Open in CoCalc
1
\\ ap_s2_401-500.gp
2
\\ This is a table of eigenforms for the action of
3
\\ the Hecke operators on S_2^{new}(Gamma_0(N)).
4
\\ William Stein ([email protected]), October, 1998.
5
\\ 401<=N<=500
6
\\ E=matrix(500,?,i,j,0);
7
\\ E[N,ith eigenform]=[[a_2,...,a_97], f(x)]
8
\\ where the a_i are defined over Q[x]/f(x).
9
10
\\ missing: only goes through 402.
11
12
E[401,1]=[[x,-2*x^11-4*x^10+21*x^9+43*x^8-66*x^7-151*x^6+63*x^5+211*x^4+5*x^3-114*x^2-17*x+13,11/2*x^11+23/2*x^10-60*x^9-124*x^8+417/2*x^7+863/2*x^6-274*x^5-1151/2*x^4+231/2*x^3+265*x^2+25/2*x-23,-2*x^11-4*x^10+23*x^9+43*x^8-89*x^7-147*x^6+145*x^5+183*x^4-94*x^3-64*x^2+5*x+1,-11/2*x^11-11/2*x^10+70*x^9+53*x^8-629/2*x^7-289/2*x^6+630*x^5+151/2*x^4-1093/2*x^3+101*x^2+253/2*x-36,11/2*x^11+15/2*x^10-65*x^9-76*x^8+521/2*x^7+473/2*x^6-446*x^5-487/2*x^4+643/2*x^3+41*x^2-111/2*x+7,1/2*x^11-9/2*x^10-12*x^9+54*x^8+171/2*x^7-435/2*x^6-239*x^5+733/2*x^4+521/2*x^3-251*x^2-167/2*x+39,13/2*x^11+13/2*x^10-84*x^9-66*x^8+767/2*x^7+409/2*x^6-773*x^5-379/2*x^4+1313/2*x^3-27*x^2-283/2*x+26,-5*x^11-10*x^10+54*x^9+107*x^8-183*x^7-369*x^6+226*x^5+487*x^4-80*x^3-220*x^2-13*x+13,-3*x^11-13*x^10+24*x^9+149*x^8-23*x^7-571*x^6-150*x^5+899*x^4+297*x^3-551*x^2-129*x+71,3*x^11+10*x^10-28*x^9-110*x^8+67*x^7+393*x^6-7*x^5-552*x^4-90*x^3+289*x^2+58*x-37,-13/2*x^11-13/2*x^10+84*x^9+62*x^8-777/2*x^7-325/2*x^6+817*x^5+115/2*x^4-1521/2*x^3+160*x^2+399/2*x-50,9/2*x^11-3/2*x^10-68*x^9+27*x^8+745/2*x^7-325/2*x^6-910*x^5+839/2*x^4+1879/2*x^3-432*x^2-543/2*x+85,-15/2*x^11-37/2*x^10+78*x^9+202*x^8-489/2*x^7-1435/2*x^6+240*x^5+1999/2*x^4+21/2*x^3-511*x^2-157/2*x+53,-x^11+4*x^10+21*x^9-51*x^8-147*x^7+227*x^6+428*x^5-441*x^4-502*x^3+352*x^2+166*x-55,x^11+9*x^10-4*x^9-103*x^8-29*x^7+387*x^6+149*x^5-583*x^4-180*x^3+338*x^2+57*x-45,3/2*x^11+29/2*x^10+4*x^9-165*x^8-313/2*x^7+1257/2*x^6+626*x^5-2011/2*x^4-1577/2*x^3+671*x^2+523/2*x-103,-9/2*x^11-3/2*x^10+61*x^9+12*x^8-583/2*x^7-43/2*x^6+604*x^5-57/2*x^4-1015/2*x^3+86*x^2+207/2*x-23,5*x^11+13*x^10-55*x^9-145*x^8+197*x^7+527*x^6-280*x^5-739*x^4+145*x^3+349*x^2+2*x-27,21/2*x^11+43/2*x^10-116*x^9-234*x^8+823/2*x^7+1661/2*x^6-555*x^5-2309/2*x^4+459/2*x^3+578*x^2+71/2*x-58,14*x^11+28*x^10-154*x^9-302*x^8+542*x^7+1055*x^6-724*x^5-1425*x^4+302*x^3+682*x^2+48*x-68,-8*x^11-17*x^10+89*x^9+186*x^8-321*x^7-663*x^6+449*x^5+920*x^4-203*x^3-448*x^2-24*x+35,-3/2*x^11+1/2*x^10+18*x^9-9*x^8-139/2*x^7+89/2*x^6+101*x^5-141/2*x^4-91/2*x^3+15*x^2+7/2*x+9,1/2*x^11-11/2*x^10-20*x^9+65*x^8+351/2*x^7-537/2*x^6-556*x^5+1011/2*x^4+1311/2*x^3-437*x^2-415/2*x+86,-11/2*x^11-21/2*x^10+61*x^9+109*x^8-447/2*x^7-703/2*x^6+351*x^5+789/2*x^4-523/2*x^3-113*x^2+115/2*x+4], x^12+3*x^11-10*x^10-34*x^9+29*x^8+129*x^7-24*x^6-203*x^5+x^4+130*x^3-5*x^2-22*x+4];
13
E[401,2]=[[x,-18286877149/2056085485264*x^20-11127199047/2056085485264*x^19+83946583113/257010685658*x^18+82268698561/514021371316*x^17-10577086239965/2056085485264*x^16-4006759400165/2056085485264*x^15+5820872970774/128505342829*x^14+26143714096043/2056085485264*x^13-31289587591503/128505342829*x^12-100786701349185/2056085485264*x^11+1682873453689943/2056085485264*x^10+122664373913815/1028042742632*x^9-3480210083621745/2056085485264*x^8-413112998448921/2056085485264*x^7+2090208291142399/1028042742632*x^6+521232062879477/2056085485264*x^5-2588114268141401/2056085485264*x^4-216362373657685/1028042742632*x^3+634884906799859/2056085485264*x^2+70645897