CoCalc Shared Fileswww / tables / bsd_p5_1-300.gp
Author: William A. Stein
1\\ bsd_p5_1-300.gp
2\\ ---------------------------------------------------------------
3\\ N,i      = i-th newform at level N (forms ordered by trace).
4\\ bsd[N,i] = odd_part(L(A_f,1)/Omega*(manin constant))
5\\ deg[N,i] = odd_part(modular degree)
6\\ dsc[N,i] = disc(O_f)
7\\ E  [N,i] = [g(x), denom*[a_1(x), a_2(x), ..., a_5(x)]]
8\\ 1 <= N <= 300
9\\
10\\ Wed Mar  3 23:36:11 1999
11\\ William Stein ([email protected])
12\\ ---------------------------------------------------------------
13
14
15bsd[11,1] = 1/5 ;
16deg[11,1] = 1 ;
17dsc[11,1] = 1 ;
18E  [11,1] = [x, [1,-2,-1]];
19
20
21bsd[14,1] = 1/3 ;
22deg[14,1] = 1 ;
23dsc[14,1] = 1 ;
24E  [14,1] = [x, [1,-1,-2,1,0]];
25
26
27bsd[15,1] = 1 ;
28deg[15,1] = 1 ;
29dsc[15,1] = 1 ;
30E  [15,1] = [x, [1,-1,-1,-1,1]];
31
32
33bsd[17,1] = 1 ;
34deg[17,1] = 1 ;
35dsc[17,1] = 1 ;
36E  [17,1] = [x, [1,-1,0,-1]];
37
38
39bsd[19,1] = 1/3 ;
40deg[19,1] = 1 ;
41dsc[19,1] = 1 ;
42E  [19,1] = [x, [1,0,-2,-2]];
43
44
45bsd[20,1] = 1/3 ;
46deg[20,1] = 1 ;
47dsc[20,1] = 1 ;
48E  [20,1] = [x, [1,0,-2,0,-1]];
49
50
51bsd[21,1] = 1 ;
52deg[21,1] = 1 ;
53dsc[21,1] = 1 ;
54E  [21,1] = [x, [1,-1,1,-1,-2]];
55
56
57bsd[23,1] = 1/11 ;
58deg[23,1] = 1 ;
59dsc[23,1] = 5 ;
60E  [23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,2*x]];
61
62
63bsd[24,1] = 1 ;
64deg[24,1] = 1 ;
65dsc[24,1] = 1 ;
66E  [24,1] = [x, [1,0,-1,0,-2]];
67
68
69bsd[26,1] = 1/3 ;
70deg[26,1] = 1 ;
71dsc[26,1] = 1 ;
72E  [26,1] = [x, [1,-1,1,1,-3]];
73
74bsd[26,2] = 1/7 ;
75deg[26,2] = 1 ;
76dsc[26,2] = 1 ;
77E  [26,2] = [x, [1,1,-3,1,-1]];
78
79
80bsd[27,1] = 1/3 ;
81deg[27,1] = 1 ;
82dsc[27,1] = 1 ;
83E  [27,1] = [x, [1,0,0,-2,0]];
84
85
86bsd[29,1] = 1/7 ;
87deg[29,1] = 1 ;
88dsc[29,1] = 2^3 ;
89E  [29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1]];
90
91
92bsd[30,1] = 1/3 ;
93deg[30,1] = 1 ;
94dsc[30,1] = 1 ;
95E  [30,1] = [x, [1,-1,1,1,-1]];
96
97
98bsd[31,1] = 1/5 ;
99deg[31,1] = 1 ;
100dsc[31,1] = 5 ;
101E  [31,1] = [x^2-x-1, [1,x,-2*x,x-1,1]];
102
103
104bsd[32,1] = 1 ;
105deg[32,1] = 1 ;
106dsc[32,1] = 1 ;
107E  [32,1] = [x, [1,0,0,0,-2]];
108
109
110bsd[33,1] = 1 ;
111deg[33,1] = 3 ;
112dsc[33,1] = 1 ;
113E  [33,1] = [x, [1,1,-1,-1,-2]];
114
115
116bsd[34,1] = 1/3 ;
117deg[34,1] = 1 ;
118dsc[34,1] = 1 ;
119E  [34,1] = [x, [1,1,-2,1,0]];
120
121
122bsd[35,1] = 1/3 ;
123deg[35,1] = 1 ;
124dsc[35,1] = 1 ;
125E  [35,1] = [x, [1,0,1,-2,-1]];
126
127bsd[35,2] = 1 ;
128deg[35,2] = 1 ;
129dsc[35,2] = 17 ;
130E  [35,2] = [x^2+x-4, [1,x,-x-1,-x+2,1]];
131
132
133bsd[36,1] = 1/3 ;
134deg[36,1] = 1 ;
135dsc[36,1] = 1 ;
136E  [36,1] = [x, [1,0,0,0,0]];
137
138
139bsd[37,1] = 0 ;
140deg[37,1] = 1 ;
141dsc[37,1] = 1 ;
142E  [37,1] = [x, [1,-2,-3,2,-2]];
143
144bsd[37,2] = 1/3 ;
145deg[37,2] = 1 ;
146dsc[37,2] = 1 ;
147E  [37,2] = [x, [1,0,1,-2,0]];
148
149
150bsd[38,1] = 1/3 ;
151deg[38,1] = 3 ;
152dsc[38,1] = 1 ;
153E  [38,1] = [x, [1,-1,1,1,0]];
154
155bsd[38,2] = 1/5 ;
156deg[38,2] = 1 ;
157dsc[38,2] = 1 ;
158E  [38,2] = [x, [1,1,-1,1,-4]];
159
160
161bsd[39,1] = 1 ;
162deg[39,1] = 1 ;
163dsc[39,1] = 1 ;
164E  [39,1] = [x, [1,1,-1,-1,2]];
165
166bsd[39,2] = 1/7 ;
167deg[39,2] = 1 ;
168dsc[39,2] = 2^3 ;
169E  [39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2]];
170
171
172bsd[40,1] = 1 ;
173deg[40,1] = 1 ;
174dsc[40,1] = 1 ;
175E  [40,1] = [x, [1,0,0,0,1]];
176
177
178bsd[41,1] = 1/5 ;
179deg[41,1] = 1 ;
180dsc[41,1] = 2^2*37 ;
181E  [41,1] = [x^3+x^2-5*x-1, [2,2*x,-x^2-2*x+3,2*x^2-4,-2*x-2]];
182
183
184bsd[42,1] = 1 ;
185deg[42,1] = 1 ;
186dsc[42,1] = 1 ;
187E  [42,1] = [x, [1,1,-1,1,-2]];
188
189
190bsd[43,1] = 0 ;
191deg[43,1] = 1 ;
192dsc[43,1] = 1 ;
193E  [43,1] = [x, [1,-2,-2,2,-4]];
194
195bsd[43,2] = 1/7 ;
196deg[43,2] = 1 ;
197dsc[43,2] = 2^3 ;
198E  [43,2] = [x^2-2, [1,x,-x,0,-x+2]];
199
200
201bsd[44,1] = 1/3 ;
202deg[44,1] = 1 ;
203dsc[44,1] = 1 ;
204E  [44,1] = [x, [1,0,1,0,-3]];
205
206
207bsd[45,1] = 1 ;
208deg[45,1] = 1 ;
209dsc[45,1] = 1 ;
210E  [45,1] = [x, [1,1,0,-1,-1]];
211
212
213bsd[46,1] = 1 ;
214deg[46,1] = 5 ;
215dsc[46,1] = 1 ;
216E  [46,1] = [x, [1,-1,0,1,4]];
217
218
219bsd[47,1] = 1/23 ;
220deg[47,1] = 1 ;
221dsc[47,1] = 19*103 ;
222E  [47,1] = [x^4-x^3-5*x^2+5*x-1, [1,x,x^3-x^2-6*x+4,x^2-2,-4*x^3+2*x^2+20*x-10]];
223
224
225bsd[48,1] = 1 ;
226deg[48,1] = 1 ;
227dsc[48,1] = 1 ;
228E  [48,1] = [x, [1,0,1,0,-2]];
229
230
231bsd[49,1] = 1 ;
232deg[49,1] = 1 ;
233dsc[49,1] = 1 ;
234E  [49,1] = [x, [1,1,0,-1,0]];
235
236
237bsd[50,1] = 1/3 ;
238deg[50,1] = 1 ;
239dsc[50,1] = 1 ;
240E  [50,1] = [x, [1,-1,1,1,0]];
241
242bsd[50,2] = 1/5 ;
243deg[50,2] = 1 ;
244dsc[50,2] = 1 ;
245E  [50,2] = [x, [1,1,-1,1,0]];
246
247
248bsd[51,1] = 1/3 ;
249deg[51,1] = 1 ;
250dsc[51,1] = 1 ;
251E  [51,1] = [x, [1,0,1,-2,3]];
252
253bsd[51,2] = 1 ;
254deg[51,2] = 1 ;
255dsc[51,2] = 17 ;
256E  [51,2] = [x^2+x-4, [1,x,-1,-x+2,-x+1]];
257
258
259bsd[52,1] = 1 ;
260deg[52,1] = 3 ;
261dsc[52,1] = 1 ;
262E  [52,1] = [x, [1,0,0,0,2]];
263
264
265bsd[53,1] = 0 ;
266deg[53,1] = 1 ;
267dsc[53,1] = 1 ;
268E  [53,1] = [x, [1,-1,-3,-1,0]];
269
270bsd[53,2] = 1/13 ;
271deg[53,2] = 1 ;
272dsc[53,2] = 2^2*37 ;
273E  [53,2] = [x^3+x^2-3*x-1, [1,x,-x^2-x+3,x^2-2,x^2-3]];
274
275
276bsd[54,1] = 1/3 ;
277deg[54,1] = 3 ;
278dsc[54,1] = 1 ;
279E  [54,1] = [x, [1,-1,0,1,3]];
280
281bsd[54,2] = 1/3 ;
282deg[54,2] = 1 ;
283dsc[54,2] = 1 ;
284E  [54,2] = [x, [1,1,0,1,-3]];
285
286
287bsd[55,1] = 1 ;
288deg[55,1] = 1 ;
289dsc[55,1] = 1 ;
290E  [55,1] = [x, [1,1,0,-1,1]];
291
292bsd[55,2] = 1 ;
293deg[55,2] = 7 ;
294dsc[55,2] = 2^3 ;
295E  [55,2] = [x^2-2*x-1, [1,x,-2*x+2,2*x-1,-1]];
296
297
298bsd[56,1] = 1 ;
299deg[56,1] = 1 ;
300dsc[56,1] = 1 ;
301E  [56,1] = [x, [1,0,0,0,2]];
302
303bsd[56,2] = 1 ;
304deg[56,2] = 1 ;
305dsc[56,2] = 1 ;
306E  [56,2] = [x, [1,0,2,0,-4]];
307
308
309bsd[57,1] = 0 ;
310deg[57,1] = 1 ;
311dsc[57,1] = 1 ;
312E  [57,1] = [x, [1,-2,-1,2,-3]];
313
314bsd[57,2] = 1/5 ;
