Sharedwww / tables / an_s2g0new_301-400_hiprec.gpOpen in CoCalc
Author: William A. Stein
(File too big to render nicely. Download...)

\\ an_s2g0new_301-400_hiprec.gp
\\ This is a PARI readable nonnormalized basis for S_2(Gamma_0(N)) for N 
\\ in the range:  301 <= N <= 400.
\\ The number of a_n computed is always at least 500.
\\ William Stein ([email protected])

E[301,1] = [x^4+4*x^3+2*x^2-5*x-3, [1,x,-x^3-2*x^2+2*x+1,x^2-2,-x^2-2*x,2*x^3+4*x^2-4*x-3,1,x^3-4*x,3*x^3+7*x^2-6*x-8,-x^3-2*x^2,-x^3-3*x^2+x,-2*x^3-4*x^2+3*x+4,3*x^3+8*x^2-2*x-7,x,x,-4*x^3-8*x^2+5*x+7,x^3+3*x^2-3*x-6,-5*x^3-12*x^2+7*x+9,x^2+4*x-1,2*x^3+4*x^2-x-3,-x^3-2*x^2+2*x+1,x^3+3*x^2-5*x-3,x^3+5*x^2+x-9,-x^2+2*x,2*x^2+5*x-2,-4*x^3-8*x^2+8*x+9,-5*x^3-13*x^2+9*x+13,x^2-2,-4*x^3-12*x^2+2*x+9,x^2,5*x^3+13*x^2-6*x-13,6*x^3+13*x^2-5*x-12,6*x^3+13*x^2-11*x-9,-x^3-5*x^2-x+3,-x^2-2*x,2*x^3+3*x^2-4*x+1,-x^3-6*x^2-4*x+5,x^3+4*x^2-x,-5*x^3-13*x^2+8*x+11,-2*x^3-x^2+7*x+6,-x^3-2*x^2+6*x+6,2*x^3+4*x^2-4*x-3,1,x^3-x^2+3,2*x^3+7*x^2+2*x-3,x^3-x^2-4*x+3,-3*x^3-8*x^2+x+9,3*x^3+10*x^2-6*x-8,1,2*x^3+5*x^2-2*x,-4*x^3-9*x^2+7*x+9,2*x^3-7*x+2,3*x^2+5*x-9,7*x^3+19*x^2-12*x-15,-x^3+x^2+8*x+3,x^3-4*x,5*x^3+10*x^2-11*x-7,4*x^3+10*x^2-11*x-12,-x^3-3*x^2-3*x-3,x^3-2*x,-2*x^3-9*x^2-x+11,-7*x^3-16*x^2+12*x+15,3*x^3+7*x^2-6*x-8,-3*x^3-x^2+8*x+4,-5*x-6,-11*x^3-23*x^2+21*x+18,-2*x^3-7*x^2-3*x+5,-3*x^3-5*x^2+4*x+9,-x^3-3*x^2-x+6,-x^3-2*x^2,-x^3+3*x^2+12*x-6,5*x^3+16*x^2-3*x-12,-9*x^3-25*x^2+4*x+26,-2*x^3-2*x^2-3,4*x^3+8*x^2-10*x-5,-5*x^2-3*x+5,-x^3-3*x^2+x,7*x^3+18*x^2-14*x-15,-3*x^2-5*x-4,3*x^3+3*x^2-2*x,8*x^3+18*x^2-13*x-8,2*x^3+8*x^2+x-3,7*x^3+19*x^2-7*x-24,-2*x^3-4*x^2+3*x+4,3*x^3+9*x^2+4*x-3,x,11*x^3+26*x^2-18*x-21,-7*x^3-8*x^2+18*x+9,-3*x^3-8*x^2+7*x+12,-x^3-2*x^2+7*x+6,3*x^3+8*x^2-2*x-7,-7*x^3-16*x^2+6*x+21,-11*x^3-27*x^2+19*x+23,4*x^3+7*x^2-6*x-9,-2*x^3-5*x^2-3*x-3,-2*x^3-10*x^2+3*x+9,-6*x^3-17*x^2+4*x+23,x,-14*x^3-31*x^2+30*x+30,-3*x^3-10*x^2+10,-x^3+7*x+3,7*x^3+15*x^2-11*x-12,-6*x^3-15*x^2+4*x+11,5*x^2-4*x-12,x,3*x^3+5*x^2-9*x,7*x^3+21*x^2+x-21,x^3+2*x-5,x^2-5*x-10,5*x^3+10*x^2-2*x-3,3*x^3+7*x^2-2*x-7,-4*x^3-8*x^2+5*x+7,-5*x^3-15*x^2+6,-10*x^3-21*x^2+18*x+15,3*x^3+8*x^2-9,2*x^3+5*x^2+4*x-6,8*x^3+15*x^2-25*x-10,x^3-x^2-8*x-3,x^3+3*x^2-3*x-6,-4*x^3-6*x^2+5*x+3,7*x^3+20*x^2-9*x-20,-x^3+3*x^2+x-6,6*x^3+13*x^2-12*x-12,2*x^3-8*x+5,-x^3+x^2+4*x-6,-5*x^3-12*x^2+7*x+9,-x^2+x+8,-x^3-12*x^2-x+15,-x^3-2*x^2+2*x+1,-5*x^2-6*x,-5*x^2-5*x+3,9*x^3+17*x^2-15*x-15,x^2+4*x-1,x^3+x^2-5*x-6,-5*x^3-12*x^2+4*x+9,9*x^3+20*x^2-4*x-15,5*x^3+14*x^2+3*x-6,x^3+x^2+x-3,4*x^3+14*x^2-3*x-22,2*x^3+4*x^2-x-3,x^3+5*x^2-6,7*x^3+14*x^2-11*x-3,-12*x^3-29*x^2+13*x+21,-8*x^3-19*x^2+21*x+13,-2*x^3-x^2+14*x+12,11*x^3+22*x^2-19*x-27,-x^3-2*x^2+2*x+1,8*x^3+16*x^2-5*x-16,-6*x^3-13*x^2+7*x+9,-8*x^3-18*x^2+15*x+12,4*x^3+14*x^2-x-16,-7*x^3-11*x^2+7*x,6*x^3+13*x^2-8*x,x^3+3*x^2-5*x-3,2*x^3+6*x^2-4*x-9,-2*x^2+4*x-1,x^3+3*x^2-6*x-4,-3*x^3-5*x^2-4*x,7*x^3+14*x^2-17*x-6,-5*x^3-6*x^2+x-3,x^3+5*x^2+x-9,-14*x^3-29*x^2+32*x+24,-x^3-4*x^2-7*x-4,2*x^3+x^2-5*x-6,x^3+3*x^2-5*x-3,-9*x^3-21*x^2+11*x+21,-6*x^3-22*x^2-7*x+24,-x^2+2*x,3*x^3+7*x^2-6*x-6,-3*x^3-2*x^2+12*x+9,-15*x^3-38*x^2+18*x+29,x^2-2,7*x^3+26*x^2+8*x-21,-18*x^3-40*x^2+34*x+33,2*x^2+5*x-2,18*x^3+34*x^2-26*x-27,x^3+3*x^2-x,4*x^3+13*x^2-3*x-9,6*x^3+12*x^2-15*x-24,-2*x^3-5*x^2-3*x+3,-9*x^3-23*x^2+12*x+29,-4*x^3-8*x^2+8*x+9,7*x^3+16*x^2-9*x-16,10*x^3+22*x^2-6*x-27,-2*x^3+13*x+12,17*x^3+41*x^2-32*x-33,-3*x^3-8*x^2+13*x+15,-3*x^3+2*x^2+9*x-6,-5*x^3-13*x^2+9*x+13,3*x^3+x^2-13*x-6,4*x^3+15*x^2+5*x-24,-8*x^3-13*x^2+11*x+10,-9*x^3-24*x^2+16*x+38,7*x^3+16*x^2-7*x-18,-4*x^3-8*x^2+8*x+9,x^2-2,11*x^3+28*x^2-16*x-30,25*x^3+58*x^2-40*x-42,4*x^3+13*x^2-x-22,-2*x^3-4*x^2-x-9,x^3+4*x^2+x-4,4*x^3+9*x^2-2*x-3,-4*x^3-12*x^2+2*x+9,-5*x^3-7*x^2+9*x+3,-4*x^3-13*x^2-9*x,9*x^3+16*x^2-19*x-18,-7*x^3-22*x^2+6*x+30,x^3-4*x^2+2*x-4,4*x^3+8*x^2-19*x-9,x^2,-5*x^3-17*x^2-4*x+8,-7*x^3-21*x^2+5*x+27,10*x^3+21*x^2-25*x-12,-7*x^3-13*x^2+14*x+21,-x^2-2*x,-18*x^3-38*x^2+24*x+33,5*x^3+13*x^2-6*x-13,x^3-5*x^2-10*x,10*x^3+29*x^2-13*x-28,-8*x^3-14*x^2+6*x+9,2*x^3-3*x^2-17*x+3,-5*x^3-8*x^2+8*x+9,-6*x^3-16*x^2+19*x+32,6*x^3+13*x^2-5*x-12,-15*x^3-40*x^2+15*x+31,5*x^3+10*x^2-19*x-15,-x^3-11*x^2-18*x+9,9*x^3+18*x^2-13*x-16,13*x^2+21*x-13,-4*x^3-6*x^2+6*x+9,6*x^3+13*x^2-11*x-9,-11*x^3-20*x^2+26*x+30,4*x^3+8*x^2+x+9,-17*x^3-41*x^2+30*x+24,x^3+x+6,-3*x^3-4*x^2+8*x+9,6*x^3+12*x^2-9*x-7,-x^3-5*x^2-x+3,-2*x^3-6*x^2+x+9,8*x^3+13*x^2-13*x-12,3*x^3-2*x^2-11*x+23,-8*x^3-23*x^2+15*x+21,-11*x^3-21*x^2+23*x+4,11*x^3+21*x^2-9*x-25,-x^2-2*x,-11*x^3-24*x^2+18*x+18,-11*x^3-24*x^2+23*x+31,6*x^3+20*x^2-9*x-24,-10*x^3-27*x^2+15*x+27,5*x^3+6*x^2-11*x-3,7*x^3+13*x^2-25*x-21,2*x^3+3*x^2-4*x+1,2*x^3-x^2-6*x+9,-x^3+x^2+8*x,-x^3-5*x^2-x+3,-2*x^3+3*x^2-6*x-11,7*x^3+11*x^2-27*x-12,2*x^3+4*x^2-4*x-3,-x^3-6*x^2-4*x+5,-5*x^3-6*x^2+10*x+12,-19*x^3-37*x^2+52*x+30,-5*x^3-5*x^2+3*x,-8*x^3-20*x^2+15*x+27,3*x^3+13*x^2-12*x-9,x^3+5*x^2+3*x-9,x^3+4*x^2-x,10*x^3+23*x^2-18*x-21,x^3+7*x^2+5*x-7,4*x^3+16*x^2+6*x,8*x^3+14*x^2-16*x-15,8*x^3+22*x^2-16,-10*x^3-12*x^2+22*x+9,-5*x^3-13*x^2+8*x+11,-6*x^3-7*x^2+19*x+15,5*x^3+7*x^2-23*x-9,-x^3+5*x^2+4*x-9,5*x^3+8*x^2-x+11,-2*x^3-11*x^2-2*x+12,20*x^3+42*x^2-47*x-25,-2*x^3-x^2+7*x+6,17*x^3+45*x^2-16*x-51,x^3-2*x^2-x+3,-7*x^3-19*x^2+4*x+2,-12*x^3-31*x^2+8*x+33,x^3+4*x^2-x,19*x^3+37*x^2-39*x-36,-x^3-2*x^2+6*x+6,3*x^3+5*x^2-21*x,-x^3+7*x-2,7*x^3+18*x^2+2*x-6,5*x^3+16*x^2-5*x-19,-4*x^3+9*x^2+20*x-19,-5*x^3-3*x^2+24*x+6,2*x^3+4*x^2-4*x-3,3*x^3+12*x^2+14*x+3,-12*x^3-17*x^2+24*x+30,24*x^3+59*x^2-48*x-51,11*x^3+19*x^2-21*x-18,-7*x^3-27*x^2-x+36,6*x^3+15*x^2-8*x-14,1,-2*x^3-9*x^2+4*x+12,3*x^3+7*x^2-8*x-6,17*x^3+31*x^2-29*x-31,-5*x^3-9*x^2+9*x+15,-11*x^3-20*x^2+30*x+18,13*x+17,x^3-x^2+3,9*x^3+24*x^2-15*x-19,-2*x^3-8*x^2+x+6,3*x^3+11*x^2+x-18,-16*x^3-32*x^2+27*x+30,4*x^3+14*x^2-5*x-31,-x^3-8*x^2+x+3,2*x^3+7*x^2+2*x-3,7*x^3+8*x^2-5*x-1,-14*x^3-41*x^2+7*x+36,-14*x^3-31*x^2+29*x+21,17*x^3+47*x^2-17*x-30,8*x^3+5*x^2-24*x-15,-5*x^3-17*x^2+3*x+18,x^3-x^2-4*x+3,-6*x^3-22*x^2-3*x+15,11*x^3+24*x^2-20*x-26,-10*x^3-24*x^2+22*x+35,-5*x^2-9*x-3,-4*x^3-8*x^2+7*x+11,-11*x^3-25*x^2+2*x+12,-3*x^3-8*x^2+x+9,-x^3-7*x^2+2*x+3,-4*x^3-6*x^2+18*x-1,x^3-9*x^2-10*x+21,2*x^3+13*x^2+13*x-10,2*x^3+5*x^2-6*x-18,x^3+5*x^2+11*x+9,3*x^3+10*x^2-6*x-8,9*x^3+26*x^2+4*x-25,-5*x^3-12*x^2+9*x+9,14*x^3+33*x^2-23*x-24,4*x^3-14*x-3,-21*x^3-50*x^2+33*x+42,22*x^3+48*x^2-46*x-45,1,x^3-4*x,x^3-x^2-4*x+3,-2*x^3-6*x^2+14*x+21,2*x^3+16*x^2+10*x-27,10*x^3+18*x^2-21*x-12,-6*x^3-23*x^2-18*x+17,2*x^3+5*x^2-2*x,-21*x^3-41*x^2+49*x+26,-24*x^3-46*x^2+27*x+36,2*x^3+x^2-7*x+18,-x^3-3*x^2+5*x+3,-3*x^2-10*x-15,3*x^3+5*x^2-3*x-12,-4*x^3-9*x^2+7*x+9,-12*x^3-27*x^2+6*x+18,8*x^3+18*x^2+x,5*x^3+5*x^2-21*x-18,4*x^3+12*x^2-3*x-15,13*x^3+30*x^2-16*x-27,-22*x^3-51*x^2+38*x+43,2*x^3-7*x+2,-3*x^2+10*x+21,-12*x^3-23*x^2+19*x+21,3*x^3-11*x+5,-4*x^3+6*x^2+11*x-12,-13*x^3-32*x^2+13*x+12,8*x^3+17*x^2+2*x-6,3*x^2+5*x-9,-5*x^3-12*x^2+14*x+5,-8*x^3-19*x^2+16*x+20,4*x^3+19*x^2-9,2*x^3+5*x^2-7*x,6*x^3+x^2-9*x+9,-13*x^3-28*x^2+18*x+3,7*x^3+19*x^2-12*x-15,-7*x^3-22*x^2+3*x+2,-7*x^3-9*x^2+15*x+15,-2*x^3-4*x^2+5*x-1,-x^3-3*x^2-4*x+12,5*x^3+10*x^2-22*x-27,23*x^3+47*x^2-36*x-42,-x^3+x^2+8*x+3,12*x^3+34*x^2-7*x-27,3*x^3+7*x^2-6*x-8,13*x^2+9*x-25,-7*x^3-13*x^2+18*x+12,8*x^3+16*x^2-11*x-12,-10*x^3-27*x^2+8*x+39,x^3-4*x,7*x^3+14*x^2-9*x-12,-16*x^3-38*x^2+25*x+33,-x^3+8*x^2+23*x+9,-14*x^3-28*x^2+23*x+15,-3*x^3-3*x^2+10*x-28,-3*x^3-9*x^2-2*x+12,5*x^3+10*x^2-11*x-7,10*x^3+23*x^2-19*x-26,-7*x^3-23*x^2+10*x+33,-x^2+x+3,9*x^3+17*x^2-25*x+1,-5*x^3-10*x^2+3*x+6,x^3-2*x^2-18*x-6,4*x^3+10*x^2-11*x-12,11*x^2+15*x-3,-x^3-11*x^2+9,-10*x^3-15*x^2+21*x-4,3*x^3-x^2-20*x-12,-4*x^3-13*x^2+4*x+9,-8*x^3-7*x^2+19*x+5,-x^3-3*x^2-3*x-3,6*x^3+20*x^2-5*x-21,3*x^3+13*x^2+2*x-15,-8*x^3-10*x^2+9*x+27,-8*x^3-20*x^2+10*x+23,-8*x^3-27*x^2+11*x+12,9*x^3+27*x^2-8*x-42,x^3-2*x,2*x^3+x^2-23*x-13,3*x^3+6*x^2-17*x-15,3*x^3+11*x^2+6*x-15,x^3+9*x^2+10*x-21,-9*x^3-29*x^2-3*x+21,-19*x^3-45*x^2+38*x+30,-2*x^3-9*x^2-x+11,x^3-14*x^2-16*x+21,25*x^3+62*x^2-45*x-48,-x^3-2*x^2,-4*x^3-8*x^2+28*x+24,32*x^3+60*x^2-61*x-44,9*x^3+32*x^2+2*x-40,-7*x^3-16*x^2+12*x+15,4*x^3+10*x^2-11*x-12,-9*x^3-14*x^2+15*x+23,-2*x^3-15*x^2-9*x+24,-11*x^3-33*x^2+22*x+30,14*x^2+26*x-16,8*x^3+2*x^2-27*x-18,3*x^3+7*x^2-6*x-8,-11*x^3-21*x^2+13*x+6,6*x^3+11*x^2-12*x-12,6*x^3+4*x^2-12*x-1,-5*x^3-15*x^2-5*x+6,8*x^3+31*x^2+2*x-18,9*x^3+24*x^2-17*x-18,-3*x^3-x^2+8*x+4,8*x^3+21*x^2-19*x-45,20*x^3+45*x^2-44*x-45,5*x^3+10*x^2-26*x-21,x^2+10*x+3,-10*x^3-24*x^2+14*x+23,-7*x^3-16*x^2+4*x-3,-5*x-6,2*x^3+11*x^2-7*x-3,20*x^3+48*x^2-29*x-49,13*x^3+21*x^2-13*x,-8*x^3-19*x^2+18*x+3,4*x^3-2*x^2-11*x+6,3*x^3+3*x^2-11*x-12,-11*x^3-23*x^2+21*x+18,15*x^3+38*x^2-33*x-58,20*x^3+38*x^2-33*x-21,-7*x^3-16*x^2+12*x+15,-8*x^3-7*x^2+29*x+12,20*x^3+56*x^2-14*x-51,11*x^3+34*x^2-11*x-31,-2*x^3-7*x^2-3*x+5,-4*x^3-x^2+11*x+3,-12*x^3-25*x^2+23*x+20,6*x^3+16*x^2+10*x-3,-x^3-3*x^2+x,-12*x^3-21*x^2+23*x+18,5*x^3+12*x^2-3*x+8,-3*x^3-5*x^2+4*x+9,-28*x^3-72*x^2+41*x+72,2*x^3+5*x^2-x-6,-4*x^3-25*x^2-17*x+24,-11*x^3-17*x^2+18*x+18,-x^3+3*x^2-4*x-23,-14*x^3-17*x^2+38*x+9,-x^3-3*x^2-x+6,-5*x^3-9*x^2-x+16,-2*x^3-11*x^2-3*x+15,23*x^3+45*x^2-51*x-33,-13*x^3-36*x^2+14*x+50,-21*x^3-37*x^2+28*x+45,-2*x^3-3*x^2+6*x+5,-x^3-2*x^2,-x^3-3*x^2-15*x-18,8*x^3+14*x^2-13*x-9,-x^3+5*x^2+27*x,20*x^3+45*x^2-24*x-33,-8*x^3-26*x^2-3*x+9,-8*x^3-21*x^2+22*x+8,-x^3+3*x^2+12*x-6,13*x^3+35*x^2-23*x-30,6*x^3-3*x^2-33*x+23,-12*x^3-23*x^2+14*x+27]];
E[301,2] = [x^5-6*x^3+x^2+5*x-2, [1,x,x^4+x^3-6*x^2-5*x+4,x^2-2,-2*x^4-2*x^3+11*x^2+8*x-8,x^4-6*x^2-x+2,-1,x^3-4*x,-3*x^4-x^3+17*x^2+5*x-9,-2*x^4-x^3+10*x^2+2*x-4,3*x^4+x^3-17*x^2-4*x+7,-2*x^4-2*x^3+10*x^2+7*x-6,-2*x^4-x^3+12*x^2+2*x-9,-x,4*x^4+2*x^3-20*x^2-5*x+6,x^4-6*x^2+4,5*x^4+3*x^3-27*x^2-10*x+13,-x^4-x^3+8*x^2+6*x-6,3*x^4+2*x^3-15*x^2-7*x+4,3*x^4+2*x^3-18*x^2-10*x+12,-x^4-x^3+6*x^2+5*x-4,x^4+x^3-7*x^2-8*x+6,-4*x^4-3*x^3+21*x^2+13*x-11,-4*x^4-2*x^3+21*x^2+6*x-8,-3*x^4+16*x^2-5,-x^4+4*x^2+x-4,-x^4-x^3+5*x^2+2*x-4,-x^2+2,-3*x^4+16*x^2-x-8,2*x^4+4*x^3-9*x^2-14*x+8,4*x^4+3*x^3-25*x^2-12*x+19,-2*x^3-x^2+7*x+2,-3*x^4-4*x^3+19*x^2+22*x-14,3*x^4+3*x^3-15*x^2-12*x+10,2*x^4+2*x^3-11*x^2-8*x+8,5*x^4+4*x^3-27*x^2-11*x+16,7*x^4+3*x^3-38*x^2-9*x+22,2*x^4+3*x^3-10*x^2-11*x+6,-3*x^4-x^3+17*x^2+5*x-8,6*x^4+2*x^3-33*x^2-7*x+14,-11*x^4-7*x^3+60*x^2+27*x-37,-x^4+6*x^2+x-2,-1,-5*x^4-3*x^3+25*x^2+9*x-12,-x^4-4*x^3+3*x^2+15*x-2,-3*x^4-3*x^3+17*x^2+9*x-8,3*x^4+5*x^3-16*x^2-18*x+8,2*x^4+x^3-10*x^2-2*x+4,1,-2*x^3+3*x^2+10*x-6,-7*x^4-8*x^3+37*x^2+32*x-22,4*x^4-22*x^2-3*x+16,-2*x^3-x^2+7*x+5,-x^4-x^3+3*x^2+x-2,3*x^4+7*x^3-15*x^2-29*x+14,-x^3+4*x,-9*x^4-9*x^3+48*x^2+36*x-28,-2*x^3+2*x^2+7*x-6,3*x^4+x^3-17*x^2-6*x+4,-4*x^4-x^3+24*x^2+8*x-8,-3*x^4+17*x^2-10,3*x^4-x^3-16*x^2-x+8,3*x^4+x^3-17*x^2-5*x+9,-4*x^4-x^3+19*x^2+2*x-8,8*x^4+4*x^3-44*x^2-13*x+26,-4*x^4+x^3+25*x^2+x-6,-8*x^4-4*x^3+45*x^2+11*x-25,-7*x^4-3*x^3+39*x^2+15*x-20,10*x^4+7*x^3-53*x^2-27*x+24,2*x^4+x^3-10*x^2-2*x+4,2*x^4-x^3-11*x^2+6*x+2,6*x^4+5*x^3-32*x^2-21*x+22,-8*x^4-5*x^3+47*x^2+22*x-30,3*x^4+4*x^3-16*x^2-13*x+14,x^4+4*x^3-8*x^2-23*x+12,-3*x^4-2*x^3+17*x^2+10*x-4,-3*x^4-x^3+17*x^2+4*x-7,-x^4-x^3+8*x^2+7*x-6,8*x^4+6*x^3-47*x^2-27*x+38,-4*x^4-x^3+23*x^2+4*x-12,9*x^4+4*x^3-48*x^2-14*x+25,-7*x^4-6*x^3+38*x^2+18*x-22,-7*x^4-3*x^3+37*x^2+10*x-25,2*x^4+2*x^3-10*x^2-7*x+6,5*x^4+7*x^3-29*x^2-35*x+18,-x,-3*x^4+x^3+16*x^2-7*x-2,-5*x^4-7*x^3+28*x^2+29*x-22,4*x^4+3*x^3-22*x^2-17*x+10,-4*x^4-3*x^3+16*x^2+3*x-2,2*x^4+x^3-12*x^2-2*x+9,5*x^4+5*x^3-30*x^2-19*x+16,-x^4+x^3+7*x^2-2*x+2,5*x^4+2*x^3-21*x^2-7*x+6,11*x^4+10*x^3-63*x^2-46*x+40,9*x^4+6*x^3-46*x^2-18*x+20,6*x^4-35*x^2+19,x,5*x^4-29*x^2-5*x+5,4*x^4+3*x^3-22*x^2-6*x+10,x^3+2*x^2-3*x-7,-8*x^4-5*x^3+39*x^2+13*x-14,-4*x^4-4*x^3+23*x^2+14*x-15,2*x^4+2*x^3-15*x^2-6*x+16,-4*x^4-2*x^3+20*x^2+5*x-6,-2*x^4-x^3+7*x^2+5*x,-3*x^4-3*x^3+19*x^2+14*x-20,x^4-x^3-8*x^2-x+6,9*x^4+4*x^3-53*x^2-14*x+31,7*x^4+3*x^3-32*x^2-x+6,-x^4-5*x^3+3*x^2+19*x-6,-x^4+6*x^2-4,-x^3+3*x^2+4*x,-9*x^4-6*x^3+45*x^2+17*x-18,-11*x^4-7*x^3+60*x^2+29*x-26,4*x^4+2*x^3-25*x^2-4*x+16,9*x^4+6*x^3-55*x^2-24*x+39,x^4+x^3-9*x^2-11*x+6,-5*x^4-3*x^3+27*x^2+10*x-13,-5*x^4-8*x^3+30*x^2+40*x-24,-10*x^4-x^3+56*x^2+5*x-24,-x^3+3*x^2+5*x-6,12*x^4+10*x^3-61*x^2-36*x+26,-9*x^4-4*x^3+46*x^2+17*x-32,10*x^4+3*x^3-55*x^2-8*x+28,x^4+x^3-8*x^2-6*x+6,-7*x^4-4*x^3+41*x^2+20*x-27,-x^4-x^3+8*x^2-2*x-12,-x^4-x^3+6*x^2+5*x-4,4*x^4+4*x^3-21*x^2-14*x+16,-5*x^4-2*x^3+29*x^2+6*x-32,7*x^4+9*x^3-33*x^2-30*x+20,-3*x^4-2*x^3+15*x^2+7*x-4,-4*x^4-3*x^3+19*x^2+15*x-16,3*x^4+3*x^3-14*x^2-7*x+10,-9*x^4-9*x^3+52*x^2+39*x-34,-2*x^4+x^3+10*x^2-7*x,7*x^4+7*x^3-37*x^2-26*x+20,-15*x^4-12*x^3+86*x^2+54*x-57,-3*x^4-2*x^3+18*x^2+10*x-12,-16*x^4-11*x^3+83*x^2+36*x-36,-x^4+x^3+4*x^2-8*x+4,-6*x^4-4*x^3+35*x^2+21*x-25,-5*x^4-4*x^3+27*x^2+14*x-20,8*x^4-43*x^2+6*x+16,-5*x^4-x^3+30*x^2+10*x-16,x^4+x^3-6*x^2-5*x+4,-10*x^4-4*x^3+60*x^2+17*x-38,-5*x^4-2*x^3+33*x^2+6*x-28,4*x^4-2*x^3-24*x^2+7*x+2,10*x^4+8*x^3-58*x^2-31*x+38,-6*x^4-7*x^3+33*x^2+33*x-18,9*x^4+6*x^3-43*x^2-19*x+11,-x^4-x^3+7*x^2+8*x-6,-3*x^4-2*x^3+22*x^2+13*x-26,5*x^4+4*x^3-26*x^2-11*x+14,2*x^4+x^3-13*x^2-2*x+14,6*x^4+x^3-35*x^2-2*x+16,12*x^4+9*x^3-64*x^2-33*x+32,-13*x^4-5*x^3+74*x^2+22*x-36,4*x^4+3*x^3-21*x^2-13*x+11,4*x^4+6*x^3-23*x^2-20*x+18,4*x^4+3*x^3-28*x^2-15*x+24,16*x^4+10*x^3-95*x^2-41*x+60,-21*x^4-9*x^3+105*x^2+18*x-32,-3*x^4-5*x^3+17*x^2+10*x-14,-5*x^4-2*x^3+30*x^2+12*x-25,4*x^4+2*x^3-21*x^2-6*x+8,14*x^4+5*x^3-77*x^2-22*x+44,7*x^4+x^3-40*x^2-7*x+10,17*x^4+11*x^3-90*x^2-37*x+44,-x^2+2,7*x^4+x^3-36*x^2-7*x+8,x^4-2*x^3-4*x^2+13*x-6,3*x^4-16*x^2+5,3*x^4+4*x^3-16*x^2-15*x+14,-8*x^4-7*x^3+49*x^2+39*x-30,3*x^4+2*x^3-21*x^2-10*x+8,-6*x^4-6*x^3+36*x^2+23*x-30,-x^4+x^2-12*x-4,9*x^4+3*x^3-47*x^2-9*x+20,x^4-4*x^2-x+4,-4*x^4-x^3+20*x^2-x-6,11*x^4+6*x^3-58*x^2-27*x+26,-8*x^4+42*x^2-11*x-22,x^4+x^3-x^2+7*x-2,-16*x^4-9*x^3+82*x^2+27*x-27,-4*x^4-x^3+20*x^2+17*x-6,x^4+x^3-5*x^2-2*x+4,10*x^4+3*x^3-57*x^2-15*x+22,-16*x^4-8*x^3+93*x^2+29*x-50,2*x^4+6*x^3-7*x^2-21*x+10,x^4+3*x^3-2*x^2-9*x-7,x^3-6*x^2-11*x+12,-3*x^4-6*x^3+14*x^2+23*x-10,x^2-2,8*x^4+9*x^3-40*x^2-38*x+30,x^3-10*x^2-20*x+10,4*x^4+2*x^3-21*x^2-7*x+12,3*x^4+6*x^3-16*x^2-30*x+20,2*x^4+7*x^3-10*x^2-29*x+12,x^4+2*x^3-3*x^2-7*x,3*x^4-16*x^2+x+8,9*x^4+7*x^3-53*x^2-38*x+28,-4*x^4-4*x^3+21*x^2+23*x+6,-4*x^4-x^3+18*x^2+5*x-8,-11*x^4-11*x^3+60*x^2+41*x-31,-6*x^4-3*x^3+36*x^2+12*x-28,-21*x^4-12*x^3+110*x^2+40*x-46,-2*x^4-4*x^3+9*x^2+14*x-8,-x^3-3*x^2+8*x+6,-x^4-x^3+9*x^2-4*x-14,4*x^4-2*x^3-19*x^2+15*x-2,-3*x^4+x^3+17*x^2-5*x-6,2*x^4+2*x^3-11*x^2-8*x+8,x^4-8*x^2-x+6,-4*x^4-3*x^3+25*x^2+12*x-19,4*x^4+x^3-23*x^2-14*x+18,8*x^4+4*x^3-47*x^2-23*x+18,-3*x^4-4*x^3+22*x^2+29*x-14,-12*x^4-8*x^3+65*x^2+33*x-43,-5*x^4-3*x^3+20*x^2-x-2,2*x^4+2*x^3-10*x^2-x-6,2*x^3+x^2-7*x-2,-4*x^4+x^3+24*x^2-5*x+1,-x^4+3*x^3+4*x^2,13*x^4+3*x^3-75*x^2-9*x+38,12*x^4+9*x^3-70*x^2-45*x+38,x^2+3*x-5,-7*x^4-6*x^3+40*x^2+29*x-22,3*x^4+4*x^3-19*x^2-22*x+14,2*x^4+3*x^3-12*x^2-18*x+20,15*x^4+8*x^3-88*x^2-28*x+62,6*x^4-x^3-33*x^2-6*x+18,20*x^4+9*x^3-112*x^2-39*x+50,-5*x^4-5*x^3+22*x^2+13*x-6,-5*x^4+2*x^3+26*x^2-10*x+4,-3*x^4-3*x^3+15*x^2+12*x-10,3*x^4-2*x^3-16*x^2+6*x-4,2*x^3-3*x^2-15*x+6,-x^4+x^3-2*x+8,-x^4-4*x^3+15*x^2+26*x-20,-4*x^4-7*x^3+21*x^2+35*x-12,5*x^4+3*x^3-29*x^2-6*x+20,-2*x^4-2*x^3+11*x^2+8*x-8,10*x^4+11*x^3-48*x^2-34*x+24,x^4-3*x^3-8*x^2+12*x+10,-10*x^4-6*x^3+58*x^2+15*x-34,-x^4+2*x^3+11*x^2-2*x-6,3*x^4+5*x^3-18*x^2-22*x+20,18*x^4+11*x^3-99*x^2-41*x+51,-5*x^4-4*x^3+27*x^2+11*x-16,16*x^4+14*x^3-85*x^2-58*x+45,-4*x^4-x^3+27*x^2+8*x-14,-27*x^4-11*x^3+149*x^2+46*x-56,7*x^4+4*x^3-39*x^2-11*x+14,-10*x^4-9*x^3+57*x^2+31*x-38,-x^4+6*x^2+x-2,-7*x^4-3*x^3+38*x^2+9*x-22,-12*x^4-5*x^3+70*x^2+22*x-44,6*x^4+5*x^3-35*x^2-26*x+34,-2*x^4-x^3+11*x^2-7*x-10,-15*x^4-8*x^3+76*x^2+28*x-26,17*x^4+7*x^3-87*x^2-17*x+26,-19*x^4-11*x^3+107*x^2+46*x-60,-2*x^4-3*x^3+10*x^2+11*x-6,-15*x^4-8*x^3+85*x^2+39*x-38,13*x^4+3*x^3-71*x^2-18*x+42,3*x^4+6*x^3-18*x^2-31*x+9,3*x^4+4*x^3-10*x^2-5*x+6,3*x^4-2*x^3-12*x^2+7*x-3,5*x^4+4*x^3-30*x^2-19*x+22,3*x^4+x^3-17*x^2-5*x+8,x^4-2*x^3-5*x^2+10*x-4,10*x^4-3*x^3-53*x^2+15*x+3,-13*x^4-9*x^3+73*x^2+39*x-34,11*x^4+x^3-60*x^2-2*x+44,-12*x^4-4*x^3+69*x^2+18*x-30,-10*x^4-6*x^3+56*x^2+9*x-39,-6*x^4-2*x^3+33*x^2+7*x-14,18*x^4+11*x^3-103*x^2-48*x+71,-11*x^4-13*x^3+52*x^2+44*x-32,9*x^4+5*x^3-51*x^2-7*x+35,-3*x^4+15*x^2-3*x-6,-28*x^4-13*x^3+154*x^2+55*x-58,-4*x^4-x^3+27*x^2+5*x-12,11*x^4+7*x^3-60*x^2-27*x+37,-16*x^4-13*x^3+83*x^2+47*x-54,-22*x^4-13*x^3+120*x^2+53*x-62,5*x^3-2*x^2-24*x+16,7*x^4+x^3-32*x^2+10*x+6,15*x^4+10*x^3-79*x^2-35*x+50,22*x^4+13*x^3-125*x^2-50*x+78,x^4-6*x^2-x+2,13*x^4+15*x^3-68*x^2-57*x+46,-10*x^4-8*x^3+59*x^2+38*x-48,-x^4+2*x^3+11*x^2+x-6,-2*x^4+3*x^3+11*x^2-3*x-10,7*x^4+7*x^3-41*x^2-22*x+21,-4*x^4-8*x^3+19*x^2+28*x-16,1,8*x^4+2*x^3-41*x^2-12*x+20,-10*x^4-9*x^3+53*x^2+34*x-30,-x^4+x^3+5*x^2-8*x-4,9*x^4+x^3-51*x^2-2*x+24,6*x^4+11*x^3-28*x^2-34*x+18,-2*x^4+2*x^3+10*x^2-7*x-5,5*x^4+3*x^3-25*x^2-9*x+12,7*x^4+5*x^3-36*x^2-16*x+14,-2*x^4+4*x^3+16*x^2-11*x-6,-x^4-3*x^3-3*x^2+8*x+19,6*x^4+6*x^3-32*x^2-25*x+22,9*x^4+4*x^3-56*x^2-20*x+54,x^4-x^3-4*x^2+4*x+4,x^4+4*x^3-3*x^2-15*x+2,-15*x^4-11*x^3+86*x^2+40*x-64,-3*x^4+6*x^3+17*x^2-22*x-7,9*x^4+8*x^3-45*x^2-28*x+24,-7*x^3+5*x^2+35*x-24,3*x^4-2*x^3-11*x^2+21*x-2,-5*x^3+x^2+23*x-14,3*x^4+3*x^3-17*x^2-9*x+8,-31*x^4-18*x^3+170*x^2+74*x-78,-12*x^4-7*x^3+72*x^2+26*x-42,4*x^4+6*x^3-28*x^2-24*x+25,3*x^4-4*x^3-19*x^2+4*x+8,-x^4-4*x^3+10*x^2+26*x-10,24*x^4+13*x^3-133*x^2-56*x+76,-3*x^4-5*x^3+16*x^2+18*x-8,-9*x^4-21*x^3+39*x^2+73*x-42,-9*x^4-8*x^3+54*x^2+37*x-40,9*x^4+5*x^3-61*x^2-19*x+44,-6*x^4-2*x^3+43*x^2+19*x-46,-2*x^4+17*x^2-10,7*x^4-3*x^3-37*x^2+24*x+16,-2*x^4-x^3+10*x^2+2*x-4,22*x^4+15*x^3-126*x^2-60*x+85,5*x^4+7*x^3-36*x^2-26*x+28,4*x^4+2*x^3-27*x^2-15*x+14,-9*x^4-12*x^3+44*x^2+45*x-22,5*x^4-x^3-22*x^2+14*x+9,11*x^4+12*x^3-54*x^2-41*x+34,-1,-x^3+4*x,25*x^4+21*x^3-139*x^2-93*x+74,x^4+6*x^3-14*x^2-27*x+14,-17*x^4-6*x^3+92*x^2+9*x-50,4*x^4-20*x^2+3*x+6,9*x^4+8*x^3-51*x^2-31*x+28,2*x^3-3*x^2-10*x+6,6*x^4+3*x^3-31*x^2-9*x+22,14*x^4+16*x^3-74*x^2-59*x+50,-17*x^4-8*x^3+91*x^2+36*x-51,-7*x^4+x^3+47*x^2+10*x-16,-7*x^4+4*x^3+37*x^2-23*x-2,-6*x^4-9*x^3+31*x^2+27*x-14,7*x^4+8*x^3-37*x^2-32*x+22,-6*x^4+29*x^2-12,-9*x^4+52*x^2-6*x-41,8*x^4+x^3-43*x^2-5*x+2,-28*x^4-18*x^3+152*x^2+75*x-81,3*x^4+7*x^3-18*x^2-25*x+18,x^4+8*x^3-15*x^2-55*x+26,-4*x^4+22*x^2+3*x-16,-5*x^4-6*x^3+19*x^2+17*x+6,-x^4-4*x^3+3*x^2+14*x-8,-5*x^4-5*x^3+32*x^2+22*x-12,-4*x^4-2*x^3+22*x^2+9*x-10,-x^4-9*x^3-4*x^2+28*x+21,-6*x^3-3*x^2+18*x-16,2*x^3+x^2-7*x-5,3*x^4+3*x^3-8*x^2-3*x-2,-6*x^4-4*x^3+35*x^2+2*x-24,-9*x^4-14*x^3+43*x^2+53*x-32,-8*x^3+x^2+39*x-14,-11*x^4-8*x^3+63*x^2+28*x-20,11*x^4+9*x^3-68*x^2-31*x+56,x^4+x^3-3*x^2-x+2,-11*x^4-5*x^3+64*x^2+16*x-45,-19*x^4-17*x^3+101*x^2+64*x-60,7*x^4+2*x^3-42*x^2-16*x+14,-8*x^4-3*x^3+45*x^2+30*x-32,11*x^4+11*x^3-66*x^2-47*x+58,-12*x^4-7*x^3+69*x^2+36*x-36,-3*x^4-7*x^3+15*x^2+29*x-14,3*x^4+4*x^3-10*x^2-12*x+2,3*x^4+x^3-17*x^2-5*x+9,-11*x^4-6*x^3+59*x^2+12*x-38,8*x^4+9*x^3-43*x^2-46*x+30,-6*x^4-4*x^3+26*x^2+5*x-6,26*x^4+20*x^3-141*x^2-88*x+71,x^3-4*x,-16*x^4-13*x^3+94*x^2+63*x-58,9*x^4+8*x^3-46*x^2-10*x+16,-3*x^4-7*x^3+26*x^2+38*x-52,-9*x^4-10*x^3+38*x^2+20*x-10,3*x^3-5*x^2-18*x+2,2*x^4+3*x^3-11*x^2-8*x+8,9*x^4+9*x^3-48*x^2-36*x+28,-2*x^4-4*x^3+11*x^2+17*x-14,28*x^4+11*x^3-159*x^2-40*x+89,7*x^4+2*x^3-31*x^2+2*x+4,-24*x^4-7*x^3+133*x^2+35*x-89,2*x^4+x^3-12*x^2+x+16,7*x^3-2*x^2-40*x+4,2*x^3-2*x^2-7*x+6,-5*x^4+17*x^2-14*x+16,23*x^4+11*x^3-125*x^2-43*x+46,4*x^4-17*x^2+3*x+2,-4*x^4-3*x^3+27*x^2+26*x-8,-3*x^4+4*x^3+15*x^2-21*x+6,7*x^4+2*x^3-37*x^2-16*x+22,-3*x^4-x^3+17*x^2+6*x-4,-11*x^4-6*x^3+52*x^2+24*x-22,13*x^4+7*x^3-69*x^2-17*x+46,-7*x^4-4*x^3+48*x^2+14*x-44,27*x^4+12*x^3-148*x^2-51*x+52,-12*x^4-16*x^3+61*x^2+59*x-42,6*x^4+9*x^3-29*x^2-36*x+16,4*x^4+x^3-24*x^2-8*x+8,-17*x^4-10*x^3+95*x^2+32*x-54,-x^4-3*x^3+8*x^2+6*x,23*x^4+19*x^3-117*x^2-73*x+70,3*x^4+5*x^3-17*x^2-19*x-2,14*x^4+3*x^3-69*x^2-3*x+13,-2*x^4+5*x^3+11*x^2-22*x+8,3*x^4-17*x^2+10,7*x^4+5*x^3-40*x^2-19*x+34,8*x^4+x^3-46*x^2-9*x+12,2*x^4+x^3-10*x^2-2*x+4,7*x^4+10*x^3-42*x^2-45*x+17,-2*x^4+14*x^2+3*x-10,-18*x^4-9*x^3+100*x^2+30*x-48,-3*x^4+x^3+16*x^2+x-8,6*x^4-8*x^3-30*x^2+43*x-10,-17*x^4-7*x^3+88*x^2+26*x-54,30*x^4+24*x^3-165*x^2-101*x+84,4*x^4+x^3-31*x^2-22*x+16,-11*x^4-10*x^3+56*x^2+35*x-17,-18*x^4-2*x^3+96*x^2+3*x-18,-3*x^4-x^3+17*x^2+5*x-9,-8*x^4-7*x^3+45*x^2+17*x-24,6*x^3+3*x^2-24*x,-x^4-2*x^2-15*x+2,22*x^4+15*x^3-115*x^2-51*x+54,2*x^4+2*x^3-3*x^2-16*x+4,-12*x^4-9*x^3+62*x^2+31*x-34,4*x^4+x^3-19*x^2-2*x+8,11*x^4+12*x^3-65*x^2-44*x+50,x^4-x^2+21*x-8,16*x^4+17*x^3-78*x^2-64*x+31,3*x^4-5*x^2-3*x-2,-13*x^4-8*x^3+70*x^2+31*x-26,3*x^4+3*x^3-22*x^2-27*x+26,-8*x^4-4*x^3+44*x^2+13*x-26,27*x^4+14*x^3-147*x^2-56*x+60,-11*x^4-12*x^3+60*x^2+48*x-42,x^3+3*x^2-5*x,-5*x^4-4*x^3+23*x^2+9*x-14,16*x^4+12*x^3-84*x^2-45*x+38,-5*x^3+7*x^2+21*x-20,4*x^4-x^3-25*x^2-x+6,-x^3-10*x^2-x+34,-5*x^4-4*x^3+30*x^2+18*x-28,-7*x^4-13*x^3+34*x^2+47*x-34,8*x^4+2*x^3-43*x^2-13*x+30,7*x^4-48*x^2+7*x+44,-19*x^4-9*x^3+98*x^2+36*x-66,8*x^4+4*x^3-45*x^2-11*x+25,9*x^4+8*x^3-59*x^2-50*x+40,8*x^4+6*x^3-45*x^2-27*x+26,-7*x^4-10*x^3+36*x^2+41*x-22,-3*x^4-x^3+17*x^2+4*x-7,2*x^4-4*x^3-5*x^2+29*x-10,18*x^4+7*x^3-94*x^2-17*x+32,7*x^4+3*x^3-39*x^2-15*x+20,-25*x^4-16*x^3+134*x^2+62*x-81,-2*x^4+2*x^3+3*x^2-19*x+6,-7*x^4-6*x^3+53*x^2+24*x-63,12*x^4+13*x^3-75*x^2-74*x+48,-27*x^4-17*x^3+155*x^2+61*x-114,x^4-6*x^3-x^2+13*x-2,-10*x^4-7*x^3+53*x^2+27*x-24,16*x^4+11*x^3-85*x^2-25*x+46,-15*x^4+2*x^3+87*x^2-10*x-36,-7*x^4-3*x^3+39*x^2+8*x-8,-30*x^4-23*x^3+172*x^2+94*x-120,3*x^4+3*x^3-17*x^2-15*x+22,x^4+6*x^3+x^2-15*x+10,-2*x^4-x^3+10*x^2+2*x-4,-28*x^4-13*x^3+159*x^2+57*x-104,-13*x^4-8*x^3+78*x^2+46*x-32,-4*x^4-9*x^3+27*x^2+39*x-36,-3*x^4-2*x^3+11*x^2+5*x+2,19*x^4+28*x^3-96*x^2-104*x+76,12*x^4+6*x^3-67*x^2-18*x+44,-2*x^4+x^3+11*x^2-6*x-2,2*x^4+5*x^3-x^2-x-2,-3*x^4-2*x^3+23*x^2+16*x-28,-15*x^4-6*x^3+85*x^2+21*x-50]];
E[301,3] = [x^5-x^4-6*x^3+5*x^2+6*x-1, [1,x,-x^3+4*x+1,x^2-2,x^4-5*x^2+x+3,-x^4+4*x^2+x,-1,x^3-4*x,-x^4-x^3+5*x^2+3*x-1,x^4+x^3-4*x^2-3*x+1,x^4-x^3-5*x^2+4*x+5,-x^4+6*x^2-2*x-3,-x^3-2*x^2+4*x+5,-x,x^4-6*x^2+5,x^4-6*x^2+4,-x^4+x^3+7*x^2-6*x-7,-2*x^4-x^3+8*x^2+5*x-1,2*x^3+x^2-8*x+1,2*x^3+2*x^2-7*x-5,x^3-4*x-1,x^3-x^2-x+1,-2*x^4+x^3+9*x^2-5*x-3,x^4-5*x^2+x-1,2*x^4-10*x^2+3*x+4,-x^4-2*x^3+4*x^2+5*x,-2*x^4+x^3+11*x^2-5*x-5,-x^2+2,x^4-6*x^2-3*x+6,x^4-5*x^2-x+1,x^4+x^3-5*x^2-5*x+2,x^4-2*x^3-5*x^2+6*x+1,x^4-2*x^3-5*x^2+6*x+8,x^3-x^2-x-1,-x^4+5*x^2-x-3,-x^4-2*x^3+5*x^2+5*x,-x^3+2*x^2+4*x-7,2*x^4+x^3-8*x^2+x,x^4-x^3-7*x^2+7*x+8,x^2+x-2,-x^4+x^3+8*x^2-3*x-7,x^4-4*x^2-x,1,-x^4+x^3+9*x^2-7*x-10,-x^2-2*x-1,-x^4-3*x^3+5*x^2+9*x-2,-x^4-x^3+4*x^2+2*x+2,3*x^4+x^3-16*x^2-3*x+7,1,2*x^4+2*x^3-7*x^2-8*x+2,-x^4+9*x^2-4*x-12,-3*x^4+14*x^2-2*x-11,-3*x^4+13*x^2-8,-x^4-x^3+5*x^2+7*x-2,3*x^4-x^3-17*x^2+7*x+16,-x^3+4*x,x^4-3*x^3-4*x^2+12*x-2,x^4-8*x^2+1,-2*x^4+x^3+9*x^2-x-1,-x^4+x^3+6*x^2-5*x-9,-3*x^4-2*x^3+13*x^2+8*x-4,2*x^4+x^3-10*x^2-4*x+1,x^4+x^3-5*x^2-3*x+1,-3*x^4+x^3+13*x^2-5*x-7,x^4-4*x^3-10*x^2+14*x+15,-x^4+x^3+x^2+2*x+1,x^4+2*x^3-x^2-8*x-10,3*x^4-3*x^3-15*x^2+11*x+14,-x^4-x^3+5*x^2+8*x-7,-x^4-x^3+4*x^2+3*x-1,3*x^3-x^2-12*x+6,x^4+x^3-6*x^2-4*x+1,-4*x^4+x^3+21*x^2-6*x-12,-x^4+2*x^3+4*x^2-7*x,x^4+2*x^3-8*x^2-7*x+8,3*x^4-11*x^2+4*x,-x^4+x^3+5*x^2-4*x-5,-x^3+2*x^2+2*x+1,x^2+3*x-4,-3*x^3-3*x^2+12*x+10,2*x^2+3*x-8,2*x^3+2*x^2-x-1,-x^4-x^3+3*x^2+6*x+7,x^4-6*x^2+2*x+3,-3*x^4+3*x^3+19*x^2-13*x-22,x,6*x^4-x^3-28*x^2+2*x+9,x^3-2*x-3,-2*x^4+x^3+8*x^2-7*x+8,-x^3-2*x^2-x,x^3+2*x^2-4*x-5,-3*x^3-4*x^2+14*x+5,4*x^4+x^3-19*x^2-5*x+3,-2*x^4-2*x^3+7*x^2+8*x-1,3*x^4+2*x^3-11*x^2-2*x,2*x^4+2*x^3-8*x^2-13*x+5,2*x^4-4*x^3-13*x^2+22*x+11,x,-x^4-2*x^3+7*x^2+3*x-3,5*x^3+2*x^2-16*x-6,x^4+5*x^3-22*x-10,-x^4+3*x^3+x^2-6*x-1,4*x^4+4*x^3-19*x^2-12*x+5,-x^4+5*x^2-3*x-3,-x^4+6*x^2-5,-3*x^4-5*x^3+15*x^2+10*x-3,4*x^4-x^3-23*x^2+5*x+15,2*x^4-3*x^3-10*x^2+14*x+9,4*x^3+x^2-21*x-2,2*x^4+x^3-8*x^2-2*x+3,-3*x^4+3*x^3+17*x^2-17*x-8,-x^4+6*x^2-4,-4*x^4+3*x^3+21*x^2-12*x-10,-2*x^4+2*x^3+7*x^2-8*x+1,-2*x^4-x^3+10*x^2-11,-x^4-2*x^3+7*x^2+x-11,2*x^3+x^2-3*x-2,-x^4-3*x^3+9*x^2+11*x-2,x^4-x^3-7*x^2+6*x+7,-2*x^4+10*x^2-x-3,5*x^4-5*x^3-26*x^2+18*x+17,-5*x^4-5*x^3+23*x^2+14*x-3,-5*x^4-2*x^3+27*x^2+5*x-13,x^4-4*x^2-x-2,-2*x^4+x^3+11*x^2-4*x-2,2*x^4+x^3-8*x^2-5*x+1,4*x^4-21*x^2+9*x+8,-4*x^4-x^3+20*x^2-x-5,-x^3+4*x+1,-3*x^4-4*x^3+9*x^2+9*x+1,3*x^4+4*x^3-19*x^2-14*x+18,-2*x^4-x^3+17*x^2-5*x-17,-2*x^3-x^2+8*x-1,3*x^4+5*x^3-13*x^2-16*x+1,3*x^3+4*x^2-12*x-15,x^3-2*x^2-2*x+5,6*x^4+x^3-30*x^2+x+12,-2*x^4-x^3+13*x^2-x-1,-3*x^4+2*x^3+12*x^2-6*x+9,-2*x^3-2*x^2+7*x+5,-3*x^3+x^2+12*x+2,3*x^4-x^3-12*x^2+6*x,3*x^4-4*x^3-23*x^2+20*x+28,4*x^4+4*x^3-19*x^2-15*x+1,-x^4-6*x^3-x^2+23*x+13,-3*x^4-3*x^3+14*x^2+12*x-4,-x^3+4*x+1,x^4-6*x^2-2*x+13,-x^4-2*x^3+x^2+16*x+8,3*x^4-2*x^3-12*x^2+2*x+1,-3*x^4+16*x^2-6*x-7,-x^4+5*x^3+5*x^2-20*x+3,x^4-2*x^3-3*x^2+3*x+3,-x^3+x^2+x-1,-x^4-2*x^3+4*x^2+9*x+2,-3*x^4+4*x^3+16*x^2-13*x-16,-2*x^4+3*x^3+5*x^2-14*x+8,x^3+3*x^2-4*x,-4*x^4+3*x^3+18*x^2-5*x-12,-3*x^4-3*x^3+10*x^2+8*x+4,2*x^4-x^3-9*x^2+5*x+3,2*x^3+3*x^2-8*x,-4*x^4+3*x^3+20*x^2-15*x-8,4*x^4-17*x^2+5*x+14,4*x^4-3*x^3-25*x^2+15*x+25,-2*x^4-3*x^3+11*x^2+13*x-1,x^4-8*x^3-4*x^2+30*x+3,-x^4+5*x^2-x+1,7*x^4-x^3-35*x^2+11*x+17,x^3+2*x^2-4*x-3,-2*x^4-3*x^3+8*x^2+6*x-1,x^2-2,2*x^4-5*x^3-12*x^2+16*x+9,5*x^4+8*x^3-28*x^2-27*x+6,-2*x^4+10*x^2-3*x-4,3*x^4-2*x^3-20*x^2+11*x+20,-5*x^4-3*x^3+21*x^2+20*x-5,-x^4-4*x^3+3*x^2+20*x-2,-x^4+6*x^3+10*x^2-30*x-5,-x^4-2*x^3+x^2+4*x+2,3*x^4-x^3-17*x^2-x+14,x^4+2*x^3-4*x^2-5*x,-6*x^4-x^3+28*x^2+9*x-6,-x^4+2*x^3+4*x^2-13*x+4,-3*x^4+4*x^3+18*x^2-18*x-17,5*x^4+5*x^3-25*x^2-21*x+4,-5*x^4+3*x^3+36*x^2-22*x-40,-2*x^4-3*x^3+10*x^2+7*x-6,2*x^4-x^3-11*x^2+5*x+5,5*x^4+7*x^3-17*x^2-18*x+3,-4*x^4-4*x^3+19*x^2+9*x,-2*x^4+2*x^3+9*x^2-x-12,-x^4-x^3+2*x^2+x-3,-2*x^4-x^3+12*x^2-x+2,5*x^4-2*x^3-28*x^2+11*x+26,x^2-2,3*x^4+3*x^3-14*x^2-7*x+1,-3*x^4+x^3+8*x^2+3*x-1,4*x^4+2*x^3-17*x^2-11*x+2,x^4-2*x^3-2*x^2+10*x-4,5*x^3+4*x^2-27*x-14,6*x^4+6*x^3-27*x^2-16*x+1,-x^4+6*x^2+3*x-6,4*x^4-5*x^3-19*x^2+13*x+23,2*x^4+8*x^3-x^2-27*x-18,8*x^4+5*x^3-32*x^2-19*x+4,-x^4+x^3+4*x^2+3*x+1,5*x^4-x^3-26*x^2+7*x+21,2*x^4-6*x^2+x-1,-x^4+5*x^2+x-1,2*x^4-9*x^3-17*x^2+42*x+22,-2*x^4-3*x^3-x^2+15*x+13,4*x^4-4*x^3-21*x^2+21*x+4,3*x^4+x^3-15*x^2-9*x+4,x^4-5*x^2+x+3,x^4+4*x^3-6*x^2-17*x+6,-x^4-x^3+5*x^2+5*x-2,4*x^4+x^3-21*x^2-2*x,-6*x^4-2*x^3+33*x^2+9*x-22,-3*x^4+6*x^3+22*x^2-23*x-30,-7*x^4+6*x^3+39*x^2-26*x-40,-x^3-2*x^2+10*x-3,-x^4+4*x^3+10*x^2-18*x-19,-x^4+2*x^3+5*x^2-6*x-1,x^3-4*x^2-5*x-1,-x^4-3*x^3+8*x^2+14*x-4,-x^4-5*x^3+3*x^2+17*x+18,-2*x^4+x^3+10*x^2-11*x+2,-3*x^4+4*x^3+19*x^2-14*x-24,-3*x^4-2*x^3+10*x^2+x-2,-x^4+2*x^3+5*x^2-6*x-8,-5*x^4+x^3+22*x^2-5*x-3,4*x^2+5*x-15,2*x^4+x^3-3*x^2-2*x,-3*x^3-4*x^2+9*x+6,x^3-2*x^2+6*x+1,-4*x^4+2*x^3+18*x^2-7*x-5,-x^3+x^2+x+1,-6*x^4-2*x^3+34*x^2+3*x-25,-4*x^3-3*x^2+19*x+16,3*x^4+x^3-10*x^2-6*x-12,4*x^3-7*x^2-13*x+5,x^4+x^3-9*x^2-2*x+5,-4*x^4-3*x^3+13*x^2+11*x+3,x^4-5*x^2+x+3,-7*x^4-3*x^3+30*x^2+17*x-5,-5*x^4-3*x^3+18*x^2+4*x-2,-3*x^4+14*x^2-1,-3*x^4-6*x^3+11*x^2+30*x+8,-x^4-x^3+6*x^2+10*x-2,-2*x^4+x^3+9*x^2-11*x+5,x^4+2*x^3-5*x^2-5*x,-4*x^4+2*x^3+19*x^2-6*x-19,4*x^4+3*x^3-11*x^2-16*x+4,-6*x^4+5*x^3+35*x^2-23*x-35,x^4-6*x^3-7*x^2+29*x+10,x^4-5*x^3-x^2+20*x-15,-x^4+4*x^2+x,x^3-2*x^2-4*x+7,-9*x^4-x^3+44*x^2-9*x-33,8*x^4+5*x^3-33*x^2-24*x+2,7*x^4-x^3-29*x^2+3,6*x^4-8*x^3-32*x^2+37*x+25,-x^4+3*x^3+3*x^2-9*x-4,-6*x^4-x^3+29*x^2-7*x-23,-2*x^4-x^3+8*x^2-x,2*x^4-10*x^3-9*x^2+44*x+5,6*x^4+x^3-29*x^2-x+23,4*x^4-20*x^2+2*x+16,3*x^4+4*x^3-12*x^2-15*x,8*x^4-8*x^3-42*x^2+32*x+16,-5*x^4+4*x^3+28*x^2-17*x-28,-x^4+x^3+7*x^2-7*x-8,7*x^4+6*x^3-29*x^2-24*x+6,4*x^4+x^3-25*x^2+5*x+23,-x^4+3*x^3-x^2-5*x+12,-3*x^4+9*x^3+18*x^2-46*x-16,-x^4-6*x^3+9*x^2+27*x-3,6*x^4+4*x^3-28*x^2-19*x+3,-x^2-x+2,x^4+x^3-13*x^2-x+18,-3*x^4+x^3+12*x^2+2*x,2*x^4+3*x^3-17*x^2-8*x+18,2*x^4-7*x^2+6*x-9,-2*x^4+x^3+8*x^2-7*x,-x^4-5*x^3+5*x^2+10*x+3,x^4-x^3-8*x^2+3*x+7,6*x^4+3*x^3-23*x^2-15*x+2,9*x^4-9*x^3-50*x^2+34*x+39,-7*x^4-7*x^3+28*x^2+19*x-1,-3*x^4+x^3+6*x^2+2*x+22,2*x^4-6*x^3-15*x^2+26*x+21,4*x^4-3*x^3-21*x^2+22*x+12,-x^4+4*x^2+x,4*x^4+3*x^3-16*x^2-10*x-1,3*x^4-4*x^3-15*x^2+21*x+1,-4*x^4+2*x^3+27*x^2-12*x-29,-3*x^4-5*x^3+21*x^2+14*x-1,-x^4+5*x^3+13*x^2-20*x-17,-x^4+2*x^3+3*x^2-3*x-13,-1,-3*x^4-2*x^3+9*x^2+11*x-3,4*x^4+3*x^3-13*x^2-20*x-18,-2*x^4-x^3+7*x^2+x-1,-2*x^4-x^3+7*x^2-5*x-7,-x^4+3*x^3-2*x^2-3*x+1,-2*x^4+14*x^2-3*x-15,x^4-x^3-9*x^2+7*x+10,7*x^4+5*x^3-38*x^2-18*x+8,-3*x^4-2*x^3+14*x^2+8*x-1,5*x^4+3*x^3-21*x^2-12*x+19,x^4-2*x^2-2*x-5,-4*x^4-4*x^3+20*x^2+17*x-13,x^4-7*x^3-4*x^2+20*x-2,x^2+2*x+1,x^4+3*x^3-6*x^2-6*x+8,2*x^4+2*x^3-x^2-11*x-30,-x^4-6*x^3+15*x^2+12*x-4,5*x^4-7*x^3-27*x^2+22*x+27,-6*x^4-2*x^3+29*x^2-2*x-23,9*x^4+3*x^3-49*x^2-10*x+27,x^4+3*x^3-5*x^2-9*x+2,2*x^3+2*x^2-11*x+3,2*x^4+3*x^3-12*x^2-6*x+16,x^4-8*x^3-12*x^2+25*x+20,-x^4-4*x^3+5*x^2+16*x-4,8*x^4-34*x^2-3*x-7,4*x^4+3*x^3-19*x^2-8*x+6,x^4+x^3-4*x^2-2*x-2,x^4-x^3-5*x^2+x+4,-x^4-4*x^3+8*x^2+7*x-26,-3*x^4+x^3+17*x^2-x-16,-2*x^3+x^2+5*x+2,-7*x^4+2*x^3+25*x^2-3*x+1,-4*x^4+7*x^3+29*x^2-25*x-31,-3*x^4-x^3+16*x^2+3*x-7,-8*x^4+5*x^3+42*x^2-28*x-29,6*x^4+7*x^3-24*x^2-25*x+7,-6*x^4-4*x^3+31*x^2+21*x-22,7*x^4-4*x^3-42*x^2+23*x+44,2*x^4-x^3-10*x^2+3*x+6,-5*x^4-4*x^3+16*x^2+11*x-2,-1,x^3-4*x,-x^4+5*x^3+9*x^2-23*x-14,-3*x^4+6*x^2-3*x+2,x^4-2*x^3-10*x^2+17*x+26,x^4+4*x^3+4*x^2-28*x-13,-6*x^4+4*x^3+33*x^2-24*x-19,-2*x^4-2*x^3+7*x^2+8*x-2,-7*x^4+3*x^3+37*x^2-16*x-29,x^4-4*x^3-4*x^2+6*x+9,-2*x^4+4*x^3+3*x^2-11*x+16,-8*x^4-9*x^3+45*x^2+25*x-5,4*x^4-2*x^3-19*x^2+14*x+11,-x^4-5*x^3+9*x^2+18*x-17,x^4-9*x^2+4*x+12,5*x^4+4*x^3-25*x^2+x-1,-9*x^4-4*x^3+40*x^2+10*x-1,-3*x^4-3*x^3+13*x^2+10*x-1,x^4+16*x^3+2*x^2-60*x-10,2*x^4+x^3-16*x^2-4*x+3,8*x^4-39*x^2-10*x+33,3*x^4-14*x^2+2*x+11,-4*x^4+4*x^3+25*x^2-22*x-35,-7*x^4-8*x^3+39*x^2+30*x-6,-3*x^4-3*x^3+16*x^2+12*x-12,x^4+4*x^3-18*x-11,-8*x^4-9*x^3+36*x^2+29*x-2,x^4-3*x^2+x-3,3*x^4-13*x^2+8,2*x^4+3*x^3-8*x^2-16*x-1,-5*x^4+4*x^3+27*x^2-19*x-13,-2*x^4+6*x^3+3*x^2-10*x-5,-4*x^4-6*x^3+21*x^2+25*x-8,-x^4+2*x^3+3*x^2-10*x,8*x^4+3*x^3-42*x^2+31,x^4+x^3-5*x^2-7*x+2,-4*x^4-3*x^3+18*x^2+7*x+2,6*x^4+9*x^3-21*x^2-23*x+5,6*x^3-10*x^2-17*x+17,-8*x^4-5*x^3+29*x^2+24*x-4,-6*x^4+x^3+32*x^2-10*x-17,-4*x^4-7*x^3+25*x^2+26*x-12,-3*x^4+x^3+17*x^2-7*x-16,-2*x^4-4*x^3+6*x^2+3*x-1,-x^4-x^3+5*x^2+3*x-1,-7*x^4+8*x^3+35*x^2-30*x-24,-4*x^4-3*x^3+23*x^2+10*x-28,3*x^4+2*x^3-14*x^2-4*x+5,2*x^4-19*x^2+6*x+27,x^3-4*x,12*x^4-x^3-66*x^2+15*x+24,6*x^4+4*x^3-22*x^2-17*x+3,x^4+5*x^3-18*x-8,-6*x^3+4*x^2+11*x+3,2*x^4+3*x^3-9*x^2-10*x-4,6*x^4+7*x^3-31*x^2-22*x+4,-x^4+3*x^3+4*x^2-12*x+2,-x^4-6*x^3+x^2+22*x+13,-9*x^4+x^3+39*x^2-x-4,5*x^4+4*x^3-27*x^2-14*x,2*x^4+x^3-11*x^2-3*x+7,10*x^4-x^3-46*x^2+9*x+26,-x^4+7*x^3+12*x^2-27*x-19,-x^4+8*x^2-1,-5*x^4+4*x^3+33*x^2-24*x-32,x^4-x^3-9*x^2+11*x+6,10*x^4-49*x^2-3*x+38,10*x^4+11*x^3-37*x^2-30*x+2,8*x^4+6*x^3-45*x^2-24*x+23,5*x^4+8*x^3-21*x^2-20*x-2,2*x^4-x^3-9*x^2+x+1,-2*x^3+8*x^2+7*x-1,7*x^4-x^3-37*x^2+7*x+24,6*x^4+4*x^3-28*x^2-3*x+11,-3*x^4-12*x^3+10*x^2+61*x+4,2*x^4+6*x^3-9*x^2-13*x+2,2*x^4-5*x^3-11*x^2+20*x+18,x^4-x^3-6*x^2+5*x+9,-3*x^4+2*x^3+7*x^2-8*x+8,-7*x^4-5*x^3+32*x^2+10*x+2,-x^4-x^3+9*x^2+5*x-2,x^4-3*x^3-5*x^2+5*x+4,-4*x^4+5*x^3+23*x^2-15*x-31,3*x^3+x^2-20*x+4,3*x^4+2*x^3-13*x^2-8*x+4,-4*x^4+5*x^3+22*x^2-24*x-27,6*x^4-3*x^3-42*x^2+25*x+46,x^4+x^3-4*x^2-3*x+1,-4*x^4-4*x^3+20*x^2+12*x-4,x^4+6*x^3-2*x^2-28*x-17,-9*x^4-x^3+42*x^2-7*x-9,-2*x^4-x^3+10*x^2+4*x-1,-x^4-4*x^3+22*x+23,5*x^4-5*x^3-24*x^2+18*x+8,-8*x^4+4*x^3+31*x^2-27*x+4,-8*x^4-3*x^3+39*x^2+14*x-6,-2*x^4-4*x^3+10*x^2+28*x-6,-x^4+2*x^3+8*x^2-8*x-9,-x^4-x^3+5*x^2+3*x-1,-x^4-3*x^3+9*x^2+2*x-7,-3*x^4+10*x^3+9*x^2-45*x-7,5*x^4-8*x^3-24*x^2+31*x+16,5*x^4-5*x^3-29*x^2+22*x+19,3*x^4+4*x^3-13*x^2-13*x-1,-8*x^4-3*x^3+28*x^2+27*x+12,3*x^4-x^3-13*x^2+5*x+7,7*x^4-33*x^2+6*x+6,x^4-4*x^3-5*x^2-x,-4*x^4+5*x^3+32*x^2-24*x-37,4*x^4-4*x^3-23*x^2+26*x+19,-x^4-4*x^3+12*x^2+11*x-14,-6*x^4-3*x^3+22*x^2+24*x-1,-x^4+4*x^3+10*x^2-14*x-15,3*x^4-6*x^3-15*x^2+30*x-4,4*x^4-20*x^2-5*x+19,x^4+x^3+x^2-6*x-3,6*x^4-4*x^3-35*x^2+16*x+41,-x^4-6*x^3-4*x^2+16*x+19,7*x^4-x^3-29*x^2+10*x+7,x^4-x^3-x^2-2*x-1,-2*x^4-x^3+6*x^2+x+20,-2*x^4-4*x^3+6*x^2+25*x+17,-4*x^4-3*x^3+18*x^2+14*x+3,4*x^3+5*x^2-15*x,3*x^4-10*x^3-20*x^2+35*x+24,3*x^4+5*x^3-14*x^2-6*x+6,-x^4-2*x^3+x^2+8*x+10,-3*x^4-4*x^3+9*x^2+6*x,6*x^4-4*x^3-33*x^2+29*x+6,3*x^4+4*x^3-12*x^2-21*x+4,x^4-x^3-5*x^2+4*x+5,-2*x^4-6*x^3+13*x^2+19*x-4,8*x^4+x^3-32*x^2+13*x-2,-3*x^4+3*x^3+15*x^2-11*x-14,-x^4+4*x^3+2*x^2+2*x+3,-8*x^4-2*x^3+33*x^2+11*x-6,6*x^4-10*x^3-31*x^2+47*x+22,-3*x^3-x^2+18*x+6,-5*x^4+3*x^3+29*x^2-13*x-34,4*x^4+8*x^3-21*x^2-30*x+3,x^4+x^3-5*x^2-8*x+7,-6*x^4+3*x^3+39*x^2-31*x-34,7*x^4-2*x^3-41*x^2+10*x+42,2*x^4-3*x^3-7*x^2-x+1,-9*x^4+11*x^3+46*x^2-49*x-27,3*x^4-x^3-15*x^2-x+2,-2*x^4-4*x^3+13*x^2+20*x-19,x^4+x^3-4*x^2-3*x+1,7*x^4-5*x^3-33*x^2+22*x+9,-8*x^3-2*x^2+27*x+19,-7*x^4+3*x^3+45*x^2-26*x-39,-8*x^4-12*x^3+29*x^2+28*x-5,-2*x^4+8*x^2-3*x-7,-5*x^4-4*x^3+23*x^2+19*x+1,-3*x^3+x^2+12*x-6,-9*x^4-7*x^3+45*x^2+26*x-3,-7*x^4-2*x^3+31*x^2+6*x,2*x^4-2*x^3-7*x^2+12*x+3]];