189647/1028042742632*x-3293700981999/514021371316,-722413535/128505342829*x^20+4850669160/128505342829*x^19+17729132132/128505342829*x^18-616176543847/514021371316*x^17-545133209029/514021371316*x^16+4061635213501/257010685658*x^15-81942846175/257010685658*x^14-28814567024775/257010685658*x^13+6461969206283/128505342829*x^12+59717775138331/128505342829*x^11-160937518187779/514021371316*x^10-294890352574975/257010685658*x^9+459977117780719/514021371316*x^8+853299070638225/514021371316*x^7-673509990918971/514021371316*x^6-695729399878955/514021371316*x^5+119791311761006/128505342829*x^4+302525984112977/514021371316*x^3-68216128320123/257010685658*x^2-28194703453239/257010685658*x+1197867446729/128505342829,11788227381/1028042742632*x^20-17556105935/1028042742632*x^19-175917004357/514021371316*x^18+277765645839/514021371316*x^17+4221110609895/1028042742632*x^16-7240673316675/1028042742632*x^15-3198938144554/128505342829*x^14+50222989912785/1028042742632*x^13+39080024046237/514021371316*x^12-200432877759707/1028042742632*x^11-80842481868219/1028042742632*x^10+116739845694491/257010685658*x^9-158230419832287/1028042742632*x^8-623823499506267/1028042742632*x^7+63600503938346/128505342829*x^6+471363605727771/1028042742632*x^5-464992827043603/1028042742632*x^4-26823439523891/128505342829*x^3+139429229628541/1028042742632*x^2+26480698676661/514021371316*x-286007594119/257010685658,-65872818475/1028042742632*x^20+24504892221/1028042742632*x^19+275445436750/128505342829*x^18-94128553210/128505342829*x^17-31019594825691/1028042742632*x^16+9424250012195/1028042742632*x^15+29901763784562/128505342829*x^14-61663707257231/1028042742632*x^13-551547004674839/514021371316*x^12+225232260705723/1028042742632*x^11+3120061386536981/1028042742632*x^10-112655572100787/257010685658*x^9-5350818255511181/1028042742632*x^8+422995988582409/1028042742632*x^7+1328612115857249/257010685658*x^6-25831277280967/1028042742632*x^5-2767570136776731/1028042742632*x^4-58048134220281/257010685658*x^3+593287325531071/1028042742632*x^2+53353117310705/514021371316*x-2788481204299/257010685658,5922142461/514021371316*x^20-4388103687/257010685658*x^19-190854757593/514021371316*x^18+282772054063/514021371316*x^17+1293881759277/257010685658*x^16-3745952572257/514021371316*x^15-9667642818631/257010685658*x^14+26267034142439/514021371316*x^13+88028827271723/514021371316*x^12-104417140872075/514021371316*x^11-256484825359039/514021371316*x^10+232486914297775/514021371316*x^9+489257916738043/514021371316*x^8-261224184161481/514021371316*x^7-601810751729847/514021371316*x^6+96962568271683/514021371316*x^5+430021502626571/514021371316*x^4+37497517466363/514021371316*x^3-129911109286611/514021371316*x^2-5918147205798/128505342829*x+1164757232946/128505342829,9354331725/514021371316*x^20-14630632579/257010685658*x^19-310472433251/514021371316*x^18+924337350471/514021371316*x^17+2174339827069/257010685658*x^16-12071288087343/514021371316*x^15-16829994603905/257010685658*x^14+84138714162195/514021371316*x^13+158852143543987/514021371316*x^12-336903298269333/514021371316*x^11-476779687011101/514021371316*x^10+774501168309915/514021371316*x^9+918273560798407/514021371316*x^8-955172014800243/514021371316*x^7-1100406271074901/514021371316*x^6+514435743408067/514021371316*x^5+736483474702639/514021371316*x^4-25844651336335/514021371316*x^3-199670719820553/514021371316*x^2-10578582540277/128505