315deg[57,2] = 3 ;
316dsc[57,2] = 1 ;
317E  [57,2] = [x, [1,-2,1,2,1]];
318
319bsd[57,3] = 1 ;
320deg[57,3] = 3 ;
321dsc[57,3] = 1 ;
322E  [57,3] = [x, [1,1,1,-1,-2]];
323
324
325bsd[58,1] = 0 ;
326deg[58,1] = 1 ;
327dsc[58,1] = 1 ;
328E  [58,1] = [x, [1,-1,-3,1,-3]];
329
330bsd[58,2] = 1/5 ;
331deg[58,2] = 1 ;
332dsc[58,2] = 1 ;
333E  [58,2] = [x, [1,1,-1,1,1]];
334
335
336bsd[59,1] = 1/29 ;
337deg[59,1] = 1 ;
338dsc[59,1] = 2^3*31*557 ;
339E  [59,1] = [x^5-9*x^3+2*x^2+16*x-8, [4,4*x,-x^4+5*x^2-2*x,4*x^2-8,3*x^4+2*x^3-23*x^2-12*x+28]];
340
341
342bsd[61,1] = 0 ;
343deg[61,1] = 1 ;
344dsc[61,1] = 1 ;
345E  [61,1] = [x, [1,-1,-2,-1,-3]];
346
347bsd[61,2] = 1/5 ;
348deg[61,2] = 1 ;
349dsc[61,2] = 2^2*37 ;
350E  [61,2] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,x^2-2*x-2]];
351
352
353bsd[62,1] = 1 ;
354deg[62,1] = 1 ;
355dsc[62,1] = 1 ;
356E  [62,1] = [x, [1,1,0,1,-2]];
357
358bsd[62,2] = 1/3 ;
359deg[62,2] = 11 ;
360dsc[62,2] = 2^2*3 ;
361E  [62,2] = [x^2-2*x-2, [1,-1,x,1,-2*x+2]];
362
363
364bsd[63,1] = 1 ;
365deg[63,1] = 1 ;
366dsc[63,1] = 1 ;
367E  [63,1] = [x, [1,1,0,-1,2]];
368
369bsd[63,2] = 1/3 ;
370deg[63,2] = 1 ;
371dsc[63,2] = 2^2*3 ;
372E  [63,2] = [x^2-3, [1,x,0,1,-2*x]];
373
374
375bsd[64,1] = 1 ;
376deg[64,1] = 1 ;
377dsc[64,1] = 1 ;
378E  [64,1] = [x, [1,0,0,0,2]];
379
380
381bsd[65,1] = 0 ;
382deg[65,1] = 1 ;
383dsc[65,1] = 1 ;
384E  [65,1] = [x, [1,-1,-2,-1,-1]];
385
386bsd[65,2] = 1/7 ;
387deg[65,2] = 1 ;
388dsc[65,2] = 2^3 ;
389E  [65,2] = [x^2+2*x-1, [1,x,x+1,-2*x-1,1]];
390
391bsd[65,3] = 1/3 ;
392deg[65,3] = 1 ;
393dsc[65,3] = 2^2*3 ;
394E  [65,3] = [x^2-3, [1,x,-x+1,1,-1]];
395
396
397bsd[66,1] = 1/3 ;
398deg[66,1] = 1 ;
399dsc[66,1] = 1 ;
400E  [66,1] = [x, [1,-1,1,1,0]];
401
402bsd[66,2] = 1 ;
403deg[66,2] = 1 ;
404dsc[66,2] = 1 ;
405E  [66,2] = [x, [1,1,-1,1,2]];
406
407bsd[66,3] = 1 ;
408deg[66,3] = 5 ;
409dsc[66,3] = 1 ;
410E  [66,3] = [x, [1,1,1,1,-4]];
411
412
413bsd[67,1] = 1 ;
414deg[67,1] = 5 ;
415dsc[67,1] = 1 ;
416E  [67,1] = [x, [1,2,-2,2,2]];
417
418bsd[67,2] = 0 ;
419deg[67,2] = 1 ;
420dsc[67,2] = 5 ;
421E  [67,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,-3]];
422
423bsd[67,3] = 1/11 ;
424deg[67,3] = 5 ;
425dsc[67,3] = 5 ;
426E  [67,3] = [x^2+x-1, [1,x,x+1,-x-1,-2*x+1]];
427
428
429bsd[68,1] = 1/3 ;
430deg[68,1] = 3 ;
431dsc[68,1] = 2^2*3 ;
432E  [68,1] = [x^2-2*x-2, [1,0,x,0,-2*x+2]];
433
434
435bsd[69,1] = 1 ;
436deg[69,1] = 1 ;
437dsc[69,1] = 1 ;
438E  [69,1] = [x, [1,1,1,-1,0]];
439
440bsd[69,2] = 1 ;
441deg[69,2] = 11 ;
442dsc[69,2] = 2^2*5 ;
443E  [69,2] = [x^2-5, [1,x,-1,3,-x-1]];
444
445
446bsd[70,1] = 1 ;
447deg[70,1] = 1 ;
448dsc[70,1] = 1 ;
449E  [70,1] = [x, [1,1,0,1,-1]];
450
451
452bsd[71,1] = 1/7 ;
453deg[71,1] = 3^2 ;
454dsc[71,1] = 257 ;
455E  [71,1] = [x^3+x^2-4*x-3, [1,x,-x,x^2-2,-x^2+x+5]];
456
457bsd[71,2] = 1/5 ;
458deg[71,2] = 3^2 ;
459dsc[71,2] = 257 ;
460E  [71,2] = [x^3-5*x+3, [1,x,-x^2+3,x^2-2,-x-1]];
461
462
463bsd[72,1] = 1 ;
464deg[72,1] = 1 ;
465dsc[72,1] = 1 ;
466E  [72,1] = [x, [1,0,0,0,2]];
467
468
469bsd[73,1] = 1 ;
470deg[73,1] = 3 ;
471dsc[73,1] = 1 ;
472E  [73,1] = [x, [1,1,0,-1,2]];
473
474bsd[73,2] = 0 ;
475deg[73,2] = 1 ;
476dsc[73,2] = 5 ;
477E  [73,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,x]];
478
479bsd[73,3] = 1/3 ;
480deg[73,3] = 3 ;
481dsc[73,3] = 13 ;
482E  [73,3] = [x^2-x-3, [1,x,-x+1,x+1,-x]];
483
484
485bsd[74,1] = 1/3 ;
486deg[74,1] = 3 ;
487dsc[74,1] = 13 ;
488E  [74,1] = [x^2-3*x-1, [1,-1,x,1,-x+1]];
489
490bsd[74,2] = 5/19 ;
491deg[74,2] = 5 ;
492dsc[74,2] = 5 ;
493E  [74,2] = [x^2+x-1, [1,1,x,1,-3*x-1]];
494
495
496bsd[75,1] = 1/5 ;
497deg[75,1] = 3 ;
498dsc[75,1] = 1 ;
499E  [75,1] = [x, [1,-2,1,2,0]];
500
501bsd[75,2] = 1 ;
502deg[75,2] = 3 ;
503dsc[75,2] = 1 ;
504E  [75,2] = [x, [1,1,1,-1,0]];
505
506bsd[75,3] = 1 ;
507deg[75,3] = 3 ;
508dsc[75,3] = 1 ;
509E  [75,3] = [x, [1,2,-1,2,0]];
510
511
512bsd[76,1] = 1 ;
513deg[76,1] = 3 ;
514dsc[76,1] = 1 ;
515E  [76,1] = [x, [1,0,2,0,-1]];
516
517
518bsd[77,1] = 0 ;
519deg[77,1] = 1 ;
520dsc[77,1] = 1 ;
521E  [77,1] = [x, [1,0,-3,-2,-1]];
522
523bsd[77,2] = 1/3 ;
524deg[77,2] = 5 ;
525dsc[77,2] = 1 ;
526E  [77,2] = [x, [1,0,1,-2,3]];
527
528bsd[77,3] = 1 ;
529deg[77,3] = 3 ;
530dsc[77,3] = 1 ;
531E  [77,3] = [x, [1,1,2,-1,-2]];
532
533bsd[77,4] = 1 ;
534deg[77,4] = 5 ;
535dsc[77,4] = 2^2*5 ;
536E  [77,4] = [x^2-5, [1,x,-x+1,3,-2]];
537
538
539bsd[78,1] = 1 ;
540deg[78,1] = 5 ;
541dsc[78,1] = 1 ;
542E  [78,1] = [x, [1,-1,-1,1,2]];
543
544
545bsd[79,1] = 0 ;
546deg[79,1] = 1 ;
547dsc[79,1] = 1 ;
548E  [79,1] = [x, [1,-1,-1,-1,-3]];
549
550bsd[79,2] = 1/13 ;
551deg[79,2] = 1 ;
552dsc[79,2] = 83*983 ;
553E  [79,2] = [x^5-6*x^3+8*x-1, [1,x,-x^4+x^3+3*x^2-3*x+1,x^2-2,x^4-4*x^2-x+3]];
554
555
556bsd[80,1] = 1 ;
557deg[80,1] = 1 ;
558dsc[80,1] = 1 ;
559E  [80,1] = [x, [1,0,0,0,1]];
560
561bsd[80,2] = 1 ;
562deg[80,2] = 1 ;
563dsc[80,2] = 1 ;
564E  [80,2] = [x, [1,0,2,0,-1]];
565
566
567bsd[81,1] = 1/3 ;
568deg[81,1] = 3 ;
569dsc[81,1] = 2^2*3 ;
570E  [81,1] = [x^2-3, [1,x,0,1,-x]];
571
572
573bsd[82,1] = 0 ;
574deg[82,1] = 1 ;
575dsc[82,1] = 1 ;
576E  [82,1] = [x, [1,-1,-2,1,-2]];
577
578bsd[82,2] = 1/7 ;
579deg[82,2] = 1 ;
580dsc[82,2] = 2^3 ;
581E  [82,2] = [x^2-2, [1,1,x,1,-2*x]];
582
583
584bsd[83,1] = 0 ;
585deg[83,1] = 1 ;
586dsc[83,1] = 1 ;
587E  [83,1] = [x, [1,-1,-1,-1,-2]];
588
589bsd[83,2] = 1/41 ;
590deg[83,2] = 1 ;
591dsc[83,2] = 2^2*197*11497 ;
592E  [83,2] = [x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [4,4*x,2*x^4-2*x^3-14*x^2+6*x+16,4*x^2-8,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-8]];
593
594
595bsd[84,1] = 1 ;
596deg[84,1] = 3 ;
597dsc[84,1] = 1 ;
598E  [84,1] = [x, [1,0,-1,0,4]];
599
600bsd[84,2] = 1 ;
601deg[84,2] = 3 ;
602dsc[84,2] = 1 ;
603E  [84,2] = [x, [1,0,1,0,0]];
604
605
606bsd[85,1] = 1 ;
607deg[85,1] = 1 ;
608dsc[85,1] = 1 ;
609E  [85,1] = [x, [1,1,2,-1,-1]];
610
611bsd[85,2] = 0 ;
612deg[85,2] = 1 ;
613dsc[85,2] = 2^3 ;