E[301,4] = [x^7-4*x^6-3*x^5+25*x^4-13*x^3-23*x^2+11*x+2, [1,x,-x^5+x^4+7*x^3-5*x^2-8*x+2,x^2-2,x^6-2*x^5-6*x^4+11*x^3+4*x^2-6*x,-x^6+x^5+7*x^4-5*x^3-8*x^2+2*x,1,x^3-4*x,x^4-x^3-7*x^2+5*x+7,2*x^6-3*x^5-14*x^4+17*x^3+17*x^2-11*x-2,-x^6+3*x^5+5*x^4-18*x^3+x^2+13*x+1,-3*x^6+6*x^5+18*x^4-35*x^3-11*x^2+27*x-2,x^6-x^5-8*x^4+6*x^3+14*x^2-7*x-3,x,x^6-2*x^5-6*x^4+11*x^3+3*x^2-5*x+2,x^4-6*x^2+4,-x^6+x^5+7*x^4-4*x^3-9*x^2-3*x+3,x^5-x^4-7*x^3+5*x^2+7*x,-x^6+2*x^5+7*x^4-13*x^3-10*x^2+15*x+4,3*x^6-4*x^5-21*x^4+21*x^3+27*x^2-12*x-4,-x^5+x^4+7*x^3-5*x^2-8*x+2,-x^6+2*x^5+7*x^4-12*x^3-10*x^2+12*x+2,2*x^6-2*x^5-16*x^4+11*x^3+29*x^2-9*x-7,-4*x^6+7*x^5+26*x^4-40*x^3-26*x^2+27*x+6,-2*x^6+3*x^5+13*x^4-16*x^3-11*x^2+7*x-3,3*x^6-5*x^5-19*x^4+27*x^3+16*x^2-14*x-2,3*x^6-8*x^5-15*x^4+48*x^3-4*x^2-40*x+4,x^2-2,-3*x^6+5*x^5+19*x^4-29*x^3-14*x^2+22*x-2,2*x^6-3*x^5-14*x^4+16*x^3+18*x^2-9*x-2,-x^5+2*x^4+5*x^3-10*x^2-x+5,x^5-8*x^3+12*x,-2*x^5+x^4+16*x^3-3*x^2-26*x-6,-3*x^6+4*x^5+21*x^4-22*x^3-26*x^2+14*x+2,x^6-2*x^5-6*x^4+11*x^3+4*x^2-6*x,x^6-x^5-9*x^4+7*x^3+21*x^2-10*x-14,3*x^5-5*x^4-19*x^3+25*x^2+18*x-8,-2*x^6+4*x^5+12*x^4-23*x^3-8*x^2+15*x+2,2*x^5-3*x^4-13*x^3+15*x^2+11*x-4,4*x^6-6*x^5-26*x^4+32*x^3+23*x^2-15*x-2,-2*x^6+4*x^5+13*x^4-23*x^3-14*x^2+13*x+7,-x^6+x^5+7*x^4-5*x^3-8*x^2+2*x,-1,-2*x^5+3*x^4+13*x^3-13*x^2-13*x,-x^5+x^4+8*x^3-6*x^2-12*x+4,6*x^6-10*x^5-39*x^4+55*x^3+37*x^2-29*x-4,2*x^5-3*x^4-13*x^3+16*x^2+14*x-8,-3*x^6+2*x^5+24*x^4-8*x^3-43*x^2-4*x+12,1,-5*x^6+7*x^5+34*x^4-37*x^3-39*x^2+19*x+4,x^4-7*x^2+10,5*x^6-8*x^5-32*x^4+43*x^3+27*x^2-21*x,-x^6+10*x^4+x^3-26*x^2-3*x+13,4*x^6-6*x^5-27*x^4+35*x^3+29*x^2-29*x-6,2*x^6-4*x^5-11*x^4+21*x^3+3*x^2-9*x-2,x^3-4*x,3*x^6-9*x^5-15*x^4+56*x^3-2*x^2-51*x-2,-7*x^6+10*x^5+46*x^4-53*x^3-47*x^2+31*x+6,-2*x^6+5*x^5+11*x^4-29*x^3-2*x^2+19*x+2,3*x^6-4*x^5-22*x^4+22*x^3+31*x^2-14*x-8,-x^6+x^5+7*x^4-3*x^3-7*x^2-7*x-8,-x^6+2*x^5+5*x^4-10*x^3-x^2+5*x,x^4-x^3-7*x^2+5*x+7,x^6-10*x^4+24*x^2-8,-3*x^6+4*x^5+22*x^4-23*x^3-31*x^2+21*x+2,-2*x^6+x^5+16*x^4-3*x^3-26*x^2-6*x,-3*x^6+6*x^5+18*x^4-35*x^3-12*x^2+27*x+3,-6*x^6+10*x^5+39*x^4-57*x^3-37*x^2+41*x,3*x^5-6*x^4-19*x^3+32*x^2+16*x-14,2*x^6-3*x^5-14*x^4+17*x^3+17*x^2-11*x-2,x^6-3*x^5-4*x^4+18*x^3-5*x^2-15*x,3*x^6-8*x^5-16*x^4+48*x^3+3*x^2-39*x-2,2*x^6-4*x^5-14*x^4+23*x^3+19*x^2-14*x-6,3*x^6-5*x^5-19*x^4+25*x^3+18*x^2-8*x,-3*x^6+9*x^5+15*x^4-55*x^3+4*x^2+48*x-6,-2*x^6+2*x^5+13*x^4-8*x^3-11*x^2-6*x-4,-x^6+3*x^5+5*x^4-18*x^3+x^2+13*x+1,2*x^6-3*x^5-13*x^4+15*x^3+11*x^2-4*x,x^6+x^5-10*x^4-11*x^3+27*x^2+24*x-12,4*x^6-6*x^5-26*x^4+33*x^3+23*x^2-22*x,-2*x^6+5*x^5+13*x^4-32*x^3-17*x^2+31*x+15,-4*x^6+7*x^5+27*x^4-40*x^3-33*x^2+29*x+4,-2*x^6+4*x^5+13*x^4-25*x^3-15*x^2+26*x+7,-3*x^6+6*x^5+18*x^4-35*x^3-11*x^2+27*x-2,2*x^6-4*x^5-11*x^4+21*x^3+x^2-7*x+2,-x,x^5-3*x^4-5*x^3+19*x^2+4*x-16,-x^5-x^4+11*x^3+7*x^2-24*x-4,x^6-x^5-8*x^4+6*x^3+14*x^2-2*x-8,-x^6+x^5+8*x^4-6*x^3-12*x^2+4*x,x^6-x^5-8*x^4+6*x^3+14*x^2-7*x-3,10*x^6-17*x^5-63*x^4+93*x^3+51*x^2-52*x+2,3*x^6-8*x^5-15*x^4+48*x^3-6*x^2-36*x+10,2*x^6-3*x^5-13*x^4+16*x^3+14*x^2-8*x,-x^4+2*x^3+5*x^2-10*x,-2*x^6+x^5+15*x^4-2*x^3-21*x^2-9*x-6,2*x^5-14*x^3-x^2+16*x-5,x,-3*x^6+11*x^5+15*x^4-73*x^3-x^2+84*x+7,-9*x^6+13*x^5+62*x^4-72*x^3-74*x^2+45*x+16,8*x^6-17*x^5-46*x^4+97*x^3+19*x^2-62*x+7,x^5-7*x^3+10*x,x^6-5*x^5+29*x^3-29*x^2-19*x+15,6*x^6-7*x^5-44*x^4+38*x^3+62*x^2-27*x-6,x^6-2*x^5-6*x^4+11*x^3+3*x^2-5*x+2,-4*x^6+7*x^5+26*x^4-39*x^3-26*x^2+24*x+2,x^6+2*x^5-13*x^4-14*x^3+42*x^2+14*x-8,4*x^6+x^5-35*x^4-15*x^3+71*x^2+30*x-16,4*x^6-9*x^5-23*x^4+54*x^3+10*x^2-43*x+1,4*x^6-5*x^5-29*x^4+29*x^3+37*x^2-24*x-4,2*x^6-2*x^5-19*x^4+13*x^3+51*x^2-19*x-34,x^4-6*x^2+4,-x^6+x^5+6*x^4-4*x^3-5*x^2-x+6,3*x^6-6*x^5-19*x^4+37*x^3+18*x^2-35*x-6,-4*x^6+5*x^5+29*x^4-29*x^3-37*x^2+28*x,-12*x^6+15*x^5+84*x^4-80*x^3-102*x^2+39*x+18,-x^5+x^4+6*x^3-2*x^2-3*x-11,-3*x^6+5*x^5+21*x^4-28*x^3-27*x^2+24*x+4,-x^6+x^5+7*x^4-4*x^3-9*x^2-3*x+3,4*x^6-7*x^5-25*x^4+38*x^3+19*x^2-23*x-2,-4*x^6+13*x^5+18*x^4-79*x^3+13*x^2+62*x-2,-3*x^6+4*x^5+22*x^4-20*x^3-30*x^2+3*x+2,2*x^6-7*x^5-8*x^4+46*x^3-14*x^2-51*x+8,-2*x^6+4*x^5+11*x^4-24*x^3+2*x^2+13*x-8,-x^6+5*x^5+2*x^4-30*x^3+15*x^2+19*x-6,x^5-x^4-7*x^3+5*x^2+7*x,2*x^6-3*x^5-15*x^4+20*x^3+24*x^2-31*x-5,4*x^6-9*x^5-25*x^4+53*x^3+23*x^2-43*x-2,x^5-x^4-7*x^3+5*x^2+8*x-2,-8*x^6+13*x^5+52*x^4-70*x^3-48*x^2+35*x+6,-2*x^5+3*x^4+14*x^3-17*x^2-14*x+16,-7*x^6+14*x^5+45*x^4-84*x^3-46*x^2+74*x+16,-x^6+2*x^5+7*x^4-13*x^3-10*x^2+15*x+4,-6*x^6+9*x^5+40*x^4-51*x^3-42*x^2+36*x+6,-4*x^6+7*x^5+27*x^4-39*x^3-31*x^2+20*x+12,-8*x^6+13*x^5+51*x^4-71*x^3-45*x^2+38*x+8,-4*x^5+2*x^4+29*x^3-10*x^2-35*x+8,3*x^6-6*x^5-19*x^4+32*x^3+16*x^2-14*x,x^6-x^5-7*x^4+5*x^3+6*x^2+3*x+1,3*x^6-4*x^5-21*x^4+21*x^3+27*x^2-12*x-4,-3*x^6+7*x^5+14*x^4-40*x^3+15*x^2+25*x-26,x^6-x^5-7*x^4+8*x^3+8*x^2-11*x-2,3*x^6-4*x^5-24*x^4+27*x^3+42*x^2-39*x-5,2*x^6-5*x^5-9*x^4+28*x^3-12*x^2-15*x+22,6*x^6-9*x^5-42*x^4+48*x^3+56*x^2-29*x-10,4*x^6-8*x^5-27*x^4+45*x^3+32*x^2-28*x-4,-x^5+x^4+7*x^3-5*x^2-8*x+2,7*x^6-16*x^5-40*x^4+95*x^3+11*x^2-69*x+10,-2*x^5+7*x^4+10*x^3-41*x^2+4*x+24,-3*x^6+6*x^5+20*x^4-35*x^3-21*x^2+27*x+6,5*x^6-10*x^5-32*x^4+57*x^3+33*x^2-39*x-14,-2*x^6-x^5+18*x^4+9*x^3-36*x^2-12*x,3*x^6-11*x^5-11*x^4+67*x^3-25*x^2-54*x+13,-x^6+2*x^5+7*x^4-12*x^3-10*x^2+12*x+2,-x^6+x^5+7*x^4-5*x^3-6*x^2-4*x+4,5*x^6-11*x^5-29*x^4+63*x^3+12*x^2-44*x+4,2*x^6-4*x^5-12*x^4+21*x^3+7*x^2-2*x-2,5*x^6-7*x^5-36*x^4+40*x^3+47*x^2-23*x-2,2*x^6-10*x^5-2*x^4+63*x^3-48*x^2-57*x+32,2*x^6-2*x^5-15*x^4+11*x^3+24*x^2-14*x-4,2*x^6-2*x^5-16*x^4+11*x^3+29*x^2-9*x-7,-3*x^6+7*x^5+18*x^4-43*x^3-15*x^2+37*x+4,4*x^6-12*x^5-20*x^4+75*x^3-4*x^2-71*x+8,-5*x^6+7*x^5+34*x^4-39*x^3-35*x^2+22*x-6,x^6-7*x^4-4*x^3+6*x^2+16*x,-4*x^6+7*x^5+25*x^4-41*x^3-20*x^2+29*x+4,3*x^6-5*x^5-17*x^4+25*x^3-3*x+17,-4*x^6+7*x^5+26*x^4-40*x^3-26*x^2+27*x+6,-5*x^6+10*x^5+28*x^4-52*x^3-8*x^2+14*x-8,4*x^6-5*x^5-29*x^4+27*x^3+39*x^2-20*x-4,-4*x^6+13*x^5+21*x^4-83*x^3-7*x^2+82*x+22,-x^2+2,-4*x^6+7*x^5+27*x^4-45*x^3-31*x^2+54*x+6,x^6-3*x^5-5*x^4+19*x^3+4*x^2-16*x,-2*x^6+3*x^5+13*x^4-16*x^3-11*x^2+7*x-3,-x^6+3*x^5+5*x^4-19*x^3+2*x^2+22*x,-4*x^6+3*x^5+28*x^4-9*x^3-32*x^2-18*x-4,3*x^6-5*x^5-19*x^4+27*x^3+21*x^2-19*x-2,5*x^6-12*x^5-32*x^4+75*x^3+29*x^2-67*x+2,-3*x^6+7*x^5+17*x^4-41*x^3-7*x^2+35*x-6,-6*x^6+14*x^5+35*x^4-83*x^3-15*x^2+61*x-16,3*x^6-5*x^5-19*x^4+27*x^3+16*x^2-14*x-2,-10*x^6+26*x^5+56*x^4-159*x^3-20*x^2+137*x-2,11*x^6-13*x^5-79*x^4+71*x^3+104*x^2-50*x-12,-3*x^6+4*x^5+20*x^4-21*x^3-21*x^2+19*x-6,4*x^6-6*x^5-27*x^4+33*x^3+33*x^2-23*x-6,-2*x^6+3*x^5+10*x^4-11*x^3+5*x^2-16*x-5,5*x^6-11*x^5-28*x^4+66*x^3+6*x^2-50*x+12,3*x^6-8*x^5-15*x^4+48*x^3-4*x^2-40*x+4,-x^5+2*x^4+5*x^3-10*x^2,-3*x^6+7*x^5+18*x^4-41*x^3-15*x^2+34*x+8,-x^6+5*x^5-31*x^3+31*x^2+24*x-20,-4*x^6+37*x^4+3*x^3-82*x^2-x+25,2*x^6-14*x^4-x^3+16*x^2-5*x,-5*x^6+7*x^5+35*x^4-39*x^3-42*x^2+28*x,x^2-2,5*x^6-10*x^5-26*x^4+54*x^3-5*x^2-26*x+18,-x^6+6*x^5+2*x^4-40*x^3+15*x^2+40*x+6,-x^6-3*x^5+10*x^4+25*x^3-23*x^2-34*x-2,-13*x^6+21*x^5+85*x^4-117*x^3-84*x^2+77*x+10,4*x^6-10*x^5-24*x^4+63*x^3+20*x^2-61*x-12,15*x^6-22*x^5-103*x^4+123*x^3+122*x^2-81*x-16,-3*x^6+5*x^5+19*x^4-29*x^3-14*x^2+22*x-2,x^6-9*x^4+24*x^2-20,x^6-3*x^5-2*x^4+15*x^3-17*x^2-6*x+4,-x^6+3*x^5+4*x^4-16*x^3+4*x^2+4*x-2,-2*x^6+6*x^5+9*x^4-37*x^3+12*x^2+35*x-27,7*x^6-10*x^5-48*x^4+54*x^3+57*x^2-30*x-12,-4*x^6+11*x^5+25*x^4-74*x^3-25*x^2+91*x+12,2*x^6-3*x^5-14*x^4+16*x^3+18*x^2-9*x-2,7*x^6-13*x^5-42*x^4+76*x^3+23*x^2-67*x+8,-7*x^6+14*x^5+41*x^4-80*x^3-16*x^2+52*x-18,-7*x^6+13*x^5+46*x^4-77*x^3-51*x^2+64*x+16,6*x^6-10*x^5-39*x^4+55*x^3+37*x^2-19*x-2,-x^6+2*x^5+6*x^4-11*x^3-4*x^2+6*x,9*x^6-11*x^5-61*x^4+53*x^3+64*x^2-2*x+4,-x^5+2*x^4+5*x^3-10*x^2-x+5,7*x^6-11*x^5-46*x^4+62*x^3+49*x^2-43*x-8,5*x^6-5*x^5-38*x^4+23*x^3+61*x^2+2*x-12,7*x^6-9*x^5-49*x^4+47*x^3+62*x^2-30*x-4,x^6+2*x^5-14*x^4-11*x^3+44*x^2-3*x-7,6*x^6-13*x^5-37*x^4+77*x^3+27*x^2-56*x-4,-5*x^6+8*x^5+30*x^4-45*x^3-15*x^2+37*x-14,x^5-8*x^3+12*x,2*x^6-4*x^5-16*x^4+27*x^3+34*x^2-33*x-31,-3*x^6+3*x^5+21*x^4-18*x^3-24*x^2+17*x+2,-4*x^6+8*x^5+27*x^4-49*x^3-35*x^2+51*x+14,8*x^5-8*x^4-55*x^3+38*x^2+63*x-2,-7*x^6+18*x^5+38*x^4-107*x^3-8*x^2+77*x-5,-11*x^6+17*x^5+71*x^4-89*x^3-64*x^2+44*x+8,-2*x^5+x^4+16*x^3-3*x^2-26*x-6,-19*x^6+28*x^5+128*x^4-152*x^3-143*x^2+88*x+12,2*x^6-3*x^5-13*x^4+12*x^3+15*x^2+5*x-4,-x^6+x^5+6*x^4-2*x^3-3*x^2-11*x,2*x^6-2*x^5-16*x^4+11*x^3+28*x^2-5*x-10,-3*x^6+2*x^5+25*x^4-8*x^3-41*x^2-x+2,x^5-7*x^4-4*x^3+45*x^2-x-46,-3*x^6+4*x^5+21*x^4-22*x^3-26*x^2+14*x+2,-x^5-x^4+8*x^3+7*x^2-7*x-2,3*x^6-5*x^5-18*x^4+27*x^3+7*x^2-18*x+8,2*x^6-6*x^5-7*x^4+37*x^3-26*x^2-30*x+24,-3*x^6+6*x^5+21*x^4-39*x^3-30*x^2+42*x+8,2*x^6-7*x^5-12*x^4+49*x^3+10*x^2-60*x-6,-6*x^6+11*x^5+41*x^4-63*x^3-52*x^2+49*x+22,x^6-2*x^5-6*x^4+11*x^3+4*x^2-6*x,x^6-2*x^5-4*x^4+12*x^3-5*x^2-14*x-4,x^6-5*x^5-x^4+28*x^3-20*x^2-11*x-4,-2*x^6+x^5+16*x^4-4*x^3-31*x^2+4*x+4,8*x^6-20*x^5-45*x^4+122*x^3+19*x^2-106*x-6,x^6-x^5-5*x^4+2*x^3-4*x^2+5*x+2,-x^6-x^5+16*x^4+2*x^3-57*x^2+12*x+21,x^6-x^5-9*x^4+7*x^3+21*x^2-10*x-14,4*x^6-4*x^5-32*x^4+26*x^3+55*x^2-42*x-3,5*x^6-9*x^5-30*x^4+50*x^3+15*x^2-27*x-4,5*x^6-10*x^5-29*x^4+56*x^3+12*x^2-34*x+4,5*x^6-13*x^5-27*x^4+75*x^3+x^2-46*x+8,5*x^6-6*x^5-36*x^4+32*x^3+46*x^2-13*x-10,x^6-x^5-7*x^4+5*x^3+8*x^2-2*x,3*x^5-5*x^4-19*x^3+25*x^2+18*x-8,-13*x^6+20*x^5+86*x^4-106*x^3-87*x^2+52*x+12,-3*x^6+13*x^5+8*x^4-80*x^3+39*x^2+69*x-24,-2*x^6+3*x^5+14*x^4-17*x^3-14*x^2+16*x,4*x^6-9*x^5-23*x^4+54*x^3+11*x^2-53*x,-10*x^6+22*x^5+59*x^4-131*x^3-35*x^2+105*x+14,3*x^6-6*x^5-17*x^4+34*x^3+4*x^2-26*x+8,-2*x^6+4*x^5+12*x^4-23*x^3-8*x^2+15*x+2,-5*x^6+12*x^5+27*x^4-73*x^3+61*x-14,-9*x^6+10*x^5+63*x^4-50*x^3-78*x^2+18*x+6,-3*x^6+10*x^5+13*x^4-61*x^3+17*x^2+45*x-19,-9*x^6+15*x^5+61*x^4-83*x^3-72*x^2+56*x+8,4*x^6-11*x^5-21*x^4+64*x^3+x^2-40*x+3,-7*x^6+7*x^5+51*x^4-35*x^3-72*x^2+14*x+16,2*x^5-3*x^4-13*x^3+15*x^2+11*x-4,-4*x^6+2*x^5+29*x^4-10*x^3-35*x^2+8*x,-2*x^6-2*x^5+18*x^4+19*x^3-33*x^2-35*x-1,6*x^6-16*x^5-31*x^4+93*x^3-9*x^2-65*x+22,-5*x^6+9*x^5+33*x^4-54*x^3-28*x^2+45*x-22,3*x^6-4*x^5-20*x^4+19*x^3+26*x^2-10*x-2,-2*x^5+4*x^4+14*x^3-28*x^2-13*x+29,4*x^6-6*x^5-26*x^4+32*x^3+23*x^2-15*x-2,9*x^6-18*x^5-56*x^4+108*x^3+44*x^2-96*x+3,-5*x^6+5*x^5+35*x^4-24*x^3-44*x^2+7*x+6,-x^6+6*x^5+x^4-34*x^3+16*x^2+17*x-1,x^6+2*x^5-9*x^4-15*x^3+22*x^2+17*x-2,2*x^5-2*x^4-13*x^3+8*x^2+11*x+6,8*x^6-15*x^5-48*x^4+81*x^3+30*x^2-38*x-6,-2*x^6+4*x^5+13*x^4-23*x^3-14*x^2+13*x+7,-3*x^6+13*x^5+10*x^4-82*x^3+25*x^2+78*x,x^5-2*x^4-3*x^3+9*x^2-10*x-8,15*x^6-24*x^5-102*x^4+134*x^3+109*x^2-76*x-12,-9*x^6+17*x^5+57*x^4-98*x^3-48*x^2+65*x-12,4*x^6-7*x^5-27*x^4+38*x^3+26*x^2-20*x+4,-x^6+3*x^5+2*x^4-12*x^3+23*x^2-9*x-32,-x^6+x^5+7*x^4-5*x^3-8*x^2+2*x,10*x^6-17*x^5-63*x^4+91*x^3+53*x^2-46*x-8,6*x^6-9*x^5-42*x^4+52*x^3+56*x^2-51*x-14,11*x^6-30*x^5-61*x^4+183*x^3+28*x^2-157*x-30,-2*x^6+7*x^5+10*x^4-41*x^3+4*x^2+24*x,-7*x^6+13*x^5+41*x^4-66*x^3-21*x^2+13*x+11,-7*x^5+10*x^4+50*x^3-50*x^2-57*x+18,-1,10*x^6-17*x^5-68*x^4+98*x^3+76*x^2-69*x-10,x^6-7*x^5+4*x^4+38*x^3-57*x^2-11*x+48,-5*x^6+8*x^5+33*x^4-46*x^3-36*x^2+34*x+12,5*x^6-4*x^5-37*x^4+18*x^3+50*x^2-4*x-8,x^6-2*x^5-8*x^4+14*x^3+15*x^2-20*x-6,-2*x^5+14*x^3+2*x^2-21*x-1,-2*x^5+3*x^4+13*x^3-13*x^2-13*x,5*x^6-15*x^5-19*x^4+88*x^3-46*x^2-61*x+44,-3*x^6+4*x^5+20*x^4-19*x^3-27*x^2+15*x+2,4*x^6-6*x^5-25*x^4+33*x^3+17*x^2-18*x-1,5*x^6-8*x^5-36*x^4+47*x^3+49*x^2-43*x-10,-x^6+2*x^5+9*x^4-17*x^3-17*x^2+24*x-6,4*x^6-6*x^5-29*x^4+33*x^3+44*x^2-24*x-4,-x^5+x^4+8*x^3-6*x^2-12*x+4,11*x^6-23*x^5-65*x^4+134*x^3+38*x^2-105*x+14,5*x^5-7*x^4-28*x^3+38*x^2+7*x-25,-2*x^6+4*x^5+13*x^4-22*x^3-11*x^2+10*x-4,-8*x^6+13*x^5+56*x^4-77*x^3-70*x^2+60*x+14,-2*x^6+3*x^5+13*x^4-16*x^3-14*x^2+18*x-4,-2*x^6+x^5+8*x^4+3*x^3+22*x^2-28*x-32,6*x^6-10*x^5-39*x^4+55*x^3+37*x^2-29*x-4,4*x^6-11*x^5-19*x^4+64*x^3-9*x^2-41*x,-x^6-x^5+6*x^4+10*x^3+2*x^2-25*x-24,6*x^6-9*x^5-40*x^4+48*x^3+39*x^2-25*x+3,4*x^6-8*x^5-25*x^4+48*x^3+21*x^2-36*x-8,-6*x^6+11*x^5+41*x^4-68*x^3-55*x^2+65*x+32,-5*x^6+5*x^5+32*x^4-20*x^3-27*x^2-9*x+2,2*x^5-3*x^4-13*x^3+16*x^2+14*x-8,4*x^6-4*x^5-29*x^4+19*x^3+39*x^2-11*x-2,5*x^6-7*x^5-31*x^4+39*x^3+16*x^2-36*x+30,-5*x^6+5*x^5+33*x^4-22*x^3-33*x^2-4*x-6,-9*x^6+31*x^5+40*x^4-197*x^3+41*x^2+188*x-36,7*x^6-8*x^5-50*x^4+39*x^3+66*x^2-16*x-6,3*x^6-6*x^5-19*x^4+34*x^3+16*x^2-20*x-4,-3*x^6+2*x^5+24*x^4-8*x^3-43*x^2-4*x+12,-9*x^6+15*x^5+60*x^4-84*x^3-68*x^2+53*x+15,-10*x^6+13*x^5+73*x^4-73*x^3-101*x^2+47*x+10,7*x^6-15*x^5-42*x^4+89*x^3+27*x^2-70*x+8,7*x^6-9*x^5-51*x^4+49*x^3+70*x^2-34*x-12,-x^6+2*x^5+9*x^4-18*x^3-17*x^2+32*x+1,-3*x^6+9*x^5+17*x^4-59*x^3-10*x^2+66*x+8,1,-x^3+4*x,-8*x^6+12*x^5+53*x^4-67*x^3-51*x^2+51*x-6,-9*x^6+15*x^5+55*x^4-83*x^3-38*x^2+50*x+8,-x^6+x^5+9*x^4-9*x^3-20*x^2+28*x+4,x^6-4*x^5+27*x^3-31*x^2-19*x+30,-2*x^6+9*x^5+7*x^4-54*x^3+16*x^2+28*x-2,-5*x^6+7*x^5+34*x^4-37*x^3-39*x^2+19*x+4,-6*x^6+13*x^5+38*x^4-81*x^3-32*x^2+84*x-4,-x^6+4*x^5+8*x^4-33*x^3-15*x^2+59*x+10,-6*x^6+13*x^5+35*x^4-74*x^3-12*x^2+39*x-25,-13*x^6+16*x^5+91*x^4-84*x^3-110*x^2+40*x+8,5*x^6-6*x^5-35*x^4+31*x^3+44*x^2-21*x-2,5*x^6-8*x^5-32*x^4+48*x^3+22*x^2-31*x+10,x^4-7*x^2+10,8*x^6-17*x^5-50*x^4+94*x^3+48*x^2-53*x-10,-4*x^6+4*x^5+27*x^4-20*x^3-20*x^2+6*x-17,-3*x^6+6*x^5+18*x^4-34*x^3-10*x^2+19*x+6,-3*x^6+14*x^5+10*x^4-89*x^3+23*x^2+83*x-5,-10*x^6+17*x^5+67*x^4-93*x^3-77*x^2+50*x+12,7*x^6-16*x^5-47*x^4+105*x^3+64*x^2-123*x-50,5*x^6-8*x^5-32*x^4+43*x^3+27*x^2-21*x,-7*x^6+10*x^5+45*x^4-53*x^3-38*x^2+33*x+2,-14*x^6+26*x^5+91*x^4-150*x^3-93*x^2+108*x+20,-8*x^5+13*x^4+53*x^3-66*x^2-48*x+16,11*x^6-12*x^5-78*x^4+61*x^3+101*x^2-29*x-26,-x^6+2*x^5+11*x^4-18*x^3-39*x^2+42*x+37,-8*x^6+11*x^5+54*x^4-60*x^3-50*x^2+27*x+6,-x^6+10*x^4+x^3-26*x^2-3*x+13,4*x^6+x^5-37*x^4-11*x^3+81*x^2+22*x-28,6*x^6-5*x^5-50*x^4+28*x^3+96*x^2-23*x-22,-5*x^6+4*x^5+39*x^4-21*x^3-62*x^2+17*x+4,3*x^6-x^5-26*x^4+5*x^3+55*x^2-12*x-28,5*x^6-7*x^5-33*x^4+39*x^3+37*x^2-27*x-10,8*x^6-15*x^5-49*x^4+83*x^3+31*x^2-48*x+2,4*x^6-6*x^5-27*x^4+35*x^3+29*x^2-29*x-6,-5*x^6+8*x^5+35*x^4-46*x^3-45*x^2+30*x+11,-x^6+2*x^5+7*x^4-14*x^3-10*x^2+20*x,-2*x^6+11*x^5+5*x^4-70*x^3+21*x^2+63*x+8,-5*x^6+9*x^5+34*x^4-54*x^3-35*x^2+41*x+6,-4*x^6+11*x^5+19*x^4-71*x^3+15*x^2+78*x-24,5*x^6-5*x^5-36*x^4+22*x^3+43*x^2+9*x+14,2*x^6-4*x^5-11*x^4+21*x^3+3*x^2-9*x-2,-16*x^6+25*x^5+103*x^4-134*x^3-93*x^2+69*x+8,-x^4+x^3+7*x^2-5*x-7,8*x^6-12*x^5-51*x^4+70*x^3+43*x^2-54*x+6,9*x^6-13*x^5-62*x^4+64*x^3+81*x^2-9*x-24,-13*x^6+20*x^5+86*x^4-107*x^3-87*x^2+55*x+10,6*x^5-12*x^4-34*x^3+61*x^2+8*x-17,x^3-4*x,-2*x^6-8*x^5+28*x^4+57*x^3-92*x^2-65*x+46,10*x^6-11*x^5-71*x^4+60*x^3+89*x^2-37*x-10,-x^6+3*x^5+x^4-16*x^3+30*x^2+x-14,8*x^6-23*x^5-45*x^4+148*x^3+19*x^2-151*x-12,x^6-3*x^5-4*x^4+20*x^3-5*x^2-27*x,-7*x^6+7*x^5+50*x^4-36*x^3-57*x^2+9*x+2,3*x^6-9*x^5-15*x^4+56*x^3-2*x^2-51*x-2,-13*x^6+20*x^5+84*x^4-109*x^3-74*x^2+63*x-6,7*x^6-8*x^5-50*x^4+38*x^3+64*x^2+2*x-7,6*x^6-12*x^5-37*x^4+72*x^3+31*x^2-56*x-8,-2*x^6+2*x^5+16*x^4-13*x^3-27*x^2+21*x-5,22*x^6-24*x^5-160*x^4+123*x^3+226*x^2-57*x-44,-4*x^6+3*x^5+32*x^4-13*x^3-55*x^2-3*x+10,-7*x^6+10*x^5+46*x^4-53*x^3-47*x^2+31*x+6,-2*x^6+12*x^5+3*x^4-74*x^3+27*x^2+62*x+16,4*x^6-8*x^5-25*x^4+51*x^3+23*x^2-51*x-2,-8*x^6+12*x^5+52*x^4-66*x^3-47*x^2+37*x-2,x^6+x^5-10*x^4-4*x^3+17*x^2-7*x-2,7*x^6-12*x^5-43*x^4+65*x^3+26*x^2-29*x+34,-3*x^6+11*x^5+9*x^4-67*x^3+39*x^2+47*x-28,-2*x^6+5*x^5+11*x^4-29*x^3-2*x^2+19*x+2,-2*x^6+3*x^5+13*x^4-14*x^3-11*x^2-5*x+4,-2*x^6+2*x^5+13*x^4-7*x^3-13*x^2-7*x+2,6*x^6-13*x^5-33*x^4+72*x^3+7*x^2-35*x-2,x^6-5*x^5-3*x^4+31*x^3-8*x^2-30*x-2,-5*x^6+13*x^5+26*x^4-77*x^3-x^2+56*x+8,3*x^6-11*x^5-14*x^4+68*x^3-11*x^2-53*x+22,3*x^6-4*x^5-22*x^4+22*x^3+31*x^2-14*x-8,-6*x^6+10*x^5+39*x^4-64*x^3-33*x^2+74*x-2,15*x^6-21*x^5-99*x^4+114*x^3+94*x^2-69*x-14,-5*x^6+21*x^5+15*x^4-132*x^3+63*x^2+118*x-44,-6*x^6+6*x^5+43*x^4-29*x^3-57*x^2+11*x+10,-4*x^6+10*x^5+22*x^4-59*x^3-3*x^2+47*x-7,-15*x^6+25*x^5+98*x^4-142*x^3-97*x^2+93*x+14,-x^6+x^5+7*x^4-3*x^3-7*x^2-7*x-8,12*x^6-25*x^5-69*x^4+143*x^3+35*x^2-96*x+4,6*x^5-8*x^4-39*x^3+36*x^2+33*x+8,-2*x^6+3*x^5+14*x^4-17*x^3-17*x^2+11*x+2,3*x^6-4*x^5-15*x^4+21*x^3-15*x^2-11*x+33,17*x^6-36*x^5-102*x^4+211*x^3+63*x^2-155*x+14,6*x^6-9*x^5-34*x^4+45*x^3+x^2-x+22,-x^6+2*x^5+5*x^4-10*x^3-x^2+5*x,11*x^6-14*x^5-80*x^4+75*x^3+111*x^2-37*x-22,9*x^6-7*x^5-67*x^4+32*x^3+98*x^2+x-16,-x^6-x^5+12*x^4+3*x^3-33*x^2+14*x-6,15*x^6-23*x^5-102*x^4+126*x^3+117*x^2-67*x-10,6*x^6-13*x^5-35*x^4+74*x^3+13*x^2-46*x+17,11*x^6-18*x^5-70*x^4+95*x^3+57*x^2-33*x-6,x^4-x^3-7*x^2+5*x+7,6*x^6-11*x^5-36*x^4+57*x^3+20*x^2-18*x-2,4*x^6-11*x^5-20*x^4+64*x^3-4*x^2-35*x+14,7*x^6-15*x^5-35*x^4+79*x^3-20*x^2-32*x+56,2*x^6-x^5-18*x^4+7*x^3+34*x^2-4*x-8,-12*x^6+15*x^5+80*x^4-80*x^3-78*x^2+41*x+10,-18*x^5+26*x^4+119*x^3-136*x^2-121*x+54,x^6-10*x^4+24*x^2-8,4*x^6-10*x^5-21*x^4+56*x^3-3*x^2-18*x+14,4*x^6-10*x^5-23*x^4+60*x^3+13*x^2-53*x-4,-5*x^6+15*x^5+22*x^4-90*x^3+22*x^2+67*x+5,-7*x^6+10*x^5+45*x^4-55*x^3-42*x^2+37*x-6,x^6+9*x^5-19*x^4-67*x^3+66*x^2+94*x-12,-8*x^6+15*x^5+51*x^4-87*x^3-41*x^2+58*x+8,-3*x^6+4*x^5+22*x^4-23*x^3-31*x^2+21*x+2,2*x^6+4*x^5-17*x^4-36*x^3+27*x^2+68*x+12,-4*x^6+5*x^5+29*x^4-30*x^3-35*x^2+37*x-12,-10*x^6+17*x^5+68*x^4-99*x^3-84*x^2+72*x+14,x^6-4*x^5+x^4+17*x^3-40*x^2+15*x+34,-19*x^6+28*x^5+128*x^4-149*x^3-135*x^2+73*x+22,-4*x^6+7*x^5+28*x^4-39*x^3-40*x^2+20*x+14,-2*x^6+x^5+16*x^4-3*x^3-26*x^2-6*x,-2*x^6+4*x^5+12*x^4-19*x^3-12*x^2-9*x+10,-24*x^6+41*x^5+155*x^4-230*x^3-145*x^2+143*x+2,-x^5+x^4+9*x^3-9*x^2-12*x+12,5*x^6-7*x^5-38*x^4+41*x^3+51*x^2-26*x-4,-7*x^6+9*x^5+41*x^4-43*x^3-8*x^2+2*x-30,-3*x^6+5*x^5+21*x^4-28*x^3-30*x^2+17*x+24,-3*x^6+6*x^5+18*x^4-35*x^3-12*x^2+27*x+3,6*x^6-10*x^5-39*x^4+54*x^3+41*x^2-32*x-4,3*x^6-7*x^5-18*x^4+39*x^3+15*x^2-20*x-8,-4*x^6+6*x^5+25*x^4-24*x^3-16*x^2-13*x-2,x^6-3*x^5-5*x^4+18*x^3-x^2-13*x-1,x^6-7*x^5-4*x^4+45*x^3-x^2-46*x,4*x^6-10*x^5-24*x^4+63*x^3+20*x^2-61*x-16,-6*x^6+10*x^5+39*x^4-57*x^3-37*x^2+41*x,4*x^6-16*x^5-9*x^4+96*x^3-74*x^2-70*x+71,-x^6-x^5+8*x^4+7*x^3-7*x^2-2*x,x^6-10*x^5-x^4+69*x^3-14*x^2-82*x+1,-x^6+5*x^5+2*x^4-30*x^3+13*x^2+21*x-2,-4*x^6+4*x^5+27*x^4-13*x^3-29*x^2-27*x+14,2*x^6-x^5-13*x^4+16*x^2+2*x-4,3*x^5-6*x^4-19*x^3+32*x^2+16*x-14,2*x^6-14*x^5+89*x^3-53*x^2-83*x+10,2*x^6+2*x^5-19*x^4-12*x^3+39*x^2-4*x-8,x^6-6*x^5-x^4+36*x^3-14*x^2-28*x-4,-3*x^6+12*x^5+16*x^4-78*x^3-7*x^2+76*x+8,-7*x^6+15*x^5+43*x^4-90*x^3-29*x^2+82*x+8,-5*x^6+10*x^5+37*x^4-65*x^3-70*x^2+75*x+66,2*x^6-3*x^5-14*x^4+17*x^3+17*x^2-11*x-2,4*x^6-x^5-36*x^4+x^3+82*x^2+12*x-22,-2*x^6+13*x^5+3*x^4-84*x^3+37*x^2+87*x-18,-2*x^6+5*x^5+12*x^4-29*x^3-4*x^2+24*x-14,-x^6+2*x^5+3*x^4-7*x^3+12*x^2-15*x-2,-x^5-3*x^4+14*x^3+17*x^2-37*x-10,-3*x^6+2*x^5+24*x^4-9*x^3-46*x^2+20,x^6-3*x^5-4*x^4+18*x^3-5*x^2-15*x,12*x^6-21*x^5-78*x^4+123*x^3+78*x^2-94*x-16,-2*x^6-8*x^5+21*x^4+64*x^3-51*x^2-92*x+20,5*x^6-12*x^5-27*x^4+69*x^3-2*x^2-47*x+10]];

E[302,1] = [x, [1,1,-1,1,-4,-1,-2,1,-2,-4,2,-1,-6,-2,4,1,3,-2,0,-4,2,2,-6,-1,11,-6,5,-2,0,4,-3,1,-2,3,8,-2,-2,0,6,-4,12,2,-6,2,8,-6,-7,-1,-3,11,-3,-6,9,5,-8,-2,0,0,-10,4,-13,-3,4,1,24,-2,-7,3,6,8,12,-2,4,-2,-11,0,-4,6,10,-4,1,12,-11,2,-12,-6,0,2,0,8,12,-6,3,-7,0,-1,-7,-3,-4,11,-3,-3,-11,-6,-8,9,8,5,5,-8,2,-2,-6,0,24,0,12,-10,-6,4,-7,-13,-12,-3,-24,4,-7,1,6,24,-13,-2,0,-7,-20,3,13,6,-20,8,7,12,-12,-2,0,4,3,-2,10,-11,1,0,-6,-4,12,6,-7,10,-9,-4,12,1,-1,12,8,-11,23,2,23,-12,0,-6,4,0,-22,2,10,0,-20,8,7,12,13,-6,8,3,6,-7,-10,0,-23,-1,-21,-7,-24,-3,-17,-4,20,11,7,-3,0,-3,-48,-11,12,-6,0,-8,12,9,-12,8,24,5,6,5,-4,-8,-18,2,-16,-2,-22,-6,-2,0,20,24,4,0,4,12,28,-10,-10,-6,15,4,17,-7,-16,-13,12,-12,0,-3,11,-24,2,4,-12,-7,12,1,28,6,4,24,0,-13,-16,-2,-36,0,0,-7,20,-20,22,3,-12,13,22,6,13,-20,6,8,-18,7,4,12,0,-12,-24,-2,-8,0,7,4,14,3,40,-2,10,10,36,-11,12,1,3,0,52,-6,-2,-4,11,12,32,6,-6,-7,-16,10,33,-9,0,-4,-8,12,0,1,-66,-1,-5,12,14,8,12,-11,4,23,28,2,8,23,6,-12,-6,0,20,-6,-24,4,-22,0,-10,-22,-30,2,4,10,-48,0,6,-20,20,8,-19,7,7,12,-16,13,-12,-6,-24,8,-18,3,-1,6,24,-7,0,-10,-20,0,7,-23,-36,-1,16,-21,12,-7,-30,-24,-18,-3,13,-17,-40,-4,-12,20,0,11,-13,7,18,-3,-4,0,-4,-3,30,-48,-13,-11,20,12,44,-6,20,0,-15,-8,-3,12,14,9,33,-12,26,8,12,24,-18,5,-6,6,0,5,0,-4,0,-8,6,-18,9,2,0,-16,-10,-2,-30,-22,24,-6,-1,-2,-48,0,-17,20,15,24,2,4,-41,0,-12,4,-7,12,14,28,7,-10,-12,-10,0,-6,-18,15,-30,4,12,17,-12,-7,28,-16,-7,-13,1,12,12,-12,0,0,16,-3,-24,11,25,-24]];
E[302,2] = [x, [1,1,-3,1,0,-3,-2,1,6,0,-6,-3,-2,-2,0,1,-5,6,-8,0,6,-6,6,-3,-5,-2,-9,-2,8,0,9,1,18,-5,0,6,2,-8,6,0,0,6,-6,-6,0,6,-3,-3,-3,-5,15,-2,-9,-9,0,-2,24,8,2,0,5,9,-12,1,0,18,3,-5,-18,0,4,6,-8,2,15,-8,12,6,10,0,9,0,-1,6,0,-6,-24,-6,8,0,4,6,-27,-3,0,-3,-15,-3,-36,-5,3,15,-15,-2,0,-9,0,-9,-13,0,-6,-2,6,24,0,8,-12,2,10,0,25,5,0,9,0,-12,-11,1,18,0,-7,18,16,3,0,-5,5,-18,-12,0,9,4,12,6,0,-8,9,2,6,15,1,-8,-30,12,0,6,-17,10,27,0,-12,9,-3,0,0,-1,3,6,-9,0,-48,-6,-12,-24,10,-6,-6,8,-4,0,25,4,-15,6,0,-27,30,-3,18,0,5,-3,-5,-15,0,-3,9,-36,-4,-5,-9,3,-16,15,0,-15,36,-2,48,0,-20,-9,-12,0,0,-9,-18,-13,24,0,10,-6,8,-2,-30,6,26,24,-4,0,-36,8,-24,-12,0,2,-30,10,-5,0,-23,25,0,5,0,0,16,9,3,0,2,-12,-36,-11,0,1,28,18,-4,0,48,-7,8,18,0,16,-24,3,-28,0,22,-5,-12,5,30,-18,-5,-12,54,0,-6,9,-12,4,0,12,0,6,8,0,45,-8,18,9,0,2,54,6,-12,15,12,1,-9,-8,0,-30,-22,12,45,0,-24,6,-22,-17,0,10,15,27,-48,0,0,-12,40,9,10,-3,39,0,6,0,8,-1,12,3,0,6,-8,-9,-18,0,-54,-48,20,-6,0,-12,18,-24,10,10,18,-6,24,-6,0,8,-30,-4,-36,0,45,25,-75,4,0,-15,28,6,0,0,18,-27,-23,30,0,-3,-16,18,20,0,33,5,-12,-3,0,-5,-36,-15,-18,0,-30,-3,21,9,0,-36,12,-4,-48,-5,27,-9,-18,3,0,-16,-12,15,2,0,-15,-15,-4,36,0,-2,36,48,-13,0,-13,-20,-18,-9,25,-12,-10,0,-36,0,18,-9,2,-18,0,-13,-48,24,0,0,-18,10,3,-6,0,8,-18,-2,-14,-30,0,6,-3,26,0,24,-41,-4,45,0,-2,-36,11,8,0,-24,-29,-12,-6,0,51,2,36,-30,40,10,-54,-5,6,0,-4,-23,36,25,0,0,37,5,9,0,-16,0,-40,16,0,9,-8,3,-13,0]];
E[302,3] = [x^4-2*x^3-4*x^2+8*x-1, [1,1,x,1,-x^2+3,x,x^3-5*x+2,1,x^2-3,-x^2+3,-2*x^3+x^2+8*x-3,x,-x^3+2*x^2+3*x-4,x^3-5*x+2,-x^3+3*x,1,-1,x^2-3,2*x^3-x^2-10*x+5,-x^2+3,2*x^3-x^2-6*x+1,-2*x^3+x^2+8*x-3,x^3-2*x^2-3*x+4,x,2*x^3-2*x^2-8*x+5,-x^3+2*x^2+3*x-4,x^3-6*x,x^3-5*x+2,-2*x,-x^3+3*x,-2*x^3+x^2+8*x-2,1,-3*x^3+13*x-2,-1,-2*x^2+4,x^2-3,2*x^2+4*x-10,2*x^3-x^2-10*x+5,-x^2+4*x-1,-x^2+3,2*x-4,2*x^3-x^2-6*x+1,-2*x^2-2*x+8,-2*x^3+x^2+8*x-3,-2*x^3+2*x^2+8*x-10,x^3-2*x^2-3*x+4,-6*x^3+4*x^2+24*x-13,x,2*x^2-2*x-5,2*x^3-2*x^2-8*x+5,-x,-x^3+2*x^2+3*x-4,4*x^3-2*x^2-15*x+4,x^3-6*x,2*x^2+2*x-6,x^3-5*x+2,3*x^3-2*x^2-11*x+2,-2*x,6*x^3-x^2-26*x+5,-x^3+3*x,-2*x^3+2*x^2+13*x-8,-2*x^3+x^2+8*x-2,2*x^2-4,1,-2*x^3+2*x^2+10*x-12,-3*x^3+13*x-2,x^3-2*x^2-2*x+6,-1,x^2-4*x+1,-2*x^2+4,x^3-2*x^2-x+6,x^2-3,-3*x^3+9*x+2,2*x^2+4*x-10,2*x^3-11*x+2,2*x^3-x^2-10*x+5,-4*x-2,-x^2+4*x-1,4,-x^2+3,2*x^3-5*x^2-8*x+10,2*x-4,-3*x^3+6*x^2+10*x-12,2*x^3-x^2-6*x+1,x^2-3,-2*x^2-2*x+8,-2*x^2,-2*x^3+x^2+8*x-3,-x^3-4*x^2+5*x+8,-2*x^3+2*x^2+8*x-10,4*x^2-6*x-4,x^3-2*x^2-3*x+4,-3*x^3+14*x-2,-6*x^3+4*x^2+24*x-13,2*x^3-4*x^2-8*x+12,x,-6*x^2+2*x+15,2*x^2-2*x-5,-2*x^2-2*x+6,2*x^3-2*x^2-8*x+5,5*x^3-2*x^2-20*x+8,-x,2*x^3-2*x^2-6*x+13,-x^3+2*x^2+3*x-4,-2*x^3+4*x,4*x^3-2*x^2-15*x+4,-7*x^3+8*x^2+27*x-22,x^3-6*x,-3*x^3+2*x^2+12*x-6,2*x^2+2*x-6,2*x^3+4*x^2-10*x,x^3-5*x+2,3*x^3+2*x^2-17*x-4,3*x^3-2*x^2-11*x+2,2*x^3-2*x^2-10*x+12,-2*x,2*x^3-2*x^2-10*x+12,6*x^3-x^2-26*x+5,-x^3+5*x-2,-x^3+3*x,-2*x^3+2*x^2+12*x-9,-2*x^3+2*x^2+13*x-8,2*x^2-4*x,-2*x^3+x^2+8*x-2,2*x^3+2*x^2-10*x-2,2*x^2-4,-4*x^3-2*x^2+22*x+5,1,-2*x^3-2*x^2+8*x,-2*x^3+2*x^2+10*x-12,5*x^3-4*x^2-16*x+16,-3*x^3+13*x-2,-2*x^3+2*x^2+6*x+4,x^3-2*x^2-2*x+6,x^3-3*x-2,-1,2*x^3+3*x^2-6*x-14,x^2-4*x+1,2*x^3-2*x^2+6,-2*x^2+4,-8*x^3+35*x-6,x^3-2*x^2-x+6,-2*x^3+6*x+6,x^2-3,2*x^3-6*x,-3*x^3+9*x+2,2*x^3-2*x^2-5*x,2*x^2+4*x-10,-3*x^3+2*x^2+13*x-8,2*x^3-11*x+2,-1,2*x^3-x^2-10*x+5,-x^2+3,-4*x-2,x^2+2*x-3,-x^2+4*x-1,x^3-8*x+12,4,6*x^3+x^2-28*x+4,-x^2+3,-4*x^2+6*x+4,2*x^3-5*x^2-8*x+10,x^3-6*x^2-4*x+22,2*x-4,2*x^3+2*x^2-6*x,-3*x^3+6*x^2+10*x-12,-6*x^3+7*x^2+30*x-22,2*x^3-x^2-6*x+1,2*x^2-10*x+1,x^2-3,-2*x^3+4*x^2+8*x-12,-2*x^2-2*x+8,2*x^3-5*x^2-6*x+17,-2*x^2,-x^3-2*x^2+9*x+4,-2*x^3+x^2+8*x-3,11*x^3-2*x^2-43*x+6,-x^3-4*x^2+5*x+8,-9*x^3+2*x^2+41*x-10,-2*x^3+2*x^2+8*x-10,8*x^3-4*x^2-33*x+18,4*x^2-6*x-4,-2*x^3+5*x^2+8*x-2,x^3-2*x^2-3*x+4,-8*x^3+8*x^2+28*x-32,-3*x^3+14*x-2,2*x^3-x^2-8*x+3,-6*x^3+4*x^2+24*x-13,-4*x^3+3*x^2+14*x-3,2*x^3-4*x^2-8*x+12,4*x^3+x^2-8*x-10,x,2*x^3-x^2-12*x+16,-6*x^2+2*x+15,-2*x^3+2*x^2+4*x-2,2*x^2-2*x-5,5*x^3-10*x^2-26*x+28,-2*x^2-2*x+6,-8*x^2+24,2*x^3-2*x^2-8*x+5,2*x^2-2*x+1,5*x^3-2*x^2-20*x+8,-4*x^3+2*x^2+12*x-2,-x,-2*x^3+4*x^2+6*x-12,2*x^3-2*x^2-6*x+13,-2*x^3+2*x^2+10*x-12,-x^3+2*x^2+3*x-4,4*x^3-22*x-4,-2*x^3+4*x,-5*x^3-2*x^2+25*x+8,4*x^3-2*x^2-15*x+4,3*x^2-2*x+1,-7*x^3+8*x^2+27*x-22,6*x^3-6*x^2-22*x+26,x^3-6*x,x^3-9*x,-3*x^3+2*x^2+12*x-6,-6*x^3-3*x^2+26*x-3,2*x^2+2*x-6,x^3-2*x^2-3*x+4,2*x^3+4*x^2-10*x,6*x^3-2*x^2-28*x+22,x^3-5*x+2,-2*x^3+3*x^2+10*x-13,3*x^3+2*x^2-17*x-4,6*x^3-9*x^2-34*x+29,3*x^3-2*x^2-11*x+2,-4*x^3+12*x^2+14*x-28,2*x^3-2*x^2-10*x+12,-4*x^2-2*x,-2*x,5*x^3-6*x^2-19*x+10,2*x^3-2*x^2-10*x+12,-2*x^3+9*x^2+14*x-31,6*x^3-x^2-26*x+5,4*x,-x^3+5*x-2,2*x^3+2*x^2-10*x-13,-x^3+3*x,-6*x^3+x^2+32*x-12,-2*x^3+2*x^2+12*x-9,-4*x^3+12*x+2,-2*x^3+2*x^2+13*x-8,-2*x^3+3*x^2+10*x-17,2*x^2-4*x,6*x^2-8*x-12,-2*x^3+x^2+8*x-2,-2*x^2+12*x-3,2*x^3+2*x^2-10*x-2,-2*x^3+2*x^2+14*x-12,2*x^2-4,2*x^3-6*x-6,-4*x^3-2*x^2+22*x+5,x^3-3*x,1,-5*x^3+8*x^2+25*x-30,-2*x^3-2*x^2+8*x,4*x^3-4*x-12,-2*x^3+2*x^2+10*x-12,-2*x^3+6*x,5*x^3-4*x^2-16*x+16,3*x^3-6*x^2-19*x+16,-3*x^3+13*x-2,-x^3-2*x^2-x+6,-2*x^3+2*x^2+6*x+4,-6*x^3+x^2+16*x-1,x^3-2*x^2-2*x+6,2*x^3-x^2-10*x-11,x^3-3*x-2,-2*x^3+14*x+2,-1,4*x^3-6*x^2-4*x,2*x^3+3*x^2-6*x-14,4*x^3-x^2-18*x-5,x^2-4*x+1,-x^3-4*x^2+2*x+18,2*x^3-2*x^2+6,-x^2-2*x+3,-2*x^2+4,x^3+4*x^2-15*x-14,-8*x^3+35*x-6,3*x^3-4*x^2-11*x+10,x^3-2*x^2-x+6,-4*x+2,-2*x^3+6*x+6,-2*x^2+8*x-6,x^2-3,-16,2*x^3-6*x,-6*x^3+2*x^2+15*x,-3*x^3+9*x+2,-5*x^3-8*x^2+27*x+26,2*x^3-2*x^2-5*x,-2*x^3-4*x^2+4*x+4,2*x^2+4*x-10,7*x^3-2*x^2-33*x+6,-3*x^3+2*x^2+13*x-8,-2*x^2+10*x-14,2*x^3-11*x+2,-2*x^3-2*x^2+2*x+10,-1,8*x^3-32*x+5,2*x^3-x^2-10*x+5,-7*x^3+6*x^2+25*x-22,-x^2+3,4*x^3-2*x^2-28*x+6,-4*x-2,2*x^3+2*x^2-3*x+2,x^2+2*x-3,6*x^3+4*x^2-30*x-16,-x^2+4*x-1,-6*x^3+10*x^2+38*x-32,x^3-8*x+12,-4*x^3+2*x^2+16*x-14,4,-2*x^2-7*x-2,6*x^3+x^2-28*x+4,6*x^3-26*x+4,-x^2+3,-6*x^3-x^2+34*x-7,-4*x^2+6*x+4,-2*x^3+x^2+10*x-5,2*x^3-5*x^2-8*x+10,x^3+x-14,x^3-6*x^2-4*x+22,-4*x^3+18*x-3,2*x-4,-x^3+2*x^2-7*x-12,2*x^3+2*x^2-6*x,8*x^3-2*x^2-38*x+4,-3*x^3+6*x^2+10*x-12,8*x^3-8*x^2-28*x+32,-6*x^3+7*x^2+30*x-22,x^3-4*x^2-7*x+18,2*x^3-x^2-6*x+1,3*x^3+4*x^2-15*x-10,2*x^2-10*x+1,8*x^3-5*x^2-28*x+3,x^2-3,-4*x^3+3*x^2+20*x-1,-2*x^3+4*x^2+8*x-12,-10*x^3+6*x^2+42*x-22,-2*x^2-2*x+8,2*x^3-2*x^2-4*x+2,2*x^3-5*x^2-6*x+17,-2*x^3+7*x^2+10*x-37,-2*x^2,8*x^3-14*x^2-30*x+30,-x^3-2*x^2+9*x+4,2*x^3+x^2-16*x+5,-2*x^3+x^2+8*x-3,-8*x^3+6*x^2+26*x-18,11*x^3-2*x^2-43*x+6,-4*x^2-4*x+18,-x^3-4*x^2+5*x+8,-2*x^3+x^2+6*x-1,-9*x^3+2*x^2+41*x-10,6*x^3+4*x^2-30*x-6,-2*x^3+2*x^2+8*x-10,-6*x^3+2*x^2+24*x-9,8*x^3-4*x^2-33*x+18,-2*x^3+4*x^2+7*x-2,4*x^2-6*x-4,6*x^3-2*x^2-18*x+12,-2*x^3+5*x^2+8*x-2,-9*x^3+10*x^2+33*x-32,x^3-2*x^2-3*x+4,2*x^3-4*x^2-6*x+12,-8*x^3+8*x^2+28*x-32,-x^2+12*x+1,-3*x^3+14*x-2,-2*x^3+8*x^2+9*x-4,2*x^3-x^2-8*x+3,6*x^3-2*x^2-18*x+2,-6*x^3+4*x^2+24*x-13,2*x^2-8*x+2,-4*x^3+3*x^2+14*x-3,-3*x^3+2*x^2+7*x-20,2*x^3-4*x^2-8*x+12,-10*x^3+6*x^2+37*x-4,4*x^3+x^2-8*x-10,8*x^3-4*x^2-38*x+12,x,4*x^3+2*x^2-12*x-6,2*x^3-x^2-12*x+16,-6*x^3+6*x^2+22*x-26,-6*x^2+2*x+15,-13*x^3+6*x^2+63*x-38,-2*x^3+2*x^2+4*x-2,-x^3+2*x^2+3*x-4,2*x^2-2*x-5,6*x^3+4*x^2-24*x+5,5*x^3-10*x^2-26*x+28,-4*x^2+12,-2*x^2-2*x+6,-6*x^3-6*x^2+22*x+30,-8*x^2+24,-2*x^3-2*x^2+20*x-2,2*x^3-2*x^2-8*x+5,-2*x^3-3*x^2+12*x-2,2*x^2-2*x+1,-3*x^3+2*x^2+9*x+2,5*x^3-2*x^2-20*x+8,8*x^3-5*x^2-34*x+31,-4*x^3+2*x^2+12*x-2,-4*x^3-8*x^2+16*x+16,-x,15*x^3-10*x^2-69*x+38,-2*x^3+4*x^2+6*x-12,7*x^3+2*x^2-30*x+2,2*x^3-2*x^2-6*x+13,-2*x^3+6*x^2+14*x,-2*x^3+2*x^2+10*x-12,-7*x^3+6*x^2+33*x-36,-x^3+2*x^2+3*x-4,2*x^3+8*x^2-10*x+2,4*x^3-22*x-4,-4*x^3+11*x+24,-2*x^3+4*x,13*x^3-10*x^2-64*x+44,-5*x^3-2*x^2+25*x+8,2*x^3-9*x^2-14*x+31,4*x^3-2*x^2-15*x+4,-2*x^3+2*x^2+8*x-5,3*x^2-2*x+1,8*x^3-3*x^2-24*x-5,-7*x^3+8*x^2+27*x-22,-4*x^3-2*x^2+22*x-2,6*x^3-6*x^2-22*x+26,-x^3-2*x^2-5*x+16,x^3-6*x,-4*x^3-6*x^2+20*x+22,x^3-9*x,4*x^3+2*x^2-16*x+2,-3*x^3+2*x^2+12*x-6,-6*x^2+8*x+12,-6*x^3-3*x^2+26*x-3,-10*x^3+8*x^2+36*x-28,2*x^2+2*x-6,2*x^3-3*x^2-10*x+17,x^3-2*x^2-3*x+4,10*x^3-39*x-2,2*x^3+4*x^2-10*x,8*x^3-4*x^2-32*x+30,6*x^3-2*x^2-28*x+22,-4*x^3+x^2+16*x-3,x^3-5*x+2,-11*x^3+12*x^2+39*x-30,-2*x^3+3*x^2+10*x-13,2*x^3-4*x^2-6*x+8,3*x^3+2*x^2-17*x-4,-x,6*x^3-9*x^2-34*x+29,-2*x^3+14*x-16,3*x^3-2*x^2-11*x+2,-4*x^3+22*x-1,-4*x^3+12*x^2+14*x-28,-x^3+6*x,2*x^3-2*x^2-10*x+12,-4*x^3-3*x^2+12*x+15,-4*x^2-2*x,-8*x^3+x^2+28*x+12,-2*x,x^3+2*x^2-3*x,5*x^3-6*x^2-19*x+10,x^3+2*x^2-6*x+16,2*x^3-2*x^2-10*x+12,4*x^3-5*x^2-10*x+9,-2*x^3+9*x^2+14*x-31,2*x^3-4*x^2+4*x+1,6*x^3-x^2-26*x+5,2*x^3+6*x^2-6*x-14,4*x,-4*x^3-3*x^2+24*x+11,-x^3+5*x-2,x^3+2*x^2+x-6,2*x^3+2*x^2-10*x-13,-9*x^3+10*x^2+43*x-36,-x^3+3*x,8*x^3-16*x^2-16*x+36,-6*x^3+x^2+32*x-12,-4*x^3+6*x^2+4*x,-2*x^3+2*x^2+12*x-9,10*x^3-9*x^2-42*x+51,-4*x^3+12*x+2,8*x^3-x^2-38*x-8,-2*x^3+2*x^2+13*x-8,-4*x^3+14*x+1,-2*x^3+3*x^2+10*x-17,8*x^3+x^2-38*x+21,2*x^2-4*x,2*x,6*x^2-8*x-12,6*x^3-4*x^2-22*x+20,-2*x^3+x^2+8*x-2,6*x^3-6*x^2-16*x+10,-2*x^2+12*x-3,-12*x^3+12*x^2+43*x-46,2*x^3+2*x^2-10*x-2]];
E[302,4] = [x, [1,-1,2,1,2,-2,4,-1,1,-2,-4,2,0,-4,4,1,-6,-1,0,2,8,4,0,-2,-1,0,-4,4,6,-4,0,-1,-8,6,8,1,-2,0,0,-2,6,-8,0,-4,2,0,8,2,9,1,-12,0,-12,4,-8,-4,0,-6,-4,4,8,0,4,1,0,8,2,-6,0,-8,-12,-1,10,2,-2,0,-16,0,-8,2,-11,-6,-14,8,-12,0,12,4,-6,-2,0,0,0,-8,0,-2,2,-9,-4,-1,-12,12,-8,0,16,12,14,-4,20,8,-4,4,18,0,0,6,0,4,-24,-4,5,-8,12,0,-12,-4,8,-1,0,0,14,-8,0,-2,-8,6,22,0,-20,8,16,12,0,1,12,-10,18,-2,4,2,1,0,-6,16,0,0,20,8,-24,-2,0,11,-10,6,-16,14,-16,-8,-13,12,0,0,22,-12,-4,-4,-8,6,-14,2,16,0,16,0,-4,0,24,8,-16,0,16,2,-18,-2,0,9,-8,4,-16,1,4,12,24,-12,12,8,0,0,0,-16,6,-12,-24,-14,0,4,0,-20,20,-8,0,4,-16,-4,-1,-18,-8,0,-22,0,-32,-6,10,0,16,-4,-16,24,0,4,14,-5,-10,8,18,-12,0,0,-28,12,-16,4,0,-8,-24,1,10,0,-8,0,6,-14,8,8,-24,0,-12,2,-10,8,28,-6,0,-22,4,0,28,20,0,-8,18,-16,-14,-12,0,0,24,-1,19,-12,4,10,-4,-18,-8,2,16,-4,0,-2,0,-1,-24,0,16,6,4,-16,-16,0,8,0,6,-20,8,-8,12,24,-24,2,28,0,0,-11,0,10,40,-6,32,16,-12,-14,-2,16,4,8,2,13,36,-12,0,0,8,0,0,-22,8,12,-22,4,0,4,10,8,-24,-6,-48,14,32,-2,-19,-16,10,0,20,-16,-12,0,6,4,-48,0,-16,-24,-24,-8,0,16,22,0,16,-16,0,-2,-32,18,0,2,-24,0,0,-9,28,8,-16,-4,-6,16,0,-1,-34,-4,0,-12,-22,-24,8,12,30,-12,44,-8,-16,0,-28,0,-40,0,30,16,-12,-6,8,12,6,24,32,14,0,0,36,-4,6,0,24,20,0,-20,0,8,9,0,6,-4,-12,16,8,4,30,1,-24,18,2,8,0,0,-14,22,24,0,-10,32,16,6,0,-10,26,0,8,-16,40,4,0,16,0,-24,-12,0,-36,-4,0,-14,0,5,4,10,32,-8,-20,-18,-36,12,-36,0,-8,0,-48,28,-2,-12]];
E[302,5] = [x^2+2*x-1, [1,-1,x,1,0,-x,-2*x-4,-1,-2*x-2,0,-2*x,x,2*x-2,2*x+4,0,1,-5,2*x+2,2*x+2,0,-2,2*x,4*x+6,-x,-5,-2*x+2,-x-2,-2*x-4,-4*x-4,0,4*x+1,-1,4*x-2,5,0,-2*x-2,-2*x-8,-2*x-2,-6*x+2,0,6*x+2,2,-4*x-10,-2*x,0,-4*x-6,-2*x+5,x,8*x+13,5,-5*x,2*x-2,3*x+10,x+2,0,2*x+4,-2*x+2,4*x+4,2,0,-3*x-6,-4*x-1,4*x+12,1,0,-4*x+2,-5*x-2,-5,-2*x+4,0,2*x+10,2*x+2,-4*x-4,2*x+8,-5*x,2*x+2,4,6*x-2,4*x-2,0,6*x+5,-6*x-2,7*x+6,-2,0,4*x+10,4*x-4,2*x,-6*x-14,0,4*x+4,4*x+6,-7*x+4,2*x-5,0,-x,-7,-8*x-13,-4*x+4,-5,-x+8,5*x,-2*x-7,-2*x+2,0,-3*x-10,4*x-2,-x-2,7*x+16,0,-4*x-2,-2*x-4,-6,2*x-2,0,-4*x-4,8*x,-2,10*x+20,0,-8*x-7,3*x+6,-10*x+6,4*x+1,0,-4*x-12,-2*x-3,-1,-2*x-4,0,-7*x-14,4*x-2,-4*x-12,5*x+2,0,5,-6*x-3,2*x-4,12,0,9*x-2,-2*x-10,12*x-4,-2*x-2,0,4*x+4,-3*x+8,-2*x-8,2*x-14,5*x,-1,-2*x-2,10*x+10,-4,0,-6*x+2,-5*x,-4*x+2,4*x+3,0,-12*x-32,-6*x-5,5*x-6,6*x+2,0,-7*x-6,-4*x-5,2,-16*x-5,0,-8,-4*x-10,-10*x-10,-4*x+4,10*x+20,-2*x,2*x,6*x+14,-8*x+2,0,17*x+18,-4*x-4,-3,-4*x-6,0,7*x-4,10*x,-2*x+5,4*x+10,0,-8*x-7,x,-2*x+11,7,0,8*x+13,x-4,4*x-4,-16*x-16,5,8*x-5,x-8,8*x+24,-5*x,0,2*x+7,-4*x-20,2*x-2,4*x-4,0,12*x+2,3*x+10,6*x+2,-4*x+2,0,x+2,-2*x-12,-7*x-16,4*x-4,0,-10*x+10,4*x+2,12*x+20,2*x+4,10*x+10,6,18,-2*x+2,-4*x-12,0,4*x,4*x+4,-8*x-20,-8*x,0,2,-10*x+4,-10*x-20,10*x+19,0,2*x+1,8*x+7,-4*x+12,-3*x-6,0,10*x-6,-8*x,-4*x-1,-8*x+7,0,-12*x-18,4*x+12,4*x-8,2*x+3,0,1,6*x+10,2*x+4,16*x+36,0,16,7*x+14,6*x-6,-4*x+2,0,4*x+12,-2*x-6,-5*x-2,-2*x+14,0,-12*x-18,-5,-4*x+4,6*x+3,10*x,-2*x+4,-9*x-8,-12,6*x-10,0,8*x-6,-9*x+2,-12*x-18,2*x+10,0,-12*x+4,-4*x-20,2*x+2,8,0,-7*x,-4*x-4,-14*x-26,3*x-8,0,2*x+8,2,-2*x+14,-12*x-4,-5*x,20*x+48,1,10*x-1,2*x+2,0,-10*x-10,6*x+4,4,-3*x-2,0,-4*x+12,6*x-2,-8*x-2,5*x,0,4*x-2,3*x+2,-4*x-3,-8*x+8,0,-10*x+4,12*x+32,-10*x-10,6*x+5,-10*x+10,-5*x+6,2*x+7,-6*x-2,-10*x-16,0,6*x-6,7*x+6,12*x+20,4*x+5,0,-2,6*x-10,16*x+5,-6*x,0,14*x-8,8,-12*x-40,4*x+10,0,10*x+10,2*x-16,4*x-4,-2*x+12,-10*x-20,2*x+2,2*x,10*x-6,-2*x,0,-6*x-14,10,8*x-2,12*x+20,0,-11,-17*x-18,9*x-8,4*x+4,0,3,-14*x-26,4*x+6,8*x-16,0,-20*x-46,-7*x+4,-11*x+6,-10*x,0,2*x-5,16*x,-4*x-10,6,0,x-2,8*x+7,8*x-4,-x,0,2*x-11,12*x+28,-7,18*x+14,0,-20*x-30,-8*x-13,-7,-x+4,0,-4*x+4,16*x+4,16*x+16,-4*x-4,-5,14*x+19,-8*x+5,-22*x+6,-x+8,0,-8*x-24,8*x+4,5*x,-22,0,9*x-6,-2*x-7,-4*x-8,4*x+20,0,-2*x+2,12*x,-4*x+4,19*x+20,0,-x-24,-12*x-2,-14*x-6,-3*x-10,25,-6*x-2,12*x+30,4*x-2,-28*x+12,0,-4*x+2,-x-2,8*x+6,2*x+12,0,7*x+16,4*x+20,-4*x+4,-8*x-32,0,-10*x-42,10*x-10,-9*x-16,-4*x-2,0,-12*x-20,-18*x+2,-2*x-4,6*x+4,-10*x-10,20*x-12,-6,-x,-18,0,2*x-2,31,4*x+12,5*x+10,0,24*x+26,-4*x,8*x+23,-4*x-4,0,8*x+20,11*x-2,8*x,4*x+18,0,10*x-5,-2,4*x+8,10*x-4,-10*x-10,10*x+20,-14*x-26,-10*x-19,4*x+22,0,-4*x+12,-2*x-1,-8*x-12,-8*x-7,0,4*x-12,33,3*x+6,-16*x+5,0,-24*x-24,-10*x+6,20*x+20,8*x,0,4*x+1,-20*x-44,8*x-7,-x,0]];
E[302,6] = [x^4-10*x^2-6*x+9, [3,-3,3*x,3,2*x^3-3*x^2-14*x+3,-3*x,-x^3+7*x+6,-3,3*x^2-9,-2*x^3+3*x^2+14*x-3,-3*x^2+6*x+15,3*x,x^3-7*x+6,x^3-7*x-6,-3*x^3+6*x^2+15*x-18,3,9,-3*x^2+9,-2*x^3+3*x^2+14*x+3,2*x^3-3*x^2-14*x+3,-3*x^2+9,3*x^2-6*x-15,-x^3+x+6,-3*x,-6*x+9,-x^3+7*x-6,3*x^3-18*x,-x^3+7*x+6,2*x^3-20*x-12,3*x^3-6*x^2-15*x+18,2*x^3-9*x^2-8*x+36,-3,-3*x^3+6*x^2+15*x,-9,2*x^3-14*x-18,3*x^2-9,2*x^3-6*x^2-14*x+30,2*x^3-3*x^2-14*x-3,3*x^2+12*x-9,-2*x^3+3*x^2+14*x-3,-4*x^3+6*x^2+22*x-18,3*x^2-9,2*x^3-6*x^2-8*x+24,-3*x^2+6*x+15,-6*x^2+6*x+18,x^3-x-6,-2*x^3+6*x^2+8*x-27,3*x,-2*x^3+20*x+3,6*x-9,9*x,x^3-7*x+6,-2*x^3+6*x^2+11*x-12,-3*x^3+18*x,-2*x^3+12*x^2-4*x-48,x^3-7*x-6,3*x^3-6*x^2-9*x+18,-2*x^3+20*x+12,-4*x^3+3*x^2+28*x-21,-3*x^3+6*x^2+15*x-18,6*x^2-9*x-36,-2*x^3+9*x^2+8*x-36,-12*x-18,3,6*x^3-12*x^2-42*x+30,3*x^3-6*x^2-15*x,-x^3+6*x^2+10*x-30,9,-9*x^2+9,-2*x^3+14*x+18,3*x^3-6*x^2-21*x+6,-3*x^2+9,x^3-13*x-6,-2*x^3+6*x^2+14*x-30,-6*x^2+9*x,-2*x^3+3*x^2+14*x+3,-2*x^3-6*x^2+26*x+48,-3*x^2-12*x+9,8*x^3-6*x^2-56*x-6,2*x^3-3*x^2-14*x+3,3*x^2+18*x,4*x^3-6*x^2-22*x+18,x^3-16*x-18,-3*x^2+9,6*x^3-9*x^2-42*x+9,-2*x^3+6*x^2+8*x-24,-18,3*x^2-6*x-15,-9*x^3+12*x^2+63*x-12,6*x^2-6*x-18,-2*x^3+8*x,-x^3+x+6,-9*x^3+12*x^2+48*x-18,2*x^3-6*x^2-8*x+27,4*x^3-6*x^2-22*x-18,-3*x,2*x^3-20*x+3,2*x^3-20*x-3,6*x^3-6*x^2-36*x-18,-6*x+9,3*x^3+6*x^2-30*x-24,-9*x,-4*x^3+6*x^2+28*x+9,-x^3+7*x-6,6*x^2-6*x-18,2*x^3-6*x^2-11*x+12,-3*x^3+6*x^2+27*x-12,3*x^3-18*x,5*x^3-32*x-24,2*x^3-12*x^2+4*x+48,-6*x^3+6*x^2+42*x-18,-x^3+7*x+6,-x^3+x+6,-3*x^3+6*x^2+9*x-18,8*x^3-12*x^2-44*x+18,2*x^3-20*x-12,12*x^2+12*x-18,4*x^3-3*x^2-28*x+21,-3*x^3+21*x+18,3*x^3-6*x^2-15*x+18,-12*x^3+12*x^2+78*x+15,-6*x^2+9*x+36,6*x^3-18*x^2-42*x+36,2*x^3-9*x^2-8*x+36,2*x^3-6*x^2-2*x+30,12*x+18,-4*x^3+22*x+39,-3,-6*x^3+12*x^2+36*x-18,-6*x^3+12*x^2+42*x-30,-9*x^3+12*x^2+60*x,-3*x^3+6*x^2+15*x,-4*x^3+28*x+30,x^3-6*x^2-10*x+30,3*x^3-12*x^2-27*x+54,-9,-6*x^3+9*x^2+54*x-30,9*x^2-9,-6*x^2+6*x+6,2*x^3-14*x-18,6*x^3-12*x^2-39*x+18,-3*x^3+6*x^2+21*x-6,2*x^3-6*x^2-2*x+12,3*x^2-9,2*x^3-12*x^2-2*x+72,-x^3+13*x+6,-9*x+18,2*x^3-6*x^2-14*x+30,-5*x^3+12*x^2+35*x-66,6*x^2-9*x,3,2*x^3-3*x^2-14*x-3,9*x^2-27,2*x^3+6*x^2-26*x-48,4*x^3+9*x^2-58*x-33,3*x^2+12*x-9,-3*x^3+6*x^2+12*x-18,-8*x^3+6*x^2+56*x+6,6*x^3-9*x^2-24*x+18,-2*x^3+3*x^2+14*x-3,-2*x^3+6*x^2+20*x+6,-3*x^2-18*x,-x^3+18*x^2-8*x-78,-4*x^3+6*x^2+22*x-18,12*x^3-24*x^2-60*x+18,-x^3+16*x+18,4*x^3-21*x^2-16*x+90,3*x^2-9,6*x^3-36*x-15,-6*x^3+9*x^2+42*x-9,12*x^2-6*x-36,2*x^3-6*x^2-8*x+24,6*x^3-15*x^2-30*x+57,18,-3*x^3+6*x^2+21*x,-3*x^2+6*x+15,3*x^3-12*x^2-45*x+36,9*x^3-12*x^2-63*x+12,-3*x^3+6*x^2+15*x-18,-6*x^2+6*x+18,2*x^3-23*x-30,2*x^3-8*x,6*x^3-9*x^2-36*x,x^3-x-6,12*x^3-12*x^2-96*x+24,9*x^3-12*x^2-48*x+18,-9*x^2+18*x+45,-2*x^3+6*x^2+8*x-27,-3*x^2-18*x-27,-4*x^3+6*x^2+22*x+18,10*x^3-15*x^2-70*x+6,3*x,-4*x^3+3*x^2+34*x+6,-2*x^3+20*x-3,-12*x^3+18*x^2+66*x-54,-2*x^3+20*x+3,-5*x^3+6*x^2+44*x+12,-6*x^3+6*x^2+36*x+18,-8*x^3+12*x^2+44*x-12,6*x-9,6*x^3-36*x+9,-3*x^3-6*x^2+30*x+24,4*x^3+6*x^2-40*x-66,9*x,-2*x^3+38*x-24,4*x^3-6*x^2-28*x-9,-6*x^3+6*x-18,x^3-7*x+6,2*x^3-18*x^2+16*x+78,-6*x^2+6*x+18,-9*x^3+12*x^2+57*x-18,-2*x^3+6*x^2+11*x-12,-6*x^3+9*x^2+24*x-27,3*x^3-6*x^2-27*x+12,2*x^3+6*x^2-38*x-18,-3*x^3+18*x,-3*x^3-6*x^2+45*x+66,-5*x^3+32*x+24,-3*x^2-9,-2*x^3+12*x^2-4*x-48,3*x^3-21*x+18,6*x^3-6*x^2-42*x+18,-18*x-12,x^3-7*x-6,-6*x^3+9*x^2+18*x-27,x^3-x-6,-4*x^3+3*x^2+52*x+27,3*x^3-6*x^2-9*x+18,6*x^3-60*x-48,-8*x^3+12*x^2+44*x-18,-6*x^3+6*x^2+36*x+18,-2*x^3+20*x+12,9*x^3-12*x^2-69*x+36,-12*x^2-12*x+18,-4*x^3-3*x^2+52*x+15,-4*x^3+3*x^2+28*x-21,-6*x^3+24*x^2+42*x-72,3*x^3-21*x-18,4*x^3+6*x^2-40*x-57,-3*x^3+6*x^2+15*x-18,8*x^3-15*x^2-62*x+54,12*x^3-12*x^2-78*x-15,-6*x^3+18*x^2+54*x,6*x^2-9*x-36,-8*x^3+21*x^2+44*x-81,-6*x^3+18*x^2+42*x-36,-4*x^3+12*x^2+28*x-18,-2*x^3+9*x^2+8*x-36,-6*x^2-12*x-9,-2*x^3+6*x^2+2*x-30,10*x^3-6*x^2-94*x-24,-12*x-18,4*x^3-18*x^2-4*x+48,4*x^3-22*x-39,-9*x^3+18*x^2+45*x-54,3,3*x^3-6*x^2-9*x+48,6*x^3-12*x^2-36*x+18,-4*x^3+40*x+36,6*x^3-12*x^2-42*x+30,-6*x^3+42*x+36,9*x^3-12*x^2-60*x,-11*x^3+12*x^2+89*x-6,3*x^3-6*x^2-15*x,3*x^3-12*x^2-3*x+12,4*x^3-28*x-30,12*x^3-27*x^2-66*x+81,-x^3+6*x^2+10*x-30,-6*x^3+9*x^2+66*x-15,-3*x^3+12*x^2+27*x-54,10*x^3-12*x^2-58*x+6,9,-12*x^2-12*x+18,6*x^3-9*x^2-54*x+30,6*x^3-21*x^2-12*x+45,-9*x^2+9,x^3-4*x-78,6*x^2-6*x-6,6*x^3-15*x^2-48*x-27,-2*x^3+14*x+18,5*x^3-6*x^2-41*x+12,-6*x^3+12*x^2+39*x-18,-13*x^3+18*x^2+109*x-12,3*x^3-6*x^2-21*x+6,-6*x^3+18*x^2+6*x-36,-2*x^3+6*x^2+2*x-12,6*x^2-6,-3*x^2+9,-24,-2*x^3+12*x^2+2*x-72,15*x-18,x^3-13*x-6,5*x^3-6*x^2-35*x-12,9*x-18,-16*x^3+30*x^2+118*x-90,-2*x^3+6*x^2+14*x-30,3*x^3+6*x^2-27*x-54,5*x^3-12*x^2-35*x+66,-2*x^3-6*x^2-16*x+18,-6*x^2+9*x,-2*x^3-6*x^2+26*x+42,-3,6*x^3-6*x-27,-2*x^3+3*x^2+14*x+3,-3*x^3-12*x^2+51*x+72,-9*x^2+27,6*x^3-6*x^2-54*x+42,-2*x^3-6*x^2+26*x+48,6*x^3-12*x^2-15*x+36,-4*x^3-9*x^2+58*x+33,2*x^3-12*x^2-14*x+84,-3*x^2-12*x+9,2*x^3-6*x^2+10*x+60,3*x^3-6*x^2-12*x+18,-6*x^2+24*x+54,8*x^3-6*x^2-56*x-6,8*x^3-71*x-48,-6*x^3+9*x^2+24*x-18,10*x^3-82*x-96,2*x^3-3*x^2-14*x+3,6*x^3-3*x^2-30*x+27,2*x^3-6*x^2-20*x-6,-6*x^3+9*x^2+42*x+9,3*x^2+18*x,3*x^3-6*x^2-45*x+36,x^3-18*x^2+8*x+78,18*x^2+6*x-45,4*x^3-6*x^2-22*x+18,3*x^3+6*x^2-33*x-48,-12*x^3+24*x^2+60*x-18,4*x^3-6*x^2-46*x+48,x^3-16*x-18,-12*x-36,-4*x^3+21*x^2+16*x-90,-13*x^3+12*x^2+97*x-18,-3*x^2+9,-5*x^3+18*x^2+23*x-72,-6*x^3+36*x+15,-9*x^2+9,6*x^3-9*x^2-42*x+9,-20*x^3+21*x^2+128*x+63,-12*x^2+6*x+36,6*x^3-6*x^2-30*x+6,-2*x^3+6*x^2+8*x-24,-12*x^3+36*x^2+66*x-72,-6*x^3+15*x^2+30*x-57,6*x^3-9*x^2-18*x+21,-18,-4*x^3+18*x^2+22*x-42,3*x^3-6*x^2-21*x,12*x^3+3*x^2-54*x+27,3*x^2-6*x-15,-6*x-12,-3*x^3+12*x^2+45*x-36,-2*x^3+6*x^2+2*x+24,-9*x^3+12*x^2+63*x-12,-9*x^2+27,3*x^3-6*x^2-15*x+18,14*x^3-30*x^2-98*x+84,6*x^2-6*x-18,-8*x^3+12*x^2+50*x-33,-2*x^3+23*x+30,12*x^3-42*x^2-57*x+108,-2*x^3+8*x,4*x^3-12*x^2-16*x+54,-6*x^3+9*x^2+36*x,5*x^3-83*x-18,-x^3+x+6,-6*x^3+6*x,-12*x^3+12*x^2+96*x-24,-2*x^3+3*x^2+2*x-9,-9*x^3+12*x^2+48*x-18,10*x^3-6*x^2-91*x-30,9*x^2-18*x-45,-6*x^3+18*x^2+42*x-18,2*x^3-6*x^2-8*x+27,4*x^3-6*x^2-40*x+18,3*x^2+18*x+27,-19*x^3+24*x^2+115*x-54,4*x^3-6*x^2-22*x-18,-18*x^2+15*x+36,-10*x^3+15*x^2+70*x-6,2*x^3-6*x^2+16*x+30,-3*x,4*x^3+18*x^2-64*x-126,4*x^3-3*x^2-34*x-6,6*x^3-6*x^2-30*x-18,2*x^3-20*x+3,-x^3+6*x^2+19*x-18,12*x^3-18*x^2-66*x+54,-3*x^3+3*x+18,2*x^3-20*x-3,12*x^3-30*x^2-54*x+81,5*x^3-6*x^2-44*x-12,-12*x^2-12*x+132,6*x^3-6*x^2-36*x-18,-2*x^3-6*x^2+50*x+30,8*x^3-12*x^2-44*x+12,-12*x^2+6*x+36,-6*x+9,9*x^2-30*x-24,-6*x^3+36*x-9,11*x^3-30*x^2-77*x+78,3*x^3+6*x^2-30*x-24,-12*x^3+21*x^2+54*x-81,-4*x^3-6*x^2+40*x+66,-8*x^3+68*x+60,-9*x,-5*x^3+6*x^2+53*x-54,2*x^3-38*x+24,9*x^3-6*x^2-66*x+54,-4*x^3+6*x^2+28*x+9,4*x^3-16*x+6,6*x^3-6*x+18,-x^3-6*x^2+25*x+60,-x^3+7*x-6,-6*x^3+6*x^2+6*x,-2*x^3+18*x^2-16*x-78,-4*x^3+12*x^2+13*x-60,6*x^2-6*x-18,3*x^3-6*x^2-18*x,9*x^3-12*x^2-57*x+18,-6*x^3+3*x^2+30*x+27,2*x^3-6*x^2-11*x+12,-18*x+27,6*x^3-9*x^2-24*x+27,6*x^3+9*x^2-66*x-99,-3*x^3+6*x^2+27*x-12,-6*x^3+18*x^2+24*x-18,-2*x^3-6*x^2+38*x+18,-11*x^3+12*x^2+83*x-18,3*x^3-18*x,-12*x^3+12*x^2+96*x+36,3*x^3+6*x^2-45*x-66,-12*x^3+18*x^2+84*x-18,5*x^3-32*x-24,-10*x^3+12*x^2+46*x-6,3*x^2+9,8*x^3-18*x^2-50*x+54,2*x^3-12*x^2+4*x+48,6*x^3-9*x^2-42*x-9,-3*x^3+21*x-18,6*x^2+9*x-24,-6*x^3+6*x^2+42*x-18,-2*x^3+6*x^2+38*x-120,18*x+12,12*x^3-15*x^2-96*x+45,-x^3+7*x+6,x^3-12*x^2-19*x+114,6*x^3-9*x^2-18*x+27,10*x^3-24*x^2-46*x+36,-x^3+x+6,3*x,4*x^3-3*x^2-52*x-27,2*x^3-2*x-12,-3*x^3+6*x^2+9*x-18,2*x^3-18*x^2+4*x+87,-6*x^3+60*x+48,9*x^3-54*x,8*x^3-12*x^2-44*x+18,-14*x^3+27*x^2+74*x-93,6*x^3-6*x^2-36*x-18,-10*x^3+21*x^2+70*x-96,2*x^3-20*x-12,9*x^3-18*x^2-9*x-36,-9*x^3+12*x^2+69*x-36,-7*x^3+12*x^2+40*x-102,12*x^2+12*x-18,4*x^3-3*x^2-46*x-39,4*x^3+3*x^2-52*x-15,6*x^3-18*x^2-36*x+27,4*x^3-3*x^2-28*x+21,-14*x^3+18*x^2+86*x+30,6*x^3-24*x^2-42*x+72,-12*x^3+21*x^2+60*x-27,-3*x^3+21*x+18,-3*x^3+18*x^2+21*x-18,-4*x^3-6*x^2+40*x+57,13*x^3-12*x^2-85*x+6,3*x^3-6*x^2-15*x+18,12*x^3-24*x^2-96*x+84,-8*x^3+15*x^2+62*x-54,6*x^3-6*x+18,-12*x^3+12*x^2+78*x+15,12*x^3-27*x^2-72*x+87,6*x^3-18*x^2-54*x,8*x^3-3*x^2-62*x+6,-6*x^2+9*x+36,18*x^3-18*x^2-84*x+9,8*x^3-21*x^2-44*x+81,4*x^3+9*x^2-58*x-33,6*x^3-18*x^2-42*x+36,6*x^3-60*x-36,4*x^3-12*x^2-28*x+18,-18*x^3+24*x^2+102*x+36,2*x^3-9*x^2-8*x+36,4*x^3-22*x-24,6*x^2+12*x+9,-10*x^3+6*x^2+79*x,2*x^3-6*x^2-2*x+30]];

