Open in CoCalc
1
\\ bsd_p5_1-300.gp
2
\\ ---------------------------------------------------------------
3
\\ N,i = i-th newform at level N (forms ordered by trace).
4
\\ bsd[N,i] = odd_part(L(A_f,1)/Omega*(manin constant))
5
\\ deg[N,i] = odd_part(modular degree)
6
\\ dsc[N,i] = disc(O_f)
7
\\ E [N,i] = [g(x), denom*[a_1(x), a_2(x), ..., a_5(x)]]
8
\\ 1 <= N <= 300
9
\\
10
\\ Wed Mar 3 23:36:11 1999
11
\\ William Stein ([email protected])
12
\\ ---------------------------------------------------------------
13
14
15
bsd[11,1] = 1/5 ;
16
deg[11,1] = 1 ;
17
dsc[11,1] = 1 ;
18
E [11,1] = [x, [1,-2,-1]];
19
20
21
bsd[14,1] = 1/3 ;
22
deg[14,1] = 1 ;
23
dsc[14,1] = 1 ;
24
E [14,1] = [x, [1,-1,-2,1,0]];
25
26
27
bsd[15,1] = 1 ;
28
deg[15,1] = 1 ;
29
dsc[15,1] = 1 ;
30
E [15,1] = [x, [1,-1,-1,-1,1]];
31
32
33
bsd[17,1] = 1 ;
34
deg[17,1] = 1 ;
35
dsc[17,1] = 1 ;
36
E [17,1] = [x, [1,-1,0,-1]];
37
38
39
bsd[19,1] = 1/3 ;
40
deg[19,1] = 1 ;
41
dsc[19,1] = 1 ;
42
E [19,1] = [x, [1,0,-2,-2]];
43
44
45
bsd[20,1] = 1/3 ;
46
deg[20,1] = 1 ;
47
dsc[20,1] = 1 ;
48
E [20,1] = [x, [1,0,-2,0,-1]];
49
50
51
bsd[21,1] = 1 ;
52
deg[21,1] = 1 ;
53
dsc[21,1] = 1 ;
54
E [21,1] = [x, [1,-1,1,-1,-2]];
55
56
57
bsd[23,1] = 1/11 ;
58
deg[23,1] = 1 ;
59
dsc[23,1] = 5 ;
60
E [23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,2*x]];
61
62
63
bsd[24,1] = 1 ;
64
deg[24,1] = 1 ;
65
dsc[24,1] = 1 ;
66
E [24,1] = [x, [1,0,-1,0,-2]];
67
68
69
bsd[26,1] = 1/3 ;
70
deg[26,1] = 1 ;
71
dsc[26,1] = 1 ;
72
E [26,1] = [x, [1,-1,1,1,-3]];
73
74
bsd[26,2] = 1/7 ;
75
deg[26,2] = 1 ;
76
dsc[26,2] = 1 ;
77
E [26,2] = [x, [1,1,-3,1,-1]];
78
79
80
bsd[27,1] = 1/3 ;
81
deg[27,1] = 1 ;
82
dsc[27,1] = 1 ;
83
E [27,1] = [x, [1,0,0,-2,0]];
84
85
86
bsd[29,1] = 1/7 ;
87
deg[29,1] = 1 ;
88
dsc[29,1] = 2^3 ;
89
E [29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1]];
90
91
92
bsd[30,1] = 1/3 ;
93
deg[30,1] = 1 ;
94
dsc[30,1] = 1 ;
95
E [30,1] = [x, [1,-1,1,1,-1]];
96
97
98
bsd[31,1] = 1/5 ;
99
deg[31,1] = 1 ;
100
dsc[31,1] = 5 ;
101
E [31,1] = [x^2-x-1, [1,x,-2*x,x-1,1]];
102
103
104
bsd[32,1] = 1 ;
105
deg[32,1] = 1 ;
106
dsc[32,1] = 1 ;
107
E [32,1] = [x, [1,0,0,0,-2]];
108
109
110
bsd[33,1] = 1 ;
111
deg[33,1] = 3 ;
112
dsc[33,1] = 1 ;
113
E [33,1] = [x, [1,1,-1,-1,-2]];
114
115
116
bsd[34,1] = 1/3 ;
117
deg[34,1] = 1 ;
118
dsc[34,1] = 1 ;
119
E [34,1] = [x, [1,1,-2,1,0]];
120
121
122
bsd[35,1] = 1/3 ;
123
deg[35,1] = 1 ;
124
dsc[35,1] = 1 ;
125
E [35,1] = [x, [1,0,1,-2,-1]];
126
127
bsd[35,2] = 1 ;
128
deg[35,2] = 1 ;
129
dsc[35,2] = 17 ;
130
E [35,2] = [x^2+x-4, [1,x,-x-1,-x+2,1]];
131
132
133
bsd[36,1] = 1/3 ;
134
deg[36,1] = 1 ;
135
dsc[36,1] = 1 ;
136
E [36,1] = [x, [1,0,0,0,0]];
137
138
139
bsd[37,1] = 0 ;
140
deg[37,1] = 1 ;
141
dsc[37,1] = 1 ;
142
E [37,1] = [x, [1,-2,-3,2,-2]];
143
144
bsd[37,2] = 1/3 ;
145
deg[37,2] = 1 ;
146
dsc[37,2] = 1 ;
147
E [37,2] = [x, [1,0,1,-2,0]];
148
149
150
bsd[38,1] = 1/3 ;
151
deg[38,1] = 3 ;
152
dsc[38,1] = 1 ;
153
E [38,1] = [x, [1,-1,1,1,0]];
154
155
bsd[38,2] = 1/5 ;
156
deg[38,2] = 1 ;
157
dsc[38,2] = 1 ;
158
E [38,2] = [x, [1,1,-1,1,-4]];
159
160
161
bsd[39,1] = 1 ;
162
deg[39,1] = 1 ;
163
dsc[39,1] = 1 ;
164
E [39,1] = [x, [1,1,-1,-1,2]];
165
166
bsd[39,2] = 1/7 ;
167
deg[39,2] = 1 ;
168
dsc[39,2] = 2^3 ;
169
E [39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2]];
170
171
172
bsd[40,1] = 1 ;
173
deg[40,1] = 1 ;
174
dsc[40,1] = 1 ;
175
E [40,1] = [x, [1,0,0,0,1]];
176
177
178
bsd[41,1] = 1/5 ;
179
deg[41,1] = 1 ;
180
dsc[41,1] = 2^2*37 ;
181
E [41,1] = [x^3+x^2-5*x-1, [2,2*x,-x^2-2*x+3,2*x^2-4,-2*x-2]];
182
183
184
bsd[42,1] = 1 ;
185
deg[42,1] = 1 ;
186
dsc[42,1] = 1 ;
187
E [42,1] = [x, [1,1,-1,1,-2]];
188
189
190
bsd[43,1] = 0 ;
191
deg[43,1] = 1 ;
192
dsc[43,1] = 1 ;
193
E [43,1] = [x, [1,-2,-2,2,-4]];
194
195
bsd[43,2] = 1/7 ;
196
deg[43,2] = 1 ;
197
dsc[43,2] = 2^3 ;
198
E [43,2] = [x^2-2, [1,x,-x,0,-x+2]];
199
200
201
bsd[44,1] = 1/3 ;
202
deg[44,1] = 1 ;
203
dsc[44,1] = 1 ;
204
E [44,1] = [x, [1,0,1,0,-3]];
205
206
207
bsd[45,1] = 1 ;
208
deg[45,1] = 1 ;
209
dsc[45,1] = 1 ;
210
E [45,1] = [x, [1,1,0,-1,-1]];
211
212
213
bsd[46,1] = 1 ;
214
deg[46,1] = 5 ;
215
dsc[46,1] = 1 ;
216
E [46,1] = [x, [1,-1,0,1,4]];
217
218
219
bsd[47,1] = 1/23 ;
220
deg[47,1] = 1 ;
221
dsc[47,1] = 19*103 ;
222
E [47,1] = [x^4-x^3-5*x^2+5*x-1, [1,x,x^3-x^2-6*x+4,x^2-2,-4*x^3+2*x^2+20*x-10]];
223
224
225
bsd[48,1] = 1 ;
226
deg[48,1] = 1 ;
227
dsc[48,1] = 1 ;
228
E [48,1] = [x, [1,0,1,0,-2]];
229
230
231
bsd[49,1] = 1 ;
232
deg[49,1] = 1 ;
233
dsc[49,1] = 1 ;
234
E [49,1] = [x, [1,1,0,-1,0]];
235
236
237
bsd[50,1] = 1/3 ;
238
deg[50,1] = 1 ;
239
dsc[50,1] = 1 ;
240
E [50,1] = [x, [1,-1,1,1,0]];
241
242
bsd[50,2] = 1/5 ;
243
deg[50,2] = 1 ;
244
dsc[50,2] = 1 ;
245
E [50,2] = [x, [1,1,-1,1,0]];
246
247
248
bsd[51,1] = 1/3 ;
249
deg[51,1] = 1 ;
250
dsc[51,1] = 1 ;
251
E [51,1] = [x, [1,0,1,-2,3]];
252
253
bsd[51,2] = 1 ;
254
deg[51,2] = 1 ;
255
dsc[51,2] = 17 ;
256
E [51,2] = [x^2+x-4, [1,x,-1,-x+2,-x+1]];
257
258
259
bsd[52,1] = 1 ;
260
deg[52,1] = 3 ;
261
dsc[52,1] = 1 ;
262
E [52,1] = [x, [1,0,0,0,2]];
263
264
265
bsd[53,1] = 0 ;
266
deg[53,1] = 1 ;
267
dsc[53,1] = 1 ;
268
E [53,1] = [x, [1,-1,-3,-1,0]];
269
270
bsd[53,2] = 1/13 ;
271
deg[53,2] = 1 ;
272
dsc[53,2] = 2^2*37 ;
273
E [53,2] = [x^3+x^2-3*x-1, [1,x,-x^2-x+3,x^2-2,x^2-3]];
274
275
276
bsd[54,1] = 1/3 ;
277
deg[54,1] = 3 ;
278
dsc[54,1] = 1 ;
279
E [54,1] = [x, [1,-1,0,1,3]];
280
281
bsd[54,2] = 1/3 ;
282
deg[54,2] = 1 ;
283
dsc[54,2] = 1 ;
284
E [54,2] = [x, [1,1,0,1,-3]];
285
286
287
bsd[55,1] = 1 ;
288
deg[55,1] = 1 ;
289
dsc[55,1] = 1 ;
290
E [55,1] = [x, [1,1,0,-1,1]];
291
292
bsd[55,2] = 1 ;
293
deg[55,2] = 7 ;
294
dsc[55,2] = 2^3 ;
295
E [55,2] = [x^2-2*x-1, [1,x,-2*x+2,2*x-1,-1]];
296
297
298
bsd[56,1] = 1 ;
299
deg[56,1] = 1 ;
300
dsc[56,1] = 1 ;
301
E [56,1] = [x, [1,0,0,0,2]];
302
303
bsd[56,2] = 1 ;
304
deg[56,2] = 1 ;
305
dsc[56,2] = 1 ;
306
E [56,2] = [x, [1,0,2,0,-4]];
307
308
309
bsd[57,1] = 0 ;
310
deg[57,1] = 1 ;
311
dsc[57,1] = 1 ;
312
E [57,1] = [x, [1,-2,-1,2,-3]];
313
314
bsd[57,2] = 1/5 ;
315
deg[57,2] = 3 ;
316
dsc[57,2] = 1 ;
