]=(x^2 + 6*x + 4)*(x^3 -9*x -9)*(x^5 + 2*x^4 -39*x^3 -51*x^2 + 338*x + 428)*(x^5 -7*x^4 + 9*x^3 + 8*x^2 -11*x -4)*(x^4 + 5*x^3 -9*x^2 -66*x -55)*(x -3)^2;
T[247,13]=(x^2 + 4*x + 13)*(x + 1)^9*(x -1)^10;
T[247,17]=(x^2 -6*x -11)*(x^3 + 12*x^2 + 27*x -57)*(x^5 -14*x^4 + 36*x^3 + 181*x^2 -583*x -469)*(x^5 -23*x^4 + 201*x^3 -818*x^2 + 1489*x -866)*(x^4 + 15*x^3 + 71*x^2 + 96*x -47)*(x + 3)^2;
T[247,19]=(x -1)^10*(x + 1)^11;
T[247,23]=(x^2 -8*x + 11)*(x^3 + 6*x^2 -9*x + 3)*(x^4 + 2*x^3 -89*x^2 -81*x + 1912)*(x^5 + 2*x^4 -37*x^3 + 3*x^2 + 264*x -256)*(x^5 + 6*x^4 -50*x^3 -303*x^2 + 505*x + 3205)*(x )^2;
T[247,29]=(x^2 -20)*(x^3 + 15*x^2 + 54*x + 3)*(x^5 + 9*x^4 -46*x^3 -457*x^2 -264*x -28)*(x^5 -5*x^4 -48*x^3 -27*x^2 + 110*x -8)*(x^4 -x^3 -42*x^2 -39*x + 128)*(x -6)^2;
T[247,31]=(x^2 -4*x -1)*(x^3 + 3*x^2 -60*x + 109)*(x^5 + 3*x^4 -23*x^3 -38*x^2 + 158*x -1)*(x^5 + 9*x^4 -38*x^3 -433*x^2 -70*x + 3184)*(x^4 -7*x^3 -64*x^2 + 487*x -778)*(x + 4)^2;
T[247,37]=(x^2 -6*x -11)*(x^3 -6*x^2 -51*x + 127)*(x^5 -6*x^4 -56*x^3 + 177*x^2 + 241*x -673)*(x^5 + 18*x^4 + 77*x^3 -85*x^2 -602*x -488)*(x^4 -2*x^3 -105*x^2 -103*x + 400)*(x -2)^2;
T[247,41]=(x^3 + 3*x^2 -18*x -57)*(x^5 -21*x^4 + 115*x^3 + 88*x^2 -1258*x -889)*(x^5 -23*x^4 + 100*x^3 + 577*x^2 -1876*x -5612)*(x^4 + 25*x^3 + 228*x^2 + 897*x + 1286)*(x + 6)^2*(x + 3)^2;
T[247,43]=(x^2 -8*x + 11)*(x^3 -15*x^2 + 48*x -17)*(x^5 + 13*x^4 -97*x^3 -1202*x^2 + 2364*x + 20237)*(x^5 + 2*x^4 -23*x^3 -9*x^2 + 19*x -4)*(x^4 + 10*x^3 -7*x^2 -49*x + 47)*(x + 1)^2;
T[247,47]=(x^2 + 4*x -76)*(x^3 -3*x^2 -9*x + 3)*(x^5 -15*x^4 + 51*x^3 + 63*x^2 -304*x -244)*(x^5 -6*x^4 -64*x^3 + 278*x^2 + 823*x -56)*(x^4 + 22*x^3 + 156*x^2 + 386*x + 283)*(x + 3)^2;
T[247,53]=(x^2 -8*x -4)*(x^3 + 15*x^2 + 36*x -159)*(x^5 -5*x^4 -38*x^3 + 157*x^2 + 248*x -212)*(x^5 + 11*x^4 -114*x^3 -981*x^2 + 3450*x + 4696)*(x^4 + x^3 -146*x^2 -157*x + 3452)*(x -12)^2;
T[247,59]=(x^2 -45)*(x^3 -6*x^2 -99*x -219)*(x^5 -14*x^4 -158*x^3 + 2419*x^2 + 1661*x -58961)*(x^5 -77*x^3 -13*x^2 + 788*x + 448)*(x^4 -12*x^3 -51*x^2 + 643*x + 500)*(x + 6)^2;
T[247,61]=(x^3 + 12*x^2 -60*x -584)*(x^5 + 10*x^4 -59*x^3 -576*x^2 + 220*x + 2968)*(x^5 + 15*x^4 -10*x^3 -1148*x^2 -6064*x -8848)*(x^4 -31*x^3 + 336*x^2 -1500*x + 2264)*(x + 1)^2*(x -7)^2;
T[247,67]=(x^2 + 4*x -1)*(x^3 + 3*x^2 -105*x + 109)*(x^5 -5*x^4 -262*x^3 + 294*x^2 + 15653*x + 16799)*(x^5 + 15*x^4 -35*x^3 -1011*x^2 -98*x + 17576)*(x^4 -9*x^3 -215*x^2 + 2185*x -722)*(x + 4)^2;
T[247,71]=(x^2 -4*x -16)*(x^3 -15*x^2 + 63*x -57)*(x^5 -11*x^4 -77*x^3 + 611*x^2 -1172*x + 688)*(x^5 + 7*x^4 -205*x^3 -331*x^2 + 7752*x -6016)*(x^4 -9*x^3 -213*x^2 + 1337*x + 9788)*(x -6)^2;
T[247,73]=(x^2 -18*x + 76)*(x^3 + 21*x^2 + 120*x + 127)*(x^4 + 18*x^3 + 75*x^2 -187*x -1177)*(x^5 + 22*x^4 -x^3 -2803*x^2 -17487*x -15574)*(x^5 -35*x^4 + 444*x^3 -2529*x^2 + 6286*x -5188)*(x + 7)^2;
T[247,79]=(x^2 + 10*x -20)*(x^3 -6*x^2 -15*x + 19)*(x^5 -6*x^4 -45*x^3 + 173*x^2 + 130*x -524)*(x^5 + 24*x^4 + 25*x^3 -3589*x^2 -33406*x -90176)*(x^4 + 2*x^3 -173*x^2 -1201*x -2162)*(x -8)^2;
T[247,83]=(x^3 + 18*x^2 + 81*x + 81)*(x^5 -2*x^4 -37*x^3 + 53*x^2 + 216*x -28)*(x^5 + 8*x^4 -283*x^3 -1659*x^2 + 20592*x + 66608)*(x^4 + 12*x^3 -89*x^2 + 97*x + 4)*(x -12)^2*(x -14)^2;
T[247,89]=(x^3 + 15*x^2 -54*x -969)*(x^5 -11*x^4 -296*x^3 + 3831*x^2 -380*x -78212)*(x^5 + 17*x^4 -36*x^3 -747*x^2 + 2536*x -2132)*(x^4 + 25*x^3 + 228*x^2 + 897*x + 1286)*(x -12)^2*(x -10)^2;
T[247,97]=(x^3 -6*x^2 -132*x -296)*(x^5 -24*x^4 + 49*x^3 + 1394*x^2 -1300*x -5768)*(x^5 -20*x^4 -88*x^3 + 2944*x^2 -3888*x -66496)*(x^4 + 14*x^3 -76*x^2 -56*x + 160)*(x + 17)^2*(x -8)^2;

T[248,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2*(x )^22;
T[248,3]=(x^3 -2*x^2 -6*x + 8)*(x -2)^2*(x^2 -2*x -2)^3*(x + 2)^4*(x^2 + 2*x -4)^4*(x )^6;
T[248,5]=(x -2)*(x^2 -3*x -6)*(x^3 + 3*x^2 -4*x -4)*(x + 3)^3*(x + 2)^3*(x^2 -12)^3*(x -1)^11;
T[248,7]=(x^2 -x -8)*(x^3 -5*x^2 -8*x + 44)*(x -3)^2*(x + 1)^2*(x + 3)^2*(x^2 + 4*x -1)^4*(x )^4*(x -2)^6;
T[248,11]=(x^3 -8*x^2 + 6*x + 44)*(x + 6)^2*(x -6)^2*(x + 2)^3*(x^2 + 6*x + 6)^3*(x )^3*(x -2)^10;
T[248,13]=(x -4)*(x + 2)*(x^2 -2*x -32)*(x^3 -2*x^2 -14*x + 32)*(x + 4)^3*(x^2 + 2*x -26)^3*(x^2 + 2*x -4)^4*(x -2)^5;
T[248,17]=(x^3 + 4*x^2 -12*x -16)*(x + 2)^2*(x -6)^3*(x^2 -12)^3*(x )^3*(x + 6)^4*(x^2 -6*x + 4)^4;
T[248,19]=(x^2 + 7*x + 4)*(x^3 -5*x^2 -24*x -16)*(x + 1)^2*(x -1)^2*(x + 5)^2*(x -4)^4*(x^2 -5)^4*(x + 4)^6;
T[248,23]=(x -4)*(x^2 + 2*x -32)*(x + 4)^2*(x + 6)^3*(x -8)^3*(x^2 + 2*x -44)^4*(x )^10;
T[248,29]=(x + 6)*(x + 4)*(x -4)*(x^3 + 20*x^2 + 126*x + 244)*(x -8)^2*(x )^2*(x^2 + 6*x -18)^3*(x^2 -10*x + 20)^4*(x -2)^5;
T[248,31]=(x + 1)^9*(x -1)^20;
T[248,37]=(x -4)*(x^2 + 2*x -32)*(x^3 -4*x^2 -2*x + 4)*(x -10)^3*(x + 10)^3*(x^2 -10*x -2)^3*(x + 2)^11;
T[248,41]=(x + 10)*(x^2 + 3*x -6)*(x^3 + 5*x^2 -76*x -88)*(x + 6)^3*(x^2 -12*x + 24)^3*(x + 9)^4*(x -7)^10;
T[248,43]=(x + 2)*(x -4)*(x + 10)*(x^2 -2*x -32)*(x^3 -12*x^2 + 14*x -4)*(x -2)^2*(x^2 + 2*x -26)^3*(x^2 + 2*x -4)^4*(x -8)^5;
T[248,47]=(x -12)*(x -8)*(x^3 -28*x -16)*(x -4)^2*(x + 8)^4*(x^2 + 4*x -16)^4*(x )^4*(x -6)^6;
T[248,53]=(x + 4)*(x -8)*(x -4)*(x^3 + 2*x^2 -134*x + 184)*(x -12)^2*(x + 6)^3*(x^2 -6*x + 6)^3*(x^2 + 12*x + 16)^4*(x )^4;
T[248,59]=(x^2 + x -8)*(x^3 + 5*x^2 -84*x -344)*(x )*(x + 3)^2*(x -3)^2*(x -9)^2*(x + 12)^3*(x^2 + 12*x + 24)^3*(x^2 -5)^4;
T[248,61]=(x^2 -10*x -8)*(x^3 + 14*x^2 -46*x -688)*(x )*(x + 10)^2*(x -12)^3*(x^2 + 2*x -26)^3*(x + 6)^4*(x^2 + 6*x -116)^4;
T[248,67]=(x -12)*(x^3 -12*x^2 -64*x + 256)*(x + 4)^4*(x + 12)^7*(x -8)^14;
T[248,71]=(x -3)*(x + 13)*(x^2 + 17*x + 64)*(x^3 -7*x^2 -16*x + 128)*(x )*(x -5)^2*(x + 15)^2*(x -8)^3*(x^2 -192)^3*(x^2 -4*x -121)^4;
T[248,73]=(x^2 -132)*(x^3 -6*x^2 -100*x + 344)*(x + 14)^2*(x -14)^2*(x -2)^2*(x -10)^3*(x^2 -8*x -4)^4*(x + 10)^7;
T[248,79]=(x + 12)*(x -12)*(x -6)*(x^2 -4*x -128)*(x^3 -6*x^2 -160*x -16)*(x -10)^2*(x -8)^2*(x + 8)^3*(x^2 -4*x -104)^3*(x^2 + 10*x -20)^4;
T[248,83]=(x + 14)*(x^2 -132)*(x^3 + 8*x^2 -34*x -268)*(x -2)^3*(x -8)^3*(x -6)^3*(x^2 -6*x -66)^3*(x^2 + 12*x -44)^4;
T[248,89]=(x + 14)*(x + 16)*(x + 10)*(x^2 -6*x -24)*(x^3 -6*x^2 -100*x + 344)*(x -12)^2*(x + 6)^3*(x^2 -10*x -20)^4*(x -6)^8;
T[248,97]=(x -14)*(x -1)*(x^2 + 17*x -2)*(x^3 -21*x^2 + 84*x + 152)*(x -2)^3*(x^2 -4*x -104)^3*(x^2 + 14*x -31)^4*(x + 7)^5;

T[249,2]=(x -1)*(x^2 + 2*x -1)*(x^4 -2*x^3 -4*x^2 + 8*x -1)*(x^5 + 3*x^4 -4*x^3 -14*x^2 -3*x + 1)*(x^6 -x^5 -9*x^4 + 7*x^3 + 20*x^2 -12*x -8)^2*(x + 1)^3;
T[249,3]=(x^2 + x + 3)*(x^12 -x^11 + 8*x^10 -10*x^9 + 45*x^8 -49*x^7 + 155*x^6 -147*x^5 + 405*x^4 -270*x^3 + 648*x^2 -243*x + 729)*(x -1)^6*(x + 1)^7;
T[249,5]=(x -1)*(x + 1)*(x^2 + 6*x + 7)*(x^4 -6*x^3 + 8*x^2 -1)*(x^5 + 2*x^4 -12*x^3 -10*x^2 + 43*x -22)*(x + 2)^2*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160)^2;
T[249,7]=(x + 4)*(x^4 -8*x^2 -4*x + 4)*(x^5 -8*x^4 + 12*x^3 + 36*x^2 -92*x + 32)*(x )*(x + 2)^2*(x + 3)^2*(x^6 -3*x^5 -22*x^4 + 55*x^3 + 154*x^2 -228*x -409)^2;
T[249,11]=(x^2 + 6*x + 1)*(x^4 -4*x^3 -14*x^2 + 32*x + 37)*(x^5 -4*x^4 -14*x^3 + 4*x^2 + 13*x -4)*(x -3)^2*(x + 3)^2*(x^6 + 3*x^5 -26*x^4 -83*x^3 + 66*x^2 + 156*x -113)^2;
T[249,13]=(x -2)*(x^4 + 6*x^3 + 4*x^2 -24*x -28)*(x^5 -4*x^4 -24*x^3 + 144*x^2 -220*x + 104)*(x^6 -14*x^5 + 44*x^4 + 108*x^3 -488*x^2 -288*x + 992)^2*(x )^2*(x + 6)^3;
T[249,17]=(x -4)*(x + 4)*(x^2 -32)*(x^4 -24*x^2 -16*x + 80)*(x^5 -2*x^4 -56*x^3 + 880*x + 1504)*(x -5)^2*(x^6 + 5*x^5 -20*x^4 -77*x^3 + 162*x^2 + 188*x -275)^2;
T[249,19]=(x + 1)*(x + 7)*(x^2 + 2*x -1)*(x^5 -12*x^4 -8*x^3 + 462*x^2 -1217*x + 752)*(x^4 + 2*x^3 -28*x^2 + 4*x + 47)*(x -2)^2*(x^6 + 4*x^5 -68*x^4 -300*x^3 + 976*x^2 + 5648*x + 6176)^2;
T[249,23]=(x -5)*(x + 3)*(x^2 + 2*x -31)*(x^4 -8*x^3 -54*x^2 + 624*x -1363)*(x^5 -8*x^4 -6*x^3 + 72*x^2 + 13*x -88)*(x + 4)^2*(x^6 + 5*x^5 -61*x^4 -377*x^3 + 608*x^2 + 7024*x + 10912)^2;
T[249,29]=(x -4)*(x -8)*(x^4 -44*x^2 + 132*x -76)*(x^5 + 2*x^4 -56*x^3 -76*x^2 + 476*x + 392)*(x + 6)^2*(x + 7)^2*(x^6 + x^5 -88*x^4 -181*x^3 + 578*x^2 -192*x -55)^2;
T[249,31]=(x + 6)*(x + 10)*(x^4 -8*x^3 -20*x^2 + 276*x -500)*(x^5 -24*x^4 + 200*x^3 -692*x^2 + 940*x -352)*(x -5)^2*(x + 8)^2*(x^6 -3*x^5 -66*x^4 -93*x^3 + 390*x^2 + 608*x -313)^2;
T[249,37]=(x -7)*(x + 9)*(x^4 + 16*x^3 + 26*x^2 -568*x -2179)*(x^5 + 2*x^4 -46*x^3 + 20*x^2 + 373*x -526)*(x + 1)^2*(x + 11)^2*(x^6 -39*x^5 + 576*x^4 -3785*x^3 + 7934*x^2 + 22268*x -91499)^2;
T[249,41]=(x^2 + 8*x + 8)*(x^4 + 8*x^3 -84*x^2 -284*x + 196)*(x^5 -6*x^4 -48*x^3 + 356*x^2 -548*x + 88)*(x^6 + x^5 -47*x^4 -x^3 + 482*x^2 -516*x -248)^2*(x + 2)^4;
T[249,43]=(x^4 + 10*x^3 -52*x^2 -232*x + 436)*(x^5 -10*x^4 -68*x^3 + 576*x^2 + 1348*x -6016)*(x -4)^2*(x + 8)^2*(x -6)^2*(x^6 + 8*x^5 -44*x^4 -456*x^3 -192*x^2 + 4224*x + 6400)^2;
T[249,47]=(x + 12)*(x -8)*(x^2 + 8*x + 8)*(x^4 -16*x^3 + 64*x^2 -48*x -80)*(x^5 -12*x^4 + 24*x^3 + 96*x^2 -304*x + 128)*(x^6 + 12*x^5 -96*x^4 -1812*x^3 -6648*x^2 + 992*x + 25952)^2*(x )^2;
T[249,53]=(x -7)*(x -9)*(x^2 + 2*x -49)*(x^4 -12*x^3 -16*x^2 + 138*x + 179)*(x^5 + 28*x^4 + 240*x^3 + 504*x^2 -837*x + 146)*(x -6)^2*(x^6 -14*x^5 -64*x^4 + 1064*x^3 + 448*x^2 -10048*x -64)^2;
T[249,59]=(x + 1)*(x + 9)*(x^2 -18*x + 49)*(x^4 -20*x^3 + 54*x^2 + 588*x -1135)*(x^5 -8*x^4 -90*x^3 + 444*x^2 + 2433*x -2764)*(x -5)^2*(x^6 + 17*x^5 + 10*x^4 -493*x^3 -1018*x^2 + 1768*x + 3527)^2;
T[249,61]=(x -11)*(x + 13)*(x^2 -10*x + 17)*(x^5 -6*x^4 -134*x^3 + 544*x^2 + 2685*x -3142)*(x^4 + 12*x^3 + 10*x^2 -24*x + 5)*(x -5)^2*(x^6 + 5*x^5 -208*x^4 -565*x^3 + 10086*x^2 + 1436*x -47347)^2;
T[249,67]=(x + 5)*(x -5)*(x^4 + 20*x^3 + 40*x^2 -686*x -2053)*(x^5 -10*x^4 -156*x^3 + 1076*x^2 + 4715*x -15584)*(x^2 + 2*x -17)*(x + 2)^2*(x^6 -16*x^5 -128*x^4 + 3240*x^3 -10464*x^2 -57376*x + 264256)^2;
T[249,71]=(x + 4)*(x^2 + 12*x -36)*(x^5 -26*x^4 + 116*x^3 + 1040*x^2 -3348*x -14624)*(x^4 -14*x^3 -44*x^2 + 688*x -404)*(x )*(x -2)^2*(x^6 + 26*x^5 + 168*x^4 -216*x^3 -2688*x^2 + 1344*x + 7232)^2;
T[249,73]=(x + 12)*(x -12)*(x^2 -4*x -28)*(x^5 -16*x^4 -24*x^3 + 120*x^2 -60*x -8)*(x^4 + 22*x^3 + 92*x^2 -472*x -2060)*(x^6 + 6*x^5 -268*x^4 -1484*x^3 + 17920*x^2 + 94416*x -39136)^2*(x )^2;
T[249,79]=(x + 12)*(x + 4)*(x^2 -4*x -124)*(x^4 -6*x^3 -76*x^2 + 648*x -1228)*(x^5 -6*x^4 -164*x^3 -624*x^2 -620*x -16)*(x -14)^2*(x^6 + 12*x^5 -12*x^4 -268*x^3 + 112*x^2 + 304*x -160)^2;
T[249,83]=(x + 1)^8*(x -1)^19;
T[249,89]=(x -9)*(x + 9)*(x^2 + 6*x -153)*(x^5 -4*x^4 -360*x^3 + 504*x^2 + 33523*x + 40702)*(x^4 + 4*x^3 -120*x^2 + 14*x + 235)*(x^6 + 22*x^5 -28*x^4 -2424*x^3 -3232*x^2 + 56960*x + 144896)^2*(x )^2;
T[249,97]=(x + 6)*(x + 2)*(x^2 -72)*(x^5 -8*x^4 -256*x^3 + 1000*x^2 + 17532*x + 23144)*(x^4 -6*x^3 -476*x^2 + 1352*x + 56812)*(x + 8)^2*(x^6 -6*x^5 -300*x^4 + 1176*x^3 + 19296*x^2 + 9984*x -101120)^2;