E[303,1] = [x, [1,-2,1,2,-1,-2,-2,0,1,2,-6,2,1,4,-1,-4,-5,-2,7,-2,-2,12,-3,0,-4,-2,1,-4,-6,2,-1,8,-6,10,2,2,-10,-14,1,0,-2,4,-12,-12,-1,6,11,-4,-3,8,-5,2,4,-2,6,0,7,12,4,-2,10,2,-2,-8,-1,12,-2,-10,-3,-4,1,0,2,20,-4,14,12,-2,11,4,1,4,8,-4,5,24,-6,0,14,2,-2,-6,-1,-22,-7,8,-10,6,-6,-8,1,10,2,0,2,-8,-15,2,-4,-12,-10,8,-16,-14,3,-12,1,-8,10,0,25,-20,-2,-2,9,4,2,0,-12,2,3,-12,-14,4,-1,0,-11,6,14,4,11,-2,-6,-4,6,-4,-3,-20,6,8,6,0,-5,-24,1,2,-17,-22,4,-8,6,-2,6,-4,6,-16,-8,0,-12,-10,7,-24,12,12,8,24,4,-28,-12,-2,-15,4,10,0,10,2,30,22,-2,14,-8,-8,-11,20,-1,-6,23,12,-10,0,-2,-2,12,-10,2,-4,-3,-4,-42,-4,17,8,1,30,12,0,2,8,2,12,-5,20,-16,-16,-4,32,9,14,-16,-6,12,0,-26,-2,-11,8,11,-20,15,4,-10,-50,1,20,3,4,7,0,8,-18,-7,-4,18,-4,5,16,0,24,20,-2,-6,-6,6,0,-4,28,14,-4,-8,2,22,20,-2,22,24,-6,-18,-28,-1,0,3,-22,4,2,-7,12,4,8,8,-12,-10,4,-14,6,-4,0,-6,-12,-3,-8,24,-12,1,-28,-10,10,-9,24,2,-2,-12,0,-26,34,2,22,27,-8,36,8,-15,-12,-35,2,-4,-12,-4,0,-22,-12,-10,16,-10,16,2,8,-14,24,-16,10,6,-14,20,0,3,-24,-18,-12,-14,-16,1,-48,-12,-8,-1,28,10,24,-13,0,30,30,25,-4,-2,-20,19,12,-2,-20,-8,-2,7,-60,9,0,-6,4,-20,-14,2,16,-16,0,-12,22,-12,-20,28,2,15,0,3,-46,-11,-12,28,20,-14,16,6,4,-1,2,-1,-24,60,0,30,-4,-11,4,-8,6,-8,8,14,84,24,4,-7,-34,11,0,20,-2,-20,-30,-6,-24,-24,-4,4,-4,6,-8,-21,-4,-28,0,-3,10,-34,-20,-14,32,6,16,-31,8,12,-32,6,-18,2,0,-16,32,-5,6,0,-24,16,24,1,52,0,2,4,22,-17,0,72,-22,-28,20,4,-30,24,-8,-10,20,6,50,10,-2,8,0,6,-6,-13,-4,30,-14,6,4,-2,-16,-37,18]];
E[303,2] = [x^2-2, [1,x,-1,0,-x-1,-x,-x-2,-2*x,1,-x-2,2,0,2*x-3,-2*x-2,x+1,-4,-x-3,x,-3,0,x+2,2*x,3*x+1,2*x,2*x-2,-3*x+4,-1,0,2*x+2,x+2,2*x+1,0,-2,-3*x-2,3*x+4,0,-4,-3*x,-2*x+3,2*x+4,-2*x-6,2*x+2,-2*x-2,0,-x-1,x+6,-x-3,4,4*x-1,-2*x+4,x+3,0,0,-x,-2*x-2,4*x+4,3,2*x+4,3*x+6,0,-8*x-2,x+4,-x-2,8,x-1,-2*x,-4*x-6,0,-3*x-1,4*x+6,-5*x+9,-2*x,5*x-6,-4*x,-2*x+2,0,-2*x-4,3*x-4,-2*x+3,4*x+4,1,-6*x-4,5*x+6,0,4*x+5,-2*x-4,-2*x-2,-4*x,9*x-4,-x-2,-x+2,0,-2*x-1,-3*x-2,3*x+3,0,-10*x-4,-x+8,2,0,-1,3*x+2,x-10,6*x-8,-3*x-4,0,-x+1,0,x,-2*x-4,4,4*x+8,-3*x-6,3*x,-4*x-7,0,2*x-3,6*x+6,5*x+8,-2*x-4,-7,-2*x-16,2*x+6,0,5*x+3,-2*x-2,-4*x+14,8*x,2*x+2,-x+2,-7*x+5,0,3*x+6,-6*x-8,x+1,6*x+4,-3*x-19,-x-6,-5*x-10,0,x+3,9*x-10,4*x-6,-4,-4*x-6,-6*x+10,-4*x+1,0,7*x+12,2*x-4,5*x+10,6*x,-x-3,-4*x-4,-3*x-5,0,14*x+3,3*x-4,0,0,-7*x-8,x,6*x-2,0,2*x+2,6*x+10,7*x-10,-4*x-4,-12*x+4,5*x+8,-3,0,-9*x-10,-2*x-4,-2*x,-8,-3*x-6,-4*x+18,6*x+8,0,-10*x+3,2*x-2,8*x+2,-2*x-12,4*x+4,-x-4,-2*x-6,0,x+2,3*x+6,-12*x-4,-8,8*x+9,-4*x-20,-x+1,0,-7*x+13,2*x,4*x-10,4*x-8,4*x+6,-x,-6*x-8,0,8*x+10,-10*x+2,3*x+1,-8*x+12,-6,-4*x-6,10*x-3,0,5*x-9,x-2,4*x+6,2*x,-5*x-6,2,-5*x+6,0,-3*x+5,4*x,-6*x+10,0,2*x-2,-6*x-6,-11*x+7,0,-8*x+8,-7*x-8,2*x+4,-4*x-8,6,-3*x+4,4*x+5,0,2*x-3,8*x+10,-7*x+5,-4*x-4,-5*x+2,-7*x,-1,0,-3*x-7,6*x+4,-6*x+9,-2*x-8,-5*x-6,3*x+10,-3*x+15,0,6*x+2,14*x-8,-4*x-5,0,-3*x-10,2*x+4,4*x+8,0,2*x+2,5*x-14,6*x+6,4*x,0,6*x+6,-9*x+4,0,-17*x-2,x+2,14*x+6,4*x+12,x-2,-19*x-6,4*x-4,0,9*x+2,-10*x-10,2*x+1,-8*x-12,-5*x+5,3*x+2,10*x+18,0,-3*x-3,-6*x+8,10*x+16,0,6*x-6,-6*x-8,10*x+4,0,8*x+14,x-8,-9*x-12,8*x,-2,12*x+14,-7*x+9,0,6*x+8,10*x+10,1,12,10*x+18,-3*x-2,14*x+1,0,-x+10,-5*x-6,5*x+14,-6*x+8,-7*x-14,3*x+28,3*x+4,0,9*x-21,0,4*x+4,-8*x-8,x-1,-8*x-14,3*x+9,0,-10*x+14,-2*x+12,-x,12*x+8,5*x+8,2*x+4,-4*x-2,0,-4,-10*x+14,10*x+14,-4*x-8,-8*x-2,4*x-24,3*x+6,0,4*x+2,-3*x,8,4*x+8,4*x+7,-10*x-18,-7*x+4,0,x-14,-4,-2*x+3,0,-28,-6*x-6,-4*x+1,0,-5*x-8,8*x+12,9*x-19,2*x+4,-10,3*x-20,7,0,x-4,2*x+16,-2*x-29,-12*x-4,-2*x-6,4*x+8,0,0,18*x+5,-6*x-4,-5*x-3,6*x+4,-2*x+2,2*x+2,2*x-18,0,4*x-14,-4*x-24,-12*x-16,-8*x,6*x+8,9*x+16,-2*x-2,0,18*x-4,x-2,-10*x-9,2*x-16,7*x-5,13*x-14,-x+1,0,-14*x-8,-10*x+8,-3*x-6,-8*x+8,x+8,6*x+8,-4*x+5,0,-x-1,-8*x-12,-8,-6*x-4,18*x-8,10*x+16,3*x+19,0,-12*x-18,x+6,-11*x-16,0,5*x+10,-6*x,10*x-12,0,4*x+27,-3*x+20,-x-3,0,-4*x+2,-9*x+10,18*x+20,0,-4*x+6,6*x+8,-10*x+16,4,-18*x-8,-6*x-10,4*x+6,0,-9*x-3,6*x-10,-4*x-12,4*x+8,4*x-1,5*x-6,-25*x,0,-5*x-14,10*x-12,-7*x-12,-8*x-16,-17*x-1,-2*x+4,-4*x-12,0,-5*x-10,7*x-22,-x,-6*x,-11*x-8,8*x-16,x+3,0,15*x-2,4*x+4,19*x-4,-8*x-8,3*x+5,6*x,-2*x+16,0,14*x+20,5*x+8,-14*x-3,-12*x-12,-4*x-4,-3*x+4,-6*x+6,0,0,5*x-14,13*x-22,0,-8*x+12,2*x-10,7*x+8,0,14*x+24,-x,-12*x-8,4*x+32,-6*x+2,-7*x-6,3*x-7,0,-8*x-10,9*x-12,-2*x-2,-8*x-4,x-8,-6*x-10,-12*x-9,0]];
E[303,3] = [x^7-12*x^5+40*x^3+x^2-24*x-4, [1,x,-1,x^2-2,x^6+x^5-8*x^4-6*x^3+14*x^2+3*x-3,-x,-x^6-2*x^5+8*x^4+12*x^3-14*x^2-5*x+4,x^3-4*x,1,x^6+4*x^5-6*x^4-26*x^3+2*x^2+21*x+4,-x^3-x^2+6*x+2,-x^2+2,-x^6-3*x^5+5*x^4+20*x^3+4*x^2-18*x-3,-2*x^6-4*x^5+12*x^4+26*x^3-4*x^2-20*x-4,-x^6-x^5+8*x^4+6*x^3-14*x^2-3*x+3,x^4-6*x^2+4,x^6+3*x^5-6*x^4-20*x^3+2*x^2+17*x+5,x,-x^5+7*x^3-x^2-8*x+3,2*x^6+4*x^5-10*x^4-26*x^3-8*x^2+22*x+10,x^6+2*x^5-8*x^4-12*x^3+14*x^2+5*x-4,-x^4-x^3+6*x^2+2*x,x^6+3*x^5-6*x^4-18*x^3+2*x^2+7*x+3,-x^3+4*x,2*x^6+5*x^5-12*x^4-32*x^3+4*x^2+22*x+8,-3*x^6-7*x^5+20*x^4+44*x^3-17*x^2-27*x-4,-1,-2*x^6-8*x^5+10*x^4+52*x^3+10*x^2-42*x-16,x^3-x^2-6*x+2,-x^6-4*x^5+6*x^4+26*x^3-2*x^2-21*x-4,-x^6-x^5+7*x^4+8*x^3-8*x^2-14*x+3,x^5-8*x^3+12*x,x^3+x^2-6*x-2,3*x^6+6*x^5-20*x^4-38*x^3+16*x^2+29*x+4,-x^6-4*x^5+4*x^4+24*x^3+12*x^2-13*x-16,x^2-2,-2*x^5-4*x^4+13*x^3+23*x^2-12*x-6,-x^6+7*x^4-x^3-8*x^2+3*x,x^6+3*x^5-5*x^4-20*x^3-4*x^2+18*x+3,2*x^6+6*x^5-14*x^4-36*x^3+16*x^2+16*x,-x^6-2*x^5+5*x^4+12*x^3+6*x^2-4*x-10,2*x^6+4*x^5-12*x^4-26*x^3+4*x^2+20*x+4,x^6+4*x^5-7*x^4-28*x^3+8*x^2+30*x,-x^5-x^4+8*x^3+4*x^2-12*x-4,x^6+x^5-8*x^4-6*x^3+14*x^2+3*x-3,3*x^6+6*x^5-18*x^4-38*x^3+6*x^2+27*x+4,-x^6-x^5+12*x^4+6*x^3-38*x^2-3*x+13,-x^4+6*x^2-4,4*x^4-24*x^2+13,5*x^6+12*x^5-32*x^4-76*x^3+20*x^2+56*x+8,-x^6-3*x^5+6*x^4+20*x^3-2*x^2-17*x-5,-5*x^6-10*x^5+34*x^4+63*x^3-32*x^2-40*x-6,-x^6-4*x^5+5*x^4+28*x^3+6*x^2-32*x-12,-x,-2*x^6-2*x^5+12*x^4+10*x^3-4*x^2+4*x-2,-4*x^6-6*x^5+28*x^4+38*x^3-32*x^2-24*x,x^5-7*x^3+x^2+8*x-3,x^4-x^3-6*x^2+2*x,2*x^5+3*x^4-12*x^3-18*x^2+5*x+6,-2*x^6-4*x^5+10*x^4+26*x^3+8*x^2-22*x-10,-2*x^6-2*x^5+18*x^4+12*x^3-40*x^2-2*x+14,-x^6-5*x^5+8*x^4+32*x^3-13*x^2-21*x-4,-x^6-2*x^5+8*x^4+12*x^3-14*x^2-5*x+4,x^6-10*x^4+24*x^2-8,-x^6-5*x^5+2*x^4+34*x^3+20*x^2-35*x-7,x^4+x^3-6*x^2-2*x,2*x^6+4*x^5-12*x^4-24*x^3+2*x^2+10*x+10,4*x^6+10*x^5-26*x^4-64*x^3+22*x^2+42*x+2,-x^6-3*x^5+6*x^4+18*x^3-2*x^2-7*x-3,-4*x^6-8*x^5+24*x^4+52*x^3-12*x^2-40*x-4,x^6+x^5-6*x^4-6*x^3+4*x^2+3*x-9,x^3-4*x,x^6+4*x^5-2*x^4-28*x^3-24*x^2+33*x+20,-2*x^6-4*x^5+13*x^4+23*x^3-12*x^2-6*x,-2*x^6-5*x^5+12*x^4+32*x^3-4*x^2-22*x-8,-3*x^5-x^4+18*x^3+6*x^2-8*x-10,2*x^6+6*x^5-14*x^4-38*x^3+14*x^2+26*x+8,3*x^6+7*x^5-20*x^4-44*x^3+17*x^2+27*x+4,-2*x^6-5*x^5+12*x^4+33*x^3-3*x^2-26*x-5,2*x^6+2*x^5-16*x^4-12*x^3+30*x^2+4*x-12,1,-2*x^6-7*x^5+12*x^4+46*x^3-3*x^2-34*x-4,2*x^6+2*x^5-19*x^4-12*x^3+46*x^2+5*x-14,2*x^6+8*x^5-10*x^4-52*x^3-10*x^2+42*x+16,4*x^6+5*x^5-28*x^4-32*x^3+32*x^2+28*x-3,4*x^6+5*x^5-28*x^4-32*x^3+29*x^2+24*x+4,-x^3+x^2+6*x-2,-x^6-x^5+10*x^4+6*x^3-24*x^2-8*x,-x^6+2*x^5+12*x^4-17*x^3-39*x^2+29*x+20,x^6+4*x^5-6*x^4-26*x^3+2*x^2+21*x+4,-x^6+10*x^4-2*x^3-24*x^2+15*x+4,4*x^6+12*x^5-26*x^4-78*x^3+20*x^2+62*x+6,x^6+x^5-7*x^4-8*x^3+8*x^2+14*x-3,-x^6+6*x^4+2*x^3-2*x^2-11*x-4,-x^6-5*x^5+34*x^3+36*x^2-39*x-21,-x^5+8*x^3-12*x,x^6+2*x^5-9*x^4-12*x^3+20*x^2+6*x+2,4*x^5-24*x^3+13*x,-x^3-x^2+6*x+2,8*x^6+18*x^5-52*x^4-116*x^3+43*x^2+84*x+4,1,-3*x^6-6*x^5+20*x^4+38*x^3-16*x^2-29*x-4,x^6-12*x^4+4*x^3+40*x^2-19*x-20,-4*x^6-12*x^5+23*x^4+80*x^3-x^2-72*x-12,x^6+4*x^5-4*x^4-24*x^3-12*x^2+13*x+16,-4*x^6-7*x^5+28*x^4+46*x^3-31*x^2-36*x-4,-x^6-3*x^5+6*x^4+22*x^3-2*x^2-29*x-1,-x^2+2,-3*x^6-8*x^5+14*x^4+52*x^3+22*x^2-43*x-26,-2*x^6-12*x^5+10*x^4+76*x^3+6*x^2-50*x-8,2*x^5+4*x^4-13*x^3-23*x^2+12*x+6,-2*x^6-4*x^5+18*x^4+24*x^3-40*x^2-12*x+16,-5*x^6-8*x^5+40*x^4+48*x^3-68*x^2-21*x+14,x^6-7*x^4+x^3+8*x^2-3*x,4*x^6+7*x^5-28*x^4-40*x^3+32*x^2+12*x-5,x^5-x^4-8*x^3+4*x^2+12*x-4,-x^6-3*x^5+5*x^4+20*x^3+4*x^2-18*x-3,2*x^6+3*x^5-12*x^4-18*x^3+5*x^2+6*x,-x^6-4*x^5+8*x^4+24*x^3-16*x^2-13*x+8,-2*x^6-6*x^5+14*x^4+36*x^3-16*x^2-16*x,x^6+2*x^5-11*x^4-16*x^3+32*x^2+24*x-7,-2*x^6-6*x^5+12*x^4+40*x^3-34*x-8,x^6+2*x^5-5*x^4-12*x^3-6*x^2+4*x+10,-3*x^6-2*x^5+18*x^4+11*x^3-4*x^2-10,3*x^6+7*x^5-16*x^4-44*x^3-4*x^2+31*x+7,-2*x^6-4*x^5+12*x^4+26*x^3-4*x^2-20*x-4,-4*x^2+2*x+14,-x^2-8*x+4,-x^6-4*x^5+7*x^4+28*x^3-8*x^2-30*x,-5*x^6-10*x^5+34*x^4+60*x^3-34*x^2-31*x-4,3*x^6+11*x^5-16*x^4-74*x^3-8*x^2+71*x+17,x^5+x^4-8*x^3-4*x^2+12*x+4,x^6+6*x^5+2*x^4-42*x^3-46*x^2+45*x+28,4*x^6+12*x^5-24*x^4-78*x^3+8*x^2+58*x+8,-x^6-x^5+8*x^4+6*x^3-14*x^2-3*x+3,4*x^6+10*x^5-24*x^4-62*x^3+6*x^2+40*x+8,x^6+5*x^5-2*x^4-34*x^3-24*x^2+33*x+23,-3*x^6-6*x^5+18*x^4+38*x^3-6*x^2-27*x-4,x^6+4*x^5-6*x^4-24*x^3+2*x^2+5*x,-6*x^6-16*x^5+44*x^4+100*x^3-60*x^2-74*x+16,x^6+x^5-12*x^4-6*x^3+38*x^2+3*x-13,x^6+6*x^5-6*x^4-36*x^3+2*x^2+15*x+4,3*x^6+8*x^5-17*x^4-55*x^3-x^2+58*x+10,x^4-6*x^2+4,-2*x^6-6*x^5+8*x^4+42*x^3+20*x^2-48*x-18,4*x^6+10*x^5-28*x^4-64*x^3+32*x^2+44*x+4,-4*x^4+24*x^2-13,-4*x^6-7*x^5+31*x^4+42*x^3-50*x^2-24*x+4,-x^6-2*x^5+8*x^4+12*x^3-16*x^2-5*x+12,-5*x^6-12*x^5+32*x^4+76*x^3-20*x^2-56*x-8,-x^6-6*x^5+2*x^4+38*x^3+26*x^2-25*x-28,-x^6-x^5+4*x^4+8*x^3+8*x^2-16*x,x^6+3*x^5-6*x^4-20*x^3+2*x^2+17*x+5,6*x^6+10*x^5-38*x^4-66*x^3+24*x^2+56*x+8,x^6-3*x^5-14*x^4+26*x^3+48*x^2-45*x-25,5*x^6+10*x^5-34*x^4-63*x^3+32*x^2+40*x+6,2*x^6+3*x^5-16*x^4-21*x^3+29*x^2+26*x-9,-5*x^6-12*x^5+33*x^4+77*x^3-24*x^2-53*x-8,x^6+4*x^5-5*x^4-28*x^3-6*x^2+32*x+12,-2*x^6-4*x^5+16*x^4+22*x^3-30*x^2+4*x+8,-3*x^6-4*x^5+24*x^4+24*x^3-44*x^2-11*x+8,x,2*x^6+4*x^5-16*x^4-22*x^3+28*x^2-2*x-6,-5*x^6-8*x^5+36*x^4+53*x^3-44*x^2-44*x+12,2*x^6+2*x^5-12*x^4-10*x^3+4*x^2-4*x+2,2*x^6+5*x^5-12*x^4-34*x^3+3*x^2+34*x+8,x^6-4*x^5-16*x^4+31*x^3+63*x^2-41*x-30,4*x^6+6*x^5-28*x^4-38*x^3+32*x^2+24*x,-5*x^5-8*x^4+39*x^3+49*x^2-56*x-24,5*x^6+20*x^5-32*x^4-128*x^3+24*x^2+93*x+16,-x^5+7*x^3-x^2-8*x+3,3*x^6+12*x^5-18*x^4-75*x^3+4*x^2+40*x+16,-x^6+8*x^4+x^3-17*x^2-7*x+18,-x^4+x^3+6*x^2-2*x,-4*x^6-10*x^5+32*x^4+60*x^3-58*x^2-32*x+16,-x^6+8*x^4-15*x^2+4,-2*x^5-3*x^4+12*x^3+18*x^2-5*x-6,2*x^6-17*x^4+x^3+30*x^2-4*x-4,2*x^5-14*x^3+2*x^2+10*x-16,2*x^6+4*x^5-10*x^4-26*x^3-8*x^2+22*x+10,-2*x^6-7*x^5+12*x^4+47*x^3-3*x^2-46*x-7,-2*x^5-2*x^4+16*x^3+16*x^2-20*x-4,2*x^6+2*x^5-18*x^4-12*x^3+40*x^2+2*x-14,6*x^6+10*x^5-42*x^4-64*x^3+46*x^2+48*x+8,-4*x^6-14*x^5+20*x^4+90*x^3+12*x^2-70*x-2,x^6+5*x^5-8*x^4-32*x^3+13*x^2+21*x+4,-2*x^6-8*x^5+10*x^4+50*x^3+4*x^2-24*x-2,2*x^6-4*x^5-22*x^4+26*x^3+66*x^2-22*x-30,x^6+2*x^5-8*x^4-12*x^3+14*x^2+5*x-4,-5*x^6-12*x^5+34*x^4+76*x^3-38*x^2-45*x-4,-x^6-4*x^5+5*x^4+28*x^3+6*x^2-26*x-20,-x^6+10*x^4-24*x^2+8,-4*x^6-7*x^5+28*x^4+45*x^3-29*x^2-36*x-7,2*x^6+3*x^5-12*x^4-20*x^3+5*x^2+26*x+4,x^6+5*x^5-2*x^4-34*x^3-20*x^2+35*x+7,4*x^6-32*x^4+61*x^2-26,-3*x^6-3*x^5+22*x^4+20*x^3-26*x^2-17*x-3,-x^4-x^3+6*x^2+2*x,4*x^6+14*x^5-18*x^4-94*x^3-30*x^2+86*x+34,8*x^6+20*x^5-52*x^4-125*x^3+36*x^2+84*x+16,-2*x^6-4*x^5+12*x^4+24*x^3-2*x^2-10*x-10,x,2*x^6+10*x^5-6*x^4-66*x^3-34*x^2+58*x+24,-4*x^6-10*x^5+26*x^4+64*x^3-22*x^2-42*x-2,4*x^5+10*x^4-30*x^3-64*x^2+46*x+38,4*x^4-20*x^2+4*x+4,x^6+3*x^5-6*x^4-18*x^3+2*x^2+7*x+3,-2*x^6-5*x^5+12*x^4+33*x^3-4*x^2-28*x-4,-x^6+4*x^5+11*x^4-28*x^3-30*x^2+30*x+10,4*x^6+8*x^5-24*x^4-52*x^3+12*x^2+40*x+4,5*x^6+9*x^5-39*x^4-56*x^3+64*x^2+30*x-19,-5*x^6-12*x^5+36*x^4+73*x^3-44*x^2-36*x+8,-x^6-x^5+6*x^4+6*x^3-4*x^2-3*x+9,-3*x^6-6*x^5+22*x^4+38*x^3-28*x^2-25*x-4,2*x^5+6*x^4-18*x^3-40*x^2+46*x+24,-x^3+4*x,-3*x^6+30*x^4-2*x^3-80*x^2+17*x+28,-8*x^6-22*x^5+52*x^4+142*x^3-40*x^2-98*x-12,-x^6-4*x^5+2*x^4+28*x^3+24*x^2-33*x-20,-8*x^6-10*x^5+52*x^4+66*x^3-40*x^2-64*x-4,-x^6-x^5+6*x^4+4*x^3-4*x^2+3*x+1,2*x^6+4*x^5-13*x^4-23*x^3+12*x^2+6*x,-2*x^6-4*x^5+16*x^4+23*x^3-25*x^2-6*x,4*x^6+6*x^5-32*x^4-36*x^3+54*x^2+16*x-8,2*x^6+5*x^5-12*x^4-32*x^3+4*x^2+22*x+8,-8*x^6-20*x^5+48*x^4+132*x^3-16*x^2-106*x-20,x^6+5*x^5-4*x^4-34*x^3-6*x^2+31*x-1,3*x^5+x^4-18*x^3-6*x^2+8*x+10,-2*x^4-4*x^3+12*x^2+16*x-8,7*x^6+20*x^5-40*x^4-128*x^3+8*x^2+91*x+16,-2*x^6-6*x^5+14*x^4+38*x^3-14*x^2-26*x-8,x^6-x^5-10*x^4+6*x^3+24*x^2-8*x,-2*x^6-6*x^5+14*x^4+40*x^3-14*x^2-32*x-2,-3*x^6-7*x^5+20*x^4+44*x^3-17*x^2-27*x-4,-3*x^5-4*x^4+20*x^3+32*x^2-24*x-43,3*x^6+8*x^5-24*x^4-51*x^3+40*x^2+38*x-4,2*x^6+5*x^5-12*x^4-33*x^3+3*x^2+26*x+5,-4*x^6-4*x^5+24*x^4+24*x^3-12*x^2-16*x-4,3*x^6+7*x^5-20*x^4-48*x^3+14*x^2+51*x+13,-2*x^6-2*x^5+16*x^4+12*x^3-30*x^2-4*x+12,-3*x^6-2*x^5+24*x^4+14*x^3-42*x^2-19*x+8,2*x^6+x^5-16*x^4-8*x^3+23*x^2+17*x+4,-1,-2*x^6-8*x^5+4*x^4+56*x^3+48*x^2-52*x-36,5*x^6+5*x^5-40*x^4-30*x^3+78*x^2+7*x-39,2*x^6+7*x^5-12*x^4-46*x^3+3*x^2+34*x+4,5*x^6+7*x^5-39*x^4-39*x^3+61*x^2+2*x-1,-8*x^5-5*x^4+52*x^3+29*x^2-40*x-4,-2*x^6-2*x^5+19*x^4+12*x^3-46*x^2-5*x+14,7*x^6+20*x^5-44*x^4-124*x^3+28*x^2+79*x+12,-5*x^6-7*x^5+34*x^4+42*x^3-30*x^2-17*x-17,-2*x^6-8*x^5+10*x^4+52*x^3+10*x^2-42*x-16,-4*x^6-10*x^5+32*x^4+66*x^3-54*x^2-56*x-6,-4*x^3+2*x^2+14*x,-4*x^6-5*x^5+28*x^4+32*x^3-32*x^2-28*x+3,-2*x^6+20*x^4-x^3-56*x^2+4*x+16,-x^6+12*x^4+x^3-37*x^2+x+14,-4*x^6-5*x^5+28*x^4+32*x^3-29*x^2-24*x-4,6*x^6+14*x^5-38*x^4-94*x^3+26*x^2+90*x,-8*x^6-16*x^5+56*x^4+98*x^3-66*x^2-54*x-6,x^3-x^2-6*x+2,11*x^6+20*x^5-74*x^4-128*x^3+68*x^2+89*x+12,-x^3-5*x^2+2*x+14,x^6+x^5-10*x^4-6*x^3+24*x^2+8*x,-2*x^6-6*x^5+18*x^4+42*x^3-40*x^2-52*x+12,6*x^6+14*x^5-42*x^4-86*x^3+44*x^2+52*x+4,x^6-2*x^5-12*x^4+17*x^3+39*x^2-29*x-20,8*x^6+16*x^5-54*x^4-104*x^3+50*x^2+84*x-4,4*x^6+2*x^5-39*x^4-8*x^3+98*x^2-23*x-38,-x^6-4*x^5+6*x^4+26*x^3-2*x^2-21*x-4,-4*x^6-6*x^5+32*x^4+38*x^3-58*x^2-24*x+14,2*x^6+4*x^5-10*x^4-26*x^3-8*x^2+20*x+12,x^6-10*x^4+2*x^3+24*x^2-15*x-4,5*x^6+10*x^5-34*x^4-64*x^3+32*x^2+47*x+4,-6*x^6-14*x^5+40*x^4+89*x^3-39*x^2-56*x-4,-4*x^6-12*x^5+26*x^4+78*x^3-20*x^2-62*x-6,3*x^6+8*x^5-14*x^4-50*x^3-18*x^2+35*x+4,4*x^6+6*x^5-24*x^4-38*x^3+4*x^2+24*x+4,-x^6-x^5+7*x^4+8*x^3-8*x^2-14*x+3,-8*x^6-12*x^5+52*x^4+76*x^3-44*x^2-48*x-16,-x^6-3*x^5+6*x^4+18*x^3+x-11,x^6-6*x^4-2*x^3+2*x^2+11*x+4,-2*x^6+16*x^4-7*x^3-27*x^2+34*x+12,4*x^6+4*x^5-24*x^4-26*x^3+6*x^2+22*x+22,x^6+5*x^5-34*x^3-36*x^2+39*x+21,8*x^6+19*x^5-55*x^4-121*x^3+55*x^2+82*x+12,-2*x^6-12*x^5-2*x^4+82*x^3+84*x^2-78*x-56,x^5-8*x^3+12*x,2*x^6+9*x^5-12*x^4-60*x^3+8*x^2+50*x-4,-6*x^6-16*x^5+42*x^4+100*x^3-46*x^2-66*x-8,-x^6-2*x^5+9*x^4+12*x^3-20*x^2-6*x-2,8*x^6+12*x^5-60*x^4-72*x^3+88*x^2+34*x-24,-2*x^6+16*x^4-28*x^2+2*x+6,-4*x^5+24*x^3-13*x,x^6+4*x^5-6*x^4-22*x^3+4*x^2+3*x-14,-3*x^6-9*x^5+16*x^4+64*x^3+4*x^2-80*x-16,x^3+x^2-6*x-2,-2*x^6-4*x^5+12*x^4+24*x^3-4*x^2-12*x-4,-x^6-5*x^5+2*x^4+36*x^3+20*x^2-51*x-9,-8*x^6-18*x^5+52*x^4+116*x^3-43*x^2-84*x-4,4*x^6+4*x^5-38*x^4-22*x^3+88*x^2-24,-6*x^6-10*x^5+38*x^4+66*x^3-24*x^2-52*x-4,-1,-x^6-2*x^5+10*x^4+12*x^3-27*x^2-8*x+16,4*x^6+10*x^5-32*x^4-64*x^3+60*x^2+48*x-34,3*x^6+6*x^5-20*x^4-38*x^3+16*x^2+29*x+4,-6*x^6-9*x^5+44*x^4+52*x^3-64*x^2-6*x+27,6*x^6+22*x^5-38*x^4-140*x^3+22*x^2+100*x+8,-x^6+12*x^4-4*x^3-40*x^2+19*x+20,-3*x^6-2*x^5+26*x^4+8*x^3-46*x^2-x+4,11*x^6+16*x^5-80*x^4-97*x^3+103*x^2+45*x-6,4*x^6+12*x^5-23*x^4-80*x^3+x^2+72*x+12,-3*x^6-12*x^5+6*x^4+76*x^3+70*x^2-53*x-44,3*x^6+8*x^5-21*x^4-51*x^3+24*x^2+39*x+8,-x^6-4*x^5+4*x^4+24*x^3+12*x^2-13*x-16,-8*x^6-17*x^5+53*x^4+110*x^3-42*x^2-76*x-10,5*x^6+13*x^5-34*x^4-88*x^3+32*x^2+85*x+5,4*x^6+7*x^5-28*x^4-46*x^3+31*x^2+36*x+4,-x^6+13*x^4-40*x^2+4,-8*x^6-12*x^5+54*x^4+74*x^3-54*x^2-48*x+16,x^6+3*x^5-6*x^4-22*x^3+2*x^2+29*x+1,-4*x^6-12*x^5+24*x^4+76*x^3-8*x^2-64*x-12,-3*x^6-11*x^5+22*x^4+70*x^3-32*x^2-45*x+3,x^2-2,-3*x^6-8*x^5+15*x^4+52*x^3+8*x^2-50*x-8,4*x^6+8*x^5-22*x^4-52*x^3-4*x^2+42*x+8,3*x^6+8*x^5-14*x^4-52*x^3-22*x^2+43*x+26,-4*x^6-10*x^5+29*x^4+64*x^3-33*x^2-40*x-12,-x^6+20*x^4-88*x^2-5*x+56,2*x^6+12*x^5-10*x^4-76*x^3-6*x^2+50*x+8,2*x^6-2*x^5-24*x^4+12*x^3+74*x^2-12*x-18,x^6+8*x^5+4*x^4-53*x^3-60*x^2+46*x+36,-2*x^5-4*x^4+13*x^3+23*x^2-12*x-6,-4*x^6-4*x^5+31*x^4+23*x^3-42*x^2-6*x+4,4*x^6+6*x^5-36*x^4-32*x^3+84*x^2-8*x-30,2*x^6+4*x^5-18*x^4-24*x^3+40*x^2+12*x-16,2*x^6-18*x^4+2*x^3+40*x^2-14*x-18,-5*x^6-8*x^5+39*x^4+49*x^3-56*x^2-24*x,5*x^6+8*x^5-40*x^4-48*x^3+68*x^2+21*x-14,12*x^6+18*x^5-72*x^4-112*x^3+24*x^2+80*x+26,x^6+3*x^4+x^3-51*x^2-2*x+6,-x^6+7*x^4-x^3-8*x^2+3*x,2*x^6+4*x^5-8*x^4-24*x^3-20*x^2+2*x+24,4*x^6+8*x^5-19*x^4-52*x^3-21*x^2+40*x+4,-4*x^6-7*x^5+28*x^4+40*x^3-32*x^2-12*x+5,-4*x^5+x^4+23*x^3-6*x^2-6*x-4,-2*x^6+27*x^4-4*x^3-94*x^2+15*x+28,-x^5+x^4+8*x^3-4*x^2-12*x+4,-x^6-6*x^5-2*x^4+40*x^3+46*x^2-37*x-24,-10*x^6-16*x^5+60*x^4+102*x^3-28*x^2-80*x-16,x^6+3*x^5-5*x^4-20*x^3-4*x^2+18*x+3,2*x^6-2*x^5-20*x^4+13*x^3+49*x^2-4*x-4,-4*x^6-6*x^5+24*x^4+39*x^3-11*x^2-30*x+20,-2*x^6-3*x^5+12*x^4+18*x^3-5*x^2-6*x,7*x^5+16*x^4-48*x^3-92*x^2+44*x+39,2*x^6+3*x^5-23*x^4-16*x^3+72*x^2-14*x-32,x^6+4*x^5-8*x^4-24*x^3+16*x^2+13*x-8,2*x^6-14*x^4+2*x^3+10*x^2-16*x,-5*x^6-11*x^5+42*x^4+70*x^3-84*x^2-49*x+17,2*x^6+6*x^5-14*x^4-36*x^3+16*x^2+16*x,x^6+3*x^5-7*x^4-16*x^3+8*x^2-8*x-2,-7*x^6-12*x^5+47*x^4+77*x^3-44*x^2-55*x-8,-x^6-2*x^5+11*x^4+16*x^3-32*x^2-24*x+7,-2*x^5-4*x^4+20*x^3+28*x^2-34*x-8,5*x^6+12*x^5-40*x^4-80*x^3+76*x^2+73*x-32,2*x^6+6*x^5-12*x^4-40*x^3+34*x+8,-6*x^6-13*x^5+36*x^4+80*x^3-12*x^2-42*x-1,2*x^6+6*x^5-12*x^4-38*x^3+2*x^2+28*x+12,-x^6-2*x^5+5*x^4+12*x^3+6*x^2-4*x-10,-14*x^6-28*x^5+90*x^4+172*x^3-66*x^2-98*x-16,-4*x^5-2*x^4+26*x^3+20*x^2-20*x-32,3*x^6+2*x^5-18*x^4-11*x^3+4*x^2+10,3*x^6+7*x^5-19*x^4-48*x^3+8*x^2+54*x+19,-8*x^6-14*x^5+50*x^4+84*x^3-22*x^2-50*x-8,-3*x^6-7*x^5+16*x^4+44*x^3+4*x^2-31*x-7,-2*x^6+2*x^5+14*x^4-18*x^3-20*x^2+40*x+16,7*x^6+12*x^5-51*x^4-71*x^3+65*x^2+22*x+2,2*x^6+4*x^5-12*x^4-26*x^3+4*x^2+20*x+4,-5*x^6-8*x^5+39*x^4+52*x^3-60*x^2-42*x+8,-10*x^6-16*x^5+76*x^4+94*x^3-112*x^2-46*x+22,4*x^2-2*x-14,-4*x^6-7*x^5+28*x^4+46*x^3-25*x^2-44*x-4,4*x^6+8*x^5-34*x^4-54*x^3+68*x^2+44*x-8,x^2+8*x-4,6*x^6+12*x^5-48*x^4-72*x^3+80*x^2+42*x-8,-7*x^6-20*x^5+45*x^4+131*x^3-32*x^2-103*x-16,x^6+4*x^5-7*x^4-28*x^3+8*x^2+30*x,x^6+8*x^5-2*x^4-51*x^3-16*x^2+40*x+4,-x^6-8*x^5+3*x^4+56*x^3+18*x^2-58*x-24,5*x^6+10*x^5-34*x^4-60*x^3+34*x^2+31*x+4,2*x^6+11*x^5-8*x^4-68*x^3-16*x^2+38*x+11,8*x^5-51*x^3-4*x^2+44*x+16,-3*x^6-11*x^5+16*x^4+74*x^3+8*x^2-71*x-17,-3*x^6-14*x^5+20*x^4+94*x^3-14*x^2-75*x-12,x^6+3*x^5-8*x^4-18*x^3+12*x^2+7*x+3,-x^5-x^4+8*x^3+4*x^2-12*x-4,4*x^6+18*x^5-16*x^4-122*x^3-38*x^2+116*x+28,14*x^6+30*x^5-94*x^4-190*x^3+82*x^2+130*x+16,-x^6-6*x^5-2*x^4+42*x^3+46*x^2-45*x-28,4*x^6+8*x^5-21*x^4-52*x^3-10*x^2+40*x+24,x^6+2*x^5-4*x^4-12*x^3-12*x^2+9*x+8,-4*x^6-12*x^5+24*x^4+78*x^3-8*x^2-58*x-8,-5*x^5-8*x^4+41*x^3+49*x^2-72*x-13,x^2-2,x^6+x^5-8*x^4-6*x^3+14*x^2+3*x-3,10*x^6+18*x^5-66*x^4-114*x^3+56*x^2+72*x+8,3*x^6+8*x^5-21*x^4-60*x^3+22*x^2+92*x+12,-4*x^6-10*x^5+24*x^4+62*x^3-6*x^2-40*x-8,-2*x^6-10*x^5+8*x^4+61*x^3+19*x^2-30*x-18,4*x^6+10*x^5-30*x^4-64*x^3+46*x^2+38*x,-x^6-5*x^5+2*x^4+34*x^3+24*x^2-33*x-23,-2*x^6+4*x^5+24*x^4-28*x^3-76*x^2+42*x+40,-2*x^6+18*x^4+2*x^3-44*x^2-10*x+20,3*x^6+6*x^5-18*x^4-38*x^3+6*x^2+27*x+4,x^6+4*x^5-2*x^4-26*x^3-28*x^2+23*x+46,3*x^6+12*x^5-13*x^4-84*x^3-24*x^2+92*x+16,-x^6-4*x^5+6*x^4+24*x^3-2*x^2-5*x,4*x^6-x^5-28*x^4+10*x^3+31*x^2-14*x-4,x^6-9*x^4+4*x^3+18*x^2-26*x-4,6*x^6+16*x^5-44*x^4-100*x^3+60*x^2+74*x-16,5*x^6+13*x^5-35*x^4-84*x^3+40*x^2+68*x+1,9*x^6+21*x^5-56*x^4-136*x^3+25*x^2+101*x+20,-x^6-x^5+12*x^4+6*x^3-38*x^2-3*x+13,-4*x^6-10*x^5+17*x^4+64*x^3+31*x^2-40*x-12,6*x^6+18*x^5-34*x^4-116*x^3+6*x^2+86*x+24,-x^6-6*x^5+6*x^4+36*x^3-2*x^2-15*x-4,-10*x^6-16*x^5+76*x^4+104*x^3-120*x^2-78*x+48,-4*x^6-8*x^5+26*x^4+48*x^3-18*x^2-18*x-10,-3*x^6-8*x^5+17*x^4+55*x^3+x^2-58*x-10,2*x^6+6*x^5-18*x^4-40*x^3+46*x^2+24*x,-8*x^6-16*x^5+60*x^4+104*x^3-88*x^2-84*x+16,-x^4+6*x^2-4,8*x^6+16*x^5-54*x^4-98*x^3+52*x^2+46*x+8,-6*x^5-2*x^4+40*x^3+20*x^2-44*x-12,2*x^6+6*x^5-8*x^4-42*x^3-20*x^2+48*x+18,-16*x^6-28*x^5+114*x^4+176*x^3-134*x^2-118*x+20,-3*x^6-11*x^5+16*x^4+74*x^3+2*x^2-67*x-3,-4*x^6-10*x^5+28*x^4+64*x^3-32*x^2-44*x-4,-4*x^6-14*x^5+18*x^4+88*x^3+28*x^2-44*x-28,-6*x^6-20*x^5+46*x^4+128*x^3-68*x^2-96*x-16,4*x^4-24*x^2+13,-x^6-6*x^5+4*x^4+36*x^3+4*x^2-23*x-4,-x^6+2*x^5+12*x^4-13*x^3-45*x^2+9*x+36,4*x^6+7*x^5-31*x^4-42*x^3+50*x^2+24*x-4,-x^6-8*x^5+46*x^3+36*x^2-3*x-44,-4*x^6-8*x^5+23*x^4+55*x^3-4*x^2-48*x-8,x^6+2*x^5-8*x^4-12*x^3+16*x^2+5*x-12,10*x^6+24*x^5-72*x^4-154*x^3+92*x^2+112*x-16,5*x^6+7*x^5-40*x^4-44*x^3+62*x^2+25*x+11,5*x^6+12*x^5-32*x^4-76*x^3+20*x^2+56*x+8,5*x^6+4*x^5-41*x^4-25*x^3+71*x^2+16*x-8,-10*x^6-32*x^5+52*x^4+208*x^3+38*x^2-170*x-60,x^6+6*x^5-2*x^4-38*x^3-26*x^2+25*x+28,5*x^6+8*x^5-34*x^4-46*x^3+30*x^2+23*x+4,7*x^6+24*x^5-36*x^4-160*x^3-20*x^2+151*x+24,x^6+x^5-4*x^4-8*x^3-8*x^2+16*x,-x^6+2*x^5+10*x^4-20*x^3-30*x^2+45*x+18,-2*x^5-4*x^4+12*x^3+16*x^2-8*x,-x^6-3*x^5+6*x^4+20*x^3-2*x^2-17*x-5,12*x^6+30*x^5-72*x^4-192*x^3+20*x^2+160*x+38,-2*x^6-2*x^5+21*x^4+12*x^3-58*x^2-x+22,-6*x^6-10*x^5+38*x^4+66*x^3-24*x^2-56*x-8,-x^6-2*x^5+14*x^3+32*x^2-19*x-6,-x^6+8*x^4-17*x^2+12,-x^6+3*x^5+14*x^4-26*x^3-48*x^2+45*x+25,-6*x^6-10*x^5+40*x^4+66*x^3-30*x^2-50*x-8,-6*x^6-10*x^5+40*x^4+55*x^3-33*x^2-4*x-4,-5*x^6-10*x^5+34*x^4+63*x^3-32*x^2-40*x-6,-2*x^6+4*x^5+28*x^4-32*x^3-104*x^2+46*x+48,-3*x^6-4*x^5+20*x^4+32*x^3-24*x^2-43*x,-2*x^6-3*x^5+16*x^4+21*x^3-29*x^2-26*x+9,4*x^6+6*x^5-27*x^4-44*x^3+25*x^2+56*x+12,x^6-10*x^5-19*x^4+63*x^3+75*x^2-32*x-12,5*x^6+12*x^5-33*x^4-77*x^3+24*x^2+53*x+8,-6*x^6-20*x^5+40*x^4+129*x^3-39*x^2-98*x+4,-2*x^6-16*x^5+8*x^4+100*x^3+20*x^2-74*x-32,-x^6-4*x^5+5*x^4+28*x^3+6*x^2-32*x-12,7*x^6+16*x^5-48*x^4-106*x^3+48*x^2+85*x+12,-3*x^6-6*x^5+16*x^4+36*x^3+16*x^2-15*x-46,2*x^6+4*x^5-16*x^4-22*x^3+30*x^2-4*x-8,11*x^6+18*x^5-85*x^4-107*x^3+131*x^2+40*x+2,-2*x^6-12*x^5+14*x^4+78*x^3-16*x^2-64*x-12,3*x^6+4*x^5-24*x^4-24*x^3+44*x^2+11*x-8,-x^6+4*x^5+14*x^4-25*x^3-49*x^2+4*x+22,10*x^6+16*x^5-74*x^4-98*x^3+100*x^2+60*x+2,-x,2*x^6+4*x^5-20*x^4-28*x^3+50*x^2+24*x-16,-4*x^6-8*x^5+32*x^4+48*x^3-50*x^2-16*x+8,-2*x^6-4*x^5+16*x^4+22*x^3-28*x^2+2*x+6,5*x^6+20*x^5-30*x^4-122*x^3+2*x^2+81*x+20,-9*x^6-13*x^5+70*x^4+82*x^3-108*x^2-51*x-3,5*x^6+8*x^5-36*x^4-53*x^3+44*x^2+44*x-12,-6*x^6-12*x^5+42*x^4+78*x^3-48*x^2-60*x-2,7*x^6+21*x^5-39*x^4-139*x^3-3*x^2+119*x+20,-2*x^6-2*x^5+12*x^4+10*x^3-4*x^2+4*x-2,-2*x^6-x^5+16*x^4+7*x^3-32*x^2-4*x+20,x^6-8*x^5-20*x^4+56*x^3+92*x^2-71*x-56,-2*x^6-5*x^5+12*x^4+34*x^3-3*x^2-34*x-8,3*x^5-16*x^3+4*x+19,14*x^6+26*x^5-92*x^4-164*x^3+80*x^2+118*x+14]];
E[303,4] = [x^6-x^5-7*x^4+5*x^3+13*x^2-4*x-6, [1,x,1,x^2-2,x^4-x^3-5*x^2+3*x+5,x,-x^5+x^4+5*x^3-5*x^2-3*x+4,x^3-4*x,1,x^5-x^4-5*x^3+3*x^2+5*x,-2*x^4+x^3+11*x^2-4*x-8,x^2-2,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-2*x^4+10*x^2-6,x^4-x^3-5*x^2+3*x+5,x^4-6*x^2+4,-x^4+x^3+3*x^2-3*x+3,x,-x^5+2*x^4+7*x^3-11*x^2-10*x+7,2*x^2-2*x-4,-x^5+x^4+5*x^3-5*x^2-3*x+4,-2*x^5+x^4+11*x^3-4*x^2-8*x,-2*x^5+3*x^4+11*x^3-13*x^2-13*x+7,x^3-4*x,x^5-8*x^3+12*x+2,3*x^4-x^3-16*x^2+3*x+12,1,-2*x^4+10*x^2-8,2*x^5-11*x^3-3*x^2+10*x+8,x^5-x^4-5*x^3+3*x^2+5*x,-2*x^4-x^3+11*x^2+4*x-9,x^5-8*x^3+12*x,-2*x^4+x^3+11*x^2-4*x-8,-x^5+x^4+3*x^3-3*x^2+3*x,x^5-x^4-5*x^3+3*x^2+3*x+2,x^2-2,2*x^4+x^3-7*x^2-6*x-2,x^5-6*x^3+3*x^2+3*x-6,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-2*x^5+2*x^4+12*x^3-8*x^2-14*x,-3*x^5+4*x^4+17*x^3-17*x^2-18*x+8,-2*x^4+10*x^2-6,x^5-2*x^4-3*x^3+9*x^2-4*x-8,-x^5+x^4+4*x^3-4*x^2+4,x^4-x^3-5*x^2+3*x+5,x^5-3*x^4-3*x^3+13*x^2-x-12,2*x^5-5*x^4-11*x^3+25*x^2+13*x-17,x^4-6*x^2+4,-2*x^4+2*x^3+10*x^2-6*x-9,x^5-x^4-5*x^3-x^2+6*x+6,-x^4+x^3+3*x^2-3*x+3,-x^5+3*x^4+6*x^3-15*x^2-8*x+10,x^5-2*x^4-5*x^3+9*x^2+4*x-2,x,-2*x^5+4*x^4+10*x^3-16*x^2-10*x+2,-2*x^5+4*x^4+10*x^3-20*x^2-8*x+12,-x^5+2*x^4+7*x^3-11*x^2-10*x+7,2*x^5+3*x^4-13*x^3-16*x^2+16*x+12,-x^4+2*x^3+4*x^2-5*x-2,2*x^2-2*x-4,2*x^5-2*x^4-12*x^3+12*x^2+12*x-14,-2*x^5-x^4+11*x^3+4*x^2-9*x,-x^5+x^4+5*x^3-5*x^2-3*x+4,x^5-3*x^4-5*x^3+11*x^2+4*x-2,x^4-3*x^3-5*x^2+13*x+5,-2*x^5+x^4+11*x^3-4*x^2-8*x,-4*x^4+22*x^2+4*x-22,-2*x^4+10*x^2+2*x-12,-2*x^5+3*x^4+11*x^3-13*x^2-13*x+7,2*x^4-2*x^3-10*x^2+6*x+6,-x^4-x^3+5*x^2+7*x-5,x^3-4*x,-x^5-3*x^4+7*x^3+19*x^2-13*x-16,2*x^5+x^4-7*x^3-6*x^2-2*x,x^5-8*x^3+12*x+2,3*x^5-3*x^4-16*x^3+12*x^2+18*x-8,-4*x^5+4*x^4+20*x^3-16*x^2-10*x+4,3*x^4-x^3-16*x^2+3*x+12,x^5+2*x^4-7*x^3-17*x^2+10*x+21,-2*x^4+2*x^3+8*x^2-4*x-4,1,x^5-4*x^4-2*x^3+21*x^2-4*x-18,-3*x^4+2*x^3+20*x^2-7*x-22,-2*x^4+10*x^2-8,-x^5+4*x^4+4*x^3-24*x^2+4*x+21,-x^5+4*x^4+4*x^3-17*x^2-4*x+6,2*x^5-11*x^3-3*x^2+10*x+8,4*x^5-5*x^4-21*x^3+21*x^2+16*x-6,x^5+3*x^4-6*x^3-18*x^2+9*x+20,x^5-x^4-5*x^3+3*x^2+5*x,x^5+3*x^4-9*x^3-15*x^2+17*x+4,2*x^5-2*x^4-14*x^3+12*x^2+18*x-8,-2*x^4-x^3+11*x^2+4*x-9,-3*x^5+3*x^4+15*x^3-13*x^2-9*x+12,-2*x^5-x^4+17*x^3+3*x^2-27*x-7,x^5-8*x^3+12*x,-x^5+4*x^4+5*x^3-19*x^2-4*x+14,-2*x^5+2*x^4+10*x^3-6*x^2-9*x,-2*x^4+x^3+11*x^2-4*x-8,-2*x^5+2*x^4+10*x^3-7*x^2-14*x+2,-1,-x^5+x^4+3*x^3-3*x^2+3*x,-5*x^5+7*x^4+27*x^3-37*x^2-21*x+28,2*x^5-7*x^4-8*x^3+37*x^2-30,x^5-x^4-5*x^3+3*x^2+3*x+2,-x^5+2*x^4+4*x^3-9*x^2+2*x+6,6*x^5-3*x^4-35*x^3+13*x^2+39*x-5,x^2-2,-x^5-3*x^4+7*x^3+13*x^2-9*x-6,2*x^5-4*x^4-6*x^3+16*x^2-6*x-12,2*x^4+x^3-7*x^2-6*x-2,2*x^5-10*x^3-2*x^2+4*x+4,3*x^5-3*x^4-19*x^3+13*x^2+25*x,x^5-6*x^3+3*x^2+3*x-6,-3*x^5+2*x^4+18*x^3-2*x^2-30*x-7,x^5+x^4-4*x^3-4*x^2-4,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-x^5+2*x^4+4*x^3-5*x^2-2*x,-5*x^5+9*x^4+25*x^3-43*x^2-15*x+30,-2*x^5+2*x^4+12*x^3-8*x^2-14*x,3*x^5-12*x^4-13*x^3+59*x^2+4*x-37,2*x^4+2*x^3-14*x^2-6*x+12,-3*x^5+4*x^4+17*x^3-17*x^2-18*x+8,-3*x^5+x^4+16*x^3-5*x^2-16*x+6,2*x^5-5*x^4-13*x^3+27*x^2+15*x-15,-2*x^4+10*x^2-6,2*x^5+2*x^4-14*x^3-14*x^2+24*x+14,-4*x^5+2*x^4+22*x^3-9*x^2-22*x+6,x^5-2*x^4-3*x^3+9*x^2-4*x-8,x^5-3*x^4-5*x^3+13*x^2+5*x,2*x^5-x^4-11*x^3+3*x^2+15*x+3,-x^5+x^4+4*x^3-4*x^2+4,-x^5+3*x^4+7*x^3-17*x^2-15*x+16,-4*x^5+22*x^3+4*x^2-22*x,x^4-x^3-5*x^2+3*x+5,-2*x^4+4*x^3+8*x^2-18*x,-4*x^5+7*x^4+23*x^3-31*x^2-23*x+15,x^5-3*x^4-3*x^3+13*x^2-x-12,x^5-x^4-7*x^3+7*x^2+9*x-8,-4,2*x^5-5*x^4-11*x^3+25*x^2+13*x-17,-x^5-x^4+5*x^3+7*x^2-5*x,5*x^5-6*x^4-22*x^3+26*x^2-14,x^4-6*x^2+4,2*x^4-4*x^3-14*x^2+20*x+22,-4*x^5+24*x^3-20*x-6,-2*x^4+2*x^3+10*x^2-6*x-9,3*x^5+3*x^4-18*x^3-14*x^2+20*x+16,-x^5+3*x^4-x^3-17*x^2+19*x+18,x^5-x^4-5*x^3-x^2+6*x+6,-3*x^5+5*x^4+13*x^3-19*x^2-9*x,-2*x^5+5*x^4+9*x^3-27*x^2-2*x+30,-x^4+x^3+3*x^2-3*x+3,-8*x^4+4*x^3+42*x^2-12*x-24,2*x^5-x^4-13*x^3+5*x^2+15*x-3,-x^5+3*x^4+6*x^3-15*x^2-8*x+10,x^5+2*x^4-5*x^3-13*x^2+6*x+21,3*x^5-22*x^3-3*x^2+25*x+6,x^5-2*x^4-5*x^3+9*x^2+4*x-2,2*x^5-2*x^4-16*x^3+12*x^2+24*x,-x^5+x^4+9*x^3-7*x^2-19*x+10,x,2*x^5-2*x^4-8*x^3+2*x^2-2*x+10,3*x^5-3*x^4-18*x^3+17*x^2+22*x-10,-2*x^5+4*x^4+10*x^3-16*x^2-10*x+2,-3*x^5+2*x^4+20*x^3-7*x^2-22*x,5*x^5-7*x^4-28*x^3+34*x^2+27*x-26,-2*x^5+4*x^4+10*x^3-20*x^2-8*x+12,-x^5-4*x^4+9*x^3+17*x^2-16*x-6,3*x^5-3*x^4-19*x^3+17*x^2+17*x-6,-x^5+2*x^4+7*x^3-11*x^2-10*x+7,x^5+x^4-6*x^3-9*x^2+10*x+10,-3*x^5+x^4+14*x^3+2*x^2-9*x-6,2*x^5+3*x^4-13*x^3-16*x^2+16*x+12,4*x^5-2*x^4-22*x^3+8*x^2+22*x-4,x^5+5*x^4-7*x^3-28*x^2+10*x+16,-x^4+2*x^3+4*x^2-5*x-2,4*x^5+x^4-23*x^3-4*x^2+24*x+6,-6*x^5+8*x^4+26*x^3-38*x^2-6*x+36,2*x^2-2*x-4,3*x^5-4*x^4-11*x^3+17*x^2-11,4*x^5-2*x^4-20*x^3+4*x^2+8*x+6,2*x^5-2*x^4-12*x^3+12*x^2+12*x-14,-2*x^5+6*x^4+8*x^3-34*x^2+2*x+36,-4*x^5+26*x^3+12*x^2-42*x-28,-2*x^5-x^4+11*x^3+4*x^2-9*x,4*x^5-14*x^4-14*x^3+68*x^2-6*x-42,-4*x^5+4*x^4+24*x^3-20*x^2-26*x+16,-x^5+x^4+5*x^3-5*x^2-3*x+4,-3*x^5+3*x^4+13*x^3-x^2-15*x-12,-x^5+5*x^3-5*x^2+4*x+10,x^5-3*x^4-5*x^3+11*x^2+4*x-2,-7*x^5+8*x^4+43*x^3-37*x^2-48*x+19,3*x^5-2*x^4-14*x^3+9*x^2+10*x-6,x^4-3*x^3-5*x^2+13*x+5,-3*x^2+4*x+6,-2*x^5+7*x^4+9*x^3-37*x^2-5*x+35,-2*x^5+x^4+11*x^3-4*x^2-8*x,4*x^4-8*x^3-20*x^2+28*x+18,-2*x^5-2*x^4+13*x^3+14*x^2-18*x-24,-4*x^4+22*x^2+4*x-22,-x,8*x^4-4*x^3-44*x^2+10*x+32,-2*x^4+10*x^2+2*x-12,-2*x^5+16*x^3+6*x^2-36*x-14,2*x^5-8*x^4-12*x^3+44*x^2+8*x-30,-2*x^5+3*x^4+11*x^3-13*x^2-13*x+7,-3*x^5+15*x^3+4*x^2-6*x-8,3*x^5+2*x^4-19*x^3-17*x^2+28*x+16,2*x^4-2*x^3-10*x^2+6*x+6,-x^3+3*x^2+14*x-17,-x^5+x^4+6*x^3-3*x^2-6*x-2,-x^4-x^3+5*x^2+7*x-5,3*x^5+7*x^4-17*x^3-39*x^2+19*x+36,-4*x^5+2*x^4+26*x^3-8*x^2-30*x-10,x^3-4*x,x^5-5*x^4-5*x^3+29*x^2+9*x-24,-4*x^5+18*x^3+4*x^2-10*x-6,-x^5-3*x^4+7*x^3+19*x^2-13*x-16,2*x^5-14*x^3+16*x+8,10*x^5-15*x^4-53*x^3+71*x^2+43*x-45,2*x^5+x^4-7*x^3-6*x^2-2*x,-8*x^4+x^3+43*x^2-4*x-40,6*x^5-4*x^4-32*x^3+18*x^2+28*x-12,x^5-8*x^3+12*x+2,2*x^4-2*x^3-14*x^2+12*x+18,-6*x^5+5*x^4+35*x^3-25*x^2-41*x+21,3*x^5-3*x^4-16*x^3+12*x^2+18*x-8,6*x^4-4*x^3-32*x^2+16*x+24,-x^5-3*x^4+13*x^3+9*x^2-19*x-18,-4*x^5+4*x^4+20*x^3-16*x^2-10*x+4,-2*x^5-3*x^4+17*x^3+19*x^2-32*x-18,4*x^4+2*x^3-28*x^2-8*x+30,3*x^4-x^3-16*x^2+3*x+12,3*x^5-20*x^3-4*x^2+32*x+5,x^5-x^4-4*x^3+3*x^2+6*x-2,x^5+2*x^4-7*x^3-17*x^2+10*x+21,4*x^5-10*x^4-18*x^3+50*x^2+10*x-30,-2*x^5-5*x^4+15*x^3+29*x^2-21*x-33,-2*x^4+2*x^3+8*x^2-4*x-4,3*x^5-3*x^4-17*x^3+15*x^2+25*x-12,-9*x^5+8*x^4+44*x^3-35*x^2-25*x+18,1,-2*x^5+6*x^4+10*x^3-30*x^2-12*x+28,-2*x^5+x^4+15*x^3-5*x^2-21*x-9,x^5-4*x^4-2*x^3+21*x^2-4*x-18,-6*x^4+38*x^2+4*x-47,2*x^5-3*x^4-12*x^3+15*x^2+12*x-18,-3*x^4+2*x^3+20*x^2-7*x-22,-3*x^5+x^4+17*x^3-11*x^2-7*x+12,4*x^5-3*x^4-23*x^3+17*x^2+19*x-15,-2*x^4+10*x^2-8,6*x^4-8*x^3-28*x^2+26*x+22,4*x^5-24*x^3-2*x^2+22*x+12,-x^5+4*x^4+4*x^3-24*x^2+4*x+21,-4*x^5+21*x^3+8*x^2-18*x-20,3*x^5-x^4-16*x^3+8*x^2+9*x-6,-x^5+4*x^4+4*x^3-17*x^2-4*x+6,2*x^5-2*x^4-10*x^3+6*x^2-8,-2*x^5+14*x^3+2*x^2-22*x-4,2*x^5-11*x^3-3*x^2+10*x+8,x^5+3*x^4-7*x^3-11*x^2+11*x+12,2*x^5-13*x^3+x^2+10*x-12,4*x^5-5*x^4-21*x^3+21*x^2+16*x-6,4*x^4-4*x^3-22*x^2+16*x+20,2*x^5-12*x^3-2*x^2+12*x-6,x^5+3*x^4-6*x^3-18*x^2+9*x+20,-4*x^5+2*x^4+24*x^3-14*x^2-24*x+20,4*x^5-7*x^4-18*x^3+40*x^2+11*x-42,x^5-x^4-5*x^3+3*x^2+5*x,-4*x^5+6*x^4+24*x^3-28*x^2-30*x+10,-2*x^5+8*x^4+8*x^3-38*x^2-4*x+24,x^5+3*x^4-9*x^3-15*x^2+17*x+4,3*x^5-5*x^4-11*x^3+29*x^2-x-24,-2*x^5+6*x^4+11*x^3-23*x^2-20*x+2,2*x^5-2*x^4-14*x^3+12*x^2+18*x-8,-x^5+x^4+5*x^3-7*x^2-13*x+16,2*x^3-4*x^2-4*x+6,-2*x^4-x^3+11*x^2+4*x-9,-4*x^4+4*x^3+20*x^2-16*x-12,-3*x^4+x^3+11*x^2-7*x-5,-3*x^5+3*x^4+15*x^3-13*x^2-9*x+12,-4*x^5+23*x^3+x^2-28*x-4,-2*x^5+14*x^3-2*x^2-18*x+4,-2*x^5-x^4+17*x^3+3*x^2-27*x-7,-x^5+13*x^4+x^3-65*x^2+6*x+30,-2*x^5-4*x^4+16*x^3+18*x^2-30*x-4,x^5-8*x^3+12*x,x^5-4*x^4+16*x^2-20*x-2,2*x^5-4*x^4-14*x^3+20*x^2+22*x,-x^5+4*x^4+5*x^3-19*x^2-4*x+14,-2*x^5+2*x^4+6*x^3-6*x^2+4*x+8,-4*x^2-4*x+2,-2*x^5+2*x^4+10*x^3-6*x^2-9*x,-x^5+x^4+9*x^3-9*x^2-11*x+2,2*x^5+x^4-15*x^3-7*x^2+32*x+18,-2*x^4+x^3+11*x^2-4*x-8,2*x^5-8*x^4-12*x^3+32*x^2+14*x-6,-3*x^4-x^3+23*x^2+5*x-41,-2*x^5+2*x^4+10*x^3-7*x^2-14*x+2,-2*x^5+8*x^4+8*x^3-38*x^2-2*x+16,2*x^5-8*x^4-4*x^3+30*x^2-12*x-18,-1,-3*x^5+x^4+15*x^3-14*x+4,-2*x^4-2*x^3+18*x^2+2*x-22,-x^5+x^4+3*x^3-3*x^2+3*x,3*x^5+4*x^4-24*x^3-24*x^2+44*x+21,-4*x^4+2*x^3+20*x^2-4*x-8,-5*x^5+7*x^4+27*x^3-37*x^2-21*x+28,x^5+x^4-5*x^3-11*x^2+5*x+12,-x^5+3*x^4+6*x^3-20*x^2-15*x+18,2*x^5-7*x^4-8*x^3+37*x^2-30,x^5-5*x^4-11*x^3+23*x^2+23*x+4,3*x^5+2*x^4-18*x^3-7*x^2+25*x+6,x^5-x^4-5*x^3+3*x^2+3*x+2,x^5-5*x^4-4*x^3+20*x^2-2*x-24,4*x^5-9*x^4-19*x^3+33*x^2+13*x-3,-x^5+2*x^4+4*x^3-9*x^2+2*x+6,7*x^5-6*x^4-31*x^3+25*x^2-22,2*x^4-2*x^3-18*x^2+16*x+20,6*x^5-3*x^4-35*x^3+13*x^2+39*x-5,2*x^4-2*x^3-6*x^2+6*x-6,-8*x^5+15*x^4+43*x^3-71*x^2-49*x+51,x^2-2,-3*x^5+4*x^4+13*x^3-23*x^2+32,6*x^4-8*x^3-28*x^2+18*x+12,-x^5-3*x^4+7*x^3+13*x^2-9*x-6,-2*x^5+11*x^4+6*x^3-59*x^2+10*x+54,-x^5-3*x^4+x^3+21*x^2+17*x-26,2*x^5-4*x^4-6*x^3+16*x^2-6*x-12,4*x^5-2*x^4-26*x^3+4*x^2+32*x-10,-x^5+5*x^4+4*x^3-23*x^2+2*x+26,2*x^4+x^3-7*x^2-6*x-2,-2*x^5+7*x^4+9*x^3-38*x^2-6*x+30,4*x^5-6*x^4-18*x^3+26*x^2+10*x-26,2*x^5-10*x^3-2*x^2+4*x+4,2*x^4+2*x^3-4*x^2-16*x+2,-5*x^5+2*x^4+22*x^3-3*x^2-10*x-6,3*x^5-3*x^4-19*x^3+13*x^2+25*x,2*x^5-6*x^4-6*x^3+26*x^2-2*x-24,-5*x^5+28*x^3+6*x^2-24*x-6,x^5-6*x^3+3*x^2+3*x-6,4*x^5-4*x^4-20*x^3+24*x^2+12*x-28,4*x^5-7*x^4-22*x^3+31*x^2+22*x-6,-3*x^5+2*x^4+18*x^3-2*x^2-30*x-7,-2*x^5-7*x^4+17*x^3+30*x^2-18*x-18,-4*x^5+5*x^4+24*x^3-18*x^2-27*x,x^5+x^4-4*x^3-4*x^2-4,-3*x^5+5*x^4+15*x^3-15*x^2-13*x-16,2*x^5+6*x^4-12*x^3-30*x^2+12*x+24,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-2*x^5+10*x^4+9*x^3-45*x^2-12*x+18,2*x^5-2*x^4-7*x^3+5*x^2-12*x+6,-x^5+2*x^4+4*x^3-5*x^2-2*x,5*x^5-6*x^4-26*x^3+22*x^2+26*x-7,3*x^5-x^4-12*x^3+8*x^2+4*x-16,-5*x^5+9*x^4+25*x^3-43*x^2-15*x+30,2*x^5-16*x^4-8*x^3+72*x^2+12*x-36,-3*x^4-3*x^3+11*x^2+7*x+3,-2*x^5+2*x^4+12*x^3-8*x^2-14*x,-6*x^5+12*x^4+27*x^3-57*x^2-20*x+48,-x^5+10*x^4+2*x^3-39*x^2+x+18,3*x^5-12*x^4-13*x^3+59*x^2+4*x-37,2*x^4+2*x^3-14*x^2-12*x+16,-5*x^5+9*x^4+25*x^3-31*x^2-31*x-2,2*x^4+2*x^3-14*x^2-6*x+12,-5*x^5-2*x^4+30*x^3+22*x^2-38*x-33,-2*x^4+4*x^3+4*x^2-8*x+4,-3*x^5+4*x^4+17*x^3-17*x^2-18*x+8,-4*x^5-2*x^4+32*x^3+10*x^2-44*x-24,-4*x^5+6*x^4+18*x^3-28*x^2-4*x+16,-3*x^5+x^4+16*x^3-5*x^2-16*x+6,-8*x^4+3*x^3+47*x^2-8*x-53,-10*x^5+14*x^4+48*x^3-58*x^2-26*x+24,2*x^5-5*x^4-13*x^3+27*x^2+15*x-15,6*x^5-10*x^4-30*x^3+52*x^2+18*x-48,3*x^5-14*x^4-16*x^3+70*x^2+22*x-34,-2*x^4+10*x^2-6,-x^5+2*x^4+11*x^3-5*x^2-20*x-20,4*x^5-6*x^4-20*x^3+18*x^2+30*x-4,2*x^5+2*x^4-14*x^3-14*x^2+24*x+14,-x^5-2*x^4+17*x^2+6*x-6,4*x^5-6*x^4-26*x^3+32*x^2+44*x-24,-4*x^5+2*x^4+22*x^3-9*x^2-22*x+6,6*x^5-10*x^4-26*x^3+46*x^2+2*x-28,x^5-6*x^4-2*x^3+43*x^2-9*x-42,x^5-2*x^4-3*x^3+9*x^2-4*x-8,3*x^5-x^4-16*x^3+9*x^2+14*x-10,x^5-4*x^4+3*x^3+25*x^2-34*x-22,x^5-3*x^4-5*x^3+13*x^2+5*x,-9*x^5+14*x^4+54*x^3-74*x^2-58*x+51,4*x^5-4*x^4-23*x^3+16*x^2+24*x,2*x^5-x^4-11*x^3+3*x^2+15*x+3,5*x^5-5*x^4-27*x^3+21*x^2+27*x-12,2*x^5-3*x^4-13*x^3+x^2+31*x+27,-x^5+x^4+4*x^3-4*x^2+4,4*x^5-6*x^4-24*x^3+24*x^2+34*x+4,4*x^5-8*x^4-20*x^3+28*x^2+18*x,-x^5+3*x^4+7*x^3-17*x^2-15*x+16,-5*x^4+4*x^3+22*x^2-4*x-16,5*x^5-3*x^4-27*x^3+17*x^2+21*x-6,-4*x^5+22*x^3+4*x^2-22*x,-x^5+10*x^4+5*x^3-57*x^2-10*x+51,-x^2+2,x^4-x^3-5*x^2+3*x+5,8*x^5-4*x^4-44*x^3+10*x^2+32*x,5*x^5+8*x^4-37*x^3-47*x^2+52*x+46,-2*x^4+4*x^3+8*x^2-18*x,2*x^5-4*x^4-17*x^3+19*x^2+32*x-2,-2*x^5+2*x^4+16*x^3-10*x^2-22*x-12,-4*x^5+7*x^4+23*x^3-31*x^2-23*x+15,4*x^5-12*x^4-20*x^3+56*x^2+20*x-44,-4*x^5+4*x^4+20*x^3-18*x^2-14*x+10,x^5-3*x^4-3*x^3+13*x^2-x-12,-3*x^5+3*x^4+19*x^3-3*x^2-33*x-26,-7*x^5+8*x^4+35*x^3-41*x^2-20*x+42,x^5-x^4-7*x^3+7*x^2+9*x-8,5*x^5+2*x^4-32*x^3-11*x^2+28*x+18,-x^5+6*x^4-3*x^3-25*x^2+26*x+14,-4,2*x^4+x^3-7*x^2+6*x-11,-x^4+3*x^3+14*x^2-17*x,2*x^5-5*x^4-11*x^3+25*x^2+13*x-17,2*x^5-5*x^4-6*x^3+25*x^2-10*x-18,6*x^5-4*x^4-34*x^3+12*x^2+46*x-6,-x^5-x^4+5*x^3+7*x^2-5*x,6*x^5-6*x^4-34*x^3+30*x^2+34*x-32,-2*x^5+10*x^4+16*x^3-46*x^2-30*x+28,5*x^5-6*x^4-22*x^3+26*x^2-14,-2*x^5-2*x^4+12*x^3+22*x^2-26*x-24,2*x^5+6*x^4-14*x^3-30*x^2+22*x+8,x^4-6*x^2+4,-4*x^5+6*x^4+22*x^3-28*x^2-22*x+32,-4*x^5+2*x^4+24*x^3-4*x^2-20*x+6,2*x^4-4*x^3-14*x^2+20*x+22,-2*x^5-4*x^4+10*x^3+16*x^2-4*x-12,-2*x^5+5*x^4+15*x^3-45*x^2-11*x+67,-4*x^5+24*x^3-20*x-6,-2*x^5+6*x^4+12*x^3-28*x^2-20*x+20,-2*x^5+8*x^4+2*x^3-42*x^2+28*x+36,-2*x^4+2*x^3+10*x^2-6*x-9,-5*x^5+17*x^4+21*x^3-87*x^2-5*x+60,-5*x^5+13*x^4+24*x^3-66*x^2-9*x+52,3*x^5+3*x^4-18*x^3-14*x^2+20*x+16,3*x^5-x^4-19*x^3-5*x^2+33*x+28,-8*x^5+x^4+43*x^3-4*x^2-40*x,-x^5+3*x^4-x^3-17*x^2+19*x+18,-2*x^5+10*x^4+8*x^3-46*x^2+4*x+28,5*x^4-3*x^3-33*x^2+21*x+37,x^5-x^4-5*x^3-x^2+6*x+6,-5*x^5+10*x^4+16*x^3-46*x^2+20*x+32,-4*x^5+4*x^4+24*x^3-14*x^2-32*x,-3*x^5+5*x^4+13*x^3-19*x^2-9*x,-x^5-7*x^4+5*x^3+37*x^2-3*x-36,5*x^5-13*x^4-25*x^3+63*x^2+19*x-34,-2*x^5+5*x^4+9*x^3-27*x^2-2*x+30,-5*x^5+15*x^4+21*x^3-77*x^2+7*x+70,6*x^5-4*x^4-32*x^3+16*x^2+24*x,-x^4+x^3+3*x^2-3*x+3,2*x^5+2*x^4-22*x^3-2*x^2+38*x+8,-8*x^5+5*x^4+50*x^3-28*x^2-65*x+10,-8*x^4+4*x^3+42*x^2-12*x-24,-3*x^5+3*x^4+13*x^3-17*x^2-3*x+30,-7*x^5+x^4+37*x^3+2*x^2-26*x-4,2*x^5-x^4-13*x^3+5*x^2+15*x-3,4*x^5+2*x^4-28*x^3-8*x^2+30*x,4*x^5-8*x^4-21*x^3+37*x^2+26*x-6,-x^5+3*x^4+6*x^3-15*x^2-8*x+10,2*x^5-14*x^4-10*x^3+78*x^2+14*x-64,3*x^5+x^4-19*x^3-7*x^2+17*x+18,x^5+2*x^4-5*x^3-13*x^2+6*x+21,2*x^5-x^4-10*x^3+3*x^2+6*x+6,11*x^5-12*x^4-56*x^3+46*x^2+40*x-8,3*x^5-22*x^3-3*x^2+25*x+6,-12*x^4+11*x^3+57*x^2-24*x-64,4*x^5-8*x^4-20*x^3+44*x^2+16*x-36,x^5-2*x^4-5*x^3+9*x^2+4*x-2,-7*x^5+x^4+39*x^3+5*x^2-41*x-12,-3*x^5-3*x^4+17*x^3+17*x^2-19*x-4,2*x^5-2*x^4-16*x^3+12*x^2+24*x,-9*x^5+2*x^4+54*x^3+2*x^2-58*x-20,4*x^4-14*x^2+18,-x^5+x^4+9*x^3-7*x^2-19*x+10,-7*x^5+5*x^4+36*x^3-26*x^2-26*x+20,2*x^2-4*x+4,x,2*x^5-2*x^4-10*x^3+4*x^2+8*x,4*x^5-8*x^4-24*x^3+42*x^2+32*x-36,2*x^5-2*x^4-8*x^3+2*x^2-2*x+10,-x^5+x^4+5*x^3+5*x^2-17*x-12,2*x^5-7*x^4-11*x^3+35*x^2+x-9,3*x^5-3*x^4-18*x^3+17*x^2+22*x-10,6*x^5-4*x^4-32*x^3+10*x^2+20*x+18,-6*x^5+38*x^3+4*x^2-47*x,-2*x^5+4*x^4+10*x^3-16*x^2-10*x+2,5*x^5-27*x^3-4*x^2+22*x,3*x^5-11*x^4-15*x^3+57*x^2+13*x-38,-3*x^5+2*x^4+20*x^3-7*x^2-22*x,-3*x^5+12*x^3+8*x^2-17,-6*x^5+6*x^4+30*x^3-22*x^2-30*x+12]];
E[303,5] = [x, [1,0,1,-2,-3,0,0,0,1,0,-2,-2,-3,0,-3,4,-7,0,-5,6,0,0,-5,0,4,0,1,0,6,0,7,0,-2,0,0,-2,10,0,-3,0,6,0,4,4,-3,0,-7,4,-7,0,-7,6,-4,0,6,0,-5,0,-10,6,-2,0,0,-8,9,0,10,14,-5,0,-9,0,-8,0,4,10,0,0,7,-12,1,0,2,0,21,0,6,0,-8,0,0,10,7,0,15,0,-10,0,-2,-8,1,0,-8,0,0,0,-9,-2,2,0,10,0,6,0,15,-12,-3,0,0,0,-7,0,6,-14,3,0,-18,0,4,0,13,4,0,0,-3,0,-9,0,-12,0,-7,0,6,4,-18,0,-7,-20,-4,0,0,0,-7,0,-21,6,-13,0,-4,0,0,0,10,-12,6,0,22,0,-4,0,-5,-8,14,0,0,-8,-10,0,0,6,25,0,-2,0,-30,0,14,14,0,0,20,-8,-19,0,9,14,9,0,-14,0,10,0,0,14,-18,0,-5,-12,10,0,5,8,-9,0,-12,0,0,0,-8,-12,21,0,24,0,4,0,3,10,-16,0,0,0,-18,0,21,20,7,0,9,-12,-28,0,1,4,21,0,15,0,2,0,-5,0,10,0,21,16,-22,0,0,-18,6,0,-14,0,12,0,-8,-20,-22,0,14,-28,0,0,-8,10,-16,0,7,0,17,0,12,18,15,0,0,0,32,0,-10,16,-18,0,30,0,-2,0,15,-8,0,0,1,-20,6,0,15,0,-8,0,30,0,-24,0,0,-14,-3,0,-12,24,-9,0,35,-2,-12,0,2,0,0,0,-18,-4,10,0,-30,0,-18,0,6,-42,-14,0,0,0,15,0,12,-12,28,0,-3,0,24,0,27,16,0,0,13,0,6,0,-7,0,24,0,-17,-20,6,0,0,-14,-33,0,3,0,-18,0,20,-30,-18,0,16,0,0,0,4,20,16,0,35,0,13,0,-21,4,-12,0,0,16,-24,0,-21,-2,-3,0,-20,0,22,0,-9,16,0,0,-6,0,-12,0,-28,0,21,0,-7,0,-28,0,0,18,6,0,-16,4,-16,0,-18,-4,25,0,28,0,-7,0,-8,-20,24,0,-4,0,15,0,-12,-12,0,0,0,0,30,0,-7,-30,6,0,-2,24,-21,0,-32,6,0,0,-13,0,-8,0,-20,0,-4,0,-14,0,-30,0,0,14,30,0,-8,0,10,0,-7,-12,-42,0,6,28,0,0,-29,-6]];