317
E [57,2] = [x, [1,-2,1,2,1]];
318
319
bsd[57,3] = 1 ;
320
deg[57,3] = 3 ;
321
dsc[57,3] = 1 ;
322
E [57,3] = [x, [1,1,1,-1,-2]];
323
324
325
bsd[58,1] = 0 ;
326
deg[58,1] = 1 ;
327
dsc[58,1] = 1 ;
328
E [58,1] = [x, [1,-1,-3,1,-3]];
329
330
bsd[58,2] = 1/5 ;
331
deg[58,2] = 1 ;
332
dsc[58,2] = 1 ;
333
E [58,2] = [x, [1,1,-1,1,1]];
334
335
336
bsd[59,1] = 1/29 ;
337
deg[59,1] = 1 ;
338
dsc[59,1] = 2^3*31*557 ;
339
E [59,1] = [x^5-9*x^3+2*x^2+16*x-8, [4,4*x,-x^4+5*x^2-2*x,4*x^2-8,3*x^4+2*x^3-23*x^2-12*x+28]];
340
341
342
bsd[61,1] = 0 ;
343
deg[61,1] = 1 ;
344
dsc[61,1] = 1 ;
345
E [61,1] = [x, [1,-1,-2,-1,-3]];
346
347
bsd[61,2] = 1/5 ;
348
deg[61,2] = 1 ;
349
dsc[61,2] = 2^2*37 ;
350
E [61,2] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,x^2-2*x-2]];
351
352
353
bsd[62,1] = 1 ;
354
deg[62,1] = 1 ;
355
dsc[62,1] = 1 ;
356
E [62,1] = [x, [1,1,0,1,-2]];
357
358
bsd[62,2] = 1/3 ;
359
deg[62,2] = 11 ;
360
dsc[62,2] = 2^2*3 ;
361
E [62,2] = [x^2-2*x-2, [1,-1,x,1,-2*x+2]];
362
363
364
bsd[63,1] = 1 ;
365
deg[63,1] = 1 ;
366
dsc[63,1] = 1 ;
367
E [63,1] = [x, [1,1,0,-1,2]];
368
369
bsd[63,2] = 1/3 ;
370
deg[63,2] = 1 ;
371
dsc[63,2] = 2^2*3 ;
372
E [63,2] = [x^2-3, [1,x,0,1,-2*x]];
373
374
375
bsd[64,1] = 1 ;
376
deg[64,1] = 1 ;
377
dsc[64,1] = 1 ;
378
E [64,1] = [x, [1,0,0,0,2]];
379
380
381
bsd[65,1] = 0 ;
382
deg[65,1] = 1 ;
383
dsc[65,1] = 1 ;
384
E [65,1] = [x, [1,-1,-2,-1,-1]];
385
386
bsd[65,2] = 1/7 ;
387
deg[65,2] = 1 ;
388
dsc[65,2] = 2^3 ;
389
E [65,2] = [x^2+2*x-1, [1,x,x+1,-2*x-1,1]];
390
391
bsd[65,3] = 1/3 ;
392
deg[65,3] = 1 ;
393
dsc[65,3] = 2^2*3 ;
394
E [65,3] = [x^2-3, [1,x,-x+1,1,-1]];
395
396
397
bsd[66,1] = 1/3 ;
398
deg[66,1] = 1 ;
399
dsc[66,1] = 1 ;
400
E [66,1] = [x, [1,-1,1,1,0]];
401
402
bsd[66,2] = 1 ;
403
deg[66,2] = 1 ;
404
dsc[66,2] = 1 ;
405
E [66,2] = [x, [1,1,-1,1,2]];
406
407
bsd[66,3] = 1 ;
408
deg[66,3] = 5 ;
409
dsc[66,3] = 1 ;
410
E [66,3] = [x, [1,1,1,1,-4]];
411
412
413
bsd[67,1] = 1 ;
414
deg[67,1] = 5 ;
415
dsc[67,1] = 1 ;
416
E [67,1] = [x, [1,2,-2,2,2]];
417
418
bsd[67,2] = 0 ;
419
deg[67,2] = 1 ;
420
dsc[67,2] = 5 ;
421
E [67,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,-3]];
422
423
bsd[67,3] = 1/11 ;
424
deg[67,3] = 5 ;
425
dsc[67,3] = 5 ;
426
E [67,3] = [x^2+x-1, [1,x,x+1,-x-1,-2*x+1]];
427
428
429
bsd[68,1] = 1/3 ;
430
deg[68,1] = 3 ;
431
dsc[68,1] = 2^2*3 ;
432
E [68,1] = [x^2-2*x-2, [1,0,x,0,-2*x+2]];
433
434
435
bsd[69,1] = 1 ;
436
deg[69,1] = 1 ;
437
dsc[69,1] = 1 ;
438
E [69,1] = [x, [1,1,1,-1,0]];
439
440
bsd[69,2] = 1 ;
441
deg[69,2] = 11 ;
442
dsc[69,2] = 2^2*5 ;
443
E [69,2] = [x^2-5, [1,x,-1,3,-x-1]];
444
445
446
bsd[70,1] = 1 ;
447
deg[70,1] = 1 ;
448
dsc[70,1] = 1 ;
449
E [70,1] = [x, [1,1,0,1,-1]];
450
451
452
bsd[71,1] = 1/7 ;
453
deg[71,1] = 3^2 ;
454
dsc[71,1] = 257 ;
455
E [71,1] = [x^3+x^2-4*x-3, [1,x,-x,x^2-2,-x^2+x+5]];
456
457
bsd[71,2] = 1/5 ;
458
deg[71,2] = 3^2 ;
459
dsc[71,2] = 257 ;
460
E [71,2] = [x^3-5*x+3, [1,x,-x^2+3,x^2-2,-x-1]];
461
462
463
bsd[72,1] = 1 ;
464
deg[72,1] = 1 ;
465
dsc[72,1] = 1 ;
466
E [72,1] = [x, [1,0,0,0,2]];
467
468
469
bsd[73,1] = 1 ;
470
deg[73,1] = 3 ;
471
dsc[73,1] = 1 ;
472
E [73,1] = [x, [1,1,0,-1,2]];
473
474
bsd[73,2] = 0 ;
475
deg[73,2] = 1 ;
476
dsc[73,2] = 5 ;
477
E [73,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,x]];
478
479
bsd[73,3] = 1/3 ;
480
deg[73,3] = 3 ;
481
dsc[73,3] = 13 ;
482
E [73,3] = [x^2-x-3, [1,x,-x+1,x+1,-x]];
483
484
485
bsd[74,1] = 1/3 ;
486
deg[74,1] = 3 ;
487
dsc[74,1] = 13 ;
488
E [74,1] = [x^2-3*x-1, [1,-1,x,1,-x+1]];
489
490
bsd[74,2] = 5/19 ;
491
deg[74,2] = 5 ;
492
dsc[74,2] = 5 ;
493
E [74,2] = [x^2+x-1, [1,1,x,1,-3*x-1]];
494
495
496
bsd[75,1] = 1/5 ;
497
deg[75,1] = 3 ;
498
dsc[75,1] = 1 ;
499
E [75,1] = [x, [1,-2,1,2,0]];
500
501
bsd[75,2] = 1 ;
502
deg[75,2] = 3 ;
503
dsc[75,2] = 1 ;
504
E [75,2] = [x, [1,1,1,-1,0]];
505
506
bsd[75,3] = 1 ;
507
deg[75,3] = 3 ;
508
dsc[75,3] = 1 ;
509
E [75,3] = [x, [1,2,-1,2,0]];
510
511
512
bsd[76,1] = 1 ;
513
deg[76,1] = 3 ;
514
dsc[76,1] = 1 ;
515
E [76,1] = [x, [1,0,2,0,-1]];
516
517
518
bsd[77,1] = 0 ;
519
deg[77,1] = 1 ;
520
dsc[77,1] = 1 ;
521
E [77,1] = [x, [1,0,-3,-2,-1]];
522
523
bsd[77,2] = 1/3 ;
524
deg[77,2] = 5 ;
525
dsc[77,2] = 1 ;
526
E [77,2] = [x, [1,0,1,-2,3]];
527
528
bsd[77,3] = 1 ;
529
deg[77,3] = 3 ;
530
dsc[77,3] = 1 ;
531
E [77,3] = [x, [1,1,2,-1,-2]];
532
533
bsd[77,4] = 1 ;
534
deg[77,4] = 5 ;
535
dsc[77,4] = 2^2*5 ;
536
E [77,4] = [x^2-5, [1,x,-x+1,3,-2]];
537
538
539
bsd[78,1] = 1 ;
540
deg[78,1] = 5 ;
541
dsc[78,1] = 1 ;
542
E [78,1] = [x, [1,-1,-1,1,2]];
543
544
545
bsd[79,1] = 0 ;
546
deg[79,1] = 1 ;
547
dsc[79,1] = 1 ;
548
E [79,1] = [x, [1,-1,-1,-1,-3]];
549
550
bsd[79,2] = 1/13 ;
551
deg[79,2] = 1 ;
552
dsc[79,2] = 83*983 ;
553
E [79,2] = [x^5-6*x^3+8*x-1, [1,x,-x^4+x^3+3*x^2-3*x+1,x^2-2,x^4-4*x^2-x+3]];
554
555
556
bsd[80,1] = 1 ;
557
deg[80,1] = 1 ;
558
dsc[80,1] = 1 ;
559
E [80,1] = [x, [1,0,0,0,1]];
560
561
bsd[80,2] = 1 ;
562
deg[80,2] = 1 ;
563
dsc[80,2] = 1 ;
564
E [80,2] = [x, [1,0,2,0,-1]];
565
566
567
bsd[81,1] = 1/3 ;
568
deg[81,1] = 3 ;
569
dsc[81,1] = 2^2*3 ;
570
E [81,1] = [x^2-3, [1,x,0,1,-x]];
571
572
573
bsd[82,1] = 0 ;
574
deg[82,1] = 1 ;
575
dsc[82,1] = 1 ;
576
E [82,1] = [x, [1,-1,-2,1,-2]];
577
578
bsd[82,2] = 1/7 ;
579
deg[82,2] = 1 ;
580
dsc[82,2] = 2^3 ;
581
E [82,2] = [x^2-2, [1,1,x,1,-2*x]];
582
583
584
bsd[83,1] = 0 ;
585
deg[83,1] = 1 ;
586
dsc[83,1] = 1 ;
587
E [83,1] = [x, [1,-1,-1,-1,-2]];
588
589
bsd[83,2] = 1/41 ;
590
deg[83,2] = 1 ;
591
dsc[83,2] = 2^2*197*11497 ;
592
E [83,2] = [x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [4,4*x,2*x^4-2*x^3-14*x^2+6*x+16,4*x^2-8,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-8]];
593
594
595
bsd[84,1] = 1 ;
596
deg[84,1] = 3 ;
597
dsc[84,1] = 1 ;
598
E [84,1] = [x, [1,0,-1,0,4]];
599
600
bsd[84,2] = 1 ;
601
deg[84,2] = 3 ;
602
dsc[84,2] = 1 ;
603
E [84,2] = [x, [1,0,1,0,0]];
604
605
606
bsd[85,1] = 1 ;
607
deg[85,1] = 1 ;
608
dsc[85,1] = 1 ;
609
E [85,1] = [x, [1,1,2,-1,-1]];
610
611
bsd[85,2] = 0 ;
612
deg[85,2] = 1 ;
613
dsc[85,2] = 2^3 ;
614
E [85,2] = [x^2+2*x-1, [1,x,-x-3,-2*x-1,-1]];