342829*x+732906735340/128505342829,19560055923/2056085485264*x^20+83428578419/2056085485264*x^19-44235265769/128505342829*x^18-666022272627/514021371316*x^17+10907735035495/2056085485264*x^16+35393334158353/2056085485264*x^15-23255725275895/514021371316*x^14-253344758111913/2056085485264*x^13+238602075943719/1028042742632*x^12+1057357625768757/2056085485264*x^11-1500286864381305/2056085485264*x^10-650532718677195/514021371316*x^9+2826906311914709/2056085485264*x^8+3646499843568451/2056085485264*x^7-748824329814221/514021371316*x^6-2681091340987393/2056085485264*x^5+1576536932169655/2056085485264*x^4+222169433006333/514021371316*x^3-335443937810391/2056085485264*x^2-44606561166255/1028042742632*x+4645881872331/514021371316,41890165043/2056085485264*x^20-117493570401/2056085485264*x^19-379820873039/514021371316*x^18+234914130250/128505342829*x^17+23531499422459/2056085485264*x^16-49972006570527/2056085485264*x^15-50909461062953/514021371316*x^14+357104005194783/2056085485264*x^13+540493577391165/1028042742632*x^12-1479551537157843/2056085485264*x^11-3629795412271505/2056085485264*x^10+445143419319317/257010685658*x^9+7638436761590461/2056085485264*x^8-4659598358491357/2056085485264*x^7-598715874427860/128505342829*x^6+2656081010713183/2056085485264*x^5+6397840212256703/2056085485264*x^4-141713838695/128505342829*x^3-1742131333927103/2056085485264*x^2-172394469464539/1028042742632*x+10917703709407/514021371316,33237272127/2056085485264*x^20+12515858277/2056085485264*x^19-523071738485/1028042742632*x^18-247005367077/1028042742632*x^17+13502207952929/2056085485264*x^16+8119184198997/2056085485264*x^15-22843759265753/514021371316*x^14-71738574102713/2056085485264*x^13+85145284094723/514021371316*x^12+366951354705153/2056085485264*x^11-646173453920921/2056085485264*x^10-545065981708513/1028042742632*x^9+357080894122149/2056085485264*x^8+1786004506344087/2056085485264*x^7+318288949584957/1028042742632*x^6-1404655951930429/2056085485264*x^5-948906923145845/2056085485264*x^4+166279465202455/1028042742632*x^3+308014940862725/2056085485264*x^2+21392607749449/1028042742632*x+1772840173967/514021371316,-9279772743/1028042742632*x^20+34558546045/1028042742632*x^19+161233419919/514021371316*x^18-277999796259/257010685658*x^17-4807633299301/1028042742632*x^16+14818488721359/1028042742632*x^15+5058241944549/128505342829*x^14-105562595883047/1028042742632*x^13-106365525442013/514021371316*x^12+432106560242233/1028042742632*x^11+725775751307935/1028042742632*x^10-505249343259197/514021371316*x^9-1598675703214837/1028042742632*x^8+1235692800963433/1028042742632*x^7+269851349872658/128505342829*x^6-564658722354737/1028042742632*x^5-1587503694005337/1028042742632*x^4-69526365361707/514021371316*x^3+480574859157299/1028042742632*x^2+61585977613059/514021371316*x-2818881017317/257010685658,48972673319/1028042742632*x^20+64766312769/1028042742632*x^19-857503239253/514021371316*x^18-1062063046557/514021371316*x^17+25481381831101/1028042742632*x^16+29222577001601/1028042742632*x^15-26164127151164/128505342829*x^14-219054802866929/1028042742632*x^13+129783040936358/128505342829*x^12+972784954543949/1028042742632*x^11-3190696828517025/1028042742632*x^10-1304870375013637/514021371316*x^9+6000704847254093/1028042742632*x^8+4152097043677227/1028042742632*x^7-3288274030738325/514021371316*x^6-3726805797057009/1028042742632*x^5+3776590249450851/1028042742632*x^4+855525