E[304,1] = [x, [1,0,-2,0,-1,0,3,0,1,0,-5,0,-4,0,2,0,-3,0,1,0,-6,0,-8,0,-4,0,4,0,-2,0,-4,0,10,0,-3,0,10,0,8,0,10,0,-1,0,-1,0,1,0,2,0,6,0,-4,0,5,0,-2,0,-6,0,-13,0,3,0,4,0,12,0,16,0,-2,0,9,0,8,0,-15,0,-8,0,-11,0,12,0,3,0,4,0,12,0,-12,0,8,0,-1,0,-8,0,-5,0,-10,0,6,0,6,0,-2,0,0,0,-20,0,-10,0,8,0,-4,0,-9,0,14,0,-20,0,9,0,-6,0,2,0,9,0,3,0,-4,0,-11,0,3,0,-2,0,20,0,2,0,-4,0,-15,0,-2,0,-3,0,4,0,-2,0,8,0,-24,0,4,0,-10,0,6,0,3,0,1,0,6,0,-12,0,12,0,-18,0,10,0,26,0,-10,0,15,0,12,0,-25,0,12,0,-8,0,2,0,7,0,-24,0,-6,0,-10,0,-8,0,-5,0,-18,0,4,0,1,0,-12,0,-18,0,12,0,-2,0,-4,0,-4,0,17,0,30,0,3,0,-1,0,16,0,-21,0,-26,0,10,0,-2,0,-4,0,-24,0,-11,0,40,0,-6,0,32,0,30,0,-2,0,21,0,4,0,-24,0,-24,0,8,0,24,0,20,0,1,0,-4,0,22,0,3,0,2,0,30,0,-8,0,16,0,-12,0,6,0,-20,0,32,0,-3,0,20,0,13,0,-12,0,-12,0,-7,0,-10,0,-3,0,30,0,10,0,4,0,-3,0,16,0,0,0,3,0,4,0,10,0,-12,0,-32,0,20,0,20,0,-15,0,-16,0,-19,0,-11,0,-16,0,-6,0,2,0,18,0,-21,0,1,0,-28,0,-9,0,-16,0,10,0,-12,0,-4,0,-18,0,8,0,30,0,12,0,-4,0,15,0,-1,0,-21,0,24,0,-18,0,8,0,5,0,-6,0,28,0,16,0,11,0,-50,0,-20,0,22,0,-18,0,-12,0,-6,0,36,0,-40,0,1,0,12,0,-39,0,-40,0,-24,0,2,0,-4,0,-8,0,-2,0,2,0,5,0,-12,0,30,0,16,0,-50,0,4,0,12,0,-13,0,-12,0,-19,0,-19,0,-8,0,5,0,36,0,4,0,5,0,-4,0,-4,0,-4,0,-40,0,48,0,8,0,26,0,-8,0,28,0,6,0,5,0,-6,0,-19,0]];
E[304,2] = [x, [1,0,1,0,-4,0,-3,0,-2,0,-2,0,-1,0,-4,0,3,0,1,0,-3,0,1,0,11,0,-5,0,-5,0,8,0,-2,0,12,0,-2,0,-1,0,-8,0,-4,0,8,0,-8,0,2,0,3,0,-1,0,8,0,1,0,-15,0,2,0,6,0,4,0,-3,0,1,0,-2,0,9,0,11,0,6,0,10,0,1,0,6,0,-12,0,-5,0,0,0,3,0,8,0,-4,0,-2,0,4,0,2,0,6,0,12,0,7,0,-15,0,-2,0,14,0,-4,0,2,0,-9,0,-7,0,-8,0,-24,0,-18,0,-4,0,-12,0,-3,0,20,0,-17,0,0,0,-8,0,2,0,20,0,2,0,0,0,-2,0,-6,0,-32,0,-2,0,-1,0,-3,0,16,0,8,0,12,0,-12,0,-2,0,-6,0,-33,0,-15,0,0,0,22,0,2,0,8,0,-6,0,15,0,-7,0,-6,0,4,0,8,0,25,0,-3,0,15,0,32,0,-2,0,-2,0,-27,0,-2,0,16,0,-24,0,9,0,-3,0,-14,0,-22,0,17,0,-10,0,6,0,-6,0,32,0,10,0,-15,0,-8,0,16,0,-8,0,-1,0,6,0,-2,0,-2,0,-12,0,8,0,6,0,10,0,-24,0,4,0,0,0,30,0,-7,0,3,0,-22,0,28,0,-16,0,-8,0,6,0,-4,0,24,0,-8,0,-2,0,9,0,60,0,10,0,-1,0,12,0,2,0,-8,0,12,0,6,0,-7,0,29,0,-24,0,-27,0,10,0,7,0,3,0,-11,0,-15,0,24,0,-17,0,4,0,12,0,-32,0,14,0,-16,0,15,0,-4,0,2,0,10,0,5,0,9,0,8,0,-9,0,15,0,1,0,-7,0,-36,0,-28,0,16,0,3,0,29,0,-24,0,5,0,-15,0,-18,0,26,0,-24,0,8,0,-30,0,3,0,-12,0,-40,0,8,0,-3,0,-8,0,-8,0,-4,0,4,0,-20,0,-17,0,45,0,-24,0,0,0,0,0,-13,0,16,0,33,0,-6,0,2,0,18,0,14,0,20,0,1,0,-20,0,-4,0,26,0,0,0,0,0,10,0,16,0,-2,0,-12,0,-7,0,-15,0,-28,0,-4,0,-32,0,2,0,9,0,-2,0,8,0,11,0,2,0,20,0,2,0,-3,0,8,0,2,0,16,0,28,0,-15,0,-16,0,6,0,-40,0]];
E[304,3] = [x^3+x^2-10*x-8, [2,0,2*x,0,-x^2+x+8,0,-x^2-x+4,0,2*x^2-6,0,x^2-x-4,0,2*x+4,0,2*x^2-2*x-8,0,-x^2-x+8,0,2,0,-6*x-8,0,-2*x^2-4*x+16,0,-x^2-3*x+10,0,-2*x^2+8*x+16,0,2*x^2-20,0,0,0,-2*x^2+6*x+8,0,-x^2-3*x+12,0,-4,0,2*x^2+4*x,0,-4*x+4,0,x^2-5*x-20,0,-x^2+9*x-8,0,3*x^2+x-20,0,x^2+5*x-2,0,-2*x-8,0,4*x^2-2*x-28,0,-x^2+5*x-4,0,2*x,0,2*x+16,0,-x^2-3*x+8,0,-3*x^2-5*x-12,0,8,0,2*x^2-24,0,-2*x^2-4*x-16,0,-2*x^2+6*x+24,0,-x^2-5*x+8,0,-2*x^2-8,0,-x^2+x-4,0,4*x-16,0,4*x^2-4*x+2,0,4*x^2-24,0,-3*x^2-x+28,0,-2*x^2+16,0,-2*x^2+6*x+28,0,-2*x^2-8*x,0,0,0,-x^2+x+8,0,2*x^2-2*x-20,0,5*x^2-9*x-4,0,-8*x+12,0,6*x^2-2*x-40,0,-2*x^2+2*x-8,0,-2*x,0,4*x^2+2*x-28,0,-4*x,0,8*x+4,0,-8*x^2+64,0,2*x^2+14*x+4,0,-x^2+3*x+20,0,3*x^2-7*x-26,0,-4*x^2+4*x,0,-x^2-3*x+4,0,-2*x^2+6*x+8,0,-6*x^2-10*x+8,0,-x^2+5*x+20,0,-x^2-x+4,0,4*x^2-12*x+16,0,-x^2-9*x+24,0,5*x^2-x-36,0,-2*x^2+10*x+24,0,4*x,0,6*x^2+2*x-64,0,4*x^2+8*x+8,0,-3*x^2+3*x,0,6*x^2-2*x-40,0,x^2-5*x-24,0,0,0,28,0,-6*x^2+12*x+32,0,-2*x^2+12*x+48,0,8*x+8,0,6*x^2-14*x-8,0,-2*x^2+2*x+40,0,2*x^2+8*x-18,0,2*x^2-6,0,8*x+12,0,-2*x^2+8*x+32,0,2*x^2+16*x,0,-6*x^2-10*x+48,0,-4*x^2+4*x+12,0,-2*x^2-2*x-8,0,2*x^2-2*x-16,0,x^2-x-12,0,-2*x^2-24*x,0,3*x^2-13*x-28,0,-6*x^2-2*x+44,0,8*x,0,4*x-4,0,-5*x^2-5*x+52,0,-2*x^2-4*x+16,0,4*x^2+2*x-40,0,-6*x^2+6*x+32,0,4*x^2-24*x-64,0,x^2-x-4,0,-4*x^2-2*x+48,0,8*x^2+4*x-16,0,3*x^2+x-52,0,0,0,-4*x^2-2*x-8,0,-2*x^2-4*x+8,0,2*x^2-6*x-8,0,5*x^2-19*x-46,0,-2*x^2-4*x-8,0,x^2+11*x,0,2*x^2-14*x-8,0,-5*x^2-7*x+48,0,5*x^2+7*x-60,0,4*x^2-16*x,0,-x^2+7*x+20,0,-4*x^2+4,0,-2*x^2+18*x-16,0,4*x^2-20,0,2*x+4,0,-4*x^2+16*x+32,0,-x^2+9*x+20,0,4*x^2-8*x-32,0,2*x^2-2*x-24,0,6*x^2-2*x-52,0,2*x^2+2*x-8,0,-4*x^2-4*x+44,0,-x^2+5*x-20,0,4*x^2+12*x-72,0,8*x^2+8*x-16,0,2*x^2+6*x-12,0,-2*x^2-4*x,0,-6*x^2-20*x-16,0,4*x^2-8*x-24,0,-3*x^2-5*x+32,0,0,0,8*x^2+4*x-28,0,x^2-x-4,0,2*x^2-2*x-8,0,-2*x^2+10*x+24,0,-3*x^2+x+2,0,-4*x^2+16,0,4*x^2+2*x-44,0,-6*x^2+6*x+56,0,-8*x^2+28*x+16,0,-6*x^2-12*x+16,0,7*x^2+21*x-20,0,-8*x^2+12*x,0,-5*x^2+x+36,0,-4*x^2+4*x+24,0,-8*x^2+20*x+48,0,x^2-3*x+12,0,-2*x^2+8*x-12,0,7*x^2-19*x-52,0,-6*x^2-4*x+28,0,-2*x^2-2*x+24,0,-2*x^2,0,-x^2-x+8,0,-4*x^2-6*x+12,0,-2*x^2+12*x+32,0,x^2-5*x-44,0,-2*x^2-8*x+24,0,-4*x^2+12,0,8*x^2-80,0,-2*x^2-10*x+12,0,8*x^2+4*x,0,0,0,5*x^2-11*x-52,0,8*x^2-16*x-64,0,-x^2+x+20,0,5*x^2-x-32,0,6*x^2+12*x+16,0,10*x^2+4*x-44,0,-2*x^2-6*x+56,0,4*x^2+10*x-8,0,3*x^2+15*x-28,0,2,0,-10*x^2+4*x+24,0,-7*x^2+3*x+44,0,8*x+16,0,8*x^2-28*x-44,0,2*x^2+4*x-48,0,4*x^2-22*x-44,0,-2*x^2-6*x-8,0,2*x^2-24,0,4*x^2-2*x,0,8*x^2-12*x-16,0,4*x^2,0,5*x^2-9*x-28,0,-7*x^2-37*x+12,0,-x^2-3*x+24,0,-6*x^2+4*x+80,0,6*x^2+10*x-8,0,12*x^2-12*x-80,0,-7*x^2-9*x+32,0,-6*x-8,0,-2*x^2+6*x+44,0,0,0,-13*x^2+29*x+56,0,-2*x^2+2*x+8,0,-2*x^2-18*x+28,0,-8*x^2+14*x-8,0,-8*x^2-14*x+24,0,4*x^2+12*x-64,0,-6*x^2+14*x+40,0,-8*x+8,0,-6*x+20,0,3*x^2+x+44,0,-4*x^2+2*x+52,0,-x^2+9*x+28,0,4*x^2,0,-4*x^2-8*x,0,-4*x^2+12*x+20,0,-4*x^2-4*x+48,0,-2*x^2-4*x+16,0,6*x^2+10*x-24,0,x^2+33*x+38,0,-9*x^2+9*x+52,0,-4*x^2-4*x+72,0,6*x^2-30*x-24,0,2*x^2-10*x+12,0,6*x^2-14*x-24,0,-8*x^2+20*x+48,0,-4*x^2-4*x+16,0,5*x^2-3*x,0,-6*x^2-8*x+32,0,9*x^2+15*x-64,0,-x^2-3*x-36,0,0,0,-x^2+x-28,0,6*x^2+4*x-48,0,28*x,0,-x^2-11*x+12,0,-x^2-3*x+10,0,6*x^2-22*x+36,0,4*x^2-12*x-32,0,-4*x-8,0,14*x^2+28*x-16,0,4*x^2+4*x-56,0,-6*x^2-14*x+40,0,8*x^2+8*x,0,-8*x^2+8*x+88,0,8*x^2+2*x-80,0,-17*x^2+37*x+60,0,-6*x^2-22*x+24,0,3*x^2-7*x-28,0]];
E[304,4] = [x, [1,0,2,0,3,0,1,0,1,0,-3,0,-4,0,6,0,-3,0,-1,0,2,0,0,0,4,0,-4,0,6,0,4,0,-6,0,3,0,2,0,-8,0,-6,0,1,0,3,0,3,0,-6,0,-6,0,12,0,-9,0,-2,0,6,0,-1,0,1,0,-12,0,4,0,0,0,-6,0,-7,0,8,0,-3,0,-8,0,-11,0,-12,0,-9,0,12,0,12,0,-4,0,8,0,-3,0,8,0,-3,0,6,0,-14,0,6,0,18,0,-16,0,4,0,6,0,0,0,-4,0,-3,0,-2,0,-12,0,-3,0,-2,0,2,0,15,0,-1,0,-12,0,-3,0,13,0,6,0,12,0,18,0,-12,0,21,0,10,0,-3,0,12,0,14,0,24,0,0,0,-20,0,-18,0,18,0,3,0,-1,0,-18,0,4,0,12,0,18,0,2,0,-2,0,6,0,9,0,-4,0,-3,0,-4,0,-24,0,18,0,-11,0,8,0,6,0,-18,0,0,0,3,0,-14,0,-12,0,3,0,4,0,-14,0,12,0,10,0,4,0,-12,0,5,0,-6,0,-21,0,9,0,-16,0,-15,0,-10,0,-10,0,-18,0,4,0,-24,0,-21,0,0,0,-18,0,0,0,2,0,6,0,-9,0,36,0,24,0,24,0,16,0,-8,0,-12,0,-19,0,4,0,6,0,13,0,-6,0,-6,0,-8,0,16,0,-12,0,18,0,12,0,0,0,1,0,12,0,-3,0,-20,0,-28,0,3,0,-10,0,3,0,6,0,-18,0,36,0,3,0,-16,0,-32,0,3,0,28,0,2,0,12,0,32,0,12,0,-12,0,-13,0,0,0,-21,0,17,0,16,0,-6,0,-18,0,-6,0,-15,0,1,0,-4,0,-21,0,-8,0,-6,0,12,0,-4,0,-6,0,-24,0,34,0,-4,0,-12,0,-9,0,1,0,15,0,0,0,30,0,-24,0,-7,0,-2,0,12,0,-16,0,-33,0,-6,0,-4,0,-6,0,6,0,-36,0,26,0,12,0,8,0,3,0,-12,0,-1,0,24,0,24,0,2,0,36,0,0,0,10,0,-6,0,3,0,36,0,42,0,0,0,18,0,20,0,-12,0,-37,0,12,0,9,0,31,0,24,0,27,0,4,0,28,0,-3,0,-4,0,12,0,12,0,-8,0,0,0,24,0,-2,0,-40,0,-12,0,-18,0,-9,0,-6,0,-5,0]];
E[304,5] = [x, [1,0,2,0,-1,0,3,0,1,0,3,0,-4,0,-2,0,5,0,1,0,6,0,0,0,-4,0,-4,0,2,0,-8,0,6,0,-3,0,-10,0,-8,0,6,0,7,0,-1,0,9,0,2,0,10,0,-8,0,-3,0,2,0,-14,0,-5,0,3,0,4,0,0,0,0,0,6,0,-15,0,-8,0,9,0,4,0,-11,0,-4,0,-5,0,4,0,0,0,-12,0,-16,0,-1,0,16,0,3,0,-18,0,14,0,-6,0,-10,0,12,0,-20,0,2,0,0,0,-4,0,15,0,-2,0,12,0,9,0,6,0,14,0,9,0,3,0,4,0,21,0,-5,0,18,0,-12,0,-2,0,4,0,17,0,-2,0,5,0,8,0,14,0,-16,0,0,0,-4,0,-6,0,2,0,3,0,1,0,-2,0,-12,0,-28,0,18,0,2,0,-10,0,10,0,15,0,-12,0,15,0,-24,0,8,0,18,0,15,0,0,0,6,0,-6,0,0,0,3,0,6,0,12,0,-7,0,-24,0,-30,0,-20,0,-22,0,-4,0,20,0,1,0,18,0,-13,0,-9,0,8,0,3,0,18,0,-10,0,-2,0,-4,0,-8,0,13,0,0,0,-10,0,-24,0,-30,0,2,0,5,0,8,0,0,0,4,0,8,0,-24,0,-12,0,9,0,-8,0,-10,0,-13,0,-2,0,18,0,8,0,32,0,-4,0,14,0,-12,0,0,0,21,0,-36,0,5,0,-16,0,28,0,-31,0,14,0,-3,0,-18,0,6,0,-20,0,5,0,16,0,24,0,27,0,8,0,-10,0,0,0,0,0,4,0,-24,0,-15,0,0,0,-27,0,-19,0,16,0,2,0,-6,0,30,0,11,0,1,0,-4,0,15,0,-16,0,6,0,-24,0,4,0,18,0,-8,0,-18,0,12,0,-16,0,-9,0,7,0,-29,0,0,0,18,0,-4,0,13,0,6,0,24,0,32,0,11,0,-30,0,-8,0,42,0,-42,0,4,0,-10,0,12,0,20,0,9,0,-20,0,-15,0,-24,0,0,0,-26,0,-4,0,0,0,26,0,2,0,-19,0,0,0,34,0,24,0,18,0,-4,0,12,0,-29,0,-20,0,21,0,37,0,16,0,13,0,0,0,28,0,21,0,-4,0,-8,0,28,0,40,0,0,0,-16,0,2,0,-8,0,20,0,10,0,-3,0,18,0,29,0]];
E[304,6] = [x, [1,0,-1,0,0,0,-3,0,-2,0,-2,0,1,0,0,0,-5,0,-1,0,3,0,1,0,-5,0,5,0,-3,0,-4,0,2,0,0,0,2,0,-1,0,-8,0,8,0,0,0,8,0,2,0,5,0,9,0,0,0,1,0,-1,0,14,0,6,0,0,0,-13,0,-1,0,-10,0,9,0,5,0,6,0,10,0,1,0,-10,0,0,0,3,0,-12,0,-3,0,4,0,0,0,14,0,4,0,-14,0,-6,0,0,0,-15,0,7,0,-2,0,-18,0,0,0,-2,0,15,0,-7,0,8,0,0,0,6,0,-8,0,0,0,3,0,0,0,7,0,12,0,-8,0,-2,0,0,0,-2,0,-8,0,-22,0,10,0,0,0,-22,0,-9,0,-3,0,4,0,0,0,-4,0,-12,0,2,0,22,0,15,0,1,0,0,0,-14,0,-14,0,0,0,10,0,-15,0,-23,0,6,0,0,0,-8,0,9,0,13,0,9,0,0,0,-2,0,2,0,-21,0,10,0,0,0,12,0,-9,0,-5,0,14,0,10,0,-9,0,2,0,-6,0,26,0,0,0,-10,0,9,0,0,0,-16,0,0,0,-1,0,10,0,18,0,-2,0,0,0,-4,0,-6,0,6,0,-32,0,0,0,12,0,10,0,25,0,3,0,10,0,0,0,8,0,0,0,6,0,0,0,24,0,8,0,-14,0,7,0,0,0,-10,0,1,0,-24,0,14,0,0,0,12,0,6,0,9,0,13,0,0,0,3,0,6,0,15,0,5,0,-5,0,-7,0,-24,0,25,0,-4,0,0,0,12,0,18,0,8,0,15,0,0,0,-2,0,-26,0,5,0,-7,0,0,0,-15,0,-17,0,1,0,7,0,0,0,-28,0,16,0,-27,0,-13,0,0,0,-3,0,-9,0,-6,0,6,0,0,0,-16,0,34,0,-5,0,0,0,0,0,-4,0,-3,0,-16,0,-4,0,0,0,-4,0,-8,0,-7,0,3,0,0,0,-12,0,12,0,-35,0,-16,0,25,0,-42,0,2,0,-30,0,2,0,0,0,-1,0,28,0,-4,0,-6,0,0,0,8,0,-26,0,16,0,22,0,0,0,1,0,-25,0,20,0,-4,0,0,0,6,0,39,0,22,0,-16,0,5,0,-18,0,-12,0,2,0,3,0,0,0,-26,0,-4,0,-12,0,15,0,0,0,30,0,-28,0]];
E[304,7] = [x, [1,0,-1,0,0,0,1,0,-2,0,6,0,5,0,0,0,3,0,-1,0,-1,0,-3,0,-5,0,5,0,9,0,4,0,-6,0,0,0,2,0,-5,0,0,0,-8,0,0,0,0,0,-6,0,-3,0,-3,0,0,0,1,0,-9,0,-10,0,-2,0,0,0,-5,0,3,0,6,0,-7,0,5,0,6,0,10,0,1,0,6,0,0,0,-9,0,-12,0,5,0,-4,0,0,0,-10,0,-12,0,18,0,-14,0,0,0,9,0,11,0,-2,0,6,0,0,0,-10,0,3,0,25,0,0,0,0,0,-2,0,8,0,0,0,-1,0,0,0,-9,0,4,0,0,0,30,0,0,0,6,0,0,0,10,0,-6,0,0,0,-22,0,3,0,-3,0,-20,0,0,0,-12,0,12,0,2,0,6,0,-5,0,9,0,0,0,2,0,10,0,0,0,18,0,5,0,-3,0,14,0,0,0,0,0,-11,0,5,0,9,0,0,0,6,0,-6,0,-5,0,-6,0,0,0,4,0,7,0,15,0,-26,0,10,0,15,0,-22,0,-6,0,-6,0,0,0,-10,0,21,0,8,0,-16,0,0,0,-5,0,-6,0,-6,0,-18,0,0,0,12,0,2,0,-18,0,-24,0,0,0,12,0,-6,0,-11,0,-5,0,-30,0,8,0,-8,0,0,0,22,0,0,0,0,0,-8,0,10,0,-21,0,0,0,30,0,-15,0,-8,0,-18,0,0,0,-20,0,14,0,21,0,-19,0,0,0,-9,0,54,0,-9,0,-3,0,-25,0,-11,0,0,0,1,0,-4,0,0,0,-4,0,-6,0,24,0,-13,0,0,0,-18,0,-10,0,25,0,-15,0,0,0,-3,0,-21,0,1,0,-25,0,0,0,28,0,0,0,-3,0,23,0,0,0,45,0,7,0,2,0,-18,0,0,0,16,0,18,0,-9,0,0,0,0,0,20,0,1,0,0,0,20,0,0,0,12,0,32,0,9,0,-9,0,0,0,-4,0,12,0,17,0,0,0,-15,0,-10,0,-30,0,-6,0,2,0,0,0,3,0,28,0,12,0,18,0,0,0,0,0,-18,0,0,0,-10,0,0,0,17,0,15,0,-12,0,4,0,0,0,-18,0,-5,0,22,0,-48,0,5,0,6,0,-36,0,10,0,3,0,0,0,-2,0,20,0,36,0,27,0,0,0,6,0,4,0]];

E[305,1] = [x^3-3*x+1, [1,x,-x,x^2-2,-1,-x^2,-2*x^2-x+2,-x-1,x^2-3,-x,-x^2+x,-x+1,3*x^2+4*x-7,-x^2-4*x+2,x,-3*x^2-x+4,3*x^2-x-6,-1,-x-5,-x^2+2,x^2+4*x-2,x^2-3*x+1,x^2+2*x+1,x^2+x,1,4*x^2+2*x-3,3*x+1,x-3,-3*x^2-5*x+7,x^2,x-5,-x^2-3*x+5,-x^2+3*x-1,-x^2+3*x-3,2*x^2+x-2,-2*x^2-x+6,-2*x^2+x+5,-x^2-5*x,-4*x^2-2*x+3,x+1,3*x-4,4*x^2+x-1,-4*x^2-5*x+9,-x^2+2*x-1,-x^2+3,2*x^2+4*x-1,-7*x^2-4*x+13,x^2+5*x-3,5*x^2+4*x-7,x,x^2-3*x+3,-4*x^2+x+10,2*x^2+x-1,3*x^2+x,x^2-x,3*x^2+5*x-4,x^2+5*x,-5*x^2-2*x+3,-2*x^2-3*x-4,x-1,-1,x^2-5*x,2*x^2+2*x-5,3*x^2+4*x-7,-3*x^2-4*x+7,3*x^2-4*x+1,5*x^2-x-7,-3*x^2-4*x+13,-2*x^2-4*x+1,x^2+4*x-2,8*x^2+4*x-15,-x^2+4,x^2-4*x+2,x^2-x+2,-x,-5*x^2-x+11,3*x^2-3*x+1,-2*x^2-9*x+4,5*x^2+8*x-15,3*x^2+x-4,-6*x^2-x+9,3*x^2-4*x,2*x^2-3*x+2,-x^2+3*x,-3*x^2+x+6,-5*x^2-3*x+4,5*x^2+2*x-3,2*x-1,-x^2-5*x+4,1,-2*x^2-12*x-3,2*x^2+x-4,-x^2+5*x,-4*x^2-8*x+7,x+5,3*x^2-2*x-1,-5*x^2-x+2,4*x^2+8*x-5,x-1,x^2-2,-7*x^2-4*x+15,-3*x^2+6*x-1,-17,-7*x^2-6*x+10,-x^2-4*x+2,x^2+5*x-2,4*x^2+6*x,x^2+3*x-5,-3*x^2-3*x+7,-x^2+3*x-1,-x^2+x-2,5*x^2+3*x+3,-4*x^2+x+12,5*x^2+3*x-1,-x^2-2*x-1,4*x^2-2*x-9,-7*x^2-3*x+17,-3*x^2-10*x+2,x^2+7*x-11,-x^2-x,4*x^2-7*x-9,-x,-3*x^2+4*x,-5*x^2+x+9,-1,2*x^2+x-2,-10*x^2-3*x+10,6*x^2+8*x-13,5*x^2+3*x-4,-4*x^2-2*x+3,-x^2-x+2,-2*x^2+4*x-1,11*x^2+9*x-12,-x^2+8*x-5,-3*x-1,-2*x^2-2*x+9,6*x^2+2*x-19,-4*x^2-5*x+2,10*x^2+3*x-12,-x+3,4*x^2+8*x-7,4*x^2+9*x-8,2*x^2-7*x+1,4*x^2+3*x-11,3*x^2+5*x-7,-4*x^2+5*x-1,-4*x^2-8*x+5,3*x^2+3*x-11,7*x^2+4*x-17,-x^2,7*x^2-6*x-20,x^2+6*x+5,-6*x^2-3*x+19,-3*x^2+10*x-3,-x+5,-x^2+2*x-4,x^2+9*x-11,8*x^2-5,-x^2-5*x+2,x^2+3*x-5,-8*x^2-10*x+7,-x^2-9*x+6,-7*x^2-11*x+11,-4*x^2+3*x+5,x^2-3*x+1,-3*x^2+8*x-2,x^2+x-3,-5*x^2-5*x+3,x^2+7*x+12,x^2-3*x+3,-5*x^2+16,5*x^2-x-13,-7*x^2-3*x+20,2*x^2+12*x-5,-2*x^2-x+2,4*x^2-5*x+2,3*x^2+10*x-2,-5*x^2+x+1,-7*x^2+x+14,2*x^2+x-6,10*x^2+5*x-27,-12*x^2-9*x+2,x,-3*x^2-6*x,2*x^2-x-5,5*x^2-3*x+1,-4*x^2+9*x-4,6*x^2+3*x-22,-5*x^2-13*x+8,x^2+5*x,-5*x^2+2*x+7,-4*x^2-2*x+3,6*x^2+x-7,-x^2-13*x+5,4*x^2+2*x-3,-2*x^2-x+10,3*x^2+7*x+1,x^2-x,4*x^2-3*x-22,-x-1,x^2-8*x+5,-4*x^2-6*x+7,3*x^2+16*x+1,4*x^2-4*x-3,-3*x+4,-17*x,x^2-x-5,2*x^2-13*x-13,4*x^2-2*x-1,-4*x^2-x+1,3*x^2+9*x-8,x^2-x+1,-4*x^2-9*x+8,6*x^2+12*x-4,4*x^2+5*x-9,-3*x^2-4*x-1,9*x^2+x-8,-3*x^2-2*x+3,4*x^2-5*x+1,x^2-2*x+1,-16*x^2+x+33,x^2-5*x+1,13*x^2+14*x-30,-3*x^2+8*x+3,x^2-3,x^2+4,6*x^2+3*x-18,x^2+4*x-5,-17*x^2-9*x+32,-2*x^2-4*x+1,3*x^2-10*x+3,8*x^2+7*x-10,-4*x^2+10*x+15,-3*x^2-4*x+7,7*x^2+4*x-13,-6*x^2-x+11,-8*x^2+5,7*x^2-8*x-1,-11*x^2+2*x+27,-x^2-5*x+3,x^2-9*x-1,-7*x^2+3*x-4,x^2-9,-x^2+2,-5*x^2-4*x+7,4*x^2-9*x+3,-19*x^2-22*x+38,-x^2+4*x+5,3*x^2-8*x+2,-x,2*x^2+16*x-7,-3*x^2+8,-2*x^2-x+1,-3*x^2-20*x+10,-x^2+3*x-3,2*x^2-3*x+8,5*x+16,3*x^2+11*x-5,-3*x^2-7*x+10,4*x^2-x-10,7*x^2+3*x-16,-x^2-x+1,-11*x^2-11*x+14,-2*x^2+x,-2*x^2-x+1,9*x^2+21*x-11,5*x^2-x-1,-2*x^2-6*x+15,14*x^2-29,-3*x^2-x,-7*x^2-x+17,4*x^2+11*x-24,12*x^2+9*x-2,2*x^2-x-6,-x^2+x,-x^2-2*x+2,5*x^2-8*x-12,3*x^2+18*x-10,-5*x^2+14,-3*x^2-5*x+4,11*x^2+17*x-21,8*x^2+5*x-4,-2*x^2+8,-7*x^2-4*x+26,-x^2-5*x,-7*x^2+7*x-2,5*x^2-8*x-2,5*x^2+x-12,-8*x^2-15*x+25,5*x^2+2*x-3,x^2+13*x-5,3*x^2-5*x,-9*x^2+3*x+33,-8*x^2-7*x+4,2*x^2+3*x+4,x^2-7,2*x^2-8*x+3,4*x^2+4*x-7,13*x^2+17*x-17,-x+1,3*x^2+15*x+4,-6*x^2+x-7,4*x^2+6*x-7,16*x^2+10*x-23,1,-3*x^2+x+6,-4*x^2+6*x+3,4*x^2-6*x+1,17*x,-x^2+5*x,6*x^2+6*x-24,6*x^2+11*x-7,-15*x^2-10*x+35,9*x^2-8*x-1,-2*x^2-2*x+5,-10*x^2+3*x+22,10*x^2+3*x-19,-5*x^2-x+1,-3*x^2+10*x-2,-3*x^2-4*x+7,-6*x^2-12*x+4,-10*x^2-17*x+8,-14*x^2+2*x+33,3*x^2+5*x-17,3*x^2+4*x-7,-11*x^2-10*x+7,3*x^2+2*x-3,-3*x^2+x+4,6*x^2+10*x+11,-3*x^2+4*x-1,-16*x^2-8*x+36,4*x^2-5*x-1,5*x^2+2*x-16,x^2-1,-5*x^2+x+7,-3*x^2-18*x+5,2*x-12,7*x^2+15*x-1,-x^2-4,3*x^2+4*x-13,6*x^2-8*x+1,x+5,4*x^2-7*x-15,9*x^2+8*x-13,2*x^2+4*x-1,-3*x^2-x+7,14*x^2+11*x-25,2*x^2-3*x+4,2*x^2-4*x,-x^2-4*x+2,15*x^2+10*x-16,-5*x^2+10*x-2,-8*x^2-7*x+11,10*x^2+7*x-3,-8*x^2-4*x+15,3*x^2-4*x-3,-7*x^2+8*x+1,x^2-7*x+7,-7*x^2-4*x+9,x^2-4,x^2+10*x+6,5*x^2+3*x-10,7*x^2-3*x+4,-5*x^2-10*x+18,-x^2+4*x-2,x^2,3*x^2-34,-10*x^2-11*x+11,-4*x^2+9,-x^2+x-2,-7*x^2-5*x+2,-x^2+6*x-5,-6*x^2-4*x+31,9*x^2-16*x+4,x,11*x^2+12*x-20,-5*x^2-9*x-22,-13*x^2-7*x+5,-11*x^2+9*x+21,5*x^2+x-11,3*x^2+20*x-10,2*x^2-8*x+5,-9*x^2-8*x+15,-8*x^2-5*x+6,-3*x^2+3*x-1,x^2+11*x-6,9*x^2+4*x-22,-3*x^2+4*x-3,-5*x^2+3*x+15,2*x^2+9*x-4,4*x^2-x-11,-9*x^2-12*x+12,x^2+x-1,7*x^2+10*x-3,-5*x^2-8*x+15,-x^2+x+1,4*x^2-13*x-12,-3*x^2-10*x-4,-9*x^2-21*x+11,-3*x^2-x+4,5*x^2-10*x-5,-8*x^2+8*x-1,-11*x^2-18*x+32,8*x^2+3*x-26,6*x^2+x-9,16*x^2+10*x-3,2*x^2-6*x+3,2*x^2-3*x-2,x^2-5*x+3,-3*x^2+4*x,-2*x^2+x+6,-17*x^2+34,19*x^2+18*x-16,-x^2-2*x-1,-2*x^2+3*x-2,x^2+5*x-22,-3*x^2-18*x+10,-2*x^2+11*x-4,11*x^2-8*x-27,x^2-3*x,-15*x^2-15*x+32,9*x^2+x-3,13*x^2+7*x-35,-3*x^2-6*x+3,3*x^2-x-6,-9*x^2-4*x+4,2*x^2+x-2,4*x^2+2*x-6,7*x^2-7*x+2,5*x^2+3*x-4,-4*x-28,-6*x^2-16*x+13,-2*x^2+5*x-22,x^2+19*x-9,-5*x^2-2*x+3,4*x^2-11,-7*x^2-14*x-4,-5*x^2+13*x-4,-x^2+12*x-2,-2*x+1,-7*x^2-5*x+17,x^2-15*x+16,20*x^2-x-33,-3*x^2+2*x+3,x^2+5*x-4,14*x^2+9*x-13,-4*x^2-4*x+7,-2*x^2-12*x-3,-15*x^2-15*x+28,-1,7*x^2-13*x+3,8*x^2+5*x-25,6*x^2-x+7,3*x^2-6,2*x^2+12*x+3,-6*x^2-8*x+1,-6*x-14,-9*x^2-19*x+17,8*x-15,-2*x^2-x+4,9*x^2+7*x-32,-10*x^2+12*x-3,4*x^2+2*x-18,-x^2+18*x+10,x^2-5*x,10*x^2+3*x+4,-12*x^2-10*x+25,10*x^2+4*x-31,-5*x^2+6*x-11,4*x^2+8*x-7,-9*x^2+8*x+1,5*x^2+13*x+2,-2*x^2+8*x-1,-19*x+8,-x-5,-10*x^2+6*x+15,-x^2-2*x+2,2*x^2-6*x+11,4*x^2-5*x-10,-3*x^2+2*x+1,15*x^2+4*x-30,-9*x^2+2*x-1,10*x^2+17*x-8,-5*x^2-11*x+25,5*x^2+x-2,-6*x-1,15*x^2+14*x-16,x+1,11*x^2+10*x-7,-4*x^2-8*x+5,10*x^2+5*x-15,-3*x^2+7*x-4,17*x^2-4*x-30,-22*x^2-19*x+19,-x+1,14*x^2-17,-6*x^2-9*x-14,-8*x^2+11*x-3,-3*x^2+9*x+19,-x^2+2]];
E[305,2] = [x^4+3*x^3-x^2-6*x-1, [1,x,-x^3-2*x^2+2*x+1,x^2-2,1,x^3+x^2-5*x-1,x^3+2*x^2-2*x-5,x^3-4*x,3*x^3+5*x^2-7*x-4,x,x^2-x-4,x-1,-x^2-2*x+1,-x^3-x^2+x+1,-x^3-2*x^2+2*x+1,-3*x^3-5*x^2+6*x+5,-2*x^3-x^2+7*x-2,-4*x^3-4*x^2+14*x+3,-2*x^2-x+3,x^2-2,x^3+3*x^2-x-3,x^3-x^2-4*x,2*x^3+x^2-8*x-3,-2*x^3-x^2+9*x+2,1,-x^3-2*x^2+x,-4*x^3-4*x^2+13*x-1,-4*x^2-x+9,3*x^3+5*x^2-4*x-2,x^3+x^2-5*x-1,2*x^2+5*x-7,2*x^3+3*x^2-5*x-3,x^3+3*x^2+2*x-2,5*x^3+5*x^2-14*x-2,x^3+2*x^2-2*x-5,2*x^3-7*x+4,-2*x^2-x+1,-2*x^3-x^2+3*x,-x^3+7*x+2,x^3-4*x,-3*x^3-6*x^2+6*x+9,3*x+1,-2*x^3+11*x-1,-4*x^3-5*x^2+8*x+9,3*x^3+5*x^2-7*x-4,-5*x^3-6*x^2+9*x+2,-3*x^2-6*x+1,5*x^3+7*x^2-12*x,-5*x^3-11*x^2+9*x+16,x,7*x^3+9*x^2-22*x-6,x^3+2*x^2-2*x-3,6*x^3+10*x^2-15*x-11,8*x^3+9*x^2-25*x-4,x^2-x-4,-2*x^3+x^2+7*x-2,x^2+x+2,-4*x^3-x^2+16*x+3,-3*x^3-6*x^2+10*x+11,x-1,1,2*x^3+5*x^2-7*x,-5*x^3-10*x^2+9*x+14,3*x^3+7*x^2-3*x-8,-x^2-2*x+1,3*x^2+4*x+1,x^3+5*x^2+6*x-12,-6*x^3-7*x^2+14*x+9,-3*x^3+17*x+2,-x^3-x^2+x+1,-x^3-6*x^2-x+12,2*x^3+3*x^2-12*x-4,-x^3-5*x^2-5*x+5,-2*x^3-x^2+x,-x^3-2*x^2+2*x+1,5*x^3+5*x^2-10*x-8,-x^3-7*x^2+2*x+18,3*x^3+6*x^2-4*x-1,-2*x^3+x^2+8*x-11,-3*x^3-5*x^2+6*x+5,5*x^3+4*x^2-22*x+2,3*x^3+3*x^2-9*x-3,x^3+4*x^2-6*x-15,-2*x^3-3*x^2+3*x+6,-2*x^3-x^2+7*x-2,6*x^3+9*x^2-13*x-2,-6*x^3-11*x^2+8*x+1,5*x^3+6*x^2-7*x-4,-4*x^3-7*x^2+9*x+8,-4*x^3-4*x^2+14*x+3,x^3+4*x^2+x-6,5*x^3+2*x^2-12*x+1,8*x^3+11*x^2-29*x-10,-3*x^3-6*x^2+x,-2*x^2-x+3,-4*x^3-5*x^2+12*x+1,3*x^2+3*x-8,4*x^3+4*x^2-14*x-5,-6*x^2-7*x+9,x^2-2,-6*x^3-11*x^2+16*x+15,-12*x^3-15*x^2+36*x+7,-5*x^3-14*x^2+5*x+14,x^3+3*x^2+x+1,x^3+3*x^2-x-3,-8*x^3-9*x^2+25*x+6,2*x^3+4*x^2-8*x-10,-7*x^3-9*x^2+18*x+10,-x^3+3*x^2+2*x-10,x^3-x^2-4*x,2*x^3+5*x^2-3*x,7*x^3+13*x^2-12*x-20,-x^3+6*x^2+12*x-11,x^3+x^2+2*x,2*x^3+x^2-8*x-3,5*x^3+2*x^2-13*x,3*x^3+3*x^2-14*x-6,3*x^3+7*x^2-7*x-3,x^3-5*x^2-6*x+14,-2*x^3-x^2+9*x+2,-5*x^3-6*x^2+14*x+6,x,3*x^3+3*x^2-9*x+3,-x^3-9*x^2+2*x+16,1,5*x^3+4*x^2-16*x-5,-3*x^3-4*x^2+6*x+5,-6*x^3-6*x^2+20*x+9,8*x^3+7*x^2-35*x-8,-x^3-2*x^2+x,2*x^3+x^2-3*x+8,x^3-2*x^2-3*x+4,7*x^2+3*x-14,2*x^3+7*x^2-6*x+1,-4*x^3-4*x^2+13*x-1,x^3-2*x^2+x-2,-x^3+4*x^2+11*x-12,9*x^3+14*x^2-16*x-3,7*x^3+6*x^2-26*x-7,-4*x^2-x+9,-x^3+4*x^2+17*x+4,-3*x^3-2*x^2+6*x-1,2*x^3+6*x^2+x-5,-7*x^3-10*x^2+22*x-6,3*x^3+5*x^2-4*x-2,-2*x^3-6*x^2-x-1,5*x^3+6*x^2-13*x+6,5*x^3+3*x^2-10*x-4,-x^2-1,x^3+x^2-5*x-1,7*x^3+13*x^2-17*x-23,-6*x^3-3*x^2+16*x+5,-14*x^3-22*x^2+45*x+17,-4*x^3+x^2+12*x-1,2*x^2+5*x-7,-x^3-x^2+3*x-1,9*x^3+17*x^2-24*x-28,7*x^3+6*x^2-23*x-2,-12*x^3-15*x^2+37*x+2,2*x^3+3*x^2-5*x-3,-5*x^3-4*x^2+15*x+10,-11*x^3-17*x^2+32*x+5,7*x^3+11*x^2-22*x-12,6*x^2+3*x-15,x^3+3*x^2+2*x-2,x^3-5*x^2-9*x+1,5*x^3+11*x^2-4*x-8,3*x^3+x^2-12*x-4,x^3+3*x^2+2*x-11,5*x^3+5*x^2-14*x-2,-3*x^3-x^2+7*x-7,-5*x^3-7*x^2+12*x+8,-3*x^2-9*x-6,7*x^3+2*x^2-35*x-6,x^3+2*x^2-2*x-5,-x^3+8*x^2+10*x-13,5*x^3+3*x^2-25*x+1,5*x^3+5*x^2-16*x-4,-2*x^3+3*x^2+15*x-8,2*x^3-7*x+4,-6*x^3-8*x^2+15*x+9,x^3+2*x^2+1,-x^3-2*x^2+2*x+1,-3*x^3+5*x^2+13*x+1,-2*x^2-x+1,-13*x^3-21*x^2+38*x+8,-7*x^3-10*x^2+14*x+15,3*x^3+4*x^2-6*x-5,2*x^3-3*x^2-9*x+14,-2*x^3-x^2+3*x,8*x^3+23*x^2-8*x-27,-3*x^3-6*x^2+x-4,-6*x^2-5*x+13,3*x^3+3*x^2-8*x,-x^3+7*x+2,2*x^3+12*x^2+x-28,-5*x^3-7*x^2+20*x+18,-6*x^3-7*x^2+9*x,-x^3-6*x^2-2*x+13,x^3-4*x,10*x^3+13*x^2-40*x-15,7*x^3+10*x^2-21*x-6,-6*x^3-9*x^2+8*x+7,7*x^3+6*x^2-21*x,-3*x^3-6*x^2+6*x+9,x^3-16*x-5,3*x^3+x^2-24*x,-2*x^3-2*x^2+11*x+7,7*x^3+10*x^2-11*x-14,3*x+1,-7*x^2-x+20,3*x^3-3*x^2-12*x+14,-3*x^3-4*x^2+10*x+9,-2*x^3-6*x^2+2*x+2,-2*x^3+11*x-1,-4*x^3-7*x^2+18*x+1,-8*x^3-19*x^2+9*x+38,6*x^3+x^2-16*x-1,-2*x^3+2*x^2+21*x+7,-4*x^3-5*x^2+8*x+9,-2*x^3-2*x^2+7*x-3,-x^3-x^2+12*x+2,-x^3+x^2+9*x-17,-4*x^3-7*x^2+8*x+11,3*x^3+5*x^2-7*x-4,9*x^3+11*x^2-17*x-1,-3*x^3-14*x^2-6*x+23,-2*x^3+x^2+4*x-3,6*x^3+9*x^2-27*x-18,-5*x^3-6*x^2+9*x+2,-4*x^3-9*x^2+2*x+11,-5*x^3-6*x^2-2*x-1,-5*x^3-12*x^2+5*x+18,-6*x^3-11*x^2+12*x+3,-3*x^2-6*x+1,4*x^3+8*x^2-5*x-19,13*x^3+20*x^2-35*x-14,-8*x^3-5*x^2+20*x+1,6*x^3+13*x^2-24*x-19,5*x^3+7*x^2-12*x,-7*x^3-13*x^2+22*x+20,9*x^3+9*x^2-24*x-5,-10*x^3-15*x^2+40*x+21,x^2-2,-5*x^3-11*x^2+9*x+16,-6*x^3-6*x^2+21*x+3,-x^3-x^2+5*x+5,-10*x^3-9*x^2+24*x-1,3*x^3+11*x^2+9*x-7,x,-3*x^3-4*x^2+x+6,-x^3+9*x^2+7*x-23,6*x^3+6*x^2-5*x+5,5*x^3+3*x^2-13*x-3,7*x^3+9*x^2-22*x-6,6*x^3-21*x+10,-9*x^3-18*x^2+28*x+37,-17*x^3-27*x^2+40*x+8,-2*x^3+3*x^2+7*x-4,x^3+2*x^2-2*x-3,8*x^3+17*x^2-15*x,-5*x^3-x^2+20*x+2,-6*x^3-11*x^2+15*x+14,-5*x^3-8*x^2+2*x-1,6*x^3+10*x^2-15*x-11,7*x^3+3*x^2-14*x,7*x^3+9*x^2-20*x,-x^3-14*x^2+x+26,5*x^3+14*x^2-5*x-8,8*x^3+9*x^2-25*x-4,5*x^3+7*x^2-18*x-30,7*x^3+16*x^2-24*x-17,x^3-8*x-5,7*x^3+10*x^2-18*x-1,x^2-x-4,-7*x^3-7*x^2+17*x+5,x^3+5*x^2+5*x+7,-15*x^3-19*x^2+35*x+7,-25*x^3-35*x^2+77*x+35,-2*x^3+x^2+7*x-2,-x^3-9*x^2-6*x+14,7*x^3+16*x^2-2*x-1,10*x^3+30*x^2-10*x-34,9*x^3+15*x^2-17*x-27,x^2+x+2,3*x^2+7*x+2,9*x^3+21*x^2-15*x-39,7*x^3+9*x^2-24*x+1,7*x^3+10*x^2-30*x-12,-4*x^3-x^2+16*x+3,5*x^3+7*x^2-16*x-8,2*x^3+7*x^2-3*x-12,3*x^3-3*x^2-16*x+2,-9*x^3-8*x^2+36*x+5,-3*x^3-6*x^2+10*x+11,-8*x^3-3*x^2+24*x+5,-7*x^3-10*x^2+17*x+16,-x^3-x,3*x^3+9*x^2+2*x-2,x-1,-7*x^2-9*x+12,-8*x^3-10*x^2+19*x+7,11*x^3+12*x^2-39*x,5*x^3-11*x+10,1,20*x^3+31*x^2-67*x-14,x^3+4*x^2-x-16,15*x^3+22*x^2-29*x-40,9*x^3+18*x^2-12*x+5,2*x^3+5*x^2-7*x,4*x^3+2*x^2-10*x+24,-4*x^3-10*x^2+x+1,-14*x^3-27*x^2+28*x+27,-10*x^3-15*x^2+26*x+9,-5*x^3-10*x^2+9*x+14,-11*x^3-18*x^2+24*x+29,8*x^3+14*x^2-11*x-9,21*x^3+25*x^2-70*x-12,3*x^3-7*x^2-21*x+1,3*x^3+7*x^2-3*x-8,-2*x^3+2*x^2+18*x-2,11*x^3+10*x^2-20*x-5,9*x^3+10*x^2-21*x-14,6*x^3+13*x^2-17*x-15,-x^2-2*x+1,-10*x^3-15*x^2+30*x+7,4*x^3+7*x^2-4*x-7,-3*x^2+3*x+6,x^3+8*x^2+7*x-8,3*x^2+4*x+1,-8*x^3-12*x^2+16*x+4,-10*x^3-16*x^2+19*x+31,-9*x^3-11*x^2+21*x+1,-4*x^3+x^2+22*x+5,x^3+5*x^2+6*x-12,-4*x^3-3*x^2+8*x-9,-16*x^3-28*x^2+34*x+32,3*x^2-5*x+1,9*x^3+7*x^2-41*x-15,-6*x^3-7*x^2+14*x+9,-3*x^3-18*x^2-x+30,8*x^3+4*x^2-25*x-3,8*x^3+24*x^2-9*x-35,-4*x^3-11*x^2+4*x-1,-3*x^3+17*x+2,-3*x^3-9*x^2-6*x,-8*x^3-18*x^2+33*x+41,-7*x^3-6*x^2+20*x+5,-4*x^3-2*x^2+24*x-4,-x^3-x^2+x+1,-5*x^3-5*x^2+19*x-1,x^3-3*x^2-5*x+7,10*x^3+20*x^2-11*x-29,-12*x^3-20*x^2+31*x+5,-x^3-6*x^2-x+12,-2*x^3+3*x^2+8*x-11,-8*x^3-11*x^2+22*x+13,9*x^3+13*x^2-20*x-2,-2*x^3-3*x^2+8*x+1,2*x^3+3*x^2-12*x-4,-8*x^3-7*x^2+18*x-6,10*x^3+9*x^2-27*x-6,10*x^3+11*x^2-33*x-4,-3*x^3-7*x^2+5*x+13,-x^3-5*x^2-5*x+5,x^3+x^2-5*x-1,7*x^3+9*x^2-9*x+1,4*x^3+6*x^2+7*x-5,-3*x^3+15*x-18,-2*x^3-x^2+x,-12*x^3-25*x^2+23*x+42,2*x^3+3*x^2-12*x+7,-5*x^3+2*x^2+19*x-30,11*x^3+7*x^2-27*x-7,-x^3-2*x^2+2*x+1,x^3+9*x^2+11*x+3,-5*x^2-15*x-4,-9*x^3-7*x^2+26*x+2,11*x^3+11*x^2-38*x-16,5*x^3+5*x^2-10*x-8,3*x^3+3*x^2-7*x+1,-x^3+21*x+8,-8*x^3-9*x^2+32*x+17,11*x^3+8*x^2-46*x-5,-x^3-7*x^2+2*x+18,-6*x^3-5*x^2+13*x,-19*x^3-23*x^2+73*x+21,-6*x^3-11*x^2+12*x+19,-3*x^3+3*x^2+10*x-8,3*x^3+6*x^2-4*x-1,-2*x^3-10*x^2+9*x+7,-2*x^3-5*x^2+12*x+12,-9*x^3-17*x^2+14*x+8,8*x^3+15*x^2-12*x-5,-2*x^3+x^2+8*x-11,11*x^3+15*x^2-22*x-24,-5*x^3-8*x^2+8*x+11,-3*x^3-3*x^2+7*x-1,3*x^3+3*x^2-8*x-10,-3*x^3-5*x^2+6*x+5,-15*x^2-24*x+33,-17*x^3-30*x^2+45*x+10,-3*x^3-3*x^2+7*x-9,x^3+8*x^2+4*x-23,5*x^3+4*x^2-22*x+2,9*x^3+2*x^2-29*x-6,7*x^3+8*x^2-9*x-6,9*x^3+16*x^2-30*x-7,-x^3-7*x^2-4*x-6,3*x^3+3*x^2-9*x-3,13*x^3+16*x^2-48*x-17,7*x^3+13*x^2-9*x-27,7*x^3+21*x^2-15*x-45,-8*x^3-21*x^2+18*x+3,x^3+4*x^2-6*x-15,2*x^3+3*x^2-7*x-4,-17*x^3-15*x^2+69*x+11,-11*x^3-4*x^2+28*x+7,-12*x^3-25*x^2+18*x+27,-2*x^3-3*x^2+3*x+6,8*x^3+15*x^2-21*x-32,-7*x^3-x^2+20*x,3*x^3-x^2-28*x-10,4*x^3+9*x^2-18*x-9,-2*x^3-x^2+7*x-2,5*x^3+7*x^2-9*x-3,x^3+2*x^2-2*x-5,-4*x^3-8*x^2+6*x+18,-2*x^3-7*x^2-7*x-4,6*x^3+9*x^2-13*x-2,4*x^3+12*x^2-4*x-4,19*x^3+32*x^2-59*x-24,9*x^3+6*x^2-28*x+7,5*x^3+x^2-10*x-8,-6*x^3-11*x^2+8*x+1,-15*x^3-16*x^2+31*x+26,-7*x^3+x^2+23*x-1,8*x^3+19*x^2-5*x-2,-x^3-x^2-15*x-7,5*x^3+6*x^2-7*x-4,-6*x^3-x^2+25*x-33,4*x^3+5*x^2-15*x-2,6*x^3+20*x^2-9*x-25,-2*x^3+x^2+2*x-1,-4*x^3-7*x^2+9*x+8,4*x^3+8*x^2-23*x-1,3*x^3+6*x^2-7*x-2,-9*x^3-22*x^2+11*x+36,-10*x^3-17*x^2+27*x+6,-4*x^3-4*x^2+14*x+3,3*x^3+15*x^2-30,-14*x^3-20*x^2+29*x+31,-6*x^3-2*x^2+27*x-7,-5*x^3-9*x^2+5*x-3,x^3+4*x^2+x-6,5*x^3-19*x-2,10*x^3+8*x^2-20*x+24,-9*x^3-21*x^2+18*x+6,23*x^3+30*x^2-81*x-4,5*x^3+2*x^2-12*x+1,-x^2-17*x-4,3*x^3-2*x^2-13*x-4,12*x^3+32*x^2-18*x-42,-x^3-11*x^2-5*x-5,8*x^3+11*x^2-29*x-10,3*x^3-12*x-5,-x^3-4*x^2-3*x-20,x^3-5*x+6,-14*x^3-33*x^2+16*x+63,-3*x^3-6*x^2+x,-12*x^3-9*x^2+50*x-5,-10*x^3-15*x^2+19*x+10,-7*x^3-16*x^2+3*x+12,-19*x^3-22*x^2+64*x+13,-2*x^2-x+3,17*x^3+22*x^2-35*x-36,23*x^3+27*x^2-79*x+7,-5*x^3-18*x^2+17*x+6,-7*x^3-10*x^2+14*x-9,-4*x^3-5*x^2+12*x+1,-x^3+x^2+9*x+3,8*x^3+15*x^2-22*x-7,3*x^3-4*x^2-20*x+1,-8*x^3-3*x^2+21*x-3,3*x^2+3*x-8,15*x^3+30*x^2-39*x-10,3*x^3+x^2-15*x-13,x^3-4*x,-18*x^3-21*x^2+64*x+7,4*x^3+4*x^2-14*x-5,-10*x^3-16*x^2+31*x+35,6*x^3+9*x^2-15*x-12,-3*x^3-9*x^2+17*x+7,2*x^3+4*x^2-x-1,-6*x^2-7*x+9,23*x^3+32*x^2-65*x-42,7*x^3+28*x^2-6*x-57,2*x^3+12*x^2+11*x+3,-5*x^3-11*x^2+18*x+34,x^2-2]];
E[305,3] = [x^7-2*x^6-9*x^5+17*x^4+19*x^3-36*x^2+5*x+1, [2,2*x,-x^6+2*x^5+8*x^4-15*x^3-15*x^2+27*x,2*x^2-4,2,-x^5+2*x^4+4*x^3-9*x^2+5*x+1,2*x^4-4*x^3-10*x^2+16*x+4,2*x^3-8*x,-2*x^6+4*x^5+16*x^4-28*x^3-32*x^2+44*x+4,2*x,2*x^6-3*x^5-20*x^4+26*x^3+49*x^2-55*x-1,x^6-2*x^5-12*x^4+21*x^3+35*x^2-53*x,2*x^6-2*x^5-20*x^4+18*x^3+50*x^2-44*x-4,2*x^5-4*x^4-10*x^3+16*x^2+4*x,-x^6+2*x^5+8*x^4-15*x^3-15*x^2+27*x,2*x^4-12*x^2+8,-2*x^5+2*x^4+14*x^3-10*x^2-20*x+8,-2*x^5+6*x^4+6*x^3-28*x^2+14*x+2,2*x^4-2*x^3-10*x^2+6*x+4,2*x^2-4,-2*x^6+4*x^5+20*x^4-36*x^3-52*x^2+80*x+6,x^6-2*x^5-8*x^4+11*x^3+17*x^2-11*x-2,-2*x^5+20*x^3-46*x+8,-x^5+8*x^3+x^2-15*x-3,2,2*x^6-2*x^5-16*x^4+12*x^3+28*x^2-14*x-2,-2*x^6+4*x^5+18*x^4-28*x^3-44*x^2+40*x+16,2*x^6-4*x^5-14*x^4+24*x^3+24*x^2-32*x-8,-2*x^5+6*x^4+4*x^3-26*x^2+22*x-4,-x^5+2*x^4+4*x^3-9*x^2+5*x+1,-2*x^6+3*x^5+16*x^4-18*x^3-31*x^2+23*x+7,2*x^5-16*x^3+24*x,4*x^6-6*x^5-38*x^4+48*x^3+94*x^2-94*x-20,-2*x^6+2*x^5+14*x^4-10*x^3-20*x^2+8*x,2*x^4-4*x^3-10*x^2+16*x+4,2*x^6-2*x^5-26*x^4+28*x^3+78*x^2-86*x-8,-2*x^4+2*x^3+10*x^2-10*x,2*x^5-2*x^4-10*x^3+6*x^2+4*x,4*x^6-4*x^5-44*x^4+42*x^3+120*x^2-114*x-16,2*x^3-8*x,-2*x^4+14*x^2+4*x-16,2*x^5-2*x^4-14*x^3+8*x^2+16*x+2,2*x^6-4*x^5-18*x^4+32*x^3+44*x^2-64*x-8,-4*x^6+7*x^5+34*x^4-54*x^3-73*x^2+103*x+1,-2*x^6+4*x^5+16*x^4-28*x^3-32*x^2+44*x+4,-2*x^6+20*x^4-46*x^2+8*x,-x^6+10*x^4+x^3-21*x^2-3*x,-3*x^6+4*x^5+32*x^4-41*x^3-85*x^2+103*x,-2*x^6+2*x^5+24*x^4-28*x^3-66*x^2+82*x-2,2*x,-2*x^6+2*x^5+22*x^4-22*x^3-56*x^2+64*x-8,-2*x^6+6*x^5+18*x^4-46*x^3-42*x^2+76*x+6,2*x^5-2*x^4-10*x^3+4*x^2+4*x+6,6*x^4-6*x^3-32*x^2+26*x+2,2*x^6-3*x^5-20*x^4+26*x^3+49*x^2-55*x-1,-2*x^4+6*x^3+8*x^2-26*x-2,-2*x^6+4*x^5+18*x^4-32*x^3-42*x^2+60*x+2,-2*x^6+6*x^5+4*x^4-26*x^3+22*x^2-4*x,2*x^6-3*x^5-12*x^4+12*x^3+11*x^2+3*x-7,x^6-2*x^5-12*x^4+21*x^3+35*x^2-53*x,-2,-x^6-2*x^5+16*x^4+7*x^3-49*x^2+17*x+2,-6*x^6+10*x^5+56*x^4-80*x^3-136*x^2+162*x+18,2*x^6-20*x^4+48*x^2-16,2*x^6-2*x^5-20*x^4+18*x^3+50*x^2-44*x-4,2*x^6-2*x^5-20*x^4+18*x^3+50*x^2-40*x-4,4*x^6-4*x^5-42*x^4+40*x^3+104*x^2-104*x+14,-2*x^6+20*x^4-10*x^3-44*x^2+50*x-14,-2*x^6+2*x^5+16*x^4-12*x^3-24*x^2+18*x-18,2*x^5-4*x^4-10*x^3+16*x^2+4*x,-3*x^5+2*x^4+20*x^3-9*x^2-21*x+5,2*x^6-4*x^5-18*x^4+28*x^3+42*x^2-46*x-6,-2*x^5+8*x^4+6*x^3-40*x^2+16*x+12,-2*x^5+2*x^4+10*x^3-10*x^2,-x^6+2*x^5+8*x^4-15*x^3-15*x^2+27*x,2*x^6-2*x^5-14*x^4+10*x^3+24*x^2-12*x-8,6*x^6-8*x^5-62*x^4+74*x^3+158*x^2-166*x-14,4*x^6-8*x^5-26*x^4+44*x^3+30*x^2-36*x-4,2*x^6-5*x^5-14*x^4+36*x^3+21*x^2-59*x+5,2*x^4-12*x^2+8,-4*x^6+8*x^5+38*x^4-68*x^3-90*x^2+136*x+2,-2*x^5+14*x^3+4*x^2-16*x,x^6-12*x^4+3*x^3+33*x^2-9*x-2,6*x^6-10*x^5-54*x^4+80*x^3+120*x^2-158*x-12,-2*x^5+2*x^4+14*x^3-10*x^2-20*x+8,-2*x^4+6*x^3+8*x^2-18*x-2,2*x^6-6*x^5-8*x^4+34*x^3-10*x^2-24*x+8,-3*x^6+2*x^5+30*x^4-19*x^3-75*x^2+43*x+8,-2*x^6+4*x^5+14*x^4-16*x^3-30*x^2-12*x+22,-2*x^5+6*x^4+6*x^3-28*x^2+14*x+2,6*x^6-12*x^5-52*x^4+88*x^3+118*x^2-148*x-16,-4*x^6+6*x^5+34*x^4-48*x^3-64*x^2+102*x-14,-6*x^6+10*x^5+50*x^4-72*x^3-100*x^2+122*x+8,-2*x^6+x^5+18*x^4-2*x^3-39*x^2+5*x+1,2*x^4-2*x^3-10*x^2+6*x+4,-2*x^6+7*x^5+10*x^4-44*x^3-7*x^2+45*x+9,2*x^4+2*x^3-16*x^2-6*x+18,-2*x^6+6*x^5+6*x^4-28*x^3+10*x^2+8*x+2,8*x^6-15*x^5-72*x^4+120*x^3+169*x^2-237*x-31,2*x^2-4,4*x^5-8*x^4-24*x^3+38*x^2+28*x-22,-2*x^6+4*x^5+12*x^4-18*x^3-8*x^2+2*x+2,-x^6+4*x^5+6*x^4-29*x^3-7*x^2+43*x+10,-2*x^6+4*x^5+20*x^4-28*x^3-52*x^2+44*x+6,-2*x^6+4*x^5+20*x^4-36*x^3-52*x^2+80*x+6,2*x^6-2*x^5-10*x^4+4*x^3+4*x^2+6*x,-x^6+4*x^5+18*x^4-55*x^3-59*x^2+161*x-14,4*x^6-2*x^5-42*x^4+24*x^3+114*x^2-78*x-32,-4*x^6+6*x^5+38*x^4-44*x^3-94*x^2+82*x+16,x^6-2*x^5-8*x^4+11*x^3+17*x^2-11*x-2,2*x^5-6*x^4-6*x^3+30*x^2-16*x-4,-4*x^6+6*x^5+34*x^4-40*x^3-74*x^2+62*x+16,-2*x^5+6*x^4+4*x^3-20*x^2+22*x-14,2*x^4-4*x^3-12*x^2+12*x+2,-2*x^5+20*x^3-46*x+8,2*x^6-10*x^5-4*x^4+52*x^3-24*x^2-34*x+10,6*x^6-8*x^5-70*x^4+90*x^3+202*x^2-246*x-30,x^6+6*x^5-22*x^4-27*x^3+75*x^2-17*x-2,2*x^4-12*x^2-8*x+10,-x^5+8*x^3+x^2-15*x-3,-4*x^6+8*x^5+42*x^4-76*x^3-114*x^2+176*x+14,-2*x,6*x^6-12*x^5-56*x^4+100*x^3+132*x^2-200*x+2,x^5-8*x^4+6*x^3+43*x^2-39*x-13,2,-2*x^6+2*x^5+22*x^4-22*x^3-54*x^2+48*x+6,x^6-4*x^5-4*x^4+19*x^3-3*x^2+3*x+18,4*x^6-6*x^5-34*x^4+42*x^3+72*x^2-74*x-2,6*x^6-10*x^5-62*x^4+92*x^3+164*x^2-210*x-24,2*x^6-2*x^5-16*x^4+12*x^3+28*x^2-14*x-2,-2*x^5+6*x^4+10*x^3-26*x^2-4*x-8,-6*x^6+10*x^5+60*x^4-84*x^3-156*x^2+174*x+38,-2*x^6+26*x^4-12*x^3-74*x^2+52*x+10,4*x^6-6*x^5-28*x^4+28*x^3+40*x^2-6*x-4,-2*x^6+4*x^5+18*x^4-28*x^3-44*x^2+40*x+16,-2*x^5-4*x^4+14*x^3+18*x^2-20*x+2,-4*x^5+4*x^4+30*x^3-12*x^2-46*x-12,-2*x^6-2*x^5+22*x^4+14*x^3-54*x^2-8*x+2,6*x^6-9*x^5-60*x^4+76*x^3+145*x^2-159*x+11,2*x^6-4*x^5-14*x^4+24*x^3+24*x^2-32*x-8,-2*x^6+2*x^5+12*x^4-4*x^3-8*x^2-18*x-2,-3*x^6+2*x^5+20*x^4-9*x^3-21*x^2+5*x,-6*x^6+12*x^5+54*x^4-100*x^3-128*x^2+208*x+28,-4*x^6+4*x^5+46*x^4-52*x^3-130*x^2+156*x+14,-2*x^5+6*x^4+4*x^3-26*x^2+22*x-4,-2*x^6+8*x^5+6*x^4-40*x^3+16*x^2+12*x,-3*x^6+4*x^5+34*x^4-39*x^3-101*x^2+97*x+30,-2*x^6+2*x^5+14*x^4-14*x^3-20*x^2+20*x,8*x^5-12*x^4-56*x^3+58*x^2+76*x-34,-x^5+2*x^4+4*x^3-9*x^2+5*x+1,-2*x^6+5*x^5+18*x^4-34*x^3-53*x^2+45*x+39,2*x^6-20*x^4+6*x^3+48*x^2-26*x-2,6*x^4-10*x^3-30*x^2+50*x,4*x^6-8*x^5-28*x^4+44*x^3+50*x^2-44*x-6,-2*x^6+3*x^5+16*x^4-18*x^3-31*x^2+23*x+7,-8*x^6+18*x^5+64*x^4-130*x^3-132*x^2+204*x+28,-2*x^6+4*x^5+18*x^4-42*x^3-42*x^2+122*x-6,-x^6+4*x^5+2*x^4-17*x^3+13*x^2-5*x-2,-2*x^6+4*x^5+22*x^4-40*x^3-62*x^2+92*x+2,2*x^5-16*x^3+24*x,2*x^6-4*x^5-16*x^4+36*x^3+26*x^2-88*x+4,2*x^5-14*x^3-8*x^2+22*x+4,-5*x^6+14*x^5+32*x^4-95*x^3-37*x^2+151*x-10,-2*x^6+18*x^4+4*x^3-44*x^2-8*x+32,4*x^6-6*x^5-38*x^4+48*x^3+94*x^2-94*x-20,2*x^6-3*x^5-14*x^4+14*x^3+27*x^2-7*x-1,x^6-4*x^5-8*x^4+27*x^3+23*x^2-45*x-8,2*x^6-4*x^5-18*x^4+34*x^3+42*x^2-74*x-10,-8*x^6+16*x^5+66*x^4-120*x^3-132*x^2+216*x,-2*x^6+2*x^5+14*x^4-10*x^3-20*x^2+8*x,-4*x^6+8*x^5+32*x^4-58*x^3-66*x^2+102*x+10,-4*x^6+6*x^5+42*x^4-56*x^3-106*x^2+126*x+16,4*x^6-6*x^5-42*x^4+58*x^3+110*x^2-124*x-16,-2*x^6+10*x^5-48*x^3+48*x^2-2*x-2,2*x^4-4*x^3-10*x^2+16*x+4,4*x^6-11*x^5-36*x^4+90*x^3+81*x^2-183*x+1,6*x^6-12*x^5-40*x^4+72*x^3+48*x^2-80*x+2,-4*x^5+18*x^4+8*x^3-84*x^2+32*x+2,4*x^6-12*x^5-34*x^4+102*x^3+68*x^2-214*x+18,2*x^6-2*x^5-26*x^4+28*x^3+78*x^2-86*x-8,2*x^6-4*x^5-30*x^4+64*x^3+88*x^2-204*x+28,2*x^5-14*x^4+4*x^3+68*x^2-46*x-6,x^6-2*x^5-8*x^4+15*x^3+15*x^2-27*x,2*x^6-2*x^5-20*x^4+12*x^3+50*x^2-10*x+4,-2*x^4+2*x^3+10*x^2-10*x,-2*x^6-4*x^5+30*x^4+14*x^3-94*x^2+38*x+6,2*x^6-4*x^5-18*x^4+42*x^3+36*x^2-106*x+16,-x^6+12*x^4-3*x^3-25*x^2+17*x+2,-10*x^6+12*x^5+102*x^4-108*x^3-262*x^2+248*x+42,2*x^5-2*x^4-10*x^3+6*x^2+4*x,-6*x^6+9*x^5+58*x^4-80*x^3-129*x^2+179*x-25,9*x^6-16*x^5-74*x^4+113*x^3+143*x^2-187*x+2,8*x^6-14*x^5-66*x^4+98*x^3+124*x^2-160*x+22,2*x^5+2*x^4-16*x^3-6*x^2+18*x,4*x^6-4*x^5-44*x^4+42*x^3+120*x^2-114*x-16,6*x^6-16*x^5-42*x^4+104*x^3+68*x^2-152*x+6,-12*x^6+24*x^5+98*x^4-176*x^3-196*x^2+304*x-14,x^6-16*x^4+17*x^3+51*x^2-71*x-8,-2*x^4+4*x^3+6*x^2+4*x+16,2*x^3-8*x,8*x^5-16*x^4-48*x^3+82*x^2+40*x-38,4*x^6-8*x^5-24*x^4+38*x^3+28*x^2-22*x,-2*x^5+8*x^4-28*x^2+26*x-4,4*x^6-10*x^5-28*x^4+74*x^3+42*x^2-116*x+18,-2*x^4+14*x^2+4*x-16,2*x^6-3*x^5-12*x^4+12*x^3+7*x^2+15*x+1,4*x^6-4*x^5-42*x^4+36*x^3+112*x^2-84*x-18,4*x^6-10*x^5-30*x^4+78*x^3+56*x^2-136*x-10,2*x^6-4*x^5-24*x^4+44*x^3+66*x^2-112*x-4,2*x^5-2*x^4-14*x^3+8*x^2+16*x+2,5*x^5-8*x^4-28*x^3+27*x^2+19*x+3,2*x^6+4*x^5-26*x^4-14*x^3+70*x^2-18*x-14,-4*x^5+10*x^4+16*x^3-42*x^2+24*x-8,2*x^6+9*x^5-38*x^4-40*x^3+125*x^2-9*x+1,2*x^6-4*x^5-18*x^4+32*x^3+44*x^2-64*x-8,6*x^6-6*x^5-56*x^4+50*x^3+130*x^2-104*x-8,-4*x^6+8*x^5+38*x^4-62*x^3-100*x^2+114*x+18,-2*x^6+2*x^5+24*x^4-18*x^3-62*x^2+36*x+4,-4*x^6+2*x^5+54*x^4-46*x^3-168*x^2+176*x+6,-4*x^6+7*x^5+34*x^4-54*x^3-73*x^2+103*x+1,2*x^6-6*x^5-10*x^4+36*x^3-2*x^2-46*x+2,2*x^6-6*x^5-6*x^4+30*x^3-16*x^2-4*x,-8*x^6+12*x^5+76*x^4-106*x^3-166*x^2+238*x-18,-2*x^6-2*x^5+32*x^4-10*x^3-98*x^2+88*x+8,-2*x^6+4*x^5+16*x^4-28*x^3-32*x^2+44*x+4,-2*x^6+6*x^5+4*x^4-20*x^3+22*x^2-14*x,-4*x^5-6*x^4+44*x^3+34*x^2-108*x,4*x^6-6*x^5-40*x^4+52*x^3+96*x^2-118*x-4,-6*x^6+10*x^5+54*x^4-92*x^3-108*x^2+214*x-24,-2*x^6+20*x^4-46*x^2+8*x,16*x^6-26*x^5-152*x^4+212*x^3+372*x^2-426*x-60,-2*x^6+2*x^5+10*x^4-10*x^3-6*x^2+8*x-2,4*x^6-4*x^5-44*x^4+46*x^3+108*x^2-134*x+28,4*x^6-16*x^5-12*x^4+88*x^3-30*x^2-60*x-6,-x^6+10*x^4+x^3-21*x^2-3*x,4*x^6-7*x^5-20*x^4+32*x^3-3*x^2-13*x+13,2*x^6-6*x^5-12*x^4+36*x^3+16*x^2-34*x-22,2*x^5-12*x^3-8*x^2+10*x,-8*x^6+16*x^5+68*x^4-124*x^3-138*x^2+220*x-22,-3*x^6+4*x^5+32*x^4-41*x^3-85*x^2+103*x,4*x^6-12*x^5-30*x^4+84*x^3+60*x^2-128*x-6,6*x^5-8*x^4-38*x^3+32*x^2+34*x+4,-3*x^6+6*x^5+26*x^4-53*x^3-57*x^2+121*x+2,-2*x^2+4,-2*x^6+2*x^5+24*x^4-28*x^3-66*x^2+82*x-2,-2*x^5-2*x^4+18*x^3+16*x^2-28*x-6,2*x^6-6*x^5-16*x^4+48*x^3+38*x^2-90*x-8,3*x^6-4*x^5-26*x^4+29*x^3+59*x^2-47*x-4,2*x^6-4*x^5-16*x^4+24*x^3+32*x^2-24*x-2,2*x,-10*x^6+17*x^5+94*x^4-134*x^3-223*x^2+245*x+9,10*x^6-16*x^5-100*x^4+144*x^3+248*x^2-308*x-34,-4*x^6+2*x^5+42*x^4-10*x^3-116*x^2+4*x+38,-2*x^6+5*x^5+2*x^4-22*x^3+39*x^2+13*x-1,-2*x^6+2*x^5+22*x^4-22*x^3-56*x^2+64*x-8,-2*x^6+2*x^5+14*x^4-4*x^3-26*x^2-22*x+28,-2*x^6+6*x^5+18*x^4-42*x^3-34*x^2+56*x-42,2*x^6-8*x^5-10*x^4+50*x^3+6*x^2-54*x-6,2*x^6-4*x^5-14*x^4+24*x^3+22*x^2-28*x-2,-2*x^6+6*x^5+18*x^4-46*x^3-42*x^2+76*x+6,2*x^6-6*x^5-6*x^4+32*x^3-24*x^2-2*x+4,-2*x^6+6*x^5+10*x^4-26*x^3-4*x^2-8*x,x^6+4*x^5-16*x^4-23*x^3+39*x^2+17*x+32,-6*x^6+10*x^5+58*x^4-78*x^3-142*x^2+148*x+14,2*x^5-2*x^4-10*x^3+4*x^2+4*x+6,-4*x^6+8*x^5+22*x^4-36*x^3-20*x^2+20*x+2,-10*x^6+20*x^5+86*x^4-150*x^3-182*x^2+254*x-6,-6*x^6+16*x^5+44*x^4-116*x^3-70*x^2+184*x-32,10*x^6-14*x^5-100*x^4+116*x^3+248*x^2-242*x-10,6*x^4-6*x^3-32*x^2+26*x+2,6*x^5-10*x^4-36*x^3+46*x^2+30*x-8,2*x^6-4*x^5-26*x^4+38*x^3+68*x^2-98*x+28,16*x^6-30*x^5-146*x^4+236*x^3+344*x^2-438*x-54,-4*x^6+4*x^5+30*x^4-12*x^3-46*x^2-12*x,2*x^6-3*x^5-20*x^4+26*x^3+49*x^2-55*x-1,-2*x^6+16*x^4+8*x^3-32*x^2-24*x+38,-4*x^6+10*x^5+40*x^4-86*x^3-96*x^2+176*x-36,3*x^6-6*x^5-26*x^4+31*x^3+57*x^2-19*x-6,-8*x^6+17*x^5+66*x^4-128*x^3-135*x^2+219*x+23,-2*x^4+6*x^3+8*x^2-26*x-2,-2*x^5+18*x^4-8*x^3-82*x^2+66*x-24,-2*x^6-6*x^5+30*x^4+30*x^3-90*x^2+8*x+2,-x^6-2*x^5+10*x^4+25*x^3-21*x^2-65*x,-4*x^6-x^5+38*x^4-4*x^3-85*x^2+57*x-7,-2*x^6+4*x^5+18*x^4-32*x^3-42*x^2+60*x+2,2*x^4-14*x^3-8*x^2+58*x+6,6*x^6-6*x^5-60*x^4+52*x^3+150*x^2-118*x-32,-8*x^6+18*x^5+52*x^4-110*x^3-72*x^2+126*x+16,4*x^6-6*x^5-38*x^4+60*x^3+88*x^2-142*x,-2*x^6+6*x^5+4*x^4-26*x^3+22*x^2-4*x,-6*x^6+8*x^5+66*x^4-86*x^3-178*x^2+226*x-2,4*x^6-8*x^5-22*x^4+42*x^3+20*x^2-22*x-22,-6*x^6+4*x^5+62*x^4-38*x^3-158*x^2+94*x+18,-2*x^6+7*x^5+12*x^4-44*x^3-11*x^2+45*x+3,2*x^6-3*x^5-12*x^4+12*x^3+11*x^2+3*x-7,-2*x^6+16*x^4-2*x^3-32*x^2+10*x+2,14*x^6-28*x^5-132*x^4+240*x^3+314*x^2-508*x-28,8*x^6-12*x^5-56*x^4+58*x^3+76*x^2-34*x,-4*x^6+8*x^5+38*x^4-56*x^3-100*x^2+72*x+18,x^6-2*x^5-12*x^4+21*x^3+35*x^2-53*x,10*x^6-20*x^5-82*x^4+144*x^3+174*x^2-252*x-30,x^6-15*x^3-27*x^2+49*x+2,8*x^6-12*x^5-76*x^4+102*x^3+176*x^2-222*x+12,2*x^5-10*x^3-2*x^2+12*x+14,-2,6*x^5-10*x^4-30*x^3+50*x^2,4*x^5-16*x^4-22*x^3+84*x^2+26*x-44,-12*x^6+24*x^5+100*x^4-174*x^3-216*x^2+306*x+24,-8*x^6+20*x^5+58*x^4-140*x^3-98*x^2+212*x+16,-x^6-2*x^5+16*x^4+7*x^3-49*x^2+17*x+2,9*x^5-2*x^4-74*x^3-x^2+137*x+9,-6*x^6+8*x^5+58*x^4-68*x^3-144*x^2+140*x+16,10*x^6-12*x^5-104*x^4+110*x^3+264*x^2-258*x-18,-8*x^4-4*x^3+50*x^2+4*x+2,-6*x^6+10*x^5+56*x^4-80*x^3-136*x^2+162*x+18,-2*x^6+3*x^5+28*x^4-40*x^3-83*x^2+121*x-9,-6*x^6+10*x^5+54*x^4-76*x^3-122*x^2+122*x-2,4*x^5-6*x^4-24*x^3+20*x^2+12*x+2,-2*x^6+8*x^5+8*x^4-44*x^3+4*x^2+44*x-14,2*x^6-20*x^4+48*x^2-16,-2*x^5+16*x^4-12*x^3-94*x^2+98*x+62,2*x^5+2*x^4-12*x^3-16*x^2-6*x-2,2*x^6-4*x^5-16*x^4+24*x^3+26*x^2-36*x+12,10*x^6-16*x^5-90*x^4+128*x^3+202*x^2-268*x-4,2*x^6-2*x^5-20*x^4+18*x^3+50*x^2-44*x-4,4*x^6-13*x^5-10*x^4+58*x^3-29*x^2+15*x+5,-12*x^6+16*x^5+120*x^4-144*x^3-302*x^2+328*x+30,-4*x^6+4*x^5+38*x^4-34*x^3-88*x^2+74*x+2,2*x^6-6*x^5-4*x^4+28*x^3-24*x^2-22*x-2,2*x^6-2*x^5-20*x^4+18*x^3+50*x^2-40*x-4,-6*x^6+11*x^5+42*x^4-76*x^3-53*x^2+117*x-37,-x^6+4*x^5+4*x^4-17*