615
616
bsd[85,3] = 1/3 ;
617
deg[85,3] = 1 ;
618
dsc[85,3] = 2^2*3 ;
619
E [85,3] = [x^2-3, [1,x,-x+1,1,1]];
620
621
622
bsd[86,1] = 1/3 ;
623
deg[86,1] = 7 ;
624
dsc[86,1] = 3*7 ;
625
E [86,1] = [x^2+x-5, [1,-1,x,1,-x+1]];
626
627
bsd[86,2] = 5/11 ;
628
deg[86,2] = 5 ;
629
dsc[86,2] = 5 ;
630
E [86,2] = [x^2-x-1, [1,1,x,1,-x-1]];
631
632
633
bsd[87,1] = 1/5 ;
634
deg[87,1] = 1 ;
635
dsc[87,1] = 5 ;
636
E [87,1] = [x^2-x-1, [1,x,1,x-1,-2*x+2]];
637
638
bsd[87,2] = 1 ;
639
deg[87,2] = 23 ;
640
dsc[87,2] = 229 ;
641
E [87,2] = [x^3-2*x^2-4*x+7, [1,x,-1,x^2-2,-2*x^2+8]];
642
643
644
bsd[88,1] = 0 ;
645
deg[88,1] = 1 ;
646
dsc[88,1] = 1 ;
647
E [88,1] = [x, [1,0,-3,0,-3]];
648
649
bsd[88,2] = 1 ;
650
deg[88,2] = 1 ;
651
dsc[88,2] = 17 ;
652
E [88,2] = [x^2-x-4, [1,0,x,0,-x+2]];
653
654
655
bsd[89,1] = 0 ;
656
deg[89,1] = 1 ;
657
dsc[89,1] = 1 ;
658
E [89,1] = [x, [1,-1,-1,-1,-1]];
659
660
bsd[89,2] = 1 ;
661
deg[89,2] = 5 ;
662
dsc[89,2] = 1 ;
663
E [89,2] = [x, [1,1,2,-1,-2]];
664
665
bsd[89,3] = 1/11 ;
666
deg[89,3] = 5 ;
667
dsc[89,3] = 2^4*5*6689 ;
668
E [89,3] = [x^5+x^4-10*x^3-10*x^2+21*x+17, [2,2*x,-x^4+x^3+7*x^2-5*x-8,2*x^2-4,-2*x^2+8]];
669
670
671
bsd[90,1] = 1/3 ;
672
deg[90,1] = 1 ;
673
dsc[90,1] = 1 ;
674
E [90,1] = [x, [1,-1,0,1,1]];
675
676
bsd[90,2] = 1/3 ;
677
deg[90,2] = 1 ;
678
dsc[90,2] = 1 ;
679
E [90,2] = [x, [1,1,0,1,-1]];
680
681
bsd[90,3] = 1 ;
682
deg[90,3] = 1 ;
683
dsc[90,3] = 1 ;
684
E [90,3] = [x, [1,1,0,1,1]];
685
686
687
bsd[91,1] = 0 ;
688
deg[91,1] = 1 ;
689
dsc[91,1] = 1 ;
690
E [91,1] = [x, [1,-2,0,2,-3]];
691
692
bsd[91,2] = 0 ;
693
deg[91,2] = 1 ;
694
dsc[91,2] = 1 ;
695
E [91,2] = [x, [1,0,-2,-2,-3]];
696
697
bsd[91,3] = 1/7 ;
698
deg[91,3] = 1 ;
699
dsc[91,3] = 2^3 ;
700
E [91,3] = [x^2-2, [1,x,-x,0,x+3]];
701
702
bsd[91,4] = 1 ;
703
deg[91,4] = 1 ;
704
dsc[91,4] = 2^2*79 ;
705
E [91,4] = [x^3-x^2-4*x+2, [1,x,-x^2+x+2,x^2-2,-x+1]];
706
707
708
bsd[92,1] = 0 ;
709
deg[92,1] = 3 ;
710
dsc[92,1] = 1 ;
711
E [92,1] = [x, [1,0,-3,0,-2]];
712
713
bsd[92,2] = 1/3 ;
714
deg[92,2] = 1 ;
715
dsc[92,2] = 1 ;
716
E [92,2] = [x, [1,0,1,0,0]];
717
718
719
bsd[93,1] = 0 ;
720
deg[93,1] = 1 ;
721
dsc[93,1] = 5 ;
722
E [93,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-2*x-5]];
723
724
bsd[93,2] = 1 ;
725
deg[93,2] = 1 ;
726
dsc[93,2] = 229 ;
727
E [93,2] = [x^3-4*x+1, [1,x,1,x^2-2,-x^2-x+2]];
728
729
730
bsd[94,1] = 1 ;
731
deg[94,1] = 1 ;
732
dsc[94,1] = 1 ;
733
E [94,1] = [x, [1,1,0,1,0]];
734
735
bsd[94,2] = 1 ;
736
deg[94,2] = 47 ;
737
dsc[94,2] = 2^3 ;
738
E [94,2] = [x^2-8, [2,-2,2*x,2,-x+4]];
739
740
741
bsd[95,1] = 1/5 ;
742
deg[95,1] = 1 ;
743
dsc[95,1] = 2^2*37 ;
744
E [95,1] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1]];
745
746
bsd[95,2] = 1/3 ;
747
deg[95,2] = 3^2 ;
748
dsc[95,2] = 2^4*709 ;
749
E [95,2] = [x^4+2*x^3-6*x^2-8*x+9, [1,x,-x^3+5*x-2,x^2-2,-1]];
750
751
752
bsd[96,1] = 1 ;
753
deg[96,1] = 1 ;
754
dsc[96,1] = 1 ;
755
E [96,1] = [x, [1,0,-1,0,2]];
756
757
bsd[96,2] = 1 ;
758
deg[96,2] = 1 ;
759
dsc[96,2] = 1 ;
760
E [96,2] = [x, [1,0,1,0,2]];
761
762
763
bsd[97,1] = 0 ;
764
deg[97,1] = 1 ;
765
dsc[97,1] = 7^2 ;
766
E [97,1] = [x^3+4*x^2+3*x-1, [1,x,-x^2-3*x-2,x^2-2,2*x^2+5*x-1]];
767
768
bsd[97,2] = 1 ;
769
deg[97,2] = 1 ;
770
dsc[97,2] = 2777 ;
771
E [97,2] = [x^4-3*x^3-x^2+6*x-1, [1,x,-x^2+x+2,x^2-2,-x+1]];
772
773
774
bsd[98,1] = 1 ;
775
deg[98,1] = 1 ;
776
dsc[98,1] = 1 ;
777
E [98,1] = [x, [1,-1,2,1,0]];
778
779
bsd[98,2] = 1/7 ;
780
deg[98,2] = 1 ;
781
dsc[98,2] = 2^3 ;
782
E [98,2] = [x^2-2, [1,1,x,1,-2*x]];
783
784
785
bsd[99,1] = 0 ;
786
deg[99,1] = 1 ;
787
dsc[99,1] = 1 ;
788
E [99,1] = [x, [1,-1,0,-1,-4]];
789
790
bsd[99,2] = 1 ;
791
deg[99,2] = 3 ;
792
dsc[99,2] = 1 ;
793
E [99,2] = [x, [1,-1,0,-1,2]];
794
795
bsd[99,3] = 1 ;
796
deg[99,3] = 3 ;
797
dsc[99,3] = 1 ;
798
E [99,3] = [x, [1,1,0,-1,4]];
799
800
bsd[99,4] = 1 ;
801
deg[99,4] = 3 ;
802
dsc[99,4] = 1 ;
803
E [99,4] = [x, [1,2,0,2,-1]];
804
805
806
bsd[100,1] = 1 ;
807
deg[100,1] = 3 ;
808
dsc[100,1] = 1 ;
809
E [100,1] = [x, [1,0,2,0,0]];
810
811
812
bsd[101,1] = 0 ;
813
deg[101,1] = 1 ;
814
dsc[101,1] = 1 ;
815
E [101,1] = [x, [1,0,-2,-2,-1]];
816
817
bsd[101,2] = 1/5^2 ;
818
deg[101,2] = 1 ;
819
dsc[101,2] = 2^6*17568767 ;
820
E [101,2] = [x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [4,4*x,x^6+x^5-10*x^4-10*x^3+19*x^2+17*x+2,4*x^2-8,-2*x^6-3*x^5+22*x^4+28*x^3-58*x^2-45*x+30]];
821
822
823
bsd[102,1] = 0 ;
824
deg[102,1] = 1 ;
825
dsc[102,1] = 1 ;
826
E [102,1] = [x, [1,-1,-1,1,-4]];
827
828
bsd[102,2] = 1/3 ;
829
deg[102,2] = 3 ;
830
dsc[102,2] = 1 ;
831
E [102,2] = [x, [1,-1,1,1,0]];
832
833
bsd[102,3] = 1 ;
834
deg[102,3] = 1 ;
835
dsc[102,3] = 1 ;
836
E [102,3] = [x, [1,1,1,1,-2]];
837
838
839
bsd[103,1] = 0 ;
840
deg[103,1] = 1 ;
841
dsc[103,1] = 5 ;
842
E [103,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-x-3]];
843
844
bsd[103,2] = 1/17 ;
845
deg[103,2] = 1 ;
846
dsc[103,2] = 17*411721 ;
847
E [103,2] = [x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [1,x,-x^5+3*x^4+3*x^3-11*x^2-x+8,x^2-2,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13]];
848
849
850
bsd[104,1] = 1 ;
851
deg[104,1] = 1 ;
852
dsc[104,1] = 1 ;
853
E [104,1] = [x, [1,0,1,0,-1]];
854
855
bsd[104,2] = 1 ;
856
deg[104,2] = 1 ;
857
dsc[104,2] = 17 ;
858
E [104,2] = [x^2-x-4, [1,0,x,0,-x+2]];
859
860
861
bsd[105,1] = 1 ;
862
deg[105,1] = 1 ;
863
dsc[105,1] = 1 ;
864
E [105,1] = [x, [1,1,1,-1,1]];
865
866
bsd[105,2] = 1 ;
867
deg[105,2] = 5 ;
868
dsc[105,2] = 2^2*5 ;
869
E [105,2] = [x^2-5, [1,x,-1,3,-1]];
870
871
872
bsd[106,1] = 0 ;
873
deg[106,1] = 1 ;
874
dsc[106,1] = 1 ;
875
E [106,1] = [x, [1,-1,-1,1,-4]];
876
877
bsd[106,2] = 1 ;
878
deg[106,2] = 5 ;
879
dsc[106,2] = 1 ;
880
E [106,2] = [x, [1,-1,2,1,1]];
881
882
bsd[106,3] = 1/3 ;
883
deg[106,3] = 3 ;
884
dsc[106,3] = 1 ;
885
E [106,3] = [x, [1,1,-2,1,3]];
886
887
bsd[106,4] = 1/3 ;
888
deg[106,4] = 3 ;
889
dsc[106,4] = 1 ;
890
E [106,4] = [x, [1,1,1,1,0]];
891
892
893
bsd[107,1] = 0 ;
894
deg[107,1] = 1 ;
895
dsc[107,1] = 5 ;
896
E [107,1] = [x^2+x-1, [1,x,-x-2,-x-1,-x-2]];
897
898
bsd[107,2] = 1/53 ;
899
deg[107,2] = 1 ;