T[250,2]=(x^4 -x^3 + 3*x^2 -2*x + 4)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^8 + 3*x^4 + 16)*(x -1)^6*(x + 1)^6;
T[250,3]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x + 1)^2*(x -1)^2*(x^4 -7*x^2 + 11)^2*(x^2 -3*x + 1)^3*(x^2 + 3*x + 1)^3;
T[250,5]=(x )^28;
T[250,7]=(x^2 + x -11)*(x^2 + x -1)*(x^2 -x -11)*(x^2 -x -1)*(x -2)^2*(x + 2)^2*(x^4 -13*x^2 + 11)^2*(x + 3)^4*(x -3)^4;
T[250,11]=(x^2 + 6*x + 4)^2*(x^2 -9*x + 19)^2*(x -2)^8*(x + 3)^12;
T[250,13]=(x^2 + 2*x -4)*(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^2 -2*x -4)*(x -4)^2*(x + 4)^2*(x^2 + 3*x -9)^2*(x^2 -3*x -9)^2*(x^4 -32*x^2 + 176)^2;
T[250,17]=(x^2 -6*x + 4)*(x^2 + 6*x + 4)*(x^2 + 4*x -16)*(x^2 -4*x -16)*(x + 3)^2*(x -3)^2*(x^2 -4*x -1)^2*(x^2 + 4*x -1)^2*(x^4 -28*x^2 + 176)^2;
T[250,19]=(x^2 + 10*x + 20)^2*(x -5)^4*(x^2 -10*x + 20)^4*(x^2 + 5*x + 5)^6;
T[250,23]=(x^2 + 13*x + 41)*(x^2 -13*x + 41)*(x^2 + 7*x + 1)*(x^2 -7*x + 1)*(x + 6)^2*(x -6)^2*(x^2 -2*x -4)^2*(x^2 + 2*x -4)^2*(x^4 -17*x^2 + 11)^2;
T[250,29]=(x^2 + 5*x + 5)^2*(x^2 -10*x + 20)^2*(x^2 -45)^4*(x^2 + 5*x -5)^4*(x )^4;
T[250,31]=(x^2 + 6*x + 4)^2*(x^2 + 6*x -36)^2*(x^2 + x -31)^4*(x -2)^12;
T[250,37]=(x^2 -4*x -76)*(x^2 + 11*x + 29)*(x^2 + 4*x -76)*(x^2 -11*x + 29)*(x + 2)^2*(x -2)^2*(x^2 + 6*x -36)^2*(x^2 -6*x -36)^2*(x^4 -68*x^2 + 176)^2;
T[250,41]=(x^2 -9*x + 19)^2*(x^2 + x -61)^2*(x^2 + x -31)^4*(x + 3)^12;
T[250,43]=(x^2 -12*x + 16)*(x^2 + 12*x + 16)*(x^2 + 7*x + 1)*(x^2 -7*x + 1)*(x + 4)^2*(x -4)^2*(x^4 -107*x^2 + 1331)^2*(x + 9)^4*(x -9)^4;
T[250,47]=(x^2 -11*x + 29)*(x^2 + 11*x + 29)*(x + 12)^2*(x -12)^2*(x^4 -43*x^2 + 11)^2*(x^2 -x -61)^3*(x^2 + x -61)^3;
T[250,53]=(x^2 + 3*x -99)*(x^2 -3*x -99)*(x^2 + 8*x -64)*(x^2 -8*x -64)*(x + 6)^2*(x -6)^2*(x^2 + 7*x + 11)^2*(x^2 -7*x + 11)^2*(x^4 -112*x^2 + 2816)^2;
T[250,59]=(x^2 + 10*x + 20)^2*(x^2 + 5*x -95)^2*(x^2 -15*x + 45)^4*(x^2 -20)^4*(x )^4;
T[250,61]=(x^2 + 16*x + 44)^2*(x^2 -9*x + 9)^2*(x -2)^4*(x^2 + x -31)^8;
T[250,67]=(x^2 + 4*x -16)*(x^2 -4*x -16)*(x^2 -14*x + 44)*(x^2 + 14*x + 44)*(x + 13)^2*(x -13)^2*(x^2 + 21*x + 99)^2*(x^2 -21*x + 99)^2*(x^4 -28*x^2 + 176)^2;
T[250,71]=(x^2 -14*x + 4)^2*(x^2 + 6*x + 4)^2*(x -12)^4*(x^2 + 6*x -116)^4*(x + 3)^8;
T[250,73]=(x^2 + 18*x + 36)*(x^2 -18*x + 36)*(x^2 + 2*x -4)*(x^2 -2*x -4)*(x -11)^2*(x + 11)^2*(x^2 -3*x -9)^2*(x^2 + 3*x -9)^2*(x^4 -352*x^2 + 21296)^2;
T[250,79]=(x^2 -20)^2*(x^2 -180)^2*(x + 10)^4*(x^2 -10*x + 5)^4*(x^2 -10*x + 20)^4;
T[250,83]=(x^2 -3*x -29)*(x^2 + 3*x -29)*(x -9)^2*(x -4)^2*(x + 4)^2*(x + 9)^2*(x^2 -8*x -4)^2*(x^2 + 8*x -4)^2*(x^4 -77*x^2 + 1331)^2;
T[250,89]=(x -15)^4*(x^2 -180)^4*(x^2 + 15*x + 55)^4*(x^2 -5*x -25)^4;
T[250,97]=(x^2 -6*x -116)*(x^2 + 14*x -76)*(x^2 + 6*x -116)*(x^2 -14*x -76)*(x + 2)^2*(x -2)^2*(x^2 + 9*x + 9)^2*(x^2 -9*x + 9)^2*(x^4 -128*x^2 + 176)^2;

T[251,2]=(x^17 -2*x^16 -28*x^15 + 54*x^14 + 317*x^13 -582*x^12 -1867*x^11 + 3178*x^10 + 6186*x^9 -9216*x^8 -11921*x^7 + 13680*x^6 + 13752*x^5 -9400*x^4 -8800*x^3 + 1920*x^2 + 2240*x + 256)*(x^2 + x -1)^2;
T[251,3]=(x^4 + 2*x^3 -2*x^2 -3*x + 1)*(x^17 -38*x^15 + 5*x^14 + 582*x^13 -142*x^12 -4602*x^11 + 1445*x^10 + 20039*x^9 -6280*x^8 -48174*x^7 + 10424*x^6 + 63091*x^5 -3260*x^4 -41362*x^3 -5377*x^2 + 10587*x + 3164);
T[251,5]=(x^4 + 3*x^3 -2*x^2 -2*x + 1)*(x^17 -3*x^16 -54*x^15 + 168*x^14 + 1118*x^13 -3641*x^12 -11152*x^11 + 38721*x^10 + 56108*x^9 -215683*x^8 -141507*x^7 + 649211*x^6 + 155977*x^5 -1041793*x^4 -22991*x^3 + 813550*x^2 -51713*x -228857);
T[251,7]=(x^4 + 3*x^3 -5*x^2 -19*x -11)*(x^17 -3*x^16 -71*x^15 + 203*x^14 + 2030*x^13 -5579*x^12 -29805*x^11 + 80756*x^10 + 235362*x^9 -668242*x^8 -922654*x^7 + 3176896*x^6 + 1056610*x^5 -7921027*x^4 + 3243764*x^3 + 7315324*x^2 -7772692*x + 2209789);
T[251,11]=(x^4 + 3*x^3 -4*x -1)*(x^17 + x^16 -122*x^15 -152*x^14 + 5977*x^13 + 9162*x^12 -151560*x^11 -278496*x^10 + 2100848*x^9 + 4542848*x^8 -15007296*x^7 -38411776*x^6 + 41462784*x^5 + 139814400*x^4 + 18051072*x^3 -84443136*x^2 -11018240*x + 10657792);
T[251,13]=(x^4 + 12*x^3 + 48*x^2 + 77*x + 41)*(x^17 -22*x^16 + 106*x^15 + 985*x^14 -11180*x^13 + 18658*x^12 + 166344*x^11 -636123*x^10 -596895*x^9 + 5242340*x^8 -1749194*x^7 -16832410*x^6 + 11584495*x^5 + 21090650*x^4 -16505080*x^3 -6409715*x^2 + 5938307*x -504874);
T[251,17]=(x^4 -x^3 -24*x^2 + 34*x + 31)*(x^17 + x^16 -156*x^15 -4*x^14 + 9720*x^13 -6153*x^12 -310378*x^11 + 301503*x^10 + 5613916*x^9 -6084607*x^8 -59432117*x^7 + 60993229*x^6 + 360650645*x^5 -296727023*x^4 -1142328459*x^3 + 551610256*x^2 + 1430823689*x -54097717);
T[251,19]=(x^4 + 9*x^3 -3*x^2 -89*x + 101)*(x^17 -13*x^16 -101*x^15 + 1731*x^14 + 3191*x^13 -92284*x^12 -9904*x^11 + 2514552*x^10 -1351376*x^9 -36827040*x^8 + 26908352*x^7 + 274551424*x^6 -209359360*x^5 -843688960*x^4 + 820908032*x^3 + 635764736*x^2 -792199168*x + 130088960);
T[251,23]=(x^4 -4*x^3 -13*x^2 + 34*x + 11)*(x^17 + 2*x^16 -145*x^15 -264*x^14 + 8242*x^13 + 13724*x^12 -234207*x^11 -354375*x^10 + 3472133*x^9 + 4725642*x^8 -24878008*x^7 -30706764*x^6 + 63705511*x^5 + 80688792*x^4 -3117473*x^3 -27663623*x^2 -7122621*x + 201949);
T[251,29]=(x^4 + 12*x^3 -x^2 -222*x + 311)*(x^17 -28*x^16 + 109*x^15 + 3592*x^14 -35339*x^13 -83940*x^12 + 2114316*x^11 -2737896*x^10 -53412880*x^9 + 142138656*x^8 + 678614208*x^7 -2212257792*x^6 -4798937856*x^5 + 14938317824*x^4 + 20809587712*x^3 -38478827520*x^2 -48567717888*x + 1937776640);
T[251,31]=(x^4 + 2*x^3 -50*x^2 -51*x -11)*(x^17 -12*x^16 -166*x^15 + 2289*x^14 + 10062*x^13 -171886*x^12 -286098*x^11 + 6673682*x^10 + 4377535*x^9 -146421065*x^8 -55361745*x^7 + 1824111843*x^6 + 900961262*x^5 -11842608328*x^4 -9922272408*x^3 + 29270357475*x^2 + 39314636036*x + 10307640389);
T[251,37]=(x^4 + 13*x^3 + 28*x^2 -192*x -659)*(x^17 -27*x^16 + 5558*x^14 -32361*x^13 -378678*x^12 + 3436984*x^11 + 8948544*x^10 -136121072*x^9 -14577344*x^8 + 2433148864*x^7 -1568518656*x^6 -20941760512*x^5 + 13518874112*x^4 + 81237630976*x^3 -20547432448*x^2 -94585307136*x -1861132288);
T[251,41]=(x^4 -x^3 -35*x^2 + 127*x -121)*(x^17 + x^16 -327*x^15 -797*x^14 + 38908*x^13 + 128893*x^12 -2075753*x^11 -7251940*x^10 + 56730326*x^9 + 179176510*x^8 -839024486*x^7 -1998291412*x^6 + 6629442096*x^5 + 8804714605*x^4 -25358202442*x^3 -8594977168*x^2 + 33633722464*x -11114425387);
T[251,43]=(x^4 + 5*x^3 -134*x^2 -710*x + 1439)*(x^17 -9*x^16 -350*x^15 + 2862*x^14 + 48873*x^13 -352374*x^12 -3439332*x^11 + 21050904*x^10 + 125204240*x^9 -623509120*x^8 -2085395520*x^7 + 8346453888*x^6 + 9051129344*x^5 -41569265664*x^4 + 24916977664*x^3 -527659008*x^2 -339017728*x -11640832);
T[251,47]=(x^4 -12*x^3 + 34*x^2 -13*x + 1)*(x^17 + 20*x^16 -260*x^15 -6943*x^14 + 14991*x^13 + 872728*x^12 + 603244*x^11 -53212280*x^10 -83401008*x^9 + 1705492768*x^8 + 2690425152*x^7 -28205012864*x^6 -31462836992*x^5 + 210088440832*x^4 + 118005789696*x^3 -401647810560*x^2 -362991652864*x -62409392128);
T[251,53]=(x^4 -5*x^3 -24*x^2 + 80*x + 139)*(x^17 -x^16 -460*x^15 + 1170*x^14 + 85157*x^13 -333566*x^12 -7929696*x^11 + 41100864*x^10 + 378464016*x^9 -2483149792*x^8 -8209777280*x^7 + 73236175616*x^6 + 43224440320*x^5 -958257038336*x^4 + 595623487488*x^3 + 4279899836416*x^2 -2609368993792*x -7243329708032);
T[251,59]=(x^4 -6*x^3 -63*x^2 + 116*x + 551)*(x^17 + 20*x^16 -269*x^15 -6472*x^14 + 29669*x^13 + 840402*x^12 -2051496*x^11 -55500736*x^10 + 116115376*x^9 + 1895587136*x^8 -4767793344*x^7 -28202291456*x^6 + 96262785536*x^5 + 59437852160*x^4 -432346468352*x^3 + 296771993600*x^2 + 156569124864*x -139809955840);
T[251,61]=(x^4 + 21*x^3 + 157*x^2 + 489*x + 521)*(x^17 -59*x^16 + 1075*x^15 + 2169*x^14 -312119*x^13 + 3270878*x^12 + 8177288*x^11 -358118728*x^10 + 1766208672*x^9 + 8026761536*x^8 -105566377280*x^7 + 254175284608*x^6 + 1049495551488*x^5 -7795255991296*x^4 + 19829218704384*x^3 -25084058574848*x^2 + 15553559293952*x -3666674696192);
T[251,67]=(x^4 -17*x^3 -26*x^2 + 1382*x -4159)*(x^17 -15*x^16 -400*x^15 + 6002*x^14 + 60364*x^13 -895287*x^12 -4463436*x^11 + 63940191*x^10 + 178032782*x^9 -2389807155*x^8 -3972065505*x^7 + 47502087611*x^6 + 50268870527*x^5 -471968962679*x^4 -365757071819*x^3 + 1878172122230*x^2 + 1408296024177*x -1042048845953);
T[251,71]=(x^4 + 10*x^3 -74*x^2 -495*x + 2389)*(x^17 + 26*x^16 -200*x^15 -9687*x^14 -26335*x^13 + 1095946*x^12 + 7551084*x^11 -35897688*x^10 -460211216*x^9 -401864960*x^8 + 8678956672*x^7 + 28016491648*x^6 -18133311488*x^5 -177726125056*x^4 -166011027456*x^3 + 68594900992*x^2 + 49532829696*x -12296978432);
T[251,73]=(x^4 + 2*x^3 -130*x^2 + 259*x + 539)*(x^17 -8*x^16 -660*x^15 + 5971*x^14 + 159642*x^13 -1633456*x^12 -17014966*x^11 + 203838750*x^10 + 714163227*x^9 -11635976439*x^8 -3415758901*x^7 + 272674186013*x^6 -268115200878*x^5 -2250483827338*x^4 + 2892174953448*x^3 + 4106578504731*x^2 -2848439163886*x -371103914897);
T[251,79]=(x^4 + 21*x^3 -20*x^2 -2622*x -13051)*(x^17 -33*x^16 + 10*x^15 + 9306*x^14 -52628*x^13 -1089881*x^12 + 8049454*x^11 + 71371605*x^10 -548408374*x^9 -2969045463*x^8 + 19597651603*x^7 + 82231679835*x^6 -352469832409*x^5 -1419739642133*x^4 + 2221440392387*x^3 + 11461496855656*x^2 + 7869172132141*x -1616495596055);
T[251,83]=(x^4 + x^3 -210*x^2 + 48*x + 6269)*(x^17 -830*x^15 -182*x^14 + 276753*x^13 + 147193*x^12 -47625433*x^11 -43148327*x^10 + 4522831874*x^9 + 5789427547*x^8 -235022278685*x^7 -368397937479*x^6 + 6266391309920*x^5 + 10396445225104*x^4 -76344818967680*x^3 -116429725697024*x^2 + 308857769302016*x + 295625646813184);
T[251,89]=(x^4 -5*x^3 -99*x^2 + 255*x + 2489)*(x^17 -11*x^16 -495*x^15 + 5447*x^14 + 83458*x^13 -971603*x^12 -5371593*x^11 + 74548723*x^10 + 82706963*x^9 -2397420922*x^8 + 2343131572*x^7 + 29345374474*x^6 -57306699649*x^5 -111087884263*x^4 + 281057415395*x^3 + 73341745265*x^2 -248323900089*x -91153496990);
T[251,97]=(x^4 -6*x^3 -80*x^2 -58*x + 319)*(x^17 + 10*x^16 -742*x^15 -6856*x^14 + 215169*x^13 + 1880094*x^12 -31176204*x^11 -258766672*x^10 + 2403001936*x^9 + 18416520096*x^8 -99643866816*x^7 -635356579328*x^6 + 2312499828992*x^5 + 9310152623104*x^4 -27873969767424*x^3 -32737918083072*x^2 + 90599795339264*x -41770891288576);

T[252,2]=(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x -1)^3*(x + 1)^4*(x )^20;
T[252,3]=(x^2 + 2*x + 3)^2*(x + 1)^3*(x -1)^4*(x )^26;
T[252,5]=(x + 4)*(x -4)^2*(x^2 -12)^3*(x -2)^5*(x + 2)^10*(x )^13;
T[252,7]=(x^2 + 4*x + 7)*(x -1)^17*(x + 1)^18;
T[252,11]=(x + 2)*(x -6)*(x -2)^2*(x + 6)^2*(x^2 -12)^3*(x + 4)^7*(x -4)^8*(x )^10;
T[252,13]=(x + 6)^3*(x -6)^6*(x + 4)^8*(x + 2)^9*(x -2)^11;
T[252,17]=(x -4)*(x + 2)^2*(x + 4)^2*(x^2 -12)^3*(x -2)^4*(x )^5*(x + 6)^8*(x -6)^9;
T[252,19]=(x -8)^2*(x -2)^8*(x -4)^9*(x + 4)^18;
T[252,23]=(x -6)*(x + 2)*(x + 6)^2*(x + 8)^2*(x -2)^2*(x^2 -12)^3*(x -8)^4*(x )^19;
T[252,29]=(x -6)^4*(x -2)^6*(x + 6)^7*(x )^8*(x + 2)^12;
T[252,31]=(x -8)^3*(x + 4)^16*(x )^18;
T[252,37]=(x + 10)^8*(x -6)^9*(x -2)^20;
T[252,41]=(x + 12)*(x -12)^2*(x + 2)^3*(x^2 -108)^3*(x )^5*(x + 6)^6*(x -2)^6*(x -6)^8;
T[252,43]=(x -8)^10*(x + 4)^27;
T[252,47]=(x^2 -48)^3*(x -12)^6*(x + 12)^8*(x )^17;
T[252,53]=(x )^2*(x^2 -48)^3*(x + 6)^11*(x -6)^18;
T[252,59]=(x -8)*(x -6)^2*(x + 4)^2*(x + 8)^2*(x + 12)^3*(x^2 -48)^3*(x -4)^4*(x )^5*(x + 6)^6*(x -12)^6;
T[252,61]=(x -14)^2*(x -8)^8*(x -6)^9*(x + 10)^9*(x + 2)^9;
T[252,67]=(x + 16)^2*(x + 8)^3*(x -8)^3*(x + 4)^14*(x -4)^15;
T[252,71]=(x + 14)*(x + 6)*(x -14)^2*(x + 8)^2*(x -6)^2*(x^2 -108)^3*(x -8)^4*(x )^19;
T[252,73]=(x + 2)^3*(x + 10)^5*(x -14)^6*(x -10)^6*(x -2)^8*(x + 6)^9;
T[252,79]=(x -12)^3*(x + 4)^5*(x )^6*(x + 16)^9*(x -8)^14;
T[252,83]=(x -6)^2*(x -4)^3*(x -12)^4*(x + 4)^6*(x + 6)^6*(x + 12)^8*(x )^8;
T[252,89]=(x + 12)*(x -12)^2*(x -14)^3*(x^2 -12)^3*(x -6)^4*(x )^5*(x + 14)^6*(x + 6)^10;
T[252,97]=(x + 2)^3*(x + 14)^6*(x -14)^8*(x -18)^9*(x + 10)^11;

T[253,2]=(x^3 + x^2 -4*x + 1)*(x^3 -3*x^2 + 3)*(x^5 + 4*x^4 -14*x^2 -13*x -1)*(x^6 -3*x^5 -4*x^4 + 16*x^3 -3*x^2 -10*x + 1)*(x + 2)^2*(x^2 + x -1)^2;
T[253,3]=(x^3 + 5*x^2 + 4*x -5)*(x^3 -3*x^2 + 3)*(x^5 + 5*x^4 + 3*x^3 -10*x^2 -4*x + 1)*(x^6 -7*x^5 + 11*x^4 + 18*x^3 -56*x^2 + 33*x -4)*(x + 1)^2*(x^2 -5)^2;
T[253,5]=(x^3 -3*x^2 + 3)*(x^3 + 5*x^2 + 4*x -5)*(x^5 + 3*x^4 -14*x^3 -43*x^2 -12*x + 16)*(x^6 -3*x^5 -12*x^4 + 25*x^3 + 38*x^2 -40*x -32)*(x -1)^2*(x^2 + 2*x -4)^2;
T[253,7]=(x^3 -3*x^2 + 3)*(x^3 + 3*x^2 -10*x + 1)*(x^5 + 3*x^4 -20*x^3 -71*x^2 -6*x + 92)*(x^6 + x^5 -18*x^4 + 7*x^3 + 70*x^2 -92*x + 32)*(x + 2)^2*(x^2 -2*x -4)^2;
T[253,11]=(x^4 + 6*x^3 + 26*x^2 + 66*x + 121)*(x + 1)^8*(x -1)^11;
T[253,13]=(x^3 + 3*x^2 -6*x -17)*(x^3 + x^2 -4*x + 1)*(x^5 + 15*x^4 + 83*x^3 + 208*x^2 + 232*x + 89)*(x^6 + 3*x^5 -33*x^4 -94*x^3 + 226*x^2 + 783*x + 502)*(x -4)^2*(x -3)^4;
T[253,17]=(x^3 -3*x^2 + 1)*(x^3 + 9*x^2 + 14*x -25)*(x^5 + 9*x^4 -16*x^3 -257*x^2 -72*x + 1492)*(x^6 -5*x^5 -48*x^4 + 253*x^3 -98*x^2 -596*x + 296)*(x + 2)^2*(x^2 -6*x + 4)^2;
T[253,19]=(x^3 + 5*x^2 -9*x -5)*(x^3 -9*x^2 + 15*x + 17)*(x^5 + 5*x^4 -13*x^3 -41*x^2 -12*x + 4)*(x^6 -x^5 -101*x^4 + 153*x^3 + 2712*x^2 -4180*x -13616)*(x )^2*(x + 2)^4;
T[253,23]=(x^2 + x + 23)*(x -1)^10*(x + 1)^11;
T[253,29]=(x^3 -12*x^2 + 35*x -25)*(x^3 -63*x + 9)*(x^5 + 8*x^4 -42*x^3 -295*x^2 + 281*x + 2011)*(x^6 -6*x^5 -108*x^4 + 591*x^3 + 2821*x^2 -13841*x -6302)*(x )^2*(x + 3)^4;
T[253,31]=(x^3 -21*x + 17)*(x^3 + 4*x^2 -77*x -235)*(x^5 + 4*x^4 -50*x^3 + 17*x^2 + 193*x -161)*(x^6 + 8*x^5 -82*x^4 -575*x^3 + 1401*x^2 + 10275*x + 9616)*(x -7)^2*(x^2 -45)^2;
T[253,37]=(x^3 + 18*x^2 + 81*x + 27)*(x^3 + 14*x^2 + 61*x + 79)*(x^5 -8*x^4 -37*x^3 + 287*x^2 + 414*x -1948)*(x^6 -2*x^5 -81*x^4 + 49*x^3 + 1468*x^2 + 96*x -248)*(x -3)^2*(x^2 -2*x -4)^2;
T[253,41]=(x^3 -6*x^2 -79*x + 499)*(x^3 -12*x^2 + 21*x + 17)*(x^5 + 6*x^4 -104*x^3 -693*x^2 + 1327*x + 10459)*(x^6 + 2*x^5 -136*x^4 + 31*x^3 + 2805*x^2 -4041*x + 206)*(x + 8)^2*(x^2 -2*x -19)^2;
T[253,43]=(x^3 -6*x^2 -27*x + 135)*(x^3 -39*x -19)*(x^5 + 8*x^4 -57*x^3 -439*x^2 + 386*x + 3988)*(x^6 -10*x^5 -145*x^4 + 1163*x^3 + 7418*x^2 -32300*x -127184)*(x + 6)^2*(x )^4;
T[253,47]=(x^3 -6*x^2 -24*x -8)*(x^3 + 10*x^2 + 16*x -40)*(x^5 + 34*x^4 + 423*x^3 + 2362*x^2 + 5872*x + 5272)*(x^6 -14*x^5 -65*x^4 + 1978*x^3 -11544*x^2 + 25624*x -17536)*(x -8)^2*(x^2 -5)^2;
T[253,53]=(x^3 -6*x^2 -x + 31)*(x^3 -18*x^2 + 87*x -73)*(x^5 -2*x^4 -93*x^3 -29*x^2 + 42*x + 4)*(x^6 + 4*x^5 -65*x^4 -303*x^3 -112*x^2 + 824*x + 808)*(x + 6)^2*(x^2 + 8*x -4)^2;
T[253,59]=(x^3 + 25*x^2 + 191*x + 415)*(x^3 + 9*x^2 -9*x -153)*(x^5 + 13*x^4 -65*x^3 -877*x^2 + 136*x + 8368)*(x^6 -39*x^5 + 603*x^4 -4657*x^3 + 18388*x^2 -32816*x + 16064)*(x -5)^2*(x^2 -4*x -16)^2;
T[253,61]=(x^3 + 6*x^2 -81*x -159)*(x^3 + 12*x^2 + 35*x -1)*(x^5 -18*x^4 + 61*x^3 + 129*x^2 -326*x -4)*(x^6 + 22*x^5 + 21*x^4 -1843*x^3 -6508*x^2 + 17904*x + 27656)*(x -12)^2*(x^2 -4*x -76)^2;
T[253,67]=(x^3 -6*x^2 -144*x + 456)*(x^3 + 10*x^2 + 16*x -40)*(x^5 + 4*x^4 -128*x^3 -208*x^2 + 3184*x + 1568)*(x^6 -8*x^5 -192*x^4 + 1600*x^3 + 4176*x^2 -32864*x -8576)*(x + 7)^2*(x^2 + 10*x + 20)^2;
T[253,71]=(x^3 + 18*x^2 -21*x -1007)*(x^3 + 18*x^2 + 95*x + 125)*(x^5 -10*x^4 -190*x^3 + 1763*x^2 + 8433*x -73601)*(x^6 -18*x^5 -66*x^4 + 2527*x^3 -7211*x^2 -53901*x + 192376)*(x + 3)^2*(x^2 -20*x + 95)^2;
T[253,73]=(x^3 + 9*x^2 -48*x -73)*(x^3 -19*x^2 + 64*x + 109)*(x^5 + 31*x^4 + 315*x^3 + 1080*x^2 + 44*x -3659)*(x^6 + 9*x^5 -59*x^4 -276*x^3 + 1052*x^2 + 1387*x -2878)*(x -4)^2*(x^2 -22*x + 101)^2;
T[253,79]=(x^3 -5*x^2 -204*x + 1175)*(x^3 -9*x^2 + 24*x -19)*(x^5 + 3*x^4 -128*x^3 -109*x^2 + 3258*x + 2476)*(x^6 + 15*x^5 -248*x^4 -4399*x^3 -218*x^2 + 163924*x + 321344)*(x + 10)^2*(x^2 + 4*x -76)^2;
T[253,83]=(x^3 -21*x^2 + 63*x + 541)*(x^5 + 43*x^4 + 621*x^3 + 2769*x^2 -8510*x -71188)*(x^6 -43*x^5 + 653*x^4 -3849*x^3 + 2770*x^2 + 40348*x -59216)*(x + 6)^2*(x^2 + 22*x + 116)^2*(x + 11)^3;
T[253,89]=(x^3 -21*x^2 -54*x + 2071)*(x^3 + 19*x^2 + 38*x -5)*(x^5 -15*x^4 -62*x^3 + 1009*x^2 + 1830*x -4804)*(x^6 -17*x^5 -116*x^4 + 4225*x^3 -33164*x^2 + 105376*x -115096)*(x -15)^2*(x^2 + 12*x + 16)^2;
T[253,97]=(x^3 + 33*x^2 + 350*x + 1201)*(x^3 + 9*x^2 + 6*x -19)*(x^5 -17*x^4 + 499*x^2 -266*x -3716)*(x^6 -19*x^5 -214*x^4 + 5079*x^3 -5144*x^2 -148208*x -33464)*(x + 7)^2*(x^2 -22*x + 76)^2;