x^3-x^2+7*x+2,4*x^5-12*x^4-10*x^3+58*x^2-42*x-6,-2*x^6+x^5+10*x^4+4*x^3-9*x^2-13*x-1,4*x^6-4*x^5-42*x^4+40*x^3+104*x^2-104*x+14,-12*x^6+20*x^5+108*x^4-156*x^3-242*x^2+296*x+22,-2*x^6+4*x^5+16*x^4-22*x^3-30*x^2-2*x-8,-6*x^5+16*x^4+20*x^3-72*x^2+40*x+8,4*x^6-10*x^5-36*x^4+82*x^3+80*x^2-156*x+8,-2*x^6+20*x^4-10*x^3-44*x^2+50*x-14,6*x^6-14*x^5-52*x^4+112*x^3+116*x^2-222*x-14,-4*x^5+10*x^4+10*x^3-42*x^2+30*x+4,-6*x^6+6*x^5+58*x^4-52*x^3-126*x^2+110*x-14,-2*x^6+6*x^5+16*x^4-42*x^3-34*x^2+72*x+8,-2*x^6+2*x^5+16*x^4-12*x^3-24*x^2+18*x-18,2*x^6-6*x^5-10*x^4+34*x^3+20*x^2-36*x-4,-13*x^6+20*x^5+116*x^4-161*x^3-249*x^2+319*x-2,2*x^6-6*x^5+2*x^4+18*x^3-54*x^2+56*x-14,8*x^6-10*x^5-76*x^4+84*x^3+182*x^2-194*x+6,2*x^5-4*x^4-10*x^3+16*x^2+4*x,10*x^6-18*x^5-108*x^4+180*x^3+302*x^2-442*x-44,3*x^6-4*x^5-38*x^4+43*x^3+111*x^2-105*x-20,8*x^6-14*x^5-74*x^4+118*x^3+160*x^2-252*x+30,14*x^5-30*x^4-66*x^3+136*x^2-28*x-6,-3*x^5+2*x^4+20*x^3-9*x^2-21*x+5,10*x^5-20*x^4-52*x^3+92*x^2+26*x-44,-4*x^6+10*x^5+32*x^4-72*x^3-64*x^2+110*x-4,-4*x^6+2*x^5+34*x^4-8*x^3-70*x^2-2*x-4,6*x^6-9*x^5-62*x^4+96*x^3+157*x^2-251*x-7,2*x^6-4*x^5-18*x^4+28*x^3+42*x^2-46*x-6,-2*x^5+8*x^4+4*x^3-32*x^2+22*x-30,-12*x^5+30*x^4+50*x^3-132*x^2+18*x-2,-13*x^6+22*x^5+136*x^4-205*x^3-369*x^2+473*x+66,-10*x^6+10*x^5+108*x^4-108*x^3-282*x^2+290*x+32,-2*x^5+8*x^4+6*x^3-40*x^2+16*x+12,x^5-2*x^4-4*x^3+9*x^2-5*x-1,-x^6+10*x^4+3*x^3-25*x^2-9*x+20,10*x^6-14*x^5-90*x^4+108*x^3+190*x^2-210*x+26,10*x^6-18*x^5-92*x^4+148*x^3+216*x^2-302*x-26,-2*x^5+2*x^4+10*x^3-10*x^2,-6*x^6+12*x^5+38*x^4-64*x^3-54*x^2+68*x+14,4*x^6-8*x^5-52*x^4+88*x^3+166*x^2-228*x-14,4*x^6-40*x^4+2*x^3+96*x^2-22*x-28,8*x^4-2*x^3-34*x^2+6*x-2,-x^6+2*x^5+8*x^4-15*x^3-15*x^2+27*x,2*x^6+x^5-22*x^4-2*x^3+59*x^2-3*x-1,2*x^6-12*x^5+6*x^4+52*x^3-70*x^2+16*x-2,-8*x^6+12*x^5+62*x^4-72*x^3-112*x^2+92*x+10,-4*x^6+2*x^5+50*x^4-48*x^3-134*x^2+182*x-20,2*x^6-2*x^5-14*x^4+10*x^3+24*x^2-12*x-8,-6*x^6+8*x^5+64*x^4-88*x^3-164*x^2+252*x+2,-3*x^6+4*x^5+22*x^4-15*x^3-37*x^2+5*x+6,-8*x^5+8*x^4+64*x^3-42*x^2-108*x+46,6*x^6-7*x^5-60*x^4+60*x^3+151*x^2-133*x-27,6*x^6-8*x^5-62*x^4+74*x^3+158*x^2-166*x-14,2*x^6+6*x^5-38*x^4-28*x^3+128*x^2-18*x-8,14*x^6-20*x^5-148*x^4+192*x^3+392*x^2-456*x-54,2*x^6+2*x^5-20*x^4-10*x^3+50*x^2+12*x-36,12*x^6-16*x^5-110*x^4+128*x^3+244*x^2-280*x+18,4*x^6-8*x^5-26*x^4+44*x^3+30*x^2-36*x-4,6*x^6-14*x^5-54*x^4+112*x^3+118*x^2-202*x+42,-10*x^4+10*x^3+44*x^2-40*x-10,4*x^6-12*x^5-26*x^4+84*x^3+32*x^2-128*x-2,-10*x^5+28*x^4+32*x^3-128*x^2+46*x+12,2*x^6-5*x^5-14*x^4+36*x^3+21*x^2-59*x+5,-14*x^6+23*x^5+144*x^4-208*x^3-373*x^2+461*x+61,-10*x^6+18*x^5+94*x^4-158*x^3-218*x^2+368*x-18,-2*x^5+4*x^4+6*x^3+4*x^2+16*x,-8*x^6+12*x^5+74*x^4-96*x^3-172*x^2+196*x+18,2*x^4-12*x^2+8,-6*x^5+60*x^3+4*x^2-126*x-8,8*x^6-16*x^5-48*x^4+82*x^3+40*x^2-38*x,6*x^6-4*x^5-68*x^4+60*x^3+184*x^2-208*x-22,4*x^5-14*x^4+46*x^2-76*x+40,-4*x^6+8*x^5+38*x^4-68*x^3-90*x^2+136*x+2,-2*x^6+8*x^5-28*x^3+26*x^2-4*x,2*x^5-14*x^3-2*x^2+24*x+6,2*x^6-18*x^4+2*x^3+44*x^2-6*x-8,4*x^6-10*x^5-26*x^4+64*x^3+34*x^2-70*x-4,-2*x^5+14*x^3+4*x^2-16*x,6*x^6-18*x^5-50*x^4+142*x^3+110*x^2-256*x-18,3*x^6-2*x^5-34*x^4+27*x^3+101*x^2-95*x-22,-2*x^5-4*x^4+18*x^3+32*x^2-36*x-12,4*x^6-6*x^5-32*x^4+36*x^3+60*x^2-38*x-4,x^6-12*x^4+3*x^3+33*x^2-9*x-2,2*x^6-2*x^5-30*x^4+36*x^3+112*x^2-118*x-16,6*x^6-4*x^5-64*x^4+36*x^3+180*x^2-84*x-58,-6*x^5+10*x^4+28*x^3-40*x^2-14*x-2,-2*x^6-3*x^5+30*x^4-85*x^2+71*x-29,6*x^6-10*x^5-54*x^4+80*x^3+120*x^2-158*x-12,2*x^6-4*x^5-22*x^4+56*x^3+46*x^2-188*x+34,5*x^6-8*x^5-28*x^4+27*x^3+19*x^2+3*x,x^6+4*x^5-28*x^4-5*x^3+107*x^2-61*x-8,4*x^6-4*x^5-28*x^4+24*x^3+46*x^2-36*x-2,-2*x^5+2*x^4+14*x^3-10*x^2-20*x+8,-4*x^6+10*x^5+16*x^4-42*x^3+24*x^2-8*x,-2*x^4+4*x^3+10*x^2-16*x-4,15*x^6-28*x^5-110*x^4+197*x^3+181*x^2-331*x+26,-22*x^6+40*x^5+210*x^4-340*x^3-514*x^2+716*x+78,-2*x^4+6*x^3+8*x^2-18*x-2,-2*x^5-4*x^4+20*x^3+18*x^2-58*x+30,-2*x^6+2*x^5+32*x^4-32*x^3-116*x^2+118*x+58,-2*x^6-4*x^5+34*x^4+10*x^3-112*x^2+42*x+40,2*x^5+6*x^4-24*x^3-30*x^2+38*x+4,2*x^6-6*x^5-8*x^4+34*x^3-10*x^2-24*x+8,6*x^6-6*x^5-60*x^4+64*x^3+152*x^2-150*x-30,6*x^6-6*x^5-56*x^4+48*x^3+122*x^2-106*x+8,-6*x^6+18*x^5+22*x^4-92*x^3+32*x^2+26*x+4,4*x^6-14*x^5-20*x^4+94*x^3-4*x^2-148*x+60,-3*x^6+2*x^5+30*x^4-19*x^3-75*x^2+43*x+8,-10*x^6+18*x^5+94*x^4-144*x^3-236*x^2+298*x+42,-2*x^6+8*x^5+2*x^4-40*x^3+26*x^2-8*x-2,-3*x^6+6*x^5+28*x^4-59*x^3-65*x^2+147*x+32,-2*x^6+8*x^5+8*x^4-42*x^3+8*x^2+22*x+6,-2*x^6+4*x^5+14*x^4-16*x^3-30*x^2-12*x+22,-4*x^6+4*x^5+30*x^4-14*x^3-50*x^2+22*x+8,10*x^6-6*x^5-112*x^4+84*x^3+292*x^2-286*x+30,2*x^6+2*x^5-44*x^4+20*x^3+164*x^2-106*x-30,-10*x^6+20*x^5+90*x^4-164*x^3-198*x^2+344*x-22,-2*x^5+6*x^4+6*x^3-28*x^2+14*x+2,-10*x^6+20*x^5+94*x^4-174*x^3-218*x^2+374*x-2,2*x^6-10*x^5+2*x^4+52*x^3-46*x^2-34*x+30,-18*x^6+36*x^5+166*x^4-296*x^3-388*x^2+584*x+16,-4*x^6-6*x^5+44*x^4+34*x^3-108*x^2,6*x^6-12*x^5-52*x^4+88*x^3+118*x^2-148*x-16,2*x^6-4*x^5-20*x^4+28*x^3+50*x^2-48*x-8,2*x^6-2*x^5-32*x^4+42*x^3+104*x^2-136*x+6,-2*x^6+10*x^4+6*x^3-2*x^2+6*x+6,6*x^6-12*x^5-44*x^4+76*x^3+58*x^2-104*x+44,-4*x^6+6*x^5+34*x^4-48*x^3-64*x^2+102*x-14,10*x^6-18*x^5-74*x^4+104*x^3+132*x^2-114*x-24,6*x^6-8*x^5-60*x^4+68*x^3+150*x^2-140*x-16,-7*x^6+12*x^5+62*x^4-109*x^3-125*x^2+251*x-18,-6*x^6+12*x^5+32*x^4-72*x^3-16*x^2+76*x-18,-6*x^6+10*x^5+50*x^4-72*x^3-100*x^2+122*x+8,4*x^6-8*x^5-22*x^4+32*x^3+10*x^2+8*x-4,-4*x^6+8*x^5+40*x^4-62*x^3-108*x^2+102*x+16,-20*x^6+40*x^5+160*x^4-286*x^3-320*x^2+466*x+56,8*x^6-14*x^5-72*x^4+104*x^3+160*x^2-170*x+8,-2*x^6+x^5+18*x^4-2*x^3-39*x^2+5*x+1,-6*x^5+28*x^4-140*x^2+142*x+48,-x^6+4*x^5+8*x^4-25*x^3-19*x^2+27*x,-16*x^6+28*x^5+144*x^4-218*x^3-336*x^2+418*x+48,-2*x^6+6*x^5+2*x^4-22*x^3+38*x^2-32*x-2,2*x^4-2*x^3-10*x^2+6*x+4,2*x^6-16*x^4-8*x^3+34*x^2+16*x-20,-4*x^6+2*x^5+52*x^4-46*x^3-152*x^2+160*x+16,-4*x^5+12*x^4+14*x^3-68*x^2+18*x+8,14*x^6-24*x^5-122*x^4+174*x^3+268*x^2-290*x-20,-2*x^6+7*x^5+10*x^4-44*x^3-7*x^2+45*x+9,-2*x^6+6*x^5+8*x^4-36*x^3+6*x^2+30*x+4,-4*x^6+6*x^5+16*x^4-16*x^3+16*x^2-26*x-4,4*x^6-6*x^5-34*x^4+48*x^3+72*x^2-106*x-34,14*x^6-24*x^5-122*x^4+184*x^3+262*x^2-348*x-28,2*x^4+2*x^3-16*x^2-6*x+18,-x^5-2*x^4+13*x^2+17*x+3,7*x^6-18*x^5-46*x^4+115*x^3+61*x^2-135*x+42,-2*x^3+8*x,-8*x^6+16*x^5+56*x^4-104*x^3-90*x^2+140*x+58,-2*x^6+6*x^5+6*x^4-28*x^3+10*x^2+8*x+2,8*x^6-2*x^5-86*x^4+26*x^3+232*x^2-76*x-82,-14*x^6+22*x^5+130*x^4-184*x^3-292*x^2+394*x-4,-2*x^6+10*x^5+12*x^4-68*x^3-2*x^2+90*x-24,-2*x^6+2*x^5+14*x^4-18*x^2-18*x-2,8*x^6-15*x^5-72*x^4+120*x^3+169*x^2-237*x-31,2*x^6-x^5-6*x^4-10*x^3-25*x^2+59*x+23,2*x^6+2*x^5-26*x^4-2*x^3+70*x^2-44*x+2,2*x^5-10*x^4-6*x^3+48*x^2-12*x-2,x^5-16*x^4+38*x^3+71*x^2-183*x+7,2*x^2-4]];
E[305,4] = [x^7+2*x^6-11*x^5-19*x^4+35*x^3+48*x^2-25*x-27, [2,2*x,-x^5+8*x^3-x^2-11*x-1,2*x^2-4,-2,-x^6+8*x^4-x^3-11*x^2-x,2*x^4-14*x^2+4*x+16,2*x^3-8*x,-2*x^3-2*x^2+10*x+8,-2*x,x^6-10*x^4+x^3+25*x^2-3*x-12,2*x^6-x^5-20*x^4+8*x^3+49*x^2-3*x-25,-2*x^2+10,2*x^5-14*x^3+4*x^2+16*x,x^5-8*x^3+x^2+11*x+1,2*x^4-12*x^2+8,2*x^4+2*x^3-12*x^2-6*x+6,-2*x^4-2*x^3+10*x^2+8*x,-2*x^4-2*x^3+10*x^2+6*x+4,-2*x^2+4,-2*x^5+18*x^3-36*x-8,-2*x^6+x^5+20*x^4-10*x^3-51*x^2+13*x+27,-2*x^6+20*x^4-2*x^3-52*x^2+2*x+30,-3*x^6+2*x^5+30*x^4-19*x^3-77*x^2+27*x+54,2,-2*x^3+10*x,-2*x^4+2*x^3+18*x^2-14*x-28,2*x^6-18*x^4+4*x^3+44*x^2-8*x-32,2*x^6-22*x^4+2*x^3+66*x^2-6*x-42,x^6-8*x^4+x^3+11*x^2+x,x^6+2*x^5-10*x^4-15*x^3+29*x^2+19*x-8,2*x^5-16*x^3+24*x,2*x^4-12*x^2+6,2*x^5+2*x^4-12*x^3-6*x^2+6*x,-2*x^4+14*x^2-4*x-16,-2*x^5-2*x^4+14*x^3+12*x^2-20*x-16,-2*x^5-2*x^4+14*x^3+12*x^2-16*x-14,-2*x^5-2*x^4+10*x^3+6*x^2+4*x,-2*x^6-2*x^5+20*x^4+16*x^3-52*x^2-30*x+22,-2*x^3+8*x,-2*x^6+22*x^4-2*x^3-68*x^2+2*x+48,-2*x^6+18*x^4-36*x^2-8*x,-2*x^6+18*x^4-36*x^2-12*x+16,3*x^6-2*x^5-28*x^4+17*x^3+59*x^2-17*x-30,2*x^3+2*x^2-10*x-8,4*x^6-2*x^5-40*x^4+18*x^3+98*x^2-20*x-54,2*x^6+x^5-22*x^4-10*x^3+63*x^2+25*x-33,4*x^6-x^5-36*x^4+12*x^3+73*x^2-15*x-31,2*x^6+2*x^5-16*x^4-12*x^3+26*x^2+18*x+6,2*x,2*x^5+2*x^4-16*x^3-14*x^2+22*x+24,-2*x^4+14*x^2-20,-2*x^5-2*x^4+14*x^3+12*x^2-16*x-18,-2*x^5+2*x^4+18*x^3-14*x^2-28*x,-x^6+10*x^4-x^3-25*x^2+3*x+12,-4*x^6+42*x^4+2*x^3-112*x^2-14*x+54,-2*x^6-4*x^5+18*x^4+32*x^3-38*x^2-52*x-2,-4*x^6+40*x^4-4*x^3-102*x^2+8*x+54,-x^6+10*x^4-3*x^3-23*x^2+17*x+6,-2*x^6+x^5+20*x^4-8*x^3-49*x^2+3*x+25,2,x^5+4*x^4-6*x^3-29*x^2+17*x+27,2*x^6+2*x^5-20*x^4-20*x^3+44*x^2+46*x+10,2*x^6-20*x^4+48*x^2-16,2*x^2-10,2*x^5-12*x^3+6*x,2*x^6+2*x^5-22*x^4-14*x^3+68*x^2+20*x-44,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+12*x-12,2*x^3-4*x^2-6*x+12,-2*x^5+14*x^3-4*x^2-16*x,-x^6+2*x^5+12*x^4-17*x^3-35*x^2+25*x+24,-2*x^6-2*x^5+18*x^4+16*x^3-40*x^2-32*x,-2*x^6+20*x^4-48*x^2+22,-2*x^6-2*x^5+14*x^4+12*x^3-16*x^2-14*x,-x^5+8*x^3-x^2-11*x-1,-2*x^6-2*x^5+14*x^4+10*x^3-16*x^2-12*x-8,-2*x^5+2*x^4+12*x^3-18*x^2-2*x+12,2*x^6-2*x^5-22*x^4+18*x^3+66*x^2-28*x-54,x^6-12*x^4+3*x^3+39*x^2-9*x-20,-2*x^4+12*x^2-8,2*x^6+4*x^5-18*x^4-30*x^3+40*x^2+50*x-10,4*x^6-40*x^4+2*x^3+98*x^2-2*x-54,2*x^6+3*x^5-20*x^4-18*x^3+61*x^2+7*x-45,4*x^6-38*x^4-2*x^3+88*x^2+22*x-38,-2*x^4-2*x^3+12*x^2+6*x-6,4*x^6-4*x^5-38*x^4+34*x^3+84*x^2-34*x-54,-4*x^3+2*x^2+20*x-6,-4*x^6+3*x^5+34*x^4-26*x^3-59*x^2+19*x+27,-2*x^6+18*x^4-8*x^3-38*x^2+32*x+18,2*x^4+2*x^3-10*x^2-8*x,-2*x^6+24*x^4-4*x^3-86*x^2+20*x+80,-6*x^6+4*x^5+54*x^4-38*x^3-108*x^2+42*x+48,2*x^6-4*x^5-18*x^4+36*x^3+38*x^2-56*x-50,-3*x^6+28*x^4-7*x^3-71*x^2+17*x+54,2*x^4+2*x^3-10*x^2-6*x-4,-3*x^6+4*x^5+28*x^4-29*x^3-53*x^2+15*x,-2*x^6+2*x^5+26*x^4-12*x^3-84*x^2+2*x+52,-2*x^6+6*x^5+26*x^4-44*x^3-78*x^2+56*x+54,x^6-6*x^4+x^3-x^2+5*x+6,2*x^2-4,2*x^6+2*x^5-24*x^4-14*x^3+78*x^2+16*x-36,2*x^6+2*x^5-16*x^4-14*x^3+22*x^2+24*x,2*x^6+3*x^5-22*x^4-20*x^3+75*x^2+21*x-53,-2*x^5+18*x^3-40*x,2*x^5-18*x^3+36*x+8,-2*x^6-2*x^5+14*x^4+12*x^3-16*x^2-18*x,x^5+6*x^4-8*x^3-49*x^2+19*x+57,-2*x^6+2*x^5+22*x^4-18*x^3-64*x^2+28*x+56,-2*x^6-2*x^5+22*x^4+18*x^3-68*x^2-40*x+40,2*x^6-x^5-20*x^4+10*x^3+51*x^2-13*x-27,2*x^6-2*x^5-22*x^4+12*x^3+60*x^2+6*x-20,4*x^6-2*x^5-38*x^4+20*x^3+90*x^2-30*x-44,2*x^5-6*x^4-20*x^3+44*x^2+34*x-42,-4*x^5-6*x^4+32*x^3+44*x^2-52*x-54,2*x^6-20*x^4+2*x^3+52*x^2-2*x-30,4*x^6-4*x^5-36*x^4+34*x^3+68*x^2-34*x-24,2*x^5+2*x^4-20*x^3-18*x^2+50*x+40,2*x^6-x^5-22*x^4+12*x^3+65*x^2-19*x-27,2*x^4+8*x^3-4*x^2-32*x-6,3*x^6-2*x^5-30*x^4+19*x^3+77*x^2-27*x-54,2*x^6-22*x^4+2*x^3+68*x^2-10*x-58,2*x,4*x^4+6*x^3-30*x^2-26*x+30,-x^6+14*x^4+x^3-41*x^2-11*x+16,-2,-2*x^6+2*x^5+18*x^4-26*x^3-50*x^2+60*x+54,-2*x^6-x^5+20*x^4+10*x^3-51*x^2-33*x+31,-4*x^6-2*x^5+38*x^4+10*x^3-96*x^2-14*x+54,2*x^4-2*x^3-24*x^2+22*x+46,2*x^3-10*x,2*x^5-6*x^4-10*x^3+54*x^2-12*x-60,2*x^6-16*x^4+30*x^2-12,-2*x^6+22*x^4-12*x^3-82*x^2+52*x+86,-2*x^6+24*x^4-2*x^3-76*x^2+6*x+54,2*x^4-2*x^3-18*x^2+14*x+28,-2*x^6+2*x^5+24*x^4-16*x^3-72*x^2+26*x+54,2*x^6-2*x^5-20*x^4+16*x^3+44*x^2-22*x-18,2*x^4-4*x^3-6*x^2+12*x,-3*x^6-4*x^5+30*x^4+31*x^3-81*x^2-57*x+46,-2*x^6+18*x^4-4*x^3-44*x^2+8*x+32,-2*x^5-4*x^4+18*x^3+38*x^2-40*x-78,4*x^6+x^5-36*x^4+73*x^2-x-27,2*x^5-2*x^4-14*x^3+16*x^2+8*x-6,2*x^6-18*x^4+2*x^3+40*x^2-10*x-22,-2*x^6+22*x^4-2*x^3-66*x^2+6*x+42,4*x^6-2*x^5-38*x^4+22*x^3+96*x^2-28*x-54,-2*x^6-3*x^5+22*x^4+28*x^3-59*x^2-69*x-3,2*x^6-4*x^5-22*x^4+26*x^3+58*x^2-18*x-26,-2*x^6+12*x^4-2*x^3+8*x^2-6*x-42,-x^6+8*x^4-x^3-11*x^2-x,-x^6-2*x^5+12*x^4+19*x^3-41*x^2-39*x+34,2*x^6-4*x^5-24*x^4+34*x^3+72*x^2-66*x-54,-2*x^5-2*x^4+18*x^3+12*x^2-44*x-30,-2*x^6+2*x^5+12*x^4-18*x^3-2*x^2+12*x,-x^6-2*x^5+10*x^4+15*x^3-29*x^2-19*x+8,-2*x^6+4*x^5+16*x^4-36*x^3-20*x^2+56*x+10,2*x^6-26*x^4+2*x^3+94*x^2-6*x-62,-2*x^6-x^5+22*x^4+4*x^3-57*x^2+5*x+27,2*x^6-22*x^4-4*x^3+62*x^2+28*x-18,-2*x^5+16*x^3-24*x,-2*x^6+16*x^4-30*x^2-16*x+24,4*x^5+8*x^4-30*x^3-46*x^2+40*x+54,2*x^6+3*x^5-20*x^4-22*x^3+51*x^2+35*x-23,-4*x^6+4*x^5+34*x^4-38*x^3-58*x^2+42*x+12,-2*x^4+12*x^2-6,-x^6+2*x^5+20*x^4-9*x^3-89*x^2+5*x+54,-5*x^5-4*x^4+40*x^3+17*x^2-63*x-3,-4*x^6+6*x^5+38*x^4-52*x^3-98*x^2+78*x+108,2*x^4-20*x^2+24,-2*x^5-2*x^4+12*x^3+6*x^2-6*x,4*x^5+4*x^4-38*x^3-30*x^2+94*x+70,-8*x^6+6*x^5+74*x^4-56*x^3-154*x^2+70*x+76,-4*x^5+6*x^4+34*x^3-48*x^2-58*x+30,-4*x^4+2*x^3+20*x^2-6*x,2*x^4-14*x^2+4*x+16,5*x^6-6*x^5-46*x^4+47*x^3+93*x^2-39*x-48,2*x^6-2*x^5-28*x^4+16*x^3+106*x^2-22*x-84,4*x^6-4*x^5-46*x^4+32*x^3+128*x^2-32*x-54,2*x^6+2*x^5-18*x^4-16*x^3+40*x^2+38*x-12,2*x^5+2*x^4-14*x^3-12*x^2+20*x+16,-2*x^5-2*x^4+14*x^3+12*x^2-8*x-14,4*x^6+2*x^5-42*x^4-16*x^3+116*x^2+30*x-54,-x^5+8*x^3-x^2-11*x-1,8*x^6-8*x^5-72*x^4+66*x^3+134*x^2-62*x-54,2*x^5+2*x^4-14*x^3-12*x^2+16*x+14,-8*x^6+4*x^5+74*x^4-32*x^3-152*x^2+54,-2*x^6-2*x^5+18*x^4+10*x^3-42*x^2-4*x+18,2*x^6-7*x^5-20*x^4+54*x^3+35*x^2-71*x-15,-2*x^6-4*x^5+18*x^4+36*x^3-26*x^2-72*x-62,2*x^5+2*x^4-10*x^3-6*x^2-4*x,-5*x^6+56*x^4-7*x^3-175*x^2+21*x+132,2*x^6-3*x^5-14*x^4+28*x^3+13*x^2-45*x-19,4*x^6+2*x^5-42*x^4-18*x^3+116*x^2+44*x-62,6*x^6+4*x^5-50*x^4-14*x^3+98*x^2+2*x-54,2*x^6+2*x^5-20*x^4-16*x^3+52*x^2+30*x-22,6*x^6-50*x^4+16*x^3+100*x^2-32*x-66,4*x^5+2*x^4-24*x^3-4*x^2+4*x+6,-2*x^6+5*x^5+20*x^4-36*x^3-43*x^2+31*x+27,2*x^6-2*x^5-22*x^4+18*x^3+58*x^2-28*x-14,2*x^3-8*x,-2*x^6+2*x^5+16*x^4-18*x^3-14*x^2+20*x-32,-2*x^6-2*x^5+24*x^4+8*x^3-80*x^2+14*x+54,-2*x^5+4*x^4+12*x^3-24*x^2+6*x-12,-2*x^6+2*x^5+20*x^4-16*x^3-44*x^2+6*x+6,2*x^6-22*x^4+2*x^3+68*x^2-2*x-48,-x^6+18*x^4+5*x^3-75*x^2-3*x+54,-2*x^6+2*x^5+18*x^4-14*x^3-32*x^2+4*x+12,-2*x^6+22*x^4-68*x^2+40,2*x^6+4*x^5-20*x^4-24*x^3+58*x^2+12*x-24,2*x^6-18*x^4+36*x^2+8*x,-5*x^6+2*x^5+50*x^4-25*x^3-127*x^2+57*x+82,2*x^6-4*x^5-22*x^4+26*x^3+54*x^2-18*x-18,4*x^6-2*x^5-38*x^4+24*x^3+88*x^2-46*x-66,x^6+6*x^5-8*x^4-49*x^3+19*x^2+57*x,2*x^6-18*x^4+36*x^2+12*x-16,6*x^6+4*x^5-60*x^4-30*x^3+152*x^2+62*x-54,2*x^6+2*x^5-10*x^4-20*x^3-16*x^2+74*x+44,2*x^6-20*x^4+2*x^3+56*x^2-10*x-54,-2*x^6+14*x^4-4*x^3-16*x^2+12*x+16,-3*x^6+2*x^5+28*x^4-17*x^3-59*x^2+17*x+30,-2*x^6-2*x^5+22*x^4+16*x^3-66*x^2-30*x+30,-6*x^6+50*x^4-10*x^3-90*x^2+30*x+54,-2*x^6-2*x^5+16*x^4+12*x^3-34*x^2-22*x+52,-2*x^6+6*x^5+12*x^4-54*x^3+2*x^2+84*x,-2*x^3-2*x^2+10*x+8,2*x^6-6*x^5-20*x^4+44*x^3+34*x^2-42*x,4*x^5-6*x^4-32*x^3+54*x^2+40*x-60,2*x^5-4*x^4-20*x^3+24*x^2+50*x+4,6*x^5+6*x^4-50*x^3-34*x^2+84*x+28,-4*x^6+2*x^5+40*x^4-18*x^3-98*x^2+20*x+54,4*x^6-2*x^5-40*x^4+20*x^3+104*x^2-34*x-60,-4*x^6+8*x^5+30*x^4-64*x^3-22*x^2+60*x,4*x^4+2*x^3-28*x^2-6*x,2*x^6+2*x^5-20*x^4-18*x^3+50*x^2+40*x,-2*x^6-x^5+22*x^4+10*x^3-63*x^2-25*x+33,-3*x^6+30*x^4+x^3-69*x^2-11*x+42,-6*x^6+56*x^4-8*x^3-126*x^2+16*x+64,2*x^5+8*x^4-4*x^3-32*x^2-6*x,-2*x^6-6*x^5+24*x^4+46*x^3-78*x^2-52*x+24,-4*x^6+x^5+36*x^4-12*x^3-73*x^2+15*x+31,4*x^6-4*x^5-46*x^4+28*x^3+140*x^2-16*x-110,-4*x^6+40*x^4-2*x^3-106*x^2-8*x+54,-4*x^6+x^5+42*x^4-8*x^3-111*x^2-5*x+35,2*x^2-4,-2*x^6-2*x^5+16*x^4+12*x^3-26*x^2-18*x-6,4*x^5+6*x^4-30*x^3-26*x^2+30*x,2*x^6+2*x^5-20*x^4-16*x^3+46*x^2+30*x+20,2*x^6+x^5-26*x^4+6*x^3+95*x^2-43*x-81,4*x^6+4*x^5-32*x^4-30*x^3+50*x^2+58*x-18,-2*x,x^6-4*x^5-16*x^4+25*x^3+49*x^2-15*x-6,2*x^6-8*x^5-24*x^4+60*x^3+68*x^2-88*x-74,-2*x^6+22*x^4-68*x^2+8*x+36,3*x^6-2*x^5-28*x^4+19*x^3+63*x^2-19*x-54,-2*x^5-2*x^4+16*x^3+14*x^2-22*x-24,2*x^6-6*x^5-26*x^4+44*x^3+82*x^2-46*x-76,4*x^5+6*x^4-28*x^3-30*x^2+32*x+24,2*x^5-2*x^4-24*x^3+22*x^2+46*x,2*x^6-4*x^5-22*x^4+32*x^3+62*x^2-52*x-58,2*x^4-14*x^2+20,-4*x^5+2*x^4+30*x^3-16*x^2-30*x-6,2*x^6-6*x^5-10*x^4+54*x^3-12*x^2-60*x,-2*x^6+x^5+20*x^4-12*x^3-47*x^2+15*x+3,-4*x^6+2*x^5+38*x^4-16*x^3-96*x^2+26*x+54,2*x^5+2*x^4-14*x^3-12*x^2+16*x+18,4*x^6-50*x^4-12*x^3+148*x^2+36*x-54,4*x^6-6*x^5-50*x^4+52*x^3+170*x^2-78*x-144,-2*x^5+4*x^4+22*x^3-34*x^2-36*x+34,2*x^5+4*x^4-18*x^3-26*x^2+24*x+6,2*x^5-2*x^4-18*x^3+14*x^2+28*x,2*x^6-22*x^4-2*x^3+70*x^2+22*x-50,2*x^6-2*x^5-22*x^4+18*x^3+62*x^2-20*x-30,-4*x^6-6*x^5+38*x^4+56*x^3-88*x^2-130*x+14,-6*x^6+2*x^5+54*x^4-26*x^3-118*x^2+32*x+54,x^6-10*x^4+x^3+25*x^2-3*x-12,2*x^5-4*x^4-10*x^3+20*x^2+12*x-24,-2*x^5+22*x^3-8*x^2-72*x+16,2*x^6-3*x^5-26*x^4+24*x^3+87*x^2-29*x-81,x^6+4*x^5-4*x^4-43*x^3-25*x^2+109*x+76,4*x^6-42*x^4-2*x^3+112*x^2+14*x-54,-2*x^6+14*x^4+2*x^3-2*x^2-38*x-30,-2*x^6-4*x^5+18*x^4+38*x^3-40*x^2-78*x,2*x^6-5*x^5-18*x^4+42*x^3+39*x^2-53*x-53,-5*x^6+4*x^5+52*x^4-33*x^3-123*x^2+23*x+60,2*x^6+4*x^5-18*x^4-32*x^3+38*x^2+52*x+2,2*x^6-2*x^5-14*x^4+16*x^3+8*x^2-6*x,-2*x^6-2*x^5+16*x^4+12*x^3-42*x^2-26*x+60,8*x^5+4*x^4-62*x^3-26*x^2+92*x+54,2*x^5+2*x^4-12*x^3-4*x^2+18*x-16,4*x^6-40*x^4+4*x^3+102*x^2-8*x-54,4*x^6+2*x^5-30*x^4-8*x^3+26*x^2+6*x+28,-6*x^6+6*x^5+58*x^4-44*x^3-124*x^2+46*x+64,4*x^6+2*x^5-34*x^4-12*x^3+66*x^2+26*x-36,x^6-10*x^4+11*x^3+27*x^2-53*x-54,x^6-10*x^4+3*x^3+23*x^2-17*x-6,-4*x^6+4*x^5+36*x^4-36*x^3-82*x^2+52*x+54,2*x^6-24*x^4+4*x^3+78*x^2-20*x-48,4*x^6-10*x^5-40*x^4+78*x^3+90*x^2-92*x-54,-4*x^5+6*x^4+32*x^3-48*x^2-36*x+42,2*x^6-x^5-20*x^4+8*x^3+49*x^2-3*x-25,-6*x^6-4*x^5+62*x^4+32*x^3-170*x^2-60*x+74,x^5-6*x^3+9*x^2+9*x-27,-6*x^6-2*x^5+56*x^4+12*x^3-120*x^2-26*x+18,-4*x^6+2*x^5+44*x^4-18*x^3-130*x^2+20*x+70,-2,-2*x^6-2*x^5+18*x^4+12*x^3-44*x^2-30*x,4*x^6+4*x^5-40*x^4-26*x^3+112*x^2+22*x-68,6*x^6-6*x^5-60*x^4+44*x^3+144*x^2-46*x-78,2*x^6-22*x^4-2*x^3+68*x^2+18*x-68,-x^5-4*x^4+6*x^3+29*x^2-17*x-27,-x^6+4*x^5+12*x^4-27*x^3-29*x^2+5*x+6,4*x^6-2*x^5-30*x^4+14*x^3+20*x^2+16*x+54,2*x^6+2*x^5-20*x^4-14*x^3+50*x^2+8*x-20,-4*x^6-4*x^5+40*x^4+24*x^3-102*x^2-12*x+54,-2*x^6-2*x^5+20*x^4+20*x^3-44*x^2-46*x-10,x^6-10*x^4+7*x^3+23*x^2-5*x-14,-2*x^6+2*x^5+34*x^4-12*x^3-150*x^2+26*x+138,-4*x^6+34*x^4-8*x^3-68*x^2+32*x+54,4*x^6+2*x^5-44*x^4-10*x^3+136*x^2-12*x-72,-2*x^6+20*x^4-48*x^2+16,-6*x^6+2*x^5+64*x^4-6*x^3-168*x^2-60*x+66,4*x^6-6*x^5-38*x^4+40*x^3+80*x^2-26*x-54,-2*x^6-4*x^5+20*x^4+28*x^3-62*x^2-48*x+12,6*x^4+14*x^3-40*x^2-46*x+20,-2*x^2+10,-x^6+2*x^5+16*x^4-19*x^3-61*x^2+27*x+54,-2*x^6+4*x^5+28*x^4-34*x^3-116*x^2+58*x+142,4*x^6-10*x^5-34*x^4+78*x^3+38*x^2-84*x,4*x^6+4*x^5-44*x^4-46*x^3+120*x^2+118*x-48,-2*x^5+12*x^3-6*x,-x^6+2*x^5+12*x^4-7*x^3-27*x^2-29*x+16,3*x^5+12*x^4-18*x^3-69*x^2+15*x+63,-6*x^5-4*x^4+50*x^3+32*x^2-80*x-56,-5*x^6-4*x^5+40*x^4+17*x^3-63*x^2-3*x,-2*x^6-2*x^5+22*x^4+14*x^3-68*x^2-20*x+44,6*x^6-6*x^5-52*x^4+46*x^3+94*x^2-36*x-32,-2*x^6+28*x^4-6*x^3-118*x^2+34*x+100,2*x^5-20*x^3+24*x,2*x^6-28*x^4+112*x^2+8*x-114,-2*x^6-2*x^5+16*x^4+10*x^3-30*x^2-12*x+12,8*x^6-2*x^5-84*x^4+22*x^3+226*x^2-36*x-114,4*x^6+4*x^5-38*x^4-30*x^3+94*x^2+70*x,2*x^6+6*x^5-18*x^4-44*x^3+50*x^2+70*x-10,14*x^6-6*x^5-132*x^4+58*x^3+286*x^2-56*x-108,-2*x^3+4*x^2+6*x-12,-4*x^6+6*x^5+34*x^4-48*x^3-58*x^2+30*x,4*x^6+3*x^5-36*x^4-26*x^3+75*x^2+63*x-45,-4*x^5+2*x^4+28*x^3-10*x^2-40*x+12,-2*x^6+4*x^5+16*x^4-30*x^3-10*x^2+14*x-56,2*x^5-14*x^3+4*x^2+16*x,2*x^6-2*x^5-28*x^4+24*x^3+118*x^2-70*x-140,-8*x^6+3*x^5+74*x^4-30*x^3-161*x^2+39*x+81,-6*x^6+58*x^4-16*x^3-152*x^2+56*x+108,-6*x^6-6*x^5+54*x^4+36*x^3-118*x^2-34*x+54,x^6-2*x^5-12*x^4+17*x^3+35*x^2-25*x-24,-8*x^6-2*x^5+72*x^4+4*x^3-148*x^2-18*x+72,2*x^5+4*x^4-24*x^3-40*x^2+70*x+84,-2*x^6+4*x^5+22*x^4-30*x^3-58*x^2+38*x+54,-3*x^6+36*x^4+7*x^3-117*x^2-29*x+84,2*x^6+2*x^5-18*x^4-16*x^3+40*x^2+32*x,4*x^6+6*x^5-40*x^4-44*x^3+108*x^2+78*x-30,-2*x^6-2*x^5+14*x^4+12*x^3-8*x^2-14*x,4*x^6+5*x^5-36*x^4-42*x^3+79*x^2+85*x-25,-2*x^6+2*x^5+12*x^4-16*x^3+10*x^2+6*x-52,2*x^6-20*x^4+48*x^2-22,-x^6+8*x^4-x^3-11*x^2-x,-4*x^6-5*x^5+34*x^4+26*x^3-61*x^2-5*x-11,-12*x^6+8*x^5+110*x^4-70*x^3-230*x^2+62*x+120,6*x^5+4*x^4-42*x^3-18*x^2+44*x+30,2*x^6+2*x^5-14*x^4-12*x^3+16*x^2+14*x,2*x^6-4*x^5-26*x^4+32*x^3+90*x^2-60*x-90,16*x^6-6*x^5-148*x^4+56*x^3+308*x^2-34*x-116,-4*x^6+32*x^4-6*x^3-32*x^2+18*x-44,2*x^6-4*x^5-28*x^4+28*x^3+92*x^2-32*x-54,x^5-8*x^3+x^2+11*x+1,-5*x^6+2*x^5+36*x^4-21*x^3-25*x^2+x-54,2*x^6+4*x^5-30*x^4-28*x^3+130*x^2+16*x-102,-4*x^5-2*x^4+44*x^3+24*x^2-112*x-54,-2*x^6+6*x^4-6*x^3+46*x^2+2*x-50,2*x^6+2*x^5-14*x^4-10*x^3+16*x^2+12*x+8,8*x^4-2*x^3-70*x^2+26*x+106,10*x^6+x^5-102*x^4+261*x^2+7*x-135,4*x^6+4*x^5-40*x^4-24*x^3+110*x^2+16*x-54,-x^6+10*x^4+x^3-35*x^2+x+54,2*x^5-2*x^4-12*x^3+18*x^2+2*x-12,-6*x^6+2*x^5+58*x^4-24*x^3-148*x^2+38*x+108,-6*x^6-4*x^5+56*x^4+32*x^3-120*x^2-72*x+10,-4*x^6+12*x^5+48*x^4-88*x^3-118*x^2+92*x+58,4*x^5-6*x^4-32*x^3+48*x^2+44*x-30,-2*x^6+2*x^5+22*x^4-18*x^3-66*x^2+28*x+54,2*x^6-2*x^5-22*x^4+16*x^3+54*x^2-22*x-18,-8*x^6+4*x^5+78*x^4-22*x^3-164*x^2-28*x+54,4*x^5-2*x^4-44*x^3+4*x^2+120*x+30,4*x^6+2*x^5-24*x^4-4*x^3+4*x^2+6*x,-x^6+12*x^4-3*x^3-39*x^2+9*x+20,7*x^6-2*x^5-62*x^4+25*x^3+129*x^2-33*x-66,-2*x^6+2*x^5+2*x^4-22*x^3+78*x^2+24*x-86,-6*x^6+56*x^4-12*x^3-124*x^2+36*x+54,-4*x^6-8*x^5+34*x^4+80*x^3-48*x^2-200*x-70,2*x^4-12*x^2+8,6*x^5+4*x^4-44*x^3-20*x^2+38*x+36,6*x^6-6*x^5-56*x^4+56*x^3+116*x^2-82*x-54,4*x^6+6*x^5-44*x^4-46*x^3+128*x^2+68*x-40,-2*x^6-2*x^5+18*x^4+18*x^3-46*x^2-28*x+18,-2*x^6-4*x^5+18*x^4+30*x^3-40*x^2-50*x+10,-2*x^6+4*x^5+12*x^4-24*x^3+6*x^2-12*x,4*x^6-32*x^4+6*x^3+52*x^2-10*x-24,2*x^6-6*x^5-22*x^4+54*x^3+58*x^2-92*x-54,-6*x^6+66*x^4+2*x^3-190*x^2-30*x+118,-4*x^6+40*x^4-2*x^3-98*x^2+2*x+54,6*x^4-38*x^2+36,-2*x^6+x^5+30*x^4-105*x^2-13*x+79,6*x^6+8*x^5-64*x^4-52*x^3+200*x^2+52*x-114,6*x^6-4*x^5-52*x^4+38*x^3+100*x^2-38*x-54,-2*x^6-3*x^5+20*x^4+18*x^3-61*x^2-7*x+45,4*x^6+4*x^5-38*x^4-34*x^3+96*x^2+70*x-54,2*x^6-2*x^5-12*x^4+12*x^3-26*x^2+22*x+112,2*x^5+14*x^4-12*x^3-84*x^2+26*x+54,-5*x^6-4*x^5+52*x^4+21*x^3-159*x^2-11*x+120,-4*x^6+38*x^4+2*x^3-88*x^2-22*x+38,-2*x^6-8*x^5+22*x^4+52*x^3-86*x^2-36*x+70,12*x^6-5*x^5-120*x^4+48*x^3+297*x^2-43*x-135,4*x^6+7*x^5-32*x^4-60*x^3+45*x^2+137*x+57,-4*x^6+4*x^5+36*x^4-40*x^3-82*x^2+68*x+54,2*x^4+2*x^3-12*x^2-6*x+6,-10*x^6+6*x^5+100*x^4-52*x^3-238*x^2+34*x+108,2*x^4-14*x^2+4*x+16,4*x^6+x^5-42*x^4+107*x^2-13*x-87,-2*x^6+22*x^4-66*x^2+30,-4*x^6+4*x^5+38*x^4-34*x^3-84*x^2+34*x+54,-2*x^6-8*x^5+24*x^4+66*x^3-90*x^2-102*x+60,-4*x^6+2*x^5+40*x^4-22*x^3-98*x^2+40*x+50,2*x^6+2*x^5-26*x^4-22*x^3+98*x^2+48*x-86,-2*x^6+12*x^5+18*x^4-86*x^3-22*x^2+94*x+54,4*x^3-2*x^2-20*x+6,6*x^5-4*x^4-50*x^3+30*x^2+76*x-26,-2*x^6-2*x^5+28*x^4+16*x^3-102*x^2-14*x+60,4*x^6-8*x^5-42*x^4+54*x^3+108*x^2-34*x-54,2*x^6-36*x^4-4*x^3+168*x^2-4*x-146,4*x^6-3*x^5-34*x^4+26*x^3+59*x^2-19*x-27,4*x^6+6*x^5-34*x^4-62*x^3+38*x^2+152*x+78,2*x^6-22*x^4+4*x^3+66*x^2-20*x-54,-2*x^6-x^5+12*x^4+13*x^2+5*x-81,8*x^6-12*x^5-80*x^4+96*x^3+198*x^2-108*x-122,2*x^6-18*x^4+8*x^3+38*x^2-32*x-18,2*x^6-6*x^5-26*x^4+36*x^3+74*x^2+2*x-54,6*x^5-8*x^4-58*x^3+50*x^2+128*x-6,2*x^6-6*x^5-16*x^4+32*x^3+10*x+34,-6*x^6-8*x^5+58*x^4+56*x^3-158*x^2-80*x+102,-2*x^4-2*x^3+10*x^2+8*x,-2*x^6-2*x^5+22*x^4+14*x^3-68*x^2+36,-10*x^6-2*x^5+94*x^4+4*x^3-226*x^2-18*x+138,-2*x^6-2*x^5+26*x^4+12*x^3-106*x^2-2*x+118,4*x^6-6*x^5-32*x^4+54*x^3+40*x^2-60*x,2*x^6-24*x^4+4*x^3+86*x^2-20*x-80,2*x^6+4*x^5-8*x^4-40*x^3-38*x^2+108*x+108,2*x^6+4*x^5-20*x^4-26*x^3+58*x^2+10*x-20,6*x^6+6*x^5-50*x^4-34*x^3+84*x^2+28*x,2*x^6+4*x^5-16*x^4-36*x^3+22*x^2+88*x+24,6*x^6-4*x^5-54*x^4+38*x^3+108*x^2-42*x-48,4*x^6-2*x^5-34*x^4+14*x^3+54*x^2+20*x+24,-10*x^6+4*x^5+96*x^4-36*x^3-226*x^2+40*x+108,-5*x^5+2*x^4+44*x^3-19*x^2-75*x+19,8*x^6-6*x^5-68*x^4+50*x^3+116*x^2-32*x-60,-2*x^6+4*x^5+18*x^4-36*x^3-38*x^2+56*x+50,4*x^5+2*x^4-28*x^3-6*x^2,4*x^5+8*x^4-26*x^3-60*x^2+22*x+84,-2*x^6-2*x^5+16*x^4+20*x^3-20*x^2-50*x-26,6*x^5-52*x^3+12*x^2+102*x-28,3*x^6-28*x^4+7*x^3+71*x^2-17*x-54,-4*x^6-2*x^5+32*x^4+4*x^3-48*x^2+22*x+4,2*x^6-x^5-12*x^4+12*x^3+3*x^2+5*x-27,2*x^6+2*x^5-24*x^4-8*x^3+76*x^2-10*x-42,12*x^6-10*x^5-122*x^4+84*x^3+304*x^2-86*x-162,-2*x^4-2*x^3+10*x^2+6*x+4,2*x^6+8*x^5-8*x^4-48*x^3+2*x^2+64*x+12,-6*x^5-4*x^4+54*x^3+36*x^2-100*x-72,-2*x^6+2*x^5+8*x^4-8*x^3+44*x^2-26*x-54,-2*x^6-4*x^5+26*x^4+38*x^3-100*x^2-62*x+96,3*x^6-4*x^5-28*x^4+29*x^3+53*x^2-15*x,-2*x^6-2*x^5+16*x^4+16*x^3-22*x^2-30*x-16,-12*x^6-2*x^5+104*x^4-208*x^2-10*x+108,-8*x^6+2*x^5+82*x^4-20*x^3-224*x^2+26*x+150,4*x^6-4*x^5-34*x^4+30*x^3+48*x^2-26*x+8,2*x^6-2*x^5-26*x^4+12*x^3+84*x^2-2*x-52,9*x^6-2*x^5-84*x^4+29*x^3+187*x^2-65*x-108,2*x^6-3*x^5-22*x^4+24*x^3+67*x^2-33*x-77,2*x^3-8*x,-6*x^6+4*x^5+56*x^4-30*x^3-108*x^2+2*x-2,2*x^6-6*x^5-26*x^4+44*x^3+78*x^2-56*x-54,2*x^6-4*x^5-14*x^4+44*x^3+16*x^2-88*x-24,4*x^6+6*x^5-38*x^4-38*x^3+90*x^2+52*x-60,-2*x^6+2*x^5+24*x^4-20*x^3-74*x^2+42*x+36,-2*x^6+2*x^5+22*x^4-24*x^3-66*x^2+70*x+54,-x^6+6*x^4-x^3+x^2-5*x-6,-x^6-4*x^5+16*x^4+23*x^3-57*x^2-9*x+22,4*x^6+4*x^5-38*x^4-28*x^3+94*x^2+48*x-24,-4*x^6+12*x^5+46*x^4-90*x^3-134*x^2+82*x+108,3*x^6-8*x^5-26*x^4+61*x^3+23*x^2-63*x+28,-2*x^2+4]];

E[306,1] = [x, [1,1,0,1,4,0,-2,1,0,4,0,0,-6,-2,0,1,1,0,4,4,0,0,-6,0,11,-6,0,-2,4,0,-6,1,0,1,-8,0,-4,4,0,4,10,0,-4,0,0,-6,-4,0,-3,11,0,-6,2,0,0,-2,0,4,-12,0,-4,-6,0,1,-24,0,-12,1,0,-8,6,0,2,-4,0,4,0,0,10,4,0,10,12,0,4,-4,0,0,2,0,12,-6,0,-4,16,0,6,-3,0,11,-14,0,4,-6,0,2,0,0,16,0,0,-2,-2,0,-24,4,0,-12,-2,0,-11,-4,0,-6,24,0,8,1,0,-24,16,0,-8,-12,0,1,6,0,8,-8,0,6,0,0,16,2,0,-4,6,0,-24,4,0,0,-24,0,6,10,0,4,12,0,12,10,0,12,2,0,23,4,0,-4,4,0,-22,0,0,2,12,0,-20,12,0,-6,-16,0,0,-4,0,16,4,0,6,6,0,-3,-8,0,14,11,0,-14,-8,0,40,4,0,-6,0,0,8,2,0,0,-16,0,12,16,0,0,-6,0,-4,-2,0,-2,-4,0,-2,-24,0,4,6,0,-16,-12,0,-2,20,0,-18,-11,0,-4,-12,0,-24,-6,0,24,-12,0,0,8,0,1,-18,0,8,-24,0,16,12,0,8,-8,0,-12,12,0,-16,1,0,6,0,0,-8,8,0,-8,18,0,32,6,0,0,-20,0,1,16,0,2,-2,0,-48,-4,0,6,36,0,8,-24,0,4,-16,0,-12,0,0,-24,-30,0,-26,6,0,10,16,0,0,4,0,12,4,0,-66,12,0,10,8,0,20,12,0,2,-48,0,-6,23,0,4,0,0,20,-4,0,4,4,0,-30,-22,0,0,-14,0,24,2,0,12,0,0,-3,-20,0,12,8,0,10,-6,0,-16,-4,0,-14,0,0,-4,-24,0,-4,16,0,4,-28,0,0,6,0,6,14,0,-6,-3,0,-8,40,0,20,14,0,11,-30,0,36,-14,0,-8,0,0,-26,40,0,4,24,0,48,-6,0,0,12,0,34,8,0,2,11,0,8,0,0,-16,-14,0,-18,12,0,16,-24,0,-10,0,0,-6,-12,0,8,-4,0,-2,26,0,0,-2,0,-4,48,0,22,-2,0,-24,10,0,-4,4,0,6,36,0,24,-16,0,-12,0,0,44,-2,0,20,-10,0,24,-18,0,-11,24,0,-38,-4,0,-12,20,0,4,-24,0,-6,-12,0,32,24]];
E[306,2] = [x^2-6, [1,1,0,1,x,0,-x+2,1,0,x,-2*x,0,2*x+2,-x+2,0,1,-1,0,-2*x+2,x,0,-2*x,x-6,0,1,2*x+2,0,-x+2,-x,0,3*x+2,1,0,-1,2*x-6,0,x-4,-2*x+2,0,x,-6,0,-4,-2*x,0,x-6,2*x,0,-4*x+3,1,0,2*x+2,-2*x+6,0,-12,-x+2,0,-x,-2*x-6,0,-x-4,3*x+2,0,1,2*x+12,0,-2*x+2,-1,0,2*x-6,-3*x-6,0,-10,x-4,0,-2*x+2,-4*x+12,0,3*x+2,x,0,-6,2*x+6,0,-x,-4,0,-2*x,4*x+6,0,2*x-8,x-6,0,2*x,2*x-12,0,2*x-10,-4*x+3,0,1,2*x+6,0,2*x+8,2*x+2,0,-2*x+6,-2*x+12,0,3*x+8,-12,0,-x+2,2*x+6,0,-6*x+6,-x,0,-2*x-6,x-2,0,13,-x-4,0,3*x+2,-4*x,0,-4,1,0,2*x+12,2*x-12,0,-6*x+16,-2*x+2,0,-1,-8*x,0,2*x+8,2*x-6,0,-3*x-6,-4*x-24,0,-6,-10,0,x-4,18,0,4*x+8,-2*x+2,0,-4*x+12,2*x+18,0,-10,3*x+2,0,x,8*x-18,0,-4,-6,0,2*x+6,-x+6,0,8*x+15,-x,0,-4,7*x,0,-x+2,-2*x,0,4*x+6,4*x+12,0,-5*x-4,2*x-8,0,x-6,-4*x+6,0,2*x,2*x,0,2*x-12,-6*x,0,-2*x+14,2*x-10,0,-4*x+3,5*x-12,0,-9*x+2,1,0,2*x+6,-2*x+6,0,-6*x,2*x+8,0,2*x+2,-4*x+24,0,-2*x+8,-2*x+6,0,-2*x+12,-4*x,0,4*x-14,3*x+8,0,-12,-2*x-2,0,6*x-4,-x+2,0,2*x+6,0,0,2,-6*x+6,0,-x,-6*x-6,0,12,-2*x-6,0,x-2,6*x-12,0,-6*x+2,13,0,-x-4,3*x-24,0,-20,3*x+2,0,-4*x,4*x+12,0,12*x-12,-4,0,1,24,0,6*x-14,2*x+12,0,2*x-12,-2*x-24,0,6*x-12,-6*x+16,0,-2*x+2,x,0,-4*x+8,-1,0,-8*x,-2*x,0,3*x-16,2*x+8,0,2*x-6,4*x-6,0,-6*x-4,-3*x-6,0,-4*x-24,6*x-12,0,1,-6,0,-10,-6,0,-6*x-12,x-4,0,18,-10*x,0,4*x-8,4*x+8,0,-2*x+2,-4*x-6,0,-28,-4*x+12,0,2*x+18,5*x-6,0,-2*x+2,-10,0,3*x+2,7*x+12,0,12,x,0,8*x-18,2*x-2,0,2*x+2,-4,0,-6,4*x-12,0,4*x-4,2*x+6,0,-x+6,2*x-12,0,2,8*x+15,0,-x,-4*x-36,0,-4*x+16,-4,0,7*x,4*x-12,0,-6*x+14,-x+2,0,-2*x,-8*x-6,0,-6*x-18,4*x+6,0,4*x+12,-4*x+12,0,-8*x+9,-5*x-4,0,2*x-8,-10*x,0,-5*x-22,x-6,0,-4*x+6,-10*x+24,0,-6*x+14,2*x,0,2*x,-2*x-12,0,4*x+20,2*x-12,0,-6*x,2*x,0,12*x-24,-2*x+14,0,2*x-10,6,0,-x+6,-4*x+3,0,5*x-12,2*x+18,0,3*x+20,-9*x+2,0,1,-4*x-6,0,10*x+40,2*x+6,0,-2*x+6,8*x-12,0,4*x-16,-6*x,0,2*x+8,2*x,0,6*x+12,2*x+2,0,-4*x+24,24,0,-2*x-22,-2*x+8,0,-2*x+6,-1,0,2*x-2,-2*x+12,0,-4*x,11*x+6,0,-12*x+8,4*x-14,0,3*x+8,14*x-24,0,3*x+26,-12,0,-2*x-2,12*x+12,0,6*x+24,6*x-4,0,-x+2,-6,0,12*x,2*x+6,0,0,-8*x+12,0,-12*x+8,2,0,-6*x+6,6*x+6,0,-10*x-16,-x,0,-6*x-6,-8*x+12,0,-6*x+16,12,0,-2*x-6,8*x,0,-2*x+2,x-2,0,6*x-12,-5*x+6,0,-6*x+4,-6*x+2,0,13,-10*x+12,0,-x+2,-x-4,0,3*x-24,-12*x+12,0,x,-20,0,3*x+2,6,0,6*x+20,-4*x]];
E[306,3] = [x, [1,1,0,1,0,0,2,1,0,0,0,0,2,2,0,1,1,0,-4,0,0,0,6,0,-5,2,0,2,0,0,-10,1,0,1,0,0,8,-4,0,0,-6,0,-4,0,0,6,-12,0,-3,-5,0,2,-6,0,0,2,0,0,12,0,8,-10,0,1,0,0,-4,1,0,0,-6,0,2,8,0,-4,0,0,-10,0,0,-6,-12,0,0,-4,0,0,18,0,4,6,0,-12,0,0,14,-3,0,-5,-6,0,-4,2,0,-6,0,0,20,0,0,2,6,0,0,0,0,12,2,0,-11,8,0,-10,0,0,8,1,0,0,0,0,-8,-4,0,1,6,0,8,0,0,-6,0,0,0,2,0,8,6,0,8,-4,0,0,0,0,-10,-10,0,0,12,0,20,-6,0,-12,-18,0,-9,0,0,-4,0,0,-10,0,0,18,12,0,8,4,0,6,0,0,0,-12,0,0,12,0,14,14,0,-3,12,0,2,-5,0,-6,0,0,0,-4,0,2,0,0,8,-6,0,0,0,0,-20,20,0,0,2,0,-28,2,0,6,-12,0,14,0,0,0,30,0,0,12,0,2,12,0,-10,-11,0,8,0,0,-8,-10,0,0,-12,0,0,8,0,1,-18,0,16,0,0,0,-12,0,0,-8,0,-4,-24,0,-16,1,0,6,0,0,-4,8,0,0,-30,0,-16,-6,0,0,-12,0,1,0,0,2,-18,0,0,8,0,6,12,0,-8,8,0,-4,0,0,20,0,0,0,-18,0,14,-10,0,-10,-12,0,0,0,0,12,-4,0,-10,20,0,-6,-24,0,20,-12,0,-18,0,0,-22,-9,0,0,0,0,-20,-4,0,0,12,0,26,-10,0,0,18,0,0,18,0,12,0,0,-3,8,0,4,0,0,-10,6,0,0,-12,0,-22,0,0,-12,0,0,-28,0,0,12,12,0,0,14,0,14,30,0,6,-3,0,12,0,0,-16,2,0,-5,18,0,-20,-6,0,0,0,0,38,0,0,-4,24,0,0,2,0,0,36,0,-22,8,0,-6,-5,0,16,0,0,0,30,0,14,-20,0,20,-24,0,26,0,0,2,36,0,0,-28,0,2,-6,0,0,6,0,-12,0,0,-10,14,0,0,-30,0,20,0,0,30,-12,0,-8,0,0,12,0,0,20,2,0,12,-6,0,16,-10,0,-11,0,0,-10,8,0,0,36,0,0,-8,0,-10,-12,0,32,0]];
E[306,4] = [x, [1,-1,0,1,2,0,0,-1,0,-2,4,0,-2,0,0,1,-1,0,4,2,0,-4,0,0,-1,2,0,0,10,0,8,-1,0,1,0,0,-2,-4,0,-2,-10,0,12,4,0,0,0,0,-7,1,0,-2,-6,0,8,0,0,-10,-12,0,-10,-8,0,1,-4,0,-12,-1,0,0,0,0,10,2,0,4,0,0,-8,2,0,10,-4,0,-2,-12,0,-4,6,0,0,0,0,0,8,0,-14,7,0,-1,10,0,-8,2,0,6,4,0,-10,-8,0,0,-2,0,0,10,0,12,0,0,5,10,0,8,-12,0,0,-1,0,4,12,0,0,12,0,1,-10,0,-4,0,0,0,-8,0,20,-10,0,-2,10,0,24,-4,0,0,16,0,-2,8,0,-2,0,0,4,-10,0,4,-16,0,-9,2,0,12,-6,0,0,4,0,-6,12,0,14,0,0,0,-4,0,-4,0,0,-8,16,0,18,14,0,-7,-14,0,0,1,0,-10,0,0,-20,8,0,-2,16,0,-28,-6,0,-4,24,0,0,10,0,8,2,0,16,0,0,2,-4,0,-26,0,0,-10,-26,0,0,-12,0,0,0,0,2,-5,0,-10,-14,0,-8,-8,0,12,-28,0,0,0,0,1,-2,0,0,-4,0,-12,8,0,-12,0,0,-12,-6,0,16,-1,0,10,-4,0,30,4,0,0,6,0,12,0,0,8,0,0,1,-20,0,10,26,0,-24,2,0,-10,0,0,0,-24,0,4,-20,0,-12,0,0,-16,0,0,10,2,0,-8,-6,0,40,2,0,0,-4,0,2,-4,0,10,0,0,-20,-4,0,16,-24,0,-14,9,0,-2,32,0,0,-12,0,6,-28,0,14,0,0,-4,30,0,0,6,0,-12,24,0,-3,-14,0,0,20,0,24,0,0,4,0,0,6,4,0,0,-20,0,-4,8,0,-16,16,0,0,-18,0,-14,26,0,0,7,0,14,-16,0,-26,0,0,-1,14,0,-16,10,0,0,-8,0,26,20,0,-8,0,0,-8,2,0,-16,-4,0,22,28,0,6,1,0,0,4,0,-24,8,0,-14,0,0,-10,0,0,16,-8,0,-2,4,0,12,-16,0,0,-2,0,-40,-2,0,4,0,0,10,26,0,0,-30,0,32,10,0,26,12,0,0,0,0,12,48,0,-4,0,0,0,-24,0,4,-2,0,5,-28,0,-16,10,0,14,-12,0,-10,8,0,8,0,0,4,-12]];
E[306,5] = [x^2-6, [1,-1,0,1,x,0,x+2,-1,0,-x,-2*x,0,-2*x+2,-x-2,0,1,1,0,2*x+2,x,0,2*x,x+6,0,1,2*x-2,0,x+2,-x,0,-3*x+2,-1,0,-1,2*x+6,0,-x-4,-2*x-2,0,-x,6,0,-4,-2*x,0,-x-6,2*x,0,4*x+3,-1,0,-2*x+2,-2*x-6,0,-12,-x-2,0,x,-2*x+6,0,x-4,3*x-2,0,1,2*x-12,0,2*x+2,1,0,-2*x-6,-3*x+6,0,-10,x+4,0,2*x+2,-4*x-12,0,-3*x+2,x,0,-6,2*x-6,0,x,4,0,2*x,4*x-6,0,-2*x-8,x+6,0,-2*x,2*x+12,0,-2*x-10,-4*x-3,0,1,2*x-6,0,-2*x+8,2*x-2,0,2*x+6,-2*x-12,0,-3*x+8,12,0,x+2,2*x-6,0,6*x+6,-x,0,2*x-6,x+2,0,13,-x+4,0,-3*x+2,-4*x,0,-4,-1,0,-2*x+12,2*x+12,0,6*x+16,-2*x-2,0,-1,-8*x,0,-2*x+8,2*x+6,0,3*x-6,-4*x+24,0,-6,10,0,-x-4,-18,0,-4*x+8,-2*x-2,0,4*x+12,2*x-18,0,-10,3*x-2,0,-x,8*x+18,0,-4,6,0,-2*x+6,-x-6,0,-8*x+15,-x,0,-4,7*x,0,x+2,-2*x,0,-4*x+6,4*x-12,0,5*x-4,2*x+8,0,-x-6,-4*x-6,0,-2*x,2*x,0,-2*x-12,-6*x,0,2*x+14,2*x+10,0,4*x+3,5*x+12,0,9*x+2,-1,0,-2*x+6,-2*x-6,0,6*x,2*x-8,0,-2*x+2,-4*x-24,0,2*x+8,-2*x-6,0,2*x+12,-4*x,0,-4*x-14,3*x-8,0,-12,-2*x+2,0,-6*x-4,-x-2,0,-2*x+6,0,0,2,-6*x-6,0,x,-6*x+6,0,12,-2*x+6,0,-x-2,6*x+12,0,6*x+2,-13,0,x-4,3*x+24,0,-20,3*x-2,0,4*x,4*x-12,0,-12*x-12,4,0,1,-24,0,-6*x-14,2*x-12,0,-2*x-12,-2*x+24,0,-6*x-12,-6*x-16,0,2*x+2,x,0,4*x+8,1,0,8*x,-2*x,0,-3*x-16,2*x-8,0,-2*x-6,4*x+6,0,6*x-4,-3*x+6,0,4*x-24,6*x+12,0,1,6,0,-10,6,0,6*x-12,x+4,0,18,-10*x,0,-4*x-8,4*x-8,0,2*x+2,-4*x+6,0,-28,-4*x-12,0,-2*x+18,5*x+6,0,2*x+2,10,0,-3*x+2,7*x-12,0,12,x,0,-8*x-18,2*x+2,0,-2*x+2,4,0,-6,4*x+12,0,-4*x-4,2*x-6,0,x+6,2*x+12,0,2,8*x-15,0,x,-4*x+36,0,4*x+16,4,0,-7*x,4*x+12,0,6*x+14,-x-2,0,2*x,-8*x+6,0,6*x-18,4*x-6,0,-4*x+12,-4*x-12,0,8*x+9,-5*x+4,0,-2*x-8,-10*x,0,5*x-22,x+6,0,4*x+6,-10*x-24,0,6*x+14,2*x,0,-2*x,-2*x+12,0,-4*x+20,2*x+12,0,6*x,2*x,0,-12*x-24,-2*x-14,0,-2*x-10,-6,0,x+6,-4*x-3,0,-5*x-12,2*x-18,0,-3*x+20,-9*x-2,0,1,-4*x+6,0,-10*x+40,2*x-6,0,2*x+6,8*x+12,0,-4*x-16,-6*x,0,-2*x+8,2*x,0,-6*x+12,2*x-2,0,4*x+24,-24,0,2*x-22,-2*x-8,0,2*x+6,1,0,-2*x-2,-2*x-12,0,4*x,11*x-6,0,12*x+8,4*x+14,0,-3*x+8,14*x+24,0,-3*x+26,12,0,2*x-2,12*x-12,0,-6*x+24,6*x+4,0,x+2,6,0,-12*x,2*x-6,0,0,-8*x-12,0,12*x+8,-2,0,6*x+6,6*x-6,0,10*x-16,-x,0,6*x-6,-8*x-12,0,6*x+16,-12,0,2*x-6,8*x,0,2*x+2,x+2,0,-6*x-12,-5*x-6,0,6*x+4,-6*x-2,0,13,-10*x-12,0,x+2,-x+4,0,-3*x-24,-12*x-12,0,-x,20,0,-3*x+2,-6,0,-6*x+20,-4*x]];
E[306,6] = [x, [1,-1,0,1,0,0,-4,-1,0,0,-6,0,2,4,0,1,1,0,-4,0,0,6,0,0,-5,-2,0,-4,0,0,-4,-1,0,-1,0,0,-4,4,0,0,-6,0,8,-6,0,0,0,0,9,5,0,2,6,0,0,4,0,0,0,0,-4,4,0,1,0,0,8,1,0,0,0,0,2,4,0,-4,24,0,8,0,0,6,0,0,0,-8,0,6,6,0,-8,0,0,0,0,0,14,-9,0,-5,-18,0,-16,-2,0,-6,6,0,-16,0,0,-4,6,0,0,0,0,0,-4,0,25,4,0,-4,0,0,-16,-1,0,0,6,0,16,-8,0,-1,-6,0,2,0,0,0,-12,0,0,-2,0,-4,-6,0,-16,4,0,-24,0,0,14,-8,0,0,0,0,2,-6,0,0,-12,0,-9,0,0,8,-24,0,20,-6,0,-6,-12,0,-4,8,0,0,0,0,-6,0,0,0,24,0,-10,-14,0,9,12,0,-16,5,0,18,0,0,0,16,0,2,24,0,-10,6,0,-6,0,0,16,16,0,0,2,0,8,4,0,-6,6,0,14,0,0,0,-18,0,0,0,0,4,-24,0,-10,-25,0,-4,0,0,-8,4,0,0,24,0,0,16,0,1,-6,0,16,0,0,-6,-24,0,0,-16,0,8,24,0,8,1,0,6,30,0,8,-2,0,0,-6,0,14,0,0,12,24,0,1,0,0,2,-6,0,0,4,0,6,0,0,-32,16,0,-4,0,0,20,24,0,0,-12,0,-34,-14,0,8,12,0,0,0,0,0,-4,0,-10,-2,0,6,0,0,-16,0,0,12,0,0,-22,9,0,0,24,0,-8,-8,0,24,-18,0,26,-20,0,6,-6,0,0,6,0,12,-24,0,-3,4,0,-8,0,0,-16,0,0,0,-24,0,-22,6,0,0,0,0,14,0,0,-24,24,0,0,10,0,14,-30,0,0,-9,0,-12,0,0,20,16,0,-5,-30,0,-8,-18,0,0,24,0,-10,0,0,-16,0,0,0,-2,0,-24,30,0,2,10,0,-6,-5,0,16,6,0,0,-24,0,2,-16,0,-16,0,0,8,0,0,-2,24,0,0,-8,0,-4,18,0,36,6,0,-6,0,0,26,-14,0,0,6,0,-16,0,0,18,-12,0,-32,0,0,0,-48,0,20,-4,0,24,-24,0,-8,10,0,25,0,0,8,4,0,0,12,0,0,8,0,-4,0,0,14,0]];

E[307,1] = [x, [1,1,2,-1,0,2,3,-3,1,0,5,-2,0,3,0,-1,-5,1,-1,0,6,5,6,-6,-5,0,-4,-3,-6,0,-4,5,10,-5,0,-1,-9,-1,0,0,-3,6,10,-5,0,6,-4,-2,2,-5,-10,0,5,-4,0,-9,-2,-6,6,0,-10,-4,3,7,0,10,2,5,12,0,13,-3,8,-9,-10,1,15,0,8,0,-11,-3,-16,-6,0,10,-12,-15,6,0,0,-6,-8,-4,0,10,-2,2,5,5,11,-10,7,0,0,5,-4,4,-19,0,-18,-3,-9,-2,0,6,0,6,-15,0,14,-10,-6,4,0,3,-1,-3,20,0,18,-10,-3,2,0,15,2,12,-8,0,-8,13,0,-1,0,8,4,9,18,-10,14,3,-5,15,0,0,0,8,10,0,18,-11,4,3,0,-16,20,-18,-13,0,-1,-10,22,-12,-15,-5,12,6,9,0,17,0,-20,-18,0,-8,-25,4,-12,0,7,14,-22,-2,0,-2,18,5,1,15,4,11,-18,10,0,7,6,0,-5,0,-12,-5,26,-4,0,12,-12,-19,16,0,0,-18,1,15,-5,-9,-15,2,-17,0,30,18,-18,0,0,-6,16,-15,4,0,-10,14,-10,10,0,-6,0,12,-32,0,-13,-3,30,-1,0,-17,13,20,-27,0,-6,18,0,-30,0,-3,12,-2,17,0,-26,5,0,2,-25,-12,1,-8,-4,0,4,-8,-4,-13,0,0,-9,5,8,0,-4,-8,-9,4,0,27,-20,18,0,10,30,14,22,1,0,-5,1,-15,14,0,0,0,-15,0,0,-8,-2,10,-30,0,-8,18,5,11,0,4,-38,9,-12,0,-7,16,-9,20,0,-6,32,-13,-18,0,-20,-1,-15,-30,0,22,-27,12,-26,-15,0,25,-15,12,0,-6,-30,9,24,0,-18,17,28,0,0,-20,25,-6,-3,0,15,8,23,-25,0,12,0,-12,26,0,-2,7,-24,-6,0,-22,10,2,10,0,-30,-6,36,18,0,-5,-5,1,-6,5,3,4,0,-11,0,-18,-45,30,-25,0,4,-7,18,6,0,0,-16,-5,16,0,9,-12,-4,-15,25,26,-30,4,0,0,-14,4,8,-12,0,19,-6,16,-4,0,2,0,22,18,0,1,36,21,8,-5,-15,9,28,-15,0,6,22,-17,20,0,-2,30,13,6,0,-18,-43,0,6,0,0,-18,50,16,5,15,5,4,0,0,0,-10,36,-14,0,-10,-4,30,8,0,39,6,30,0,0,4,39,-32,-30,0]];