900
dsc[107,2] = 2^2*7*1667*19079 ;
901
E [107,2] = [x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [4,4*x,-x^6-x^5+10*x^4+3*x^3-29*x^2+8*x+16,4*x^2-8,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x]];
902
903
904
bsd[108,1] = 1/3 ;
905
deg[108,1] = 3 ;
906
dsc[108,1] = 1 ;
907
E [108,1] = [x, [1,0,0,0,0]];
908
909
910
bsd[109,1] = 1 ;
911
deg[109,1] = 1 ;
912
dsc[109,1] = 1 ;
913
E [109,1] = [x, [1,1,0,-1,3]];
914
915
bsd[109,2] = 0 ;
916
deg[109,2] = 1 ;
917
dsc[109,2] = 7^2 ;
918
E [109,2] = [x^3+2*x^2-x-1, [1,x,-x-2,x^2-2,-2*x^2-3*x]];
919
920
bsd[109,3] = 1/3^2 ;
921
deg[109,3] = 1 ;
922
dsc[109,3] = 7537 ;
923
E [109,3] = [x^4+x^3-5*x^2-4*x+3, [1,x,-x^3+4*x+1,x^2-2,-x]];
924
925
926
bsd[110,1] = 1/3 ;
927
deg[110,1] = 7 ;
928
dsc[110,1] = 1 ;
929
E [110,1] = [x, [1,-1,1,1,-1]];
930
931
bsd[110,2] = 1 ;
932
deg[110,2] = 5 ;
933
dsc[110,2] = 1 ;
934
E [110,2] = [x, [1,1,-1,1,1]];
935
936
bsd[110,3] = 1/3 ;
937
deg[110,3] = 1 ;
938
dsc[110,3] = 1 ;
939
E [110,3] = [x, [1,1,1,1,-1]];
940
941
bsd[110,4] = 1/3 ;
942
deg[110,4] = 1 ;
943
dsc[110,4] = 3*11 ;
944
E [110,4] = [x^2+x-8, [1,-1,x,1,1]];
945
946
947
bsd[111,1] = 1 ;
948
deg[111,1] = 5 ;
949
dsc[111,1] = 2^2*37 ;
950
E [111,1] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+5]];
951
952
bsd[111,2] = 7/19 ;
953
deg[111,2] = 7 ;
954
dsc[111,2] = 2^4*389 ;
955
E [111,2] = [x^4-6*x^2+2*x+5, [1,x,1,x^2-2,-x^3-2*x^2+3*x+4]];
956
957
958
bsd[112,1] = 0 ;
959
deg[112,1] = 1 ;
960
dsc[112,1] = 1 ;
961
E [112,1] = [x, [1,0,-2,0,-4]];
962
963
bsd[112,2] = 1 ;
964
deg[112,2] = 1 ;
965
dsc[112,2] = 1 ;
966
E [112,2] = [x, [1,0,0,0,2]];
967
968
bsd[112,3] = 1 ;
969
deg[112,3] = 1 ;
970
dsc[112,3] = 1 ;
971
E [112,3] = [x, [1,0,2,0,0]];
972
973
974
bsd[113,1] = 1 ;
975
deg[113,1] = 3 ;
976
dsc[113,1] = 1 ;
977
E [113,1] = [x, [1,-1,2,-1,2]];
978
979
bsd[113,2] = 1 ;
980
deg[113,2] = 11 ;
981
dsc[113,2] = 2^2*3 ;
982
E [113,2] = [x^2-2*x-2, [1,1,x,-1,-2*x+2]];
983
984
bsd[113,3] = 0 ;
985
deg[113,3] = 1 ;
986
dsc[113,3] = 7^2 ;
987
E [113,3] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x-1,x^2-2,2*x^2+2*x-3]];
988
989
bsd[113,4] = 1/7 ;
990
deg[113,4] = 3*11 ;
991
dsc[113,4] = 3*107 ;
992
E [113,4] = [x^3+2*x^2-5*x-9, [1,x,x^2-5,x^2-2,-1]];
993
994
995
bsd[114,1] = 1 ;
996
deg[114,1] = 5 ;
997
dsc[114,1] = 1 ;
998
E [114,1] = [x, [1,-1,-1,1,0]];
999
1000
bsd[114,2] = 5 ;
1001
deg[114,2] = 3*5 ;
1002
dsc[114,2] = 1 ;
1003
E [114,2] = [x, [1,1,-1,1,2]];
1004
1005
bsd[114,3] = 1 ;
1006
deg[114,3] = 3 ;
1007
dsc[114,3] = 1 ;
1008
E [114,3] = [x, [1,1,1,1,0]];
1009
1010
1011
bsd[115,1] = 1 ;
1012
deg[115,1] = 5 ;
1013
dsc[115,1] = 1 ;
1014
E [115,1] = [x, [1,2,0,2,-1]];
1015
1016
bsd[115,2] = 0 ;
1017
deg[115,2] = 1 ;
1018
dsc[115,2] = 5 ;
1019
E [115,2] = [x^2+3*x+1, [1,x,-1,-3*x-3,-1]];
1020
1021
bsd[115,3] = 1 ;
1022
deg[115,3] = 1 ;
1023
dsc[115,3] = 17^2*53 ;
1024
E [115,3] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-x^2+x+2,x^2-2,1]];
1025
1026
1027
bsd[116,1] = 3 ;
1028
deg[116,1] = 3*5 ;
1029
dsc[116,1] = 1 ;
1030
E [116,1] = [x, [1,0,-3,0,3]];
1031
1032
bsd[116,2] = 1/3 ;
1033
deg[116,2] = 1 ;
1034
dsc[116,2] = 1 ;
1035
E [116,2] = [x, [1,0,1,0,3]];
1036
1037
bsd[116,3] = 1 ;
1038
deg[116,3] = 3*5 ;
1039
dsc[116,3] = 1 ;
1040
E [116,3] = [x, [1,0,2,0,-2]];
1041
1042
1043
bsd[117,1] = 0 ;
1044
deg[117,1] = 1 ;
1045
dsc[117,1] = 1 ;
1046
E [117,1] = [x, [1,-1,0,-1,-2]];
1047
1048
bsd[117,2] = 1/3 ;
1049
deg[117,2] = 1 ;
1050
dsc[117,2] = 2^2*3 ;
1051
E [117,2] = [x^2-3, [1,x,0,1,0]];
1052
1053
bsd[117,3] = 1 ;
1054
deg[117,3] = 1 ;
1055
dsc[117,3] = 2^3 ;
1056
E [117,3] = [x^2-2*x-1, [1,x,0,2*x-1,-2*x+2]];
1057
1058
1059
bsd[118,1] = 0 ;
1060
deg[118,1] = 1 ;
1061
dsc[118,1] = 1 ;
1062
E [118,1] = [x, [1,-1,-1,1,-3]];
1063
1064
bsd[118,2] = 1 ;
1065
deg[118,2] = 19 ;
1066
dsc[118,2] = 1 ;
1067
E [118,2] = [x, [1,-1,2,1,2]];
1068
1069
bsd[118,3] = 1/5 ;
1070
deg[118,3] = 3 ;
1071
dsc[118,3] = 1 ;
1072
E [118,3] = [x, [1,1,-1,1,1]];
1073
1074
bsd[118,4] = 1 ;
1075
deg[118,4] = 3 ;
1076
dsc[118,4] = 1 ;
1077
E [118,4] = [x, [1,1,2,1,-2]];
1078
1079
1080
bsd[119,1] = 1/3^2 ;
1081
deg[119,1] = 1 ;
1082
dsc[119,1] = 71*131 ;
1083
E [119,1] = [x^4+x^3-5*x^2-x+3, [1,x,-x^3-x^2+4*x+1,x^2-2,x^3+x^2-4*x]];
1084
1085
bsd[119,2] = 1 ;
1086
deg[119,2] = 3 ;
1087
dsc[119,2] = 311*1459 ;
1088
E [119,2] = [x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,x,-x^4+6*x^2+x-4,x^2-2,2*x^4+x^3-15*x^2-6*x+18]];
1089
1090
1091
bsd[120,1] = 1 ;
1092
deg[120,1] = 1 ;
1093
dsc[120,1] = 1 ;
1094
E [120,1] = [x, [1,0,1,0,-1]];
1095
1096
bsd[120,2] = 1 ;
1097
deg[120,2] = 1 ;
1098
dsc[120,2] = 1 ;
1099
E [120,2] = [x, [1,0,1,0,1]];
1100
1101
1102
bsd[121,1] = 1 ;
1103
deg[121,1] = 3 ;
1104
dsc[121,1] = 1 ;
1105
E [121,1] = [x, [1,-1,2,-1,1]];
1106
1107
bsd[121,2] = 0 ;
1108
deg[121,2] = 1 ;
1109
dsc[121,2] = 1 ;
1110
E [121,2] = [x, [1,0,-1,-2,-3]];
1111
1112
bsd[121,3] = 1 ;
1113
deg[121,3] = 3 ;
1114
dsc[121,3] = 1 ;
1115
E [121,3] = [x, [1,1,2,-1,1]];
1116
1117
bsd[121,4] = 1 ;
1118
deg[121,4] = 3 ;
1119
dsc[121,4] = 1 ;
1120
E [121,4] = [x, [1,2,-1,2,1]];
1121
1122
1123
bsd[122,1] = 0 ;
1124
deg[122,1] = 1 ;
1125
dsc[122,1] = 1 ;
1126
E [122,1] = [x, [1,-1,-2,1,1]];
1127
1128
bsd[122,2] = 1/3 ;
1129
deg[122,2] = 13 ;
1130
dsc[122,2] = 13 ;
1131
E [122,2] = [x^2-x-3, [1,-1,x,1,0]];
1132
1133
bsd[122,3] = 1/31 ;
1134
deg[122,3] = 1 ;
1135
dsc[122,3] = 229 ;
1136
E [122,3] = [x^3+x^2-5*x+2, [1,1,x,1,-x^2-3*x+3]];
1137
1138
1139
bsd[123,1] = 0 ;
1140
deg[123,1] = 5 ;
1141
dsc[123,1] = 1 ;
1142
E [123,1] = [x, [1,-2,1,2,-4]];
1143
1144
bsd[123,2] = 0 ;
1145
deg[123,2] = 1 ;
1146
dsc[123,2] = 1 ;
1147
E [123,2] = [x, [1,0,-1,-2,-2]];
1148
1149
bsd[123,3] = 1/7 ;
1150
deg[123,3] = 1 ;
1151
dsc[123,3] = 2^3 ;
1152
E [123,3] = [x^2-2, [1,x,1,0,-x+2]];
1153
1154
bsd[123,4] = 1 ;
1155
deg[123,4] = 23 ;
1156
dsc[123,4] = 2^2*79 ;
1157
E [123,4] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4]];
1158
1159
1160
bsd[124,1] = 0 ;
1161
deg[124,1] = 3 ;
1162
dsc[124,1] = 1 ;
1163
E [124,1] = [x, [1,0,-2,0,-3]];
1164
1165
bsd[124,2] = 1 ;
1166
deg[124,2] = 3 ;