T[254,2]=(x^14 -2*x^13 + 6*x^12 -9*x^11 + 21*x^10 -28*x^9 + 51*x^8 -57*x^7 + 102*x^6 -112*x^5 + 168*x^4 -144*x^3 + 192*x^2 -128*x + 128)*(x^6 + 3*x^5 + 6*x^4 + 9*x^3 + 12*x^2 + 12*x + 8)*(x -1)^5*(x + 1)^6;
T[254,3]=(x^5 + 2*x^4 -10*x^3 -16*x^2 + 10*x + 16)*(x + 2)^2*(x -2)^2*(x^3 + 3*x^2 -3)^2*(x^7 -3*x^6 -12*x^5 + 39*x^4 + 26*x^3 -128*x^2 + 64*x + 16)^2*(x )^2;
T[254,5]=(x -2)*(x + 3)*(x + 1)*(x^2 + x -4)*(x^5 + x^4 -20*x^3 -18*x^2 + 54*x + 54)*(x )*(x^3 + 6*x^2 + 9*x + 1)^2*(x^7 -8*x^6 + 11*x^5 + 53*x^4 -146*x^3 + 32*x^2 + 128*x -48)^2;
T[254,7]=(x + 1)*(x -4)*(x + 3)*(x^2 -x -4)*(x^5 -3*x^4 -20*x^3 + 40*x^2 + 96*x -32)*(x )*(x^3 + 3*x^2 -3)^2*(x^7 + 3*x^6 -20*x^5 -41*x^4 + 114*x^3 + 64*x^2 -112*x -16)^2;
T[254,11]=(x + 3)*(x -4)*(x -1)*(x^2 + 7*x + 8)*(x^5 -x^4 -44*x^3 + 72*x^2 + 480*x -1056)*(x )*(x^3 -21*x -37)^2*(x^7 -28*x^5 -17*x^4 + 88*x^3 -37*x^2 -5*x + 3)^2;
T[254,13]=(x + 4)*(x -6)*(x^2 + 2*x -16)*(x + 2)^2*(x^3 + 3*x^2 -18*x -37)^2*(x^7 + x^6 -69*x^5 -38*x^4 + 1515*x^3 + 52*x^2 -10416*x + 5383)^2*(x -2)^5;
T[254,17]=(x -2)*(x -3)*(x + 1)*(x + 6)*(x^2 + 3*x -2)*(x^5 -7*x^4 -16*x^3 + 192*x^2 -384*x + 192)*(x^3 + 18*x^2 + 105*x + 199)^2*(x^7 -24*x^6 + 200*x^5 -467*x^4 -2678*x^3 + 19593*x^2 -45913*x + 38235)^2;
T[254,19]=(x + 4)*(x -8)*(x^2 -5*x -32)*(x^5 -17*x^4 + 92*x^3 -152*x^2 -32*x + 32)*(x + 7)^2*(x^3 -3*x^2 + 1)^2*(x^7 + 5*x^6 -51*x^5 -206*x^4 + 685*x^3 + 1582*x^2 -2664*x + 853)^2;
T[254,23]=(x -9)*(x -4)*(x -3)*(x^2 + 3*x -36)*(x^5 + x^4 -44*x^3 -72*x^2 + 480*x + 1056)*(x )*(x^3 + 9*x^2 + 18*x -9)^2*(x^7 + x^6 -74*x^5 -279*x^4 + 812*x^3 + 6344*x^2 + 12376*x + 8016)^2;
T[254,29]=(x -6)*(x + 8)*(x^2 -6*x -8)*(x^5 -54*x^3 -48*x^2 + 306*x -108)*(x + 6)^2*(x^3 -3*x^2 -18*x + 3)^2*(x^7 + 7*x^6 -72*x^5 -359*x^4 + 1612*x^3 + 2512*x^2 -5368*x -5520)^2;
T[254,31]=(x + 10)*(x + 8)*(x + 4)*(x -8)*(x^5 -14*x^4 + 32*x^3 + 208*x^2 -524*x -712)*(x^3 -12*x^2 + 27*x -17)^2*(x^7 + 8*x^6 -68*x^5 -465*x^4 + 648*x^3 + 3651*x^2 -229*x -2845)^2*(x )^2;
T[254,37]=(x + 6)*(x + 2)*(x -4)*(x^5 -8*x^4 -56*x^3 + 304*x^2 + 496*x + 64)*(x^3 -84*x + 296)^2*(x^7 + 6*x^6 -81*x^5 -550*x^4 + 981*x^3 + 11180*x^2 + 16084*x -920)^2*(x -2)^3;
T[254,41]=(x + 6)*(x -9)*(x -6)*(x + 3)*(x^2 + x -106)*(x^5 -5*x^4 -40*x^3 -24*x^2 + 60*x + 12)*(x^3 + 12*x^2 -192)^2*(x^7 -14*x^6 + 23*x^5 + 494*x^4 -3199*x^3 + 8072*x^2 -9296*x + 4032)^2;
T[254,43]=(x + 6)*(x + 10)*(x -12)*(x^5 + 10*x^4 -82*x^3 -1016*x^2 -1814*x -16)*(x )*(x -6)^2*(x^3 + 9*x^2 -81*x -513)^2*(x^7 + x^6 -99*x^5 + 287*x^4 + 1374*x^3 -6236*x^2 + 2296*x + 10096)^2;
T[254,47]=(x -10)*(x + 6)*(x^2 -18*x + 64)*(x^5 + 26*x^4 + 224*x^3 + 720*x^2 + 756*x + 216)*(x + 8)^2*(x^3 + 3*x^2 -81*x -379)^2*(x^7 -25*x^6 + 100*x^5 + 1920*x^4 -16340*x^3 -12320*x^2 + 439559*x -1046391)^2;
T[254,53]=(x + 6)*(x + 4)*(x -3)*(x + 3)*(x^2 + 3*x -104)*(x^5 + 23*x^4 + 92*x^3 -1014*x^2 -7278*x -10662)*(x^3 -3*x^2 -126*x + 57)^2*(x^7 -29*x^6 + 142*x^5 + 2659*x^4 -28158*x^3 + 43804*x^2 + 283688*x -755376)^2;
T[254,59]=(x + 2)*(x -8)*(x + 4)*(x^2 + 10*x + 8)*(x^5 + 6*x^4 -98*x^3 -216*x^2 + 1962*x -48)*(x )*(x^3 -21*x + 37)^2*(x^7 + 12*x^6 -233*x^5 -3351*x^4 + 6446*x^3 + 206960*x^2 + 572048*x -339120)^2;
T[254,61]=(x + 10)*(x -10)*(x + 2)*(x^5 -2*x^4 -152*x^3 + 304*x^2 + 4624*x -13856)*(x^3 + 3*x^2 -153*x -307)^2*(x^7 -7*x^6 -96*x^5 + 522*x^4 + 2454*x^3 -6956*x^2 -9711*x + 3625)^2*(x -6)^3;
T[254,67]=(x -10)*(x + 8)*(x -14)*(x + 2)*(x^5 -258*x^3 + 64*x^2 + 15882*x -396)*(x -6)^2*(x^3 + 3*x^2 -1)^2*(x^7 + 25*x^6 + 26*x^5 -3183*x^4 -15628*x^3 + 90672*x^2 + 534864*x -64784)^2;
T[254,71]=(x + 12)*(x -8)*(x -12)*(x^5 + 20*x^4 + 88*x^3 -300*x + 192)*(x^3 -3*x^2 -153*x + 867)^2*(x^7 -7*x^6 -228*x^5 + 1424*x^4 + 9756*x^3 -79912*x^2 + 161143*x -84633)^2*(x )^3;
T[254,73]=(x + 14)*(x -2)*(x -10)*(x^5 -2*x^4 -208*x^3 + 1216*x^2 -1088*x + 128)*(x^3 -3*x^2 -114*x + 269)^2*(x^7 -13*x^6 -161*x^5 + 2198*x^4 + 2483*x^3 -58764*x^2 + 8644*x + 17401)^2*(x + 6)^3;
T[254,79]=(x + 8)*(x + 10)*(x + 2)*(x -16)*(x^2 + 6*x -144)*(x^3 -9*x^2 -120*x + 71)^2*(x^7 + 23*x^6 -7*x^5 -3470*x^4 -19855*x^3 + 84554*x^2 + 916400*x + 1841711)^2*(x -2)^5;
T[254,83]=(x + 12)*(x -14)*(x^2 + 10*x + 8)*(x^5 + 22*x^4 + 122*x^3 -204*x^2 -2478*x -2256)*(x^3 -12*x^2 -225*x + 2649)^2*(x^7 -26*x^6 -9*x^5 + 4299*x^4 -20636*x^3 -111104*x^2 + 542920*x + 16464)^2*(x )^2;
T[254,89]=(x -2)*(x + 6)*(x -6)*(x^2 + 6*x -144)*(x^5 -26*x^4 + 104*x^3 + 1008*x^2 -2160*x + 864)*(x )*(x^3 + 33*x^2 + 306*x + 597)^2*(x^7 -13*x^6 -12*x^5 + 431*x^4 + 62*x^3 -2296*x^2 + 1184*x + 432)^2;
T[254,97]=(x + 2)*(x -10)*(x -8)*(x + 8)*(x^2 + 2*x -16)*(x^5 -28*x^4 -88*x^3 + 9904*x^2 -110032*x + 377984)*(x^3 + 15*x^2 -6*x -37)^2*(x^7 + 5*x^6 -280*x^5 -1263*x^4 + 14750*x^3 + 41452*x^2 -172648*x -12656)^2;

T[255,2]=(x^2 -3*x + 1)*(x^2 -x -3)*(x^4 -x^3 -8*x^2 + 7*x + 9)*(x^3 -4*x + 1)*(x -1)^2*(x^2 -3)^2*(x^2 + x -4)^2*(x^2 + 2*x -1)^2*(x )^2*(x + 1)^6;
T[255,3]=(x^2 -2*x + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 4*x^3 + 8*x^2 + 12*x + 9)*(x^2 + 3)^2*(x -1)^9*(x + 1)^10;
T[255,5]=(x^2 -3*x + 5)*(x^4 -3*x^3 + 8*x^2 -15*x + 25)*(x^2 + 2*x + 5)^2*(x -1)^11*(x + 1)^12;
T[255,7]=(x^2 -5)*(x^2 -13)*(x^4 -4*x^3 -17*x^2 + 80*x -64)*(x^3 -4*x^2 -x + 8)*(x + 4)^2*(x + 2)^2*(x^2 + 2*x -2)^2*(x^2 + 4*x + 2)^2*(x -4)^4*(x )^6;
T[255,11]=(x^2 -2*x -19)*(x^3 + 2*x^2 -11*x + 4)*(x^4 -2*x^3 -31*x^2 + 112*x -96)*(x + 4)^2*(x + 3)^2*(x -2)^2*(x -5)^2*(x^2 -6*x + 6)^2*(x^2 + x -4)^2*(x^2 + 8*x + 14)^2*(x )^4;
T[255,13]=(x^2 -6*x + 4)*(x^2 + 6*x -4)*(x^4 + 2*x^3 -48*x^2 -120*x + 208)*(x^3 -4*x^2 -16*x + 56)*(x -2)^2*(x + 1)^2*(x^2 -8)^2*(x^2 -5*x + 2)^2*(x + 4)^4*(x + 2)^6;
T[255,17]=(x^2 -2*x + 17)*(x -1)^15*(x + 1)^16;
T[255,19]=(x^2 + 4*x -9)*(x^2 + 12*x + 31)*(x^4 -12*x^3 + 31*x^2 -8*x -16)*(x^3 -57*x + 52)*(x -4)^2*(x + 1)^2*(x^2 -4*x -8)^2*(x^2 -8)^2*(x^2 -3*x -36)^2*(x )^2*(x + 4)^4;
T[255,23]=(x^2 -10*x + 20)*(x^2 -2*x -12)*(x^4 -2*x^3 -100*x^2 + 64*x + 2304)*(x^3 + 6*x^2 -4*x -32)*(x -9)^2*(x -6)^2*(x^2 + 4*x + 2)^2*(x^2 + 6*x -18)^2*(x^2 + 9*x + 16)^2*(x )^2*(x -4)^4;
T[255,29]=(x^2 -8*x + 3)*(x^2 + 4*x -41)*(x^4 -4*x^3 -17*x^2 + 4*x + 12)*(x^3 + 6*x^2 -49*x -82)*(x + 2)^2*(x + 6)^2*(x^2 -68)^2*(x^2 + 4*x -4)^2*(x^2 -12)^2*(x -6)^6;
T[255,31]=(x^2 + 6*x -4)*(x^3 -2*x^2 -76*x + 256)*(x^4 -6*x^3 -20*x^2 + 64*x + 128)*(x^2 + 10*x + 20)*(x + 10)^2*(x -2)^2*(x^2 -18)^2*(x^2 + 2*x -16)^2*(x^2 -10*x + 22)^2*(x )^2*(x -4)^4;
T[255,37]=(x^2 -2*x -51)*(x^2 -10*x + 5)*(x^4 + 2*x^3 -91*x^2 -204*x + 1124)*(x^3 -16*x^2 + 53*x + 74)*(x + 4)^2*(x -2)^2*(x + 10)^2*(x^2 + 2*x -16)^2*(x^2 + 8*x + 4)^2*(x^2 + 4*x -68)^2*(x + 2)^4;
T[255,41]=(x^2 -12*x + 23)*(x^3 + 6*x^2 -45*x -158)*(x^4 -109*x^2 + 28*x + 1308)*(x^2 -45)*(x + 3)^2*(x^2 -12)^2*(x^2 + 3*x -2)^2*(x^2 -4*x -68)^2*(x -10)^4*(x + 6)^4;
T[255,43]=(x^2 + 12*x + 16)*(x^2 -4*x -48)*(x^4 -4*x^3 -80*x^2 + 128*x + 512)*(x^3 -64*x + 64)*(x + 7)^2*(x^2 + 8*x + 4)^2*(x^2 + 3*x -36)^2*(x^2 -4*x -28)^2*(x -4)^8;
T[255,47]=(x^2 -6*x -71)*(x^2 + 10*x -27)*(x^4 + 2*x^3 -31*x^2 -112*x -96)*(x^3 + 10*x^2 + 21*x -16)*(x + 6)^2*(x -12)^2*(x -8)^2*(x^2 -12*x -12)^2*(x^2 + 4*x -4)^2*(x^2 + 14*x + 32)^2*(x )^4;
T[255,53]=(x^2 -13)*(x^2 -20*x + 95)*(x^4 -109*x^2 -28*x + 1308)*(x^3 + 10*x^2 + 27*x + 14)*(x + 6)^2*(x^2 -12*x + 4)^2*(x^2 -8*x -52)^2*(x + 10)^4*(x -6)^8;
T[255,59]=(x^2 -2*x -4)*(x^2 -2*x -12)*(x^4 + 10*x^3 -12*x^2 -256*x -192)*(x^3 + 14*x^2 -44*x -848)*(x + 4)^2*(x -8)^2*(x -6)^2*(x^2 -6*x -8)^2*(x^2 -12*x + 24)^2*(x^2 + 24*x + 136)^2*(x + 12)^4;
T[255,61]=(x^2 + 14*x + 44)*(x^2 -6*x -4)*(x^4 + 2*x^3 -48*x^2 -120*x + 208)*(x^3 + 4*x^2 -104*x + 296)*(x + 14)^2*(x + 2)^2*(x -8)^2*(x^2 -4*x -44)^2*(x^2 -4*x -28)^2*(x^2 -10*x + 8)^2*(x + 10)^4;
T[255,67]=(x^2 + 18*x + 68)*(x^3 + 2*x^2 -228*x -848)*(x^4 -22*x^3 -12*x^2 + 2688*x -13184)*(x^2 + 6*x + 4)*(x -12)^2*(x + 4)^2*(x -8)^2*(x^2 + 12*x + 28)^2*(x + 10)^4*(x -4)^8;
T[255,71]=(x^2 -12*x -16)*(x^2 -4*x -176)*(x^4 + 20*x^3 + 64*x^2 -320*x -768)*(x^3 -4*x^2 -80*x -128)*(x -12)^2*(x + 2)^2*(x + 8)^2*(x^2 -18)^2*(x^2 -4*x -64)^2*(x^2 -6*x -66)^2*(x + 4)^4;
T[255,73]=(x^2 -10*x -55)*(x^4 + 10*x^3 -15*x^2 -180*x -108)*(x^3 -12*x^2 -63*x + 702)*(x + 14)^2*(x -13)^2*(x -10)^2*(x -2)^2*(x^2 + 4*x -4)^2*(x^2 + 8*x -52)^2*(x^2 + 8*x -92)^2*(x + 6)^4;
T[255,79]=(x^2 + 8*x -36)*(x^2 -180)*(x^4 -84*x^2 + 320*x -128)*(x^3 + 8*x^2 -4*x -64)*(x + 10)^2*(x + 14)^2*(x^2 -6*x -144)^2*(x^2 + 2*x -242)^2*(x^2 -8*x + 14)^2*(x )^2*(x -12)^4;
T[255,83]=(x^2 -12*x -16)*(x^2 -4*x -176)*(x^4 + 20*x^3 + 64*x^2 -320*x -768)*(x^3 -64*x -64)*(x -12)^2*(x + 6)^2*(x -4)^2*(x^2 + 10*x + 8)^2*(x^2 + 4*x -124)^2*(x^2 -24*x + 132)^2*(x + 4)^4;
T[255,89]=(x^2 -10*x + 12)*(x^2 -18*x + 36)*(x^4 -10*x^3 -184*x^2 + 632*x + 3888)*(x^3 -16*x -8)*(x + 6)^2*(x -6)^2*(x^2 + 16*x + 32)^2*(x^2 + 12*x -72)^2*(x^2 -6*x -8)^2*(x )^2*(x -10)^4;
T[255,97]=(x^2 -8*x -36)*(x^2 + 16*x + 44)*(x^4 -12*x^3 -80*x^2 + 880*x + 944)*(x^3 -26*x^2 + 140*x + 328)*(x + 16)^2*(x^2 + 14*x + 32)^2*(x^2 + 4*x -28)^2*(x^2 -4*x -44)^2*(x -2)^8;