292345967/514021371316*x^3-890920662328779/1028042742632*x^2-154017421800297/514021371316*x+6288346886539/257010685658,37325472637/1028042742632*x^20+12825374557/1028042742632*x^19-608160042725/514021371316*x^18-243165126471/514021371316*x^17+16528067695289/1028042742632*x^16+7807226458639/1028042742632*x^15-30351293977575/257010685658*x^14-68564760782791/1028042742632*x^13+261295056490185/514021371316*x^12+355781625437289/1028042742632*x^11-1337096473078063/1028042742632*x^10-551775428436749/514021371316*x^9+1972832757014313/1028042742632*x^8+1987282197292455/1028042742632*x^7-777076894323675/514021371316*x^6-1934293485590575/1028042742632*x^5+558140880093139/1028042742632*x^4+109200450201144/128505342829*x^3-62288853855805/1028042742632*x^2-62485112960723/514021371316*x+23539930355/257010685658,16908979957/514021371316*x^20+18061792925/514021371316*x^19-154374220852/128505342829*x^18-147766322642/128505342829*x^17+9615845635679/514021371316*x^16+8103285664051/514021371316*x^15-41634163050235/257010685658*x^14-60534593235891/514021371316*x^13+219211160942889/257010685658*x^12+268859815884419/514021371316*x^11-1441979883858623/514021371316*x^10-364952872535493/257010685658*x^9+2931310838761721/514021371316*x^8+1210316854429643/514021371316*x^7-878043334127517/128505342829*x^6-1205673174663947/514021371316*x^5+2232472125651381/514021371316*x^4+339867324099155/257010685658*x^3-586973791617731/514021371316*x^2-40645777311083/128505342829*x+4242369764016/128505342829,25236004213/1028042742632*x^20-9497770863/1028042742632*x^19-468896055219/514021371316*x^18+148252167633/514021371316*x^17+14867793636663/1028042742632*x^16-3784472664115/1028042742632*x^15-16397933905904/128505342829*x^14+25018627337113/1028042742632*x^13+352281270225685/514021371316*x^12-87137287736015/1028042742632*x^11-2366281939231027/1028042742632*x^10+15395215225104/128505342829*x^9+4911428588269205/1028042742632*x^8+127039549522609/1028042742632*x^7-1497366860939239/257010685658*x^6-665373078034973/1028042742632*x^5+3839609931665929/1028042742632*x^4+95385116432922/128505342829*x^3-993016393030707/1028042742632*x^2-127314619128303/514021371316*x+5402229436129/257010685658,-29060766867/514021371316*x^20-12152616647/514021371316*x^19+499188746251/257010685658*x^18+93909392449/128505342829*x^17-14542103987305/514021371316*x^16-4881748594957/514021371316*x^15+29267539205533/128505342829*x^14+34806771747865/514021371316*x^13-284584859877439/257010685658*x^12-149047208756423/514021371316*x^11+1714407394988863/514021371316*x^10+198022353762393/257010685658*x^9-3155417663812025/514021371316*x^8-660428437939619/514021371316*x^7+840768058921347/128505342829*x^6+696045964487299/514021371316*x^5-1850043490761405/514021371316*x^4-220306392119165/257010685658*x^3+410549599006347/514021371316*x^2+57999891382375/257010685658*x-2899662362620/128505342829,23453285803/1028042742632*x^20-18629915129/1028042742632*x^19-375630361521/514021371316*x^18+149172115787/257010685658*x^17+9997313519177/1028042742632*x^16-7901783973243/1028042742632*x^15-17873616021451/257010685658*x^14+56171683824331/1028042742632*x^13+148275020122645/514021371316*x^12-233924758868201/1028042742632*x^11-715655324201031/1028042742632*x^10+293970011582469/514021371316*x^9+942430367724341/1028042742632*x^8-888615327645369/1028042742632*x^7-68301367043725/128505342829*x^6+770574026209281/1028042742632*x^5+6560417670