1167
dsc[124,2] = 1 ;
1168
E [124,2] = [x, [1,0,0,0,1]];
1169
1170
1171
bsd[125,1] = 0 ;
1172
deg[125,1] = 1 ;
1173
dsc[125,1] = 5 ;
1174
E [125,1] = [x^2+x-1, [1,x,-x-2,-x-1,0]];
1175
1176
bsd[125,2] = 1/5 ;
1177
deg[125,2] = 5^2 ;
1178
dsc[125,2] = 5 ;
1179
E [125,2] = [x^2-x-1, [1,x,-x+2,x-1,0]];
1180
1181
bsd[125,3] = 1/5 ;
1182
deg[125,3] = 5^2 ;
1183
dsc[125,3] = 2^4*5^2*11 ;
1184
E [125,3] = [x^4-8*x^2+11, [2,2*x,-x^3+5*x,2*x^2-4,0]];
1185
1186
1187
bsd[126,1] = 1 ;
1188
deg[126,1] = 1 ;
1189
dsc[126,1] = 1 ;
1190
E [126,1] = [x, [1,-1,0,1,2]];
1191
1192
bsd[126,2] = 1 ;
1193
deg[126,2] = 1 ;
1194
dsc[126,2] = 1 ;
1195
E [126,2] = [x, [1,1,0,1,0]];
1196
1197
1198
bsd[127,1] = 0 ;
1199
deg[127,1] = 1 ;
1200
dsc[127,1] = 3^4 ;
1201
E [127,1] = [x^3+3*x^2-3, [1,x,-x^2-2*x,x^2-2,x^2+x-4]];
1202
1203
bsd[127,2] = 1/3*7 ;
1204
deg[127,2] = 1 ;
1205
dsc[127,2] = 7*86235899 ;
1206
E [127,2] = [x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [1,x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,x^2-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9]];
1207
1208
1209
bsd[128,1] = 0 ;
1210
deg[128,1] = 1 ;
1211
dsc[128,1] = 1 ;
1212
E [128,1] = [x, [1,0,-2,0,-2]];
1213
1214
bsd[128,2] = 1 ;
1215
deg[128,2] = 1 ;
1216
dsc[128,2] = 1 ;
1217
E [128,2] = [x, [1,0,-2,0,2]];
1218
1219
bsd[128,3] = 1 ;
1220
deg[128,3] = 1 ;
1221
dsc[128,3] = 1 ;
1222
E [128,3] = [x, [1,0,2,0,-2]];
1223
1224
bsd[128,4] = 1 ;
1225
deg[128,4] = 1 ;
1226
dsc[128,4] = 1 ;
1227
E [128,4] = [x, [1,0,2,0,2]];
1228
1229
1230
bsd[129,1] = 0 ;
1231
deg[129,1] = 1 ;
1232
dsc[129,1] = 1 ;
1233
E [129,1] = [x, [1,0,-1,-2,-2]];
1234
1235
bsd[129,2] = 3 ;
1236
deg[129,2] = 3*5 ;
1237
dsc[129,2] = 1 ;
1238
E [129,2] = [x, [1,1,1,-1,2]];
1239
1240
bsd[129,3] = 1 ;
1241
deg[129,3] = 7 ;
1242
dsc[129,3] = 2^3 ;
1243
E [129,3] = [x^2-2*x-1, [1,x,-1,2*x-1,-x+2]];
1244
1245
bsd[129,4] = 1/11 ;
1246
deg[129,4] = 5 ;
1247
dsc[129,4] = 2^3*71 ;
1248
E [129,4] = [x^3+2*x^2-5*x-8, [1,x,1,x^2-2,-x-2]];
1249
1250
1251
bsd[130,1] = 0 ;
1252
deg[130,1] = 3 ;
1253
dsc[130,1] = 1 ;
1254
E [130,1] = [x, [1,-1,-2,1,1]];
1255
1256
bsd[130,2] = 1 ;
1257
deg[130,2] = 1 ;
1258
dsc[130,2] = 1 ;
1259
E [130,2] = [x, [1,1,0,1,1]];
1260
1261
bsd[130,3] = 1 ;
1262
deg[130,3] = 5 ;
1263
dsc[130,3] = 1 ;
1264
E [130,3] = [x, [1,1,2,1,-1]];
1265
1266
1267
bsd[131,1] = 0 ;
1268
deg[131,1] = 1 ;
1269
dsc[131,1] = 1 ;
1270
E [131,1] = [x, [1,0,-1,-2,-2]];
1271
1272
bsd[131,2] = 1/5*13 ;
1273
deg[131,2] = 1 ;
1274
dsc[131,2] = 2^7*5*46141*75619573 ;
1275
E [131,2] = [x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [16,16*x,2*x^8-32*x^6+162*x^4-268*x^2+80,16*x^2-32,-x^9+18*x^7+2*x^6-107*x^5-18*x^4+234*x^3+28*x^2-144*x+16]];
1276
1277
1278
bsd[132,1] = 1 ;
1279
deg[132,1] = 3*5 ;
1280
dsc[132,1] = 1 ;
1281
E [132,1] = [x, [1,0,-1,0,2]];
1282
1283
bsd[132,2] = 1 ;
1284
deg[132,2] = 3 ;
1285
dsc[132,2] = 1 ;
1286
E [132,2] = [x, [1,0,1,0,2]];
1287
1288
1289
bsd[133,1] = 0 ;
1290
deg[133,1] = 1 ;
1291
dsc[133,1] = 5 ;
1292
E [133,1] = [x^2+3*x+1, [1,x,x,-3*x-3,-2*x-3]];
1293
1294
bsd[133,2] = 0 ;
1295
deg[133,2] = 3 ;
1296
dsc[133,2] = 13 ;
1297
E [133,2] = [x^2+x-3, [1,x,-x-2,-x+1,-3]];
1298
1299
bsd[133,3] = 1/5 ;
1300
deg[133,3] = 1 ;
1301
dsc[133,3] = 5 ;
1302
E [133,3] = [x^2-x-1, [1,x,-x+2,x-1,1]];
1303
1304
bsd[133,4] = 1 ;
1305
deg[133,4] = 7 ;
1306
dsc[133,4] = 229 ;
1307
E [133,4] = [x^3-2*x^2-4*x+7, [1,x,-x^2+5,x^2-2,x^2-x-4]];
1308
1309
1310
bsd[134,1] = 1/3 ;
1311
deg[134,1] = 5^2 ;
1312
dsc[134,1] = 11*43 ;
1313
E [134,1] = [x^3-x^2-8*x+11, [1,-1,x,1,x^2+x-5]];
1314
1315
bsd[134,2] = 19/17 ;
1316
deg[134,2] = 19 ;
1317
dsc[134,2] = 3^4 ;
1318
E [134,2] = [x^3-3*x^2+1, [1,1,x,1,-x^2+x+1]];
1319
1320
1321
bsd[135,1] = 0 ;
1322
deg[135,1] = 3 ;
1323
dsc[135,1] = 1 ;
1324
E [135,1] = [x, [1,-2,0,2,-1]];
1325
1326
bsd[135,2] = 1 ;
1327
deg[135,2] = 3^2 ;
1328
dsc[135,2] = 1 ;
1329
E [135,2] = [x, [1,2,0,2,1]];
1330
1331
bsd[135,3] = 1/3 ;
1332
deg[135,3] = 3^2 ;
1333
dsc[135,3] = 13 ;
1334
E [135,3] = [x^2+x-3, [1,x,0,-x+1,1]];
1335
1336
bsd[135,4] = 1/3 ;
1337
deg[135,4] = 3^2 ;
1338
dsc[135,4] = 13 ;
1339
E [135,4] = [x^2-x-3, [1,x,0,x+1,-1]];
1340
1341
1342
bsd[136,1] = 0 ;
1343
deg[136,1] = 1 ;
1344
dsc[136,1] = 1 ;
1345
E [136,1] = [x, [1,0,-2,0,-2]];
1346
1347
bsd[136,2] = 1 ;
1348
deg[136,2] = 1 ;
1349
dsc[136,2] = 1 ;
1350
E [136,2] = [x, [1,0,2,0,0]];
1351
1352
bsd[136,3] = 1 ;
1353
deg[136,3] = 1 ;
1354
dsc[136,3] = 2^2*5 ;
1355
E [136,3] = [x^2+2*x-4, [1,0,x,0,2]];
1356
1357
1358
bsd[137,1] = 0 ;
1359
deg[137,1] = 1 ;
1360
dsc[137,1] = 5^2*29 ;
1361
E [137,1] = [x^4+3*x^3-4*x-1, [1,x,x^3+x^2-3*x-2,x^2-2,-2*x^3-3*x^2+3*x+1]];
1362
1363
bsd[137,2] = 1/17 ;
1364
deg[137,2] = 1 ;
1365
dsc[137,2] = 2^2*401*895241 ;
1366
E [137,2] = [x^7-10*x^5+28*x^3+3*x^2-19*x-7, [2,2*x,-x^6+x^5+11*x^4-9*x^3-33*x^2+18*x+21,2*x^2-4,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-26]];
1367
1368
1369
bsd[138,1] = 0 ;
1370
deg[138,1] = 1 ;
1371
dsc[138,1] = 1 ;
1372
E [138,1] = [x, [1,-1,-1,1,-2]];
1373
1374
bsd[138,2] = 1/3 ;
1375
deg[138,2] = 1 ;
1376
dsc[138,2] = 1 ;
1377
E [138,2] = [x, [1,-1,1,1,0]];
1378
1379
bsd[138,3] = 1 ;
1380
deg[138,3] = 1 ;
1381
dsc[138,3] = 1 ;
1382
E [138,3] = [x, [1,1,-1,1,2]];
1383
1384
bsd[138,4] = 1 ;
1385
deg[138,4] = 11 ;
1386
dsc[138,4] = 2^2*5 ;
1387
E [138,4] = [x^2+2*x-4, [1,1,1,1,x]];
1388
1389
1390
bsd[139,1] = 1 ;
1391
deg[139,1] = 3 ;
1392
dsc[139,1] = 1 ;
1393
E [139,1] = [x, [1,1,2,-1,-1]];
1394
1395
bsd[139,2] = 0 ;
1396
deg[139,2] = 1 ;
1397
dsc[139,2] = 7^2 ;
1398
E [139,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+x-4]];
1399
1400
bsd[139,3] = 1/23 ;
1401
deg[139,3] = 3 ;
1402
dsc[139,3] = 997*2151701 ;
1403
E [139,3] = [x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [4,4*x,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-24*x-16,4*x^2-8,-x^6-x^5+9*x^4+6*x^3-19*x^2-4*x+12]];
1404
1405
1406
bsd[140,1] = 1 ;
1407
deg[140,1] = 3 ;
1408
dsc[140,1] = 1 ;
1409
E [140,1] = [x, [1,0,1,0,1]];
1410
1411
bsd[140,2] = 1 ;
1412
deg[140,2] = 3*5 ;
1413
dsc[140,2] = 1 ;
1414
E [140,2] = [x, [1,0,3,0,-1]];