T[256,2]=(x )^21;
T[256,3]=(x^2 -8)*(x + 2)^5*(x -2)^5*(x )^9;
T[256,5]=(x + 4)*(x -4)*(x )^4*(x -2)^7*(x + 2)^8;
T[256,7]=(x -4)^4*(x + 4)^4*(x )^13;
T[256,11]=(x + 6)*(x -6)*(x^2 -8)*(x + 2)^4*(x -2)^4*(x )^9;
T[256,13]=(x + 4)*(x -4)*(x + 6)^3*(x -6)^4*(x + 2)^4*(x -2)^4*(x )^4;
T[256,17]=(x -6)^2*(x + 6)^2*(x -2)^7*(x + 2)^10;
T[256,19]=(x^2 -72)*(x + 2)^5*(x -2)^5*(x )^9;
T[256,23]=(x + 4)^4*(x -4)^4*(x )^13;
T[256,29]=(x + 4)*(x -4)*(x -10)^3*(x + 10)^4*(x -6)^4*(x + 6)^4*(x )^4;
T[256,31]=(x )^21;
T[256,37]=(x -12)*(x + 12)*(x -2)^3*(x + 10)^4*(x -10)^4*(x + 2)^4*(x )^4;
T[256,41]=(x + 10)^2*(x -6)^4*(x -10)^7*(x + 6)^8;
T[256,43]=(x -10)*(x + 10)*(x^2 -72)*(x + 6)^4*(x -6)^4*(x )^9;
T[256,47]=(x + 8)^4*(x -8)^4*(x )^13;
T[256,53]=(x -4)*(x + 4)*(x + 14)^3*(x -6)^4*(x + 6)^4*(x -14)^4*(x )^4;
T[256,59]=(x + 6)*(x -6)*(x^2 -200)*(x -14)^4*(x + 14)^4*(x )^9;
T[256,61]=(x + 12)*(x -12)*(x -10)^3*(x + 10)^4*(x + 2)^4*(x -2)^4*(x )^4;
T[256,67]=(x + 14)*(x -14)*(x^2 -72)*(x -10)^4*(x + 10)^4*(x )^9;
T[256,71]=(x + 12)^4*(x -12)^4*(x )^13;
T[256,73]=(x -2)^2*(x + 2)^2*(x -14)^8*(x + 6)^9;
T[256,79]=(x -8)^4*(x + 8)^4*(x )^13;
T[256,83]=(x -18)*(x + 18)*(x^2 -8)*(x -6)^4*(x + 6)^4*(x )^9;
T[256,89]=(x -18)^2*(x + 18)^2*(x + 2)^8*(x -10)^9;
T[256,97]=(x + 10)^2*(x -10)^2*(x + 18)^2*(x -18)^7*(x + 2)^8;

T[257,2]=(x^7 + 3*x^6 -3*x^5 -11*x^4 + 3*x^3 + 10*x^2 -x -1)*(x^14 -2*x^13 -21*x^12 + 42*x^11 + 163*x^10 -327*x^9 -568*x^8 + 1153*x^7 + 830*x^6 -1755*x^5 -318*x^4 + 825*x^3 + 10*x^2 -96*x -1);
T[257,3]=(x^7 + 5*x^6 + x^5 -22*x^4 -17*x^3 + 15*x^2 + 8*x -4)*(x^14 -3*x^13 -23*x^12 + 74*x^11 + 173*x^10 -627*x^9 -500*x^8 + 2254*x^7 + 726*x^6 -3988*x^5 -858*x^4 + 3536*x^3 + 960*x^2 -1280*x -512);
T[257,5]=(x^7 + x^6 -15*x^5 -5*x^4 + 52*x^3 -35*x^2 -2*x + 4)*(x^14 + x^13 -45*x^12 -21*x^11 + 740*x^10 -41*x^9 -5360*x^8 + 2796*x^7 + 16632*x^6 -14736*x^5 -18208*x^4 + 23232*x^3 -384*x^2 -5120*x + 512);
T[257,7]=(x^7 + 18*x^6 + 125*x^5 + 410*x^4 + 586*x^3 + 91*x^2 -496*x -256)*(x^14 -24*x^13 + 227*x^12 -988*x^11 + 1160*x^10 + 6413*x^9 -24968*x^8 + 15746*x^7 + 66718*x^6 -119942*x^5 + 11018*x^4 + 91024*x^3 -28632*x^2 -20096*x + 256);
T[257,11]=(x^7 + 2*x^6 -35*x^5 -53*x^4 + 264*x^3 + 110*x^2 -630*x + 337)*(x^14 -2*x^13 -79*x^12 + 131*x^11 + 2172*x^10 -2382*x^9 -27190*x^8 + 14565*x^7 + 162892*x^6 -16416*x^5 -440000*x^4 -68608*x^3 + 440448*x^2 + 66560*x -145408);
T[257,13]=(x^7 + 10*x^6 -287*x^4 -976*x^3 -752*x^2 + 489*x + 491)*(x^14 -12*x^13 -4*x^12 + 513*x^11 -1358*x^10 -5248*x^9 + 22253*x^8 + 12589*x^7 -129450*x^6 + 57348*x^5 + 309368*x^4 -309776*x^3 -210288*x^2 + 382080*x -128192);
T[257,17]=(x^7 + 10*x^6 -185*x^4 -104*x^3 + 1004*x^2 -123*x -139)*(x^14 + 4*x^13 -104*x^12 -277*x^11 + 4478*x^10 + 5656*x^9 -95579*x^8 -5689*x^7 + 930094*x^6 -660556*x^5 -2743792*x^4 + 723176*x^3 + 3866956*x^2 + 2328176*x + 423728);
T[257,19]=(x^7 + 7*x^6 -43*x^5 -453*x^4 -1130*x^3 -733*x^2 + 302*x + 52)*(x^14 -9*x^13 -85*x^12 + 921*x^11 + 1552*x^10 -30145*x^9 + 18800*x^8 + 377132*x^7 -644892*x^6 -1518526*x^5 + 3573442*x^4 + 1864620*x^3 -6574712*x^2 + 133888*x + 3170176);
T[257,23]=(x^7 + 12*x^6 + 14*x^5 -158*x^4 -73*x^3 + 279*x^2 + 218*x + 23)*(x^14 -20*x^13 + 10*x^12 + 2090*x^11 -9921*x^10 -68133*x^9 + 520814*x^8 + 506379*x^7 -9522072*x^6 + 7891952*x^5 + 56817664*x^4 -68602304*x^3 -94887808*x^2 + 50165760*x + 21569536);
T[257,29]=(x^7 -7*x^6 -118*x^5 + 769*x^4 + 3386*x^3 -22121*x^2 -555*x + 50681)*(x^14 + 3*x^13 -176*x^12 -503*x^11 + 9680*x^10 + 18675*x^9 -225569*x^8 -175913*x^7 + 2248806*x^6 -138396*x^5 -7315368*x^4 + 234048*x^3 + 8395388*x^2 + 1623024*x -1474576);
T[257,31]=(x^7 + 9*x^6 -75*x^5 -786*x^4 -585*x^3 + 9998*x^2 + 29207*x + 23003)*(x^14 -3*x^13 -231*x^12 + 818*x^11 + 19651*x^10 -81022*x^9 -746149*x^8 + 3596531*x^7 + 11358360*x^6 -68572296*x^5 -24599664*x^4 + 393553632*x^3 -164198336*x^2 -370827264*x -95985664);
T[257,37]=(x^7 + 11*x^6 -92*x^5 -733*x^4 + 3539*x^3 + 4597*x^2 -13936*x -16444)*(x^14 -5*x^13 -244*x^12 + 1971*x^11 + 15501*x^10 -208919*x^9 + 216706*x^8 + 5734788*x^7 -27818184*x^6 + 31645168*x^5 + 64221152*x^4 -140786368*x^3 + 19642240*x^2 + 10738176*x + 2048);
T[257,41]=(x^7 -17*x^6 -73*x^5 + 1842*x^4 + 1445*x^3 -53087*x^2 -26506*x + 354796)*(x^14 + 9*x^13 -243*x^12 -2192*x^11 + 19785*x^10 + 193645*x^9 -595992*x^8 -7650388*x^7 + 1787432*x^6 + 129635312*x^5 + 166931040*x^4 -664767680*x^3 -1293911424*x^2 + 306062336*x + 984914432);
T[257,43]=(x^7 + 32*x^6 + 341*x^5 + 865*x^4 -7909*x^3 -52949*x^2 -80778*x + 31364)*(x^14 -48*x^13 + 889*x^12 -6659*x^11 -16837*x^10 + 764097*x^9 -6856078*x^8 + 31196532*x^7 -65659172*x^6 -46518148*x^5 + 674695614*x^4 -1865323860*x^3 + 2609769528*x^2 -1892832512*x + 563352704);
T[257,47]=(x^7 -195*x^5 -338*x^4 + 9326*x^3 + 25071*x^2 -98082*x -290756)*(x^14 -2*x^13 -159*x^12 + 584*x^11 + 7410*x^10 -35525*x^9 -116826*x^8 + 774694*x^7 + 146760*x^6 -5755402*x^5 + 6684998*x^4 + 3400004*x^3 -2698568*x^2 -1324416*x -119552);
T[257,53]=(x^7 + x^6 -116*x^5 -131*x^4 + 3301*x^3 + 2781*x^2 -17092*x + 9712)*(x^14 + 9*x^13 -350*x^12 -2929*x^11 + 45877*x^10 + 354969*x^9 -2916562*x^8 -20411680*x^7 + 95317344*x^6 + 581166176*x^5 -1508821376*x^4 -7749131520*x^3 + 8212817664*x^2 + 39417676032*x + 7430611456);
T[257,59]=(x^7 -8*x^6 -221*x^5 + 2151*x^4 + 10594*x^3 -148638*x^2 + 203506*x + 892187)*(x^14 + 28*x^13 -21*x^12 -7109*x^11 -50718*x^10 + 462022*x^9 + 6544094*x^8 + 8442231*x^7 -208395956*x^6 -1172732384*x^5 -1846781792*x^4 + 1704611776*x^3 + 6283887680*x^2 + 1739881984*x -2722798592);
T[257,61]=(x^7 + 8*x^6 -87*x^5 -880*x^4 -938*x^3 + 5189*x^2 + 4252*x -9868)*(x^14 + 10*x^13 -551*x^12 -5086*x^11 + 118090*x^10 + 947389*x^9 -12907094*x^8 -82245968*x^7 + 769750284*x^6 + 3376713252*x^5 -23979588484*x^4 -54986857744*x^3 + 311132923200*x^2 + 128603680256*x -319891531712);
T[257,67]=(x^7 + 19*x^6 + 79*x^5 -319*x^4 -2348*x^3 -2651*x^2 + 3420*x + 5296)*(x^14 -33*x^13 + 135*x^12 + 6049*x^11 -67540*x^10 -131255*x^9 + 4772056*x^8 -15864304*x^7 -46817568*x^6 + 247609856*x^5 + 127371008*x^4 -996241408*x^3 -42958848*x^2 + 591069184*x + 134938624);
T[257,71]=(x^7 + 9*x^6 -245*x^5 -1606*x^4 + 9263*x^3 + 45189*x^2 -84150*x -246212)*(x^14 + 15*x^13 -347*x^12 -5882*x^11 + 40481*x^10 + 902861*x^9 -1063184*x^8 -66854342*x^7 -134349530*x^6 + 2260881556*x^5 + 10385569174*x^4 -17689529164*x^3 -205974621576*x^2 -462237668608*x -329346270464);
T[257,73]=(x^7 + 7*x^6 -314*x^5 -1192*x^4 + 25409*x^3 -23290*x^2 -264214*x + 419561)*(x^14 -3*x^13 -360*x^12 + 1656*x^11 + 41717*x^10 -217012*x^9 -2133450*x^8 + 11708069*x^7 + 50432970*x^6 -284937380*x^5 -503642024*x^4 + 2874284236*x^3 + 1953424044*x^2 -9190164864*x -4095652112);
T[257,79]=(x^7 + 41*x^6 + 458*x^5 -1602*x^4 -61211*x^3 -380044*x^2 -809940*x -559459)*(x^14 -47*x^13 + 426*x^12 + 11674*x^11 -234923*x^10 -7432*x^9 + 28805608*x^8 -169105059*x^7 -921164556*x^6 + 11241177032*x^5 -15642935568*x^4 -153523688768*x^3 + 508127364544*x^2 + 134633687040*x -1499403821056);
T[257,83]=(x^7 -4*x^6 -273*x^5 + 582*x^4 + 22636*x^3 + 4399*x^2 -615560*x -1384144)*(x^14 -18*x^13 -447*x^12 + 9804*x^11 + 51342*x^10 -1896635*x^9 + 2170624*x^8 + 153543434*x^7 -660287078*x^6 -4643082986*x^5 + 31414000746*x^4 + 26476913712*x^3 -417446984736*x^2 + 144248396288*x + 1595967870976);
T[257,89]=(x^7 -11*x^6 -307*x^5 + 1337*x^4 + 31571*x^3 + 82079*x^2 -57057*x + 7411)*(x^14 + 15*x^13 -461*x^12 -7793*x^11 + 46297*x^10 + 1211873*x^9 + 1919129*x^8 -59075659*x^7 -326716078*x^6 + 18374748*x^5 + 3821188760*x^4 + 7101568816*x^3 -5518119440*x^2 -21168068608*x -11748870208);
T[257,97]=(x^7 -10*x^6 -315*x^5 + 3764*x^4 + 1732*x^3 -132841*x^2 + 398266*x -262588)*(x^14 -2*x^13 -469*x^12 -642*x^11 + 82686*x^10 + 354537*x^9 -5943364*x^8 -41918852*x^7 + 102390168*x^6 + 1420271248*x^5 + 2291400288*x^4 -5476845760*x^3 -10031835520*x^2 + 3374926336*x -73476608);

T[258,2]=(x^2 -x + 2)*(x^2 + 2)*(x^6 + 2*x^5 + x^4 + 2*x^2 + 8*x + 8)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x^2 + 2*x + 2)^2*(x^4 + 2*x^2 + 4)^2*(x + 1)^7*(x -1)^8;
T[258,3]=(x^4 -x^3 + 5*x^2 -3*x + 9)*(x^4 + x^3 + x^2 + 3*x + 9)*(x^2 + 2*x + 3)^2*(x^4 + 4*x^2 + 9)^2*(x + 1)^10*(x -1)^11;
T[258,5]=(x + 3)*(x + 1)*(x -3)*(x -1)*(x^2 -3*x -3)^2*(x^2 + 3*x + 1)^2*(x^2 -2*x -1)^2*(x^3 + 4*x^2 -x -2)^2*(x -2)^3*(x + 4)^4*(x + 2)^4*(x^2 -4*x + 2)^4;
T[258,7]=(x -1)*(x + 1)*(x + 3)*(x + 5)*(x -4)*(x^2 -20)^2*(x^2 -2*x -7)^2*(x^3 -4*x^2 -3*x + 10)^2*(x + 2)^3*(x^2 + 4*x + 2)^4*(x -2)^5*(x )^6;
T[258,11]=(x -1)*(x + 4)*(x -4)*(x + 1)*(x -5)*(x^2 + 4*x -16)^2*(x^2 -6*x + 7)^2*(x^3 -x^2 -19*x -25)^2*(x + 5)^3*(x -3)^4*(x^2 + 2*x -7)^4*(x )^7;
T[258,13]=(x + 7)*(x -6)*(x -1)*(x + 2)^2*(x + 3)^2*(x^2 -20)^2*(x^2 -2*x -7)^4*(x -2)^6*(x + 5)^8*(x -3)^8;
T[258,17]=(x + 2)*(x -6)*(x -4)^2*(x^2 + 9*x + 15)^2*(x^2 + 4*x -4)^2*(x^2 + x -1)^2*(x^3 -x^2 -8*x + 4)^2*(x )^2*(x + 6)^3*(x^2 -10*x + 17)^4*(x + 3)^6;
T[258,19]=(x + 7)*(x -1)*(x + 1)*(x -7)*(x + 4)^2*(x -2)^2*(x^2 -11*x + 29)^2*(x^2 + 2*x -31)^2*(x^2 -x -47)^2*(x^3 + 4*x^2 -19*x -2)^2*(x -4)^3*(x + 2)^4*(x^2 + 4*x -4)^4;
T[258,23]=(x -2)*(x^2 + 9*x + 15)^2*(x^2 -3*x -9)^2*(x^3 -11*x^2 -32*x + 452)^2*(x^2 -2*x -31)^4*(x -6)^5*(x + 1)^6*(x + 4)^7;
T[258,29]=(x -10)*(x + 2)*(x -1)*(x -6)*(x + 5)*(x + 9)*(x + 3)*(x^2 -6*x -9)^2*(x^2 + 7*x + 1)^2*(x^2 -3*x -3)^2*(x^3 -2*x^2 -5*x + 8)^2*(x )^2*(x^2 -18)^4*(x + 6)^6;
T[258,31]=(x + 6)*(x -2)*(x + 10)*(x + 8)*(x + 2)*(x + 4)*(x + 5)^2*(x -8)^2*(x^2 -13*x + 41)^2*(x^2 -x -47)^2*(x^3 + 5*x^2 -16*x -64)^2*(x + 1)^4*(x -4)^5*(x + 3)^8;
T[258,37]=(x + 8)*(x + 6)*(x -10)*(x -4)*(x -8)^2*(x -6)^2*(x^2 + 5*x + 5)^2*(x^2 + 8*x + 8)^2*(x^2 -x -47)^2*(x^3 -40*x + 64)^2*(x -2)^3*(x^2 -72)^4*(x )^4;
T[258,41]=(x + 2)*(x -6)*(x -8)*(x + 8)*(x + 7)^2*(x^2 -32)^2*(x^2 + 5*x -5)^2*(x^2 -3*x -45)^2*(x^3 + 15*x^2 + 32*x -32)^2*(x )^2*(x -2)^3*(x -5)^4*(x^2 + 2*x -7)^4;
T[258,43]=(x -1)^20*(x + 1)^21;
T[258,47]=(x + 3)*(x + 1)*(x + 11)*(x -2)*(x -7)*(x + 8)^2*(x^2 -3*x -59)^2*(x^2 + 9*x -27)^2*(x^2 + 2*x -97)^2*(x^3 + 2*x^2 -133*x -664)^2*(x -4)^7*(x -6)^9;
T[258,53]=(x + 6)*(x -4)*(x + 4)*(x + 12)^2*(x -12)^2*(x -3)^2*(x + 2)^2*(x^2 -6*x -12)^2*(x^2 -128)^2*(x^2 + 10*x + 20)^2*(x^3 + 5*x^2 -16*x -64)^2*(x + 5)^4*(x^2 -22*x + 113)^4;
T[258,59]=(x + 4)*(x + 8)*(x -4)^2*(x^2 -16*x + 44)^2*(x^2 -4*x -124)^2*(x^3 -8*x^2 -12*x + 80)^2*(x )^2*(x -12)^3*(x -6)^4*(x^2 + 4*x -4)^4*(x + 12)^6;
T[258,61]=(x -12)*(x -4)*(x + 12)*(x -10)*(x )*(x -14)^2*(x^2 -4*x -76)^2*(x^2 + 8*x + 8)^2*(x^3 + 16*x^2 + 8*x -512)^2*(x + 8)^4*(x^2 -8*x -2)^4*(x -2)^8;
T[258,67]=(x -6)*(x + 2)*(x -10)*(x + 15)^2*(x -4)^2*(x^2 + 12*x -36)^2*(x^3 + 11*x^2 -80*x -332)^2*(x -12)^3*(x + 3)^4*(x + 10)^4*(x^2 -2*x -71)^4*(x -2)^5;
T[258,71]=(x -12)*(x + 12)*(x + 8)^2*(x + 14)^2*(x^2 -12*x + 28)^2*(x^2 + 16*x + 44)^2*(x^2 -84)^2*(x^3 -22*x^2 + 84*x + 424)^2*(x )^2*(x -8)^3*(x -2)^4*(x^2 + 12*x + 28)^4;
T[258,73]=(x + 16)*(x + 6)*(x -10)*(x + 14)*(x )*(x -12)^2*(x -4)^2*(x^2 -4*x -28)^2*(x^2 -4*x -76)^2*(x^3 + 16*x^2 + 52*x -16)^2*(x -14)^4*(x^2 + 24*x + 126)^4*(x -2)^6;
T[258,79]=(x + 14)*(x -10)*(x + 10)*(x -8)*(x -14)*(x^2 + 5*x -41)^2*(x^2 + x -1)^2*(x^2 -8*x -56)^2*(x^3 -24*x^2 + 152*x -256)^2*(x + 16)^3*(x^2 -4*x -4)^4*(x + 8)^7;
T[258,83]=(x + 7)*(x -8)*(x + 9)*(x -4)*(x + 12)*(x + 3)*(x -3)*(x^2 + 14*x + 47)^2*(x^2 + 6*x -12)^2*(x^2 + 10*x -20)^2*(x^3 + 7*x^2 -79*x -485)^2*(x )^2*(x^2 -18*x + 49)^4*(x -15)^6;
T[258,89]=(x + 10)*(x -2)*(x + 14)*(x -6)^2*(x -14)^2*(x^2 -2*x -44)^2*(x^2 -6*x -12)^2*(x^2 -72)^2*(x^3 + 38*x^2 + 456*x + 1744)^2*(x + 4)^4*(x -10)^4*(x^2 + 12*x + 18)^4;
T[258,97]=(x -1)*(x -17)*(x -14)*(x + 2)*(x -2)*(x -11)^2*(x + 14)^2*(x + 7)^2*(x^2 + 11*x -17)^2*(x^2 + 11*x -1)^2*(x^3 -x^2 -77*x + 277)^2*(x -7)^4*(x^2 + 2*x -7)^6;