614E  [85,2] = [x^2+2*x-1, [1,x,-x-3,-2*x-1,-1]];
615
616bsd[85,3] = 1/3 ;
617deg[85,3] = 1 ;
618dsc[85,3] = 2^2*3 ;
619E  [85,3] = [x^2-3, [1,x,-x+1,1,1]];
620
621
622bsd[86,1] = 1/3 ;
623deg[86,1] = 7 ;
624dsc[86,1] = 3*7 ;
625E  [86,1] = [x^2+x-5, [1,-1,x,1,-x+1]];
626
627bsd[86,2] = 5/11 ;
628deg[86,2] = 5 ;
629dsc[86,2] = 5 ;
630E  [86,2] = [x^2-x-1, [1,1,x,1,-x-1]];
631
632
633bsd[87,1] = 1/5 ;
634deg[87,1] = 1 ;
635dsc[87,1] = 5 ;
636E  [87,1] = [x^2-x-1, [1,x,1,x-1,-2*x+2]];
637
638bsd[87,2] = 1 ;
639deg[87,2] = 23 ;
640dsc[87,2] = 229 ;
641E  [87,2] = [x^3-2*x^2-4*x+7, [1,x,-1,x^2-2,-2*x^2+8]];
642
643
644bsd[88,1] = 0 ;
645deg[88,1] = 1 ;
646dsc[88,1] = 1 ;
647E  [88,1] = [x, [1,0,-3,0,-3]];
648
649bsd[88,2] = 1 ;
650deg[88,2] = 1 ;
651dsc[88,2] = 17 ;
652E  [88,2] = [x^2-x-4, [1,0,x,0,-x+2]];
653
654
655bsd[89,1] = 0 ;
656deg[89,1] = 1 ;
657dsc[89,1] = 1 ;
658E  [89,1] = [x, [1,-1,-1,-1,-1]];
659
660bsd[89,2] = 1 ;
661deg[89,2] = 5 ;
662dsc[89,2] = 1 ;
663E  [89,2] = [x, [1,1,2,-1,-2]];
664
665bsd[89,3] = 1/11 ;
666deg[89,3] = 5 ;
667dsc[89,3] = 2^4*5*6689 ;
668E  [89,3] = [x^5+x^4-10*x^3-10*x^2+21*x+17, [2,2*x,-x^4+x^3+7*x^2-5*x-8,2*x^2-4,-2*x^2+8]];
669
670
671bsd[90,1] = 1/3 ;
672deg[90,1] = 1 ;
673dsc[90,1] = 1 ;
674E  [90,1] = [x, [1,-1,0,1,1]];
675
676bsd[90,2] = 1/3 ;
677deg[90,2] = 1 ;
678dsc[90,2] = 1 ;
679E  [90,2] = [x, [1,1,0,1,-1]];
680
681bsd[90,3] = 1 ;
682deg[90,3] = 1 ;
683dsc[90,3] = 1 ;
684E  [90,3] = [x, [1,1,0,1,1]];
685
686
687bsd[91,1] = 0 ;
688deg[91,1] = 1 ;
689dsc[91,1] = 1 ;
690E  [91,1] = [x, [1,-2,0,2,-3]];
691
692bsd[91,2] = 0 ;
693deg[91,2] = 1 ;
694dsc[91,2] = 1 ;
695E  [91,2] = [x, [1,0,-2,-2,-3]];
696
697bsd[91,3] = 1/7 ;
698deg[91,3] = 1 ;
699dsc[91,3] = 2^3 ;
700E  [91,3] = [x^2-2, [1,x,-x,0,x+3]];
701
702bsd[91,4] = 1 ;
703deg[91,4] = 1 ;
704dsc[91,4] = 2^2*79 ;
705E  [91,4] = [x^3-x^2-4*x+2, [1,x,-x^2+x+2,x^2-2,-x+1]];
706
707
708bsd[92,1] = 0 ;
709deg[92,1] = 3 ;
710dsc[92,1] = 1 ;
711E  [92,1] = [x, [1,0,-3,0,-2]];
712
713bsd[92,2] = 1/3 ;
714deg[92,2] = 1 ;
715dsc[92,2] = 1 ;
716E  [92,2] = [x, [1,0,1,0,0]];
717
718
719bsd[93,1] = 0 ;
720deg[93,1] = 1 ;
721dsc[93,1] = 5 ;
722E  [93,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-2*x-5]];
723
724bsd[93,2] = 1 ;
725deg[93,2] = 1 ;
726dsc[93,2] = 229 ;
727E  [93,2] = [x^3-4*x+1, [1,x,1,x^2-2,-x^2-x+2]];
728
729
730bsd[94,1] = 1 ;
731deg[94,1] = 1 ;
732dsc[94,1] = 1 ;
733E  [94,1] = [x, [1,1,0,1,0]];
734
735bsd[94,2] = 1 ;
736deg[94,2] = 47 ;
737dsc[94,2] = 2^3 ;
738E  [94,2] = [x^2-8, [2,-2,2*x,2,-x+4]];
739
740
741bsd[95,1] = 1/5 ;
742deg[95,1] = 1 ;
743dsc[95,1] = 2^2*37 ;
744E  [95,1] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1]];
745
746bsd[95,2] = 1/3 ;
747deg[95,2] = 3^2 ;
748dsc[95,2] = 2^4*709 ;
749E  [95,2] = [x^4+2*x^3-6*x^2-8*x+9, [1,x,-x^3+5*x-2,x^2-2,-1]];
750
751
752bsd[96,1] = 1 ;
753deg[96,1] = 1 ;
754dsc[96,1] = 1 ;
755E  [96,1] = [x, [1,0,-1,0,2]];
756
757bsd[96,2] = 1 ;
758deg[96,2] = 1 ;
759dsc[96,2] = 1 ;
760E  [96,2] = [x, [1,0,1,0,2]];
761
762
763bsd[97,1] = 0 ;
764deg[97,1] = 1 ;
765dsc[97,1] = 7^2 ;
766E  [97,1] = [x^3+4*x^2+3*x-1, [1,x,-x^2-3*x-2,x^2-2,2*x^2+5*x-1]];
767
768bsd[97,2] = 1 ;
769deg[97,2] = 1 ;
770dsc[97,2] = 2777 ;
771E  [97,2] = [x^4-3*x^3-x^2+6*x-1, [1,x,-x^2+x+2,x^2-2,-x+1]];
772
773
774bsd[98,1] = 1 ;
775deg[98,1] = 1 ;
776dsc[98,1] = 1 ;
777E  [98,1] = [x, [1,-1,2,1,0]];
778
779bsd[98,2] = 1/7 ;
780deg[98,2] = 1 ;
781dsc[98,2] = 2^3 ;
782E  [98,2] = [x^2-2, [1,1,x,1,-2*x]];
783
784
785bsd[99,1] = 0 ;
786deg[99,1] = 1 ;
787dsc[99,1] = 1 ;
788E  [99,1] = [x, [1,-1,0,-1,-4]];
789
790bsd[99,2] = 1 ;
791deg[99,2] = 3 ;
792dsc[99,2] = 1 ;
793E  [99,2] = [x, [1,-1,0,-1,2]];
794
795bsd[99,3] = 1 ;
796deg[99,3] = 3 ;
797dsc[99,3] = 1 ;
798E  [99,3] = [x, [1,1,0,-1,4]];
799
800bsd[99,4] = 1 ;
801deg[99,4] = 3 ;
802dsc[99,4] = 1 ;
803E  [99,4] = [x, [1,2,0,2,-1]];
804
805
806bsd[100,1] = 1 ;
807deg[100,1] = 3 ;
808dsc[100,1] = 1 ;
809E  [100,1] = [x, [1,0,2,0,0]];
810
811
812bsd[101,1] = 0 ;
813deg[101,1] = 1 ;
814dsc[101,1] = 1 ;
815E  [101,1] = [x, [1,0,-2,-2,-1]];
816
817bsd[101,2] = 1/5^2 ;
818deg[101,2] = 1 ;
819dsc[101,2] = 2^6*17568767 ;
820E  [101,2] = [x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [4,4*x,x^6+x^5-10*x^4-10*x^3+19*x^2+17*x+2,4*x^2-8,-2*x^6-3*x^5+22*x^4+28*x^3-58*x^2-45*x+30]];
821
822
823bsd[102,1] = 0 ;
824deg[102,1] = 1 ;
825dsc[102,1] = 1 ;
826E  [102,1] = [x, [1,-1,-1,1,-4]];
827
828bsd[102,2] = 1/3 ;
829deg[102,2] = 3 ;
830dsc[102,2] = 1 ;
831E  [102,2] = [x, [1,-1,1,1,0]];
832
833bsd[102,3] = 1 ;
834deg[102,3] = 1 ;
835dsc[102,3] = 1 ;
836E  [102,3] = [x, [1,1,1,1,-2]];
837
838
839bsd[103,1] = 0 ;
840deg[103,1] = 1 ;
841dsc[103,1] = 5 ;
842E  [103,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-x-3]];
843
844bsd[103,2] = 1/17 ;
845deg[103,2] = 1 ;
846dsc[103,2] = 17*411721 ;
847E  [103,2] = [x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [1,x,-x^5+3*x^4+3*x^3-11*x^2-x+8,x^2-2,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13]];
848
849
850bsd[104,1] = 1 ;
851deg[104,1] = 1 ;
852dsc[104,1] = 1 ;
853E  [104,1] = [x, [1,0,1,0,-1]];
854
855bsd[104,2] = 1 ;
856deg[104,2] = 1 ;
857dsc[104,2] = 17 ;
858E  [104,2] = [x^2-x-4, [1,0,x,0,-x+2]];
859
860
861bsd[105,1] = 1 ;
862deg[105,1] = 1 ;
863dsc[105,1] = 1 ;
864E  [105,1] = [x, [1,1,1,-1,1]];
865
866bsd[105,2] = 1 ;
867deg[105,2] = 5 ;
868dsc[105,2] = 2^2*5 ;
869E  [105,2] = [x^2-5, [1,x,-1,3,-1]];
870
871
872bsd[106,1] = 0 ;
873deg[106,1] = 1 ;
874dsc[106,1] = 1 ;
875E  [106,1] = [x, [1,-1,-1,1,-4]];
876
877bsd[106,2] = 1 ;
878deg[106,2] = 5 ;
879dsc[106,2] = 1 ;
880E  [106,2] = [x, [1,-1,2,1,1]];
881
882bsd[106,3] = 1/3 ;
883deg[106,3] = 3 ;
884dsc[106,3] = 1 ;
885E  [106,3] = [x, [1,1,-2,1,3]];
886
887bsd[106,4] = 1/3 ;
888deg[106,4] = 3 ;
889dsc[106,4] = 1 ;
890E  [106,4] = [x, [1,1,1,1,0]];
891
892
893bsd[107,1] = 0 ;
894deg[107,1] = 1 ;
895dsc[107,1] = 5 ;
896E  [107,1] = [x^2+x-1, [1,x,-x-2,-x-1,-x-2]];
897
898bsd[107,2] = 1/53 ;