1415
1416
1417
bsd[141,1] = 0 ;
1418
deg[141,1] = 7 ;
1419
dsc[141,1] = 1 ;
1420
E [141,1] = [x, [1,-2,1,2,-3]];
1421
1422
bsd[141,2] = 1 ;
1423
deg[141,2] = 3 ;
1424
dsc[141,2] = 1 ;
1425
E [141,2] = [x, [1,-1,-1,-1,0]];
1426
1427
bsd[141,3] = 1 ;
1428
deg[141,3] = 3 ;
1429
dsc[141,3] = 1 ;
1430
E [141,3] = [x, [1,-1,1,-1,2]];
1431
1432
bsd[141,4] = 0 ;
1433
deg[141,4] = 1 ;
1434
dsc[141,4] = 1 ;
1435
E [141,4] = [x, [1,0,-1,-2,-1]];
1436
1437
bsd[141,5] = 1 ;
1438
deg[141,5] = 3 ;
1439
dsc[141,5] = 1 ;
1440
E [141,5] = [x, [1,2,1,2,-1]];
1441
1442
bsd[141,6] = 1 ;
1443
deg[141,6] = 43 ;
1444
dsc[141,6] = 17 ;
1445
E [141,6] = [x^2+x-4, [1,x,-1,-x+2,x+1]];
1446
1447
1448
bsd[142,1] = 0 ;
1449
deg[142,1] = 1 ;
1450
dsc[142,1] = 1 ;
1451
E [142,1] = [x, [1,-1,-1,1,-2]];
1452
1453
bsd[142,2] = 1 ;
1454
deg[142,2] = 3^2 ;
1455
dsc[142,2] = 1 ;
1456
E [142,2] = [x, [1,-1,0,1,2]];
1457
1458
bsd[142,3] = 1 ;
1459
deg[142,3] = 3^4 ;
1460
dsc[142,3] = 1 ;
1461
E [142,3] = [x, [1,-1,3,1,2]];
1462
1463
bsd[142,4] = 0 ;
1464
deg[142,4] = 3^2 ;
1465
dsc[142,4] = 1 ;
1466
E [142,4] = [x, [1,1,-3,1,-4]];
1467
1468
bsd[142,5] = 1/3 ;
1469
deg[142,5] = 1 ;
1470
dsc[142,5] = 1 ;
1471
E [142,5] = [x, [1,1,1,1,0]];
1472
1473
1474
bsd[143,1] = 0 ;
1475
deg[143,1] = 1 ;
1476
dsc[143,1] = 1 ;
1477
E [143,1] = [x, [1,0,-1,-2,-1]];
1478
1479
bsd[143,2] = 1/7 ;
1480
deg[143,2] = 3^2 ;
1481
dsc[143,2] = 19*103 ;
1482
E [143,2] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-3,x^2-2,-2*x^2+2*x+4]];
1483
1484
bsd[143,3] = 1/3 ;
1485
deg[143,3] = 1 ;
1486
dsc[143,3] = 5*7*5560463 ;
1487
E [143,3] = [x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^2-2,x^5+2*x^4-8*x^3-14*x^2+12*x+15]];
1488
1489
1490
bsd[144,1] = 1 ;
1491
deg[144,1] = 1 ;
1492
dsc[144,1] = 1 ;
1493
E [144,1] = [x, [1,0,0,0,0]];
1494
1495
bsd[144,2] = 1 ;
1496
deg[144,2] = 1 ;
1497
dsc[144,2] = 1 ;
1498
E [144,2] = [x, [1,0,0,0,2]];
1499
1500
1501
bsd[145,1] = 0 ;
1502
deg[145,1] = 1 ;
1503
dsc[145,1] = 1 ;
1504
E [145,1] = [x, [1,-1,0,-1,-1]];
1505
1506
bsd[145,2] = 0 ;
1507
deg[145,2] = 7 ;
1508
dsc[145,2] = 2^3 ;
1509
E [145,2] = [x^2+2*x-1, [1,x,-2,-2*x-1,1]];
1510
1511
bsd[145,3] = 1/5 ;
1512
deg[145,3] = 1 ;
1513
dsc[145,3] = 2^2*37 ;
1514
E [145,3] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1]];
1515
1516
bsd[145,4] = 1 ;
1517
deg[145,4] = 5^2 ;
1518
dsc[145,4] = 2^2*37 ;
1519
E [145,4] = [x^3-3*x^2-x+5, [1,x,-x^2+2*x+1,x^2-2,-1]];
1520
1521
1522
bsd[146,1] = 1/3 ;
1523
deg[146,1] = 3^2 ;
1524
dsc[146,1] = 2^2*101 ;
1525
E [146,1] = [x^3-8*x+4, [2,-2,2*x,2,-x^2+4]];
1526
1527
bsd[146,2] = 19/37 ;
1528
deg[146,2] = 19 ;
1529
dsc[146,2] = 2^4*389 ;
1530
E [146,2] = [x^4-8*x^2+4*x+4, [2,2,2*x,2,-x^3-x^2+4*x+2]];
1531
1532
1533
bsd[147,1] = 1 ;
1534
deg[147,1] = 3 ;
1535
dsc[147,1] = 1 ;
1536
E [147,1] = [x, [1,-1,-1,-1,2]];
1537
1538
bsd[147,2] = 1 ;
1539
deg[147,2] = 3 ;
1540
dsc[147,2] = 1 ;
1541
E [147,2] = [x, [1,2,-1,2,2]];
1542
1543
bsd[147,3] = 1 ;
1544
deg[147,3] = 3*7 ;
1545
dsc[147,3] = 1 ;
1546
E [147,3] = [x, [1,2,1,2,-2]];
1547
1548
bsd[147,4] = 0 ;
1549
deg[147,4] = 1 ;
1550
dsc[147,4] = 2^3 ;
1551
E [147,4] = [x^2-2*x-7, [2,-x-1,-2,2*x,x-5]];
1552
1553
bsd[147,5] = 1/7 ;
1554
deg[147,5] = 7 ;
1555
dsc[147,5] = 2^3 ;
1556
E [147,5] = [x^2-2*x-7, [2,-x-1,2,2*x,-x+5]];
1557
1558
1559
bsd[148,1] = 0 ;
1560
deg[148,1] = 3 ;
1561
dsc[148,1] = 1 ;
1562
E [148,1] = [x, [1,0,-1,0,-4]];
1563
1564
bsd[148,2] = 1 ;
1565
deg[148,2] = 3^2 ;
1566
dsc[148,2] = 17 ;
1567
E [148,2] = [x^2+x-4, [1,0,x,0,2]];
1568
1569
1570
bsd[149,1] = 0 ;
1571
deg[149,1] = 1 ;
1572
dsc[149,1] = 7^2 ;
1573
E [149,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x,x^2-2,x^2-x-3]];
1574
1575
bsd[149,2] = 1/37 ;
1576
deg[149,2] = 1 ;
1577
dsc[149,2] = 2^6*234893*1252037 ;
1578
E [149,2] = [x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [4,4*x,-3*x^8-x^7+46*x^6+5*x^5-233*x^4+13*x^3+418*x^2-49*x-176,4*x^2-8,-x^8-x^7+14*x^6+9*x^5-63*x^4-19*x^3+92*x^2+3*x-26]];
1579
1580
1581
bsd[150,1] = 1 ;
1582
deg[150,1] = 5 ;
1583
dsc[150,1] = 1 ;
1584
E [150,1] = [x, [1,-1,-1,1,0]];
1585
1586
bsd[150,2] = 1 ;
1587
deg[150,2] = 3 ;
1588
dsc[150,2] = 1 ;
1589
E [150,2] = [x, [1,1,-1,1,0]];
1590
1591
bsd[150,3] = 1 ;
1592
deg[150,3] = 1 ;
1593
dsc[150,3] = 1 ;
1594
E [150,3] = [x, [1,1,1,1,0]];
1595
1596
1597
bsd[151,1] = 0 ;
1598
deg[151,1] = 1 ;
1599
dsc[151,1] = 7^2 ;
1600
E [151,1] = [x^3+2*x^2-x-1, [1,x,-x-1,x^2-2,-x^2-x-1]];
1601
1602
bsd[151,2] = 1 ;
1603
deg[151,2] = 67 ;
1604
dsc[151,2] = 257 ;
1605
E [151,2] = [x^3-5*x+3, [1,x,2,x^2-2,-x^2-2*x+5]];
1606
1607
bsd[151,3] = 1/5^2 ;
1608
deg[151,3] = 67 ;
1609
dsc[151,3] = 11*439867 ;
1610
E [151,3] = [x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [1,x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^2-2,x^5-x^4-6*x^3+3*x^2+9*x+2]];
1611
1612
1613
bsd[152,1] = 0 ;
1614
deg[152,1] = 1 ;
1615
dsc[152,1] = 1 ;
1616
E [152,1] = [x, [1,0,-2,0,-1]];
1617
1618
bsd[152,2] = 1 ;
1619
deg[152,2] = 1 ;
1620
dsc[152,2] = 1 ;
1621
E [152,2] = [x, [1,0,1,0,0]];
1622
1623
bsd[152,3] = 1 ;
1624
deg[152,3] = 1 ;
1625
dsc[152,3] = 31^2 ;
1626
E [152,3] = [x^3-x^2-10*x+8, [2,0,2*x,0,-x^2-x+8]];
1627
1628
1629
bsd[153,1] = 0 ;
1630
deg[153,1] = 1 ;
1631
dsc[153,1] = 1 ;
1632
E [153,1] = [x, [1,-2,0,2,-1]];
1633
1634
bsd[153,2] = 0 ;
1635
deg[153,2] = 1 ;
1636
dsc[153,2] = 1 ;
1637
E [153,2] = [x, [1,0,0,-2,-3]];
1638
1639
bsd[153,3] = 1 ;
1640
deg[153,3] = 1 ;
1641
dsc[153,3] = 1 ;
1642
E [153,3] = [x, [1,1,0,-1,2]];
1643
1644
bsd[153,4] = 1 ;
1645
deg[153,4] = 3 ;
1646
dsc[153,4] = 1 ;
1647
E [153,4] = [x, [1,2,0,2,1]];
1648
1649
bsd[153,5] = 1 ;
1650
deg[153,5] = 1 ;
1651
dsc[153,5] = 17 ;
1652
E [153,5] = [x^2-x-4, [1,x,0,x+2,-x-1]];
1653
1654
1655
bsd[154,1] = 0 ;
1656
deg[154,1] = 3 ;
1657
dsc[154,1] = 1 ;
1658
E [154,1] = [x, [1,-1,0,1,-4]];
1659
1660
bsd[154,2] = 1 ;
1661
deg[154,2] = 1 ;
1662
dsc[154,2] = 1 ;
1663
E [154,2] = [x, [1,-1,2,1,2]];
1664
1665
bsd[154,3] = 3 ;
1666
deg[154,3] = 3 ;
1667
dsc[154,3] = 1 ;
1668
E [154,3] = [x, [1,1,0,1,2]];
1669
1670
bsd[154,4] = 1 ;
1671
deg[154,4] = 5 ;
1672
dsc[154,4] = 2^2*5 ;