T[259,2]=(x -1)*(x^2 -x -4)*(x^3 + 3*x^2 -3)*(x^3 -x^2 -2*x + 1)*(x^4 -9*x^2 + x + 17)*(x^4 -x^3 -6*x^2 + 5*x + 4)*(x + 2)^2*(x )^4;
T[259,3]=(x^2 -8)*(x^3 + 2*x^2 -x -1)*(x^3 -3*x -1)*(x^4 -15*x^2 + 3*x + 48)*(x^4 -2*x^3 -5*x^2 + 7*x + 4)*(x + 3)^2*(x -1)^2*(x )^3;
T[259,5]=(x -4)*(x^2 -6*x + 7)*(x^2 -x -4)*(x^3 + 6*x^2 + 9*x + 3)*(x^3 + 6*x^2 + 5*x -13)*(x^4 -6*x^3 + 7*x^2 + 5*x -2)*(x^4 -x^3 -9*x^2 + 8*x + 13)*(x + 2)^2*(x )^2;
T[259,7]=(x^2 + x + 7)^2*(x + 1)^9*(x -1)^10;
T[259,11]=(x -4)*(x^2 + x -4)*(x^2 + 6*x + 1)*(x^3 + 9*x^2 + 18*x -9)*(x^3 + x^2 -2*x -1)*(x^4 -10*x^3 + 15*x^2 + 77*x -137)*(x^4 -3*x^3 -22*x^2 + 99*x -100)*(x + 5)^2*(x -3)^2;
T[259,13]=(x -4)*(x^2 -2*x -17)*(x^2 -x -4)*(x^3 + 3*x^2 -24*x -53)*(x^3 -x^2 -16*x -13)*(x^4 -5*x^3 -16*x^2 + 47*x + 62)*(x^4 + 8*x^3 + 9*x^2 -7*x + 1)*(x + 2)^2*(x + 4)^2;
T[259,17]=(x^2 -8)*(x^2 -2*x -16)*(x^3 + 7*x^2 -28*x -203)*(x^3 + 3*x^2 -3)*(x^4 -13*x^3 + 34*x^2 + 133*x -514)*(x^4 + 3*x^3 -30*x^2 + 45*x -18)*(x -6)^2*(x )^3;
T[259,19]=(x + 6)*(x^2 -6*x -8)*(x^3 + 7*x^2 + 7*x -7)*(x^3 + 3*x^2 -33*x + 37)*(x^4 + 7*x^3 -5*x^2 -87*x -116)*(x^4 + 3*x^3 -21*x^2 -75*x -60)*(x )^2*(x -2)^4;
T[259,23]=(x + 4)*(x^2 -8)*(x^3 + x^2 -16*x + 13)*(x^3 + 9*x^2 + 18*x + 9)*(x^4 + x^3 -84*x^2 + 25*x + 940)*(x^4 + 5*x^3 -6*x^2 -27*x + 32)*(x -2)^2*(x -6)^2*(x -4)^2;
T[259,29]=(x^2 -8)*(x^2 -6*x -8)*(x^3 + 10*x^2 + 3*x -97)*(x^3 + 18*x^2 + 81*x + 27)*(x^4 -20*x^3 + 141*x^2 -411*x + 422)*(x^4 -18*x^3 + 99*x^2 -213*x + 156)*(x -6)^2*(x + 6)^3;
T[259,31]=(x -2)*(x^2 -2*x -17)*(x^2 + 5*x + 2)*(x^3 -2*x^2 -71*x + 113)*(x^3 -6*x^2 -51*x + 289)*(x^4 + 13*x^3 + 57*x^2 + 94*x + 43)*(x^4 -10*x^3 -41*x^2 + 493*x -928)*(x + 4)^4;
T[259,37]=(x -1)^11*(x + 1)^12;
T[259,41]=(x + 6)*(x^2 -12*x + 28)*(x^3 -3*x^2 -36*x -51)*(x^3 + 13*x^2 + 26*x -83)*(x^4 + 3*x^3 -42*x^2 -75*x + 30)*(x^4 + 11*x^3 -4*x^2 -239*x -194)*(x -10)^2*(x + 9)^4;
T[259,43]=(x + 4)*(x^2 + 10*x + 8)*(x^3 -6*x^2 -51*x -71)*(x^3 + 12*x^2 + 39*x + 37)*(x^4 -8*x^3 + 9*x^2 + 31*x -2)*(x^4 + 8*x^3 -97*x^2 -1055*x -2372)*(x -8)^2*(x + 6)^2*(x -2)^2;
T[259,47]=(x + 12)*(x^2 + 6*x -8)*(x^2 + 12*x + 4)*(x^3 -9*x^2 -36*x + 333)*(x^3 + 13*x^2 -2*x -139)*(x^4 -15*x^3 + 18*x^2 + 405*x -1230)*(x^4 -19*x^3 + 110*x^2 -179*x -16)*(x -3)^2*(x + 9)^2;
T[259,53]=(x -10)*(x^2 -6*x + 1)*(x^2 -7*x -94)*(x^3 + 11*x^2 -4*x -211)*(x^3 + 3*x^2 -108*x -543)*(x^4 + x^3 -154*x^2 + 281*x + 1946)*(x^4 -22*x^3 + 165*x^2 -475*x + 367)*(x + 3)^2*(x -1)^2;
T[259,59]=(x + 10)*(x^2 -18*x + 79)*(x^2 -17*x + 34)*(x^3 + 11*x^2 -18*x -197)*(x^3 + 3*x^2 -54*x + 51)*(x^4 + 22*x^3 + 165*x^2 + 475*x + 367)*(x^4 + 5*x^3 -60*x^2 -365*x -500)*(x -8)^2*(x -12)^2;
T[259,61]=(x^2 + 14*x + 32)*(x^3 + 3*x^2 -88*x + 197)*(x^3 + 3*x^2 -60*x -71)*(x^4 -25*x^3 + 204*x^2 -607*x + 454)*(x^4 + 3*x^3 -176*x^2 -243*x + 1226)*(x^2 -8*x -56)*(x -8)^2*(x + 8)^3;
T[259,67]=(x^2 + 17*x + 68)*(x^3 -24*x^2 + 143*x -29)*(x^3 + 12*x^2 -33*x -17)*(x^4 -11*x^3 -141*x^2 + 1090*x + 4615)*(x^4 + 8*x^3 -45*x^2 -365*x -140)*(x -3)^2*(x -8)^2*(x + 4)^3;
T[259,71]=(x^2 -6*x -119)*(x^2 + 5*x -32)*(x^3 -3*x^2 -90*x + 381)*(x^3 + x^2 -30*x + 41)*(x^4 -18*x^3 + 51*x^2 -45*x + 9)*(x^4 -3*x^3 -150*x^2 + 305*x + 4760)*(x )*(x + 15)^2*(x -9)^2;
T[259,73]=(x -2)*(x^2 -68)*(x^3 -4*x^2 -39*x -41)*(x^3 -6*x^2 + 3*x + 19)*(x^4 -18*x^3 -191*x^2 + 3513*x + 866)*(x^4 + 16*x^3 + 39*x^2 -155*x -50)*(x -11)^2*(x + 10)^2*(x + 1)^2;
T[259,79]=(x^2 + 12*x -32)*(x^3 + 3*x^2 -105*x + 109)*(x^3 -5*x^2 -113*x + 461)*(x^4 -x^3 -25*x^2 + 25*x + 40)*(x^4 + 23*x^3 + 111*x^2 -295*x -1640)*(x + 10)^2*(x -4)^5;
T[259,83]=(x^2 -10*x -128)*(x^2 -12*x -92)*(x^3 -4*x^2 -109*x + 239)*(x^3 -6*x^2 -81*x + 159)*(x^4 + 8*x^3 -45*x^2 -365*x -140)*(x^4 + 24*x^3 + 147*x^2 -63*x -1158)*(x )*(x -9)^2*(x + 15)^2;
T[259,89]=(x -16)*(x^2 + 6*x -9)*(x^2 + 7*x + 8)*(x^3 + 23*x^2 -78*x -3053)*(x^3 + 3*x^2 -90*x -381)*(x^4 -39*x^3 + 522*x^2 -2777*x + 4610)*(x^4 + 2*x^3 -423*x^2 -109*x + 38953)*(x -6)^2*(x -4)^2;
T[259,97]=(x^2 -6*x -9)*(x^2 -19*x + 52)*(x^3 -12*x^2 -64*x -64)*(x^3 + 12*x^2 -96*x + 64)*(x^4 + 17*x^3 -96*x^2 -1456*x + 6592)*(x^4 + 22*x^3 + 80*x^2 -352*x -896)*(x -8)^2*(x -4)^3;

T[260,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 + x + 2)*(x^4 + x^2 + 4)*(x + 1)^3*(x -1)^4*(x )^20;
T[260,3]=(x^3 -2*x^2 -8*x + 12)*(x -2)^3*(x^2 -2*x -2)^3*(x^2 -2)^3*(x -1)^4*(x + 3)^4*(x )^4*(x + 2)^7;
T[260,5]=(x^2 -2*x + 5)*(x^2 + 3*x + 5)^2*(x^2 + x + 5)^2*(x -1)^13*(x + 1)^14;
T[260,7]=(x^3 + 2*x^2 -20*x -24)*(x + 2)^2*(x )^2*(x^2 -4*x -4)^3*(x + 1)^4*(x -1)^4*(x + 4)^7*(x -2)^9;
T[260,11]=(x -4)*(x^3 -24*x + 36)*(x + 6)^2*(x -2)^3*(x^2 -4*x + 2)^3*(x^2 + 6*x + 6)^3*(x -6)^4*(x )^4*(x + 2)^8;
T[260,13]=(x^2 -2*x + 13)*(x -1)^17*(x + 1)^18;
T[260,17]=(x^3 -2*x^2 -36*x -24)*(x -6)^2*(x^2 + 4*x -4)^3*(x^2 -12)^3*(x + 6)^4*(x -2)^8*(x + 3)^8;
T[260,19]=(x^3 -8*x^2 -16*x + 164)*(x )*(x + 4)^2*(x + 8)^2*(x^2 + 2*x -26)^3*(x^2 -4*x + 2)^3*(x + 6)^5*(x -2)^6*(x -6)^6;
T[260,23]=(x^3 + 10*x^2 + 24*x + 12)*(x -8)^2*(x^2 -2)^3*(x^2 -6*x + 6)^3*(x + 6)^4*(x )^4*(x -6)^6*(x + 4)^6;
T[260,29]=(x + 10)*(x^3 -10*x^2 + 12*x + 24)*(x + 2)^2*(x + 6)^2*(x^2 + 12*x + 24)^3*(x^2 -32)^3*(x -6)^6*(x -2)^11;
T[260,31]=(x^3 + 12*x^2 + 24*x + 4)*(x )*(x -2)^2*(x -10)^2*(x + 6)^2*(x + 10)^3*(x^2 -12*x + 18)^3*(x^2 -10*x -2)^3*(x -4)^4*(x + 4)^8;
T[260,37]=(x -10)*(x^3 + 2*x^2 -44*x -72)*(x -6)^2*(x + 6)^2*(x^2 -72)^3*(x -2)^4*(x -3)^4*(x + 7)^4*(x + 2)^5*(x + 4)^6;
T[260,41]=(x + 2)*(x^3 + 2*x^2 -36*x + 24)*(x -6)^2*(x^2 + 12*x + 28)^3*(x^2 -12)^3*(x -10)^4*(x + 6)^7*(x )^8;
T[260,43]=(x^3 + 2*x^2 -8*x -12)*(x -4)^2*(x )^2*(x -10)^3*(x -2)^3*(x^2 + 8*x -34)^3*(x^2 -10*x -2)^3*(x + 10)^4*(x + 1)^4*(x + 5)^4;
T[260,47]=(x^3 + 10*x^2 + 12*x -24)*(x + 2)^2*(x -8)^2*(x + 6)^3*(x -4)^3*(x^2 + 4*x -4)^3*(x -3)^4*(x + 12)^4*(x -13)^4*(x -6)^6;
T[260,53]=(x^3 + 18*x^2 + 12*x -648)*(x + 6)^2*(x^2 -108)^3*(x^2 + 12*x -36)^3*(x -12)^4*(x )^4*(x -2)^6*(x -6)^6;
T[260,59]=(x + 8)*(x^3 + 16*x^2 -564)*(x -8)^2*(x -12)^2*(x -10)^2*(x^2 + 6*x -138)^3*(x^2 -12*x + 18)^3*(x + 6)^4*(x -6)^5*(x + 10)^6;
T[260,61]=(x^3 -14*x^2 + 44*x + 8)*(x^2 -4*x -104)^3*(x -8)^4*(x + 2)^4*(x -2)^10*(x + 8)^10;
T[260,67]=(x + 6)*(x^3 -14*x^2 + 20*x + 152)*(x -4)^2*(x -2)^2*(x -10)^2*(x + 12)^2*(x^2 + 8*x -92)^3*(x -14)^4*(x + 4)^5*(x + 2)^10;
T[260,71]=(x + 8)*(x^3 -24*x + 36)*(x + 6)^2*(x -6)^3*(x^2 -6*x + 6)^3*(x^2 -4*x -94)^3*(x + 12)^4*(x + 5)^4*(x -10)^4*(x + 3)^4;
T[260,73]=(x^3 -14*x^2 -124*x + 1784)*(x + 6)^3*(x^2 -72)^3*(x -10)^5*(x + 4)^6*(x + 10)^6*(x -2)^8;
T[260,79]=(x + 16)*(x^3 -8*x^2 -16*x + 32)*(x + 8)^2*(x + 12)^3*(x^2 -72)^3*(x^2 -4*x -104)^3*(x -8)^6*(x + 4)^10;
T[260,83]=(x^3 + 6*x^2 -132*x -936)*(x + 16)^3*(x -6)^3*(x^2 + 12*x + 28)^3*(x -12)^6*(x + 6)^8*(x )^8;
T[260,89]=(x^3 + 2*x^2 -180*x + 216)*(x + 14)^2*(x -2)^3*(x -10)^3*(x^2 + 12*x -12)^3*(x + 6)^10*(x -6)^10;
T[260,97]=(x^3 -26*x^2 + 140*x + 8)*(x + 14)^2*(x + 2)^3*(x^2 + 4*x -28)^3*(x + 10)^4*(x -14)^6*(x -2)^13;

T[261,2]=(x^2 -2*x -1)*(x^3 + 2*x^2 -4*x -7)*(x^2 + x -1)^2*(x^3 -2*x^2 -4*x + 7)^2*(x^2 -x -1)^3*(x^2 + 2*x -1)^3;
T[261,3]=(x^4 -2*x^3 + 5*x^2 -6*x + 9)*(x -1)^2*(x + 1)^3*(x )^18;
T[261,5]=(x^2 + 2*x -4)*(x^3 -16*x -8)*(x -1)^2*(x -2)^2*(x + 2)^2*(x^2 -2*x -4)^2*(x^3 -16*x + 8)^2*(x + 1)^6;
T[261,7]=(x^2 -5)^2*(x^2 + 4*x -1)^3*(x^3 -4*x^2 -x + 8)^3*(x^2 -8)^4;
T[261,11]=(x^2 + 2*x -1)*(x^2 -8*x + 11)*(x^2 + 4*x -1)*(x^2 + 8*x + 11)*(x^3 -8*x^2 + 15*x -4)*(x^2 -4*x -1)^2*(x^3 + 8*x^2 + 15*x + 4)^2*(x^2 -2*x -1)^3;
T[261,13]=(x^3 -4*x^2 -7*x + 26)^3*(x^2 + 2*x -7)^4*(x^2 + 2*x -19)^5;
T[261,17]=(x^2 -2*x -19)*(x^2 -4*x -4)*(x^2 + 2*x -19)*(x^3 + 4*x^2 -27*x -94)*(x + 3)^2*(x^3 -4*x^2 -27*x + 94)^2*(x^2 + 4*x -4)^3*(x -3)^4;
T[261,19]=(x^2 + 10*x + 20)^3*(x^3 + 2*x^2 -20*x + 16)^3*(x )^4*(x -6)^8;
T[261,23]=(x^2 -8*x -4)*(x^2 -2*x -44)*(x^2 + 8*x -4)*(x^2 -4*x -28)*(x^3 + 6*x^2 -4*x -32)*(x^2 + 2*x -44)^2*(x^3 -6*x^2 -4*x + 32)^2*(x^2 + 4*x -28)^3;
T[261,29]=(x + 1)^11*(x -1)^16;
T[261,31]=(x^2 -80)^2*(x^2 + 6*x -36)^3*(x^3 -6*x^2 -4*x + 32)^3*(x^2 -6*x -41)^4;
T[261,37]=(x^2 -6*x + 4)^3*(x^3 -8*x^2 + 8)^3*(x + 4)^12;
T[261,41]=(x^2 + 8*x -56)*(x^3 -2*x^2 -100*x -56)*(x^3 + 2*x^2 -100*x + 56)^2*(x^2 -8*x -56)^3*(x + 2)^4*(x -2)^6;
T[261,43]=(x^2 + 8*x -4)^2*(x^3 + 4*x^2 -96*x -256)^3*(x^2 -10*x + 23)^4*(x -4)^6;
T[261,47]=(x^2 + 2*x -17)*(x^3 -12*x^2 -9*x + 216)*(x^2 -4*x -41)^2*(x^3 + 12*x^2 -9*x -216)^2*(x^2 -2*x -17)^3*(x^2 + 4*x -41)^3;
T[261,53]=(x^2 + 2*x -71)*(x^3 + 8*x^2 -104*x -248)*(x^2 + 18*x + 76)*(x + 8)^2*(x -8)^2*(x^2 -18*x + 76)^2*(x^3 -8*x^2 -104*x + 248)^2*(x^2 -2*x -71)^3;
T[261,59]=(x^2 + 16*x + 44)*(x^2 -16*x + 44)*(x^2 + 4*x -28)*(x^3 -20*x^2 + 108*x -112)*(x^3 + 20*x^2 + 108*x + 112)^2*(x^2 -20)^3*(x^2 -4*x -28)^3;
T[261,61]=(x^2 + 4*x -76)^2*(x^2 + 6*x + 4)^3*(x^3 -4*x^2 -16*x + 56)^3*(x^2 + 4*x -4)^4;
T[261,67]=(x^2 -12*x + 31)^2*(x^2 + 4*x -121)^3*(x^3 -57*x + 52)^3*(x^2 -32)^4;
T[261,71]=(x^2 -12*x + 28)*(x^3 -14*x^2 -60*x + 416)*(x^2 -6*x + 4)*(x^2 + 6*x + 4)^2*(x^2 -80)^2*(x^3 + 14*x^2 -60*x -416)^2*(x^2 + 12*x + 28)^3;
T[261,73]=(x^2 -18*x + 76)^3*(x^3 + 8*x^2 -8)^3*(x + 2)^4*(x -4)^8;
T[261,79]=(x^2 -16*x + 44)^2*(x^2 + 30*x + 220)^3*(x^3 + 2*x^2 -60*x -224)^3*(x^2 + 2*x -1)^4;
T[261,83]=(x^2 + 16*x -16)*(x^2 -12*x -44)*(x^2 + 4*x -28)*(x^2 -16*x -16)*(x^3 -8*x^2 -28*x + 208)*(x^2 + 12*x -44)^2*(x^3 + 8*x^2 -28*x -208)^2*(x^2 -4*x -28)^3;
T[261,89]=(x^2 -8*x -56)*(x^2 + 2*x -179)*(x^2 -2*x -179)*(x^3 -8*x^2 -131*x + 74)*(x + 5)^2*(x^3 + 8*x^2 -131*x -74)^2*(x^2 + 8*x -56)^3*(x -5)^4;
T[261,97]=(x^2 -6*x -236)^3*(x^3 -4*x^2 -72*x -104)^3*(x -8)^4*(x^2 + 8*x -56)^4;

T[262,2]=(x^2 + 2)*(x^20 + 2*x^18 + 2*x^17 + 3*x^16 + 10*x^15 + 6*x^14 + 16*x^13 + 28*x^12 + 24*x^11 + 80*x^10 + 48*x^9 + 112*x^8 + 128*x^7 + 96*x^6 + 320*x^5 + 192*x^4 + 256*x^3 + 512*x^2 + 1024)*(x + 1)^5*(x -1)^5;
T[262,3]=(x + 2)*(x^2 + x -3)*(x^2 -3*x + 1)*(x^2 + 2*x -2)*(x^2 -2)*(x )*(x + 1)^2*(x^10 -x^9 -22*x^8 + 24*x^7 + 157*x^6 -184*x^5 -403*x^4 + 533*x^3 + 222*x^2 -390*x + 67)^2;
T[262,5]=(x^2 + x -1)*(x^2 -2*x -2)*(x^2 + 5*x + 3)*(x^2 -4*x + 2)*(x )*(x^10 -4*x^9 -26*x^8 + 116*x^7 + 155*x^6 -988*x^5 + 138*x^4 + 2384*x^3 -763*x^2 -1856*x + 8)^2*(x + 2)^3;
T[262,7]=(x + 3)*(x + 5)*(x^2 + x -1)*(x^2 -2*x -1)*(x^2 -3*x -1)*(x^2 -4*x + 1)*(x + 1)^2*(x^10 -x^9 -46*x^8 + 36*x^7 + 701*x^6 -376*x^5 -3971*x^4 + 929*x^3 + 7566*x^2 + 738*x -1213)^2;
T[262,11]=(x + 6)*(x -2)*(x^2 -12)*(x^2 -4*x -4)*(x^2 + 7*x + 9)*(x^2 -5*x + 5)*(x^10 -2*x^9 -48*x^8 + 76*x^7 + 829*x^6 -1032*x^5 -6248*x^4 + 6058*x^3 + 19601*x^2 -12860*x -17852)^2*(x )^2;
T[262,13]=(x + 2)*(x -4)*(x^2 + 6*x + 6)*(x^2 + 5*x + 3)*(x^2 -18)*(x^2 -3*x -9)*(x + 3)^2*(x^10 -11*x^9 -4*x^8 + 386*x^7 -1069*x^6 -1056*x^5 + 5897*x^4 -2717*x^3 -6108*x^2 + 4764*x -31)^2;
T[262,17]=(x + 4)*(x + 6)*(x^2 -2*x -2)*(x^2 + 2*x -12)*(x^2 -8*x + 14)*(x^2 + 2*x -4)*(x -4)^2*(x^10 + 2*x^9 -82*x^8 -132*x^7 + 1656*x^6 + 176*x^5 -11104*x^4 + 12032*x^3 + 5376*x^2 -9216*x + 2048)^2;
T[262,19]=(x -3)*(x -7)*(x^2 -8*x + 13)*(x^2 + 2*x -1)*(x^2 + 8*x -4)*(x^10 -110*x^8 -136*x^7 + 4152*x^6 + 9248*x^5 -56832*x^4 -170752*x^3 + 150656*x^2 + 614400*x + 64000)^2*(x + 2)^4;
T[262,23]=(x + 4)*(x + 6)*(x^2 -14*x + 46)*(x^2 + 2*x -12)*(x^2 -12*x + 34)*(x^2 + 6*x + 4)*(x + 2)^2*(x^10 + 10*x^9 -46*x^8 -772*x^7 -1368*x^6 + 11376*x^5 + 52416*x^4 + 71360*x^3 + 18304*x^2 -10240*x + 512)^2;
T[262,29]=(x -3)*(x^2 -6*x + 1)*(x^2 -20)*(x + 6)^2*(x^10 -16*x^9 -28*x^8 + 1560*x^7 -5216*x^6 -32224*x^5 + 193344*x^4 -105856*x^3 -788224*x^2 + 921600*x + 40960)^2*(x )^2*(x + 3)^3;
T[262,31]=(x + 4)*(x -2)*(x^2 -6*x -4)*(x^2 + 4*x -14)*(x^2 + 10*x -2)*(x^2 -2*x -44)*(x + 2)^2*(x^10 -6*x^9 -138*x^8 + 1140*x^7 + 3776*x^6 -58816*x^5 + 117184*x^4 + 545472*x^3 -2745856*x^2 + 4174336*x -2020864)^2;
T[262,37]=(x + 3)*(x + 1)*(x^2 + 6*x -4)*(x^2 -6*x -63)*(x^2 + 10*x + 13)*(x^2 + 6*x -36)*(x + 8)^2*(x^10 -34*x^9 + 346*x^8 + 732*x^7 -38944*x^6 + 258400*x^5 -107200*x^4 -6420928*x^3 + 33150976*x^2 -69950464*x + 55889408)^2;
T[262,41]=(x -11)*(x + 9)*(x^2 -9*x -9)*(x^2 -9*x -41)*(x^2 -6*x + 1)*(x^2 + 6*x -3)*(x + 3)^2*(x^10 + 13*x^9 -100*x^8 -1474*x^7 + 2451*x^6 + 42952*x^5 -63507*x^4 -418677*x^3 + 956032*x^2 -92192*x -544027)^2;
T[262,43]=(x -12)*(x^2 -7*x + 11)*(x^2 + 8*x -16)*(x^2 + 9*x -9)*(x -3)^2*(x^10 -9*x^9 -270*x^8 + 1512*x^7 + 28413*x^6 -43240*x^5 -1200559*x^4 -2158907*x^3 + 6257138*x^2 + 9962386*x -13498661)^2*(x )^3;
T[262,47]=(x^2 + 8*x -16)*(x^2 + 4*x -76)*(x^2 + 8*x -36)*(x -4)^2*(x -10)^2*(x^10 + 6*x^9 -218*x^8 -1764*x^7 + 10960*x^6 + 131328*x^5 + 39840*x^4 -2784384*x^3 -7409920*x^2 + 4899584*x + 25248256)^2*(x )^2;
T[262,53]=(x -10)*(x + 12)*(x^2 -6*x -18)*(x^2 + 8*x -36)*(x^2 + 8*x -34)*(x^2 -8*x -4)*(x + 9)^2*(x^10 -30*x^9 + 263*x^8 -36*x^7 -7753*x^6 + 10242*x^5 + 90377*x^4 -48288*x^3 -420568*x^2 -300576*x -57328)^2;
T[262,59]=(x -6)*(x + 4)*(x^2 -5*x -145)*(x^2 -21*x + 107)*(x^2 -2*x -26)*(x^2 + 8*x -34)*(x -1)^2*(x^10 + 5*x^9 -202*x^8 -968*x^7 + 12461*x^6 + 62456*x^5 -226347*x^4 -1328161*x^3 -406374*x^2 + 2689190*x -272185)^2;
T[262,61]=(x -8)*(x^2 + 13*x + 31)*(x^2 -192)*(x^2 -7*x -69)*(x + 15)^2*(x^10 -51*x^9 + 984*x^8 -8138*x^7 + 11247*x^6 + 250360*x^5 -1330639*x^4 -134629*x^3 + 12807464*x^2 -11246072*x -32394611)^2*(x + 8)^3;
T[262,67]=(x + 1)*(x -7)*(x^2 -4*x -48)*(x^2 + 2*x -17)*(x^2 + 12*x -39)*(x + 6)^2*(x -8)^2*(x^10 + 10*x^9 -112*x^8 -928*x^7 + 3680*x^6 + 25312*x^5 -35136*x^4 -234752*x^3 + 62976*x^2 + 643072*x + 217088)^2;
T[262,71]=(x + 10)*(x + 8)*(x^2 -2*x -2)*(x^2 + 4*x -94)*(x^2 -6*x -4)*(x^2 -10*x -100)*(x -10)^2*(x^10 -324*x^8 + 384*x^7 + 34224*x^6 -69184*x^5 -1337408*x^4 + 3824384*x^3 + 13857024*x^2 -56783872*x + 43725824)^2;
T[262,73]=(x -6)*(x^2 -26*x + 166)*(x^2 + 14*x + 36)*(x^2 + 22*x + 116)*(x^2 -8*x -34)*(x^10 + 14*x^9 -380*x^8 -4408*x^7 + 60080*x^6 + 453504*x^5 -4729728*x^4 -13659648*x^3 + 151739392*x^2 -151855104*x -45719552)^2*(x -4)^3;
T[262,79]=(x + 4)*(x + 14)*(x^2 -14*x + 22)*(x^2 + 24*x + 126)*(x^2 -12*x -16)*(x + 8)^2*(x^10 -24*x^9 -128*x^8 + 6952*x^7 -28016*x^6 -531776*x^5 + 4428032*x^4 + 4148736*x^3 -141518848*x^2 + 468480000*x -467968000)^2*(x )^2;
T[262,83]=(x + 15)*(x + 11)*(x^2 -8*x -4)*(x^2 + 2*x -97)*(x^2 -8*x -59)*(x + 2)^2*(x -4)^2*(x^10 + 22*x^9 -4*x^8 -2808*x^7 -13248*x^6 + 68384*x^5 + 442432*x^4 -380672*x^3 -3799808*x^2 -1224704*x + 5208064)^2;
T[262,89]=(x -13)*(x + 15)*(x^2 -2*x -11)*(x^2 + 18*x + 49)*(x^2 -12*x -44)*(x + 11)^2*(x -10)^2*(x^10 -14*x^9 -305*x^8 + 4212*x^7 + 17431*x^6 -272542*x^5 + 383169*x^4 + 1705112*x^3 -1486936*x^2 -5165760*x -2616560)^2;
T[262,97]=(x^2 + 8*x -16)*(x^2 + 8*x -192)*(x^2 -4*x -16)*(x + 8)^2*(x -12)^2*(x + 12)^2*(x^10 -4*x^9 -506*x^8 + 2096*x^7 + 71320*x^6 -306768*x^5 -2406528*x^4 + 11060160*x^3 -12157824*x^2 + 910592*x + 1846784)^2;