899deg[107,2] = 1 ;
900dsc[107,2] = 2^2*7*1667*19079 ;
901E  [107,2] = [x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [4,4*x,-x^6-x^5+10*x^4+3*x^3-29*x^2+8*x+16,4*x^2-8,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x]];
902
903
904bsd[108,1] = 1/3 ;
905deg[108,1] = 3 ;
906dsc[108,1] = 1 ;
907E  [108,1] = [x, [1,0,0,0,0]];
908
909
910bsd[109,1] = 1 ;
911deg[109,1] = 1 ;
912dsc[109,1] = 1 ;
913E  [109,1] = [x, [1,1,0,-1,3]];
914
915bsd[109,2] = 0 ;
916deg[109,2] = 1 ;
917dsc[109,2] = 7^2 ;
918E  [109,2] = [x^3+2*x^2-x-1, [1,x,-x-2,x^2-2,-2*x^2-3*x]];
919
920bsd[109,3] = 1/3^2 ;
921deg[109,3] = 1 ;
922dsc[109,3] = 7537 ;
923E  [109,3] = [x^4+x^3-5*x^2-4*x+3, [1,x,-x^3+4*x+1,x^2-2,-x]];
924
925
926bsd[110,1] = 1/3 ;
927deg[110,1] = 7 ;
928dsc[110,1] = 1 ;
929E  [110,1] = [x, [1,-1,1,1,-1]];
930
931bsd[110,2] = 1 ;
932deg[110,2] = 5 ;
933dsc[110,2] = 1 ;
934E  [110,2] = [x, [1,1,-1,1,1]];
935
936bsd[110,3] = 1/3 ;
937deg[110,3] = 1 ;
938dsc[110,3] = 1 ;
939E  [110,3] = [x, [1,1,1,1,-1]];
940
941bsd[110,4] = 1/3 ;
942deg[110,4] = 1 ;
943dsc[110,4] = 3*11 ;
944E  [110,4] = [x^2+x-8, [1,-1,x,1,1]];
945
946
947bsd[111,1] = 1 ;
948deg[111,1] = 5 ;
949dsc[111,1] = 2^2*37 ;
950E  [111,1] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+5]];
951
952bsd[111,2] = 7/19 ;
953deg[111,2] = 7 ;
954dsc[111,2] = 2^4*389 ;
955E  [111,2] = [x^4-6*x^2+2*x+5, [1,x,1,x^2-2,-x^3-2*x^2+3*x+4]];
956
957
958bsd[112,1] = 0 ;
959deg[112,1] = 1 ;
960dsc[112,1] = 1 ;
961E  [112,1] = [x, [1,0,-2,0,-4]];
962
963bsd[112,2] = 1 ;
964deg[112,2] = 1 ;
965dsc[112,2] = 1 ;
966E  [112,2] = [x, [1,0,0,0,2]];
967
968bsd[112,3] = 1 ;
969deg[112,3] = 1 ;
970dsc[112,3] = 1 ;
971E  [112,3] = [x, [1,0,2,0,0]];
972
973
974bsd[113,1] = 1 ;
975deg[113,1] = 3 ;
976dsc[113,1] = 1 ;
977E  [113,1] = [x, [1,-1,2,-1,2]];
978
979bsd[113,2] = 1 ;
980deg[113,2] = 11 ;
981dsc[113,2] = 2^2*3 ;
982E  [113,2] = [x^2-2*x-2, [1,1,x,-1,-2*x+2]];
983
984bsd[113,3] = 0 ;
985deg[113,3] = 1 ;
986dsc[113,3] = 7^2 ;
987E  [113,3] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x-1,x^2-2,2*x^2+2*x-3]];
988
989bsd[113,4] = 1/7 ;
990deg[113,4] = 3*11 ;
991dsc[113,4] = 3*107 ;
992E  [113,4] = [x^3+2*x^2-5*x-9, [1,x,x^2-5,x^2-2,-1]];
993
994
995bsd[114,1] = 1 ;
996deg[114,1] = 5 ;
997dsc[114,1] = 1 ;
998E  [114,1] = [x, [1,-1,-1,1,0]];
999
1000bsd[114,2] = 5 ;
1001deg[114,2] = 3*5 ;
1002dsc[114,2] = 1 ;
1003E  [114,2] = [x, [1,1,-1,1,2]];
1004
1005bsd[114,3] = 1 ;
1006deg[114,3] = 3 ;
1007dsc[114,3] = 1 ;
1008E  [114,3] = [x, [1,1,1,1,0]];
1009
1010
1011bsd[115,1] = 1 ;
1012deg[115,1] = 5 ;
1013dsc[115,1] = 1 ;
1014E  [115,1] = [x, [1,2,0,2,-1]];
1015
1016bsd[115,2] = 0 ;
1017deg[115,2] = 1 ;
1018dsc[115,2] = 5 ;
1019E  [115,2] = [x^2+3*x+1, [1,x,-1,-3*x-3,-1]];
1020
1021bsd[115,3] = 1 ;
1022deg[115,3] = 1 ;
1023dsc[115,3] = 17^2*53 ;
1024E  [115,3] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-x^2+x+2,x^2-2,1]];
1025
1026
1027bsd[116,1] = 3 ;
1028deg[116,1] = 3*5 ;
1029dsc[116,1] = 1 ;
1030E  [116,1] = [x, [1,0,-3,0,3]];
1031
1032bsd[116,2] = 1/3 ;
1033deg[116,2] = 1 ;
1034dsc[116,2] = 1 ;
1035E  [116,2] = [x, [1,0,1,0,3]];
1036
1037bsd[116,3] = 1 ;
1038deg[116,3] = 3*5 ;
1039dsc[116,3] = 1 ;
1040E  [116,3] = [x, [1,0,2,0,-2]];
1041
1042
1043bsd[117,1] = 0 ;
1044deg[117,1] = 1 ;
1045dsc[117,1] = 1 ;
1046E  [117,1] = [x, [1,-1,0,-1,-2]];
1047
1048bsd[117,2] = 1/3 ;
1049deg[117,2] = 1 ;
1050dsc[117,2] = 2^2*3 ;
1051E  [117,2] = [x^2-3, [1,x,0,1,0]];
1052
1053bsd[117,3] = 1 ;
1054deg[117,3] = 1 ;
1055dsc[117,3] = 2^3 ;
1056E  [117,3] = [x^2-2*x-1, [1,x,0,2*x-1,-2*x+2]];
1057
1058
1059bsd[118,1] = 0 ;
1060deg[118,1] = 1 ;
1061dsc[118,1] = 1 ;
1062E  [118,1] = [x, [1,-1,-1,1,-3]];
1063
1064bsd[118,2] = 1 ;
1065deg[118,2] = 19 ;
1066dsc[118,2] = 1 ;
1067E  [118,2] = [x, [1,-1,2,1,2]];
1068
1069bsd[118,3] = 1/5 ;
1070deg[118,3] = 3 ;
1071dsc[118,3] = 1 ;
1072E  [118,3] = [x, [1,1,-1,1,1]];
1073
1074bsd[118,4] = 1 ;
1075deg[118,4] = 3 ;
1076dsc[118,4] = 1 ;
1077E  [118,4] = [x, [1,1,2,1,-2]];
1078
1079
1080bsd[119,1] = 1/3^2 ;
1081deg[119,1] = 1 ;
1082dsc[119,1] = 71*131 ;
1083E  [119,1] = [x^4+x^3-5*x^2-x+3, [1,x,-x^3-x^2+4*x+1,x^2-2,x^3+x^2-4*x]];
1084
1085bsd[119,2] = 1 ;
1086deg[119,2] = 3 ;
1087dsc[119,2] = 311*1459 ;
1088E  [119,2] = [x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,x,-x^4+6*x^2+x-4,x^2-2,2*x^4+x^3-15*x^2-6*x+18]];
1089
1090
1091bsd[120,1] = 1 ;
1092deg[120,1] = 1 ;
1093dsc[120,1] = 1 ;
1094E  [120,1] = [x, [1,0,1,0,-1]];
1095
1096bsd[120,2] = 1 ;
1097deg[120,2] = 1 ;
1098dsc[120,2] = 1 ;
1099E  [120,2] = [x, [1,0,1,0,1]];
1100
1101
1102bsd[121,1] = 1 ;
1103deg[121,1] = 3 ;
1104dsc[121,1] = 1 ;
1105E  [121,1] = [x, [1,-1,2,-1,1]];
1106
1107bsd[121,2] = 0 ;
1108deg[121,2] = 1 ;
1109dsc[121,2] = 1 ;
1110E  [121,2] = [x, [1,0,-1,-2,-3]];
1111
1112bsd[121,3] = 1 ;
1113deg[121,3] = 3 ;
1114dsc[121,3] = 1 ;
1115E  [121,3] = [x, [1,1,2,-1,1]];
1116
1117bsd[121,4] = 1 ;
1118deg[121,4] = 3 ;
1119dsc[121,4] = 1 ;
1120E  [121,4] = [x, [1,2,-1,2,1]];
1121
1122
1123bsd[122,1] = 0 ;
1124deg[122,1] = 1 ;
1125dsc[122,1] = 1 ;
1126E  [122,1] = [x, [1,-1,-2,1,1]];
1127
1128bsd[122,2] = 1/3 ;
1129deg[122,2] = 13 ;
1130dsc[122,2] = 13 ;
1131E  [122,2] = [x^2-x-3, [1,-1,x,1,0]];
1132
1133bsd[122,3] = 1/31 ;
1134deg[122,3] = 1 ;
1135dsc[122,3] = 229 ;
1136E  [122,3] = [x^3+x^2-5*x+2, [1,1,x,1,-x^2-3*x+3]];
1137
1138
1139bsd[123,1] = 0 ;
1140deg[123,1] = 5 ;
1141dsc[123,1] = 1 ;
1142E  [123,1] = [x, [1,-2,1,2,-4]];
1143
1144bsd[123,2] = 0 ;
1145deg[123,2] = 1 ;
1146dsc[123,2] = 1 ;
1147E  [123,2] = [x, [1,0,-1,-2,-2]];
1148
1149bsd[123,3] = 1/7 ;
1150deg[123,3] = 1 ;
1151dsc[123,3] = 2^3 ;
1152E  [123,3] = [x^2-2, [1,x,1,0,-x+2]];
1153
1154bsd[123,4] = 1 ;
1155deg[123,4] = 23 ;
1156dsc[123,4] = 2^2*79 ;
1157E  [123,4] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4]];
1158
1159
1160bsd[124,1] = 0 ;
1161deg[124,1] = 3 ;
1162dsc[124,1] = 1 ;
1163E  [124,1] = [x, [1,0,-2,0,-3]];
1164
1165bsd[124,2] = 1 ;