705/1028042742632*x^4-164981926862209/514021371316*x^3+72022519273013/1028042742632*x^2+21624660247067/514021371316*x-963825163719/257010685658,-126271872393/1028042742632*x^20+77944727037/1028042742632*x^19+1062956173081/257010685658*x^18-306144809108/128505342829*x^17-60488514977121/1028042742632*x^16+31535299923507/1028042742632*x^15+118584229810425/257010685658*x^14-213842131502009/1028042742632*x^13-280666829343493/128505342829*x^12+814976987500263/1028042742632*x^11+6612598011869531/1028042742632*x^10-852108017349055/514021371316*x^9-12051345972117389/1028042742632*x^8+1649344081575127/1028042742632*x^7+6533232021679063/514021371316*x^6-65561492751131/1028042742632*x^5-7662798224918813/1028042742632*x^4-484524199313779/514021371316*x^3+1901106138273759/1028042742632*x^2+216761778140197/514021371316*x-11664176592297/257010685658,58042421709/2056085485264*x^20+51202479553/2056085485264*x^19-481865913573/514021371316*x^18-104378029756/128505342829*x^17+26991256337433/2056085485264*x^16+23054963751403/2056085485264*x^15-51936080780473/514021371316*x^14-175403651510135/2056085485264*x^13+480639334285611/1028042742632*x^12+800842036601787/2056085485264*x^11-2754372018665447/2056085485264*x^10-559211189840215/514021371316*x^9+4869077319472131/2056085485264*x^8+3734773805864865/2056085485264*x^7-1282851033443049/514021371316*x^6-3489223345318091/2056085485264*x^5+2931544896645533/2056085485264*x^4+199206372935515/257010685658*x^3-679567337547933/2056085485264*x^2-134082420016729/1028042742632*x+2497214117317/514021371316,17051451781/2056085485264*x^20-123263248291/2056085485264*x^19-50126837015/514021371316*x^18+481266485353/257010685658*x^17-3515175060303/2056085485264*x^16-49460711085313/2056085485264*x^15+21744788993047/514021371316*x^14+337507607313513/2056085485264*x^13-370113205116215/1028042742632*x^12-1322275218741033/2056085485264*x^11+3267335017734193/2056085485264*x^10+188909684773520/128505342829*x^9-8022217673601385/2056085485264*x^8-4003612141609119/2056085485264*x^7+669580717950834/128505342829*x^6+3164156575672897/2056085485264*x^5-7068878104985795/2056085485264*x^4-420340983396297/514021371316*x^3+1850500757474735/2056085485264*x^2+238047581437751/1028042742632*x-12913484583715/514021371316,88916604921/2056085485264*x^20-75430993053/2056085485264*x^19-1457570764349/1028042742632*x^18+1212086215901/1028042742632*x^17+40098115755139/2056085485264*x^16-32254132964645/2056085485264*x^15-75283240600801/514021371316*x^14+229790046407833/2056085485264*x^13+336836638304257/514021371316*x^12-947337342081133/2056085485264*x^11-3683636197539307/2056085485264*x^10+1137806097104239/1028042742632*x^9+6082039612727339/2056085485264*x^8-3013857226963223/2056085485264*x^7-2895260777101365/1028042742632*x^6+1839418046134633/2056085485264*x^5+2882103783028849/2056085485264*x^4-93520174578865/1028042742632*x^3-593025569115581/2056085485264*x^2-74950183642729/1028042742632*x+2564545534541/514021371316,-35537163349/2056085485264*x^20+207681066713/2056085485264*x^19+50667636522/128505342829*x^18-414981881436/128505342829*x^17-4912574371561/2056085485264*x^16+87995586988051/2056085485264*x^15-2937285195069/257010685658*x^14-626262200490749/2056085485264*x^13+28411007137265/128505342829*x^12+2596463538887247/2056085485264*x^11-2473882151767285/2056085485264*x^10-3192667154740945/1028042742632*x^9+6660605562316827/2056085485264*x^8+9147815053