T[263,2]=(x^5 + 2*x^4 -3*x^3 -6*x^2 + 1)*(x^17 -x^16 -26*x^15 + 24*x^14 + 274*x^13 -225*x^12 -1505*x^11 + 1041*x^10 + 4613*x^9 -2467*x^8 -7815*x^7 + 2761*x^6 + 6709*x^5 -974*x^4 -2284*x^3 -239*x^2 + 135*x + 19);
T[263,3]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -7*x + 1)*(x^17 -7*x^16 -14*x^15 + 191*x^14 -93*x^13 -1956*x^12 + 2598*x^11 + 9587*x^10 -17149*x^9 -23845*x^8 + 50477*x^7 + 30119*x^6 -69326*x^5 -20491*x^4 + 39160*x^3 + 7677*x^2 -4259*x -119);
T[263,5]=(x^5 + 3*x^4 -x^3 -7*x^2 -2*x + 1)*(x^17 -3*x^16 -61*x^15 + 185*x^14 + 1458*x^13 -4495*x^12 -17168*x^11 + 54320*x^10 + 102152*x^9 -337584*x^8 -280480*x^7 + 1002880*x^6 + 291584*x^5 -1189120*x^4 -151040*x^3 + 473088*x^2 + 65536*x -4096);
T[263,7]=(x^5 + 5*x^4 + 4*x^3 -5*x^2 -5*x -1)*(x^17 -7*x^16 -56*x^15 + 477*x^14 + 905*x^13 -12145*x^12 + 584*x^11 + 144260*x^10 -136136*x^9 -814096*x^8 + 1150112*x^7 + 1950144*x^6 -3208448*x^5 -1505280*x^4 + 2396160*x^3 + 698368*x^2 -483328*x -151552);
T[263,11]=(x^5 -2*x^4 -22*x^3 -13*x^2 + 24*x + 17)*(x^17 + 2*x^16 -109*x^15 -179*x^14 + 4639*x^13 + 5830*x^12 -98806*x^11 -85828*x^10 + 1119162*x^9 + 563445*x^8 -6608205*x^7 -1222544*x^6 + 18228623*x^5 -405279*x^4 -17443186*x^3 -1627778*x^2 + 3900240*x + 800389);
T[263,13]=(x^5 + 15*x^4 + 79*x^3 + 167*x^2 + 96*x -53)*(x^17 -27*x^16 + 232*x^15 + 48*x^14 -12494*x^13 + 65067*x^12 + 39521*x^11 -1344086*x^10 + 3360234*x^9 + 5503401*x^8 -36994803*x^7 + 35699891*x^6 + 94564718*x^5 -233875954*x^4 + 105306969*x^3 + 161866750*x^2 -192628894*x + 58427707);
T[263,17]=(x^5 + 10*x^4 + x^3 -141*x^2 -209*x + 73)*(x^17 -16*x^16 -44*x^15 + 1805*x^14 -3555*x^13 -71666*x^12 + 254994*x^11 + 1295070*x^10 -5616359*x^9 -12910209*x^8 + 55369741*x^7 + 94033806*x^6 -257920000*x^5 -501645679*x^4 + 342591166*x^3 + 1273189194*x^2 + 934563785*x + 218756293);
T[263,19]=(x^5 + 5*x^4 -15*x^3 -60*x^2 + 83*x + 23)*(x^17 -5*x^16 -175*x^15 + 792*x^14 + 12017*x^13 -47451*x^12 -414018*x^11 + 1351100*x^10 + 7579200*x^9 -19133616*x^8 -70128768*x^7 + 130403200*x^6 + 270924928*x^5 -405303296*x^4 -309894656*x^3 + 408429568*x^2 + 79898624*x -106852352);
T[263,23]=(x^5 -21*x^3 -2*x^2 + 82*x -61)*(x^17 + 4*x^16 -176*x^15 -638*x^14 + 12662*x^13 + 38985*x^12 -490547*x^11 -1172851*x^10 + 11188576*x^9 + 18208775*x^8 -151551255*x^7 -135686852*x^6 + 1145395574*x^5 + 375717224*x^4 -4118339123*x^3 -384797197*x^2 + 5304596566*x + 1174828531);
T[263,29]=(x^5 + 2*x^4 -85*x^3 -132*x^2 + 1160*x + 1081)*(x^17 + 12*x^16 -215*x^15 -3006*x^14 + 15648*x^13 + 296137*x^12 -309568*x^11 -14611680*x^10 -14684816*x^9 + 378275456*x^8 + 860975584*x^7 -4803544960*x^6 -16134646016*x^5 + 20933783808*x^4 + 114937403904*x^3 + 47776086016*x^2 -144573730816*x -79722917888);
T[263,31]=(x^5 + 5*x^4 -25*x^3 -193*x^2 -354*x -167)*(x^17 -11*x^16 -288*x^15 + 3764*x^14 + 24650*x^13 -463195*x^12 -101847*x^11 + 24003692*x^10 -72811056*x^9 -419740925*x^8 + 2636633773*x^7 -2046276827*x^6 -16421304338*x^5 + 41595513656*x^4 -3140471187*x^3 -106284838474*x^2 + 142678764206*x -59662406287);
T[263,37]=(x^5 + 9*x^4 -26*x^3 -383*x^2 -759*x -121)*(x^17 -17*x^16 -157*x^15 + 3770*x^14 + 4052*x^13 -311909*x^12 + 457199*x^11 + 12168212*x^10 -31007173*x^9 -236109065*x^8 + 697284599*x^7 + 2295709945*x^6 -6656510053*x^5 -10503069980*x^4 + 25021036637*x^3 + 19722188402*x^2 -26350795669*x -19316703953);
T[263,41]=(x^5 + 6*x^4 -60*x^3 -509*x^2 -1058*x -541)*(x^17 -2*x^16 -352*x^15 + 461*x^14 + 48550*x^13 -21145*x^12 -3349996*x^11 -2001884*x^10 + 121121000*x^9 + 202758320*x^8 -2089472288*x^7 -5679651456*x^6 + 11501394432*x^5 + 47722707712*x^4 + 8396347904*x^3 -100387431424*x^2 -101218050048*x -26576531456);
T[263,43]=(x^5 -x^4 -131*x^3 -282*x^2 + 1261*x + 2873)*(x^17 -9*x^16 -418*x^15 + 3953*x^14 + 65499*x^13 -662174*x^12 -4796694*x^11 + 53475719*x^10 + 169586911*x^9 -2210454009*x^8 -2815608783*x^7 + 47004385969*x^6 + 21581987950*x^5 -489145681201*x^4 -89821360172*x^3 + 2032928238709*x^2 + 107983497549*x -1544754743047);
T[263,47]=(x^5 -3*x^4 -130*x^3 + 286*x^2 + 3873*x -8795)*(x^17 -3*x^16 -294*x^15 + 1310*x^14 + 31645*x^13 -184847*x^12 -1458632*x^11 + 11260404*x^10 + 21543696*x^9 -295272896*x^8 + 222791264*x^7 + 2589678656*x^6 -4300376192*x^5 -7750205440*x^4 + 16653263872*x^3 + 3657278464*x^2 -11171762176*x + 1552543744);
T[263,53]=(x^5 -9*x^4 -41*x^3 + 564*x^2 -1253*x -149)*(x^17 -7*x^16 -353*x^15 + 2134*x^14 + 43263*x^13 -187811*x^12 -2490466*x^11 + 6370404*x^10 + 67811808*x^9 -108440784*x^8 -906812320*x^7 + 1047568384*x^6 + 5906731008*x^5 -5578051072*x^4 -17289616896*x^3 + 13468073984*x^2 + 17698762752*x -9668227072);
T[263,59]=(x^5 -9*x^4 -242*x^3 + 2314*x^2 + 11729*x -116737)*(x^17 + 17*x^16 -300*x^15 -5390*x^14 + 35217*x^13 + 635629*x^12 -2199574*x^11 -35405296*x^10 + 75751600*x^9 + 980074016*x^8 -1150465024*x^7 -13719694592*x^6 + 2539191936*x^5 + 90991089408*x^4 + 65455093760*x^3 -182967002112*x^2 -245097814016*x -59947053056);
T[263,61]=(x^5 + x^4 -288*x^3 + 279*x^2 + 18749*x -33395)*(x^17 -x^16 -427*x^15 + 384*x^14 + 73098*x^13 -75697*x^12 -6391735*x^11 + 9319080*x^10 + 301235035*x^9 -657033611*x^8 -7304558621*x^7 + 22958569417*x^6 + 69237584449*x^5 -325273922002*x^4 + 78501844703*x^3 + 823748359774*x^2 -453289236121*x -541694709559);
T[263,67]=(x^5 + 5*x^4 -168*x^3 -681*x^2 + 1509*x + 6109)*(x^17 -19*x^16 -300*x^15 + 6733*x^14 + 37625*x^13 -1015627*x^12 -2667720*x^11 + 84921472*x^10 + 125966656*x^9 -4276034304*x^8 -4422207232*x^7 + 131313564160*x^6 + 112899976704*x^5 -2364967361024*x^4 -1727072882176*x^3 + 22458338648064*x^2 + 10656143593472*x -86317409865728);
T[263,71]=(x^5 -19*x^4 -2*x^3 + 1871*x^2 -11347*x + 18467)*(x^17 + 17*x^16 -536*x^15 -10669*x^14 + 90227*x^13 + 2483501*x^12 -2586406*x^11 -262399892*x^10 -673898528*x^9 + 11913457568*x^8 + 58827579296*x^7 -138100656256*x^6 -1250437461760*x^5 -1867217482752*x^4 + 338469360640*x^3 + 1270429473792*x^2 + 521464317952*x + 63452090368);
T[263,73]=(x^5 + 37*x^4 + 468*x^3 + 2139*x^2 + 307*x -12847)*(x^17 -61*x^16 + 1358*x^15 -8455*x^14 -186259*x^13 + 4469847*x^12 -39355306*x^11 + 97165768*x^10 + 1271659512*x^9 -15246204064*x^8 + 82943672640*x^7 -271305457152*x^6 + 551377579264*x^5 -655274495744*x^4 + 360638556672*x^3 + 11891885056*x^2 -60532969472*x -6967545856);
T[263,79]=(x^5 -11*x^4 -19*x^3 + 606*x^2 -2299*x + 2567)*(x^17 -x^16 -571*x^15 + 928*x^14 + 126825*x^13 -271411*x^12 -14212714*x^11 + 36974972*x^10 + 861494608*x^9 -2573528656*x^8 -27805105920*x^7 + 89921912256*x^6 + 440415612928*x^5 -1424662194432*x^4 -3148881370624*x^3 + 9543928038400*x^2 + 7548726611968*x -21338384871424);
T[263,83]=(x^5 + 12*x^4 -48*x^3 -581*x^2 -164*x + 2963)*(x^17 + 16*x^16 -571*x^15 -10257*x^14 + 118157*x^13 + 2654210*x^12 -8856952*x^11 -351126618*x^10 -325279338*x^9 + 24400848811*x^8 + 94172030683*x^7 -765272779106*x^6 -5445512899171*x^5 + 1797362780395*x^4 + 100367354195984*x^3 + 299102231388336*x^2 + 277011301074024*x -4550496948581);
T[263,89]=(x^5 + 12*x^4 -181*x^3 -2933*x^2 -8277*x + 11839)*(x^17 -10*x^16 -526*x^15 + 5331*x^14 + 102491*x^13 -1077518*x^12 -9375536*x^11 + 105836300*x^10 + 411315745*x^9 -5363239527*x^8 -7304910839*x^7 + 136638377404*x^6 + 1230519946*x^5 -1533625640185*x^4 + 861981391400*x^3 + 4720032810568*x^2 + 846863352265*x -1234547571617);
T[263,97]=(x^5 + 50*x^4 + 987*x^3 + 9599*x^2 + 45903*x + 86147)*(x^17 -114*x^16 + 5457*x^15 -136889*x^14 + 1685713*x^13 -751889*x^12 -279680972*x^11 + 3644929892*x^10 -10968826152*x^9 -172937461696*x^8 + 1886808591264*x^7 -4590448437568*x^6 -32319025691520*x^5 + 230600985241856*x^4 -326816986925568*x^3 -1066988997925888*x^2 + 3047415389546496*x -673423895810048);

T[264,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2*(x )^32;
T[264,3]=(x^2 + 3*x + 3)*(x^4 -x^3 + 2*x^2 -3*x + 9)*(x^2 -x + 3)^2*(x^2 + x + 3)^4*(x -1)^11*(x + 1)^12;
T[264,5]=(x -4)*(x^2 -3*x -2)^2*(x + 4)^3*(x )^4*(x + 3)^6*(x + 2)^7*(x -1)^8*(x -2)^8;
T[264,7]=(x^2 + 2*x -16)^2*(x + 4)^3*(x )^3*(x -4)^5*(x -2)^10*(x + 2)^16;
T[264,11]=(x^2 -4*x + 11)*(x -1)^19*(x + 1)^20;
T[264,13]=(x -2)*(x^2 + 2*x -16)^2*(x -6)^3*(x + 6)^3*(x )^4*(x + 4)^7*(x + 2)^8*(x -4)^11;
T[264,17]=(x -4)^2*(x + 4)^2*(x + 6)^6*(x -6)^6*(x -2)^9*(x + 2)^16;
T[264,19]=(x + 8)*(x + 2)^2*(x + 6)^2*(x -8)^5*(x -4)^6*(x + 4)^9*(x )^16;
T[264,23]=(x + 2)*(x -1)^2*(x^2 -9*x + 16)^2*(x -6)^3*(x )^3*(x + 8)^4*(x -8)^4*(x + 6)^4*(x -4)^4*(x + 3)^4*(x + 1)^8;
T[264,29]=(x -2)*(x^2 + 2*x -16)^2*(x -10)^3*(x + 8)^4*(x + 6)^6*(x -6)^9*(x )^14;
T[264,31]=(x + 7)^2*(x^2 + 7*x + 8)^2*(x -5)^4*(x -8)^5*(x -7)^8*(x + 8)^9*(x )^9;
T[264,37]=(x + 6)^2*(x -10)^2*(x^2 + 11*x + 26)^2*(x + 2)^4*(x + 10)^4*(x + 1)^6*(x -3)^8*(x -6)^11;
T[264,41]=(x -8)^2*(x + 10)^2*(x -4)^2*(x^2 -6*x -8)^2*(x -6)^4*(x + 2)^4*(x -2)^4*(x + 6)^5*(x )^6*(x + 8)^8;
T[264,43]=(x -6)^2*(x + 2)^2*(x -10)^2*(x^2 + 6*x -8)^2*(x -8)^3*(x + 8)^3*(x + 10)^4*(x )^4*(x + 6)^8*(x -4)^9;
T[264,47]=(x -6)*(x + 4)*(x + 12)^3*(x + 2)^3*(x + 6)^4*(x + 8)^4*(x )^9*(x -8)^16;
T[264,53]=(x + 12)*(x + 8)*(x -14)^2*(x^2 -8*x -52)^2*(x -4)^3*(x )^3*(x + 2)^4*(x -6)^5*(x -2)^5*(x + 6)^13;
T[264,59]=(x + 1)^2*(x + 8)^2*(x^2 + 5*x -100)^2*(x + 12)^3*(x -4)^3*(x + 4)^4*(x -3)^4*(x -12)^5*(x )^6*(x -5)^8;
T[264,61]=(x -2)*(x -10)^2*(x^2 + 6*x -8)^2*(x + 8)^3*(x -4)^3*(x -8)^3*(x + 2)^3*(x -6)^4*(x + 4)^5*(x + 14)^5*(x -12)^8;
T[264,67]=(x + 5)^2*(x^2 -15*x + 52)^2*(x -12)^3*(x + 1)^4*(x + 12)^5*(x -4)^6*(x + 7)^8*(x + 4)^9;
T[264,71]=(x + 10)*(x -12)*(x + 8)*(x -10)*(x -3)^2*(x^2 + 5*x -32)^2*(x -2)^3*(x + 12)^3*(x -6)^3*(x -8)^4*(x -15)^4*(x )^6*(x + 3)^8;
T[264,73]=(x -10)^2*(x -16)^2*(x^2 -2*x -16)^2*(x -6)^4*(x + 4)^4*(x + 14)^5*(x -2)^5*(x + 6)^7*(x -4)^8;
T[264,79]=(x -16)*(x + 8)^2*(x + 2)^2*(x^2 + 14*x + 32)^2*(x -14)^3*(x -10)^3*(x + 4)^8*(x -2)^9*(x + 10)^9;
T[264,83]=(x + 2)^2*(x^2 -10*x + 8)^2*(x + 4)^3*(x -16)^4*(x -6)^4*(x -12)^5*(x + 12)^5*(x -4)^6*(x + 6)^8;
T[264,89]=(x^2 + 7*x -26)^2*(x + 14)^4*(x + 9)^4*(x -10)^8*(x -15)^10*(x + 6)^11;
T[264,97]=(x^2 -27*x + 178)^2*(x + 14)^4*(x -14)^4*(x -2)^7*(x + 2)^8*(x + 7)^14;