1166deg[124,2] = 3 ;
1167dsc[124,2] = 1 ;
1168E  [124,2] = [x, [1,0,0,0,1]];
1169
1170
1171bsd[125,1] = 0 ;
1172deg[125,1] = 1 ;
1173dsc[125,1] = 5 ;
1174E  [125,1] = [x^2+x-1, [1,x,-x-2,-x-1,0]];
1175
1176bsd[125,2] = 1/5 ;
1177deg[125,2] = 5^2 ;
1178dsc[125,2] = 5 ;
1179E  [125,2] = [x^2-x-1, [1,x,-x+2,x-1,0]];
1180
1181bsd[125,3] = 1/5 ;
1182deg[125,3] = 5^2 ;
1183dsc[125,3] = 2^4*5^2*11 ;
1184E  [125,3] = [x^4-8*x^2+11, [2,2*x,-x^3+5*x,2*x^2-4,0]];
1185
1186
1187bsd[126,1] = 1 ;
1188deg[126,1] = 1 ;
1189dsc[126,1] = 1 ;
1190E  [126,1] = [x, [1,-1,0,1,2]];
1191
1192bsd[126,2] = 1 ;
1193deg[126,2] = 1 ;
1194dsc[126,2] = 1 ;
1195E  [126,2] = [x, [1,1,0,1,0]];
1196
1197
1198bsd[127,1] = 0 ;
1199deg[127,1] = 1 ;
1200dsc[127,1] = 3^4 ;
1201E  [127,1] = [x^3+3*x^2-3, [1,x,-x^2-2*x,x^2-2,x^2+x-4]];
1202
1203bsd[127,2] = 1/3*7 ;
1204deg[127,2] = 1 ;
1205dsc[127,2] = 7*86235899 ;
1206E  [127,2] = [x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [1,x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,x^2-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9]];
1207
1208
1209bsd[128,1] = 0 ;
1210deg[128,1] = 1 ;
1211dsc[128,1] = 1 ;
1212E  [128,1] = [x, [1,0,-2,0,-2]];
1213
1214bsd[128,2] = 1 ;
1215deg[128,2] = 1 ;
1216dsc[128,2] = 1 ;
1217E  [128,2] = [x, [1,0,-2,0,2]];
1218
1219bsd[128,3] = 1 ;
1220deg[128,3] = 1 ;
1221dsc[128,3] = 1 ;
1222E  [128,3] = [x, [1,0,2,0,-2]];
1223
1224bsd[128,4] = 1 ;
1225deg[128,4] = 1 ;
1226dsc[128,4] = 1 ;
1227E  [128,4] = [x, [1,0,2,0,2]];
1228
1229
1230bsd[129,1] = 0 ;
1231deg[129,1] = 1 ;
1232dsc[129,1] = 1 ;
1233E  [129,1] = [x, [1,0,-1,-2,-2]];
1234
1235bsd[129,2] = 3 ;
1236deg[129,2] = 3*5 ;
1237dsc[129,2] = 1 ;
1238E  [129,2] = [x, [1,1,1,-1,2]];
1239
1240bsd[129,3] = 1 ;
1241deg[129,3] = 7 ;
1242dsc[129,3] = 2^3 ;
1243E  [129,3] = [x^2-2*x-1, [1,x,-1,2*x-1,-x+2]];
1244
1245bsd[129,4] = 1/11 ;
1246deg[129,4] = 5 ;
1247dsc[129,4] = 2^3*71 ;
1248E  [129,4] = [x^3+2*x^2-5*x-8, [1,x,1,x^2-2,-x-2]];
1249
1250
1251bsd[130,1] = 0 ;
1252deg[130,1] = 3 ;
1253dsc[130,1] = 1 ;
1254E  [130,1] = [x, [1,-1,-2,1,1]];
1255
1256bsd[130,2] = 1 ;
1257deg[130,2] = 1 ;
1258dsc[130,2] = 1 ;
1259E  [130,2] = [x, [1,1,0,1,1]];
1260
1261bsd[130,3] = 1 ;
1262deg[130,3] = 5 ;
1263dsc[130,3] = 1 ;
1264E  [130,3] = [x, [1,1,2,1,-1]];
1265
1266
1267bsd[131,1] = 0 ;
1268deg[131,1] = 1 ;
1269dsc[131,1] = 1 ;
1270E  [131,1] = [x, [1,0,-1,-2,-2]];
1271
1272bsd[131,2] = 1/5*13 ;
1273deg[131,2] = 1 ;
1274dsc[131,2] = 2^7*5*46141*75619573 ;
1275E  [131,2] = [x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [16,16*x,2*x^8-32*x^6+162*x^4-268*x^2+80,16*x^2-32,-x^9+18*x^7+2*x^6-107*x^5-18*x^4+234*x^3+28*x^2-144*x+16]];
1276
1277
1278bsd[132,1] = 1 ;
1279deg[132,1] = 3*5 ;
1280dsc[132,1] = 1 ;
1281E  [132,1] = [x, [1,0,-1,0,2]];
1282
1283bsd[132,2] = 1 ;
1284deg[132,2] = 3 ;
1285dsc[132,2] = 1 ;
1286E  [132,2] = [x, [1,0,1,0,2]];
1287
1288
1289bsd[133,1] = 0 ;
1290deg[133,1] = 1 ;
1291dsc[133,1] = 5 ;
1292E  [133,1] = [x^2+3*x+1, [1,x,x,-3*x-3,-2*x-3]];
1293
1294bsd[133,2] = 0 ;
1295deg[133,2] = 3 ;
1296dsc[133,2] = 13 ;
1297E  [133,2] = [x^2+x-3, [1,x,-x-2,-x+1,-3]];
1298
1299bsd[133,3] = 1/5 ;
1300deg[133,3] = 1 ;
1301dsc[133,3] = 5 ;
1302E  [133,3] = [x^2-x-1, [1,x,-x+2,x-1,1]];
1303
1304bsd[133,4] = 1 ;
1305deg[133,4] = 7 ;
1306dsc[133,4] = 229 ;
1307E  [133,4] = [x^3-2*x^2-4*x+7, [1,x,-x^2+5,x^2-2,x^2-x-4]];
1308
1309
1310bsd[134,1] = 1/3 ;
1311deg[134,1] = 5^2 ;
1312dsc[134,1] = 11*43 ;
1313E  [134,1] = [x^3-x^2-8*x+11, [1,-1,x,1,x^2+x-5]];
1314
1315bsd[134,2] = 19/17 ;
1316deg[134,2] = 19 ;
1317dsc[134,2] = 3^4 ;
1318E  [134,2] = [x^3-3*x^2+1, [1,1,x,1,-x^2+x+1]];
1319
1320
1321bsd[135,1] = 0 ;
1322deg[135,1] = 3 ;
1323dsc[135,1] = 1 ;
1324E  [135,1] = [x, [1,-2,0,2,-1]];
1325
1326bsd[135,2] = 1 ;
1327deg[135,2] = 3^2 ;
1328dsc[135,2] = 1 ;
1329E  [135,2] = [x, [1,2,0,2,1]];
1330
1331bsd[135,3] = 1/3 ;
1332deg[135,3] = 3^2 ;
1333dsc[135,3] = 13 ;
1334E  [135,3] = [x^2+x-3, [1,x,0,-x+1,1]];
1335
1336bsd[135,4] = 1/3 ;
1337deg[135,4] = 3^2 ;
1338dsc[135,4] = 13 ;
1339E  [135,4] = [x^2-x-3, [1,x,0,x+1,-1]];
1340
1341
1342bsd[136,1] = 0 ;
1343deg[136,1] = 1 ;
1344dsc[136,1] = 1 ;
1345E  [136,1] = [x, [1,0,-2,0,-2]];
1346
1347bsd[136,2] = 1 ;
1348deg[136,2] = 1 ;
1349dsc[136,2] = 1 ;
1350E  [136,2] = [x, [1,0,2,0,0]];
1351
1352bsd[136,3] = 1 ;
1353deg[136,3] = 1 ;
1354dsc[136,3] = 2^2*5 ;
1355E  [136,3] = [x^2+2*x-4, [1,0,x,0,2]];
1356
1357
1358bsd[137,1] = 0 ;
1359deg[137,1] = 1 ;
1360dsc[137,1] = 5^2*29 ;
1361E  [137,1] = [x^4+3*x^3-4*x-1, [1,x,x^3+x^2-3*x-2,x^2-2,-2*x^3-3*x^2+3*x+1]];
1362
1363bsd[137,2] = 1/17 ;
1364deg[137,2] = 1 ;
1365dsc[137,2] = 2^2*401*895241 ;
1366E  [137,2] = [x^7-10*x^5+28*x^3+3*x^2-19*x-7, [2,2*x,-x^6+x^5+11*x^4-9*x^3-33*x^2+18*x+21,2*x^2-4,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-26]];
1367
1368
1369bsd[138,1] = 0 ;
1370deg[138,1] = 1 ;
1371dsc[138,1] = 1 ;
1372E  [138,1] = [x, [1,-1,-1,1,-2]];
1373
1374bsd[138,2] = 1/3 ;
1375deg[138,2] = 1 ;
1376dsc[138,2] = 1 ;
1377E  [138,2] = [x, [1,-1,1,1,0]];
1378
1379bsd[138,3] = 1 ;
1380deg[138,3] = 1 ;
1381dsc[138,3] = 1 ;
1382E  [138,3] = [x, [1,1,-1,1,2]];
1383
1384bsd[138,4] = 1 ;
1385deg[138,4] = 11 ;
1386dsc[138,4] = 2^2*5 ;
1387E  [138,4] = [x^2+2*x-4, [1,1,1,1,x]];
1388
1389
1390bsd[139,1] = 1 ;
1391deg[139,1] = 3 ;
1392dsc[139,1] = 1 ;
1393E  [139,1] = [x, [1,1,2,-1,-1]];
1394
1395bsd[139,2] = 0 ;
1396deg[139,2] = 1 ;
1397dsc[139,2] = 7^2 ;
1398E  [139,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+x-4]];
1399
1400bsd[139,3] = 1/23 ;
1401deg[139,3] = 3 ;
1402dsc[139,3] = 997*2151701 ;
1403E  [139,3] = [x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [4,4*x,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-24*x-16,4*x^2-8,-x^6-x^5+9*x^4+6*x^3-19*x^2-4*x+12]];
1404
1405
1406bsd[140,1] = 1 ;
1407deg[140,1] = 3 ;
1408dsc[140,1] = 1 ;
1409E  [140,1] = [x, [1,0,1,0,1]];
1410
1411bsd[140,2] = 1 ;
1412deg[140,2] = 3*5 ;
1413dsc[140,2] = 1 ;