E[307,2] = [x^9-3*x^8-11*x^7+30*x^6+46*x^5-87*x^4-91*x^3+50*x^2+62*x+13, [1,x,-x^8+2*x^7+11*x^6-18*x^5-38*x^4+44*x^3+39*x^2-24*x-13,x^2-2,x^7-x^6-11*x^5+5*x^4+36*x^3+3*x^2-24*x-9,-x^8+12*x^6+8*x^5-43*x^4-52*x^3+26*x^2+49*x+13,x^7-x^6-12*x^5+5*x^4+44*x^3+5*x^2-36*x-13,x^3-4*x,x^7-x^6-12*x^5+7*x^4+41*x^3-6*x^2-26*x-3,x^8-x^7-11*x^6+5*x^5+36*x^4+3*x^3-24*x^2-9*x,x^8-2*x^7-10*x^6+15*x^5+31*x^4-26*x^3-23*x^2+6*x+3,-x^8-3*x^7+16*x^6+39*x^5-63*x^4-153*x^3+21*x^2+123*x+39,x^8-x^7-12*x^6+6*x^5+45*x^4-2*x^3-45*x^2-8*x+6,x^8-x^7-12*x^6+5*x^5+44*x^4+5*x^3-36*x^2-13*x,x^8-2*x^7-10*x^6+15*x^5+32*x^4-29*x^3-29*x^2+19*x+13,x^4-6*x^2+4,-x^8+3*x^7+9*x^6-27*x^5-26*x^4+71*x^3+27*x^2-47*x-14,x^8-x^7-12*x^6+7*x^5+41*x^4-6*x^3-26*x^2-3*x,-x^8+13*x^6+6*x^5-52*x^4-39*x^3+51*x^2+32*x-1,2*x^8-2*x^7-23*x^6+12*x^5+80*x^4-5*x^3-65*x^2-14*x+5,-x^8+2*x^7+10*x^6-15*x^5-30*x^4+27*x^3+16*x^2-13*x,x^8+x^7-15*x^6-15*x^5+61*x^4+68*x^3-44*x^2-59*x-13,-x^8-2*x^7+15*x^6+29*x^5-61*x^4-120*x^3+38*x^2+94*x+24,-4*x^8+5*x^7+45*x^6-33*x^5-154*x^4+34*x^3+121*x^2+3*x-13,-x^7+x^6+13*x^5-7*x^4-50*x^3+4*x^2+44*x+11,2*x^8-x^7-24*x^6-x^5+85*x^4+46*x^3-58*x^2-56*x-13,x^8-12*x^6-7*x^5+41*x^4+46*x^3-17*x^2-43*x-13,2*x^8-3*x^7-23*x^6+22*x^5+82*x^4-33*x^3-73*x^2+10*x+13,-x^6+2*x^5+8*x^4-12*x^3-19*x^2+13*x+13,x^8+x^7-15*x^6-14*x^5+58*x^4+62*x^3-31*x^2-49*x-13,-2*x^8+2*x^7+23*x^6-10*x^5-80*x^4-9*x^3+59*x^2+29*x+4,x^5-8*x^3+12*x,-x^8+12*x^6+8*x^5-41*x^4-53*x^3+16*x^2+46*x+13,-2*x^7+3*x^6+20*x^5-16*x^4-64*x^3+3*x^2+48*x+13,-x^8+12*x^6+6*x^5-40*x^4-40*x^3+14*x^2+36*x+13,2*x^8-3*x^7-21*x^6+19*x^5+67*x^4-17*x^3-41*x^2-10*x-7,-x^7+2*x^6+9*x^5-13*x^4-26*x^3+17*x^2+20*x+3,-3*x^8+2*x^7+36*x^6-6*x^5-126*x^4-40*x^3+82*x^2+61*x+13,2*x^7-x^6-26*x^5+4*x^4+99*x^3+19*x^2-88*x-39,2*x^8+x^7-26*x^6-22*x^5+97*x^4+111*x^3-66*x^2-101*x-26,3*x^8-6*x^7-31*x^6+49*x^5+98*x^4-103*x^3-75*x^2+44*x+18,-x^8-x^7+15*x^6+16*x^5-60*x^4-75*x^3+37*x^2+62*x+13,x^8-3*x^7-11*x^6+32*x^5+42*x^4-101*x^3-70*x^2+78*x+42,2*x^8-25*x^6-15*x^5+93*x^4+99*x^3-63*x^2-87*x-19,-x^8+x^7+13*x^6-8*x^5-53*x^4+12*x^3+65*x^2+3*x-12,-5*x^8+4*x^7+59*x^6-15*x^5-207*x^4-53*x^3+144*x^2+86*x+13,-x^8+5*x^7+7*x^6-50*x^5-18*x^4+153*x^3+48*x^2-113*x-45,-5*x^8+7*x^7+55*x^6-48*x^5-188*x^4+63*x^3+161*x^2-11*x-26,2*x^8-25*x^6-12*x^5+91*x^4+81*x^3-60*x^2-75*x-20,-x^8+x^7+13*x^6-7*x^5-50*x^4+4*x^3+44*x^2+11*x,-2*x^8+10*x^7+15*x^6-103*x^5-37*x^4+319*x^3+74*x^2-228*x-78,3*x^8-37*x^6-19*x^5+130*x^4+128*x^3-66*x^2-121*x-38,3*x^8-10*x^7-27*x^6+95*x^5+78*x^4-264*x^3-91*x^2+173*x+68,3*x^8-x^7-37*x^6-5*x^5+133*x^4+74*x^3-93*x^2-75*x-13,-x^8+x^7+12*x^6-8*x^5-39*x^4+12*x^3+16*x^2-2*x-1,x^8+x^7-14*x^6-20*x^5+53*x^4+99*x^3-18*x^2-85*x-26,2*x^8-4*x^7-22*x^6+35*x^5+79*x^4-85*x^3-93*x^2+57*x+39,-x^7+2*x^6+8*x^5-12*x^4-19*x^3+13*x^2+13*x,-2*x^8+3*x^7+21*x^6-22*x^5-62*x^4+33*x^3+24*x^2-3*x+4,2*x^8-24*x^6-18*x^5+85*x^4+118*x^3-41*x^2-113*x-39,-3*x^8+5*x^7+32*x^6-36*x^5-110*x^4+59*x^3+106*x^2-22*x-21,-4*x^8+x^7+50*x^6+12*x^5-183*x^4-123*x^3+129*x^2+128*x+26,-x^8+6*x^7+6*x^6-62*x^5-10*x^4+195*x^3+35*x^2-144*x-52,x^6-10*x^4+24*x^2-8,-2*x^8+2*x^7+23*x^6-11*x^5-80*x^4+2*x^3+64*x^2-3*x-15,-3*x^8+x^7+38*x^6+5*x^5-140*x^4-75*x^3+96*x^2+75*x+13,-2*x^7+x^6+25*x^5-94*x^3-36*x^2+77*x+31,-3*x^7+2*x^6+38*x^5-12*x^4-139*x^3-6*x^2+107*x+28,x^8-3*x^7-9*x^6+25*x^5+28*x^4-59*x^3-32*x^2+38*x+13,-3*x^8+x^7+36*x^6+6*x^5-127*x^4-77*x^3+86*x^2+75*x+13,-2*x^8+2*x^7+22*x^6-7*x^5-74*x^4-25*x^3+48*x^2+38*x+11,x^8+3*x^7-17*x^6-39*x^5+75*x^4+153*x^3-58*x^2-125*x-26,4*x^8-8*x^7-43*x^6+71*x^5+144*x^4-175*x^3-140*x^2+111*x+54,-x^8+2*x^7+9*x^6-13*x^5-26*x^4+17*x^3+20*x^2+3*x,2*x^8-7*x^7-18*x^6+68*x^5+51*x^4-196*x^3-58*x^2+146*x+52,-5*x^8+3*x^7+58*x^6-197*x^4-113*x^3+109*x^2+135*x+41,3*x^8-3*x^7-35*x^6+17*x^5+121*x^4+2*x^3-84*x^2-26*x,2*x^8-x^7-26*x^6+4*x^5+99*x^4+19*x^3-88*x^2-39*x,4*x^8-9*x^7-38*x^6+73*x^5+109*x^4-156*x^3-74*x^2+66*x+13,3*x^8-36*x^6-19*x^5+125*x^4+126*x^3-71*x^2-122*x-36,-3*x^7+5*x^6+30*x^5-31*x^4-94*x^3+28*x^2+65*x+9,3*x^8+2*x^7-41*x^6-40*x^5+158*x^4+198*x^3-106*x^2-168*x-39,2*x^8-6*x^7-20*x^6+60*x^5+62*x^4-172*x^3-67*x^2+111*x+44,-2*x^8+26*x^6+16*x^5-102*x^4-108*x^3+80*x^2+101*x+13,-x^8+3*x^7+8*x^6-25*x^5-20*x^4+61*x^3+21*x^2-40*x-17,2*x^6-4*x^5-14*x^4+21*x^3+28*x^2-20*x-13,-3*x^8+7*x^7+33*x^6-67*x^5-118*x^4+182*x^3+144*x^2-115*x-65,4*x^8-5*x^7-45*x^6+31*x^5+151*x^4-17*x^3-99*x^2-25*x,-x^6+x^5+14*x^4-8*x^3-51*x^2+9*x+22,-2*x^8+2*x^7+22*x^6-7*x^5-75*x^4-26*x^3+53*x^2+50*x+13,-x^8+3*x^7+10*x^6-29*x^5-35*x^4+81*x^3+53*x^2-46*x-26,-9*x^8+8*x^7+105*x^6-35*x^5-366*x^4-71*x^3+260*x^2+135*x+17,2*x^7-3*x^6-20*x^5+14*x^4+64*x^3+8*x^2-40*x-13,2*x^8-4*x^7-20*x^6+28*x^5+66*x^4-43*x^3-63*x^2+17*x+13,x^8+x^7-16*x^6-13*x^5+71*x^4+52*x^3-75*x^2-30*x+9,-10*x^7+12*x^6+108*x^5-64*x^4-362*x^3-3*x^2+278*x+91,2*x^8-x^7-26*x^6+4*x^5+100*x^4+15*x^3-92*x^2-21*x+7,6*x^8-3*x^7-72*x^6-x^5+255*x^4+122*x^3-175*x^2-144*x-26,x^8-13*x^6-7*x^5+53*x^4+46*x^3-52*x^2-44*x-9,-2*x^8+4*x^7+21*x^6-30*x^5-69*x^4+53*x^3+53*x^2-26*x-9,2*x^8-x^7-25*x^6+x^5+94*x^4+33*x^3-84*x^2-39*x+10,4*x^8-7*x^7-43*x^6+55*x^5+145*x^4-108*x^3-128*x^2+46*x+26,-x^8-x^7+13*x^6+19*x^5-48*x^4-89*x^3+28*x^2+75*x+11,5*x^8-2*x^7-61*x^6-6*x^5+219*x^4+115*x^3-155*x^2-112*x-13,x^8+2*x^7-15*x^6-27*x^5+58*x^4+113*x^3-25*x^2-108*x-39,-x^8+6*x^7+5*x^6-60*x^5-3*x^4+182*x^3+23*x^2-118*x-39,-3*x^7+4*x^6+33*x^5-22*x^4-110*x^3-4*x^2+71*x+37,6*x^8-4*x^7-71*x^6+9*x^5+253*x^4+88*x^3-191*x^2-113*x-13,-3*x^8+7*x^7+32*x^6-68*x^5-104*x^4+188*x^3+98*x^2-123*x-46,-2*x^8+x^7+22*x^6+7*x^5-75*x^4-75*x^3+48*x^2+61*x+13,-x^8+14*x^6+3*x^5-54*x^4-30*x^3+41*x^2+46*x+13,3*x^7-4*x^6-37*x^5+22*x^4+139*x^3+11*x^2-108*x-39,-x^8-3*x^7+16*x^6+39*x^5-64*x^4-151*x^3+25*x^2+120*x+40,2*x^8-25*x^6-13*x^5+89*x^4+89*x^3-43*x^2-85*x-26,3*x^8+2*x^7-41*x^6-38*x^5+159*x^4+182*x^3-112*x^2-151*x-34,-x^8+2*x^7+10*x^6-16*x^5-35*x^4+37*x^3+51*x^2-26*x-26,x^8-5*x^7-8*x^6+50*x^5+28*x^4-148*x^3-72*x^2+87*x+47,-3*x^8-x^7+38*x^6+30*x^5-141*x^4-158*x^3+97*x^2+128*x+26,-3*x^8+8*x^7+31*x^6-76*x^5-103*x^4+206*x^3+115*x^2-131*x-52,4*x^8-4*x^7-48*x^6+21*x^5+176*x^4+17*x^3-151*x^2-65*x,4*x^8-4*x^7-47*x^6+24*x^5+160*x^4-2*x^3-97*x^2-39*x-15,-4*x^8-x^7+54*x^6+28*x^5-202*x^4-167*x^3+128*x^2+165*x+39,3*x^8-8*x^7-27*x^6+67*x^5+81*x^4-163*x^3-91*x^2+103*x+39,-7*x^8+2*x^7+86*x^6+21*x^5-311*x^4-217*x^3+210*x^2+216*x+44,2*x^8-6*x^7-19*x^6+58*x^5+56*x^4-163*x^3-60*x^2+112*x+50,3*x^8-5*x^7-32*x^6+36*x^5+108*x^4-56*x^3-94*x^2+10*x+13,x^8-9*x^7-2*x^6+93*x^5-14*x^4-288*x^3-19*x^2+191*x+56,x^7-12*x^5+40*x^3-32*x,3*x^7-3*x^6-32*x^5+5*x^4+112*x^3+62*x^2-92*x-65,-4*x^8+x^7+49*x^6+12*x^5-172*x^4-118*x^3+97*x^2+109*x+26,-2*x^8+13*x^7+11*x^6-134*x^5-19*x^4+420*x^3+91*x^2-302*x-110,-6*x^8+5*x^7+71*x^6-18*x^5-254*x^4-71*x^3+193*x^2+107*x+13,-5*x^7+6*x^6+57*x^5-33*x^4-198*x^3-6*x^2+144*x+52,-2*x^8+x^7+25*x^6-94*x^4-36*x^3+77*x^2+31*x,-2*x^8+2*x^7+23*x^6-9*x^5-79*x^4-19*x^3+54*x^2+47*x+13,-3*x^8+6*x^7+32*x^6-52*x^5-107*x^4+122*x^3+101*x^2-68*x-26,3*x^8+4*x^7-42*x^6-63*x^5+160*x^4+275*x^3-80*x^2-227*x-58,2*x^7-5*x^6-18*x^5+28*x^4+59*x^3-12*x^2-49*x-13,-x^8+6*x^7+5*x^6-58*x^5-9*x^4+176*x^3+53*x^2-136*x-64,-6*x^8+3*x^7+72*x^6-x^5-258*x^4-107*x^3+197*x^2+127*x+13,-4*x^8+5*x^7+46*x^6-36*x^5-154*x^4+46*x^3+93*x^2+3*x+13,-4*x^8+53*x^6+18*x^5-199*x^4-134*x^3+138*x^2+135*x+26,x^7-14*x^5-x^4+50*x^3+13*x^2-21*x-8,2*x^8-27*x^6-9*x^5+106*x^4+67*x^3-93*x^2-68*x+1,-x^8+4*x^7+8*x^6-37*x^5-26*x^4+103*x^3+58*x^2-70*x-39,4*x^8+x^7-49*x^6-40*x^5+173*x^4+224*x^3-89*x^2-194*x-52,-4*x^7+2*x^6+51*x^5-9*x^4-186*x^3-30*x^2+138*x+52,-x^8+13*x^6+2*x^5-44*x^4-19*x^3+19*x^2+22*x+7,5*x^8-12*x^7-50*x^6+103*x^5+162*x^4-245*x^3-169*x^2+143*x+71,-x^8+4*x^7+8*x^6-41*x^5-22*x^4+124*x^3+46*x^2-72*x-26,x^8-2*x^7-10*x^6+15*x^5+38*x^4-34*x^3-65*x^2+33*x+38,-6*x^8-x^7+78*x^6+45*x^5-296*x^4-266*x^3+221*x^2+229*x+39,-4*x^8+13*x^7+35*x^6-120*x^5-96*x^4+325*x^3+96*x^2-212*x-62,6*x^8-2*x^7-73*x^6-17*x^5+263*x^4+189*x^3-176*x^2-186*x-39,3*x^8-2*x^7-35*x^6+4*x^5+118*x^4+48*x^3-65*x^2-51*x-10,5*x^8-8*x^7-54*x^6+59*x^5+185*x^4-104*x^3-177*x^2+52*x+52,x^8-2*x^7-8*x^6+11*x^5+17*x^4-6*x^3+4*x^2-6*x-1,3*x^8+6*x^7-47*x^6-75*x^5+192*x^4+290*x^3-134*x^2-235*x-52,-4*x^8-x^7+54*x^6+32*x^5-212*x^4-189*x^3+178*x^2+189*x+13,5*x^8-5*x^7-57*x^6+31*x^5+193*x^4-20*x^3-140*x^2-20*x+13,-2*x^8-3*x^7+29*x^6+46*x^5-116*x^4-198*x^3+73*x^2+160*x+39,-3*x^8+5*x^7+30*x^6-31*x^5-94*x^4+28*x^3+65*x^2+9*x,4*x^8-7*x^7-42*x^6+53*x^5+138*x^4-94*x^3-121*x^2+22*x+31,5*x^8+4*x^7-68*x^6-78*x^5+263*x^4+373*x^3-168*x^2-313*x-75,2*x^8-x^7-26*x^6+3*x^5+99*x^4+28*x^3-81*x^2-61*x-13,2*x^7-30*x^5+2*x^4+115*x^3+11*x^2-80*x-26,-3*x^8+5*x^7+33*x^6-38*x^5-118*x^4+71*x^3+124*x^2-33*x-31,-4*x^8+6*x^7+46*x^6-42*x^5-162*x^4+48*x^3+127*x^2+13*x,-2*x^8-3*x^7+28*x^6+48*x^5-107*x^4-216*x^3+50*x^2+207*x+62,-3*x^7+5*x^6+26*x^5-26*x^4-70*x^3+10*x^2+45*x+13,-3*x^8+9*x^7+28*x^6-82*x^5-86*x^4+213*x^3+102*x^2-120*x-62,-2*x^8+8*x^7+18*x^6-78*x^5-63*x^4+230*x^3+120*x^2-169*x-84,-7*x^8+7*x^7+80*x^6-37*x^5-269*x^4-22*x^3+167*x^2+90*x+33,-2*x^8+23*x^6+20*x^5-79*x^4-129*x^3+35*x^2+121*x+39,-x^8-5*x^7+17*x^6+62*x^5-66*x^4-229*x^3+5*x^2+170*x+52,3*x^8-x^7-39*x^6-3*x^5+145*x^4+67*x^3-99*x^2-74*x-14,-3*x^8+5*x^7+35*x^6-45*x^5-126*x^4+111*x^3+130*x^2-83*x-52,-x^7+x^6+14*x^5-8*x^4-51*x^3+9*x^2+22*x,-2*x^8+4*x^7+19*x^6-29*x^5-56*x^4+51*x^3+42*x^2-17*x-13,-2*x^8-2*x^7+27*x^6+33*x^5-94*x^4-153*x^3+20*x^2+131*x+50,-x^8+13*x^7-3*x^6-138*x^5+38*x^4+452*x^3+38*x^2-340*x-112,-x^7+x^6+11*x^5-6*x^4-38*x^3+4*x^2+36*x+13,x^8+5*x^7-20*x^6-58*x^5+89*x^4+211*x^3-57*x^2-155*x-26,-9*x^8-2*x^7+117*x^6+78*x^5-440*x^4-453*x^3+297*x^2+403*x+91,x^7-14*x^5+47*x^3+8*x^2-11*x-1,2*x^8-3*x^7-20*x^6+14*x^5+64*x^4+8*x^3-40*x^2-13*x,-5*x^7+7*x^6+54*x^5-42*x^4-180*x^3+21*x^2+134*x+36,4*x^8-8*x^7-46*x^6+74*x^5+167*x^4-187*x^3-179*x^2+115*x+64,-x^6+7*x^4+5*x^3-10*x^2-13*x,4*x^8-5*x^7-43*x^6+25*x^5+139*x^4+16*x^3-80*x^2-53*x-13,-4*x^8+5*x^7+44*x^6-30*x^5-141*x^4+8*x^3+72*x^2+47*x+26,-2*x^7-2*x^6+32*x^5+14*x^4-129*x^3-44*x^2+113*x+52,-2*x^8+3*x^7+21*x^6-23*x^5-62*x^4+40*x^3+29*x^2-12*x+4,5*x^8-4*x^7-56*x^6+8*x^5+189*x^4+90*x^3-121*x^2-117*x-26,-6*x^7+5*x^6+66*x^5-13*x^4-217*x^3-80*x^2+130*x+65,11*x^8-6*x^7-131*x^6+3*x^5+462*x^4+209*x^3-324*x^2-248*x-38,x^8+3*x^7-13*x^6-46*x^5+38*x^4+197*x^3+45*x^2-174*x-73,3*x^8-2*x^7-37*x^6+7*x^5+133*x^4+39*x^3-94*x^2-71*x-13,7*x^7-8*x^6-78*x^5+47*x^4+261*x^3-15*x^2-187*x-56,-3*x^7+4*x^6+37*x^5-21*x^4-137*x^3-14*x^2+93*x+26,2*x^8-10*x^7-13*x^6+96*x^5+23*x^4-273*x^3-38*x^2+168*x+39,5*x^8-3*x^7-59*x^6+2*x^5+207*x^4+98*x^3-139*x^2-114*x-26,5*x^7-4*x^6-60*x^5+19*x^4+215*x^3+29*x^2-167*x-65,9*x^8-19*x^7-95*x^6+167*x^5+314*x^4-402*x^3-302*x^2+234*x+104,-6*x^8+7*x^7+66*x^6-41*x^5-215*x^4+10*x^3+136*x^2+56*x+7,-4*x^8+2*x^7+49*x^6-2*x^5-176*x^4-63*x^3+125*x^2+73*x+13,-x^7+x^6+11*x^5-44*x^3-28*x^2+48*x+19,7*x^8-6*x^7-82*x^6+27*x^5+290*x^4+44*x^3-230*x^2-81*x+11,-x^8-7*x^7+23*x^6+81*x^5-112*x^4-284*x^3+81*x^2+195*x+49,5*x^8-4*x^7-57*x^6+12*x^5+200*x^4+66*x^3-158*x^2-101*x-13,3*x^8-14*x^7-23*x^6+141*x^5+53*x^4-421*x^3-78*x^2+287*x+90,-3*x^8+14*x^7+24*x^6-147*x^5-61*x^4+460*x^3+114*x^2-323*x-123,x^8+5*x^7-18*x^6-63*x^5+72*x^4+242*x^3-7*x^2-191*x-65,-3*x^8+4*x^7+33*x^6-22*x^5-110*x^4-4*x^3+71*x^2+37*x,-x^8+3*x^7+11*x^6-29*x^5-49*x^4+87*x^3+100*x^2-69*x-53,8*x^8-3*x^7-97*x^6-13*x^5+344*x^4+207*x^3-227*x^2-235*x-52,-3*x^8+3*x^7+35*x^6-16*x^5-121*x^4-8*x^3+82*x^2+26*x,-2*x^8-x^7+22*x^6+34*x^5-73*x^4-175*x^3+27*x^2+140*x+39,5*x^8-9*x^7-53*x^6+75*x^5+163*x^4-163*x^3-94*x^2+99*x+13,-3*x^8-2*x^7+43*x^6+33*x^5-171*x^4-158*x^3+129*x^2+141*x+28,-x^8+x^7+10*x^6-x^5-30*x^4-28*x^3+9*x^2+40*x+20,-3*x^8+3*x^7+33*x^6-8*x^5-117*x^4-50*x^3+96*x^2+75*x+13,2*x^8+4*x^7-29*x^6-64*x^5+123*x^4+271*x^3-97*x^2-207*x-42,x^8-6*x^7-9*x^6+62*x^5+33*x^4-187*x^3-72*x^2+131*x+52,x^8-6*x^7-6*x^6+65*x^5+2*x^4-213*x^3+2*x^2+175*x+45,-6*x^8+5*x^7+69*x^6-18*x^5-238*x^4-66*x^3+170*x^2+102*x+13,6*x^8-14*x^7-59*x^6+122*x^5+175*x^4-294*x^3-132*x^2+170*x+51,2*x^8+5*x^7-29*x^6-73*x^5+105*x^4+309*x^3+x^2-264*x-104,-2*x^8+13*x^7+9*x^6-132*x^5-x^4+409*x^3+52*x^2-291*x-104,11*x^8-8*x^7-128*x^6+21*x^5+443*x^4+161*x^3-301*x^2-220*x-39,-5*x^8+x^7+63*x^6+19*x^5-233*x^4-173*x^3+163*x^2+186*x+39,-x^8+x^7+10*x^6-5*x^5-26*x^4-2*x^3-2*x^2+10*x+13,-2*x^7+4*x^6+15*x^5-20*x^4-36*x^3+7*x^2+28*x+16,-2*x^8+3*x^7+20*x^6-18*x^5-61*x^4+19*x^3+37*x^2-15*x-13,x^7-5*x^6-x^5+34*x^4-22*x^3-61*x^2+26*x+28,-6*x^8-x^7+78*x^6+41*x^5-295*x^4-242*x^3+230*x^2+218*x+31,10*x^8-23*x^7-106*x^6+208*x^5+365*x^4-529*x^3-410*x^2+315*x+156,-x^8-2*x^7+14*x^6+35*x^5-55*x^4-158*x^3+19*x^2+134*x+39,2*x^8+x^7-26*x^6-26*x^5+98*x^4+137*x^3-61*x^2-124*x-37,4*x^8-4*x^7-51*x^6+28*x^5+195*x^4-23*x^3-183*x^2-22*x+26,-6*x^8+10*x^7+67*x^6-83*x^5-225*x^4+168*x^3+178*x^2-60*x-29,8*x^8-3*x^7-96*x^6-24*x^5+346*x^4+267*x^3-239*x^2-263*x-52,4*x^8-13*x^7-40*x^6+129*x^5+139*x^4-376*x^3-208*x^2+258*x+117,-7*x^8+84*x^6+54*x^5-295*x^4-354*x^3+153*x^2+331*x+94,-4*x^7+6*x^6+45*x^5-35*x^4-155*x^3+7*x^2+109*x+37,x^8+6*x^7-23*x^6-57*x^5+98*x^4+182*x^3-47*x^2-147*x-39,-x^8+8*x^7+4*x^6-84*x^5-x^4+268*x^3+48*x^2-198*x-84,-11*x^8+7*x^7+131*x^6-13*x^5-460*x^4-181*x^3+308*x^2+222*x+39,-x^7+17*x^5-6*x^4-69*x^3+17*x^2+60*x,3*x^7-2*x^6-36*x^5+11*x^4+122*x^3+12*x^2-74*x-26,-4*x^8+19*x^7+31*x^6-196*x^5-76*x^4+603*x^3+139*x^2-421*x-158,6*x^8-11*x^7-66*x^6+94*x^5+225*x^4-211*x^3-210*x^2+115*x+65,-3*x^8-5*x^7+47*x^6+68*x^5-198*x^4-277*x^3+151*x^2+211*x+46,-6*x^8+9*x^7+63*x^6-60*x^5-201*x^4+72*x^3+141*x^2-6*x-13,-2*x^7+2*x^6+23*x^5-8*x^4-78*x^3-23*x^2+50*x+26,x^8-14*x^6+60*x^4-80*x^2+16,-x^8+13*x^7-4*x^6-138*x^5+51*x^4+450*x^3-4*x^2-330*x-94,3*x^8-3*x^7-32*x^6+5*x^5+112*x^4+62*x^3-92*x^2-65*x,2*x^8-2*x^7-24*x^6+13*x^5+86*x^4-5*x^3-71*x^2-26*x,-7*x^8+x^7+86*x^6+34*x^5-306*x^4-271*x^3+181*x^2+280*x+82,2*x^8-4*x^7-22*x^6+35*x^5+80*x^4-86*x^3-100*x^2+57*x+52,7*x^8-11*x^7-74*x^6+73*x^5+246*x^4-91*x^3-202*x^2+14*x+26,4*x^8-16*x^7-30*x^6+150*x^5+67*x^4-417*x^3-81*x^2+262*x+71,-7*x^8+3*x^7+86*x^6+12*x^5-313*x^4-203*x^3+215*x^2+235*x+52,-x^8+9*x^7+5*x^6-98*x^5-8*x^4+310*x^3+64*x^2-192*x-79,-5*x^8+6*x^7+57*x^6-33*x^5-198*x^4-6*x^3+144*x^2+52*x,-6*x^8+13*x^7+62*x^6-113*x^5-208*x^4+282*x^3+232*x^2-203*x-117,-5*x^8+7*x^7+58*x^6-52*x^5-210*x^4+83*x^3+203*x^2-30*x-36,-2*x^8+27*x^6+8*x^5-103*x^4-63*x^3+79*x^2+68*x-7,-4*x^8+x^7+51*x^6+13*x^5-193*x^4-128*x^3+147*x^2+137*x+26,-2*x^6+3*x^5+20*x^4-23*x^3-60*x^2+41*x+45,-3*x^8+5*x^7+34*x^6-45*x^5-115*x^4+106*x^3+94*x^2-54*x-17,-3*x^7+2*x^6+39*x^5-10*x^4-151*x^3-23*x^2+141*x+65,13*x^8-9*x^7-153*x^6+22*x^5+536*x^4+193*x^3-377*x^2-244*x-39,-3*x^8+3*x^7+35*x^6-19*x^5-118*x^4+13*x^3+71*x^2-x-6,x^7-22*x^5+3*x^4+106*x^3+15*x^2-89*x-26,8*x^8-13*x^7-88*x^6+101*x^5+297*x^4-185*x^3-246*x^2+70*x+47,3*x^8-6*x^7-28*x^6+37*x^5+89*x^4-38*x^3-86*x^2-2*x+13,-x^8+2*x^7+10*x^6-12*x^5-38*x^4+10*x^3+50*x^2+14*x+1,-9*x^8+4*x^7+107*x^6+6*x^5-375*x^4-195*x^3+255*x^2+235*x+52,-12*x^7+10*x^6+141*x^5-41*x^4-503*x^3-95*x^2+396*x+148,-7*x^8+2*x^7+84*x^6+30*x^5-302*x^4-271*x^3+203*x^2+261*x+52,-2*x^8+8*x^7+18*x^6-78*x^5-64*x^4+233*x^3+129*x^2-187*x-101,-8*x^8+5*x^7+94*x^6-x^5-334*x^4-176*x^3+239*x^2+198*x+30,-x^8+4*x^7+12*x^6-44*x^5-56*x^4+141*x^3+117*x^2-98*x-65,x^8-14*x^6-x^5+50*x^4+13*x^3-21*x^2-8*x,5*x^8-10*x^7-52*x^6+85*x^5+165*x^4-191*x^3-135*x^2+95*x+39,4*x^8-11*x^7-35*x^6+92*x^5+91*x^4-217*x^3-52*x^2+127*x+26,-6*x^8+24*x^7+51*x^6-240*x^5-140*x^4+711*x^3+198*x^2-488*x-172,x^8-3*x^7-7*x^6+20*x^5+16*x^4-33*x^3-20*x^2+23*x+13,4*x^8-5*x^7-44*x^6+31*x^5+144*x^4-18*x^3-93*x^2-30*x-13,5*x^8+11*x^7-74*x^6-153*x^5+284*x^4+625*x^3-114*x^2-522*x-160,-x^8-x^7+17*x^6+10*x^5-72*x^4-40*x^3+58*x^2+26*x+4,-4*x^8+2*x^7+51*x^6-9*x^5-186*x^4-30*x^3+138*x^2+52*x,3*x^8-5*x^7-31*x^6+33*x^5+95*x^4-29*x^3-47*x^2-46*x-23,-x^8-2*x^7+14*x^6+28*x^5-54*x^4-106*x^3+32*x^2+63*x+13,3*x^8-7*x^7-28*x^6+53*x^5+83*x^4-98*x^3-67*x^2+28*x+13,3*x^8+5*x^7-47*x^6-68*x^5+190*x^4+286*x^3-107*x^2-239*x-65,4*x^8-51*x^6-22*x^5+190*x^4+148*x^3-139*x^2-135*x-25,-3*x^8+11*x^7+25*x^6-112*x^5-65*x^4+347*x^3+94*x^2-256*x-91,-3*x^8+4*x^7+35*x^6-31*x^5-126*x^4+53*x^3+124*x^2-17*x-39,x^8+x^7-15*x^6-8*x^5+53*x^4+26*x^3-17*x^2-24*x-13,-5*x^8+19*x^7+45*x^6-189*x^5-142*x^4+559*x^3+231*x^2-387*x-169,-9*x^8+6*x^7+109*x^6-20*x^5-394*x^4-99*x^3+311*x^2+141*x-4,x^8+2*x^7-19*x^6-19*x^5+85*x^4+64*x^3-75*x^2-36*x+7,x^8-9*x^7+88*x^5-23*x^4-268*x^3-12*x^2+186*x+52,1,10*x^8-x^7-127*x^6-47*x^5+469*x^4+366*x^3-318*x^2-359*x-78,2*x^8-21*x^7-2*x^6+222*x^5-28*x^4-716*x^3-104*x^2+519*x+182,7*x^8-2*x^7-86*x^6-20*x^5+309*x^4+208*x^3-201*x^2-196*x-39,2*x^8+x^7-27*x^6-22*x^5+103*x^4+110*x^3-64*x^2-87*x-36,3*x^8+3*x^7-39*x^6-53*x^5+133*x^4+240*x^3-22*x^2-180*x-65,-5*x^8+15*x^7+53*x^6-154*x^5-185*x^4+457*x^3+251*x^2-309*x-148,x^8+3*x^7-19*x^6-29*x^5+81*x^4+95*x^3-56*x^2-63*x-13,x^8-4*x^7-10*x^6+43*x^5+37*x^4-131*x^3-74*x^2+69*x+39,7*x^8+4*x^7-89*x^6-92*x^5+333*x^4+451*x^3-237*x^2-370*x-65,-x^8+12*x^7-2*x^6-129*x^5+45*x^4+415*x^3-27*x^2-280*x-55,-13*x^8+10*x^7+152*x^6-28*x^5-537*x^4-186*x^3+389*x^2+261*x+52,2*x^8-2*x^7-21*x^6+3*x^5+71*x^4+47*x^3-54*x^2-53*x-13,4*x^8-2*x^7-47*x^6+x^5+165*x^4+63*x^3-128*x^2-53*x+7,-4*x^8+26*x^7+23*x^6-274*x^5-40*x^4+876*x^3+185*x^2-643*x-247,-9*x^8+7*x^7+106*x^6-24*x^5-372*x^4-109*x^3+260*x^2+163*x+26,3*x^8-4*x^7-33*x^6+27*x^5+106*x^4-27*x^3-57*x^2-18*x-12,-4*x^8+3*x^7+49*x^6-16*x^5-171*x^4-20*x^3+103*x^2+56*x+21,x^8-14*x^6-4*x^5+58*x^4+38*x^3-58*x^2-76*x-25,5*x^8+2*x^7-67*x^6-46*x^5+254*x^4+243*x^3-178*x^2-217*x-52,-7*x^8+18*x^7+68*x^6-161*x^5-206*x^4+411*x^3+191*x^2-271*x-91,13*x^8-17*x^7-146*x^6+113*x^5+492*x^4-109*x^3-351*x^2-49*x+13,4*x^8-50*x^6-28*x^5+185*x^4+188*x^3-129*x^2-176*x-26,5*x^8-4*x^7-57*x^6+7*x^5+202*x^4+101*x^3-161*x^2-137*x-26,6*x^8-23*x^7-57*x^6+241*x^5+181*x^4-738*x^3-277*x^2+496*x+204,-2*x^8+12*x^7+10*x^6-118*x^5-9*x^4+355*x^3+54*x^2-248*x-88,2*x^7+x^6-31*x^5-6*x^4+114*x^3+30*x^2-57*x-22,-4*x^8+52*x^6+20*x^5-190*x^4-149*x^3+117*x^2+155*x+39,4*x^8-5*x^7-44*x^6+32*x^5+143*x^4-20*x^3-87*x^2-54*x-19,-2*x^8+2*x^7+26*x^6-10*x^5-96*x^4-21*x^3+53*x^2+46*x+26,-2*x^8+5*x^7+21*x^6-45*x^5-76*x^4+109*x^3+108*x^2-44*x-54,-9*x^8+6*x^7+108*x^6-15*x^5-390*x^4-132*x^3+307*x^2+186*x+26,-5*x^8+8*x^7+53*x^6-55*x^5-180*x^4+78*x^3+170*x^2-18*x-39,-x^8-x^7+10*x^6+24*x^5-30*x^4-112*x^3+3*x^2+93*x+34,-5*x^8+5*x^7+56*x^6-21*x^5-187*x^4-44*x^3+112*x^2+72*x+12,-5*x^7+8*x^6+52*x^5-48*x^4-171*x^3+30*x^2+124*x+39,x^8-10*x^7-5*x^6+111*x^5+14*x^4-374*x^3-97*x^2+298*x+117,2*x^8-4*x^7-22*x^6+37*x^5+84*x^4-104*x^3-125*x^2+80*x+52,2*x^8-5*x^7-17*x^6+37*x^5+45*x^4-71*x^3-35*x^2+31*x+13,-14*x^8+3*x^7+173*x^6+53*x^5-631*x^4-470*x^3+440*x^2+467*x+91,8*x^8-7*x^7-96*x^6+34*x^5+352*x^4+36*x^3-301*x^2-81*x+8,-13*x^7+14*x^6+147*x^5-67*x^4-511*x^3-67*x^2+393*x+156,x^8-5*x^7-4*x^6+45*x^5-7*x^4-124*x^3+8*x^2+78*x+42,-8*x^8+6*x^7+92*x^6-20*x^5-316*x^4-86*x^3+220*x^2+114*x+13,-4*x^8+4*x^7+46*x^6-23*x^5-156*x^4+4*x^3+109*x^2+13*x-13,4*x^7-3*x^6-55*x^5+26*x^4+208*x^3-26*x^2-150*x-39,-x^8+7*x^7+7*x^6-75*x^5-28*x^4+243*x^3+114*x^2-173*x-89,-4*x^8+2*x^7+45*x^6+12*x^5-150*x^4-143*x^3+67*x^2+134*x+39,x^8+3*x^7-18*x^6-34*x^5+73*x^4+127*x^3-27*x^2-101*x-34,-x^8+x^7+16*x^6-10*x^5-79*x^4+25*x^3+124*x^2-18*x-44,-3*x^8+16*x^7+21*x^6-168*x^5-42*x^4+526*x^3+90*x^2-366*x-104,-2*x^8-3*x^7+31*x^6+36*x^5-123*x^4-140*x^3+83*x^2+111*x+26,x^8-11*x^7-6*x^6+133*x^5+25*x^4-481*x^3-159*x^2+395*x+167,-4*x^8+x^7+49*x^6+12*x^5-177*x^4-110*x^3+125*x^2+74*x,8*x^8-21*x^7-78*x^6+190*x^5+235*x^4-479*x^3-212*x^2+260*x+99,10*x^8-14*x^7-108*x^6+84*x^5+365*x^4-53*x^3-290*x^2-50*x+13,3*x^8-17*x^7-21*x^6+181*x^5+52*x^4-582*x^3-158*x^2+431*x+169,x^8-5*x^7-9*x^6+52*x^5+32*x^4-158*x^3-70*x^2+105*x+52,-6*x^8+7*x^7+69*x^6-41*x^5-251*x^4+11*x^3+242*x^2+67*x-18,8*x^8-9*x^7-88*x^6+43*x^5+298*x^4+34*x^3-205*x^2-88*x-13,4*x^8+7*x^7-58*x^6-107*x^5+231*x^4+457*x^3-138*x^2-373*x-78,-11*x^8+2*x^7+138*x^6+44*x^5-504*x^4-380*x^3+333*x^2+379*x+83,x^8-5*x^7-6*x^6+44*x^5+20*x^4-127*x^3-64*x^2+107*x+37,x^8-14*x^6+47*x^4+8*x^3-11*x^2-x,7*x^8-10*x^7-78*x^6+70*x^5+260*x^4-83*x^3-175*x^2-23*x-13,3*x^8-2*x^7-40*x^6+12*x^5+154*x^4+14*x^3-129*x^2-44*x,2*x^8-13*x^7-10*x^6+133*x^5+4*x^4-411*x^3-40*x^2+295*x+103,-5*x^8+7*x^7+54*x^6-42*x^5-180*x^4+21*x^3+134*x^2+36*x,-8*x^8+13*x^7+87*x^6-95*x^5-306*x^4+153*x^3+313*x^2-22*x-65,6*x^7-6*x^6-73*x^5+29*x^4+271*x^3+41*x^2-218*x-78,4*x^8-8*x^7-45*x^6+73*x^5+164*x^4-184*x^3-196*x^2+104*x+78,-x^7+7*x^5+5*x^4-10*x^3-13*x^2,-x^8-12*x^7+23*x^6+150*x^5-97*x^4-554*x^3-31*x^2+419*x+139,5*x^8-x^7-63*x^6-19*x^5+222*x^4+180*x^3-103*x^2-201*x-70,2*x^8-11*x^7-18*x^6+124*x^5+59*x^4-406*x^3-127*x^2+274*x+91,-7*x^8+90*x^6+43*x^5-340*x^4-292*x^3+247*x^2+274*x+52,x^8-15*x^7+x^6+168*x^5-21*x^4-569*x^3-90*x^2+431*x+160,-2*x^8+18*x^7+8*x^6-202*x^5-x^4+680*x^3+119*x^2-504*x-182,-3*x^8+5*x^7+32*x^6-33*x^5-108*x^4+32*x^3+89*x^2+26*x,-3*x^8-x^7+37*x^6+30*x^5-134*x^4-153*x^3+88*x^2+128*x+26,5*x^8-20*x^7-47*x^6+212*x^5+147*x^4-657*x^3-237*x^2+458*x+199,7*x^8+x^7-90*x^6-49*x^5+325*x^4+304*x^3-183*x^2-294*x-79,-3*x^8-x^7+39*x^6+36*x^5-158*x^4-198*x^3+149*x^2+169*x+17,-6*x^8+5*x^7+66*x^6-13*x^5-217*x^4-80*x^3+130*x^2+65*x,6*x^8-12*x^7-65*x^6+106*x^5+215*x^4-250*x^3-185*x^2+131*x+54,15*x^8-4*x^7-183*x^6-42*x^5+656*x^4+433*x^3-448*x^2-432*x-91,14*x^7-17*x^6-153*x^5+100*x^4+511*x^3-55*x^2-369*x-65,6*x^8-2*x^7-76*x^6-8*x^5+284*x^4+136*x^3-224*x^2-135*x-13,-2*x^8-x^7+27*x^6+18*x^5-84*x^4-98*x^3-27*x^2+95*x+52,5*x^8-4*x^7-57*x^6+9*x^5+194*x^4+87*x^3-117*x^2-111*x-21,4*x^8-6*x^7-46*x^6+51*x^5+162*x^4-112*x^3-159*x^2+61*x+60,7*x^8-8*x^7-78*x^6+47*x^5+261*x^4-15*x^3-187*x^2-56*x,3*x^8+3*x^7-41*x^6-56*x^5+153*x^4+269*x^3-57*x^2-239*x-91,x^8-4*x^7-5*x^6+39*x^5+x^4-120*x^3-13*x^2+78*x+18,-3*x^8+4*x^7+33*x^6-24*x^5-116*x^4+17*x^3+111*x^2-x-18,-4*x^8+9*x^7+36*x^6-69*x^5-99*x^4+144*x^3+68*x^2-85*x-26,4*x^8-3*x^7-48*x^6+11*x^5+174*x^4+47*x^3-144*x^2-96*x-15,8*x^8-2*x^7-98*x^6-25*x^5+345*x^4+250*x^3-196*x^2-258*x-85,-3*x^7+4*x^6+27*x^5-14*x^4-80*x^3-29*x^2+69*x+36,5*x^8-4*x^7-60*x^6+19*x^5+215*x^4+29*x^3-167*x^2-65*x,3*x^8-6*x^7-31*x^6+48*x^5+99*x^4-92*x^3-78*x^2+13*x+9,18*x^7-17*x^6-210*x^5+91*x^4+733*x^3+40*x^2-546*x-169,-12*x^7+10*x^6+142*x^5-41*x^4-505*x^3-99*x^2+382*x+148,-11*x^8+139*x^6+61*x^5-512*x^4-410*x^3+356*x^2+379*x+78,-7*x^8+15*x^7+79*x^6-146*x^5-275*x^4+389*x^3+280*x^2-220*x-91,-8*x^8+7*x^7+92*x^6-30*x^5-315*x^4-61*x^3+217*x^2+111*x+30,9*x^7-9*x^6-100*x^5+47*x^4+333*x^3+15*x^2-229*x-78,-x^8+x^7+11*x^6-44*x^4-28*x^3+48*x^2+19*x,-3*x^8+9*x^7+26*x^6-77*x^5-74*x^4+186*x^3+83*x^2-95*x-45,5*x^8-x^7-61*x^6-20*x^5+215*x^4+177*x^3-121*x^2-199*x-65,-2*x^8-10*x^7+33*x^6+130*x^5-119*x^4-498*x^3-58*x^2+389*x+169,-10*x^8+12*x^7+111*x^6-66*x^5-371*x^4-10*x^3+245*x^2+111*x+13,-x^8-16*x^7+29*x^6+187*x^5-128*x^4-667*x^3-28*x^2+528*x+192,9*x^8-6*x^7-108*x^6+24*x^5+385*x^4+71*x^3-301*x^2-107*x+13,-4*x^8+14*x^7+33*x^6-126*x^5-95*x^4+340*x^3+143*x^2-233*x-93,-5*x^8+10*x^7+51*x^6-85*x^5-160*x^4+195*x^3+137*x^2-96*x-39,-4*x^8+22*x^7+28*x^6-229*x^5-65*x^4+716*x^3+167*x^2-509*x-190,7*x^8-21*x^7-67*x^6+197*x^5+205*x^4-523*x^3-219*x^2+299*x+117,5*x^8-16*x^7-48*x^6+155*x^5+150*x^4-436*x^3-177*x^2+279*x+93,8*x^8-7*x^7-93*x^6+26*x^5+329*x^4+84*x^3-241*x^2-127*x-13,-4*x^8+3*x^7+50*x^6-14*x^5-181*x^4-30*x^3+124*x^2+49*x+13,-5*x^8+6*x^7+60*x^6-38*x^5-221*x^4+18*x^3+195*x^2+44*x-35,-x^8+13*x^6+9*x^5-55*x^4-66*x^3+61*x^2+93*x+26,x^6-3*x^5+9*x^3-19*x^2+9*x+13,8*x^8-21*x^7-78*x^6+189*x^5+244*x^4-490*x^3-259*x^2+325*x+138,9*x^8-x^7-111*x^6-42*x^5+397*x^4+325*x^3-253*x^2-322*x-78,-7*x^8+3*x^7+86*x^6+3*x^5-304*x^4-142*x^3+191*x^2+155*x+33,-6*x^8+2*x^7+74*x^6+17*x^5-269*x^4-191*x^3+176*x^2+186*x+39,5*x^8-11*x^7-50*x^6+90*x^5+166*x^4-205*x^3-191*x^2+135*x+91,-x^8-14*x^7+30*x^6+155*x^5-141*x^4-531*x^3+44*x^2+409*x+118,4*x^8-11*x^7-38*x^6+99*x^5+102*x^4-238*x^3-45*x^2+103*x+28,6*x^8+2*x^7-75*x^6-67*x^5+272*x^4+361*x^3-151*x^2-297*x-65,6*x^8-75*x^6-36*x^5+272*x^4+244*x^3-182*x^2-227*x-36,-7*x^8+8*x^7+79*x^6-47*x^5-269*x^4+6*x^3+195*x^2+92*x+13,x^8-3*x^7-10*x^6+30*x^5+25*x^4-78*x^3+32*x-5,-2*x^8-x^7+29*x^6+16*x^5-115*x^4-82*x^3+90*x^2+82*x+13,4*x^8+12*x^7-65*x^6-153*x^5+260*x^4+589*x^3-105*x^2-451*x-139,-4*x^8+54*x^6+15*x^5-203*x^4-117*x^3+143*x^2+107*x+13,4*x^8-2*x^7-44*x^6-9*x^5+140*x^4+139*x^3-53*x^2-194*x-81,10*x^8-7*x^7-124*x^6+31*x^5+445*x^4+85*x^3-307*x^2-166*x-26,-5*x^8+2*x^7+62*x^6+11*x^5-236*x^4-150*x^3+212*x^2+153*x-13,-3*x^8-4*x^7+40*x^6+61*x^5-144*x^4-259*x^3+59*x^2+206*x+65,12*x^7-9*x^6-146*x^5+48*x^4+515*x^3+41*x^2-360*x-123,-3*x^8+5*x^7+35*x^6-44*x^5-126*x^4+93*x^3+125*x^2-17*x-13,6*x^8-13*x^7-56*x^6+97*x^5+155*x^4-170*x^3-80*x^2+41*x+15,-11*x^8+9*x^7+130*x^6-40*x^5-460*x^4-74*x^3+352*x^2+145*x-2,-6*x^8+23*x^7+54*x^6-230*x^5-176*x^4+684*x^3+318*x^2-468*x-221,4*x^8+7*x^7-58*x^6-101*x^5+228*x^4+414*x^3-130*x^2-321*x-78,x^8-4*x^7-8*x^6+40*x^5+18*x^4-125*x^3-22*x^2+118*x+52,7*x^8-7*x^7-83*x^6+39*x^5+305*x^4+5*x^3-278*x^2-58*x+26,4*x^8-x^7-51*x^6-10*x^5+200*x^4+103*x^3-202*x^2-99*x+28,7*x^8-13*x^7-72*x^6+91*x^5+235*x^4-130*x^3-191*x^2+20*x+26,-4*x^8+9*x^7+38*x^6-70*x^5-118*x^4+148*x^3+114*x^2-88*x-39,19*x^8-11*x^7-227*x^6+13*x^5+800*x^4+336*x^3-546*x^2-419*x-75,-3*x^8+6*x^7+33*x^6-57*x^5-101*x^4+147*x^3+46*x^2-88*x-5,-14*x^8+8*x^7+169*x^6-3*x^5-608*x^4-292*x^3+436*x^2+349*x+65,-7*x^8+20*x^7+66*x^6-185*x^5-196*x^4+496*x^3+193*x^2-311*x-103,-5*x^7+5*x^6+52*x^5-19*x^4-167*x^3-42*x^2+127*x+65,3*x^7-4*x^6-26*x^5+14*x^4+63*x^3+23*x^2-3*x,-2*x^8+4*x^7+15*x^6-20*x^5-36*x^4+7*x^3+28*x^2+16*x,-6*x^8+12*x^7+58*x^6-89*x^5-165*x^4+150*x^3+77*x^2-24*x+14,-5*x^8+8*x^7+58*x^6-69*x^5-211*x^4+151*x^3+229*x^2-63*x-68,-x^8-2*x^7+14*x^6+30*x^5-54*x^4-129*x^3+28*x^2+124*x+26,x^8-5*x^7-x^6+34*x^5-22*x^4-61*x^3+26*x^2+28*x,-4*x^8+9*x^7+44*x^6-87*x^5-150*x^4+228*x^3+159*x^2-117*x-52,-13*x^8+14*x^7+145*x^6-79*x^5-482*x^4+324*x^2+147*x+26,-5*x^8+12*x^7+48*x^6-101*x^5-140*x^4+229*x^3+102*x^2-112*x-43,7*x^8+4*x^7-92*x^6-95*x^5+341*x^4+500*x^3-185*x^2-464*x-130,2*x^7-4*x^6-21*x^5+26*x^4+67*x^3-24*x^2-33*x+2,x^8-13*x^7+3*x^6+143*x^5-39*x^4-484*x^3-46*x^2+363*x+117,9*x^8-21*x^7-93*x^6+186*x^5+318*x^4-478*x^3-372*x^2+343*x+173,7*x^8-4*x^7-86*x^6+6*x^5+311*x^4+121*x^3-224*x^2-161*x-26,-5*x^8+13*x^7+53*x^6-127*x^5-179*x^4+356*x^3+203*x^2-235*x-109,x^7+4*x^6-31*x^5-27*x^4+147*x^3+80*x^2-92*x-52,2*x^8-25*x^6-16*x^5+98*x^4+108*x^3-87*x^2-126*x-34,-8*x^8+x^7+97*x^6+51*x^5-354*x^4-368*x^3+240*x^2+343*x+78,10*x^8-9*x^7-119*x^6+47*x^5+424*x^4+34*x^3-327*x^2-104*x,13*x^8-170*x^6-70*x^5+643*x^4+493*x^3-469*x^2-470*x-74,-5*x^8+2*x^7+59*x^6+13*x^5-213*x^4-150*x^3+166*x^2+133*x+15,-x^8+4*x^7+9*x^6-45*x^5-28*x^4+156*x^3+58*x^2-131*x-52,-5*x^8+x^7+64*x^6+13*x^5-236*x^4-134*x^3+159*x^2+141*x+63,-13*x^8+9*x^7+156*x^6-29*x^5-559*x^4-150*x^3+425*x^2+198*x+13,-2*x^8+17*x^7+11*x^6-193*x^5-18*x^4+651*x^3+130*x^2-493*x-195,-4*x^8+6*x^7+45*x^6-35*x^5-155*x^4+7*x^3+109*x^2+37*x,2*x^8-16*x^7-15*x^6+184*x^5+48*x^4-618*x^3-174*x^2+443*x+175,3*x^8+4*x^7-33*x^6-82*x^5+107*x^4+370*x^3-15*x^2-307*x-91,-2*x^8+7*x^7+15*x^6-60*x^5-31*x^4+148*x^3+17*x^2-91*x-13,5*x^8-7*x^7-54*x^6+45*x^5+181*x^4-43*x^3-148*x^2-22*x+13,x^8-7*x^7-4*x^6+69*x^5-198*x^3-31*x^2+91*x+29,-12*x^8+6*x^7+145*x^6+4*x^5-516*x^4-259*x^3+352*x^2+289*x+55,-6*x^8+6*x^7+72*x^6-36*x^5-259*x^4+6*x^3+207*x^2+42*x-13,-x^8+17*x^6-6*x^5-69*x^4+17*x^3+60*x^2,-12*x^8+10*x^7+141*x^6-39*x^5-509*x^4-107*x^3+423*x^2+168*x+15,-x^8+10*x^7+2*x^6-105*x^5+10*x^4+338*x^3+46*x^2-250*x-100]];
E[307,3] = [x^2+x-3, [1,x,-x-2,-x+1,3,-x-3,-x+2,-3,3*x+4,3*x,-x+3,1,2*x-1,3*x-3,-3*x-6,-x-2,x+6,x+9,3*x+2,-3*x+3,-x-1,4*x-3,0,3*x+6,4,-3*x+6,-4*x-11,-4*x+5,-3*x-3,-3*x-9,-3*x-4,-x+3,-2*x-3,5*x+3,-3*x+6,2*x-5,2*x+5,-x+9,-x-4,-9,-9,-3,x+5,-5*x+6,9*x+12,0,2*x,3*x+7,-5*x,4*x,-7*x-15,5*x-7,-x+9,-7*x-12,-3*x+9,3*x-6,-5*x-13,-9,-9,3,-1,-x-9,5*x-1,6*x+1,6*x-3,-x-6,5,-4*x+3,0,9*x-9,x,-9*x-12,-7,3*x+6,-4*x-8,4*x-7,-6*x+9,-3*x-3,6*x-1,-3*x-6,6*x+22,-9*x,-x,-x+2,3*x+18,4*x+3,6*x+15,3*x-9,-3,3*x+27,7*x-8,0,7*x+17,-2*x+6,9*x+6,-2*x-3,-5*x+5,5*x-15,8*x+3,-4*x+4,2*x-12,-8*x-21,x-7,-6*x+3,-3*x-3,10*x-3,-4*x+6,3*x+1,2,12*x-9,-7*x-16,-x-1,15,-8*x-15,0,-3*x+6,-x+14,-9*x,-3*x+9,9*x+18,-7*x+1,-x,9*x+18,-2*x+5,-3,-6*x+15,-7,-3*x+12,-6*x-13,-9*x+18,6*x+12,-x+3,7*x-5,5*x,-12*x-33,-3*x-18,-7*x-6,0,x-7,-12*x+15,-2*x-6,-x+3,9*x-9,-7*x-17,-9*x-9,-7*x,5*x+15,-x-1,3*x+15,-4*x-12,-6*x-10,-9*x-6,19*x+33,15*x-18,-9*x-12,2*x-1,-4*x-10,-7*x+18,-8*x-15,-3*x+9,0,16*x+18,-2*x-19,9*x-9,-6*x-9,x-3,5*x-9,3*x+3,-8*x,15*x+9,9*x+35,-3*x+2,-2*x-12,9*x+18,-4*x+8,-2*x-3,9*x+18,-3*x,6*x-9,6*x-15,6*x+2,-15*x+21,x+2,0,6*x+15,10*x+21,-2*x+15,4*x-6,-x-10,-3*x+27,-2*x+12,-7*x-20,3*x-13,10*x-15,-3*x-12,-10*x+15,6*x+3,-5*x+24,-11*x-10,-12,-5*x-10,-14*x+6,-6*x+3,x+6,-27,-8*x+3,0,-x-4,10*x-3,-9,2*x-19,-11*x+12,-x-3,10*x-12,3*x+15,12*x+33,-5*x+1,2*x,7*x+14,-15*x+18,9*x,-9*x-21,10*x+5,-6*x+9,12*x+16,15*x,-6*x,3*x+2,-5*x+2,0,-3*x,9*x+9,-12,15*x-3,6*x,9*x-9,-5*x-16,12*x-9,x-6,9*x+21,12*x-1,8*x-21,-16*x-29,x-1,-15*x,9*x+27,-5*x+16,9*x+12,x+3,-3*x,8*x+15,11*x-16,0,-7*x,-21*x-45,3*x-11,-2*x-12,-7*x-18,x+4,15*x-21,-12*x-39,6*x+18,3*x+18,6*x+9,-3*x+27,-12*x+21,3*x+6,-5*x+5,-4*x+3,-21*x-36,7*x+8,-7*x-15,x-5,x-21,-4*x+12,0,x+5,-8*x+3,-15*x-43,9*x-18,-5*x+6,-4*x-6,5,2*x-3,-15*x-39,-18*x+27,9*x-18,8*x+3,11*x+22,-27,5,7*x-7,18,10*x+15,-27,-6*x-15,-5*x-21,12*x+9,0,4,-2*x+7,-4*x-18,10*x+18,-5*x-13,-3,14*x+57,1,-21*x+27,6*x+11,-3*x-27,-15*x-12,3*x+12,-13*x-7,-6*x-12,15*x-3,13*x-19,4*x+15,-7*x-24,-9*x,18*x+3,-2*x,0,17*x+21,-10*x+4,8*x-4,-17*x-6,-2*x-4,27,6*x-6,-3*x-18,-9*x-1,-2*x+3,17*x+38,-14*x+15,15,2*x+5,-9*x-13,8*x-24,-15*x-30,-12*x+9,-8*x-3,26*x+27,-8*x+1,-3*x-15,0,-10*x-6,12*x+12,-3*x-3,-2*x+5,12*x-12,-10*x-13,-7*x+12,-12,9*x+27,3*x,3*x-3,-6*x-9,-15*x+18,6*x+15,-27*x-36,3*x+12,-4*x+18,6*x+19,22*x-29,-21,x+3,10*x+5,0,-27*x-36,9*x+18,-12*x+21,-3*x-4,-12*x-4,17*x-6,3*x+6,-6*x,3*x-15,-9*x-3,-3*x+2,12*x-21,7*x+14,14*x-6,3*x+15,-9*x-15,-18*x+27,-16*x+9,16*x+29,-15*x+20,13*x-6,-9*x-9,0,15*x,-18*x-42,-3*x+18,18*x-3,13*x-21,-8*x-1,x-33,-2*x-11,-4*x-8,-9,-5*x-15,x-14,16*x-18,18*x+66,9*x-18,3*x+9,21*x+45,23,-27*x,13*x+33,9*x-10,9*x-18,0,-3*x,9*x-9,6*x+11,-13*x+30,-5*x+6,-3*x+6,-10*x+11,-21*x+6,2*x+18,3*x-27,4*x+24,-2*x-3,x-2,-14*x+18,-9,12*x+9,10*x-18,15*x+34,-3*x+11,6*x-15,18*x+45,-2*x+2,0,7*x+21,-6*x-19,9*x-27,-5*x-45,-9*x+27,-8*x,2*x+5,-9,-5*x+30,-18*x-39,17*x-16,11*x-3,4*x+36,9*x-27,-15*x+15,16*x+38,6*x-18,21*x-24,15*x+39,10*x-4,7*x-15,-31*x-78,0,-5*x+9,3*x-9,4*x-7,6*x+15,21*x+51,-12*x,2*x+18,-16*x+17,-5*x+10,-6*x+18,14*x+32,27,-x+12,-11*x-15,12*x+8,-15*x+18,26*x+27,-7*x+3,27,-6*x-9,4*x+7,-13*x+36,0,-15*x+22,-15*x+15,-13*x-48,-6*x-7,3,21*x+44,15*x-45,-21*x-9,-9,-18*x-27,21*x-15,24*x+9,7*x+17,3*x-3,2*x+3,17*x+8,3*x-3]];
E[307,4] = [x^10+7*x^9+10*x^8-28*x^7-73*x^6+16*x^5+128*x^4+26*x^3-69*x^2-18*x-1, [1,x,x^9+6*x^8+5*x^7-29*x^6-48*x^5+37*x^4+91*x^3-7*x^2-52*x-6,x^2-2,-x^9-6*x^8-4*x^7+34*x^6+50*x^5-57*x^4-111*x^3+22*x^2+69*x+7,-x^9-5*x^8-x^7+25*x^6+21*x^5-37*x^4-33*x^3+17*x^2+12*x+1,-x^9-8*x^8-16*x^7+22*x^6+95*x^5+21*x^4-143*x^3-56*x^2+71*x+9,x^3-4*x,x^8+5*x^7-27*x^5-14*x^4+47*x^3+17*x^2-29*x-2,x^9+6*x^8+6*x^7-23*x^6-41*x^5+17*x^4+48*x^3-11*x-1,2*x^8+10*x^7+3*x^6-46*x^5-42*x^4+58*x^3+50*x^2-23*x-6,-3*x^8-13*x^7+6*x^6+75*x^5+21*x^4-139*x^3-43*x^2+87*x+11,x^9+7*x^8+8*x^7-35*x^6-67*x^5+49*x^4+129*x^3-12*x^2-75*x-12,-x^9-6*x^8-6*x^7+22*x^6+37*x^5-15*x^4-30*x^3+2*x^2-9*x-1,-2*x^9-12*x^8-10*x^7+57*x^6+92*x^5-73*x^4-165*x^3+22*x^2+88*x+4,x^4-6*x^2+4,-x^9-7*x^8-10*x^7+24*x^6+58*x^5-10*x^4-68*x^3-6*x^2+20*x-2,x^9+5*x^8-27*x^6-14*x^5+47*x^4+17*x^3-29*x^2-2*x,2*x^8+12*x^7+10*x^6-51*x^5-71*x^4+57*x^3+76*x^2-23*x-6,x^9+8*x^8+13*x^7-36*x^6-99*x^5+34*x^4+196*x^3+14*x^2-121*x-13,-x^8-4*x^7+6*x^6+33*x^5-8*x^4-85*x^3-2*x^2+67*x,2*x^9+10*x^8+3*x^7-46*x^6-42*x^5+58*x^4+50*x^3-23*x^2-6*x,2*x^9+12*x^8+10*x^7-56*x^6-88*x^5+72*x^4+150*x^3-25*x^2-75*x-7,-x^9-3*x^8+8*x^7+25*x^6-21*x^5-65*x^4+23*x^3+53*x^2-13*x-2,2*x^9+11*x^8+x^7-80*x^6-84*x^5+174*x^4+246*x^3-95*x^2-175*x-16,-2*x^8-7*x^7+6*x^6+33*x^5+x^4-38*x^3-6*x^2+6*x+1,3*x^6+10*x^5-8*x^4-42*x^3-4*x^2+40*x+8,3*x^9+20*x^8+26*x^7-80*x^6-189*x^5+56*x^4+314*x^3+34*x^2-161*x-19,3*x^9+19*x^8+23*x^7-67*x^6-146*x^5+25*x^4+173*x^3+35*x^2-41*x-8,2*x^9+10*x^8+x^7-54*x^6-41*x^5+91*x^4+74*x^3-50*x^2-32*x-2,-2*x^9-11*x^8-6*x^7+50*x^6+55*x^5-63*x^4-61*x^3+28*x^2+2*x+1,x^5-8*x^3+12*x,-2*x^9-13*x^8-16*x^7+52*x^6+118*x^5-35*x^4-193*x^3-26*x^2+96*x+15,-4*x^7-15*x^6+6*x^5+60*x^4+20*x^3-49*x^2-20*x-1,2*x^9+15*x^8+26*x^7-50*x^6-166*x^5+2*x^4+266*x^3+54*x^2-140*x-7,-2*x^9-12*x^8-9*x^7+59*x^6+85*x^5-83*x^4-149*x^3+33*x^2+76*x+5,-2*x^9-14*x^8-21*x^7+48*x^6+131*x^5-11*x^4-180*x^3-35*x^2+70*x+3,2*x^9+12*x^8+10*x^7-51*x^6-71*x^5+57*x^4+76*x^3-23*x^2-6*x,-2*x^9-12*x^8-10*x^7+59*x^6+100*x^5-76*x^4-201*x^3+7*x^2+122*x+21,-x^9-9*x^8-20*x^7+20*x^6+100*x^5+34*x^4-108*x^3-52*x^2+27*x+3,x^9+6*x^8+5*x^7-31*x^6-53*x^5+47*x^4+112*x^3-21*x^2-68*x-3,-x^9-4*x^8+6*x^7+33*x^6-8*x^5-85*x^4-2*x^3+67*x^2,-3*x^9-20*x^8-26*x^7+75*x^6+170*x^5-47*x^4-234*x^3-18*x^2+86*x+9,-4*x^9-21*x^8-10*x^7+98*x^6+118*x^5-122*x^4-191*x^3+32*x^2+82*x+14,-x^9-11*x^8-32*x^7+16*x^6+171*x^5+87*x^4-251*x^3-126*x^2+130*x+12,-2*x^9-10*x^8+58*x^6+40*x^5-106*x^4-77*x^3+63*x^2+29*x+2,-x^9-8*x^8-14*x^7+37*x^6+118*x^5-29*x^4-266*x^3-40*x^2+189*x+24,4*x^9+24*x^8+23*x^7-106*x^6-199*x^5+109*x^4+357*x^3+4*x^2-194*x-23,3*x^9+21*x^8+31*x^7-75*x^6-200*x^5+26*x^4+292*x^3+52*x^2-127*x-9,-3*x^9-19*x^8-24*x^7+62*x^6+142*x^5-10*x^4-147*x^3-37*x^2+20*x+2,-3*x^9-21*x^8-29*x^7+89*x^6+219*x^5-74*x^4-396*x^3-32*x^2+224*x+25,-4*x^9-21*x^8-10*x^7+103*x^6+135*x^5-136*x^4-264*x^3+30*x^2+151*x+24,-2*x^9-14*x^8-20*x^7+54*x^6+136*x^5-35*x^4-214*x^3-18*x^2+98*x+3,3*x^7+10*x^6-8*x^5-42*x^4-4*x^3+40*x^2+8*x,3*x^9+17*x^8+10*x^7-87*x^6-115*x^5+129*x^4+217*x^3-47*x^2-115*x-15,x^9+8*x^8+16*x^7-14*x^6-66*x^5-40*x^4+16*x^3+42*x^2+53*x+5,-3*x^8-14*x^7+x^6+72*x^5+40*x^4-113*x^3-58*x^2+60*x+12,-2*x^9-7*x^8+17*x^7+73*x^6-23*x^5-211*x^4-43*x^3+166*x^2+46*x+3,x^9+8*x^8+20*x^7-2*x^6-85*x^5-100*x^4+50*x^3+121*x^2+18*x-10,5*x^8+22*x^7-9*x^6-125*x^5-36*x^4+228*x^3+62*x^2-142*x-6,4*x^9+23*x^8+17*x^7-102*x^6-144*x^5+118*x^4+203*x^3-38*x^2-70*x-3,3*x^9+14*x^8-6*x^7-91*x^6-31*x^5+195*x^4+80*x^3-136*x^2-35*x-2,-5*x^9-28*x^8-11*x^7+162*x^6+182*x^5-291*x^4-394*x^3+153*x^2+232*x+19,x^6-10*x^4+24*x^2-8,-7*x^6-25*x^5+16*x^4+104*x^3+14*x^2-91*x-17,x^9+4*x^8-4*x^7-28*x^6-3*x^5+63*x^4+26*x^3-42*x^2-21*x-2,4*x^8+24*x^7+25*x^6-83*x^5-152*x^4+30*x^3+130*x^2+31*x+13,2*x^9+10*x^8+5*x^7-42*x^6-56*x^5+40*x^4+87*x^3-8*x^2-41*x+4,4*x^8+19*x^7-2*x^6-102*x^5-51*x^4+169*x^3+69*x^2-95*x-6,x^9+6*x^8+6*x^7-20*x^6-30*x^5+10*x^4+2*x^3-2*x^2+29*x+2,-x^9-8*x^8-15*x^7+27*x^6+96*x^5-154*x^3-33*x^2+73*x+5,x^8+3*x^7-7*x^6-23*x^5+13*x^4+51*x^3-4*x^2-27*x-2,2*x^9+10*x^8-2*x^7-71*x^6-55*x^5+154*x^4+171*x^3-86*x^2-129*x-14,-x^8-8*x^7-15*x^6+21*x^5+76*x^4+17*x^3-68*x^2-33*x-2,4*x^9+28*x^8+39*x^7-114*x^6-280*x^5+89*x^4+478*x^3+30*x^2-254*x-16,-2*x^9-14*x^8-19*x^7+55*x^6+127*x^5-38*x^4-189*x^3-20*x^2+82*x+14,x^8+3*x^7-15*x^6-51*x^5+35*x^4+178*x^3+6*x^2-158*x-24,2*x^9+10*x^8+3*x^7-46*x^6-44*x^5+55*x^4+59*x^3-16*x^2-15*x-2,-4*x^9-27*x^8-33*x^7+117*x^6+248*x^5-116*x^4-418*x^3-5*x^2+207*x+28,-4*x^9-26*x^8-34*x^7+99*x^6+248*x^5-48*x^4-418*x^3-70*x^2+227*x+25,-x^9-5*x^8-2*x^7+19*x^6+14*x^5-20*x^4+5*x^3+22*x^2-21*x-12,-x^9-5*x^8-3*x^7+20*x^6+31*x^5-16*x^4-47*x^3+x^2+15*x+1,x^8-25*x^6-43*x^5+73*x^4+174*x^3-20*x^2-150*x-27,3*x^9+18*x^8+13*x^7-93*x^6-135*x^5+142*x^4+263*x^3-65*x^2-152*x-1,8*x^9+54*x^8+73*x^7-199*x^6-478*x^5+103*x^4+687*x^3+88*x^2-295*x-30,x^9+4*x^8-9*x^7-49*x^6+x^5+150*x^4+60*x^3-121*x^2-45*x-3,-3*x^9-19*x^8-22*x^7+74*x^6+158*x^5-44*x^4-237*x^3-39*x^2+104*x+17,3*x^9+10*x^8-20*x^7-82*x^6+26*x^5+205*x^4+36*x^3-148*x^2-46*x-4,-x^9-11*x^8-29*x^7+29*x^6+173*x^5+39*x^4-293*x^3-99*x^2+163*x+21,-4*x^9-22*x^8-12*x^7+98*x^6+103*x^5-123*x^4-100*x^3+61*x^2-6*x-1,6*x^9+39*x^8+49*x^7-144*x^6-327*x^5+67*x^4+453*x^3+89*x^2-172*x-32,-4*x^8-18*x^7+6*x^6+102*x^5+35*x^4-185*x^3-59*x^2+116*x+12,2*x^9+13*x^8+14*x^7-56*x^6-105*x^5+53*x^4+164*x^3+3*x^2-75*x-8,-x^9-4*x^8+9*x^7+45*x^6-13*x^5-138*x^4-14*x^3+120*x^2+6*x-1,2*x^9+9*x^8-11*x^7-86*x^6-21*x^5+229*x^4+136*x^3-155*x^2-102*x-13,-2*x^9-11*x^8-10*x^7+43*x^6+87*x^5-25*x^4-146*x^3-24*x^2+75*x+8,2*x^9+13*x^8+13*x^7-69*x^6-133*x^5+99*x^4+299*x^3-13*x^2-198*x-28,x^8+9*x^7+19*x^6-22*x^5-92*x^4-26*x^3+80*x^2+45*x+3,-2*x^8-12*x^7-12*x^6+44*x^5+76*x^4-26*x^3-71*x^2-9*x-2,-2*x^9-16*x^8-24*x^7+83*x^6+206*x^5-111*x^4-451*x^3+3*x^2+298*x+29,3*x^8+13*x^7-8*x^6-82*x^5-13*x^4+173*x^3+31*x^2-124*x-5,x^8+5*x^7-26*x^5-12*x^4+46*x^3+17*x^2-29*x-3,x^9+2*x^8-18*x^7-41*x^6+67*x^5+151*x^4-96*x^3-150*x^2+71*x+20,7*x^9+34*x^8+5*x^7-169*x^6-138*x^5+246*x^4+210*x^3-113*x^2-60*x-6,7*x^9+51*x^8+77*x^7-210*x^6-564*x^5+156*x^4+1028*x^3+98*x^2-593*x-57,-2*x^7-10*x^6-3*x^5+42*x^4+34*x^3-40*x^2-33*x-2,x^9+11*x^8+30*x^7-20*x^6-155*x^5-67*x^4+197*x^3+100*x^2-65*x-14,3*x^8+10*x^7-14*x^6-62*x^5+12*x^4+124*x^3+16*x^2-80*x-16,-4*x^9-26*x^8-35*x^7+87*x^6+219*x^5-11*x^4-276*x^3-85*x^2+80*x+25,-4*x^9-20*x^8-3*x^7+104*x^6+81*x^5-167*x^4-125*x^3+92*x^2+39*x+3,-6*x^9-37*x^8-34*x^7+178*x^6+313*x^5-228*x^4-600*x^3+47*x^2+348*x+33,-5*x^9-34*x^8-38*x^7+167*x^6+322*x^5-224*x^4-612*x^3+54*x^2+345*x+39,x^9+7*x^8+10*x^7-21*x^6-46*x^5+4*x^4+12*x^3-4*x^2+37*x+4,-3*x^9-14*x^8+x^7+72*x^6+40*x^5-113*x^4-58*x^3+60*x^2+12*x,-5*x^9-34*x^8-49*x^7+115*x^6+306*x^5-22*x^4-421*x^3-90*x^2+177*x+13,x^9-x^8-29*x^7-35*x^6+113*x^5+163*x^4-128*x^3-162*x^2+49*x+14,x^8+7*x^7+8*x^6-32*x^5-54*x^4+44*x^3+66*x^2-23*x-5,x^9+10*x^8+26*x^7-12*x^6-116*x^5-78*x^4+95*x^3+87*x^2+8*x+1,x^9+12*x^8+31*x^7-51*x^6-234*x^5+20*x^4+525*x^3+91*x^2-369*x-41,x^9+2*x^8-11*x^7-17*x^6+46*x^5+46*x^4-86*x^3-42*x^2+58*x+4,x^9+3*x^8-5*x^7-5*x^6+46*x^5-5*x^4-167*x^3-21*x^2+151*x+16,-5*x^9-23*x^8+10*x^7+148*x^6+54*x^5-309*x^4-142*x^3+206*x^2+69*x+4,6*x^9+37*x^8+36*x^7-167*x^6-305*x^5+185*x^4+537*x^3-19*x^2-283*x-27,-3*x^9-14*x^8+5*x^7+88*x^6+37*x^5-178*x^4-92*x^3+116*x^2+48*x+1,x^9+8*x^8+23*x^7+18*x^6-57*x^5-162*x^4-102*x^3+133*x^2+157*x,7*x^9+39*x^8+22*x^7-183*x^6-211*x^5+246*x^4+283*x^3-113*x^2-71*x-5,3*x^9+16*x^8+6*x^7-80*x^6-77*x^5+125*x^4+117*x^3-77*x^2-47*x+5,x^7-12*x^5+40*x^3-32*x,-3*x^9-18*x^8-12*x^7+96*x^6+131*x^5-153*x^4-253*x^3+73*x^2+139*x+7,-7*x^7-25*x^6+16*x^5+104*x^4+14*x^3-91*x^2-17*x,-x^9-5*x^8+4*x^7+49*x^6+28*x^5-132*x^4-117*x^3+89*x^2+86*x+13,x^9+12*x^8+32*x^7-34*x^6-189*x^5-32*x^4+318*x^3+100*x^2-176*x-29,-2*x^9-8*x^8+11*x^7+58*x^6-31*x^5-145*x^4+76*x^3+128*x^2-80*x-18,4*x^9+24*x^8+25*x^7-83*x^6-152*x^5+30*x^4+130*x^3+31*x^2+13*x,-2*x^9-13*x^8-14*x^7+60*x^6+118*x^5-66*x^4-223*x^3-5*x^2+130*x+18,-4*x^9-15*x^8+22*x^7+120*x^6-4*x^5-289*x^4-100*x^3+195*x^2+80*x+4,x^9+9*x^8+23*x^7-17*x^6-136*x^5-64*x^4+228*x^3+121*x^2-134*x-30,4*x^9+19*x^8-2*x^7-102*x^6-51*x^5+169*x^4+69*x^3-95*x^2-6*x,-6*x^9-37*x^8-40*x^7+139*x^6+266*x^5-87*x^4-316*x^3-33*x^2+66*x+24,-5*x^9-34*x^8-44*x^7+143*x^6+326*x^5-130*x^4-560*x^3-10*x^2+300*x+15,-3*x^9-17*x^8-12*x^7+78*x^6+114*x^5-95*x^4-193*x^3+33*x^2+99*x-8,-x^9-5*x^8-x^7+23*x^6+16*x^5-26*x^4-7*x^3+4*x^2-13*x-1,-5*x^9-37*x^8-60*x^7+128*x^6+376*x^5-24*x^4-551*x^3-133*x^2+237*x+43,5*x^9+27*x^8+11*x^7-141*x^6-157*x^5+217*x^4+294*x^3-93*x^2-154*x-10,-2*x^9-12*x^8-16*x^7+21*x^6+56*x^5+57*x^4+59*x^3-49*x^2-113*x-16,-4*x^9-22*x^8-15*x^7+91*x^6+122*x^5-85*x^4-138*x^3+9*x^2+22*x+2,5*x^9+35*x^8+45*x^7-162*x^6-363*x^5+184*x^4+703*x^3-4*x^2-424*x-37,3*x^9+20*x^8+27*x^7-75*x^6-186*x^5+39*x^4+292*x^3+37*x^2-142*x-6,-x^9-14*x^8-43*x^7+30*x^6+247*x^5+83*x^4-412*x^3-159*x^2+233*x+22,-x^8-2*x^7+12*x^6+25*x^5-34*x^4-74*x^3+22*x^2+56*x+4,-x^9-13*x^8-37*x^7+39*x^6+234*x^5+34*x^4-439*x^3-120*x^2+278*x+34,-4*x^9-23*x^8-21*x^7+83*x^6+136*x^5-47*x^4-120*x^3-10*x^2-10*x-2,-x^9-6*x^8-2*x^7+50*x^6+77*x^5-110*x^4-252*x^3+43*x^2+197*x+14,x^9+3*x^8-15*x^7-51*x^6+35*x^5+178*x^4+6*x^3-158*x^2-24*x,3*x^9+13*x^8-7*x^7-72*x^6+3*x^5