T[265,2]=(x^2 + 2*x -1)*(x^2 + x -3)*(x^2 + x -5)*(x^2 -3)*(x^2 + x -1)*(x^2 -3*x + 1)*(x^2 -2*x -1)^2*(x^3 + x^2 -3*x -1)^2*(x + 1)^3;
T[265,3]=(x^2 + 3*x + 1)*(x^2 + x -1)*(x^2 + 2*x -1)*(x^2 -x -3)*(x^4 + 2*x^3 -5*x^2 -4*x + 4)*(x^2 + x -5)*(x )*(x + 3)^2*(x -2)^2*(x^3 -3*x^2 -x + 1)^2;
T[265,5]=(x^6 + 2*x^5 + 11*x^4 + 16*x^3 + 55*x^2 + 50*x + 125)*(x^2 + 5)*(x -1)^8*(x + 1)^9;
T[265,7]=(x -2)*(x^2 + 4*x -1)*(x^2 + 4*x -4)*(x^2 -4*x -1)*(x^4 -4*x^3 -6*x^2 + 24*x + 8)*(x^2 -2*x -2)*(x + 3)^2*(x + 1)^2*(x + 4)^2*(x^3 -4*x^2 + 4)^2;
T[265,11]=(x^2 -4*x -8)*(x^4 -4*x^3 -20*x^2 + 64*x + 32)*(x -2)^2*(x^3 + 4*x^2 -4*x -20)^2*(x )^3*(x + 5)^4*(x -3)^4;
T[265,13]=(x + 6)*(x^2 -21)*(x^2 -2*x -7)*(x^2 -12)*(x^2 + 4*x -9)*(x^4 + 2*x^3 -27*x^2 -92*x -68)*(x^2 -2*x -19)*(x + 3)^2*(x -1)^8;
T[265,17]=(x + 6)*(x^2 -3*x -9)*(x^2 -3*x -27)*(x^2 -2*x -7)*(x^2 -x -1)*(x^4 + 2*x^3 -51*x^2 -140*x + 196)*(x^2 + 3*x -3)*(x -2)^2*(x + 3)^2*(x^3 + 5*x^2 -5*x -17)^2;
T[265,19]=(x + 2)*(x^2 + 2*x -2)*(x^2 + 2*x -1)*(x^2 -13)*(x^4 -14*x^3 + 57*x^2 -24*x -178)*(x^2 + 8*x + 11)*(x + 7)^2*(x -3)^2*(x + 5)^2*(x^3 -11*x^2 + 37*x -37)^2;
T[265,23]=(x + 8)*(x^2 -8*x + 4)*(x^2 + 11*x + 19)*(x^2 -x -31)*(x^2 + 10*x + 7)*(x^2 -x -3)*(x^4 -14*x^3 + 59*x^2 -76*x -4)*(x^2 + 7*x + 7)*(x -7)^2*(x^3 -3*x^2 -31*x -29)^2;
T[265,29]=(x -2)*(x^2 -12*x + 24)*(x^2 + 10*x + 17)*(x^2 -6*x -12)*(x^2 -2*x -12)*(x^4 + 2*x^3 -95*x^2 -152*x + 1808)*(x^2 -2*x -4)*(x^2 + 2*x -4)*(x + 7)^2*(x^3 + 5*x^2 -37*x -61)^2;
T[265,31]=(x -10)*(x^2 + 6*x + 6)*(x^2 + 6*x -36)*(x^2 + 2*x -4)*(x^2 -6*x -4)*(x^4 -42*x^2 + 56*x + 8)*(x^2 -2*x -20)*(x -4)^2*(x + 6)^2*(x^3 + 2*x^2 -76*x + 116)^2;
T[265,37]=(x^2 + 4*x -76)*(x^2 + 10*x -7)*(x^2 -8*x -4)*(x^2 -4*x -44)*(x^4 + 14*x^3 + 61*x^2 + 84*x + 4)*(x^2 -84)*(x -5)^2*(x^3 + 5*x^2 -89*x -353)^2*(x -2)^3;
T[265,41]=(x + 6)*(x^2 -45)*(x^2 + 6*x -11)*(x^2 + 4*x -17)*(x^2 -12*x + 28)*(x^2 -12)*(x -6)^2*(x + 3)^2*(x^2 -4*x -4)^2*(x^3 + 10*x^2 + 20*x -8)^2;
T[265,43]=(x^2 + 5*x + 1)*(x^2 -9*x + 17)*(x^2 + 18*x + 78)*(x^2 -8)*(x^4 + 16*x^3 -74*x^2 -1984*x -6256)*(x^2 -23*x + 131)*(x^2 -9*x + 19)*(x^3 -18*x^2 + 24*x + 556)^2*(x + 2)^3;
T[265,47]=(x^2 -18*x + 78)*(x^2 -13*x + 39)*(x^2 + 12*x + 28)*(x^2 -7*x + 7)*(x^4 + 4*x^3 -118*x^2 -616*x + 392)*(x^2 -13*x + 41)*(x^2 -3*x + 1)*(x^3 + 10*x^2 -4*x -8)^2*(x + 2)^3;
T[265,53]=(x -1)^12*(x + 1)^13;
T[265,59]=(x -4)*(x^2 + 5*x -75)*(x^2 -15*x + 9)*(x^2 + 8*x -32)*(x^4 -12*x^3 + 4*x^2 + 192*x -256)*(x^2 -3*x + 1)*(x^2 + x -11)*(x + 10)^2*(x + 2)^2*(x^3 -2*x^2 -60*x + 200)^2;
T[265,61]=(x -10)*(x^2 -12*x + 28)*(x^2 -9*x -41)*(x^2 -27*x + 179)*(x^2 + 4*x -44)*(x^2 + 9*x + 9)*(x^4 + 24*x^3 + 16*x^2 -2880*x -16144)*(x^2 + 7*x -35)*(x + 8)^2*(x^3 + 10*x^2 -56*x -556)^2;
T[265,67]=(x^2 -12*x + 4)*(x^2 + 16*x + 12)*(x^2 -12*x -44)*(x^2 + 8*x -4)*(x^4 -8*x^3 -80*x^2 + 128*x + 368)*(x^2 -12*x -12)*(x )*(x + 12)^2*(x + 10)^2*(x^3 -6*x^2 -72*x -108)^2;
T[265,71]=(x + 2)*(x^2 + 6*x -18)*(x^2 + 25*x + 151)*(x^2 + 10*x + 23)*(x^2 -7*x + 9)*(x^4 -30*x^3 + 321*x^2 -1472*x + 2462)*(x^2 + 11*x -31)*(x^2 -17*x + 71)*(x -1)^2*(x^3 + 5*x^2 -105*x + 277)^2;
T[265,73]=(x -14)*(x^2 + 7*x -89)*(x^2 -x -31)*(x^2 -x -29)*(x^2 + 20*x + 68)*(x^2 + 3*x -3)*(x + 4)^2*(x + 2)^2*(x^2 + 12*x + 4)^2*(x^3 -6*x^2 -28*x -4)^2;
T[265,79]=(x + 10)*(x^2 + 4*x -176)*(x^2 + 6*x + 6)*(x^2 -16*x -16)*(x^2 -2*x -161)*(x^4 -10*x^3 -119*x^2 + 944*x -1394)*(x^2 -4*x -80)*(x -8)^2*(x + 1)^2*(x^3 + 7*x^2 -77*x + 131)^2;
T[265,83]=(x -8)*(x^2 -20*x + 87)*(x^2 + 18*x + 63)*(x^2 + 12*x -12)*(x^4 + 10*x^3 -53*x^2 -572*x -1052)*(x^2 -28*x + 191)*(x + 1)^2*(x + 9)^2*(x -3)^2*(x^3 -27*x^2 + 213*x -457)^2;
T[265,89]=(x + 2)*(x^2 + 12*x + 24)*(x^2 + 15*x + 51)*(x^2 + 11*x + 27)*(x^4 -20*x^3 + 100*x^2 -512)*(x^2 + 11*x + 19)*(x^2 + 7*x + 11)*(x -10)^2*(x + 14)^2*(x^3 + 2*x^2 -212*x + 1048)^2;
T[265,97]=(x -10)*(x^2 -108)*(x^2 + 24*x + 131)*(x^2 + 2*x -179)*(x^2 + 14*x + 29)*(x^2 + 2*x -127)*(x^4 -2*x^3 -51*x^2 -36*x + 284)*(x^2 + 8*x -5)*(x -1)^2*(x^3 + x^2 -133*x -137)^2;

T[266,2]=(x^4 + x^3 + x^2 + 2*x + 4)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x^6 -2*x^5 + 2*x^4 -x^3 + 4*x^2 -8*x + 8)*(x^2 + 2)^2*(x -1)^7*(x + 1)^8;
T[266,3]=(x^2 -x -3)*(x^2 -x -7)*(x^3 + x^2 -7*x + 4)*(x -1)^2*(x + 1)^2*(x^2 + 3*x -1)^2*(x^2 + 3*x + 1)^2*(x^3 -3*x^2 -x + 4)^2*(x^2 -3*x + 1)^3*(x + 2)^6;
T[266,5]=(x^2 -x -3)*(x^2 + x -7)*(x^2 -x -11)*(x^3 -5*x^2 + 3*x + 2)*(x + 4)^2*(x^2 -5)^2*(x^3 + 2*x^2 -5*x -2)^2*(x -1)^4*(x -3)^4*(x + 3)^4*(x )^4;
T[266,7]=(x^2 -3*x + 7)*(x^2 + x + 7)^3*(x -1)^14*(x + 1)^15;
T[266,11]=(x^2 -7*x + 11)*(x^2 -3*x -5)*(x^3 -3*x^2 -25*x + 76)*(x -2)^2*(x + 6)^2*(x^2 + x -1)^2*(x^2 + 9*x + 19)^2*(x^3 -7*x^2 + 11*x -4)^2*(x )^2*(x^2 + 5*x + 3)^3*(x -3)^4;
T[266,13]=(x^2 + 2*x -28)*(x^2 -6*x -4)*(x^2 -6*x + 4)*(x^3 + 4*x^2 -16*x -8)*(x -5)^2*(x^2 + 4*x -9)^2*(x^3 + 2*x^2 -5*x -2)^2*(x -1)^4*(x + 1)^6*(x + 4)^6;
T[266,17]=(x^2 + 4*x -16)*(x^3 -6*x^2 -40*x + 224)*(x + 4)^2*(x -6)^2*(x^2 -x -11)^2*(x^2 + 3*x -9)^2*(x^2 + 7*x + 9)^2*(x^3 -7*x^2 -11*x + 106)^2*(x )^2*(x -3)^4*(x + 3)^4;
T[266,19]=(x^2 -2*x + 19)*(x + 1)^15*(x -1)^20;
T[266,23]=(x^2 -2*x -44)*(x^2 + 6*x -20)*(x^2 + 2*x -12)*(x^3 + 2*x^2 -20*x -32)*(x -3)^2*(x + 1)^2*(x^2 + 2*x -19)^2*(x^3 -14*x^2 + 53*x -56)^2*(x )^6*(x + 3)^8;
T[266,29]=(x^2 -5*x -1)*(x^2 + 11*x + 19)*(x^2 + 9*x -9)*(x^3 -5*x^2 -27*x + 38)*(x + 5)^2*(x + 6)^2*(x -9)^2*(x^2 -5*x + 5)^2*(x^2 + 9*x + 19)^2*(x^3 + 3*x^2 -73*x -278)^2*(x^2 -9*x -9)^2*(x -6)^4;
T[266,31]=(x^2 -8*x -4)*(x^2 -52)*(x^3 -4*x^2 -44*x + 64)*(x -10)^2*(x + 8)^2*(x^2 -5*x -5)^2*(x^2 + x -101)^2*(x^3 + 11*x^2 + 25*x + 16)^2*(x^2 + x -3)^2*(x + 4)^8;
T[266,37]=(x^2 -3*x -5)*(x^2 -3*x -9)*(x^2 -x -29)*(x^3 -7*x^2 -19*x + 86)*(x + 2)^2*(x^2 + 14*x + 29)^2*(x^2 + 8*x -29)^2*(x^3 -43*x + 106)^2*(x^2 -13)^2*(x -2)^8;
T[266,41]=(x^2 + 5*x -55)*(x^2 -x -3)*(x^2 + 3*x -63)*(x^3 + 7*x^2 + 11*x -2)*(x + 8)^2*(x -6)^2*(x^2 -3*x + 1)^2*(x^2 -9*x -11)^2*(x^3 + 7*x^2 -151*x -998)^2*(x^2 -5*x + 3)^2*(x )^2*(x + 6)^4;
T[266,43]=(x^2 + 13*x + 41)*(x^2 -15*x + 49)*(x^2 + 9*x + 17)*(x^3 + x^2 -35*x -28)*(x -4)^2*(x^2 -8*x -4)^2*(x^3 + 4*x^2 -20*x -16)^2*(x + 2)^4*(x + 10)^4*(x + 1)^4*(x -8)^4;
T[266,47]=(x^2 -3*x -27)*(x^2 + 15*x + 49)*(x^2 + x -11)*(x^3 + 11*x^2 + 33*x + 16)*(x -8)^2*(x + 12)^2*(x^2 -6*x -11)^2*(x^2 -125)^2*(x^3 -8*x^2 -29*x -16)^2*(x^2 + 2*x -51)^2*(x )^2*(x + 3)^4;
T[266,53]=(x^2 -x -81)*(x^2 + 5*x -1)*(x^2 + 25*x + 155)*(x^3 -3*x^2 -63*x + 238)*(x -6)^2*(x + 1)^2*(x + 3)^2*(x^2 -3*x -9)^2*(x^2 + 9*x -11)^2*(x^3 + x^2 -31*x -2)^2*(x^2 + 3*x -27)^2*(x -12)^4;
T[266,59]=(x^2 + 11*x + 19)*(x^2 + 13*x + 39)*(x^2 -7*x -53)*(x^3 + 3*x^2 -45*x -108)*(x -15)^2*(x -9)^2*(x^2 -20*x + 95)^2*(x^2 + 12*x -9)^2*(x^3 + 10*x^2 + x -124)^2*(x^2 -2*x -51)^2*(x + 6)^6;
T[266,61]=(x^2 -11*x -31)*(x^2 + 5*x -23)*(x^2 + 7*x + 5)*(x^3 -7*x^2 -13*x + 2)*(x -8)^2*(x -2)^2*(x + 10)^2*(x^2 + 6*x -71)^2*(x^2 -45)^2*(x^2 -6*x -43)^2*(x^3 + 6*x^2 -49*x -82)^2*(x + 1)^4;
T[266,67]=(x^2 -4*x -76)*(x^2 + 16*x + 12)*(x^3 -12*x^2 -4*x + 16)*(x -3)^2*(x + 2)^2*(x -5)^2*(x^2 -11*x -31)^2*(x^2 + 7*x -89)^2*(x^3 + 3*x^2 -79*x -188)^2*(x^2 -7*x -17)^2*(x + 4)^6;
T[266,71]=(x^2 -3*x -5)*(x^2 -3*x -209)*(x^2 + 15*x + 27)*(x^3 -9*x^2 -x + 8)*(x -2)^2*(x + 6)^2*(x^2 -4*x -41)^2*(x^2 -10*x -27)^2*(x^2 -6*x -11)^2*(x^3 -61*x -32)^2*(x )^2*(x -6)^4;
T[266,73]=(x^2 + 10*x + 20)*(x^2 -2*x -28)*(x^2 -18*x + 68)*(x^3 -112*x -392)*(x -9)^2*(x -2)^2*(x^2 -15*x + 45)^2*(x^2 + 7*x -49)^2*(x^3 -x^2 -101*x -98)^2*(x^2 + 15*x -25)^2*(x + 7)^6;
T[266,79]=(x^2 -19*x + 61)*(x^2 -9*x + 13)*(x^2 + 11*x -31)*(x^3 -15*x^2 + 41*x -16)*(x^2 -20)^2*(x^3 + 4*x^2 -44*x + 32)^2*(x^2 -8*x -36)^2*(x -8)^6*(x + 10)^8;
T[266,83]=(x^2 -80)*(x^2 + 4*x -48)*(x^3 + 16*x^2 -448)*(x -8)^2*(x^2 + 9*x + 9)^2*(x^2 -13*x + 31)^2*(x^2 + 15*x + 27)^2*(x^3 -31*x^2 + 289*x -788)^2*(x -12)^4*(x + 6)^6;
T[266,89]=(x^2 -21*x + 81)*(x^2 + 5*x + 5)*(x^2 -21*x + 45)*(x^3 + 3*x^2 -25*x + 22)*(x + 6)^2*(x + 12)^2*(x^2 -18*x + 36)^2*(x^2 + 14*x + 36)^2*(x^2 -10*x + 20)^2*(x^3 + 28*x^2 + 104*x -1352)^2*(x )^2*(x -12)^4;
T[266,97]=(x^2 -x -11)*(x^2 -23*x + 125)*(x^2 -23*x + 129)*(x^3 + 5*x^2 -21*x -98)*(x + 2)^2*(x^2 -12*x + 23)^2*(x^2 -6*x -11)^2*(x^2 -2*x -179)^2*(x^3 + 30*x^2 + 243*x + 482)^2*(x + 10)^4*(x -8)^4;

T[267,2]=(x^3 + 4*x^2 + 3*x -1)*(x^3 -2*x^2 -3*x + 5)*(x^3 -3*x + 1)*(x^4 -x^3 -7*x^2 + 6*x + 7)*(x + 1)^2*(x -1)^2*(x^5 + x^4 -10*x^3 -10*x^2 + 21*x + 17)^2*(x )^2;
T[267,3]=(x^2 + x + 3)*(x^10 + 3*x^9 + 11*x^8 + 20*x^7 + 45*x^6 + 65*x^5 + 135*x^4 + 180*x^3 + 297*x^2 + 243*x + 243)*(x^2 -2*x + 3)*(x -1)^7*(x + 1)^8;
T[267,5]=(x -4)*(x^3 -5*x^2 + 4*x + 5)*(x^3 + 3*x^2 -6*x + 1)*(x^3 + 7*x^2 + 14*x + 7)*(x^4 -3*x^3 -6*x^2 + 19*x -2)*(x )*(x + 1)^2*(x + 2)^2*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13)^2;
T[267,7]=(x + 2)*(x^3 + 4*x^2 -11*x -43)*(x^3 + 4*x^2 + x -1)*(x^3 + 6*x^2 + 9*x + 1)*(x^4 -6*x^3 + x^2 + 19*x -16)*(x + 4)^2*(x^5 -8*x^4 + 10*x^3 + 36*x^2 -68*x + 28)^2*(x -2)^3;
T[267,11]=(x -6)*(x -2)*(x^3 + 4*x^2 + x -1)*(x^3 + 8*x^2 + 19*x + 13)*(x^3 -6*x^2 -9*x + 71)*(x^4 + 6*x^3 -3*x^2 -7*x + 4)*(x + 2)^2*(x + 4)^2*(x^5 -6*x^4 -20*x^3 + 112*x^2 + 80*x -112)^2;
T[267,13]=(x -6)*(x^3 + 11*x^2 + 38*x + 41)*(x^3 + 15*x^2 + 72*x + 109)*(x^3 -3*x^2 -10*x -1)*(x^4 -9*x^3 + 10*x^2 + 91*x -202)*(x^5 -28*x^3 -56*x^2 + 16)^2*(x -2)^5;
T[267,17]=(x -4)*(x^3 + 6*x^2 -27*x -159)*(x^3 + 4*x^2 + 3*x -1)*(x^3 -6*x^2 -x + 5)*(x^4 -2*x^3 -11*x^2 + 17*x -6)*(x )*(x -6)^2*(x -3)^2*(x^5 + 13*x^4 + 34*x^3 -154*x^2 -791*x -883)^2;
T[267,19]=(x^3 -49*x -49)*(x^3 + 4*x^2 -25*x + 25)*(x^3 + 6*x^2 -15*x -73)*(x^4 -10*x^3 + 17*x^2 + 45*x -92)*(x + 5)^2*(x + 2)^2*(x + 4)^2*(x^5 -13*x^4 + 42*x^3 + 42*x^2 -297*x + 199)^2;
T[267,23]=(x -3)*(x + 3)*(x^3 -3*x^2 -24*x -1)*(x^3 + x^2 -4*x + 1)*(x^3 + 7*x^2 -14*x -7)*(x^4 -x^3 -38*x^2 -97*x -64)*(x -2)^2*(x -7)^2*(x^5 -x^4 -62*x^3 + 150*x^2 + 631*x -1657)^2;
T[267,29]=(x + 3)*(x -3)*(x^3 + 6*x^2 -63*x -267)*(x^3 + 6*x^2 -37*x -41)*(x^3 -12*x^2 + 35*x -25)*(x^4 + 2*x^3 -11*x^2 -17*x -6)*(x + 6)^2*(x^5 -2*x^4 -72*x^3 + 312*x^2 -48*x -784)^2*(x )^2;
T[267,31]=(x + 4)*(x -8)*(x^3 + 3*x^2 -46*x + 43)*(x^3 + x^2 -30*x + 53)*(x^3 + 9*x^2 -81)*(x^4 + 11*x^3 + 36*x^2 + 25*x -24)*(x + 9)^2*(x -6)^2*(x^5 -19*x^4 + 102*x^3 -114*x^2 + 13*x + 7)^2;
T[267,37]=(x + 8)*(x + 4)*(x^3 -7*x^2 -40*x + 281)*(x^3 + 11*x^2 -32*x -281)*(x^3 + 9*x^2 -12*x -109)*(x^4 -23*x^3 + 142*x^2 + 85*x -2062)*(x + 2)^2*(x -10)^2*(x^5 + 14*x^4 + 8*x^3 -336*x^2 + 80*x + 1120)^2;
T[267,41]=(x -3)*(x + 11)*(x^3 -15*x^2 + 36*x + 135)*(x^3 -5*x^2 -148*x + 811)*(x^3 + 3*x^2 -18*x -3)*(x^4 -9*x^3 -36*x^2 + 189*x + 486)*(x + 6)^2*(x^5 + 2*x^4 -60*x^3 -24*x^2 + 800*x -1072)^2*(x )^2;
T[267,43]=(x + 4)*(x -8)*(x^3 + 7*x^2 -x -47)*(x^3 -3*x^2 -81*x -53)*(x^3 -7*x^2 -49*x -49)*(x^4 -x^3 -61*x^2 + 249*x -244)*(x -2)^2*(x + 7)^2*(x^5 -x^4 -68*x^3 -56*x^2 + 877*x + 1573)^2;
T[267,47]=(x + 2)*(x -6)*(x^3 + 8*x^2 -35*x + 31)*(x^3 + 10*x^2 -53*x -559)*(x^3 -6*x^2 -27*x + 51)*(x^4 + 8*x^3 -81*x^2 -491*x + 384)*(x -12)^2*(x + 12)^2*(x^5 + 4*x^4 -44*x^3 + 32*x^2 + 112*x -16)^2;
T[267,53]=(x + 8)*(x^3 + 5*x^2 -8*x -41)*(x^3 + 9*x^2 -54*x -459)*(x^3 -x^2 -82*x -235)*(x^4 -7*x^3 -22*x^2 -x + 6)*(x )*(x + 6)^2*(x + 3)^2*(x^5 + 11*x^4 -6*x^3 -342*x^2 -547*x + 1319)^2;
T[267,59]=(x + 9)*(x -9)*(x^3 -63*x + 189)*(x^3 + 12*x^2 -69*x -755)*(x^3 -18*x^2 + 87*x -73)*(x^4 -10*x^3 -235*x^2 + 1779*x + 9764)*(x -4)^2*(x + 10)^2*(x^5 -118*x^3 + 784*x^2 -1900*x + 1580)^2;
T[267,61]=(x + 12)*(x -8)*(x^3 + 14*x^2 + 61*x + 79)*(x^3 + 2*x^2 -99*x + 13)*(x^3 + 18*x^2 -9*x -963)*(x^4 -20*x^3 -41*x^2 + 1469*x + 4062)*(x -6)^2*(x + 6)^2*(x^5 -4*x^4 -8*x^3 + 24*x^2 + 16*x -16)^2;
T[267,67]=(x + 13)*(x -3)*(x^3 + 13*x^2 -104*x -1027)*(x^3 -3*x^2 -36*x + 57)*(x^3 + 5*x^2 -92*x -83)*(x^4 + x^3 -20*x^2 -55*x -36)*(x^5 -4*x^4 -136*x^3 + 240*x^2 + 4800*x + 2000)^2*(x -12)^4;
T[267,71]=(x + 6)*(x -10)*(x^3 -21*x^2 -22*x + 1685)*(x^3 + 11*x^2 + 10*x -113)*(x^3 -27*x^2 + 204*x -359)*(x^4 + 21*x^3 + 60*x^2 -485*x -776)*(x + 10)^2*(x -4)^2*(x^5 + 2*x^4 -280*x^3 -624*x^2 + 19280*x + 47008)^2;
T[267,73]=(x + 7)*(x -1)*(x^3 + 18*x^2 -3*x -883)*(x^3 + 2*x^2 -99*x + 13)*(x^3 -14*x^2 + 61*x -79)*(x^4 -24*x^3 + 65*x^2 + 1007*x + 694)*(x -10)^2*(x -7)^2*(x^5 + 25*x^4 + 186*x^3 + 234*x^2 -1595*x -3475)^2;
T[267,79]=(x^3 + 17*x^2 + 66*x + 25)*(x^3 + 9*x^2 -90*x + 153)*(x^3 -15*x^2 -142*x + 1933)*(x^4 + x^3 -130*x^2 -443*x + 1248)*(x + 12)^2*(x + 6)^2*(x + 1)^2*(x^5 -54*x^4 + 1096*x^3 -10352*x^2 + 45392*x -74464)^2;
T[267,83]=(x -9)*(x + 9)*(x^3 -12*x^2 -121*x + 1457)*(x^3 -14*x^2 + 49*x -7)*(x^3 + 12*x^2 -99*x + 159)*(x^4 -10*x^3 -x^2 + 35*x + 12)*(x -12)^2*(x + 6)^2*(x^5 + 20*x^4 + 78*x^3 -244*x^2 -172*x + 196)^2;
T[267,89]=(x + 1)^9*(x -1)^20;
T[267,97]=(x + 1)*(x -7)*(x^3 + 4*x^2 -25*x -53)*(x^3 + 20*x^2 + 19*x -377)*(x^3 -225*x -1125)*(x^4 -2*x^3 -93*x^2 + 233*x -126)*(x + 18)^2*(x -9)^2*(x^5 -13*x^4 -130*x^3 + 2750*x^2 -13859*x + 21599)^2;