1414E  [140,2] = [x, [1,0,3,0,-1]];
1415
1416
1417bsd[141,1] = 0 ;
1418deg[141,1] = 7 ;
1419dsc[141,1] = 1 ;
1420E  [141,1] = [x, [1,-2,1,2,-3]];
1421
1422bsd[141,2] = 1 ;
1423deg[141,2] = 3 ;
1424dsc[141,2] = 1 ;
1425E  [141,2] = [x, [1,-1,-1,-1,0]];
1426
1427bsd[141,3] = 1 ;
1428deg[141,3] = 3 ;
1429dsc[141,3] = 1 ;
1430E  [141,3] = [x, [1,-1,1,-1,2]];
1431
1432bsd[141,4] = 0 ;
1433deg[141,4] = 1 ;
1434dsc[141,4] = 1 ;
1435E  [141,4] = [x, [1,0,-1,-2,-1]];
1436
1437bsd[141,5] = 1 ;
1438deg[141,5] = 3 ;
1439dsc[141,5] = 1 ;
1440E  [141,5] = [x, [1,2,1,2,-1]];
1441
1442bsd[141,6] = 1 ;
1443deg[141,6] = 43 ;
1444dsc[141,6] = 17 ;
1445E  [141,6] = [x^2+x-4, [1,x,-1,-x+2,x+1]];
1446
1447
1448bsd[142,1] = 0 ;
1449deg[142,1] = 1 ;
1450dsc[142,1] = 1 ;
1451E  [142,1] = [x, [1,-1,-1,1,-2]];
1452
1453bsd[142,2] = 1 ;
1454deg[142,2] = 3^2 ;
1455dsc[142,2] = 1 ;
1456E  [142,2] = [x, [1,-1,0,1,2]];
1457
1458bsd[142,3] = 1 ;
1459deg[142,3] = 3^4 ;
1460dsc[142,3] = 1 ;
1461E  [142,3] = [x, [1,-1,3,1,2]];
1462
1463bsd[142,4] = 0 ;
1464deg[142,4] = 3^2 ;
1465dsc[142,4] = 1 ;
1466E  [142,4] = [x, [1,1,-3,1,-4]];
1467
1468bsd[142,5] = 1/3 ;
1469deg[142,5] = 1 ;
1470dsc[142,5] = 1 ;
1471E  [142,5] = [x, [1,1,1,1,0]];
1472
1473
1474bsd[143,1] = 0 ;
1475deg[143,1] = 1 ;
1476dsc[143,1] = 1 ;
1477E  [143,1] = [x, [1,0,-1,-2,-1]];
1478
1479bsd[143,2] = 1/7 ;
1480deg[143,2] = 3^2 ;
1481dsc[143,2] = 19*103 ;
1482E  [143,2] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-3,x^2-2,-2*x^2+2*x+4]];
1483
1484bsd[143,3] = 1/3 ;
1485deg[143,3] = 1 ;
1486dsc[143,3] = 5*7*5560463 ;
1487E  [143,3] = [x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^2-2,x^5+2*x^4-8*x^3-14*x^2+12*x+15]];
1488
1489
1490bsd[144,1] = 1 ;
1491deg[144,1] = 1 ;
1492dsc[144,1] = 1 ;
1493E  [144,1] = [x, [1,0,0,0,0]];
1494
1495bsd[144,2] = 1 ;
1496deg[144,2] = 1 ;
1497dsc[144,2] = 1 ;
1498E  [144,2] = [x, [1,0,0,0,2]];
1499
1500
1501bsd[145,1] = 0 ;
1502deg[145,1] = 1 ;
1503dsc[145,1] = 1 ;
1504E  [145,1] = [x, [1,-1,0,-1,-1]];
1505
1506bsd[145,2] = 0 ;
1507deg[145,2] = 7 ;
1508dsc[145,2] = 2^3 ;
1509E  [145,2] = [x^2+2*x-1, [1,x,-2,-2*x-1,1]];
1510
1511bsd[145,3] = 1/5 ;
1512deg[145,3] = 1 ;
1513dsc[145,3] = 2^2*37 ;
1514E  [145,3] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1]];
1515
1516bsd[145,4] = 1 ;
1517deg[145,4] = 5^2 ;
1518dsc[145,4] = 2^2*37 ;
1519E  [145,4] = [x^3-3*x^2-x+5, [1,x,-x^2+2*x+1,x^2-2,-1]];
1520
1521
1522bsd[146,1] = 1/3 ;
1523deg[146,1] = 3^2 ;
1524dsc[146,1] = 2^2*101 ;
1525E  [146,1] = [x^3-8*x+4, [2,-2,2*x,2,-x^2+4]];
1526
1527bsd[146,2] = 19/37 ;
1528deg[146,2] = 19 ;
1529dsc[146,2] = 2^4*389 ;
1530E  [146,2] = [x^4-8*x^2+4*x+4, [2,2,2*x,2,-x^3-x^2+4*x+2]];
1531
1532
1533bsd[147,1] = 1 ;
1534deg[147,1] = 3 ;
1535dsc[147,1] = 1 ;
1536E  [147,1] = [x, [1,-1,-1,-1,2]];
1537
1538bsd[147,2] = 1 ;
1539deg[147,2] = 3 ;
1540dsc[147,2] = 1 ;
1541E  [147,2] = [x, [1,2,-1,2,2]];
1542
1543bsd[147,3] = 1 ;
1544deg[147,3] = 3*7 ;
1545dsc[147,3] = 1 ;
1546E  [147,3] = [x, [1,2,1,2,-2]];
1547
1548bsd[147,4] = 0 ;
1549deg[147,4] = 1 ;
1550dsc[147,4] = 2^3 ;
1551E  [147,4] = [x^2-2*x-7, [2,-x-1,-2,2*x,x-5]];
1552
1553bsd[147,5] = 1/7 ;
1554deg[147,5] = 7 ;
1555dsc[147,5] = 2^3 ;
1556E  [147,5] = [x^2-2*x-7, [2,-x-1,2,2*x,-x+5]];
1557
1558
1559bsd[148,1] = 0 ;
1560deg[148,1] = 3 ;
1561dsc[148,1] = 1 ;
1562E  [148,1] = [x, [1,0,-1,0,-4]];
1563
1564bsd[148,2] = 1 ;
1565deg[148,2] = 3^2 ;
1566dsc[148,2] = 17 ;
1567E  [148,2] = [x^2+x-4, [1,0,x,0,2]];
1568
1569
1570bsd[149,1] = 0 ;
1571deg[149,1] = 1 ;
1572dsc[149,1] = 7^2 ;
1573E  [149,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x,x^2-2,x^2-x-3]];
1574
1575bsd[149,2] = 1/37 ;
1576deg[149,2] = 1 ;
1577dsc[149,2] = 2^6*234893*1252037 ;
1578E  [149,2] = [x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [4,4*x,-3*x^8-x^7+46*x^6+5*x^5-233*x^4+13*x^3+418*x^2-49*x-176,4*x^2-8,-x^8-x^7+14*x^6+9*x^5-63*x^4-19*x^3+92*x^2+3*x-26]];
1579
1580
1581bsd[150,1] = 1 ;
1582deg[150,1] = 5 ;
1583dsc[150,1] = 1 ;
1584E  [150,1] = [x, [1,-1,-1,1,0]];
1585
1586bsd[150,2] = 1 ;
1587deg[150,2] = 3 ;
1588dsc[150,2] = 1 ;
1589E  [150,2] = [x, [1,1,-1,1,0]];
1590
1591bsd[150,3] = 1 ;
1592deg[150,3] = 1 ;
1593dsc[150,3] = 1 ;
1594E  [150,3] = [x, [1,1,1,1,0]];
1595
1596
1597bsd[151,1] = 0 ;
1598deg[151,1] = 1 ;
1599dsc[151,1] = 7^2 ;
1600E  [151,1] = [x^3+2*x^2-x-1, [1,x,-x-1,x^2-2,-x^2-x-1]];
1601
1602bsd[151,2] = 1 ;
1603deg[151,2] = 67 ;
1604dsc[151,2] = 257 ;
1605E  [151,2] = [x^3-5*x+3, [1,x,2,x^2-2,-x^2-2*x+5]];
1606
1607bsd[151,3] = 1/5^2 ;
1608deg[151,3] = 67 ;
1609dsc[151,3] = 11*439867 ;
1610E  [151,3] = [x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [1,x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^2-2,x^5-x^4-6*x^3+3*x^2+9*x+2]];
1611
1612
1613bsd[152,1] = 0 ;
1614deg[152,1] = 1 ;
1615dsc[152,1] = 1 ;
1616E  [152,1] = [x, [1,0,-2,0,-1]];
1617
1618bsd[152,2] = 1 ;
1619deg[152,2] = 1 ;
1620dsc[152,2] = 1 ;
1621E  [152,2] = [x, [1,0,1,0,0]];
1622
1623bsd[152,3] = 1 ;
1624deg[152,3] = 1 ;
1625dsc[152,3] = 31^2 ;
1626E  [152,3] = [x^3-x^2-10*x+8, [2,0,2*x,0,-x^2-x+8]];
1627
1628
1629bsd[153,1] = 0 ;
1630deg[153,1] = 1 ;
1631dsc[153,1] = 1 ;
1632E  [153,1] = [x, [1,-2,0,2,-1]];
1633
1634bsd[153,2] = 0 ;
1635deg[153,2] = 1 ;
1636dsc[153,2] = 1 ;
1637E  [153,2] = [x, [1,0,0,-2,-3]];
1638
1639bsd[153,3] = 1 ;
1640deg[153,3] = 1 ;
1641dsc[153,3] = 1 ;
1642E  [153,3] = [x, [1,1,0,-1,2]];
1643
1644bsd[153,4] = 1 ;
1645deg[153,4] = 3 ;
1646dsc[153,4] = 1 ;
1647E  [153,4] = [x, [1,2,0,2,1]];
1648
1649bsd[153,5] = 1 ;
1650deg[153,5] = 1 ;
1651dsc[153,5] = 17 ;
1652E  [153,5] = [x^2-x-4, [1,x,0,x+2,-x-1]];
1653
1654
1655bsd[154,1] = 0 ;
1656deg[154,1] = 3 ;
1657dsc[154,1] = 1 ;
1658E  [154,1] = [x, [1,-1,0,1,-4]];
1659
1660bsd[154,2] = 1 ;
1661deg[154,2] = 1 ;
1662dsc[154,2] = 1 ;
1663E  [154,2] = [x, [1,-1,2,1,2]];
1664
1665bsd[154,3] = 3 ;
1666deg[154,3] = 3 ;
1667dsc[154,3] = 1 ;
1668E  [154,3] = [x, [1,1,0,1,2]];
1669
1670bsd[154,4] = 1 ;
1671deg[154,4] = 5 ;