1673
E [154,4] = [x^2+2*x-4, [1,1,x,1,-x]];
1674
1675
1676
bsd[155,1] = 0 ;
1677
deg[155,1] = 5 ;
1678
dsc[155,1] = 1 ;
1679
E [155,1] = [x, [1,-2,-1,2,1]];
1680
1681
bsd[155,2] = 1 ;
1682
deg[155,2] = 1 ;
1683
dsc[155,2] = 1 ;
1684
E [155,2] = [x, [1,-1,2,-1,-1]];
1685
1686
bsd[155,3] = 0 ;
1687
deg[155,3] = 1 ;
1688
dsc[155,3] = 1 ;
1689
E [155,3] = [x, [1,0,-1,-2,-1]];
1690
1691
bsd[155,4] = 1/3 ;
1692
deg[155,4] = 7^2 ;
1693
dsc[155,4] = 2^2*5077 ;
1694
E [155,4] = [x^4+x^3-8*x^2-4*x+12, [2,2*x,-x^3-x^2+6*x+2,2*x^2-4,-2]];
1695
1696
bsd[155,5] = 1 ;
1697
deg[155,5] = 1 ;
1698
dsc[155,5] = 2^2*29*73 ;
1699
E [155,5] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-x^3+x^2+4*x-2,2*x^2-4,2]];
1700
1701
1702
bsd[156,1] = 0 ;
1703
deg[156,1] = 3 ;
1704
dsc[156,1] = 1 ;
1705
E [156,1] = [x, [1,0,-1,0,-4]];
1706
1707
bsd[156,2] = 1 ;
1708
deg[156,2] = 3 ;
1709
dsc[156,2] = 1 ;
1710
E [156,2] = [x, [1,0,1,0,0]];
1711
1712
1713
bsd[157,1] = 0 ;
1714
deg[157,1] = 1 ;
1715
dsc[157,1] = 61*397 ;
1716
E [157,1] = [x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1,x,-x^4-3*x^3+3*x-1,x^2-2,2*x^4+7*x^3+x^2-10*x-2]];
1717
1718
bsd[157,2] = 1/13 ;
1719
deg[157,2] = 1 ;
1720
dsc[157,2] = 2^3*48795779 ;
1721
E [157,2] = [x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [1,x,x^4-3*x^3-2*x^2+7*x+1,x^2-2,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3]];
1722
1723
1724
bsd[158,1] = 0 ;
1725
deg[158,1] = 1 ;
1726
dsc[158,1] = 1 ;
1727
E [158,1] = [x, [1,-1,-1,1,-1]];
1728
1729
bsd[158,2] = 1/3 ;
1730
deg[158,2] = 5 ;
1731
dsc[158,2] = 1 ;
1732
E [158,2] = [x, [1,-1,1,1,3]];
1733
1734
bsd[158,3] = 0 ;
1735
deg[158,3] = 1 ;
1736
dsc[158,3] = 1 ;
1737
E [158,3] = [x, [1,1,-3,1,-3]];
1738
1739
bsd[158,4] = 1/5 ;
1740
deg[158,4] = 3 ;
1741
dsc[158,4] = 1 ;
1742
E [158,4] = [x, [1,1,-1,1,1]];
1743
1744
bsd[158,5] = 1 ;
1745
deg[158,5] = 3 ;
1746
dsc[158,5] = 1 ;
1747
E [158,5] = [x, [1,1,2,1,-2]];
1748
1749
bsd[158,6] = 1 ;
1750
deg[158,6] = 5*53 ;
1751
dsc[158,6] = 2^3*3 ;
1752
E [158,6] = [x^2-6, [1,-1,x,1,-2]];
1753
1754
1755
bsd[159,1] = 7/3^2 ;
1756
deg[159,1] = 7 ;
1757
dsc[159,1] = 19*103 ;
1758
E [159,1] = [x^4-3*x^3-x^2+7*x-3, [1,x,1,x^2-2,-x^3+x^2+2*x]];
1759
1760
bsd[159,2] = 1 ;
1761
deg[159,2] = 107 ;
1762
dsc[159,2] = 1054013 ;
1763
E [159,2] = [x^5-10*x^3+22*x+5, [3,3*x,-3,3*x^2-6,-3*x^3-3*x^2+18*x+12]];
1764
1765
1766
bsd[160,1] = 0 ;
1767
deg[160,1] = 1 ;
1768
dsc[160,1] = 1 ;
1769
E [160,1] = [x, [1,0,-2,0,-1]];
1770
1771
bsd[160,2] = 1 ;
1772
deg[160,2] = 1 ;
1773
dsc[160,2] = 1 ;
1774
E [160,2] = [x, [1,0,2,0,-1]];
1775
1776
bsd[160,3] = 1 ;
1777
deg[160,3] = 1 ;
1778
dsc[160,3] = 2^5 ;
1779
E [160,3] = [x^2-8, [1,0,x,0,1]];
1780
1781
1782
bsd[161,1] = 1 ;
1783
deg[161,1] = 5 ;
1784
dsc[161,1] = 1 ;
1785
E [161,1] = [x, [1,-1,0,-1,2]];
1786
1787
bsd[161,2] = 0 ;
1788
deg[161,2] = 1 ;
1789
dsc[161,2] = 5 ;
1790
E [161,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-2]];
1791
1792
bsd[161,3] = 1 ;
1793
deg[161,3] = 19 ;
1794
dsc[161,3] = 2^2*37 ;
1795
E [161,3] = [x^3+x^2-5*x-1, [2,2*x,-x^2+5,2*x^2-4,-x^2+5]];
1796
1797
bsd[161,4] = 1/3 ;
1798
deg[161,4] = 5 ;
1799
dsc[161,4] = 2^2*536777 ;
1800
E [161,4] = [x^5-2*x^4-9*x^3+17*x^2+16*x-27, [2,2*x,x^4-x^3-8*x^2+5*x+11,2*x^2-4,-x^4-x^3+10*x^2+5*x-21]];
1801
1802
1803
bsd[162,1] = 0 ;
1804
deg[162,1] = 3 ;
1805
dsc[162,1] = 1 ;
1806
E [162,1] = [x, [1,-1,0,1,-3]];
1807
1808
bsd[162,2] = 1/3 ;
1809
deg[162,2] = 3 ;
1810
dsc[162,2] = 1 ;
1811
E [162,2] = [x, [1,-1,0,1,0]];
1812
1813
bsd[162,3] = 1/3 ;
1814
deg[162,3] = 3 ;
1815
dsc[162,3] = 1 ;
1816
E [162,3] = [x, [1,1,0,1,0]];
1817
1818
bsd[162,4] = 1/3 ;
1819
deg[162,4] = 3 ;
1820
dsc[162,4] = 1 ;
1821
E [162,4] = [x, [1,1,0,1,3]];
1822
1823
1824
bsd[163,1] = 0 ;
1825
deg[163,1] = 3 ;
1826
dsc[163,1] = 1 ;
1827
E [163,1] = [x, [1,0,0,-2,-4]];
1828
1829
bsd[163,2] = 0 ;
1830
deg[163,2] = 3 ;
1831
dsc[163,2] = 65657 ;
1832
E [163,2] = [x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1,x,-2*x^4-5*x^3+6*x^2+13*x-3,x^2-2,2*x^4+5*x^3-7*x^2-15*x+2]];
1833
1834
bsd[163,3] = 1/3^3 ;
1835
deg[163,3] = 1 ;
1836
dsc[163,3] = 2^3*82536739 ;
1837
E [163,3] = [x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [1,x,x^5-x^4-6*x^3+5*x^2+5*x-2,x^2-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6]];
1838
1839
1840
bsd[164,1] = 1 ;
1841
deg[164,1] = 3^3 ;
1842
dsc[164,1] = 2^4*1613 ;
1843
E [164,1] = [x^4-2*x^3-10*x^2+22*x-2, [3,0,3*x,0,-2*x^3-x^2+16*x+2]];
1844
1845
1846
bsd[165,1] = 0 ;
1847
deg[165,1] = 1 ;
1848
dsc[165,1] = 2^3 ;
1849
E [165,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1]];
1850
1851
bsd[165,2] = 1/3 ;
1852
deg[165,2] = 1 ;
1853
dsc[165,2] = 2^2*3 ;
1854
E [165,2] = [x^2-3, [1,x,1,1,-1]];
1855
1856
bsd[165,3] = 1 ;
1857
deg[165,3] = 5 ;
1858
dsc[165,3] = 2^4*37 ;
1859
E [165,3] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,1]];
1860
1861
1862
bsd[166,1] = 0 ;
1863
deg[166,1] = 1 ;
1864
dsc[166,1] = 1 ;
1865
E [166,1] = [x, [1,-1,-1,1,-2]];
1866
1867
bsd[166,2] = 1 ;
1868
deg[166,2] = 131 ;
1869
dsc[166,2] = 5 ;
1870
E [166,2] = [x^2+2*x-4, [2,-2,2*x,2,x+4]];
1871
1872
bsd[166,3] = 1/7 ;
1873
deg[166,3] = 1 ;
1874
dsc[166,3] = 229 ;
1875
E [166,3] = [x^3-x^2-6*x+4, [2,2,2*x,2,-x^2-x+4]];
1876
1877
1878
bsd[167,1] = 0 ;
1879
deg[167,1] = 1 ;
1880
dsc[167,1] = 5 ;
1881
E [167,1] = [x^2+x-1, [1,x,-x-1,-x-1,-1]];
1882
1883
bsd[167,2] = 1/83 ;
1884
deg[167,2] = 1 ;
1885
dsc[167,2] = 8269*5103536431379173 ;
1886
E [167,2] = [x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [933,933*x,544*x^11+157*x^10-10187*x^9-3189*x^8+68788*x^7+22911*x^6-200347*x^5-70068*x^4+230499*x^3+80543*x^2-60181*x-3441,933*x^2-1866,-779*x^11+631*x^10+13207*x^9-8871*x^8-78341*x^7+37635*x^6+193997*x^5-40677*x^4-192843*x^3-12787*x^2+42281*x+3612]];
1887
1888
1889
bsd[168,1] = 1 ;
1890
deg[168,1] = 3 ;
1891
dsc[168,1] = 1 ;
1892
E [168,1] = [x, [1,0,-1,0,2]];
1893
1894
bsd[168,2] = 1 ;
1895
deg[168,2] = 1 ;
1896
dsc[168,2] = 1 ;
1897
E [168,2] = [x, [1,0,1,0,2]];
1898
1899
1900
bsd[169,1] = 1 ;
1901
deg[169,1] = 13 ;
1902
dsc[169,1] = 2^2*3 ;
1903
E [169,1] = [x^2-3, [1,x,2,1,-x]];
1904