182659/2056085485264*x^7-4651588391584711/1028042742632*x^6-7337911658109519/2056085485264*x^5+6221348922216527/2056085485264*x^4+1566820153001673/1028042742632*x^3-1585463721809973/2056085485264*x^2-282809769021217/1028042742632*x+12123888393897/514021371316,1404008281/514021371316*x^20+45109913879/514021371316*x^19-134432912503/514021371316*x^18-1451085392743/514021371316*x^17+847411522638/128505342829*x^16+9681201771031/257010685658*x^15-10047778023960/128505342829*x^14-138816450091711/514021371316*x^13+131929456772969/257010685658*x^12+289893137613637/257010685658*x^11-1012259593985415/514021371316*x^10-358722682351222/128505342829*x^9+566850560742834/128505342829*x^8+2063363851548959/514021371316*x^7-1414396908907279/257010685658*x^6-413619202332732/128505342829*x^5+1762579161572925/514021371316*x^4+349311399413011/257010685658*x^3-109093201841218/128505342829*x^2-59378714477847/257010685658*x+3421261345001/128505342829,45959093877/2056085485264*x^20-141490568481/2056085485264*x^19-777263307065/1028042742632*x^18+2300553016965/1028042742632*x^17+22281176841871/2056085485264*x^16-62474748859569/2056085485264*x^15-44275408614291/514021371316*x^14+459464874994245/2056085485264*x^13+214703194084495/514021371316*x^12-1986062109963137/2056085485264*x^11-2631907321005511/2056085485264*x^10+2560834289163143/1028042742632*x^9+5081937273523655/2056085485264*x^8-7627657007705315/2056085485264*x^7-2955219691090173/1028042742632*x^6+5976476269983245/2056085485264*x^5+3697616977098437/2056085485264*x^4-973271021130073/1028042742632*x^3-932809144215601/2056085485264*x^2+51371737056911/1028042742632*x+2398850277865/514021371316,39357283935/514021371316*x^20+1889557227/514021371316*x^19-1320213361461/514021371316*x^18-42194518889/514021371316*x^17+9357886477157/257010685658*x^16+197658044445/257010685658*x^15-36552747583372/128505342829*x^14-2390588252477/514021371316*x^13+172141622179771/128505342829*x^12+3057303542368/128505342829*x^11-2011038374286213/514021371316*x^10-12717755886556/128505342829*x^9+1806937100588437/257010685658*x^8+146753519563743/514021371316*x^7-1915817180621853/257010685658*x^6-66873379733519/128505342829*x^5+2181343115183373/514021371316*x^4+66577215138398/128505342829*x^3-133123138734850/128505342829*x^2-48796898750965/257010685658*x+3464874808290/128505342829], x^21-35*x^19+521*x^17+2*x^16-4305*x^15-51*x^14+21617*x^13+519*x^12-67876*x^11-2749*x^10+132085*x^9+8292*x^8-152221*x^7-14353*x^6+93934*x^5+12831*x^4-24699*x^3-4111*x^2+1058*x-44];
14
E[402,1]=[[-1,1,-3,-1,0,-4,-6,2,-9,0,5,-7,3,-1,0,9,-3,-10,1,-12,11,8,15,0,8], x-1];
15
E[402,2]=[[1,-1,2,2,-4,0,6,4,-6,8,2,-2,-10,4,-6,-6,-8,8,-1,-14,-6,-2,-12,-6,-2], x-1];
16
E[402,3]=[[-1,-1,1,-3,0,-4,2,-2,-3,0,-9,-3,3,-7,-8,-3,3,6,-1,4,11,0,9,16,0], x-1];
17
E[402,4]=[[1,-1,-x,x,4,4,-2,2*x,-x+4,-4,-x-4,x+8,x,-x-6,-2*x-6,3*x,3*x-2,-2*x-8,-1,2*x-6,3*x+8,2*x-2,-3*x+6,-2*x-10,2*x-6], x^2+x-10];
18
E[402,5]=[[-1,-1,2*x-6,x,-2,-x+2,-2*x+6,2,x+4,-5*x+14,3*x-4,-2,-2*x+4,-4*x+16,-5*x+16,2*x-2,2*x-12,x-6,1,-3*x+12,6,-3*x+12,4*x-4,-10,6*x-18], x^2-6*x+6];
19
E[402,6]=[[1,1,-x^2+4,x,2*x^2-6,x^2-3*x-4,2*x^2-2*x-6,-2,3*x,-x^2+3*x+4,-x-4,-5*x^2+2*x+12,-x^2-4*x+6,3*x^2+2*x-10,-3*x^2-x+6,-x^2+8,-3*x^2+10,x^2+3*x-4,1,-x^2-3*x+6,-3*x^2+2*x+8,x^2-5*x-10,x^2+6*x-6,-2*x^2+4*x+10,4*x^2-2*x-10], x^3-x^2-4*x+2];
20
E[402,7]=[[-1,1,2,0,4,-2,2,-4,4,-2,0,6,-2,4,12,2,0,-10,-1,-4,-6,0,-16,-6,-6], x-1];
21