1672dsc[154,4] = 2^2*5 ;
1673E  [154,4] = [x^2+2*x-4, [1,1,x,1,-x]];
1674
1675
1676bsd[155,1] = 0 ;
1677deg[155,1] = 5 ;
1678dsc[155,1] = 1 ;
1679E  [155,1] = [x, [1,-2,-1,2,1]];
1680
1681bsd[155,2] = 1 ;
1682deg[155,2] = 1 ;
1683dsc[155,2] = 1 ;
1684E  [155,2] = [x, [1,-1,2,-1,-1]];
1685
1686bsd[155,3] = 0 ;
1687deg[155,3] = 1 ;
1688dsc[155,3] = 1 ;
1689E  [155,3] = [x, [1,0,-1,-2,-1]];
1690
1691bsd[155,4] = 1/3 ;
1692deg[155,4] = 7^2 ;
1693dsc[155,4] = 2^2*5077 ;
1694E  [155,4] = [x^4+x^3-8*x^2-4*x+12, [2,2*x,-x^3-x^2+6*x+2,2*x^2-4,-2]];
1695
1696bsd[155,5] = 1 ;
1697deg[155,5] = 1 ;
1698dsc[155,5] = 2^2*29*73 ;
1699E  [155,5] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-x^3+x^2+4*x-2,2*x^2-4,2]];
1700
1701
1702bsd[156,1] = 0 ;
1703deg[156,1] = 3 ;
1704dsc[156,1] = 1 ;
1705E  [156,1] = [x, [1,0,-1,0,-4]];
1706
1707bsd[156,2] = 1 ;
1708deg[156,2] = 3 ;
1709dsc[156,2] = 1 ;
1710E  [156,2] = [x, [1,0,1,0,0]];
1711
1712
1713bsd[157,1] = 0 ;
1714deg[157,1] = 1 ;
1715dsc[157,1] = 61*397 ;
1716E  [157,1] = [x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1,x,-x^4-3*x^3+3*x-1,x^2-2,2*x^4+7*x^3+x^2-10*x-2]];
1717
1718bsd[157,2] = 1/13 ;
1719deg[157,2] = 1 ;
1720dsc[157,2] = 2^3*48795779 ;
1721E  [157,2] = [x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [1,x,x^4-3*x^3-2*x^2+7*x+1,x^2-2,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3]];
1722
1723
1724bsd[158,1] = 0 ;
1725deg[158,1] = 1 ;
1726dsc[158,1] = 1 ;
1727E  [158,1] = [x, [1,-1,-1,1,-1]];
1728
1729bsd[158,2] = 1/3 ;
1730deg[158,2] = 5 ;
1731dsc[158,2] = 1 ;
1732E  [158,2] = [x, [1,-1,1,1,3]];
1733
1734bsd[158,3] = 0 ;
1735deg[158,3] = 1 ;
1736dsc[158,3] = 1 ;
1737E  [158,3] = [x, [1,1,-3,1,-3]];
1738
1739bsd[158,4] = 1/5 ;
1740deg[158,4] = 3 ;
1741dsc[158,4] = 1 ;
1742E  [158,4] = [x, [1,1,-1,1,1]];
1743
1744bsd[158,5] = 1 ;
1745deg[158,5] = 3 ;
1746dsc[158,5] = 1 ;
1747E  [158,5] = [x, [1,1,2,1,-2]];
1748
1749bsd[158,6] = 1 ;
1750deg[158,6] = 5*53 ;
1751dsc[158,6] = 2^3*3 ;
1752E  [158,6] = [x^2-6, [1,-1,x,1,-2]];
1753
1754
1755bsd[159,1] = 7/3^2 ;
1756deg[159,1] = 7 ;
1757dsc[159,1] = 19*103 ;
1758E  [159,1] = [x^4-3*x^3-x^2+7*x-3, [1,x,1,x^2-2,-x^3+x^2+2*x]];
1759
1760bsd[159,2] = 1 ;
1761deg[159,2] = 107 ;
1762dsc[159,2] = 1054013 ;
1763E  [159,2] = [x^5-10*x^3+22*x+5, [3,3*x,-3,3*x^2-6,-3*x^3-3*x^2+18*x+12]];
1764
1765
1766bsd[160,1] = 0 ;
1767deg[160,1] = 1 ;
1768dsc[160,1] = 1 ;
1769E  [160,1] = [x, [1,0,-2,0,-1]];
1770
1771bsd[160,2] = 1 ;
1772deg[160,2] = 1 ;
1773dsc[160,2] = 1 ;
1774E  [160,2] = [x, [1,0,2,0,-1]];
1775
1776bsd[160,3] = 1 ;
1777deg[160,3] = 1 ;
1778dsc[160,3] = 2^5 ;
1779E  [160,3] = [x^2-8, [1,0,x,0,1]];
1780
1781
1782bsd[161,1] = 1 ;
1783deg[161,1] = 5 ;
1784dsc[161,1] = 1 ;
1785E  [161,1] = [x, [1,-1,0,-1,2]];
1786
1787bsd[161,2] = 0 ;
1788deg[161,2] = 1 ;
1789dsc[161,2] = 5 ;
1790E  [161,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-2]];
1791
1792bsd[161,3] = 1 ;
1793deg[161,3] = 19 ;
1794dsc[161,3] = 2^2*37 ;
1795E  [161,3] = [x^3+x^2-5*x-1, [2,2*x,-x^2+5,2*x^2-4,-x^2+5]];
1796
1797bsd[161,4] = 1/3 ;
1798deg[161,4] = 5 ;
1799dsc[161,4] = 2^2*536777 ;
1800E  [161,4] = [x^5-2*x^4-9*x^3+17*x^2+16*x-27, [2,2*x,x^4-x^3-8*x^2+5*x+11,2*x^2-4,-x^4-x^3+10*x^2+5*x-21]];
1801
1802
1803bsd[162,1] = 0 ;
1804deg[162,1] = 3 ;
1805dsc[162,1] = 1 ;
1806E  [162,1] = [x, [1,-1,0,1,-3]];
1807
1808bsd[162,2] = 1/3 ;
1809deg[162,2] = 3 ;
1810dsc[162,2] = 1 ;
1811E  [162,2] = [x, [1,-1,0,1,0]];
1812
1813bsd[162,3] = 1/3 ;
1814deg[162,3] = 3 ;
1815dsc[162,3] = 1 ;
1816E  [162,3] = [x, [1,1,0,1,0]];
1817
1818bsd[162,4] = 1/3 ;
1819deg[162,4] = 3 ;
1820dsc[162,4] = 1 ;
1821E  [162,4] = [x, [1,1,0,1,3]];
1822
1823
1824bsd[163,1] = 0 ;
1825deg[163,1] = 3 ;
1826dsc[163,1] = 1 ;
1827E  [163,1] = [x, [1,0,0,-2,-4]];
1828
1829bsd[163,2] = 0 ;
1830deg[163,2] = 3 ;
1831dsc[163,2] = 65657 ;
1832E  [163,2] = [x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1,x,-2*x^4-5*x^3+6*x^2+13*x-3,x^2-2,2*x^4+5*x^3-7*x^2-15*x+2]];
1833
1834bsd[163,3] = 1/3^3 ;
1835deg[163,3] = 1 ;
1836dsc[163,3] = 2^3*82536739 ;
1837E  [163,3] = [x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [1,x,x^5-x^4-6*x^3+5*x^2+5*x-2,x^2-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6]];
1838
1839
1840bsd[164,1] = 1 ;
1841deg[164,1] = 3^3 ;
1842dsc[164,1] = 2^4*1613 ;
1843E  [164,1] = [x^4-2*x^3-10*x^2+22*x-2, [3,0,3*x,0,-2*x^3-x^2+16*x+2]];
1844
1845
1846bsd[165,1] = 0 ;
1847deg[165,1] = 1 ;
1848dsc[165,1] = 2^3 ;
1849E  [165,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1]];
1850
1851bsd[165,2] = 1/3 ;
1852deg[165,2] = 1 ;
1853dsc[165,2] = 2^2*3 ;
1854E  [165,2] = [x^2-3, [1,x,1,1,-1]];
1855
1856bsd[165,3] = 1 ;
1857deg[165,3] = 5 ;
1858dsc[165,3] = 2^4*37 ;
1859E  [165,3] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,1]];
1860
1861
1862bsd[166,1] = 0 ;
1863deg[166,1] = 1 ;
1864dsc[166,1] = 1 ;
1865E  [166,1] = [x, [1,-1,-1,1,-2]];
1866
1867bsd[166,2] = 1 ;
1868deg[166,2] = 131 ;
1869dsc[166,2] = 5 ;
1870E  [166,2] = [x^2+2*x-4, [2,-2,2*x,2,x+4]];
1871
1872bsd[166,3] = 1/7 ;
1873deg[166,3] = 1 ;
1874dsc[166,3] = 229 ;
1875E  [166,3] = [x^3-x^2-6*x+4, [2,2,2*x,2,-x^2-x+4]];
1876
1877
1878bsd[167,1] = 0 ;
1879deg[167,1] = 1 ;
1880dsc[167,1] = 5 ;
1881E  [167,1] = [x^2+x-1, [1,x,-x-1,-x-1,-1]];
1882
1883bsd[167,2] = 1/83 ;
1884deg[167,2] = 1 ;
1885dsc[167,2] = 8269*5103536431379173 ;
1886E  [167,2] = [x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [933,933*x,544*x^11+157*x^10-10187*x^9-3189*x^8+68788*x^7+22911*x^6-200347*x^5-70068*x^4+230499*x^3+80543*x^2-60181*x-3441,933*x^2-1866,-779*x^11+631*x^10+13207*x^9-8871*x^8-78341*x^7+37635*x^6+193997*x^5-40677*x^4-192843*x^3-12787*x^2+42281*x+3612]];
1887
1888
1889bsd[168,1] = 1 ;
1890deg[168,1] = 3 ;
1891dsc[168,1] = 1 ;
1892E  [168,1] = [x, [1,0,-1,0,2]];
1893
1894bsd[168,2] = 1 ;
1895deg[168,2] = 1 ;
1896dsc[168,2] = 1 ;
1897E  [168,2] = [x, [1,0,1,0,2]];
1898
1899
1900bsd[169,1] = 1 ;
1901deg[169,1] = 13 ;
1902dsc[169,1] = 2^2*3 ;