1905
bsd[169,2] = 0 ;
1906
deg[169,2] = 1 ;
1907
dsc[169,2] = 7^2 ;
1908
E [169,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+2*x-2]];
1909
1910
bsd[169,3] = 1/7 ;
1911
deg[169,3] = 13 ;
1912
dsc[169,3] = 7^2 ;
1913
E [169,3] = [x^3-2*x^2-x+1, [1,x,-x^2+2*x,x^2-2,-x^2+2*x+2]];
1914
1915
1916
bsd[170,1] = 1/3 ;
1917
deg[170,1] = 5 ;
1918
dsc[170,1] = 1 ;
1919
E [170,1] = [x, [1,-1,-2,1,-1]];
1920
1921
bsd[170,2] = 0 ;
1922
deg[170,2] = 1 ;
1923
dsc[170,2] = 1 ;
1924
E [170,2] = [x, [1,-1,-2,1,1]];
1925
1926
bsd[170,3] = 1/3 ;
1927
deg[170,3] = 3 ;
1928
dsc[170,3] = 1 ;
1929
E [170,3] = [x, [1,-1,1,1,1]];
1930
1931
bsd[170,4] = 1 ;
1932
deg[170,4] = 5 ;
1933
dsc[170,4] = 1 ;
1934
E [170,4] = [x, [1,-1,3,1,-1]];
1935
1936
bsd[170,5] = 7/3 ;
1937
deg[170,5] = 3*7 ;
1938
dsc[170,5] = 1 ;
1939
E [170,5] = [x, [1,1,1,1,-1]];
1940
1941
bsd[170,6] = 1 ;
1942
deg[170,6] = 1 ;
1943
dsc[170,6] = 17 ;
1944
E [170,6] = [x^2+x-4, [1,1,x,1,1]];
1945
1946
1947
bsd[171,1] = 1 ;
1948
deg[171,1] = 3 ;
1949
dsc[171,1] = 1 ;
1950
E [171,1] = [x, [1,-1,0,-1,2]];
1951
1952
bsd[171,2] = 0 ;
1953
deg[171,2] = 1 ;
1954
dsc[171,2] = 1 ;
1955
E [171,2] = [x, [1,0,0,-2,-3]];
1956
1957
bsd[171,3] = 1 ;
1958
deg[171,3] = 3 ;
1959
dsc[171,3] = 1 ;
1960
E [171,3] = [x, [1,2,0,2,-1]];
1961
1962
bsd[171,4] = 1 ;
1963
deg[171,4] = 1 ;
1964
dsc[171,4] = 1 ;
1965
E [171,4] = [x, [1,2,0,2,3]];
1966
1967
bsd[171,5] = 1/3 ;
1968
deg[171,5] = 3 ;
1969
dsc[171,5] = 2^4*3^3*11^2 ;
1970
E [171,5] = [x^4-9*x^2+12, [2,2*x,0,2*x^2-4,-x^3+5*x]];
1971
1972
1973
bsd[172,1] = 0 ;
1974
deg[172,1] = 3 ;
1975
dsc[172,1] = 1 ;
1976
E [172,1] = [x, [1,0,-2,0,0]];
1977
1978
bsd[172,2] = 1 ;
1979
deg[172,2] = 3^2 ;
1980
dsc[172,2] = 2^3 ;
1981
E [172,2] = [x^2-4*x+2, [1,0,x,0,-x+2]];
1982
1983
1984
bsd[173,1] = 0 ;
1985
deg[173,1] = 1 ;
1986
dsc[173,1] = 5^2*29 ;
1987
E [173,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^2-x,x^2-2,x^2-2]];
1988
1989
bsd[173,2] = 1/43 ;
1990
deg[173,2] = 1 ;
1991
dsc[173,2] = 2^6*7*5608385124289 ;
1992
E [173,2] = [x^10-x^9-16*x^8+16*x^7+85*x^6-80*x^5-175*x^4+136*x^3+138*x^2-71*x-25, [116,116*x,9*x^9-22*x^8-138*x^7+324*x^6+645*x^5-1439*x^4-940*x^3+1860*x^2+392*x-303,116*x^2-232,-14*x^9+60*x^8+176*x^7-852*x^6-462*x^5+3566*x^4-716*x^3-4092*x^2+1504*x+742]];
1993
1994
1995
bsd[174,1] = 1 ;
1996
deg[174,1] = 13 ;
1997
dsc[174,1] = 1 ;
1998
E [174,1] = [x, [1,-1,-1,1,3]];
1999
2000
bsd[174,2] = 7/3 ;
2001
deg[174,2] = 5*7*11 ;
2002
dsc[174,2] = 1 ;
2003
E [174,2] = [x, [1,-1,1,1,-3]];
2004
2005
bsd[174,3] = 1 ;
2006
deg[174,3] = 5 ;
2007
dsc[174,3] = 1 ;
2008
E [174,3] = [x, [1,-1,1,1,2]];
2009
2010
bsd[174,4] = 1 ;
2011
deg[174,4] = 3 ;
2012
dsc[174,4] = 1 ;
2013
E [174,4] = [x, [1,1,-1,1,1]];
2014
2015
bsd[174,5] = 1 ;
2016
deg[174,5] = 7 ;
2017
dsc[174,5] = 1 ;
2018
E [174,5] = [x, [1,1,1,1,-1]];
2019
2020
2021
bsd[175,1] = 0 ;
2022
deg[175,1] = 1 ;
2023
dsc[175,1] = 1 ;
2024
E [175,1] = [x, [1,-2,-1,2,0]];
2025
2026
bsd[175,2] = 0 ;
2027
deg[175,2] = 1 ;
2028
dsc[175,2] = 1 ;
2029
E [175,2] = [x, [1,0,-1,-2,0]];
2030
2031
bsd[175,3] = 1 ;
2032
deg[175,3] = 5 ;
2033
dsc[175,3] = 1 ;
2034
E [175,3] = [x, [1,2,1,2,0]];
2035
2036
bsd[175,4] = 1 ;
2037
deg[175,4] = 3^2*5 ;
2038
dsc[175,4] = 5 ;
2039
E [175,4] = [x^2+x-1, [1,x,2*x+2,-x-1,0]];
2040
2041
bsd[175,5] = 1/5 ;
2042
deg[175,5] = 3^2 ;
2043
dsc[175,5] = 5 ;
2044
E [175,5] = [x^2-x-1, [1,x,2*x-2,x-1,0]];
2045
2046
bsd[175,6] = 1 ;
2047
deg[175,6] = 3^2 ;
2048
dsc[175,6] = 17 ;
2049
E [175,6] = [x^2-x-4, [1,x,-x+1,x+2,0]];
2050
2051
2052
bsd[176,1] = 0 ;
2053
deg[176,1] = 1 ;
2054
dsc[176,1] = 1 ;
2055
E [176,1] = [x, [1,0,-1,0,-3]];
2056
2057
bsd[176,2] = 1 ;
2058
deg[176,2] = 1 ;
2059
dsc[176,2] = 1 ;
2060
E [176,2] = [x, [1,0,1,0,1]];
2061
2062
bsd[176,3] = 1 ;
2063
deg[176,3] = 1 ;
2064
dsc[176,3] = 1 ;
2065
E [176,3] = [x, [1,0,3,0,-3]];
2066
2067
bsd[176,4] = 1 ;
2068
deg[176,4] = 1 ;
2069
dsc[176,4] = 17 ;
2070
E [176,4] = [x^2+x-4, [1,0,x,0,x+2]];
2071
2072
2073
bsd[177,1] = 0 ;
2074
deg[177,1] = 31 ;
2075
dsc[177,1] = 5 ;
2076
E [177,1] = [x^2+3*x+1, [1,x,1,-3*x-3,-3]];
2077
2078
bsd[177,2] = 0 ;
2079
deg[177,2] = 1 ;
2080
dsc[177,2] = 5 ;
2081
E [177,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-1]];
2082
2083
bsd[177,3] = 1/5 ;
2084
deg[177,3] = 1 ;
2085
dsc[177,3] = 5 ;
2086
E [177,3] = [x^2-x-1, [1,x,1,x-1,1]];
2087
2088
bsd[177,4] = 1 ;
2089
deg[177,4] = 229 ;
2090
dsc[177,4] = 229 ;
2091
E [177,4] = [x^3-4*x-1, [1,x,-1,x^2-2,-x^2+x+2]];
2092
2093
2094
bsd[178,1] = 1 ;
2095
deg[178,1] = 7 ;
2096
dsc[178,1] = 1 ;
2097
E [178,1] = [x, [1,-1,2,1,2]];
2098
2099
bsd[178,2] = 1/3 ;
2100
deg[178,2] = 1 ;
2101
dsc[178,2] = 1 ;
2102
E [178,2] = [x, [1,1,1,1,3]];
2103
2104
bsd[178,3] = 0 ;
2105
deg[178,3] = 1 ;
2106
dsc[178,3] = 2^3 ;
2107
E [178,3] = [x^2+2*x-1, [1,-1,x,1,-2*x-3]];
2108
2109
bsd[178,4] = 1/5 ;
2110
deg[178,4] = 1 ;
2111
dsc[178,4] = 2^3*71 ;
2112
E [178,4] = [x^3-x^2-8*x+4, [2,2,2*x,2,-2*x]];
2113
2114
2115
bsd[179,1] = 1 ;
2116
deg[179,1] = 3^2 ;
2117
dsc[179,1] = 1 ;
2118
E [179,1] = [x, [1,2,0,2,3]];
2119
2120
bsd[179,2] = 0 ;
2121
deg[179,2] = 1 ;
2122
dsc[179,2] = 7^2 ;
2123
E [179,2] = [x^3+x^2-2*x-1, [1,x,-x-1,x^2-2,-x^2-x]];
2124
2125
bsd[179,3] = 1/89 ;
2126
deg[179,3] = 3^2 ;
2127
dsc[179,3] = 2^6*313*137707*536747147 ;
2128
E [179,3] = [x^11+3*x^10-14*x^9-45*x^8+59*x^7+225*x^6-58*x^5-427*x^4-76*x^3+240*x^2+56*x-16, [136,136*x,-42*x^10-68*x^9+690*x^8+942*x^7-3876*x^6-4112*x^5+8482*x^4+5986*x^3-5790*x^2-1244*x+360,136*x^2-272,-3*x^10-17*x^9+42*x^8+247*x^7-221*x^6-1151*x^5+618*x^4+1841*x^3-892*x^2-628*x+424]];
2129
2130
2131
bsd[180,1] = 1 ;
2132
deg[180,1] = 3 ;
2133
dsc[180,1] = 1 ;
2134
E [180,1] = [x, [1,0,0,0,1]];
2135
2136
2137
bsd[181,1] = 0 ;
2138
deg[181,1] = 1 ;
2139
dsc[181,1] = 61*397 ;
2140
E [181,1] = [x^5+3*x^4-x^3-7*x^2-2*x+1, [1,x,-x^4-2*x^3+2*x^2+3*x-1,x^2-2,2*x^4+5*x^3-4*x^2-11*x-1]];
2141
2142
bsd[181,2] = 1/3*5 ;
2143
deg[181,2] = 1 ;
2144
dsc[181,2] = 2^6*5^2*7*595051637 ;
2145
E [181,2] = [x^9-3*x^8-9*x^7+29*x^6+23*x^5-84*x^4-23*x^3+89*x^2+8*x-27, [4,4*x,2*x^8-8*x^7-10*x^6+64*x^5-14*x^4-118*x^3+48*x^2+50*x-14