T[268,2]=(x^2 -2*x + 2)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x + 1)^3*(x -1)^3*(x )^16;
T[268,3]=(x -2)*(x^2 -x -5)*(x^3 -3*x^2 + 1)^2*(x^3 -x^2 -8*x + 11)^2*(x + 2)^3*(x^2 -x -1)^3*(x^2 + 3*x + 1)^4;
T[268,5]=(x^2 -5)*(x + 1)^2*(x^3 -3*x^2 -2*x + 3)^2*(x^3 + 3*x^2 -6*x + 1)^2*(x^2 -4*x -1)^3*(x -2)^4*(x + 3)^6;
T[268,7]=(x -2)*(x^2 + 5*x + 5)*(x^2 -x -5)*(x^3 -20*x + 8)^2*(x^3 -12*x -8)^2*(x + 2)^3*(x^2 + x -11)^3*(x^2 -x -1)^3;
T[268,11]=(x^2 + 4*x -1)*(x -5)^2*(x^3 + x^2 -16*x + 9)^2*(x^3 + 3*x^2 -24*x -53)^2*(x^2 -5)^3*(x + 4)^4*(x -1)^6;
T[268,13]=(x + 6)*(x^2 + 3*x -9)*(x^2 -3*x -3)*(x^3 -11*x^2 + 30*x -9)^2*(x^3 + 3*x^2 -18*x -3)^2*(x -2)^3*(x^2 + x -1)^3*(x^2 + 7*x + 1)^3;
T[268,17]=(x^2 -6*x -12)*(x^3 + 3*x^2 -2*x -3)^2*(x^3 + 3*x^2 -18*x -3)^2*(x^2 -6*x + 4)^3*(x -3)^4*(x^2 + 6*x + 4)^4;
T[268,19]=(x -1)*(x^2 + 5*x -5)*(x^2 + x -5)*(x^3 -6*x^2 -36*x + 152)^2*(x -7)^3*(x^2 -x -11)^3*(x^2 + 11*x + 29)^3*(x -2)^6;
T[268,23]=(x -3)*(x^2 -21)*(x^2 + 8*x + 11)*(x^3 + 11*x^2 + 32*x + 27)^2*(x^3 + 3*x^2 -36*x + 51)^2*(x -9)^3*(x^2 -6*x -11)^3*(x^2 + 2*x -19)^3;
T[268,29]=(x -3)^2*(x + 5)^3*(x + 1)^3*(x^2 + 6*x -11)^3*(x^2 -10*x + 5)^3*(x + 4)^6*(x )^6;
T[268,31]=(x -2)*(x^2 -2*x -19)*(x^2 + 8*x -5)*(x^3 -4*x^2 -84*x + 440)^2*(x^3 -12*x^2 + 36*x -8)^2*(x + 10)^3*(x^2 -45)^3*(x + 1)^6;
T[268,37]=(x + 5)*(x^2 + x -31)*(x^2 + 13*x + 37)*(x^3 -4*x^2 -60*x + 200)^2*(x^3 -84*x -136)^2*(x + 1)^3*(x^2 -3*x + 1)^3*(x^2 + x -11)^3;
T[268,41]=(x -8)*(x^2 + 5*x + 1)*(x^2 + x -61)*(x^3 + 4*x^2 -124*x -600)^2*(x^3 -12*x -8)^2*(x^2 + 3*x + 1)^3*(x^2 -5*x -25)^3*(x )^3;
T[268,43]=(x -10)*(x^2 -11*x -1)*(x^2 + x -47)*(x^3 -x^2 -60*x + 167)^2*(x^3 -3*x^2 -60*x + 53)^2*(x + 2)^3*(x^2 -3*x -9)^3*(x^2 + 9*x -11)^3;
T[268,47]=(x + 3)*(x^2 -21*x + 105)*(x^2 + 11*x + 29)*(x^3 -x^2 -16*x -9)^2*(x^3 -21*x^2 + 144*x -321)^2*(x + 1)^3*(x^2 + 7*x + 11)^3*(x^2 + 15*x + 55)^3;
T[268,53]=(x + 6)*(x^2 -12*x + 31)*(x + 3)^2*(x^3 + 9*x^2 + 18*x -9)^2*(x^3 + 3*x^2 -74*x + 45)^2*(x -10)^3*(x^2 -45)^3*(x + 9)^6;
T[268,59]=(x -7)*(x^2 -180)*(x^2 -8*x -68)*(x^3 -180*x + 216)^2*(x^3 -12*x + 8)^2*(x -9)^3*(x + 6)^6*(x -6)^6;
T[268,61]=(x + 10)*(x^2 + 5*x -41)*(x^2 -13*x -19)*(x^3 -21*x^2 + 70*x + 317)^2*(x^3 -15*x^2 + 66*x -89)^2*(x + 2)^3*(x^2 + 7*x -89)^3*(x^2 + 9*x + 9)^3;
T[268,67]=(x + 1)^15*(x -1)^17;
T[268,71]=(x + 8)*(x^2 + 10*x -55)*(x^2 -2*x -83)*(x^3 -9*x^2 -12*x + 179)^2*(x^3 -5*x^2 -88*x -165)^2*(x^2 -245)^3*(x^2 -12*x + 31)^3*(x )^3;
T[268,73]=(x + 15)*(x^2 -8*x -64)*(x -12)^2*(x^3 + 23*x^2 + 114*x -211)^2*(x^3 -9*x^2 -54*x -27)^2*(x + 7)^3*(x + 4)^6*(x -8)^6;
T[268,79]=(x -16)*(x^2 -5*x -25)*(x^2 + 7*x -35)*(x^3 + 6*x^2 -24*x + 8)^2*(x^3 -10*x^2 -96*x + 824)^2*(x + 8)^3*(x^2 + 7*x -89)^3*(x^2 + 11*x -31)^3;
T[268,83]=(x -12)*(x^2 -15*x + 9)*(x^2 + 13*x -19)*(x^3 -18*x^2 + 648)^2*(x^3 + 22*x^2 + 32*x -984)^2*(x -4)^3*(x^2 -13*x + 31)^3*(x^2 + 15*x -5)^3;
T[268,89]=(x -15)*(x^2 + 20*x + 95)*(x^2 + 12*x + 15)*(x^3 -19*x^2 + 98*x -153)^2*(x^3 -3*x^2 -126*x -321)^2*(x -7)^3*(x^2 + 16*x + 19)^3*(x^2 -5)^3;
T[268,97]=(x + 8)*(x^2 -2*x -335)*(x^2 + 16*x + 19)*(x^3 + 2*x^2 -136*x + 520)^2*(x^3 -18*x^2 + 24*x + 584)^2*(x^2 -45)^3*(x^2 -2*x -179)^3*(x )^3;

T[269,2]=(x^5 + x^4 -5*x^3 -4*x^2 + 5*x + 3)*(x^16 -x^15 -28*x^14 + 27*x^13 + 314*x^12 -283*x^11 -1803*x^10 + 1435*x^9 + 5637*x^8 -3547*x^7 -9470*x^6 + 3701*x^5 + 7860*x^4 -1001*x^3 -2363*x^2 -43*x + 172)*(x );
T[269,3]=(x^5 + 5*x^4 + 3*x^3 -15*x^2 -16*x + 3)*(x^16 -5*x^15 -22*x^14 + 138*x^13 + 139*x^12 -1450*x^11 + 41*x^10 + 7440*x^9 -3354*x^8 -20186*x^7 + 12462*x^6 + 28989*x^5 -18771*x^4 -19974*x^3 + 12032*x^2 + 4633*x -2654)*(x );
T[269,5]=(x -1)*(x^5 + 4*x^4 -x^3 -16*x^2 -14*x -1)*(x^16 + x^15 -46*x^14 -32*x^13 + 861*x^12 + 316*x^11 -8506*x^10 -222*x^9 + 47729*x^8 -14650*x^7 -149888*x^6 + 92967*x^5 + 233992*x^4 -219530*x^3 -113145*x^2 + 177883*x -48947);
T[269,7]=(x + 4)*(x^5 + 5*x^4 -4*x^3 -25*x^2 -x + 19)*(x^16 -11*x^15 -9*x^14 + 492*x^13 -1053*x^12 -7914*x^11 + 30314*x^10 + 46584*x^9 -336651*x^8 + 83088*x^7 + 1695664*x^6 -2025023*x^5 -3085559*x^4 + 6658712*x^3 -1044425*x^2 -3548057*x + 1239286);
T[269,11]=(x + 3)*(x^5 + 9*x^4 + 23*x^3 -59*x -45)*(x^16 -16*x^15 + 30*x^14 + 693*x^13 -3163*x^12 -8622*x^11 + 61745*x^10 + 35024*x^9 -506404*x^8 -53136*x^7 + 1984496*x^6 + 581824*x^5 -3521152*x^4 -2514944*x^3 + 1231616*x^2 + 1575936*x + 369664);
T[269,13]=(x -2)*(x^5 + 5*x^4 -35*x^3 -205*x^2 -192*x + 61)*(x^16 + x^15 -118*x^14 + 40*x^13 + 5257*x^12 -7276*x^11 -105245*x^10 + 222524*x^9 + 949298*x^8 -2595172*x^7 -3434680*x^6 + 13153571*x^5 + 1070523*x^4 -26094100*x^3 + 13603562*x^2 + 10842305*x -7490278);
T[269,17]=(x + 4)*(x^5 -6*x^4 -8*x^3 + 81*x^2 + 2*x -281)*(x^16 + 2*x^15 -122*x^14 -115*x^13 + 5272*x^12 + 789*x^11 -94910*x^10 + 22392*x^9 + 748304*x^8 -413456*x^7 -2413664*x^6 + 1896960*x^5 + 1871872*x^4 -1120256*x^3 -184320*x^2 + 97280*x -2048);
T[269,19]=(x -2)*(x^5 + 25*x^4 + 241*x^3 + 1107*x^2 + 2370*x + 1801)*(x^16 -35*x^15 + 428*x^14 -1044*x^13 -25027*x^12 + 262766*x^11 -791239*x^10 -3024300*x^9 + 33170210*x^8 -112627574*x^7 + 140410464*x^6 + 156590387*x^5 -683652901*x^4 + 569781876*x^3 + 384838460*x^2 -816463065*x + 331543026);
T[269,23]=(x + 1)*(x^5 -2*x^4 -48*x^3 -119*x^2 -90*x -19)*(x^16 -x^15 -206*x^14 + 193*x^13 + 16903*x^12 -12917*x^11 -701531*x^10 + 336812*x^9 + 15408412*x^8 -1909328*x^7 -168818096*x^6 -25121216*x^5 + 745607232*x^4 -51395840*x^3 -1212208128*x^2 + 356395008*x + 365421568);
T[269,29]=(x + 2)*(x^5 + 2*x^4 -41*x^3 -49*x^2 + 197*x + 271)*(x^16 -2*x^15 -187*x^14 + 525*x^13 + 13085*x^12 -49063*x^11 -404488*x^10 + 2081328*x^9 + 4237024*x^8 -39700544*x^7 + 33944064*x^6 + 248054784*x^5 -706256896*x^4 + 538099712*x^3 + 374784000*x^2 -769818624*x + 316014592);
T[269,31]=(x + 8)*(x^5 -x^4 -74*x^3 -41*x^2 + 755*x -331)*(x^16 -13*x^15 -169*x^14 + 2404*x^13 + 11155*x^12 -173174*x^11 -383800*x^10 + 6305930*x^9 + 7506637*x^8 -125296028*x^7 -82006456*x^6 + 1352800491*x^5 + 391022857*x^4 -7275838674*x^3 + 617965775*x^2 + 14831707323*x -9358958988);
T[269,37]=(x -7)*(x^5 + 9*x^4 + 24*x^3 + 9*x^2 -27*x -1)*(x^16 -4*x^15 -398*x^14 + 1999*x^13 + 58469*x^12 -357053*x^11 -3735794*x^10 + 28045102*x^9 + 86008621*x^8 -929442577*x^7 + 198795928*x^6 + 9891271551*x^5 -13203526170*x^4 -22037322549*x^3 + 29509149059*x^2 + 16587610874*x -13125762481);
T[269,41]=(x -11)*(x^5 + 3*x^4 -127*x^3 -527*x^2 + 1688*x + 4003)*(x^16 + 2*x^15 -263*x^14 -776*x^13 + 23209*x^12 + 82891*x^11 -827931*x^10 -3122343*x^9 + 12667124*x^8 + 45521718*x^7 -85305148*x^6 -260738847*x^5 + 206502422*x^4 + 473091063*x^3 -50345704*x^2 -281108395*x -90421669);
T[269,43]=(x -3)*(x^5 + 28*x^4 + 296*x^3 + 1475*x^2 + 3470*x + 3099)*(x^16 -51*x^15 + 976*x^14 -6853*x^13 -34715*x^12 + 945633*x^11 -5945229*x^10 + 3168856*x^9 + 145372468*x^8 -722614640*x^7 + 772304656*x^6 + 4134838144*x^5 -14477283904*x^4 + 11817582848*x^3 + 14276098048*x^2 -26481170432*x + 9967219712);
T[269,47]=(x + 9)*(x^5 -24*x^4 + 117*x^3 + 823*x^2 -7411*x + 13155)*(x^16 + 9*x^15 -235*x^14 -2384*x^13 + 13716*x^12 + 184492*x^11 -81797*x^10 -5287464*x^9 -10300672*x^8 + 43511504*x^7 + 177875728*x^6 + 182295680*x^5 -11020288*x^4 -62176512*x^3 + 8518656*x^2 + 1373184*x + 17408);
T[269,53]=(x -9)*(x^5 + 8*x^4 -161*x^3 -1157*x^2 + 2837*x + 2031)*(x^16 + 29*x^15 -130*x^14 -10025*x^13 -36341*x^12 + 1130124*x^11 + 7018558*x^10 -47104217*x^9 -353258121*x^8 + 631486175*x^7 + 5466798042*x^6 -4729904829*x^5 -29651424392*x^4 + 24121031800*x^3 + 51254746641*x^2 -51941105068*x + 5023491329);
T[269,59]=(x -4)*(x^5 -x^4 -179*x^3 -493*x^2 + 5456*x + 20107)*(x^16 + 13*x^15 -324*x^14 -4424*x^13 + 37111*x^12 + 566056*x^11 -1591641*x^10 -32898470*x^9 -243308*x^8 + 794116218*x^7 + 1330267054*x^6 -4128378513*x^5 -10318570471*x^4 -2612545314*x^3 + 8478793346*x^2 + 6998634993*x + 1533944884);
T[269,61]=(x + 1)*(x^5 + 15*x^4 -129*x^3 -2600*x^2 -7115*x + 8287)*(x^16 -14*x^15 -301*x^14 + 4409*x^13 + 33273*x^12 -528091*x^11 -1640583*x^10 + 30605350*x^9 + 33023432*x^8 -891520427*x^7 -133495892*x^6 + 12258973867*x^5 + 2705060*x^4 -68944224653*x^3 -23353730942*x^2 + 75144051254*x -6717616841);
T[269,67]=(x + 5)*(x^5 + 2*x^4 -149*x^3 -96*x^2 + 5460*x -4159)*(x^16 -25*x^15 -207*x^14 + 9495*x^13 -20920*x^12 -1187979*x^11 + 7050269*x^10 + 56706448*x^9 -505816108*x^8 -905377168*x^7 + 15279152016*x^6 -7782499968*x^5 -203455938112*x^4 + 355720444928*x^3 + 868402821632*x^2 -2589614826496*x + 1657316105216);
T[269,71]=(x + 6)*(x^5 -5*x^4 -121*x^3 + 530*x^2 + 307*x -2265)*(x^16 + 9*x^15 -618*x^14 -3363*x^13 + 158806*x^12 + 282989*x^11 -20607714*x^10 + 25733694*x^9 + 1294027352*x^8 -4276408779*x^7 -33374917979*x^6 + 142041780016*x^5 + 407114071716*x^4 -1754613891911*x^3 -3046371469839*x^2 + 7945046436167*x + 13330872611954);
T[269,73]=(x + 14)*(x^5 -20*x^4 + 75*x^3 + 20*x^2 -128*x -5)*(x^16 -4*x^15 -680*x^14 + 2328*x^13 + 179387*x^12 -496121*x^11 -23241341*x^10 + 47342755*x^9 + 1547769740*x^8 -1997349332*x^7 -50579746374*x^6 + 28407933979*x^5 + 700671511923*x^4 + 153690265479*x^3 -3108815056036*x^2 -1741627629753*x + 2514224908738);
T[269,79]=(x + 8)*(x^5 + 33*x^4 + 375*x^3 + 1604*x^2 + 1579*x + 365)*(x^16 -51*x^15 + 663*x^14 + 7528*x^13 -251021*x^12 + 1358729*x^11 + 14302096*x^10 -174080832*x^9 + 182451760*x^8 + 4101114672*x^7 -11009782976*x^6 -39603959232*x^5 + 123561216256*x^4 + 179548553472*x^3 -467483481088*x^2 -258972804096*x + 554121289728);
T[269,83]=(x -10)*(x^5 + 20*x^4 + 22*x^3 -1323*x^2 -3084*x + 23459)*(x^16 + 2*x^15 -769*x^14 -2219*x^13 + 231944*x^12 + 857432*x^11 -34383011*x^10 -152761785*x^9 + 2550518493*x^8 + 13179760861*x^7 -84053259957*x^6 -510576541788*x^5 + 807103962774*x^4 + 7169427148316*x^3 + 4403798552582*x^2 -11384378413695*x + 1979557699936);
T[269,89]=(x + 5)*(x^5 -145*x^3 + 150*x^2 + 2318*x + 2539)*(x^16 + 35*x^15 -26*x^14 -13694*x^13 -129185*x^12 + 1208844*x^11 + 23641226*x^10 + 53915320*x^9 -974990769*x^8 -6169812448*x^7 + 3378835422*x^6 + 122468961521*x^5 + 262006051240*x^4 -506051802638*x^3 -2455794133097*x^2 -2603831531421*x -501883530957);
T[269,97]=(x + 9)*(x^5 -9*x^4 -459*x^3 + 3389*x^2 + 45386*x -175629)*(x^16 + 14*x^15 -567*x^14 -8352*x^13 + 111343*x^12 + 1850749*x^11 -8543757*x^10 -190614197*x^9 + 147387592*x^8 + 9647192466*x^7 + 10354991798*x^6 -235548733133*x^5 -428115868360*x^4 + 2696746392265*x^3 + 5245736186086*x^2 -11747278695081*x -19901450061873);

T[270,2]=(x^2 -2*x + 2)*(x^2 + 2*x + 2)*(x^4 + x^3 + x^2 + 2*x + 4)*(x^4 -x^3 + x^2 -2*x + 4)*(x^2 -x + 2)^2*(x^2 + 2)^2*(x^2 + x + 2)^3*(x -1)^8*(x + 1)^9;
T[270,3]=(x -1)*(x + 1)^2*(x )^40;
T[270,5]=(x^2 + 3*x + 5)*(x^2 -3*x + 5)*(x^2 + 5)^2*(x + 1)^17*(x -1)^18;
T[270,7]=(x + 3)^4*(x^2 -2*x -12)^4*(x + 4)^5*(x + 1)^8*(x -2)^8*(x )^10;
T[270,11]=(x -2)^2*(x + 6)^2*(x + 2)^2*(x -6)^2*(x^2 + 2*x -12)^2*(x^2 -2*x -12)^2*(x -3)^4*(x + 3)^4*(x -4)^4*(x + 4)^6*(x )^9;
T[270,13]=(x + 1)^2*(x + 5)^4*(x^2 -6*x -4)^4*(x -2)^5*(x -5)^6*(x + 4)^8*(x + 2)^10;
T[270,17]=(x + 8)^2*(x -3)^2*(x + 3)^2*(x -8)^2*(x^2 + 4*x -9)^2*(x^2 -4*x -9)^2*(x + 6)^4*(x + 2)^4*(x -6)^5*(x -2)^6*(x )^8;
T[270,19]=(x -8)^2*(x + 7)^4*(x -1)^4*(x -2)^4*(x^2 -13)^4*(x -4)^10*(x + 4)^11;
T[270,23]=(x -9)*(x + 9)*(x -6)^4*(x + 6)^4*(x + 3)^5*(x -3)^5*(x )^23;
T[270,29]=(x -3)*(x + 9)*(x -9)*(x + 3)*(x^2 -10*x + 12)^2*(x^2 + 10*x + 12)^2*(x )^4*(x -6)^6*(x -2)^6*(x + 6)^7*(x + 2)^8;
T[270,31]=(x + 7)^2*(x^2 + 4*x -9)^4*(x -8)^5*(x -5)^6*(x + 4)^8*(x )^14;
T[270,37]=(x -11)^4*(x -5)^4*(x -8)^4*(x + 10)^12*(x -2)^19;
T[270,41]=(x + 12)*(x -12)*(x^2 + 2*x -12)^2*(x^2 -2*x -12)^2*(x -6)^4*(x + 6)^5*(x + 10)^6*(x -10)^8*(x )^10;
T[270,43]=(x + 7)^2*(x + 1)^2*(x + 10)^4*(x^2 + 6*x -4)^4*(x + 4)^5*(x -8)^8*(x -4)^14;
T[270,47]=(x + 9)*(x -9)*(x -3)*(x + 3)*(x + 4)^2*(x -6)^2*(x + 6)^2*(x -4)^2*(x^2 + 4*x -48)^2*(x^2 -4*x -48)^2*(x + 8)^4*(x -8)^6*(x )^13;
T[270,53]=(x + 12)^2*(x + 9)^2*(x -12)^2*(x -9)^2*(x -2)^2*(x + 2)^2*(x^2 + 4*x -9)^2*(x^2 -4*x -9)^2*(x -6)^4*(x -10)^4*(x )^4*(x + 6)^5*(x + 10)^6;
T[270,59]=(x -8)^2*(x + 8)^2*(x -6)^2*(x + 6)^2*(x^2 -10*x + 12)^2*(x^2 + 10*x + 12)^2*(x -12)^4*(x -4)^4*(x + 12)^4*(x + 4)^6*(x )^9;
T[270,61]=(x -8)^4*(x + 1)^4*(x -7)^4*(x^2 -6*x -43)^4*(x -2)^6*(x + 10)^7*(x + 2)^10;
T[270,67]=(x -5)^4*(x + 9)^4*(x -14)^4*(x^2 + 16*x + 12)^4*(x -12)^10*(x + 4)^13;
T[270,71]=(x + 2)^2*(x -2)^2*(x^2 -22*x + 108)^2*(x^2 + 22*x + 108)^2*(x + 12)^3*(x -12)^3*(x -8)^4*(x + 8)^6*(x )^15;
T[270,73]=(x + 5)^4*(x^2 -18*x + 68)^4*(x + 10)^6*(x -2)^7*(x + 7)^8*(x -10)^10;