+134*x^4-49*x^3-100*x^2+70*x+8,7*x^8+30*x^7-16*x^6-177*x^5-45*x^4+334*x^3+109*x^2-210*x-40,2*x^9+12*x^8+8*x^7-65*x^6-88*x^5+108*x^4+164*x^3-63*x^2-75*x+8,x^9+7*x^8+5*x^7-44*x^6-52*x^5+94*x^4+99*x^3-69*x^2-44*x-4,-9*x^9-56*x^8-52*x^7+271*x^6+477*x^5-348*x^4-910*x^3+73*x^2+524*x+51,4*x^9+24*x^8+27*x^7-84*x^6-184*x^5+26*x^4+250*x^3+55*x^2-101*x-10,-x^9-6*x^8+2*x^7+68*x^6+75*x^5-192*x^4-291*x^3+128*x^2+237*x+15,2*x^9+8*x^8-9*x^7-59*x^6-4*x^5+133*x^4+48*x^3-90*x^2-30*x-1,5*x^9+31*x^8+38*x^7-102*x^6-235*x^5+7*x^4+257*x^3+101*x^2-38*x-28,-5*x^8-18*x^7+20*x^6+106*x^5-13*x^4-197*x^3-12*x^2+119*x+5,x^9+3*x^8-8*x^7-24*x^6+25*x^5+64*x^4-41*x^3-63*x^2+29*x+14,x^9-25*x^7-43*x^6+73*x^5+174*x^4-20*x^3-150*x^2-27*x,5*x^9+33*x^8+32*x^7-172*x^6-295*x^5+260*x^4+572*x^3-89*x^2-310*x-47,-x^9-9*x^8-21*x^7+18*x^6+110*x^5+49*x^4-139*x^3-79*x^2+53*x+3,-x^9-13*x^8-34*x^7+56*x^6+250*x^5-26*x^4-549*x^3-98*x^2+383*x+55,-2*x^9-7*x^8+25*x^7+106*x^6-25*x^5-337*x^4-120*x^3+257*x^2+114*x+8,-2*x^8-15*x^7-27*x^6+39*x^5+137*x^4+27*x^3-119*x^2-51*x-5,3*x^9+21*x^8+31*x^7-76*x^6-206*x^5+26*x^4+321*x^3+60*x^2-157*x-17,-7*x^9-44*x^8-52*x^7+162*x^6+353*x^5-78*x^4-493*x^3-87*x^2+204*x+20,2*x^9+8*x^8-10*x^7-61*x^6+4*x^5+147*x^4+39*x^3-103*x^2-37*x-3,-7*x^9-48*x^8-64*x^7+201*x^6+476*x^5-179*x^4-842*x^3-19*x^2+474*x+31,-3*x^9-8*x^8+22*x^7+49*x^6-79*x^5-104*x^4+156*x^3+97*x^2-114*x-25,-7*x^9-50*x^8-76*x^7+191*x^6+529*x^5-97*x^4-896*x^3-138*x^2+475*x+59,-4*x^9-19*x^8+x^7+100*x^6+55*x^5-165*x^4-73*x^3+94*x^2+3*x-1,x^9+6*x^8-3*x^7-68*x^6-64*x^5+190*x^4+256*x^3-123*x^2-212*x-19,8*x^9+50*x^8+50*x^7-221*x^6-401*x^5+238*x^4+667*x^3-30*x^2-333*x-28,2*x^9+19*x^8+47*x^7-47*x^6-284*x^5-86*x^4+476*x^3+200*x^2-268*x-44,-3*x^9-11*x^8+24*x^7+111*x^6-29*x^5-315*x^4-67*x^3+242*x^2+76*x+6,x^9+11*x^8+28*x^7-39*x^6-189*x^5+x^4+372*x^3+68*x^2-238*x-24,2*x^8+6*x^7-14*x^6-45*x^5+27*x^4+95*x^3-10*x^2-46*x-4,9*x^9+60*x^8+76*x^7-245*x^6-555*x^5+196*x^4+920*x^3+57*x^2-474*x-43,-x^9-6*x^8+41*x^6+21*x^5-92*x^4-49*x^3+63*x^2+28*x+2,x^9+4*x^8-4*x^7-20*x^6+27*x^5+46*x^4-101*x^3-62*x^2+95*x+22,5*x^9+35*x^8+45*x^7-160*x^6-358*x^5+172*x^4+678*x^3+17*x^2-397*x-49,-3*x^9-25*x^8-51*x^7+71*x^6+296*x^5+48*x^4-422*x^3-146*x^2+177*x+29,-5*x^9-31*x^8-30*x^7+125*x^6+197*x^5-120*x^4-207*x^3+36*x^2+23*x+2,3*x^9+19*x^8+18*x^7-94*x^6-166*x^5+126*x^4+323*x^3-22*x^2-183*x-27,-5*x^9-38*x^8-59*x^7+153*x^6+405*x^5-108*x^4-686*x^3-71*x^2+360*x+44,10*x^8+47*x^7-9*x^6-267*x^5-122*x^4+492*x^3+201*x^2-310*x-38,-x^9-7*x^8-13*x^7+13*x^6+67*x^5+43*x^4-65*x^3-60*x^2+8*x+2,-x^9-12*x^8-31*x^7+40*x^6+195*x^5+11*x^4-352*x^3-89*x^2+207*x+35,-5*x^9-33*x^8-43*x^7+128*x^6+308*x^5-78*x^4-504*x^3-59*x^2+257*x+18,x^9+12*x^8+34*x^7-25*x^6-188*x^5-67*x^4+292*x^3+123*x^2-162*x-30,-2*x^9-12*x^8-12*x^7+44*x^6+76*x^5-26*x^4-71*x^3-9*x^2-2*x,5*x^9+29*x^8+16*x^7-160*x^6-198*x^5+280*x^4+392*x^3-163*x^2-217*x-11,4*x^9+34*x^8+75*x^7-64*x^6-363*x^5-175*x^4+349*x^3+234*x^2-47*x-6,9*x^9+58*x^8+61*x^7-272*x^6-523*x^5+323*x^4+990*x^3-27*x^2-573*x-67,3*x^9+13*x^8-8*x^7-82*x^6-13*x^5+173*x^4+31*x^3-124*x^2-5*x,2*x^9+10*x^8-5*x^7-84*x^6-58*x^5+205*x^4+231*x^3-119*x^2-205*x-29,7*x^9+47*x^8+58*x^7-204*x^6-450*x^5+194*x^4+809*x^3+35*x^2-451*x-50,-4*x^9-29*x^8-47*x^7+109*x^6+336*x^5-40*x^4-614*x^3-109*x^2+367*x+34,-5*x^9-28*x^8-13*x^7+140*x^6+135*x^5-224*x^4-176*x^3+140*x^2+38*x+1,5*x^9+28*x^8+14*x^7-148*x^6-184*x^5+224*x^4+369*x^3-77*x^2-211*x-17,-7*x^9-23*x^8+47*x^7+167*x^6-136*x^5-414*x^4+233*x^3+363*x^2-182*x-41,-x^9-6*x^8-8*x^7+25*x^6+79*x^5-9*x^4-191*x^3-45*x^2+145*x+26,2*x^9+7*x^8-14*x^7-53*x^6+44*x^5+132*x^4-84*x^3-110*x^2+69*x+7,-x^9-7*x^8-11*x^7+18*x^6+50*x^5+13*x^4-4*x^3-15*x^2-68*x-6,4*x^9+26*x^8+30*x^7-111*x^6-230*x^5+104*x^4+388*x^3+3*x^2-198*x-6,-3*x^9-21*x^8-26*x^7+101*x^6+216*x^5-128*x^4-429*x^3+20*x^2+262*x+23,4*x^9+20*x^8+8*x^7-82*x^6-83*x^5+69*x^4+74*x^3+4*x^2+4*x+1,6*x^9+43*x^8+69*x^7-135*x^6-403*x^5-7*x^4+515*x^3+132*x^2-191*x-13,3*x^9+10*x^8-20*x^7-82*x^6+28*x^5+208*x^4+24*x^3-160*x^2-32*x,-5*x^9-25*x^8+2*x^7+156*x^6+109*x^5-309*x^4-271*x^3+181*x^2+175*x+16,2*x^9+5*x^8-25*x^7-73*x^6+53*x^5+236*x^4+19*x^3-196*x^2-47*x-4,x^9+9*x^8+20*x^7-22*x^6-108*x^5-31*x^4+140*x^3+57*x^2-54*x+3,2*x^9+3*x^8-28*x^7-37*x^6+127*x^5+129*x^4-238*x^3-143*x^2+161*x+26,-6*x^9-36*x^8-25*x^7+191*x^6+272*x^5-297*x^4-536*x^3+104*x^2+295*x+45,5*x^9+26*x^8+10*x^7-125*x^6-132*x^5+168*x^4+203*x^3-66*x^2-75*x-6,-3*x^9-17*x^8-3*x^7+117*x^6+120*x^5-240*x^4-328*x^3+107*x^2+233*x+39,-x^9-4*x^8-5*x^7-15*x^6-12*x^5+108*x^4+152*x^3-84*x^2-157*x-15,7*x^9+54*x^8+103*x^7-146*x^6-591*x^5-129*x^4+812*x^3+312*x^2-359*x-32,7*x^7+27*x^6-12*x^5-116*x^4-30*x^3+106*x^2+22*x+1,3*x^9+19*x^8+23*x^7-73*x^6-170*x^5+34*x^4+275*x^3+64*x^2-126*x-22,7*x^9+37*x^8+16*x^7-181*x^6-209*x^5+246*x^4+364*x^3-79*x^2-174*x-27,4*x^8+23*x^7+19*x^6-96*x^5-145*x^4+101*x^3+172*x^2-33*x-20,x^9+x^8-25*x^7-59*x^6+58*x^5+219*x^4+40*x^3-168*x^2-77*x-5,-2*x^9-11*x^8-3*x^7+71*x^6+83*x^5-137*x^4-221*x^3+55*x^2+156*x+33,-4*x^9-25*x^8-41*x^7+40*x^6+193*x^5+166*x^4-102*x^3-214*x^2-60*x-5,-2*x^9-18*x^8-38*x^7+64*x^6+253*x^5-10*x^4-464*x^3-77*x^2+272*x+20,x^9+7*x^8+8*x^7-32*x^6-54*x^5+44*x^4+66*x^3-23*x^2-5*x,2*x^9+13*x^8+11*x^7-84*x^6-152*x^5+157*x^4+398*x^3-66*x^2-283*x-9,x^9-24*x^7-39*x^6+76*x^5+167*x^4-39*x^3-165*x^2-17*x+21,x^9+6*x^8+8*x^7-17*x^6-53*x^5-19*x^4+74*x^3+61*x^2-32*x-24,5*x^9+21*x^8-23*x^7-161*x^6+4*x^5+397*x^4+65*x^3-300*x^2-23*x+1,-2*x^9-13*x^8-13*x^7+67*x^6+125*x^5-95*x^4-259*x^3+20*x^2+145*x+24,-5*x^9-31*x^8-33*x^7+137*x^6+280*x^5-142*x^4-524*x^3+3*x^2+306*x+13,-4*x^9-20*x^8+6*x^7+155*x^6+125*x^5-355*x^4-422*x^3+208*x^2+318*x+33,-4*x^9-15*x^8+23*x^7+119*x^6-21*x^5-295*x^4-47*x^3+220*x^2+34*x+1,-4*x^9-31*x^8-55*x^7+107*x^6+354*x^5-14*x^4-568*x^3-117*x^2+281*x+28,4*x^9+14*x^8-26*x^7-107*x^6+59*x^5+262*x^4-70*x^3-200*x^2+54*x+1,-11*x^9-75*x^8-97*x^7+314*x^6+713*x^5-276*x^4-1210*x^3-47*x^2+637*x+54,-5*x^9-24*x^8+x^7+133*x^6+89*x^5-231*x^4-175*x^3+131*x^2+81*x+6,-10*x^9-60*x^8-56*x^7+253*x^6+437*x^5-240*x^4-646*x^3-x^2+261*x+43,x^9+7*x^8+16*x^7-68*x^5-98*x^4+34*x^3+113*x^2+17*x+1,-6*x^9-38*x^8-39*x^7+178*x^6+343*x^5-204*x^4-651*x^3-x^2+374*x+58,x^9+13*x^8+46*x^7+16*x^6-178*x^5-230*x^4+107*x^3+226*x^2+18*x+1,-x^9-3*x^8+10*x^7+21*x^6-70*x^5-79*x^4+208*x^3+133*x^2-185*x-37,8*x^8+35*x^7-24*x^6-230*x^5-31*x^4+493*x^3+106*x^2-343*x-31,-2*x^9-17*x^8-37*x^7+37*x^6+192*x^5+74*x^4-223*x^3-123*x^2+61*x+10,-5*x^9-24*x^8+4*x^7+142*x^6+77*x^5-267*x^4-155*x^3+160*x^2+59*x+3,6*x^9+43*x^8+60*x^7-189*x^6-458*x^5+185*x^4+848*x^3+18*x^2-491*x-29,x^8-14*x^6+60*x^4-80*x^2+16,8*x^9+52*x^8+59*x^7-225*x^6-453*x^5+222*x^4+750*x^3+13*x^2-357*x-57,3*x^9+18*x^8+12*x^7-88*x^6-105*x^5+131*x^4+151*x^3-68*x^2-47*x-3,8*x^9+59*x^8+96*x^7-213*x^6-640*x^5+61*x^4+1049*x^3+204*x^2-539*x-53,-7*x^8-25*x^7+30*x^6+154*x^5-18*x^4-299*x^3-45*x^2+182*x+34,-2*x^9-18*x^8-46*x^7+16*x^6+201*x^5+160*x^4-140*x^3-170*x^2-37*x-4,2*x^9+14*x^8+21*x^7-45*x^6-116*x^5+11*x^4+115*x^3+17*x^2-5*x-1,8*x^9+55*x^8+78*x^7-203*x^6-525*x^5+80*x^4+807*x^3+170*x^2-379*x-60,3*x^9+14*x^8+2*x^7-60*x^6-42*x^5+64*x^4+22*x^3-23*x^2+31*x+5,9*x^9+60*x^8+68*x^7-291*x^6-596*x^5+365*x^4+1193*x^3-38*x^2-724*x-66,6*x^9+31*x^8+2*x^7-177*x^6-113*x^5+332*x^4+180*x^3-218*x^2-54*x-2,-2*x^9-12*x^8-7*x^7+70*x^6+93*x^5-126*x^4-208*x^3+72*x^2+135*x-3,-4*x^9-23*x^8-19*x^7+90*x^6+132*x^5-78*x^4-133*x^3+29*x^2+10*x-22,-7*x^9-44*x^8-41*x^7+226*x^6+411*x^5-317*x^4-880*x^3+56*x^2+573*x+73,x^9+6*x^8+4*x^7-28*x^6-34*x^5+33*x^4+47*x^3-8*x^2-18*x-2,4*x^9+17*x^8-8*x^7-77*x^6+38*x^5+123*x^4-225*x^3-123*x^2+254*x+38,9*x^9+42*x^8-2*x^7-212*x^6-113*x^5+332*x^4+125*x^3-180*x^2+14*x-12,-8*x^9-53*x^8-69*x^7+205*x^6+490*x^5-115*x^4-783*x^3-130*x^2+378*x+64,2*x^9+13*x^8+11*x^7-63*x^6-80*x^5+100*x^4+95*x^3-65*x^2-12*x+1,-4*x^9-28*x^8-39*x^7+110*x^6+268*x^5-71*x^4-419*x^3-52*x^2+188*x+25,-9*x^9-50*x^8-28*x^7+245*x^6+309*x^5-341*x^4-537*x^3+132*x^2+262*x+16,-2*x^9-8*x^8+17*x^7+94*x^6+x^5-287*x^4-137*x^3+238*x^2+122*x-3,5*x^9+20*x^8-29*x^7-172*x^6+9*x^5+452*x^4+123*x^3-348*x^2-84*x-6,-x^9+x^8+29*x^7+33*x^6-113*x^5-146*x^4+121*x^3+129*x^2-33*x-3,-x^9-6*x^8-9*x^7+x^6+10*x^5+60*x^4+116*x^3-41*x^2-133*x-9,-3*x^9-24*x^8-49*x^7+57*x^6+270*x^5+99*x^4-352*x^3-210*x^2+143*x+44,4*x^9+18*x^8-6*x^7-105*x^6-47*x^5+191*x^4+111*x^3-108*x^2-62*x-3,2*x^9+6*x^8-20*x^7-54*x^6+88*x^5+168*x^4-189*x^3-179*x^2+151*x+19,4*x^9+25*x^8+25*x^7-111*x^6-202*x^5+121*x^4+338*x^3-16*x^2-165*x-11,-4*x^9-22*x^8-12*x^7+109*x^6+143*x^5-147*x^4-267*x^3+38*x^2+143*x+22,-2*x^9-10*x^8-12*x^7+11*x^6+56*x^5+89*x^4-3*x^3-108*x^2-47*x-5,-11*x^9-67*x^8-53*x^7+341*x^6+522*x^5-505*x^4-990*x^3+200*x^2+540*x+49,-8*x^9-41*x^8-7*x^7+222*x^6+183*x^5-372*x^4-325*x^3+199*x^2+134*x+9,3*x^9+13*x^8-25*x^7-159*x^6-30*x^5+477*x^4+314*x^3-350*x^2-266*x-23,2*x^9+4*x^8-35*x^7-90*x^6+89*x^5+315*x^4+3*x^3-251*x^2-52*x-2,-3*x^9-17*x^8-8*x^7+92*x^6+107*x^5-147*x^4-215*x^3+49*x^2+122*x+32,2*x^9+5*x^8-17*x^7-28*x^6+89*x^5+66*x^4-229*x^3-82*x^2+188*x+24,-2*x^9-17*x^8-39*x^7+29*x^6+196*x^5+112*x^4-220*x^3-172*x^2+74*x+20,-5*x^8-22*x^7+2*x^6+104*x^5+63*x^4-134*x^3-79*x^2+53*x+5,6*x^9+40*x^8+43*x^7-212*x^6-430*x^5+294*x^4+961*x^3-22*x^2-635*x-68,-x^9-x^8+25*x^7+63*x^6-51*x^5-244*x^4-75*x^3+201*x^2+114*x+7,5*x^9+33*x^8+44*x^7-119*x^6-294*x^5+39*x^4+425*x^3+102*x^2-177*x-33,-7*x^9-33*x^8+2*x^7+174*x^6+99*x^5-284*x^4-133*x^3+164*x^2+4*x-1,-x^9-6*x^8-x^7+44*x^6+41*x^5-102*x^4-113*x^3+70*x^2+82*x+13,-9*x^9-58*x^8-66*x^7+253*x^6+526*x^5-252*x^4-934*x^3-4*x^2+512*x+32,3*x^9+20*x^8+25*x^7-89*x^6-205*x^5+89*x^4+394*x^3+6*x^2-221*x-12,-6*x^9-27*x^8+11*x^7+161*x^6+50*x^5-311*x^4-94*x^3+209*x^2+16*x-1,7*x^9+52*x^8+84*x^7-199*x^6-583*x^5+99*x^4+1016*x^3+149*x^2-563*x-56,9*x^9+47*x^8+9*x^7-266*x^6-237*x^5+468*x^4+472*x^3-246*x^2-238*x-32,-12*x^9-73*x^8-68*x^7+319*x^6+545*x^5-341*x^4-858*x^3+55*x^2+394*x+35,x^9+8*x^8+22*x^7+4*x^6-94*x^5-124*x^4+69*x^3+128*x^2-4*x-1,-1,-4*x^9-27*x^8-29*x^7+138*x^6+264*x^5-192*x^4-540*x^3+33*x^2+334*x+49,3*x^9+24*x^8+42*x^7-99*x^6-305*x^5+70*x^4+587*x^3+73*x^2-358*x-54,-8*x^9-37*x^8+12*x^7+222*x^6+86*x^5-433*x^4-178*x^3+277*x^2+62*x+3,-7*x^9-42*x^8-42*x^7+166*x^6+313*x^5-115*x^4-455*x^3-63*x^2+196*x+44,3*x^9+10*x^8-22*x^7-85*x^6+43*x^5+224*x^4-9*x^3-178*x^2-10*x+4,-x^9-5*x^8-4*x^7+14*x^6+27*x^5+5*x^4-28*x^3+4*x^2+24*x-28,-2*x^9-12*x^8-9*x^7+58*x^6+76*x^5-92*x^4-115*x^3+63*x^2+44*x+2,14*x^9+84*x^8+62*x^7-435*x^6-652*x^5+648*x^4+1287*x^3-233*x^2-740*x-56,8*x^9+49*x^8+50*x^7-213*x^6-418*x^5+203*x^4+741*x^3+35*x^2-400*x-55,-4*x^9-27*x^8-36*x^7+106*x^6+259*x^5-57*x^4-425*x^3-83*x^2+214*x+21,7*x^9+38*x^8+19*x^7-180*x^6-204*x^5+242*x^4+307*x^3-97*x^2-111*x-9,-2*x^9-10*x^8+8*x^7+99*x^6+63*x^5-265*x^4-277*x^3+172*x^2+233*x+35,4*x^9+39*x^8+96*x^7-90*x^6-534*x^5-166*x^4+787*x^3+315*x^2-392*x-46,x^9-2*x^8-35*x^7-34*x^6+159*x^5+186*x^4-235*x^3-212*x^2+130*x+27,x^9+12*x^8+40*x^7+2*x^6-176*x^5-163*x^4+154*x^3+168*x^2-3*x-1,6*x^9+33*x^8+22*x^7-127*x^6-139*x^5+116*x^4+27*x^3-67*x^2+126*x+24,-4*x^9-19*x^8+x^7+104*x^6+73*x^5-168*x^4-152*x^3+64*x^2+77*x+26,3*x^9+20*x^8+37*x^7-18*x^6-136*x^5-171*x^4-45*x^3+162*x^2+172*x+28,-4*x^9-12*x^8+38*x^7+130*x^6-73*x^5-383*x^4-29*x^3+307*x^2+62*x+5,7*x^9+55*x^8+101*x^7-187*x^6-656*x^5+2*x^4+1098*x^3+272*x^2-592*x-83,-3*x^9-8*x^8+26*x^7+66*x^6-75*x^5-165*x^4+82*x^3+117*x^2-25*x-2,3*x^9+18*x^8+13*x^7-95*x^6-143*x^5+147*x^4+305*x^3-64*x^2-213*x+8,-4*x^9-18*x^8+4*x^7+98*x^6+48*x^5-169*x^4-89*x^3+98*x^2+32*x+1,-3*x^9-17*x^8-14*x^7+53*x^6+53*x^5-24*x^4+97*x^3+37*x^2-180*x-31,-7*x^9-37*x^8-15*x^7+196*x^6+244*x^5-294*x^4-524*x^3+82*x^2+318*x+55,-x^9-9*x^8-15*x^7+61*x^6+167*x^5-107*x^4-455*x^3+12*x^2+351*x+27,-2*x^9-18*x^8-32*x^7+70*x^6+180*x^5-68*x^4-219*x^3+35*x^2+43*x+5,-10*x^9-79*x^8-153*x^7+225*x^6+899*x^5+146*x^4-1302*x^3-432*x^2+613*x+70,-8*x^9-47*x^8-36*x^7+223*x^6+335*x^5-295*x^4-579*x^3+114*x^2+289*x+1,-3*x^9-15*x^8+87*x^6+53*x^5-175*x^4-88*x^3+138*x^2+16*x-7,-6*x^9-24*x^8+28*x^7+177*x^6-10*x^5-421*x^4-72*x^3+314*x^2+37*x-1,x^9+4*x^8-5*x^7-27*x^6+15*x^5+65*x^4-39*x^3-56*x^2+42*x+2,-9*x^9-63*x^8-96*x^7+227*x^6+651*x^5-70*x^4-1065*x^3-200*x^2+562*x+58,5*x^9+21*x^8-18*x^7-149*x^6-28*x^5+337*x^4+139*x^3-233*x^2-93*x-10,-2*x^9-15*x^8-27*x^7+39*x^6+137*x^5+27*x^4-119*x^3-51*x^2-5*x,-3*x^9-18*x^8-13*x^7+99*x^6+151*x^5-163*x^4-317*x^3+81*x^2+180*x-2,-2*x^9-7*x^8+26*x^7+111*x^6-24*x^5-363*x^4-138*x^3+292*x^2+127*x+9,-4*x^9-35*x^8-71*x^7+130*x^6+484*x^5-38*x^4-899*x^3-150*x^2+542*x+48,5*x^9+18*x^8-34*x^7-158*x^6+34*x^5+403*x^4+95*x^3-279*x^2-106*x-7,8*x^9+47*x^8+35*x^7-227*x^6-337*x^5+303*x^4+596*x^3-90*x^2-300*x-43,8*x^8+39*x^7+2*x^6-201*x^5-129*x^4+319*x^3+179*x^2-175*x-32,3*x^9+23*x^8+40*x^7-67*x^6-212*x^5-17*x^4+219*x^3+57*x^2-29*x+8,x^9+6*x^8+5*x^7-35*x^6-67*x^5+54*x^4+163*x^3-9*x^2-95*x-7,x^9+9*x^8+17*x^7-50*x^6-161*x^5+61*x^4+409*x^3+43*x^2-311*x-54,7*x^9+32*x^8+5*x^7-134*x^6-108*x^5+130*x^4+103*x^3-25*x^2+13*x+5,-5*x^9-33*x^8-46*x^7+124*x^6+344*x^5-34*x^4-620*x^3-165*x^2+360*x+61,-x^9-6*x^8-5*x^7+18*x^6+15*x^5+44*x^3-8*x^2-67*x-7,x^9+11*x^8+24*x^7-61*x^6-211*x^5+73*x^4+514*x^3+38*x^2-372*x-32,11*x^9+63*x^8+46*x^7-295*x^6-447*x^5+361*x^4+784*x^3-75*x^2-399*x-46,8*x^9+52*x^8+60*x^7-228*x^6-479*x^5+229*x^4+860*x^3-3*x^2-481*x-19,-x^9-13*x^8-40*x^7+9*x^6+174*x^5+128*x^4-149*x^3-143*x^2-x+1,6*x^9+49*x^8+97*x^7-156*x^6-615*x^5-41*x^4+1031*x^3+277*x^2-569*x-75,2*x^9+14*x^8+27*x^7-13*x^6-96*x^5-111*x^4-38*x^3+97*x^2+128*x+10,3*x^9+9*x^8-34*x^7-108*x^6+98*x^5+342*x^4-102*x^3-302*x^2+70*x+2,5*x^9+27*x^8+9*x^7-138*x^6-118*x^5+220*x^4+148*x^3-130*x^2-8*x+2,-3*x^9-23*x^8-36*x^7+92*x^6+244*x^5-64*x^4-409*x^3-35*x^2+218*x+11,-2*x^9-24*x^8-71*x^7+40*x^6+387*x^5+183*x^4-586*x^3-309*x^2+296*x+61,-6*x^9-34*x^8-15*x^7+191*x^6+213*x^5-337*x^4-421*x^3+186*x^2+221*x+10,4*x^9+18*x^8-11*x^7-116*x^6-15*x^5+244*x^4+42*x^3-169*x^2-6*x+1,x^9+4*x^8-12*x^7-71*x^6-38*x^5+217*x^4+280*x^3-123*x^2-274*x-32,2*x^9+14*x^8+22*x^7-57*x^6-177*x^5+25*x^4+360*x^3+72*x^2-236*x-24,3*x^9+23*x^8+40*x^7-83*x^6-269*x^5+20*x^4+464*x^3+95*x^2-266*x-21,-3*x^9-14*x^8+7*x^7+102*x^6+52*x^5-232*x^4-177*x^3+147*x^2+119*x+9,16*x^9+112*x^8+166*x^7-407*x^6-1103*x^5+153*x^4+1713*x^3+304*x^2-814*x-82,-3*x^9-16*x^8-15*x^7+60*x^6+134*x^5-27*x^4-239*x^3-47*x^2+134*x+15,6*x^9+45*x^8+75*x^7-145*x^6-434*x^5+7*x^4+543*x^3+123*x^2-166*x-22,-3*x^9-14*x^8+8*x^7+100*x^6+30*x^5-229*x^4-88*x^3+164*x^2+40*x+1,-9*x^9-70*x^8-120*x^7+270*x^6+832*x^5-136*x^4-1494*x^3-220*x^2+863*x+93,2*x^9+3*x^8-38*x^7-83*x^6+118*x^5+314*x^4-85*x^3-292*x^2+29*x+7,-7*x^9-54*x^8-105*x^7+132*x^6+574*x^5+186*x^4-705*x^3-369*x^2+229*x+48,-4*x^9-21*x^8-13*x^7+77*x^6+96*x^5-38*x^4-68*x^3-30*x^2-25*x-3,-5*x^9-28*x^8-29*x^7+77*x^6+150*x^5+32*x^4-43*x^3-63*x^2-91*x-30,2*x^8+7*x^7+4*x^6+2*x^5-25*x^4-106*x^3-12*x^2+116*x+21,4*x^9+34*x^8+69*x^7-114*x^6-446*x^5-9*x^4+768*x^3+181*x^2-428*x-51,-2*x^9-12*x^8-10*x^7+53*x^6+78*x^5-61*x^4-100*x^3+24*x^2+27*x+3,-7*x^9-48*x^8-62*x^7+211*x^6+486*x^5-202*x^4-910*x^3-64*x^2+539*x+79,x^9+13*x^8+33*x^7-46*x^6-202*x^5+4*x^4+351*x^3+63*x^2-196*x-21,4*x^9+21*x^8+3*x^7-122*x^6-99*x^5+222*x^4+192*x^3-115*x^2-88*x-24,10*x^9+47*x^8-9*x^7-267*x^6-122*x^5+492*x^4+201*x^3-310*x^2-38*x,7*x^9+36*x^8+11*x^7-159*x^6-102*x^5+210*x^4-26*x^3-143*x^2+174*x+16,-4*x^9-29*x^8-41*x^7+132*x^6+325*x^5-135*x^4-632*x^3-35*x^2+380*x+55,x^9+6*x^8-2*x^7-63*x^6-64*x^5+163*x^4+245*x^3-75*x^2-201*x-46,-5*x^9-21*x^8+12*x^7+122*x^6+27*x^5-224*x^4-63*x^3+138*x^2+17*x-1,-3*x^9-17*x^8-3*x^7+131*x^6+162*x^5-290*x^4-501*x^3+139*x^2+369*x+33,2*x^9+5*x^8-30*x^7-95*x^6+46*x^5+320*x^4+123*x^3-248*x^2-162*x-11,-2*x^9-7*x^8+14*x^7+48*x^6-62*x^5-123*x^4+155*x^3+126*x^2-134*x-24,5*x^9+24*x^8+3*x^7-115*x^6-83*x^5+164*x^4+97*x^3-93*x^2-12*x+1,2*x^9+13*x^8+11*x^7-70*x^6-105*x^5+117*x^4+202*x^3-66*x^2-116*x+9,2*x^9+12*x^8+12*x^7-46*x^6-82*x^5+33*x^4+95*x^3+2*x^2-18*x+2,-6*x^9-39*x^8-36*x^7+217*x^6+394*x^5-329*x^4-914*x^3+48*x^2+640*x+85,-6*x^9-34*x^8-20*x^7+167*x^6+200*x^5-248*x^4-293*x^3+128*x^2+79*x+5,-x^9-10*x^8-22*x^7+43*x^6+162*x^5-28*x^4-336*x^3-51*x^2+221*x+38,10*x^9+67*x^8+96*x^7-237*x^6-651*x^5+59*x^4+1032*x^3+223*x^2-530*x-54,8*x^9+48*x^8+48*x^7-186*x^6-339*x^5+135*x^4+437*x^3+20*x^2-126*x-1,-5*x^9-29*x^8-20*x^7+134*x^6+179*x^5-162*x^4-261*x^3+48*x^2+95*x+9,6*x^9+33*x^8+29*x^7-117*x^6-212*x^5+41*x^4+257*x^3+73*x^2-65*x-12,-8*x^9-44*x^8-24*x^7+222*x^6+289*x^5-327*x^4-548*x^3+140*x^2+302*x+13,10*x^9+68*x^8+99*x^7-236*x^6-649*x^5+50*x^4+986*x^3+219*x^2-479*x-56,-4*x^9-25*x^8-28*x^7+88*x^6+173*x^5-25*x^4-171*x^3-67*x^2+7*x+2,2*x^9+3*x^8-36*x^7-77*x^6+108*x^5+285*x^4-58*x^3-260*x^2-19*x+11,-2*x^9-14*x^8-18*x^7+61*x^6+134*x^5-63*x^4-239*x^3-2*x^2+134*x+13,5*x^9+24*x^8-9*x^7-169*x^6-97*x^5+367*x^4+310*x^3-204*x^2-219*x-34,-x^9-7*x^8-3*x^7+44*x^6+24*x^5-102*x^4-5*x^3+91*x^2-38*x-4,-11*x^9-67*x^8-62*x^7+306*x^6+539*x^5-347*x^4-958*x^3+23*x^2+509*x+75,5*x^9+33*x^8+36*x^7-148*x^6-278*x^5+162*x^4+462*x^3-7*x^2-231*x-45,12*x^9+79*x^8+81*x^7-402*x^6-743*x^5+576*x^4+1497*x^3-168*x^2-904*x-103,-7*x^9-36*x^8-8*x^7+181*x^6+144*x^5-271*x^4-207*x^3+134*x^2+73*x+5,8*x^9+57*x^8+97*x^7-160*x^6-561*x^5-104*x^4+730*x^3+295*x^2-291*x-49,12*x^9+49*x^8-39*x^7-309*x^6-26*x^5+637*x^4+125*x^3-439*x^2-47*x+5,9*x^9+68*x^8+111*x^7-258*x^6-757*x^5+113*x^4+1295*x^3+229*x^2-708*x-93,x^9+2*x^8-3*x^7+6*x^6+7*x^5-63*x^4-19*x^3+76*x^2+8*x-1,-5*x^9-30*x^8-23*x^7+143*x^6+199*x^5-203*x^4-310*x^3+96*x^2+126*x+19,-21*x^9-136*x^8-151*x^7+610*x^6+1228*x^5-652*x^4-2218*x^3+11*x^2+1229*x+116,-5*x^9-35*x^8-49*x^7+139*x^6+344*x^5-94*x^4-567*x^3-65*x^2+277*x+32,-x^8-10*x^7-23*x^6+29*x^5+124*x^4+11*x^3-137*x^2-24*x-1,-8*x^9-56*x^8-80*x^7+216*x^6+543*x^5-141*x^4-850*x^3-69*x^2+395*x+36,-2*x^9-10*x^8+5*x^7+82*x^6+46*x^5-208*x^4-169*x^3+158*x^2+132*x+8,-20*x^9-137*x^8-202*x^7+458*x^6+1253*x^5-66*x^4-1706*x^3-383*x^2+691*x+67,4*x^8+17*x^7-3*x^6-80*x^5-45*x^4+98*x^3+55*x^2-31*x-3,-x^9-18*x^8-66*x^7+23*x^6+375*x^5+177*x^4-645*x^3-281*x^2+376*x+39,-10*x^9-54*x^8-30*x^7+249*x^6+315*x^5-304*x^4-494*x^3+80*x^2+203*x+32,12*x^9+72*x^8+72*x^7-298*x^6-578*x^5+242*x^4+950*x^3+94*x^2-466*x-81,x^9+9*x^8+33*x^7+35*x^6-103*x^5-253*x^4-24*x^3+223*x^2+95*x+6,8*x^9+52*x^8+55*x^7-248*x^6-477*x^5+300*x^4+902*x^3-25*x^2-501*x-62,-11*x^9-56*x^8-18*x^7+275*x^6+284*x^5-384*x^4-486*x^3+143*x^2+214*x+35,-x^9-3*x^8+10*x^7+17*x^6-82*x^5-58*x^4+273*x^3+102*x^2-264*x-29,10*x^9+52*x^8+16*x^7-256*x^6-229*x^5+369*x^4+311*x^3-170*x^2-74*x-5,x^9+3*x^8-10*x^7-27*x^6+41*x^5+78*x^4-84*x^3-84*x^2+64*x+19,-x^9+7*x^8+53*x^7+25*x^6-234*x^5-215*x^4+304*x^3+261*x^2-128*x-48,-8*x^8-47*x^7-44*x^6+173*x^5+286*x^4-102*x^3-271*x^2-23*x+4,2*x^9+10*x^8+6*x^7-35*x^6-47*x^5+12*x^4+31*x^3+15*x^2+21*x+1,3*x^9+27*x^8+57*x^7-85*x^6-346*x^5-25*x^4+561*x^3+148*x^2-311*x-39,-3*x^9-8*x^8+25*x^7+65*x^6-65*x^5-160*x^4+55*x^3+115*x^2-16*x-4,3*x^9+23*x^8+32*x^7-129*x^6-309*x^5+195*x^4+735*x^3-31*x^2-519*x-41,6*x^9+35*x^8+23*x^7-166*x^6-201*x^5+232*x^4+260*x^3-119*x^2-63*x-6,10*x^9+59*x^8+38*x^7-334*x^6-498*x^5+545*x^4+1129*x^3-176*x^2-724*x-94,3*x^9+34*x^8+83*x^7-123*x^6-538*x^5+19*x^4+1004*x^3+176*x^2-612*x-61,-x^9+19*x^7-x^6-134*x^5-16*x^4+350*x^3+56*x^2-273*x-11,4*x^9+27*x^8+33*x^7-99*x^6-192*x^5+56*x^4+185*x^3+26*x^2-15*x-3,-9*x^9-58*x^8-61*x^7+274*x^6+527*x^5-337*x^4-1013*x^3+56*x^2+601*x+44,13*x^9+73*x^8+33*x^7-419*x^6-520*x^5+728*x^4+1166*x^3-334*x^2-723*x-79,7*x^9+46*x^8+53*x^7-204*x^6-419*x^5+210*x^4+726*x^3+6*x^2-361*x-53,5*x^9+33*x^8+50*x^7-80*x^6-241*x^5-84*x^4+130*x^3+124*x^2+94*x+7,-2*x^9-9*x^8-3*x^7+29*x^6+28*x^5-4*x^4+2*x^3-9*x^2-38*x-12,-2*x^9-7*x^8+7*x^7+30*x^6-24*x^5-38*x^4+82*x^3+30*x^2-73*x-8,-8*x^9-47*x^8-35*x^7+223*x^6+325*x^5-295*x^4-560*x^3+109*x^2+283*x+2,-2*x^9-7*x^8+11*x^7+49*x^6-14*x^5-109*x^4-14*x^3+81*x^2+32*x+3,-2*x^9-5*x^8+24*x^7+42*x^6-144*x^5-148*x^4+375*x^3+208*x^2-306*x-54,-6*x^9-26*x^8+13*x^7+158*x^6+54*x^5-306*x^4-145*x^3+189*x^2+75*x+7,-8*x^9-48*x^8-43*x^7+197*x^6+300*x^5-198*x^4-325*x^3+64*x^2+13*x+6,4*x^9+23*x^8+19*x^7-96*x^6-145*x^5+101*x^4+172*x^3-33*x^2-20*x,5*x^9+28*x^8+16*x^7-139*x^6-179*x^5+190*x^4+313*x^3-53*x^2-151*x-29,4*x^9+33*x^8+67*x^7-99*x^6-409*x^5-44*x^4+648*x^3+172*x^2-341*x-25,8*x^9+55*x^8+76*x^7-219*x^6-541*x^5+163*x^4+917*x^3+66*x^2-494*x-55,3*x^9+17*x^8+15*x^7-63*x^6-105*x^5+35*x^4+107*x^3+18*x^2-3*x-2,11*x^9+73*x^8+93*x^7-289*x^6-662*x^5+202*x^4+1061*x^3+104*x^2-524*x-69,x^9+x^8-14*x^7-29*x^6+4*x^5+84*x^4+146*x^3-12*x^2-175*x-32,-5*x^9-30*x^8-22*x^7+149*x^6+213*x^5-208*x^4-378*x^3+78*x^2+194*x+12,-4*x^9-18*x^8+8*x^7+107*x^6+22*x^5-208*x^4-25*x^3+134*x^2-16*x-2,x^9+11*x^8+33*x^7+14*x^6-85*x^5-178*x^4-125*x^3+131*x^2+202*x+35,-4*x^8-18*x^7+3*x^6+92*x^5+46*x^4-137*x^3-68*x^2+64*x+11,-18*x^9-117*x^8-134*x^7+508*x^6+1052*x^5-484*x^4-1823*x^3-76*x^2+950*x+110,-x^9-9*x^8-28*x^7-6*x^6+125*x^5+142*x^4-118*x^3-145*x^2+27*x+2,8*x^9+62*x^8+99*x^7-264*x^6-721*x^5+226*x^4+1348*x^3+101*x^2-795*x-90,-9*x^9-54*x^8-63*x^7+173*x^6+383*x^5-11*x^4-381*x^3-122*x^2+23*x-1,3*x^9+20*x^8+17*x^7-110*x^6-159*x^5+193*x^4+302*x^3-104*x^2-162*x-20,-x^9-2*x^8+11*x^7+20*x^6-35*x^5-54*x^4+35*x^3+37*x^2-6*x+1,6*x^8+42*x^7+68*x^6-107*x^5-338*x^4-89*x^3+260*x^2+155*x+20,-16*x^9-97*x^8-83*x^7+471*x^6+785*x^5-615*x^4-1480*x^3+140*x^2+829*x+87,-x^9-16*x^8-52*x^7+45*x^6+334*x^5+53*x^4-671*x^3-158*x^2+461*x+36,x^9+7*x^8+11*x^7-21*x^6-63*x^5-3*x^4+72*x^3+7*x^2-12*x-2,8*x^9+61*x^8+115*x^7-169*x^6-677*x^5-147*x^4+958*x^3+401*x^2-435*x-79,2*x^9+13*x^8+19*x^7-51*x^6-154*x^5+24*x^4+305*x^3+45*x^2-193*x-13,-x^8+10*x^7+66*x^6+37*x^5-243*x^4-274*x^3+166*x^2+259*x+37,8*x^9+46*x^8+43*x^7-167*x^6-291*x^5+90*x^4+312*x^3+42*x^2-39*x-4,-16*x^9-101*x^8-105*x^7+444*x^6+838*x^5-461*x^4-1412*x^3+26*x^2+709*x+63,11*x^9+57*x^8+17*x^7-303*x^6-323*x^5+475*x^4+658*x^3-200*x^2-373*x-36,2*x^9+14*x^8+20*x^7-46*x^6-108*x^5+10*x^4+88*x^3+29*x^2+16*x-18,-3*x^9-15*x^8-5*x^7+62*x^6+50*x^5-56*x^4-13*x^3+5*x^2-44*x-4,2*x^9+14*x^8+21*x^7-69*x^6-206*x^5+63*x^4+506*x^3+60*x^2-392*x-42,-4*x^9-20*x^8-15*x^7+55*x^6+90*x^5+36*x^4-20*x^3-82*x^2-65*x-4,-12*x^9-92*x^8-159*x^7+333*x^6+1065*x^5-86*x^4-1811*x^3-370*x^2+985*x+127,2*x^9+13*x^8+6*x^7-90*x^6-100*x^5+198*x^4+239*x^3-122*x^2-144*x-11,-3*x^9-20*x^8-19*x^7+102*x^6+161*x^5-156*x^4-273*x^3+73*x^2+118*x+25,-x^9-23*x^8-79*x^7+58*x^6+459*x^5+95*x^4-813*x^3-226*x^2+482*x+49,-2*x^9-4*x^8+41*x^7+127*x^6-52*x^5-445*x^4-212*x^3+323*x^2+231*x+33,10*x^9+44*x^8-27*x^7-293*x^6-80*x^5+634*x^4+259*x^3-429*x^2-137*x-10,4*x^8+23*x^7+13*x^6-112*x^5-117*x^4+172*x^3+136*x^2-104*x-12,6*x^9+34*x^8+18*x^7-171*x^6-188*x^5+262*x^4+271*x^3-146*x^2-77*x-1,14*x^9+91*x^8+110*x^7-357*x^6-765*x^5+256*x^4+1118*x^3+78*x^2-453*x-40,4*x^9+21*x^8+10*x^7-95*x^6-108*x^5+117*x^4+155*x^3-40*x^2-50*x-6,-13*x^9-92*x^8-143*x^7+318*x^6+928*x^5-53*x^4-1430*x^3-340*x^2+695*x+93,4*x^9+20*x^8-2*x^7-141*x^6-132*x^5+303*x^4+404*x^3-179*x^2-295*x+1]];
E[307,5] = [x, [1,0,0,-2,4,0,0,0,-3,0,3,0,6,0,0,4,-1,0,-1,-8,0,0,-2,0,11,0,0,0,0,0,4,0,0,0,0,6,3,0,0,0,5,0,-10,-6,-12,0,-6,0,-7,0,0,-12,-10,0,12,0,0,0,4,0,-8,0,0,-8,24,0,-8,2,0,0,-15,0,2,0,0,2,0,0,-13,16,9,0,5,0,-4,0,0,0,9,0,0,4,0,0,-4,0,7,0,-9,-22,10,0,11,0,0,0,-15,0,-7,0,0,0,14,0,-8,0,-18,0,0,0,-2,0,0,-8,24,0,17,0,0,0,-6,0,0,0,0,0,-6,0,14,0,0,0,18,-12,0,0,0,-6,19,0,-14,0,3,0,16,0,-14,0,0,0,0,0,-8,-10,0,0,21,0,23,0,3,20,-6,0,0,12,0,0,0,24,5,0,0,0,12,0,-3,12,0,0,-13,0,-22,0,0,14,-8,0,-17,0,0,0,0,0,20,0,6,24,-3,0,-14,20,0,0,-40,0,0,0,0,-24,-6,0,23,0,-33,0,12,0,-26,0,0,0,3,0,-24,-8,0,0,-24,0,10,0,0,16,-28,0,-6,0,0,0,24,0,-6,0,0,16,-3,0,0,-48,0,0,6,0,-40,0,0,16,-7,0,-20,-4,0,0,33,0,21,0,-12,0,18,0,16,30,0,0,0,0,-16,0,0,-4,-9,0,16,0,0,0,-12,0,0,0,0,-4,-32,0,1,0,0,0,16,0,21,0,0,26,23,0,0,-32,0,0,1,-18,66,0,0,0,0,0,-4,-10,-9,0,-32,0,24,0,0,8,12,0,0,0,0,0,-31,0,-23,0,0,0,-11,0,-60,-18,0,0,24,0,-18,0,0,0,8,0,-13,-8,-15,0,0,0,-14,0,0,0,0,0,-4,8,0,0,-9,0,0,0,30,-14,30,0,2,0,0,0,-52,18,34,0,0,44,-18,0,24,-20,36,0,9,0,-34,0,0,-22,0,0,20,0,0,0,23,0,-15,0,18,0,-11,0,0,30,0,0,-18,0,20,0,0,14,2,0,16,0,21,0,30,0,36,0,0,0,-6,0,15,-28,0,0,0,0,-11,0,0,16,-18,0,1,0,0,0,27,36,0,0,0,0,-30,0,-11,0,30,0,8,0,18,0,0,4,28,0,-2,0,0,0,-20,0,0,0,-36,16,0,0,-24,-48]];
E[307,6] = [x, [1,2,2,2,0,4,-3,0,1,0,1,4,6,-6,0,-4,2,2,-4,0,-6,2,-6,0,-5,12,-4,-6,0,0,2,-8,2,4,0,2,3,-8,12,0,9,-12,4,2,0,-12,4,-8,2,-10,4,12,1,-8,0,0,-8,0,-12,0,14,4,-3,-8,0,4,2,4,-12,0,8,0,-10,6,-10,-8,-3,24,11,0,-11,18,13,-12,0,8,0,0,9,0,-18,-12,4,8,0,-16,-5,4,1,-10,-5,8,4,0,0,2,-11,-8,-10,0,6,12,15,-16,0,0,6,-24,-6,0,-10,28,18,4,0,-6,11,0,8,0,-6,4,12,4,0,0,4,-24,-14,0,8,16,6,-4,0,-20,4,6,3,-20,-10,0,2,-6,0,24,-18,22,2,0,18,-22,-2,18,0,26,-23,0,23,0,-4,8,-4,0,15,-4,-24,18,-9,0,14,-36,28,0,0,8,2,8,12,0,8,-16,-16,-10,0,4,-6,2,13,0,4,-10,0,8,0,8,-6,-24,-4,0,-12,2,16,-22,0,0,-6,-20,-20,0,12,12,-23,24,-5,30,3,-16,7,0,-6,0,27,12,0,-24,22,-12,14,0,-22,-20,-10,28,0,36,-24,0,26,0,-11,-6,-6,22,0,16,17,16,-9,0,0,-12,18,0,0,24,18,4,25,0,-14,-8,-36,8,-5,-24,-26,-28,2,0,-4,16,-16,16,0,12,-27,-8,-13,0,-10,-20,15,8,0,0,-4,6,-36,-20,-12,-20,-10,16,0,4,1,-6,8,0,0,0,-27,-36,0,22,11,4,0,0,-22,36,-8,-22,-30,-4,-20,0,-12,0,11,26,3,-46,0,24,-22,46,30,0,2,-8,15,0,0,-8,-12,0,1,30,-24,-8,30,-48,0,18,-12,-18,-12,0,-3,28,-20,-36,0,56,-35,24,9,0,-3,8,23,4,0,0,0,24,-16,0,22,16,15,0,0,-32,4,-10,-4,0,-12,0,-12,-12,0,2,31,26,24,20,27,8,12,-10,0,0,3,0,23,0,8,8,36,-12,0,-48,-28,-8,-37,0,6,-24,4,0,-10,32,-42,-22,12,0,32,16,14,-12,0,-20,24,-40,20,0,2,24,20,12,0,-46,6,24,22,-10,9,30,-20,6,0,0,13,14,-8,0,-34,-12,16,0,0,54,13,12,-6,0,-36,0,4,44,20,-12,1,28,-36,0,18,-44,36,-20,0,-20,8,0,-4,0,21,36,0,-48,0,-8,-24,52,-18,0]];
E[307,7] = [x, [1,2,0,2,2,0,3,0,-3,4,-4,0,0,6,0,-4,3,-6,1,4,0,-8,2,0,-1,0,0,6,6,0,-4,-8,0,6,6,-6,-6,2,0,0,2,0,-4,-8,-6,4,-10,0,2,-2,0,0,-3,0,-8,0,0,12,10,0,4,-8,-9,-8,0,0,-4,6,0,12,-1,0,8,-12,0,2,-12,0,11,-8,9,4,9,0,6,-8,0,0,-3,-12,0,4,0,-20,2,0,11,4,12,-2,15,0,-19,0,0,-6,13,0,17,-16,0,-12,11,0,4,12,0,20,9,0,5,8,0,-8,-12,-18,-16,0,0,0,-12,0,3,-8,0,0,-2,0,-16,12,0,-2,0,12,12,16,0,-12,-1,0,-2,0,-9,-24,-8,0,12,22,0,-16,6,18,-4,4,0,18,1,0,-13,12,-3,-8,2,0,-3,16,0,-6,9,-12,-23,0,0,0,-12,0,-12,-20,0,4,-15,0,14,22,0,4,26,24,-4,0,0,30,18,0,4,-38,-6,0,-4,0,24,-6,0,26,-8,0,-12,34,0,-16,0,0,16,-24,3,22,-15,0,7,8,0,0,27,0,-20,20,0,18,4,0,2,10,0,8,4,0,0,0,0,-24,-13,-18,-8,-32,0,16,-14,0,-18,0,-18,-24,6,0,-6,6,0,-8,18,0,-20,-12,0,-4,4,0,-3,-32,12,0,-20,0,-28,-2,0,0,6,24,-8,24,0,16,-6,0,20,0,0,-2,0,0,-12,-4,0,-4,8,-18,1,-24,0,-16,28,0,-6,24,-18,22,-33,0,-24,-16,0,12,3,18,0,-8,0,0,-30,0,-11,18,18,2,-8,0,0,-26,0,12,16,-6,-15,0,0,4,31,0,-19,-6,0,32,29,0,-2,-6,0,18,0,0,-18,-46,0,0,16,0,-32,-8,-6,-24,-9,0,-29,-24,0,0,0,0,-2,4,0,-30,-21,0,-24,28,12,22,-2,0,6,0,0,52,22,24,-1,-8,0,4,-21,0,0,30,18,36,24,0,7,8,0,-38,30,-12,18,0,0,-8,3,0,17,48,30,0,-3,0,12,26,0,-16,-2,0,-8,-24,0,34,2,0,10,0,-6,0,-20,0,-6,32,0,-24,2,6,-8,22,0,-30,0,0,17,14,0,8,38,0,-5,-24,0,54,-16,0,-12,-40,0,0,16,0,-1,18,9,8,-16,0,0,4,0,10,22,0,-34,0,0,8,-1,0,18,0,24,16,-3,0,6,-24]];

E[308,1] = [x, [1,0,-1,0,-1,0,-1,0,-2,0,1,0,-4,0,1,0,-6,0,-2,0,1,0,1,0,-4,0,5,0,2,0,-1,0,-1,0,1,0,-9,0,4,0,6,0,8,0,2,0,-8,0,1,0,6,0,10,0,-1,0,2,0,1,0,-2,0,2,0,4,0,11,0,-1,0,11,0,-14,0,4,0,-1,0,-14,0,1,0,4,0,6,0,-2,0,13,0,4,0,1,0,2,0,-9,0,-2,0,-12,0,-4,0,-1,0,-6,0,4,0,9,0,-11,0,-1,0,8,0,6,0,1,0,-6,0,9,0,-10,0,-8,0,-10,0,2,0,-5,0,-3,0,2,0,8,0,-4,0,-2,0,-1,0,-14,0,-14,0,12,0,1,0,-17,0,-10,0,-1,0,12,0,1,0,-14,0,3,0,4,0,16,0,4,0,-1,0,15,0,5,0,2,0,9,0,-6,0,-5,0,-1,0,-18,0,-4,0,-6,0,-8,0,-11,0,-2,0,-6,0,-2,0,-2,0,2,0,-11,0,-8,0,1,0,14,0,24,0,-17,0,8,0,-4,0,-7,0,1,0,6,0,8,0,14,0,-20,0,20,0,-16,0,-1,0,8,0,-4,0,25,0,1,0,-6,0,26,0,9,0,-4,0,6,0,-10,0,-13,0,14,0,32,0,-4,0,-4,0,-24,0,2,0,12,0,0,0,-2,0,-6,0,19,0,9,0,-6,0,-1,0,5,0,-4,0,-8,0,12,0,2,0,-20,0,4,0,24,0,21,0,-2,0,-3,0,2,0,6,0,12,0,16,0,-4,0,8,0,25,0,18,0,-11,0,14,0,11,0,-1,0,-1,0,1,0,-30,0,14,0,-20,0,5,0,-11,0,-6,0,-24,0,-15,0,-1,0,14,0,3,0,-12,0,-10,0,-4,0,-9,0,-8,0,5,0,10,0,-25,0,1,0,-16,0,-27,0,-6,0,10,0,14,0,18,0,-2,0,-38,0,4,0,-1,0,-9,0,14,0,3,0,-1,0,-4,0,-2,0,-24,0,-26,0,16,0,24,0,2,0,4,0,20,0,-37,0,2,0,-2,0,-34,0,-2,0,31,0,-13,0,14,0,-9,0,6,0,14,0,-4,0,-8,0,-30,0,2,0,-33,0,-1,0,-7,0,-11,0,17,0,8,0,8,0,-20,0,12,0,36,0,1,0,9,0,33,0,-12,0,-34,0,-12,0,2,0,-11,0,20,0]];
E[308,2] = [x^2-6, [1,0,x,0,2,0,-1,0,3,0,-1,0,-x+2,0,2*x,0,-x+2,0,-2*x,0,-x,0,-2*x+4,0,-1,0,0,0,2*x-2,0,x+4,0,-x,0,-2,0,4,0,2*x-6,0,-3*x-2,0,2*x-2,0,6,0,-x-4,0,1,0,2*x-6,0,4*x,0,-2,0,-12,0,3*x,0,3*x-2,0,-3,0,-2*x+4,0,-6*x,0,4*x-12,0,-2*x-8,0,x+10,0,-x,0,1,0,-2*x-6,0,-9,0,-2*x-12,0,-2*x+4,0,-2*x+12,0,6,0,x-2,0,4*x+6,0,-4*x,0,-2*x+10,0,-3,0,-x-6,0,x+12,0,-2*x,0,-4,0,2*x+10,0,4*x,0,-10,0,-4*x+8,0,-3*x+6,0,x-2,0,1,0,-2*x-18,0,-12,0,-4*x+8,0,-2*x+12,0,4*x,0,2*x,0,0,0,4*x,0,6*x+8,0,-4*x-6,0,x-2,0,4*x-4,0,x,0,4*x+2,0,6*x-6,0,-3*x+6,0,2*x+8,0,10,0,24,0,2*x-4,0,2*x+4,0,-2*x,0,4*x+4,0,-4*x-3,0,-6*x,0,5*x-2,0,1,0,18,0,-8*x+4,0,-2*x+14,0,-2*x+18,0,8,0,x-2,0,0,0,-4*x+8,0,8*x+2,0,4*x-12,0,-8*x-6,0,9*x+4,0,-36,0,-2*x+2,0,-6*x-4,0,-6*x+12,0,2*x,0,-20,0,-8*x-12,0,4*x-4,0,-x-4,0,10*x+6,0,-4*x+10,0,-7*x+4,0,-3,0,4*x-8,0,2*x-10,0,x,0,2*x-6,0,-2*x-8,0,-6*x-12,0,16,0,-3*x+6,0,-9*x,0,2,0,-4*x+12,0,-12*x-12,0,x,0,2*x-4,0,4*x-12,0,-4*x+6,0,-4,0,6*x-6,0,8*x,0,8*x,0,6*x,0,2*x-18,0,-6*x+16,0,-2*x+6,0,1,0,4*x+6,0,3*x+12,0,2*x-10,0,-24,0,-24,0,3*x+2,0,-4*x-7,0,10*x-12,0,3*x-18,0,6*x,0,0,0,-8*x+20,0,-2*x+2,0,-6*x-6,0,6*x-4,0,-4*x+8,0,12*x+6,0,x-4,0,8*x-14,0,-6,0,-8*x+6,0,-2*x+2,0,-4*x,0,-4*x+12,0,x-2,0,10*x+12,0,x+4,0,-32,0,12,0,-12*x,0,6*x+6,0,-10*x,0,-x-4,0,-1,0,8*x-24,0,10*x+2,0,-5*x+14,0,0,0,8*x+6,0,-4*x-16,0,-2*x+6,0,-6*x-10,0,5,0,x,0,2*x+20,0,7*x+4,0,-9*x-6,0,-4*x,0,-4*x+14,0,-12*x,0,6*x-16,0,2*x-8,0,8*x-24,0,3*x+20,0,2,0,6*x-6,0,-8*x+6,0,-8*x+20,0,24,0,-4*x-12,0,-8*x-6,0,12,0,-4*x-18,0,-2*x+2,0,-18,0,-4,0,x-14,0,24,0,-3*x,0,-4*x-24,0,8*x+36,0,x+16,0,-4*x+4,0,-3*x-12,0,x-2,0,-3*x+2,0,-2*x+6,0,2*x-14,0,-2*x+26,0,-4*x+24,0,-8*x+24,0,-2*x-20,0,3,0,24,0,12,0,2*x+24,0,8*x,0,3*x+2,0,-6*x+36,0,2*x-4,0,12*x-10,0,0,0,-3*x-30,0,-2*x-20,0,8*x+12,0,3*x,0,6*x,0,10*x,0,-2*x+2,0,2*x,0,12*x,0,2*x-4,0,-4*x+8,0,-4*x+12,0,-4*x+20,0,2*x+32,0,4*x+12,0,6*x+18,0,6*x-16,0,-6,0,2*x+8,0,-6*x-28,0]];
E[308,3] = [x^3+x^2-6*x-2, [1,0,x,0,-x^2+4,0,1,0,x^2-3,0,1,0,x^2+x,0,x^2-2*x-2,0,-x^2-3*x+4,0,2*x,0,x,0,x^2+2*x-6,0,-x^2-4*x+9,0,-x^2+2,0,-2*x^2-2*x+10,0,-3*x-4,0,x,0,-x^2+4,0,x^2-2,0,6*x+2,0,x^2+3*x-4,0,-2*x-2,0,4*x-10,0,x^2-x-6,0,1,0,-2*x^2-2*x-2,0,2*x^2-8,0,-x^2+4,0,2*x^2,0,-x-8,0,3*x^2+x-8,0,x^2-3,0,-2*x^2+2*x,0,-x^2-2*x+2,0,x^2+2,0,3*x^2+2*x-14,0,x^2+3*x-8,0,-3*x^2+3*x-2,0,1,0,-2*x^2+2*x+14,0,-2*x^2-4*x+7,0,-2*x^2-6*x+8,0,-4*x^2+2*x+20,0,-2*x-4,0,x^2-4*x-12,0,x^2+x,0,-3*x^2-4*x,0,2*x^2-4*x-4,0,x^2-2*x,0,x^2-3,0,x^2+x-8,0,-x^2-3*x+6,0,x^2-2*x-2,0,2*x^2-8,0,6*x+2,0,-x^2+4*x+2,0,-3*x^2+4*x+20,0,5*x^2-26,0,3*x^2-x,0,-x^2-3*x+4,0,1,0,2*x^2+2*x+2,0,-5*x^2+4*x+22,0,-2*x^2-4*x+20,0,-2*x^2-2*x,0,2*x^2-20,0,2*x,0,x^2-4*x+6,0,3*x^2+4*x-10,0,4*x^2+2*x-16,0,-2*x^2+2,0,x^2+x,0,-6*x^2-4*x+40,0,x,0,4*x^2+4*x-14,0,-2*x^2+2*x+14,0,3*x^2-5*x-16,0,x^2+6*x-10,0,-x^2+12,0,-2*x^2+4*x+4,0,x^2+2*x-6,0,-2*x^2+2*x+8,0,x^2-2*x-2,0,-2*x^2-4*x+24,0,6*x^2+8*x-11,0,-2*x^2+6*x+4,0,3*x^2-x-8,0,-x^2-4*x+9,0,-x^2-8*x,0,x^2+4*x+10,0,-5*x^2-6*x+16,0,-2*x^2+10*x+6,0,-x^2+4*x-6,0,-x^2-3*x+4,0,-x^2+2,0,x^2-10,0,-4*x^2+18,0,4*x^2-12*x-4,0,-6,0,-5*x^2-3*x+22,0,-x^2-4*x-2,0,-2*x^2-2*x+10,0,4*x^2-2*x-20,0,-4*x^2+2*x+20,0,2*x,0,2*x^2,0,-x^2+4*x+6,0,4*x-4,0,-3*x-4,0,2*x^2-2*x+2,0,-2*x^2-16*x-6,0,4*x^2+9*x-20,0,9*x^2-8*x-33,0,-4*x^2+16,0,3*x^2-2*x-8,0,x,0,-2*x^2-2*x-2,0,2*x^2+6*x-20,0,4*x^2+2*x-4,0,-4*x^2-8*x+24,0,3*x^2+3*x-16,0,x^2-5*x-10,0,-x^2+4,0,12*x+4,0,-4*x^2-4*x-4,0,2*x^2+5*x-28,0,x^2+2*x-6,0,6*x^2-4*x-8,0,4*x+14,0,x^2-2,0,4*x^2+2*x-30,0,2*x^2+4,0,2*x^2+8*x-28,0,-5*x^2-6*x+2,0,-2*x^2-6*x+2,0,-2*x^2-6*x+4,0,6*x+2,0,-x^2-4*x+9,0,2*x^2-4*x-14,0,-x^2-9*x+6,0,-4*x^2-2*x+6,0,-4*x^2-4*x+16,0,-6*x^2+8*x+4,0,x^2+3*x-4,0,2*x^2+8*x+9,0,-3*x^2+6*x+2,0,-x^2+9*x+16,0,7*x^2+2*x-30,0,-x^2+2,0,8*x+4,0,-2*x-2,0,-2*x+2,0,10*x-28,0,-4*x^2,0,-2*x^2-2,0,-5*x^2+5*x+30,0,-3*x^2+4*x+16,0,4*x-10,0,-3*x^2-4*x+4,0,-2*x^2-2*x+10,0,-2*x^2+4*x+4,0,-4*x^2-4*x-4,0,3*x^2-17*x-8,0,6*x^2+2*x,0,x^2-x-6,0,3*x^2-4*x-6,0,2*x^2-4*x+4,0,-x^2+10,0,-2*x^2+2*x+26,0,7*x^2+2*x-6,0,-3*x-4,0,1,0,-5*x^2+4*x+10,0,2*x^2+6*x-2,0,-5*x^2-7*x+8,0,-4*x^2,0,9*x^2+4*x-28,0,7*x^2+8*x-54,0,-2*x^2-2*x-2,0,6*x+6,0,4*x^2-19,0,x,0,8*x^2-2*x-36,0,6*x^2+3*x-16,0,-3*x^2+5*x+16,0,2*x^2-8,0,-2*x^2-4*x+26,0,9*x^2-8*x-10,0,-2*x^2-6*x-4,0,-3*x^2-10*x+6,0,-2*x^2+8*x-4,0,2*x^2-13*x-16,0,-x^2+4,0,-6*x+2,0,5*x^2+4*x-12,0,2*x^2-32,0,-2*x^2-8*x+4,0,-6*x^2-12*x+48,0,-4*x^2+4*x+26,0,2*x^2,0,4*x+14,0,-4*x^2-22*x-6,0,-5*x^2+32,0,x^2-2,0,-3*x^2+3*x+8,0,x^2+8*x+6,0,-x-8,0,-8*x^2+4*x+40,0,-2*x^2+8*x+8,0,-x^2+5*x+26,0,2*x^2-12,0,-x^2-7*x+14,0,-x^2-5*x+48,0,3*x^2+x-8,0,6*x+2,0,-10*x-14,0,5*x^2+6*x-24,0,2*x^2+4*x-12,0,2*x^2+4,0,-2*x-20,0,x^2-3,0,-3*x^2-4*x+22,0,5*x^2+12*x-38,0,10*x+8,0,-3*x^2-8*x+2,0,x^2+3*x-4,0,4*x^2+2*x-4,0,-2*x^2+2*x,0,-6*x^2+4*x+34,0,-2*x^2+8*x+12,0,x^2-5*x+16,0,-5*x^2-6*x+22,0,5*x^2-4*x+2,0,-4*x^2-5*x+24,0,-x^2-2*x+2,0,x^2+6*x-2,0,-2*x-2,0,-6*x^2+6*x-4,0,-8*x+20,0,-2*x^2-6*x+32,0,4*x^2,0,x^2+2,0,-5*x^2+8*x+6,0,-7*x^2-10*x+22,0,4*x^2-4*x-4,0,2*x^2-6*x-2,0,-6*x^2+2*x+52,0,4*x-10,0,3*x^2+2*x-14,0,-2*x^2-14*x,0]];

E[309,1] = [x, [1,-1,1,-1,-1,-1,-2,3,1,1,-2,-1,-5,2,-1,-1,0,-1,-8,1,-2,2,1,3,-4,5,1,2,-2,1,5,-5,-2,0,2,-1,2,8,-5,-3,8,2,-11,2,-1,-1,-2,-1,-3,4,0,5,10,-1,2,-6,-8,2,-11,1,-5,-5,-2,7,5,2,11,0,1,-2,16,3,12,-2,-4,8,4,5,6,1,1,-8,1,2,0,11,-2,-6,-6,1,10,-1,5,2,8,-5,-7,3,-2,4,-9,0,1,-15,2,-10,-11,-1,6,-2,2,2,-1,8,-1,2,-5,11,0,-3,-7,5,8,-5,9,2,-7,3,-11,-5,-17,2,16,-11,-1,0,6,-1,-8,-2,-2,-16,10,-1,2,-12,-3,-2,2,4,-8,-24,0,-4,-5,5,-8,-6,10,5,-2,-1,-10,-8,2,-1,-12,-6,12,0,-8,11,6,2,8,2,-11,6,-20,1,12,-10,-5,3,-2,-5,0,2,-2,-8,-20,7,-8,7,5,3,11,2,-1,-12,11,9,4,0,-8,-1,1,5,16,-2,4,-10,16,11,11,3,-10,-6,12,-2,0,-2,-4,10,-4,1,24,8,3,1,4,-6,-2,5,2,11,6,0,-20,1,2,7,1,5,3,-8,40,15,1,-9,-18,2,-2,7,0,-17,-7,11,-4,-5,-2,17,30,-6,-10,-16,-6,-11,24,1,-25,0,10,-6,8,-1,-8,8,5,6,21,2,13,-16,8,-10,-16,-5,-17,-2,-7,-12,9,3,11,6,-2,-2,-5,4,22,8,-9,8,5,0,-7,-4,1,5,-33,-15,-22,8,2,-6,26,-10,4,-7,-11,2,0,-1,20,10,6,24,4,-2,-31,-1,2,12,-11,2,17,-12,-1,0,-10,8,20,-33,-1,-6,27,2,-4,-8,-5,10,27,11,-16,6,0,20,-27,-3,45,-12,-7,-10,-12,5,-4,-1,8,2,-20,-5,10,0,9,-6,10,2,-23,-8,-7,20,-6,3,-4,8,-11,7,-30,-5,0,-9,-17,-11,-6,2,8,1,16,4,16,-11,-25,9,-1,-4,-4,0,-34,8,6,-1,22,-1,-1,25,-8,-16,12,-2,-3,-4,-2,30,0,-16,10,11,10,-11,27,-1,16,10,2,-6,-8,-12,-24,6,-3,0,-4,-2,6,4,2,-14,27,4,-16,1,-8,-24,-10,-24,-22,-3,0,1,4,-4,39,2,-5,2,36,5,-22,-2,-8,-33,22,-6,32,0,10,20,6,5,-10,-2,-2,7,7,-1,-8,-15,-10,-3,-19,-8,0,-40,2,-5,-32,-1,13,-9]];
E[309,2] = [x^3-x^2-3*x+1, [1,x,-1,x^2-2,x,-x,-x^2+2*x+1,x^2-x-1,1,x^2,-x^2+5,-x^2+2,-2*x^2+2*x+3,x^2-2*x+1,-x,-2*x^2+2*x+3,-2*x+2,x,2*x^2-2*x,x^2+x-1,x^2-2*x-1,-x^2+2*x+1,x+2,-x^2+x+1,x^2-5,-3*x+2,-1,x^2-3,-x^2-2*x+3,-x^2,-2*x+3,-2*x^2-x+4,x^2-5,-2*x^2+2*x,x^2-2*x+1,x^2-2,x^2-4*x-3,6*x-2,2*x^2-2*x-3,2*x-1,-3*x^2+2*x+7,-x^2+2*x-1,x^2-2*x-2,3*x^2-2*x-9,x,x^2+2*x,x^2-4*x+3,2*x^2-2*x-3,2*x^2-6*x-3,x^2-2*x-1,2*x-2,x^2-2*x-6,-x^2+2*x-1,-x,-x^2+2*x+1,-x^2+4*x-3,-2*x^2+2*x,-3*x^2+1,2*x^2+x,-x^2-x+1,3*x^2+2*x-14,-2*x^2+3*x,-x^2+2*x+1,x^2-6*x-4,-3*x+2,x^2-2*x-1,-4*x^2+4*x+7,-2*x-2,-x-2,-x^2+4*x-1,-4*x^2+6*x+10,x^2-x-1,-x^2+4*x-3,-3*x^2-1,-x^2+5,2*x^2+2*x,-4*x^2+6*x+6,3*x-2,3*x^2-4*x-5,-3*x+2,1,-x^2-2*x+3,x^2+x+3,-x^2+3,-2*x^2+2*x,-x^2+x-1,x^2+2*x-3,3*x^2-4*x-5,5*x^2-2*x-3,x^2,x^2-6*x+7,3*x^2+x-5,2*x-3,-3*x^2+6*x-1,6*x-2,2*x^2+x-4,2*x^2-8*x-1,-4*x^2+3*x-2,-x^2+5,-3*x^2+2*x+9,-3*x^2+5*x+13,2*x^2-2*x,1,-x^2+3*x-5,-x^2+2*x-1,x^2-4*x+1,10*x^2-9*x-18,-x^2+2,3*x^2+4*x-9,x^2-2*x+1,-x^2+4*x+3,x^2-6*x+7,9*x^2-3*x-15,-6*x+2,x^2+2*x,-x^2-4*x-3,-2*x^2+2*x+3,3*x^2+6*x-2,-4*x^2+8*x,-2*x+1,-6*x^2+2*x+13,5*x^2-5*x-3,3*x^2-2*x-7,x^2-2*x-4,x^2-7*x-1,x^2-2*x+1,-7*x^2+2*x+14,-x^2+x-9,-x^2+2*x+2,-3*x^2+2*x,x^2-3*x+9,-3*x^2+2*x+9,-4*x^2+12*x-4,-5*x+4,-x,2*x^2-6*x,2*x-4,-x^2-2*x,-5*x^2-8*x+21,x^2-1,-x^2+4*x-3,2*x^2-2*x+4,-7*x^2+8*x+15,-2*x^2+2*x+3,-3*x^2+1,3*x^2-6*x+1,-2*x^2+6*x+3,-5*x^2-2*x+9,6*x^2-10*x-10,-x^2+2*x+1,10*x^2-6*x-16,4*x^2-6*x+2,-2*x+2,2*x^2-6*x+4,-2*x^2+3*x,-x^2+2*x+6,7*x^2-8*x-15,-x^2+4*x-3,x^2-2*x+1,-3*x^2-2*x+2,-x^2+2*x+3,x,-8*x^2+2*x+20,3*x^2-4*x-13,x^2-2*x-1,2*x^2+6*x-1,x^2+4*x-11,x^2-4*x+3,-4*x,-6*x+2,2*x^2-2*x,-2*x^2+5,7*x^2-8*x-3,3*x^2-1,4*x^2-6*x-6,-7*x^2+8*x+15,-2*x^2-x,3*x^2+12*x-5,-13*x^2+8*x+23,x^2+x-1,x^2-4*x+7,-5*x^2+10*x-1,-3*x^2-2*x+14,2*x^2-3,-3*x^2-1,2*x^2-3*x,-4*x+8,x^2-2*x-3,x^2-2*x-1,6*x^2-2*x,-x^2+4*x-9,-x^2+6*x+4,2*x^2+8*x-14,-6*x^2+5*x-2,3*x-2,-5*x^2-2*x+10,-7*x^2+3*x+11,-x^2+2*x+1,6*x^2+2*x-9,-3*x^2+4*x+5,4*x^2-4*x-7,2*x^2+4*x+3,-4*x^2+6*x+2,2*x+2,-x^2-2*x+3,x,x+2,-4*x+13,4*x^2-8*x,x^2-4*x+1,4*x^2-2*x+2,-x^2+1,4*x^2-6*x-10,x^2+12*x-10,-x^2+x-1,-x^2+x+1,-5*x^2+10*x+1,7*x^2-3,x^2-4*x+3,x^2-3,-4*x^2+10*x+2,3*x^2+1,4*x^2-2*x-22,-3*x^2+2*x+5,x^2-5,6*x^2+12*x-9,4*x^2-8*x,-2*x^2-2*x,-3*x^2+8*x+18,3*x^2+3*x-1,4*x^2-6*x-6,x^2-6*x-1,7*x^2-14*x-25,-3*x+2,-3*x^2+6*x-1,5*x^2+5*x-3,-3*x^2+4*x+5,4*x^2-12*x+4,-3*x^2+2*x-1,3*x-2,-x^2+10*x-11,-4*x^2-5*x+6,-1,-6*x^2+8*x+23,-4*x^2+3*x-2,x^2+2*x-3,-6*x^2+10*x-4,3*x^2-7*x-1,-x^2-x-3,-6*x^2+2*x-1,8*x^2-6*x-16,x^2-3,-3*x^2+2*x+11,-5*x^2-7*x+7,2*x^2-2*x,-2*x^2+9,7*x-4,x^2-x+1,-2*x^2+6*x-8,-x^2-3*x-1,-x^2-2*x+3,-2*x^2+12*x-1,9*x^2-12*x-25,-3*x^2+4*x+5,x^2-4*x+1,8*x^2-16*x+4,-5*x^2+2*x+3,3*x^2-4*x-14,8*x^2-4*x-28,-x^2,-5*x^2+12,-4*x^2+10*x+2,-x^2+6*x-7,2*x^2-4*x,6*x^2-2*x-24,-3*x^2-x+5,-7*x^2+7,-13*x^2+6*x+5,-2*x+3,3*x^2-6*x+1,-2*x^2-3*x+12,3*x^2-6*x+1,9*x^2-8*x-16,8*x^2-2*x-22,-6*x+2,x^2-6*x+7,-2*x^2-2*x+12,-2*x^2-x+4,4*x^2-8*x-13,-3*x^2-8*x+3,-2*x^2+8*x+1,-x^2+2*x+3,-7*x^2+17*x+19,4*x^2-3*x+2,3*x^2+6*x-2,-x^2-6*x+7,x^2-5,-4*x^2+8*x-6,-4*x^2+x+8,3*x^2-2*x-9,-x^2+4*x-5,4*x^2+14*x-10,3*x^2-5*x-13,-6*x^2+10*x-4,5*x^2-5*x-3,-2*x^2+2*x,2*x^2+4*x-1,4*x^2-2*x-14,-1,x^2-6*x+2,-4*x^2-7*x+12,x^2-3*x+5,-4*x^2-14,-x^2+6*x-7,x^2-2*x+1,-3*x^2+2*x+11,8*x^2-14,-x^2+4*x-1,-2*x^2-2*x+12,-5*x^2-x-1,-10*x^2+9*x+18,x^2+1,4*x^2-16*x+4,x^2-2,7*x^2-8*x-15,-6*x^2-4*x+8,-3*x^2-4*x+9,x^2-9,-8*x^2+18*x-2,-x^2+2*x-1,-4*x^2+8*x-3,6*x^2+3*x-8,x^2-4*x-3,5*x^2-8*x-1,-5*x+4,-x^2+6*x-7,x^2-12*x-12,-4*x^2,-9*x^2+3*x+15,-2*x^2-2*x,-x^2-4*x+13,6*x-2,2*x^2-18,-3*x+4,-x^2-2*x,-x^2+18*x-7,5*x^2+x-7,x^2+4*x+3,-8*x^2+16*x+24,-2*x^2+6*x-4,2*x^2-2*x-3,-5*x^2+2*x+17,-8*x^2+7*x+6,-3*x^2-6*x+2,2*x^2-2*x+4,5*x^2+8*x+3,4*x^2-8*x,-5*x^2-16*x+13,7*x^2-7*x-23,2*x-1,12*x^2-16*x-15,-3*x^2+10*x-1,6*x^2-2*x-13,3*x^2-4*x-9,3*x^2-6*x+1,-5*x^2+5*x+3,11*x^2-22*x-25,-4*x^2+x+8,-3*x^2+2*x+7,-3*x^2-10*x+3,4*x^2-10*x+2,-x^2+2*x+4,12*x^2-4*x-34,-4*x^2+8*x,-x^2+7*x+1,5*x^2-12*x+1,-3*x^2+10*x+5,-x^2+2*x-1,-2*x^2+8*x+19,4*x^2+6*x-2,7*x^2-2*x-14,3*x^2-12*x+1,-6*x^2-4*x+32,x^2-x+9,2*x^2-6*x+4,10*x^2-8*x-2,x^2-2*x-2,-5*x^2-4*x+8,-3*x^2-18*x+17,3*x^2-2*x,-2*x^2-2*x+4,x^2-11*x+9,-x^2+3*x-9,-4*x^2-10*x+7,-x^2+4*x-3,3*x^2-2*x-9,-8*x^2+28,8*x^2+9*x-6,4*x^2-12*x+4,7*x^2-8*x-15,6*x^2+2*x+4,5*x-4,-6*x^2+12*x+5,12*x^2-x-28,x,2*x^2-10*x+4,8*x^2-10*x-18,-2*x^2+6*x,-6*x^2+28,-3*x^2+1,-2*x+4,x^2-2,-x^2+6*x-1,x^2+2*x,2*x^2+6*x-1,-2*x^2+7*x+10,5*x^2+8*x-21,-4*x^2+12*x-4,-9*x^2+16*x+23,-x^2+1,-10*x^2+16*x+7,2*x^2+14*x-4,x^2-4*x+3,-3*x^2+6*x-1,4*x-8,-2*x^2+2*x-4,13*x^2-20*x-15,-7*x^2+11*x+35,7*x^2-8*x-15,-4*x+1,-7*x^2+13*x+5,2*x^2-2*x-3,-3*x^2+8*x-1,5*x^2-14*x+5,3*x^2-1,x^2+10*x+11,4*x^2+2*x-2,-3*x^2+6*x-1,-8*x^2+2*x+22,-x^2+4*x-3,2*x^2-6*x-3,6*x^2-10*x+4,-12*x^2+16,5*x^2+2*x-9,3*x^2+12*x-5,2*x^2-10*x-4,-6*x^2+10*x+10,-3*x^2+8*x-11,-7*x^2+x+41,x^2-2*x-1,-12*x^2+10*x+34,15*x+24,-10*x^2+6*x+16,-4*x^2+12*x-4,-5*x^2+10*x-1,-4*x^2+6*x-2,6*x^2-12*x-28,5*x^2+9*x+3,2*x-2,4*x^2+4*x-3,-17*x^2+12*x+35,-2*x^2+6*x-4,6*x^2-15,-3*x^2+10*x+5,2*x^2-3*x,-7*x^2-4*x-7,3*x^2-10*x+13,x^2-2*x-6,x^2-10*x+15,3*x^2-10*x+3,-7*x^2+8*x+15,4*x^2-1,5*x^2-6*x-11,x^2-4*x+3,-4*x^2+8*x,-4,-x^2+2*x-1,-x^2-10*x+3,7*x^2+8*x-27,3*x^2+2*x-2,3*x^2+8*x-17,9*x^2-14*x+1,x^2-2*x-3,3*x^2-10*x-22,-6*x^2+5*x-2,-x,-12*x^2+12*x+20,-8*x^2+15*x+12,8*x^2-2*x-20,-x^2-14*x+4,2*x^2-x+2,-3*x^2+4*x+13,4*x^2-4*x+4,4*x^2-22*x+6,-x^2+2*x+1,-6*x^2+12*x+5,-8*x+20,-2*x^2-6*x+1,-9*x^2+18*x+32,-6*x^2-5*x+8]];