1903E  [169,1] = [x^2-3, [1,x,2,1,-x]];
1904
1905bsd[169,2] = 0 ;
1906deg[169,2] = 1 ;
1907dsc[169,2] = 7^2 ;
1908E  [169,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+2*x-2]];
1909
1910bsd[169,3] = 1/7 ;
1911deg[169,3] = 13 ;
1912dsc[169,3] = 7^2 ;
1913E  [169,3] = [x^3-2*x^2-x+1, [1,x,-x^2+2*x,x^2-2,-x^2+2*x+2]];
1914
1915
1916bsd[170,1] = 1/3 ;
1917deg[170,1] = 5 ;
1918dsc[170,1] = 1 ;
1919E  [170,1] = [x, [1,-1,-2,1,-1]];
1920
1921bsd[170,2] = 0 ;
1922deg[170,2] = 1 ;
1923dsc[170,2] = 1 ;
1924E  [170,2] = [x, [1,-1,-2,1,1]];
1925
1926bsd[170,3] = 1/3 ;
1927deg[170,3] = 3 ;
1928dsc[170,3] = 1 ;
1929E  [170,3] = [x, [1,-1,1,1,1]];
1930
1931bsd[170,4] = 1 ;
1932deg[170,4] = 5 ;
1933dsc[170,4] = 1 ;
1934E  [170,4] = [x, [1,-1,3,1,-1]];
1935
1936bsd[170,5] = 7/3 ;
1937deg[170,5] = 3*7 ;
1938dsc[170,5] = 1 ;
1939E  [170,5] = [x, [1,1,1,1,-1]];
1940
1941bsd[170,6] = 1 ;
1942deg[170,6] = 1 ;
1943dsc[170,6] = 17 ;
1944E  [170,6] = [x^2+x-4, [1,1,x,1,1]];
1945
1946
1947bsd[171,1] = 1 ;
1948deg[171,1] = 3 ;
1949dsc[171,1] = 1 ;
1950E  [171,1] = [x, [1,-1,0,-1,2]];
1951
1952bsd[171,2] = 0 ;
1953deg[171,2] = 1 ;
1954dsc[171,2] = 1 ;
1955E  [171,2] = [x, [1,0,0,-2,-3]];
1956
1957bsd[171,3] = 1 ;
1958deg[171,3] = 3 ;
1959dsc[171,3] = 1 ;
1960E  [171,3] = [x, [1,2,0,2,-1]];
1961
1962bsd[171,4] = 1 ;
1963deg[171,4] = 1 ;
1964dsc[171,4] = 1 ;
1965E  [171,4] = [x, [1,2,0,2,3]];
1966
1967bsd[171,5] = 1/3 ;
1968deg[171,5] = 3 ;
1969dsc[171,5] = 2^4*3^3*11^2 ;
1970E  [171,5] = [x^4-9*x^2+12, [2,2*x,0,2*x^2-4,-x^3+5*x]];
1971
1972
1973bsd[172,1] = 0 ;
1974deg[172,1] = 3 ;
1975dsc[172,1] = 1 ;
1976E  [172,1] = [x, [1,0,-2,0,0]];
1977
1978bsd[172,2] = 1 ;
1979deg[172,2] = 3^2 ;
1980dsc[172,2] = 2^3 ;
1981E  [172,2] = [x^2-4*x+2, [1,0,x,0,-x+2]];
1982
1983
1984bsd[173,1] = 0 ;
1985deg[173,1] = 1 ;
1986dsc[173,1] = 5^2*29 ;
1987E  [173,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^2-x,x^2-2,x^2-2]];
1988
1989bsd[173,2] = 1/43 ;
1990deg[173,2] = 1 ;
1991dsc[173,2] = 2^6*7*5608385124289 ;
1992E  [173,2] = [x^10-x^9-16*x^8+16*x^7+85*x^6-80*x^5-175*x^4+136*x^3+138*x^2-71*x-25, [116,116*x,9*x^9-22*x^8-138*x^7+324*x^6+645*x^5-1439*x^4-940*x^3+1860*x^2+392*x-303,116*x^2-232,-14*x^9+60*x^8+176*x^7-852*x^6-462*x^5+3566*x^4-716*x^3-4092*x^2+1504*x+742]];
1993
1994
1995bsd[174,1] = 1 ;
1996deg[174,1] = 13 ;
1997dsc[174,1] = 1 ;
1998E  [174,1] = [x, [1,-1,-1,1,3]];
1999
2000bsd[174,2] = 7/3 ;
2001deg[174,2] = 5*7*11 ;
2002dsc[174,2] = 1 ;
2003E  [174,2] = [x, [1,-1,1,1,-3]];
2004
2005bsd[174,3] = 1 ;
2006deg[174,3] = 5 ;
2007dsc[174,3] = 1 ;
2008E  [174,3] = [x, [1,-1,1,1,2]];
2009
2010bsd[174,4] = 1 ;
2011deg[174,4] = 3 ;
2012dsc[174,4] = 1 ;
2013E  [174,4] = [x, [1,1,-1,1,1]];
2014
2015bsd[174,5] = 1 ;
2016deg[174,5] = 7 ;
2017dsc[174,5] = 1 ;
2018E  [174,5] = [x, [1,1,1,1,-1]];
2019
2020
2021bsd[175,1] = 0 ;
2022deg[175,1] = 1 ;
2023dsc[175,1] = 1 ;
2024E  [175,1] = [x, [1,-2,-1,2,0]];
2025
2026bsd[175,2] = 0 ;
2027deg[175,2] = 1 ;
2028dsc[175,2] = 1 ;
2029E  [175,2] = [x, [1,0,-1,-2,0]];
2030
2031bsd[175,3] = 1 ;
2032deg[175,3] = 5 ;
2033dsc[175,3] = 1 ;
2034E  [175,3] = [x, [1,2,1,2,0]];
2035
2036bsd[175,4] = 1 ;
2037deg[175,4] = 3^2*5 ;
2038dsc[175,4] = 5 ;
2039E  [175,4] = [x^2+x-1, [1,x,2*x+2,-x-1,0]];
2040
2041bsd[175,5] = 1/5 ;
2042deg[175,5] = 3^2 ;
2043dsc[175,5] = 5 ;
2044E  [175,5] = [x^2-x-1, [1,x,2*x-2,x-1,0]];
2045
2046bsd[175,6] = 1 ;
2047deg[175,6] = 3^2 ;
2048dsc[175,6] = 17 ;
2049E  [175,6] = [x^2-x-4, [1,x,-x+1,x+2,0]];
2050
2051
2052bsd[176,1] = 0 ;
2053deg[176,1] = 1 ;
2054dsc[176,1] = 1 ;
2055E  [176,1] = [x, [1,0,-1,0,-3]];
2056
2057bsd[176,2] = 1 ;
2058deg[176,2] = 1 ;
2059dsc[176,2] = 1 ;
2060E  [176,2] = [x, [1,0,1,0,1]];
2061
2062bsd[176,3] = 1 ;
2063deg[176,3] = 1 ;
2064dsc[176,3] = 1 ;
2065E  [176,3] = [x, [1,0,3,0,-3]];
2066
2067bsd[176,4] = 1 ;
2068deg[176,4] = 1 ;
2069dsc[176,4] = 17 ;
2070E  [176,4] = [x^2+x-4, [1,0,x,0,x+2]];
2071
2072
2073bsd[177,1] = 0 ;
2074deg[177,1] = 31 ;
2075dsc[177,1] = 5 ;
2076E  [177,1] = [x^2+3*x+1, [1,x,1,-3*x-3,-3]];
2077
2078bsd[177,2] = 0 ;
2079deg[177,2] = 1 ;
2080dsc[177,2] = 5 ;
2081E  [177,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-1]];
2082
2083bsd[177,3] = 1/5 ;
2084deg[177,3] = 1 ;
2085dsc[177,3] = 5 ;
2086E  [177,3] = [x^2-x-1, [1,x,1,x-1,1]];
2087
2088bsd[177,4] = 1 ;
2089deg[177,4] = 229 ;
2090dsc[177,4] = 229 ;
2091E  [177,4] = [x^3-4*x-1, [1,x,-1,x^2-2,-x^2+x+2]];
2092
2093
2094bsd[178,1] = 1 ;
2095deg[178,1] = 7 ;
2096dsc[178,1] = 1 ;
2097E  [178,1] = [x, [1,-1,2,1,2]];
2098
2099bsd[178,2] = 1/3 ;
2100deg[178,2] = 1 ;
2101dsc[178,2] = 1 ;
2102E  [178,2] = [x, [1,1,1,1,3]];
2103
2104bsd[178,3] = 0 ;
2105deg[178,3] = 1 ;
2106dsc[178,3] = 2^3 ;
2107E  [178,3] = [x^2+2*x-1, [1,-1,x,1,-2*x-3]];
2108
2109bsd[178,4] = 1/5 ;
2110deg[178,4] = 1 ;
2111dsc[178,4] = 2^3*71 ;
2112E  [178,4] = [x^3-x^2-8*x+4, [2,2,2*x,2,-2*x]];
2113
2114
2115bsd[179,1] = 1 ;
2116deg[179,1] = 3^2 ;
2117dsc[179,1] = 1 ;
2118E  [179,1] = [x, [1,2,0,2,3]];
2119
2120bsd[179,2] = 0 ;
2121deg[179,2] = 1 ;
2122dsc[179,2] = 7^2 ;
2123E  [179,2] = [x^3+x^2-2*x-1, [1,x,-x-1,x^2-2,-x^2-x]];
2124
2125bsd[179,3] = 1/89 ;
2126deg[179,3] = 3^2 ;
2127dsc[179,3] = 2^6*313*137707*536747147 ;
2128E  [179,3] = [x^11+3*x^10-14*x^9-45*x^8+59*x^7+225*x^6-58*x^5-427*x^4-76*x^3+240*x^2+56*x-16, [136,136*x,-42*x^10-68*x^9+690*x^8+942*x^7-3876*x^6-4112*x^5+8482*x^4+5986*x^3-5790*x^2-1244*x+360,136*x^2-272,-3*x^10-17*x^9+42*x^8+247*x^7-221*x^6-1151*x^5+618*x^4+1841*x^3-892*x^2-628*x+424]];
2129
2130
2131bsd[180,1] = 1 ;
2132deg[180,1] = 3 ;
2133dsc[180,1] = 1 ;
2134E  [180,1] = [x, [1,0,0,0,1]];
2135
2136
2137bsd[181,1] = 0 ;
2138deg[181,1] = 1 ;
2139dsc[181,1] = 61*397 ;
2140E  [181,1] = [x^5+3*x^4-x^3-7*x^2-2*x+1, [1,x,-x^4-2*x^3+2*x^2+3*x-1,x^2-2,2*x^4+5*x^3-4*x^2-11*x-1]];
2141
2142bsd[181,2] = 1/3*5 ;
2143deg[181,2] = 1 ;
2144dsc[181,2] = 2^6*5^2*7*595051637 ;
2145E  [181,2] = [x^9-3*x^8-9*x^7+29*x^6+23*x^5-84*x^4-23*x^3+89*x^2+8*x-27, [4,4*x,2*x^8-