E[309,3] = [x^8+x^7-13*x^6-11*x^5+52*x^4+35*x^3-59*x^2-27*x+1, [2,2*x,2,2*x^2-4,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,2*x,2*x^6-16*x^4+2*x^3+26*x^2-6*x,2*x^3-8*x,2,x^7-2*x^6-11*x^5+16*x^4+32*x^3-25*x^2-20*x+1,-2*x^6-2*x^5+16*x^4+12*x^3-28*x^2-10*x+6,2*x^2-4,x^7-11*x^5-2*x^4+36*x^3+15*x^2-36*x-11,2*x^7-16*x^5+2*x^4+26*x^3-6*x^2,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,2*x^4-12*x^2+8,-2*x^5+14*x^3-2*x^2-16*x+2,2*x,2*x^5+2*x^4-12*x^3-12*x^2+6*x+14,-x^7+2*x^6+5*x^5-20*x^4+12*x^3+45*x^2-40*x-15,2*x^6-16*x^4+2*x^3+26*x^2-6*x,-2*x^7-2*x^6+16*x^5+12*x^4-28*x^3-10*x^2+6*x,x^7-9*x^5-2*x^4+20*x^3+15*x^2-12*x-13,2*x^3-8*x,x^7-2*x^6-7*x^5+20*x^4+4*x^3-49*x^2+12*x+23,-x^7+2*x^6+9*x^5-16*x^4-20*x^3+23*x^2+16*x-1,2,-2*x^7+6*x^6+24*x^5-46*x^4-80*x^3+66*x^2+66*x-2,2*x^6+4*x^5-12*x^4-26*x^3+6*x^2+26*x+4,x^7-2*x^6-11*x^5+16*x^4+32*x^3-25*x^2-20*x+1,-x^7+13*x^5-52*x^3+x^2+58*x+1,2*x^5-16*x^3+24*x,-2*x^6-2*x^5+16*x^4+12*x^3-28*x^2-10*x+6,-2*x^6+14*x^4-2*x^3-16*x^2+2*x,-2*x^6+2*x^5+16*x^4-20*x^3-24*x^2+38*x-2,2*x^2-4,2*x^6-6*x^5-20*x^4+48*x^3+48*x^2-74*x-18,2*x^6+2*x^5-12*x^4-12*x^3+6*x^2+14*x,x^7-11*x^5-2*x^4+36*x^3+15*x^2-36*x-11,x^7-4*x^6-9*x^5+32*x^4+16*x^3-49*x^2-2*x-1,-2*x^6+18*x^4-36*x^2-4*x+4,2*x^7-16*x^5+2*x^4+26*x^3-6*x^2,-x^7-2*x^6+7*x^5+12*x^4-8*x^3-7*x^2-4*x-1,-6*x^6-6*x^5+44*x^4+36*x^3-56*x^2-34*x-10,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,-x^7+4*x^6+9*x^5-32*x^4-20*x^3+47*x^2+14*x-1,-2*x^6-6*x^5+12*x^4+48*x^3-4*x^2-82*x-14,2*x^4-12*x^2+8,-6*x^5-2*x^4+44*x^3+12*x^2-58*x-12,-3*x^7+6*x^6+31*x^5-48*x^4-84*x^3+71*x^2+50*x-1,-2*x^5+14*x^3-2*x^2-16*x+2,x^7-4*x^6-5*x^5+36*x^4-14*x^3-73*x^2+44*x+23,2*x^7+2*x^6-20*x^5-16*x^4+56*x^3+34*x^2-38*x-24,2*x,-2*x^7+2*x^6+24*x^5-12*x^4-84*x^3-2*x^2+86*x+20,4*x^7-2*x^6-36*x^5+20*x^4+84*x^3-40*x^2-56*x+2,2*x^5+2*x^4-12*x^3-12*x^2+6*x+14,2*x^7+4*x^6-12*x^5-26*x^4+6*x^3+26*x^2+4*x,-x^7+13*x^5+4*x^4-50*x^3-21*x^2+50*x+5,-x^7+2*x^6+5*x^5-20*x^4+12*x^3+45*x^2-40*x-15,3*x^7-2*x^6-31*x^5+16*x^4+86*x^3-21*x^2-48*x-3,x^7-11*x^5+36*x^3-x^2-26*x+1,2*x^6-16*x^4+2*x^3+26*x^2-6*x,2*x^6-20*x^4+48*x^2-16,-x^7+4*x^6+7*x^5-40*x^4+101*x^2-30*x-49,-2*x^7-2*x^6+16*x^5+12*x^4-28*x^3-10*x^2+6*x,x^7-9*x^5+4*x^4+20*x^3-25*x^2-2*x+23,-2*x^7+18*x^5-2*x^4-44*x^3+6*x^2+32*x-4,x^7-9*x^5-2*x^4+20*x^3+15*x^2-12*x-13,-2*x^7+2*x^6+16*x^5-20*x^4-24*x^3+38*x^2-2*x,4*x^5-28*x^3+4*x^2+36*x-8,2*x^3-8*x,2*x^7-2*x^6-20*x^5+16*x^4+56*x^3-18*x^2-42*x-12,2*x^7-6*x^6-20*x^5+48*x^4+48*x^3-74*x^2-18*x,x^7-2*x^6-7*x^5+20*x^4+4*x^3-49*x^2+12*x+23,2*x^7+2*x^6-16*x^5-16*x^4+30*x^3+38*x^2-12*x-28,4*x^6-32*x^4+4*x^3+48*x^2-16*x,-x^7+2*x^6+9*x^5-16*x^4-20*x^3+23*x^2+16*x-1,-2*x^7-2*x^6+14*x^5+14*x^4-16*x^3-22*x^2+6,-3*x^7+33*x^5+4*x^4-108*x^3-33*x^2+106*x+29,2,-2*x^7+18*x^5-36*x^3-4*x^2+4*x,x^7+2*x^6-11*x^5-16*x^4+34*x^3+29*x^2-16*x-15,-2*x^7+6*x^6+24*x^5-46*x^4-80*x^3+66*x^2+66*x-2,4*x^5+4*x^4-32*x^3-20*x^2+56*x+4,-x^7-6*x^6+x^5+44*x^4+28*x^3-63*x^2-28*x+1,2*x^6+4*x^5-12*x^4-26*x^3+6*x^2+26*x+4,-2*x^7-2*x^6+12*x^5+12*x^4-14*x^2-22*x,2*x^7-2*x^6-24*x^5+16*x^4+84*x^3-26*x^2-78*x,x^7-2*x^6-11*x^5+16*x^4+32*x^3-25*x^2-20*x+1,2*x^6-2*x^5-18*x^4+18*x^3+34*x^2-28*x+2,3*x^7-4*x^6-25*x^5+36*x^4+42*x^3-75*x^2-4*x+27,-x^7+13*x^5-52*x^3+x^2+58*x+1,-2*x^7-6*x^6+12*x^5+48*x^4-4*x^3-82*x^2-14*x,-4*x^7-4*x^6+48*x^5+36*x^4-176*x^3-88*x^2+176*x+52,2*x^5-16*x^3+24*x,x^7-3*x^5+4*x^4-26*x^3-19*x^2+70*x+13,-6*x^6-2*x^5+44*x^4+12*x^3-58*x^2-12*x,-2*x^6-2*x^5+16*x^4+12*x^3-28*x^2-10*x+6,7*x^7-4*x^6-67*x^5+32*x^4+168*x^3-29*x^2-106*x-43,-3*x^7+2*x^6+31*x^5-20*x^4-92*x^3+47*x^2+76*x-21,-2*x^6+14*x^4-2*x^3-16*x^2+2*x,-2,-3*x^7+4*x^6+29*x^5-34*x^4-68*x^3+57*x^2+18*x+1,-2*x^6+2*x^5+16*x^4-20*x^3-24*x^2+38*x-2,6*x^6+6*x^5-48*x^4-36*x^3+80*x^2+30*x-2,x^7+4*x^6-7*x^5-28*x^4+8*x^3+31*x^2+10*x+13,2*x^2-4,-4*x^7+2*x^6+38*x^5-20*x^4-92*x^3+44*x^2+42*x-14,4*x^7-2*x^6-34*x^5+20*x^4+68*x^3-32*x^2-34*x+2,2*x^6-6*x^5-20*x^4+48*x^3+48*x^2-74*x-18,-2*x^7+4*x^6+16*x^5-32*x^4-20*x^3+48*x^2-22*x,x^7+2*x^6-13*x^5-16*x^4+52*x^3+27*x^2-60*x-13,2*x^6+2*x^5-12*x^4-12*x^3+6*x^2+14*x,x^7+6*x^6-15*x^5-56*x^4+76*x^3+131*x^2-112*x-51,2*x^7+10*x^6-12*x^5-74*x^4+8*x^3+110*x^2+2*x-10,x^7-11*x^5-2*x^4+36*x^3+15*x^2-36*x-11,x^7-7*x^5+2*x^4+14*x^3-9*x^2-22*x+1,-6*x^5-2*x^4+44*x^3+8*x^2-62*x+2,x^7-4*x^6-9*x^5+32*x^4+16*x^3-49*x^2-2*x-1,-4*x^6+32*x^4-48*x^2-4*x-6,-5*x^7+8*x^6+49*x^5-70*x^4-126*x^3+129*x^2+78*x-3,-2*x^6+18*x^4-36*x^2-4*x+4,x^7+2*x^6-15*x^5-16*x^4+68*x^3+31*x^2-88*x-3,-3*x^7+2*x^6+35*x^5-8*x^4-116*x^3-33*x^2+104*x+51,2*x^7-16*x^5+2*x^4+26*x^3-6*x^2,-x^7-6*x^6+15*x^5+48*x^4-80*x^3-83*x^2+132*x+27,2*x^7-24*x^5+80*x^3-64*x,-x^7-2*x^6+7*x^5+12*x^4-8*x^3-7*x^2-4*x-1,5*x^7-6*x^6-51*x^5+52*x^4+136*x^3-89*x^2-76*x+1,x^7-2*x^6-19*x^5+10*x^4+96*x^3+11*x^2-126*x-11,-6*x^6-6*x^5+44*x^4+36*x^3-56*x^2-34*x-10,2*x^7-22*x^5+2*x^4+78*x^3-8*x^2-94*x+2,-x^7+4*x^6+15*x^5-32*x^4-60*x^3+57*x^2+50*x-1,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,2*x^7-4*x^6-24*x^5+32*x^4+80*x^3-54*x^2-62*x+2,6*x^5+2*x^4-44*x^3-16*x^2+58*x+22,-x^7+4*x^6+9*x^5-32*x^4-20*x^3+47*x^2+14*x-1,2*x^6+10*x^5-12*x^4-76*x^3+12*x^2+114*x+6,4*x^7-6*x^6-46*x^5+48*x^4+148*x^3-72*x^2-130*x+6,-2*x^6-6*x^5+12*x^4+48*x^3-4*x^2-82*x-14,4*x^6-28*x^4+4*x^3+36*x^2-8*x,4*x^7-2*x^6-46*x^5+16*x^4+152*x^3-16*x^2-126*x-30,2*x^4-12*x^2+8,-2*x^7-2*x^6+16*x^5+16*x^4-28*x^3-38*x^2+2*x+20,-4*x^7+6*x^6+38*x^5-48*x^4-88*x^3+76*x^2+42*x-2,-6*x^5-2*x^4+44*x^3+12*x^2-58*x-12,-8*x^7+2*x^6+82*x^5-16*x^4-240*x^3+4*x^2+202*x+34,-4*x^6+2*x^5+34*x^4-20*x^3-72*x^2+30*x+34,-3*x^7+6*x^6+31*x^5-48*x^4-84*x^3+71*x^2+50*x-1,8*x^5-64*x^3-4*x^2+100*x+32,6*x^6+2*x^5-50*x^4-8*x^3+94*x^2-2*x-2,-2*x^5+14*x^3-2*x^2-16*x+2,4*x^7-32*x^5+4*x^4+48*x^3-16*x^2,-x^7+4*x^6+3*x^5-36*x^4+32*x^3+65*x^2-82*x+15,x^7-4*x^6-5*x^5+36*x^4-14*x^3-73*x^2+44*x+23,2*x^7+2*x^6-20*x^5-20*x^4+52*x^3+54*x^2-22*x-28,-12*x^6-8*x^5+88*x^4+48*x^3-118*x^2-48*x+2,2*x^7+2*x^6-20*x^5-16*x^4+56*x^3+34*x^2-38*x-24,x^7+2*x^6-11*x^5-16*x^4+40*x^3+27*x^2-48*x+5,-2*x^7-6*x^6+16*x^5+42*x^4-34*x^3-52*x^2+36*x,2*x,6*x^5+4*x^4-50*x^3-18*x^2+88*x+2,2*x^7-4*x^6-22*x^5+32*x^4+66*x^3-42*x^2-46*x-6,-2*x^7+2*x^6+24*x^5-12*x^4-84*x^3-2*x^2+86*x+20,x^7+2*x^6-5*x^5-18*x^4-6*x^3+43*x^2+12*x-1,2*x^7-2*x^6-20*x^5+20*x^4+52*x^3-54*x^2-30*x+40,4*x^7-2*x^6-36*x^5+20*x^4+84*x^3-40*x^2-56*x+2,-x^7-4*x^6+19*x^5+36*x^4-98*x^3-81*x^2+110*x+45,4*x^6+4*x^5-32*x^4-20*x^3+56*x^2+4*x,2*x^5+2*x^4-12*x^3-12*x^2+6*x+14,-3*x^7-8*x^6+19*x^5+56*x^4-12*x^3-73*x^2-18*x+3,-2*x^7+2*x^6+36*x^5-8*x^4-172*x^3-22*x^2+198*x+36,2*x^7+4*x^6-12*x^5-26*x^4+6*x^3+26*x^2+4*x,-2*x^7+12*x^5-4*x^4+10*x^3+12*x^2-60*x,-2*x^6+2*x^5+16*x^4-16*x^3-28*x^2+14*x+22,-x^7+13*x^5+4*x^4-50*x^3-21*x^2+50*x+5,-4*x^7+2*x^6+38*x^5-20*x^4-96*x^3+40*x^2+54*x-2,4*x^7+6*x^6-44*x^5-52*x^4+154*x^3+114*x^2-170*x-36,-x^7+2*x^6+5*x^5-20*x^4+12*x^3+45*x^2-40*x-15,2*x^7-2*x^6-28*x^5+16*x^4+116*x^3-26*x^2-118*x-4,2*x^7-2*x^6-18*x^5+18*x^4+34*x^3-28*x^2+2*x,3*x^7-2*x^6-31*x^5+16*x^4+86*x^3-21*x^2-48*x-3,-5*x^7+6*x^6+51*x^5-50*x^4-140*x^3+79*x^2+80*x-1,4*x^7-2*x^6-38*x^5+12*x^4+92*x^3+24*x^2-50*x-82,x^7-11*x^5+36*x^3-x^2-26*x+1,4*x^6+4*x^5-32*x^4-20*x^3+56*x^2+4,-4*x^7-10*x^6+38*x^5+76*x^4-108*x^3-124*x^2+110*x+30,2*x^6-16*x^4+2*x^3+26*x^2-6*x,-4*x^6-8*x^5+32*x^4+52*x^3-60*x^2-56*x+4,-2*x^7-2*x^6+28*x^5+24*x^4-116*x^3-74*x^2+134*x+32,2*x^6-20*x^4+48*x^2-16,-6*x^7+62*x^5-188*x^3-18*x^2+176*x+34,-x^7+10*x^6+15*x^5-78*x^4-54*x^3+129*x^2+40*x-1,-x^7+4*x^6+7*x^5-40*x^4+101*x^2-30*x-49,-6*x^7-2*x^6+56*x^5+16*x^4-146*x^3-36*x^2+116*x+24,x^7-6*x^6-13*x^5+48*x^4+44*x^3-77*x^2-32*x-1,-2*x^7-2*x^6+16*x^5+12*x^4-28*x^3-10*x^2+6*x,x^7+4*x^6-9*x^5-28*x^4+28*x^3+31*x^2-46*x-1,-5*x^7+12*x^6+47*x^5-100*x^4-106*x^3+165*x^2+46*x-5,x^7-9*x^5+4*x^4+20*x^3-25*x^2-2*x+23,5*x^7-8*x^6-53*x^5+64*x^4+152*x^3-101*x^2-102*x+3,-4*x^7+38*x^5+2*x^4-92*x^3-12*x^2+46*x-2,-2*x^7+18*x^5-2*x^4-44*x^3+6*x^2+32*x-4,-4*x^7+2*x^6+38*x^5-16*x^4-92*x^3+12*x^2+46*x+14,-2*x,x^7-9*x^5-2*x^4+20*x^3+15*x^2-12*x-13,5*x^7-2*x^6-57*x^5+16*x^4+190*x^3-13*x^2-168*x-43,-4*x^6-4*x^5+36*x^4+20*x^3-88*x^2+40,-2*x^7+2*x^6+16*x^5-20*x^4-24*x^3+38*x^2-2*x,-8*x^5+60*x^3-4*x^2-88*x+8,2*x^7+2*x^6-8*x^5-4*x^4-32*x^3-38*x^2+74*x+48,4*x^5-28*x^3+4*x^2+36*x-8,3*x^7+6*x^6-17*x^5-44*x^4-4*x^3+69*x^2+40*x-1,x^7+2*x^6-5*x^5-16*x^4-4*x^3+35*x^2+8*x-5,2*x^3-8*x,-6*x^7+6*x^6+68*x^5-48*x^4-228*x^3+74*x^2+222*x-8,6*x^7-14*x^6-64*x^5+116*x^4+184*x^3-194*x^2-122*x+4,2*x^7-2*x^6-20*x^5+16*x^4+56*x^3-18*x^2-42*x-12,-2*x^7+14*x^6+16*x^5-116*x^4-4*x^3+206*x^2-62*x-44,2*x^7-26*x^5+2*x^4+98*x^3-12*x^2-82*x-6,2*x^7-6*x^6-20*x^5+48*x^4+48*x^3-74*x^2-18*x,-4*x^6-6*x^5+30*x^4+36*x^3-44*x^2-18*x-2,-2*x^7-6*x^6+18*x^5+44*x^4-50*x^3-60*x^2+58*x-2,x^7-2*x^6-7*x^5+20*x^4+4*x^3-49*x^2+12*x+23,x^7-5*x^5-8*x^3-x^2+14*x-1,4*x^7-4*x^6-44*x^5+28*x^4+132*x^3-28*x^2-92*x+12,2*x^7+2*x^6-16*x^5-16*x^4+30*x^3+38*x^2-12*x-28,3*x^7+2*x^6-35*x^5-16*x^4+122*x^3+31*x^2-124*x-23,5*x^7-2*x^6-45*x^5+24*x^4+96*x^3-53*x^2-24*x-1,4*x^6-32*x^4+4*x^3+48*x^2-16*x,4*x^7+6*x^6-28*x^5-44*x^4+28*x^3+68*x^2+36*x-2,2*x^7+2*x^6-20*x^5-20*x^4+60*x^3+62*x^2-58*x-56,-x^7+2*x^6+9*x^5-16*x^4-20*x^3+23*x^2+16*x-1,2*x^7-2*x^6-16*x^5+12*x^4+28*x^3+18*x^2-22*x-68,x^7+6*x^6-13*x^5-46*x^4+56*x^3+79*x^2-72*x-11,-2*x^7-2*x^6+14*x^5+14*x^4-16*x^3-22*x^2+6,-6*x^6-2*x^5+44*x^4+8*x^3-62*x^2+2*x,2*x^6-20*x^4+2*x^3+46*x^2-6*x-16,-3*x^7+33*x^5+4*x^4-108*x^3-33*x^2+106*x+29,-6*x^6+6*x^5+52*x^4-52*x^3-104*x^2+82*x+34,-4*x^7+32*x^5-48*x^3-4*x^2-6*x,2,7*x^7-12*x^6-63*x^5+102*x^4+132*x^3-175*x^2-42*x+11,-x^7+4*x^6+7*x^5-36*x^4-4*x^3+81*x^2-6*x-57,-2*x^7+18*x^5-36*x^3-4*x^2+4*x,2*x^7+4*x^6-28*x^5-44*x^4+130*x^3+136*x^2-200*x-80,-x^7-2*x^6+17*x^5+16*x^4-76*x^3-27*x^2+76*x-3,x^7+2*x^6-11*x^5-16*x^4+34*x^3+29*x^2-16*x-15,5*x^7-4*x^6-41*x^5+40*x^4+72*x^3-73*x^2-30*x+3,6*x^7+4*x^6-62*x^5-36*x^4+184*x^3+94*x^2-136*x-46,-2*x^7+6*x^6+24*x^5-46*x^4-80*x^3+66*x^2+66*x-2,6*x^7+6*x^6-52*x^5-40*x^4+112*x^3+54*x^2-50*x-36,-5*x^7+2*x^6+37*x^5-28*x^4-48*x^3+73*x^2+1,4*x^5+4*x^4-32*x^3-20*x^2+56*x+4,-2*x^7-2*x^6+22*x^5+16*x^4-70*x^3-42*x^2+54*x+30,-3*x^7+21*x^5-8*x^4-20*x^3+39*x^2-22*x-35,-x^7-6*x^6+x^5+44*x^4+28*x^3-63*x^2-28*x+1,4*x^7-48*x^5+172*x^3+4*x^2-180*x+8,-9*x^7+6*x^6+93*x^5-44*x^4-264*x^3+17*x^2+196*x+93,2*x^6+4*x^5-12*x^4-26*x^3+6*x^2+26*x+4,-3*x^7-6*x^6+21*x^5+44*x^4-24*x^3-67*x^2+16*x-1,-4*x^7-2*x^6+38*x^5+12*x^4-104*x^3-8*x^2+102*x-18,-2*x^7-2*x^6+12*x^5+12*x^4-14*x^2-22*x,2*x^7+6*x^6-36*x^5-60*x^4+180*x^3+154*x^2-214*x-96,-2*x^7+4*x^6+24*x^5-26*x^4-78*x^3+24*x^2+56*x-2,2*x^7-2*x^6-24*x^5+16*x^4+84*x^3-26*x^2-78*x,3*x^7+2*x^6-25*x^5-16*x^4+52*x^3+41*x^2-24*x-45,-6*x^7-8*x^6+56*x^5+58*x^4-148*x^3-90*x^2+118*x+24,x^7-2*x^6-11*x^5+16*x^4+32*x^3-25*x^2-20*x+1,-3*x^7-6*x^6+29*x^5+56*x^4-80*x^3-133*x^2+64*x+45,-2*x^7+2*x^6+18*x^5-20*x^4-36*x^3+44*x^2-8*x+6,2*x^6-2*x^5-18*x^4+18*x^3+34*x^2-28*x+2,6*x^6+2*x^5-44*x^4-16*x^3+58*x^2+22*x,4*x^7-4*x^6-28*x^5+44*x^4+16*x^3-116*x^2+52*x+64,3*x^7-4*x^6-25*x^5+36*x^4+42*x^3-75*x^2-4*x+27,-2*x^7-2*x^6+16*x^5+20*x^4-24*x^3-58*x^2-18*x+24,2*x^7+10*x^6-12*x^5-76*x^4+12*x^3+114*x^2+6*x,-x^7+13*x^5-52*x^3+x^2+58*x+1,-6*x^7+2*x^6+60*x^5-20*x^4-164*x^3+30*x^2+118*x-4,-3*x^7+33*x^5-4*x^4-108*x^3+27*x^2+90*x-39,-2*x^7-6*x^6+12*x^5+48*x^4-4*x^3-82*x^2-14*x,3*x^7-2*x^6-17*x^5+28*x^4-12*x^3-87*x^2+56*x+35,4*x^7-36*x^5+4*x^4+92*x^3-16*x^2-72*x+16,-4*x^7-4*x^6+48*x^5+36*x^4-176*x^3-88*x^2+176*x+52,-6*x^7+6*x^6+60*x^5-56*x^4-156*x^3+110*x^2+78*x-4,-2*x^7+8*x^6+26*x^5-58*x^4-86*x^3+68*x^2+46*x-2,2*x^5-16*x^3+24*x,4*x^6+2*x^5-34*x^4-4*x^3+68*x^2-30*x-32,-10*x^6-6*x^5+76*x^4+32*x^3-116*x^2-34*x+2,x^7-3*x^5+4*x^4-26*x^3-19*x^2+70*x+13,6*x^7-10*x^6-52*x^5+88*x^4+104*x^3-158*x^2-26*x+28,3*x^7+2*x^6-35*x^5-24*x^4+128*x^3+77*x^2-152*x-51,-6*x^6-2*x^5+44*x^4+12*x^3-58*x^2-12*x,-3*x^7+2*x^6+21*x^5-16*x^4-12*x^3+7*x^2-48*x+29,6*x^7-10*x^6-64*x^5+80*x^4+188*x^3-122*x^2-146*x+8,-2*x^6-2*x^5+16*x^4+12*x^3-28*x^2-10*x+6,-4*x^7+2*x^6+34*x^5-20*x^4-72*x^3+30*x^2+34*x,-3*x^7-4*x^6+43*x^5+36*x^4-186*x^3-83*x^2+202*x+75,7*x^7-4*x^6-67*x^5+32*x^4+168*x^3-29*x^2-106*x-43,2*x^7+2*x^6-16*x^5-16*x^4+24*x^3+26*x^2+2*x,8*x^6-64*x^4-4*x^3+100*x^2+32*x,-3*x^7+2*x^6+31*x^5-20*x^4-92*x^3+47*x^2+76*x-21,2*x^7-2*x^6-18*x^5+24*x^4+34*x^3-78*x^2+22*x+56,-3*x^7+6*x^6+27*x^5-52*x^4-60*x^3+91*x^2+52*x-21,-2*x^6+14*x^4-2*x^3-16*x^2+2*x,-5*x^7+61*x^5+8*x^4-220*x^3-47*x^2+218*x+21,-4*x^7+12*x^6+48*x^5-96*x^4-164*x^3+140*x^2+140*x-4,-2,5*x^7-10*x^6-47*x^5+84*x^4+100*x^3-141*x^2-12*x+1,x^7+4*x^6-x^5-28*x^4-26*x^3+41*x^2+10*x-1,-3*x^7+4*x^6+29*x^5-34*x^4-68*x^3+57*x^2+18*x+1,-4*x^6-14*x^5+22*x^4+100*x^3-4*x^2-134*x-10,6*x^6+2*x^5-52*x^4-16*x^3+96*x^2+26*x-2,-2*x^6+2*x^5+16*x^4-20*x^3-24*x^2+38*x-2,-8*x^7-4*x^6+60*x^5+20*x^4-86*x^3-4*x^2+2*x-12,2*x^7-20*x^5+8*x^4+66*x^3-48*x^2-92*x+24,6*x^6+6*x^5-48*x^4-36*x^3+80*x^2+30*x-2,4*x^5-36*x^3-8*x^2+52*x+12,7*x^7+2*x^6-71*x^5-20*x^4+208*x^3+77*x^2-180*x-59,x^7+4*x^6-7*x^5-28*x^4+8*x^3+31*x^2+10*x+13,-4*x^7-10*x^6+20*x^5+70*x^4+18*x^3-82*x^2-54*x+2,2*x^7-4*x^6-30*x^5+34*x^4+122*x^3-72*x^2-106*x+14,2*x^2-4,10*x^7-2*x^6-114*x^5+6*x^4+384*x^3+70*x^2-372*x-130,6*x^6+4*x^5-50*x^4-18*x^3+88*x^2+2*x,-4*x^7+2*x^6+38*x^5-20*x^4-92*x^3+44*x^2+42*x-14,-2*x^7+4*x^6+18*x^5-38*x^4-40*x^3+80*x^2+40*x-2,8*x^7-76*x^5+8*x^4+204*x^3-36*x^2-188*x+8,4*x^7-2*x^6-34*x^5+20*x^4+68*x^3-32*x^2-34*x+2,-x^7-4*x^6+5*x^5+28*x^4-4*x^3-35*x^2+30*x+17,-x^7+4*x^6+15*x^5-26*x^4-60*x^3+13*x^2+58*x+29,2*x^6-6*x^5-20*x^4+48*x^3+48*x^2-74*x-18,-4*x^7+6*x^6+42*x^5-52*x^4-124*x^3+88*x^2+94*x-2,-3*x^7-8*x^6+41*x^5+76*x^4-184*x^3-189*x^2+254*x+85,-2*x^7+4*x^6+16*x^5-32*x^4-20*x^3+48*x^2-22*x,-x^7+2*x^6+21*x^5-14*x^4-112*x^3+13*x^2+138*x+33,-3*x^7+6*x^6+25*x^5-46*x^4-46*x^3+51*x^2+18*x+1,x^7+2*x^6-13*x^5-16*x^4+52*x^3+27*x^2-60*x-13,4*x^7+4*x^6-40*x^5-28*x^4+120*x^3+44*x^2-112*x-8,-6*x^6+2*x^5+52*x^4-28*x^3-100*x^2+74*x+6,2*x^6+2*x^5-12*x^4-12*x^3+6*x^2+14*x,-2*x^7+18*x^5+2*x^4-42*x^3-16*x^2+14*x+2,-3*x^7-8*x^6+21*x^5+56*x^4-24*x^3-69*x^2-22*x+1,x^7+6*x^6-15*x^5-56*x^4+76*x^3+131*x^2-112*x-51,4*x^7+10*x^6-30*x^5-68*x^4+48*x^3+80*x^2-18*x+2,x^7-2*x^6-27*x^5+2*x^4+160*x^3+59*x^2-238*x-59,2*x^7+10*x^6-12*x^5-74*x^4+8*x^3+110*x^2+2*x-10,-2*x^7-8*x^6+18*x^5+60*x^4-44*x^3-74*x^2+8*x-34,2*x^7-14*x^6-26*x^5+114*x^4+82*x^3-178*x^2-54*x+2,x^7-11*x^5-2*x^4+36*x^3+15*x^2-36*x-11,2*x^7+6*x^6-8*x^5-40*x^4-28*x^3+42*x^2+66*x,-x^7+4*x^6+23*x^5-20*x^4-120*x^3-19*x^2+142*x+35,x^7-7*x^5+2*x^4+14*x^3-9*x^2-22*x+1,4*x^7-4*x^6-52*x^5+24*x^4+200*x^3-4*x^2-220*x-20,2*x^7-10*x^6-16*x^5+80*x^4+12*x^3-130*x^2+46*x+4,-6*x^5-2*x^4+44*x^3+8*x^2-62*x+2,2*x^7+8*x^6-8*x^5-54*x^4-26*x^3+66*x^2+72*x-4,-5*x^7+2*x^6+57*x^5-16*x^4-188*x^3+17*x^2+156*x+17,x^7-4*x^6-9*x^5+32*x^4+16*x^3-49*x^2-2*x-1,-2*x^7+4*x^6+32*x^5-28*x^4-138*x^3+20*x^2+136*x+58,-4*x^7-2*x^6+38*x^5+12*x^4-96*x^3+50*x-2,-4*x^6+32*x^4-48*x^2-4*x-6,-4*x^7+4*x^6+44*x^5-34*x^4-134*x^3+52*x^2+110*x-6,-2*x^7+2*x^6+8*x^5-28*x^4+36*x^3+86*x^2-90*x-52,-5*x^7+8*x^6+49*x^5-70*x^4-126*x^3+129*x^2+78*x-3,-2*x^6+14*x^4-8*x^3-8*x^2+44*x-32,5*x^7-6*x^6-55*x^5+48*x^4+170*x^3-65*x^2-128*x-49,-2*x^6+18*x^4-36*x^2-4*x+4,-6*x^7+14*x^6+56*x^5-116*x^4-116*x^3+186*x^2+26*x-4,-4*x^7+36*x^5-4*x^4-84*x^3+16*x^2+64*x,x^7+2*x^6-15*x^5-16*x^4+68*x^3+31*x^2-88*x-3,-2*x^7+4*x^6+32*x^5-20*x^4-130*x^3-20*x^2+104*x+52,4*x^7+4*x^6-32*x^5-20*x^4+56*x^3+4*x,-3*x^7+2*x^6+35*x^5-8*x^4-116*x^3-33*x^2+104*x+51,-2*x^7-2*x^6+8*x^5+4*x^4+24*x^3+38*x^2-50*x+4,2*x^7-2*x^6-20*x^5+18*x^4+58*x^3-28*x^2-56*x-28,2*x^7-16*x^5+2*x^4+26*x^3-6*x^2,-5*x^7-8*x^6+49*x^5+60*x^4-144*x^3-99*x^2+138*x+29,4*x^7-64*x^5-20*x^4+292*x^3+120*x^2-348*x-104,-x^7-6*x^6+15*x^5+48*x^4-80*x^3-83*x^2+132*x+27,2*x^6+2*x^5-12*x^4-4*x^3+16*x^2-22*x+2,-6*x^7-4*x^6+54*x^5+28*x^4-140*x^3-46*x^2+136*x+2,2*x^7-24*x^5+80*x^3-64*x,4*x^7-4*x^6-28*x^5+40*x^4+16*x^3-76*x^2+60*x-4,6*x^7-16*x^6-66*x^5+124*x^4+192*x^3-178*x^2-128*x+6,-x^7-2*x^6+7*x^5+12*x^4-8*x^3-7*x^2-4*x-1,9*x^7+2*x^6-83*x^5-10*x^4+216*x^3+19*x^2-168*x-25,2*x^7+2*x^6-12*x^5-16*x^4-4*x^3+42*x^2+62*x-48,5*x^7-6*x^6-51*x^5+52*x^4+136*x^3-89*x^2-76*x+1,2*x^7-18*x^5+6*x^4+38*x^3-28*x^2+10*x-10,4*x^7-10*x^6-46*x^5+78*x^4+150*x^3-122*x^2-114*x+6,x^7-2*x^6-19*x^5+10*x^4+96*x^3+11*x^2-126*x-11,-7*x^7+59*x^5-8*x^4-112*x^3+27*x^2+26*x-1,2*x^6+6*x^5-8*x^4-44*x^3-16*x^2+70*x+22,-6*x^6-6*x^5+44*x^4+36*x^3-56*x^2-34*x-10,2*x^7-4*x^6-6*x^5+36*x^4-68*x^3-74*x^2+188*x+26,3*x^7+4*x^6-17*x^5-24*x^4-4*x^3+13*x^2+26*x-1,2*x^7-22*x^5+2*x^4+78*x^3-8*x^2-94*x+2,3*x^7-10*x^6-21*x^5+90*x^4+4*x^3-191*x^2+72*x+91,4*x^6-2*x^5-24*x^4+26*x^3+2*x^2-68*x+10,-x^7+4*x^6+15*x^5-32*x^4-60*x^3+57*x^2+50*x-1,x^7-4*x^6-x^5+28*x^4-44*x^3-17*x^2+78*x-21,-7*x^7+8*x^6+57*x^5-68*x^4-92*x^3+99*x^2-14*x+37,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,4*x^7-14*x^6-42*x^5+116*x^4+128*x^3-190*x^2-110*x+4,8*x^6-12*x^5-72*x^4+104*x^3+152*x^2-168*x-52,2*x^7-4*x^6-24*x^5+32*x^4+80*x^3-54*x^2-62*x+2,-2*x^7+8*x^6+8*x^5-68*x^4+42*x^3+120*x^2-100*x-28,6*x^7-14*x^6-60*x^5+116*x^4+152*x^3-190*x^2-94*x+4,6*x^5+2*x^4-44*x^3-16*x^2+58*x+22,-2*x^2+4,-8*x^7+10*x^6+88*x^5-74*x^4-272*x^3+92*x^2+212*x-8,-x^7+4*x^6+9*x^5-32*x^4-20*x^3+47*x^2+14*x-1,5*x^7-61*x^5-4*x^4+216*x^3+35*x^2-186*x-57,-x^7+13*x^5-2*x^4-52*x^3+13*x^2+56*x-7,2*x^6+10*x^5-12*x^4-76*x^3+12*x^2+114*x+6,-4*x^7-4*x^6+36*x^5+20*x^4-88*x^3+40*x,-2*x^7+10*x^6+14*x^5-86*x^4+158*x^2-48*x+2,4*x^7-6*x^6-46*x^5+48*x^4+148*x^3-72*x^2-130*x+6,3*x^7+4*x^6-27*x^5-32*x^4+64*x^3+49*x^2-42*x+37,-8*x^6+60*x^4-4*x^3-88*x^2+8*x,-2*x^6-6*x^5+12*x^4+48*x^3-4*x^2-82*x-14,6*x^6+6*x^5-40*x^4-36*x^3+32*x^2+42*x+2,-2*x^5+18*x^3-6*x^2-32*x+18,4*x^6-28*x^4+4*x^3+36*x^2-8*x,2*x^7+2*x^6-22*x^5-22*x^4+72*x^3+54*x^2-48*x+2,x^7+14*x^6+3*x^5-104*x^4-52*x^3+155*x^2+60*x-29,4*x^7-2*x^6-46*x^5+16*x^4+152*x^3-16*x^2-126*x-30,x^7+8*x^6-5*x^5-56*x^4+67*x^2+22*x-1,3*x^7-6*x^6-29*x^5+48*x^4+66*x^3-85*x^2-20*x+47,2*x^4-12*x^2+8,-6*x^7+10*x^6+64*x^5-84*x^4-184*x^3+142*x^2+122*x+28,12*x^7-10*x^6-114*x^5+84*x^4+284*x^3-132*x^2-170*x+6,-2*x^7-2*x^6+16*x^5+16*x^4-28*x^3-38*x^2+2*x+20,-12*x^7+10*x^6+106*x^5-88*x^4-220*x^3+144*x^2+82*x+22,-2*x^7+12*x^5-16*x^4+10*x^3+100*x^2-92*x-92,-4*x^7+6*x^6+38*x^5-48*x^4-88*x^3+76*x^2+42*x-2,8*x^6-12*x^5-68*x^4+92*x^3+124*x^2-108*x-12,8*x^7-6*x^6-70*x^5+60*x^4+140*x^3-116*x^2-30*x-2,-6*x^5-2*x^4+44*x^3+12*x^2-58*x-12,-2*x^7+24*x^5-6*x^4-82*x^3+36*x^2+48*x-2,-8*x^7+80*x^5-220*x^3-20*x^2+148*x+44,-8*x^7+2*x^6+82*x^5-16*x^4-240*x^3+4*x^2+202*x+34,-2*x^7+2*x^6+28*x^5-12*x^4-116*x^3+6*x^2+142*x-16,-4*x^7-6*x^6+30*x^5+36*x^4-44*x^3-18*x^2-2*x,-4*x^6+2*x^5+34*x^4-20*x^3-72*x^2+30*x+34,-16*x^6-10*x^5+118*x^4+50*x^3-156*x^2-12*x+2,x^7+2*x^6+7*x^5-8*x^4-88*x^3-9*x^2+100*x+23,-3*x^7+6*x^6+31*x^5-48*x^4-84*x^3+71*x^2+50*x-1,-12*x^6-8*x^5+92*x^4+44*x^3-136*x^2-32*x+12,-3*x^7+4*x^6+37*x^5-28*x^4-140*x^3+19*x^2+146*x+25,8*x^5-64*x^3-4*x^2+100*x+32,-8*x^7+8*x^6+72*x^5-76*x^4-168*x^3+144*x^2+120*x-4,4*x^7-10*x^6-30*x^5+84*x^4+20*x^3-136*x^2+74*x+2,6*x^6+2*x^5-50*x^4-8*x^3+94*x^2-2*x-2,4*x^6+8*x^5-24*x^4-56*x^3+8*x^2+80*x+32,-x^7+4*x^6+17*x^5-34*x^4-74*x^3+53*x^2+58*x-3,-2*x^5+14*x^3-2*x^2-16*x+2,-9*x^7+8*x^6+109*x^5-52*x^4-380*x^3+9*x^2+358*x+97,4*x^7-6*x^6-42*x^5+44*x^4+116*x^3-48*x^2-46*x+6,4*x^7-32*x^5+4*x^4+48*x^3-16*x^2,x^7-12*x^6-9*x^5+100*x^4+16*x^3-181*x^2-22*x+31,-2*x^7+4*x^6+24*x^5-32*x^4-88*x^3+52*x^2+102*x+16,-x^7+4*x^6+3*x^5-36*x^4+32*x^3+65*x^2-82*x+15,6*x^6+2*x^5-44*x^4-8*x^3+60*x^2-2*x-2,2*x^7+10*x^6-10*x^5-78*x^4-16*x^3+130*x^2+64*x+2,x^7-4*x^6-5*x^5+36*x^4-14*x^3-73*x^2+44*x+23,6*x^7-2*x^6-64*x^5+16*x^4+200*x^3-18*x^2-174*x+4,-4*x^7+10*x^6+34*x^5-76*x^4-52*x^3+96*x^2-14*x-2,2*x^7+2*x^6-20*x^5-20*x^4+52*x^3+54*x^2-22*x-28,3*x^7-21*x^5+16*x^3+5*x^2+60*x-3,-2*x^6-6*x^5+20*x^4+44*x^3-44*x^2-34*x-2,-12*x^6-8*x^5+88*x^4+48*x^3-118*x^2-48*x+2,-4*x^7-4*x^6+50*x^5+46*x^4-196*x^3-160*x^2+230*x+158,-6*x^7-2*x^6+56*x^5+12*x^4-150*x^3-14*x^2+124*x-4,2*x^7+2*x^6-20*x^5-16*x^4+56*x^3+34*x^2-38*x-24,2*x^7-20*x^5+2*x^4+46*x^3-6*x^2-16*x,-2*x^6-2*x^5+16*x^4+16*x^3-24*x^2-22*x+2,x^7+2*x^6-11*x^5-16*x^4+40*x^3+27*x^2-48*x+5,-6*x^7+2*x^6+64*x^5-8*x^4-192*x^3-54*x^2+154*x+120,-6*x^7+6*x^6+52*x^5-52*x^4-104*x^3+82*x^2+34*x,-2*x^7-6*x^6+16*x^5+42*x^4-34*x^3-52*x^2+36*x,4*x^7-12*x^6-44*x^5+96*x^4+136*x^3-146*x^2-100*x+16,x^7-8*x^6-19*x^5+64*x^4+80*x^3-125*x^2-58*x+65,2*x,4*x^7-48*x^5+184*x^3+4*x^2-228*x-12,-9*x^7+12*x^6+81*x^5-92*x^4-168*x^3+113*x^2+44*x-1,6*x^5+4*x^4-50*x^3-18*x^2+88*x+2,5*x^7-6*x^6-47*x^5+48*x^4+116*x^3-65*x^2-84*x+1,-x^7+16*x^6+5*x^5-140*x^4+26*x^3+279*x^2-94*x-51,2*x^7-4*x^6-22*x^5+32*x^4+66*x^3-42*x^2-46*x-6,-4*x^7-4*x^6+34*x^5+26*x^4-76*x^3-32*x^2+46*x+2,2*x^7-2*x^6-22*x^5+26*x^4+66*x^3-82*x^2-26*x-2,-2*x^7+2*x^6+24*x^5-12*x^4-84*x^3-2*x^2+86*x+20,-3*x^7+35*x^5+8*x^4-128*x^3-45*x^2+146*x+7,4*x^7-4*x^6-20*x^5+40*x^4-40*x^3-80*x^2+136*x-4,x^7+2*x^6-5*x^5-18*x^4-6*x^3+43*x^2+12*x-1,3*x^7+10*x^6-25*x^5-76*x^4+64*x^3+133*x^2-80*x-81,-3*x^7+20*x^6+25*x^5-172*x^4-16*x^3+331*x^2-70*x-107]];
E[309,4] = [x^5+2*x^4-4*x^3-6*x^2+4*x+1, [1,x,-1,x^2-2,x^4+x^3-5*x^2-3*x+3,-x,-2*x^4-3*x^3+7*x^2+6*x-4,x^3-4*x,1,-x^4-x^3+3*x^2-x-1,2*x^3+2*x^2-6*x-4,-x^2+2,2*x^4+3*x^3-5*x^2-6*x-1,x^4-x^3-6*x^2+4*x+2,-x^4-x^3+5*x^2+3*x-3,x^4-6*x^2+4,-3*x^3-x^2+10*x-4,x,-x^4-2*x^3+4*x^2+7*x-6,-x^4-3*x^3+3*x^2+9*x-5,2*x^4+3*x^3-7*x^2-6*x+4,2*x^4+2*x^3-6*x^2-4*x,3*x^3+x^2-10*x+1,-x^3+4*x,x^4+5*x^3-x^2-13*x+4,-x^4+3*x^3+6*x^2-9*x-2,-1,x^4+4*x^3-4*x^2-14*x+7,-2*x^4-3*x^3+7*x^2+8*x-6,x^4+x^3-3*x^2+x+1,-x^4-3*x^3+3*x^2+9*x-5,-2*x^4-4*x^3+6*x^2+8*x-1,-2*x^3-2*x^2+6*x+4,-3*x^4-x^3+10*x^2-4*x,-2*x^3+4*x^2+14*x-14,x^2-2,-2*x^3-2*x^2+10*x+4,x^2-2*x+1,-2*x^4-3*x^3+5*x^2+6*x+1,x^4+x^3-3*x^2+x+3,-x^4-4*x^3+9*x-2,-x^4+x^3+6*x^2-4*x-2,-x^4-3*x^3-3*x^2+3*x+11,-2*x^4-2*x^3+4*x^2+4*x+6,x^4+x^3-5*x^2-3*x+3,3*x^4+x^3-10*x^2+x,2*x^4+4*x^3-6*x^2-10*x+4,-x^4+6*x^2-4,x^4+6*x^3-4*x^2-21*x+13,3*x^4+3*x^3-7*x^2-1,3*x^3+x^2-10*x+4,x^4-4*x^3-5*x^2+14*x+3,2*x^4+6*x^3-4*x^2-14*x,-x,-2*x^4-6*x^3+6*x^2+18*x-6,2*x^3+4*x^2-5*x-5,x^4+2*x^3-4*x^2-7*x+6,x^4-x^3-4*x^2+2*x+2,3*x^4+4*x^3-14*x^2-13*x+7,x^4+3*x^3-3*x^2-9*x+5,x^4-2*x^3-8*x^2+7*x+3,-x^4-x^3+3*x^2-x+1,-2*x^4-3*x^3+7*x^2+6*x-4,-2*x^4-2*x^3+8*x^2+7*x-6,-3*x^4-5*x^3+7*x^2+7*x+1,-2*x^4-2*x^3+6*x^2+4*x,3*x^4+7*x^3-7*x^2-17*x+3,5*x^4+4*x^3-20*x^2-8*x+11,-3*x^3-x^2+10*x-1,-2*x^4+4*x^3+14*x^2-14*x,-2*x^3+2*x^2+6*x-10,x^3-4*x,-4*x^4-4*x^3+16*x^2+8*x-4,-2*x^4-2*x^3+10*x^2+4*x,-x^4-5*x^3+x^2+13*x-4,2*x^4+5*x^3-10*x^2-13*x+12,4*x^4+10*x^3-12*x^2-30*x+8,x^4-3*x^3-6*x^2+9*x+2,x^4-2*x^2+9*x-4,x^4+7*x^3+x^2-19*x+9,1,-2*x^4-4*x^3+3*x^2+2*x+1,3*x^4+4*x^3-10*x^2-13*x-1,-x^4-4*x^3+4*x^2+14*x-7,-6*x^4-4*x^3+30*x^2+8*x-20,-x^4-7*x^3-3*x^2+15*x+1,2*x^4+3*x^3-7*x^2-8*x+6,-2*x^4-8*x^3+4*x^2+22*x+2,2*x^4-4*x^3-10*x^2+20*x+6,-x^4-x^3+3*x^2-x-1,3*x^4+5*x^3-11*x^2-13*x-2,-5*x^4-4*x^3+17*x^2+8*x-5,x^4+3*x^3-3*x^2-9*x+5,2*x^3+2*x^2-4*x-2,-6*x^4-8*x^3+26*x^2+18*x-22,2*x^4+4*x^3-6*x^2-8*x+1,3*x^4+10*x^3-4*x^2-23*x+1,4*x^4-15*x^2+9*x-1,2*x^3+2*x^2-6*x-4,-5*x^4-5*x^3+20*x^2+13*x-11,-3*x^4-x^3+9*x^2-5*x-3,3*x^4+x^3-10*x^2+4*x,-1,-4*x^4-7*x^3+8*x^2+17*x+3,2*x^3-4*x^2-14*x+14,2*x^4+4*x^3-2*x^2-8*x-2,-3*x^4-3*x^3+7*x^2-x+1,-x^2+2,2*x^2-8,-2*x^4-2*x^3+6*x^2+2*x+2,2*x^3+2*x^2-10*x-4,-4*x^3+3*x^2+23*x-14,-5*x^4-5*x^3+21*x^2+7*x-13,-x^2+2*x-1,3*x^4+x^3-15*x^2+x+11,x^4+6*x^3-6*x^2-18*x+11,2*x^4+3*x^3-5*x^2-6*x-1,-2*x^4-2*x^3+5*x^2-5*x-3,9*x^4+10*x^3-38*x^2-15*x+28,-x^4-x^3+3*x^2-x-3,-4*x^4-16*x^3+4*x^2+44*x+5,-4*x^4-4*x^3+13*x^2-x-1,x^4+4*x^3-9*x+2,3*x^4+5*x^3-13*x^2-13*x+11,-x^4-5*x^3-3*x^2+9*x+7,x^4-x^3-6*x^2+4*x+2,x^4+5*x^3-x^2-7*x+1,6*x^4+8*x^3-17*x^2-14*x+4,x^4+3*x^3+3*x^2-3*x-11,x^4-5*x^3-11*x^2+13*x+3,2*x^4+x^3-5*x^2-13,2*x^4+2*x^3-4*x^2-4*x-6,9*x^4+11*x^3-39*x^2-25*x+32,x^4+5*x^3+x^2-9*x-3,-x^4-x^3+5*x^2+3*x-3,2*x^3+2*x^2-x-5,-x^4-2*x^3+10*x^2+13*x-16,-3*x^4-x^3+10*x^2-x,4*x^3-20*x-4,8*x^4+10*x^3-34*x^2-20*x+30,-2*x^4-4*x^3+6*x^2+10*x-4,-2*x^4+2*x^3+6*x^2-10*x,-8*x^4-16*x^3+18*x^2+44*x+8,x^4-6*x^2+4,-4*x^4-6*x^3+20*x^2+18*x-22,4*x^4-16*x^2+12*x+4,-x^4-6*x^3+4*x^2+21*x-13,2*x^4+6*x^3-4*x^2-12*x-6,3*x^4+14*x^3-6*x^2-39*x+12,-3*x^4-3*x^3+7*x^2+1,-2*x^2-6*x+12,x^4-2*x^3-3*x^2+8*x-4,-3*x^3-x^2+10*x-4,2*x^4+4*x^3-6*x^2-8*x-4,-5*x^4-5*x^3+25*x^2+13*x-21,-x^4+4*x^3+5*x^2-14*x-3,2*x^4-2*x^3-4*x^2+16*x-8,-2*x^4+2*x^3+15*x^2-8*x-1,-2*x^4-6*x^3+4*x^2+14*x,3*x^4+3*x^3-7*x^2+3*x-7,-3*x^4-x^3+17*x^2-3*x-16,x,6*x^4+5*x^3-29*x^2-10*x+24,2*x^4+3*x^3-10*x^2-9*x+6,2*x^4+6*x^3-6*x^2-18*x+6,-2*x^4+2*x^3+5*x^2-13*x-3,4*x^3+4*x^2-20*x-8,-2*x^3-4*x^2+5*x+5,-3*x^4-16*x^3+6*x^2+47*x-4,8*x^4+6*x^3-28*x^2+4*x+6,-x^4-2*x^3+4*x^2+7*x-6,-3*x^4-x^3+15*x^2-x-21,-10*x^4-16*x^3+38*x^2+40*x-18,-x^4+x^3+4*x^2-2*x-2,-8*x^4-11*x^3+31*x^2+16*x-30,2*x^2+2*x-10,-3*x^4-4*x^3+14*x^2+13*x-7,-8*x^4-2*x^3+32*x^2-2*x-2,-2*x^4-5*x^3+3*x^2+16*x+2,-x^4-3*x^3+3*x^2+9*x-5,4*x^4+10*x^3-12*x^2-38*x+4,-x^4+x^3+5*x^2-14*x-3,-x^4+2*x^3+8*x^2-7*x-3,-5*x^3-2*x^2+13*x+5,-2*x^4+2*x^3+6*x^2-22*x+2,x^4+x^3-3*x^2+x-1,4*x^4+10*x^3-16*x^2-26*x+12,-2*x^4-6*x^3+8*x^2+18*x-8,2*x^4+3*x^3-7*x^2-6*x+4,4*x^4+2*x^3-18*x^2+2*x+6,-2*x^4+12*x^2+2*x-4,2*x^4+2*x^3-8*x^2-7*x+6,-6*x^4-12*x^3+14*x^2+24*x+8,4*x^4+8*x^3-5*x^2-11*x-3,3*x^4+5*x^3-7*x^2-7*x-1,-10*x^4-11*x^3+41*x^2+25*x-30,-5*x^4-17*x^3+9*x^2+49*x-7,2*x^4+2*x^3-6*x^2-4*x,3*x^4+7*x^3-3*x^2-17*x-13,-x^4-6*x^3-3*x^2+9*x+7,-3*x^4-7*x^3+7*x^2+17*x-3,5*x^4-3*x^3-23*x^2+9*x+3,7*x^4+10*x^3-30*x^2-25*x+32,-5*x^4-4*x^3+20*x^2+8*x-11,-2*x^4+4*x^3+22*x^2-2*x-14,-x,3*x^3+x^2-10*x+1,-x^4+3*x^2-9*x-2,6*x^4+6*x^3-24*x^2-14*x+18,2*x^4-4*x^3-14*x^2+14*x,-2*x^3-2*x^2+4*x-16,-4*x^4-6*x^3+12*x^2+18*x-2,2*x^3-2*x^2-6*x+10,3*x^4-5*x^3-19*x^2+13*x+3,11*x^4+23*x^3-31*x^2-47*x+27,-x^3+4*x,8*x^4+10*x^3-34*x^2-20*x+30,2*x^3-8*x,4*x^4+4*x^3-16*x^2-8*x+4,6*x^4+10*x^3-22*x^2-26*x+14,x^4+x^3-x^2-11*x-2,2*x^4+2*x^3-10*x^2-4*x,5*x^4+10*x^3-20*x^2-35*x+18,-4*x^4-x^3+15*x^2-4*x+10,x^4+5*x^3-x^2-13*x+4,5*x^4+x^3-23*x^2+7*x+5,2*x^4+2*x^3-16*x^2-12*x+12,-2*x^4-5*x^3+10*x^2+13*x-12,-3*x^4+4*x^3+14*x^2-17*x-1,-5*x^4-3*x^3+19*x^2-x-3,-4*x^4-10*x^3+12*x^2+30*x-8,2*x^4-4*x^2+3*x-5,8*x^4+16*x^3-30*x^2-40*x+16,-x^4+3*x^3+6*x^2-9*x-2,2*x^4+2*x^3-14*x^2-10*x+18,-4*x^4-11*x^3+11*x^2+31*x-12,-x^4+2*x^2-9*x+4,-8*x^4-2*x^3+39*x^2-8*x-9,2*x^4-x^3-5*x^2+12*x-10,-x^4-7*x^3-x^2+19*x-9,-4*x^4+18*x^2-4,-8*x^4-12*x^3+20*x^2+21*x+4,-1,2*x^4+x^3-9*x^2+x-2,15*x^4+17*x^3-67*x^2-37*x+53,2*x^4+4*x^3-3*x^2-2*x-1,-4*x^4+x^3+15*x^2-8*x-2,x^4+x^3-x^2+x-5,-3*x^4-4*x^3+10*x^2+13*x+1,-3*x^4-7*x^3+3*x^2+11*x+1,-4*x^4-2*x^3+24*x^2+2*x-26,x^4+4*x^3-4*x^2-14*x+7,-4*x^4-16*x^3+10*x^2+44*x,3*x^4+3*x^3-x^2-3*x-1,6*x^4+4*x^3-30*x^2-8*x+20,11*x^3+6*x^2-34*x+6,-x^4-5*x^3+9*x^2+29*x-17,x^4+7*x^3+3*x^2-15*x-1,-14*x^3-12*x^2+46*x,-x^4+3*x^3+5*x^2-15*x-3,-2*x^4-3*x^3+7*x^2+8*x-6,-3*x^4+3*x^3+12*x^2-21*x-2,-6*x^4-16*x^3+14*x^2+30*x-4,2*x^4+8*x^3-4*x^2-22*x-2,-2*x^4-6*x^3-2*x^2+6*x+10,-7*x^4-3*x^3+29*x^2-4*x-9,-2*x^4+4*x^3+10*x^2-20*x-6,-3*x^4-9*x^3+11*x^2+27*x-7,-3*x^4+20*x^2+11*x-22,x^4+x^3-3*x^2+x+1,3*x^4+7*x^3-13*x^2-29*x+9,-8*x^4-6*x^3+39*x^2+11*x-22,-3*x^4-5*x^3+11*x^2+13*x+2,6*x^3+7*x^2-12*x+1,-6*x^4-16*x^3+20*x^2+44*x-10,5*x^4+4*x^3-17*x^2-8*x+5,-2*x^4-4*x^3+10*x^2+8*x+4,4*x^4-20*x^2-4*x,-x^4-3*x^3+3*x^2+9*x-5,-2*x^4-10*x^3+26*x-8,9*x^4+11*x^3-29*x^2-15*x+19,-2*x^3-2*x^2+4*x+2,3*x^4+3*x^3-5*x^2-3*x-15,6*x^4+2*x^3-26*x^2-4*x+22,6*x^4+8*x^3-26*x^2-18*x+22,-14*x^3-4*x^2+40*x+8,7*x^4+9*x^3-23*x^2-7*x+18,-2*x^4-4*x^3+6*x^2+8*x-1,x^4+10*x^3-41*x+11,2*x^4+4*x^3-6*x^2-6*x+4,-3*x^4-10*x^3+4*x^2+23*x-1,8*x^3+4*x^2-28*x+4,-3*x^4-5*x^3+5*x^2+9*x+17,-4*x^4+15*x^2-9*x+1,3*x^4+13*x^3-3*x^2-29*x+25,6*x^4+8*x^3-20*x^2-22*x-2,-2*x^3-2*x^2+6*x+4,8*x^4+6*x^3-21*x^2-3,-7*x^4-10*x^3+16*x^2+29*x+5,5*x^4+5*x^3-20*x^2-13*x+11,-12*x^4-20*x^3+54*x^2+64*x-40,-2*x^3-6*x^2+12*x,3*x^4+x^3-9*x^2+5*x+3,-8*x^4-9*x^3+34*x^2+18*x-25,-3*x^4+7*x^3+23*x^2-23*x-1,-3*x^4-x^3+10*x^2-4*x,-9*x^4-15*x^3+29*x^2+45*x-11,-8*x^4-18*x^3+28*x^2+48*x-18,1,5*x^4+5*x^3-17*x^2-x+5,5*x^4+2*x^3-20*x^2+x+17,4*x^4+7*x^3-8*x^2-17*x-3,x^4+10*x^3+8*x^2-29*x-6,-6*x^4+4*x^3+28*x^2-16*x-2,-2*x^3+4*x^2+14*x-14,4*x^4+7*x^3-16*x^2-11*x+10,6*x^4+9*x^3-21*x^2-12*x+6,-2*x^4-4*x^3+2*x^2+8*x+2,8*x^4+10*x^3-28*x^2-26*x+16,-5*x^4-9*x^3+19*x^2+19*x-21,3*x^4+3*x^3-7*x^2+x-1,5*x^4+5*x^3-21*x^2-4*x+3,x^4+13*x^3-7*x^2-49*x+34,x^2-2,-3*x^4-4*x^3+10*x^2+23*x+4,-7*x^4-5*x^3+26*x^2-6,-2*x^2+8,3*x^4+6*x^3-3*x^2-6*x-4,-4*x^4-6*x^3+18*x^2+14*x-26,2*x^4+2*x^3-6*x^2-2*x-2,-3*x^4+x^3+25*x^2-11*x-29,-11*x^3-5*x^2+31*x+4,-2*x^3-2*x^2+10*x+4,4*x^4+4*x^3-20*x^2-8*x,x^4-3*x^3-17*x^2-x+21,4*x^3-3*x^2-23*x+14,-3*x^3-15*x^2+25,-10*x^4-6*x^3+29*x^2+8*x+3,5*x^4+5*x^3-21*x^2-7*x+13,2*x^4+12*x^3-8*x^2-42*x+32,6*x^4+10*x^3-22*x^2-26*x+14,x^2-2*x+1,-7*x^4-5*x^3+43*x^2+13*x-48,7*x^4+17*x^3-13*x^2-39*x+1,-3*x^4-x^3+15*x^2-x-11,4*x^4-2*x^3-20*x^2+22*x+10,-6*x^4-11*x^3+7*x^2+20*x+19,-x^4-6*x^3+6*x^2+18*x-11,4*x^4+8*x^3-16*x^2-16*x+24,5*x^4-x^3-32*x^2+2*x+8,-2*x^4-3*x^3+5*x^2+6*x+1,4*x^4+18*x^3-6*x^2-54*x-4,3*x^4+3*x^3-9*x^2+x-9,2*x^4+2*x^3-5*x^2+5*x+3,-8*x^4-12*x^3+36*x^2+36*x-32,10*x^4+8*x^3-30*x^2-10*x-4,-9*x^4-10*x^3+38*x^2+15*x-28,-x^4-5*x^3+4*x^2+10*x+2,-3*x^4-3*x^3+15*x^2+19*x-3,x^4+x^3-3*x^2+x+3,8*x^4+15*x^3-33*x^2-48*x+25,2*x^4+4*x^3-14*x^2-12*x-4,4*x^4+16*x^3-4*x^2-44*x-5,-3*x^4-9*x^3+2*x^2+27*x+5,4*x^4-4*x^3-20*x^2+20*x-12,4*x^4+4*x^3-13*x^2+x+1,-9*x^4-18*x^3+20*x^2+39*x+6,5*x^4+6*x^3-21*x^2-11*x+10,-x^4-4*x^3+9*x-2,6*x^4-2*x^3-34*x^2+10*x+2,2*x^4+2*x^3-6*x^2-8*x-14,-3*x^4-5*x^3+13*x^2+13*x-11,8*x^4+7*x^3-33*x^2-20*x+10,2*x^4-2*x^2-4*x-4,x^4+5*x^3+3*x^2-9*x-7,-2*x^4-4*x^3+2*x^2+8*x+6,-3*x^4+5*x^3+11*x^2-19*x-4,-x^4+x^3+6*x^2-4*x-2,-3*x^4-9*x^3+15*x^2+33*x-25,6*x^4+14*x^3-26*x^2-46*x+40,-x^4-5*x^3+x^2+7*x-1,4*x^4+4*x^3-10*x^2+4*x+2,-8*x^4-8*x^3+32*x^2+14*x-8,-6*x^4-8*x^3+17*x^2+14*x-4,8*x^4+8*x^3-40*x^2-16*x+44,-10*x^3-12*x^2+32*x+6,-x^4-3*x^3-3*x^2+3*x+11,-6*x^4-9*x^3+21*x^2+27*x-6,-6*x^4-16*x^3+16*x^2+44*x-8,-x^4+5*x^3+11*x^2-13*x-3,-x^4-x^3+3*x^2+11*x-16,x^4+x^3-5*x^2-8*x+12,-2*x^4-x^3+5*x^2+13,-7*x^4-11*x^3+19*x^2+13*x+5,-12*x^4-14*x^3+40*x^2+8*x-20,-2*x^4-2*x^3+4*x^2+4*x+6,-4*x^3+2*x^2+8*x-14,x^4+9*x^3+x^2-25*x-3,-9*x^4-11*x^3+39*x^2+25*x-32,6*x^4+3*x^3-37*x^2-15*x+23,-4*x^4-9*x^3+9*x^2+22*x+4,-x^4-5*x^3-x^2+9*x+3,-x^4+3*x^3+5*x^2-15*x-3,-7*x^4-x^3+21*x^2-7*x+1,x^4+x^3-5*x^2-3*x+3,-4*x^4-2*x^3+17*x^2+4*x-7,12*x^4+24*x^3-28*x^2-60*x-16,-2*x^3-2*x^2+x+5,-7*x^3-11*x^2+20*x+10,8*x^4+14*x^3-14*x^2-6*x+2,x^4+2*x^3-10*x^2-13*x+16,-x^2+2,x^4+12*x^2+23*x-40,3*x^4+x^3-10*x^2+x,-x^4+x^3+9*x^2+7*x+5,10*x^4+13*x^3-31*x^2-32*x-5,-4*x^3+20*x+4,-6*x^4+22*x^2-6*x-6,5*x^4+6*x^3-22*x^2-19*x+12,-8*x^4-10*x^3+34*x^2+20*x-30,-5*x^4-5*x^3+9*x^2+x+5,-2*x^4-2*x^3+4*x^2-16*x,2*x^4+4*x^3-6*x^2-10*x+4,-2*x^4-12*x^3-2*x^2+30*x+8,-4*x^4-13*x^3+9*x^2+38*x-32,2*x^4-2*x^3-6*x^2+10*x,7*x^4-26*x^2+27*x,-5*x^4-x^3+17*x^2-7*x-5,8*x^4+16*x^3-18*x^2-44*x-8,x^4+13*x^3+19*x^2-17*x-11,x^4+2*x^3+12*x^2+9*x-31,-x^4+6*x^2-4,6*x^4+8*x^3-8*x^2-4*x-22,-6*x^4-2*x^3+28*x^2-2*x-8,4*x^4+6*x^3-20*x^2-18*x+22,2*x^4-12*x^2+16,2*x^4-7*x^3-5*x^2+28*x-16,-4*x^4+16*x^2-12*x-4,2*x^4+6*x^3+2*x^2-18*x-24,2*x^4+6*x^3-2*x^2-14*x-10,x^4+6*x^3-4*x^2-21*x+13,-x^4+3*x^3-5*x^2-6*x-1,-4*x^4-10*x^3+14*x^2+38*x-6,-2*x^4-6*x^3+4*x^2+12*x+6,-6*x^4+2*x^3+22*x^2-34*x-2,-5*x^2-2*x-5,-3*x^4-14*x^3+6*x^2+39*x-12,7*x^4+7*x^3-34*x^2-20*x+32,7*x^4+17*x^3-21*x^2-53*x-1,3*x^4+3*x^3-7*x^2-1,6*x^4+10*x^3-20*x^2-26*x+6,x^4+7*x^3-5*x^2-29*x+21,2*x^2+6*x-12,-2*x^4-8*x^3+4*x-2,-6*x^4-2*x^3+30*x^2+4*x,-x^4+2*x^3+3*x^2-8*x+4,-4*x^3-8*x^2+2*x+20,10*x^4+2*x^3-35*x^2+11*x+3,3*x^3+x^2-10*x+4,x^4-3*x^3-x^2+15*x-17,-2*x^4+6*x^3+2*x^2-38*x+16,-2*x^4-4*x^3+6*x^2+8*x+4,3*x^4-7*x^3-29*x^2+11*x+35,-6*x^4-8*x^3+27*x^2+23*x-24,5*x^4+5*x^3-25*x^2-13*x+21,2*x^3+8*x^2-16*x-8,-3*x^4-2*x^3+26*x^2+9*x-40,x^4-4*x^3-5*x^2+14*x+3,-4*x^4-4*x^3+18*x^2+2*x-30,-2*x^4-6*x^3+2*x^2+10*x-2,-2*x^4+2*x^3+4*x^2-16*x+8,x^4-x^3-3*x^2+14*x+10,6*x^4+18*x^3-2*x^2-50*x-38,2*x^4-2*x^3-15*x^2+8*x+1,-3*x^4-14*x^3+16*x^2+49*x-38,-4*x^4-13*x^3+20*x^2+53*x-48,2*x^4+6*x^3-4*x^2-14*x,-5*x^4+3*x^3+24*x^2-18*x-2,-4*x^4+16*x^2-16*x-10,-3*x^4-3*x^3+7*x^2-3*x+7,4*x^4+28*x^3+6*x^2-80*x-16,8*x^4+2*x^3-24*x^2+12*x+4,3*x^4+x^3-17*x^2+3*x+16,12*x^4+20*x^3-35*x^2-52*x-2,-x^4-11*x^3-19*x^2+11*x+21,-x,-4*x^4-12*x^3+8*x^2+42*x+10,5*x^4+7*x^3-13*x^2-8*x,-6*x^4-5*x^3+29*x^2+10*x-24,-13*x^4-7*x^3+53*x^2-7*x-15,-5*x^4-14*x^3+16*x^2+35*x-33,-2*x^4-3*x^3+10*x^2+9*x-6,3*x^4+14*x^3-16*x^2-43*x+36,9*x^4-x^3-32*x^2+14*x+4,-2*x^4-6*x^3+6*x^2+18*x-6,-7*x^4-7*x^3+33*x^2+17*x-23,12*x^4+24*x^3-46*x^2-62*x+44,2*x^4-2*x^3-5*x^2+13*x+3,-x^4+5*x^3+9*x^2-13*x-1,x^4+x^3-x^2-5*x-11]];

E[310,1] = [x^2+2*x-2, [1,-1,x,1,-1,-x,-2*x-2,-1,-2*x-1,1,-x-2,x,x-2,2*x+2,-x,1,-4,2*x+1,2*x+4,-1,2*x-4,x+2,2*x-2,-x,1,-x+2,-4,-2*x-2,x,x,-1,-1,-2,4,2*x+2,-2*x-1,-x-6,-2*x-4,-4*x+2,1,2*x-4,-2*x+4,-x+4,-x-2,2*x+1,-2*x+2,-2*x-2,x,5,-1,-4*x,x-2,x-6,4,x+2,2*x+2,4,-x,2*x+4,-x,7*x+4,1,-2*x+10,1,-x+2,2,6*x+4,-4,-6*x+4,-2*x-2,-8*x-8,2*x+1,-6*x,x+6,x,2*x+4,2*x+8,4*x-2,2*x+16,-1,2*x+3,-2*x+4,-x-4,2*x-4,4,x-4,-2*x+2,x+2,4*x-2,-2*x-1,6*x,2*x-2,-x,2*x+2,-2*x-4,-x,4,-5,x+6,1,-4*x-14,4*x,4*x,-x+2,-2*x+4,-x+6,4,-4,-2*x-14,-x-2,-4*x-2,-2*x-2,8,-4,-2*x+2,x,7*x-2,-2*x-4,8*x+8,x,2*x-5,-7*x-4,-8*x+4,-1,-1,2*x-10,-8*x-10,-1,6*x-2,x-2,6*x+8,-2,-4*x-16,-6*x-4,4,4,-12*x-12,6*x-4,5*x+10,2*x+2,2*x-4,8*x+8,2*x+2,-2*x-1,-x,6*x,5*x,-x-6,-10*x-6,-x,2*x,-2*x-4,8*x+4,-2*x-8,1,-4*x+2,-8*x-14,-2*x-16,-8*x+2,1,8*x-4,-2*x-3,-2*x-8,2*x-4,2,x+4,10*x+10,-2*x+4,-6*x-7,-4,-2*x-12,-x+4,-2,2*x-2,-2*x-2,-x-2,4,-4*x+2,-x-14,2*x+1,-7*x-4,-6*x,-10*x+14,-2*x+2,x+6,x,4*x+8,-2*x-2,8*x+8,2*x+4,-2,x,8*x+10,-4,4*x-2,5,-x+22,-x-6,-20,-1,-8*x+12,4*x+14,2*x-4,-4*x,-2*x+4,-4*x,10*x-6,x-2,-4*x-12,2*x-4,4*x+24,x-6,8*x-16,-4,x-4,4,2*x+2,2*x+14,12*x-12,x+2,-4*x+8,4*x+2,10,2*x+2,-2*x-1,-8,-2*x-12,4,-11*x-16,2*x-2,4*x+4,-x,12*x+16,-7*x+2,2*x+2,2*x+4,12*x+4,-8*x-8,-2*x-8,-x,-14*x-10,-2*x+5,-x+16,7*x+4,-5,8*x-4,-4*x-4,1,-2*x-2,1,-15*x-10,-2*x+10,2*x,8*x+10,4*x,1,4*x+14,-6*x+2,10*x+16,-x+2,3*x-4,-6*x-8,12*x+18,2,-x+6,4*x+16,-10*x+8,6*x+4,5*x-4,-4,-2*x-4,-4,-12*x+12,12*x+12,-x-2,-6*x+4,-7*x-22,-5*x-10,2*x+1,-2*x-2,10,-2*x+4,2*x+8,-8*x-8,-4,-2*x-2,12*x,2*x+1,-1,x,4*x,-6*x,-10*x-10,-5*x,-2*x-4,x+6,4*x+8,10*x+6,-10*x+8,x,-10*x-4,-2*x,-6*x-8,2*x+4,-7*x-4,-8*x-4,-12*x-16,2*x+8,-8*x+8,-1,-4*x+16,4*x-2,12*x+20,8*x+14,2*x-10,2*x+16,2*x+22,8*x-2,-2,-1,4*x,-8*x+4,-8*x-16,2*x+3,x-2,2*x+8,-10*x-4,-2*x+4,12,-2,x-14,-x-4,9*x+10,-10*x-10,-6*x-4,2*x-4,6*x-16,6*x+7,8*x,4,x+2,2*x+12,4*x+4,x-4,6*x-4,2,-11*x-12,-2*x+2,2*x-30,2*x+2,-4*x+8,x+2,-6*x-12,-4,8*x+8,4*x-2,-8*x+16,x+14,-4*x-30,-2*x-1,8*x+5,7*x+4,-9*x+4,6*x,6*x,10*x-14,2*x-30,2*x-2,14*x-4,-x-6,14*x+8,-x,10*x+2,-4*x-8,-x,2*x+2,-4*x+2,-8*x-8,-10*x,-2*x-4,6*x-16,2,-2,-x,-2*x-8,-8*x-10,-11*x,4,3*x+24,-4*x+2,-8*x+8,-5,-4*x+12,x-22,-2*x-16,x+6,14*x+6,20,-8*x-8,1,-2*x-6,8*x-12,-x+2,-4*x-14,-2*x-3,-2*x+4,6*x+14,4*x,2*x-10,2*x-4,12*x-24,4*x,-4*x-16,-10*x+6,x+4,-x+2,10,4*x+12,-6*x,-2*x+4,14*x+22,-4*x-24,-2*x+10,-x+6,-4,-8*x+16,6*x-36,4,-2*x+4,-x+4,12*x+18,-4,12*x+8,-2*x-2,2*x-2,-2*x-14,-4*x,-12*x+12,22,-x-2,-10*x-5,4*x-8,-4*x-32,-4*x-2,-4*x+2,-10,14*x-20,-2*x-2,10*x+22,2*x+1,4*x+4,8,-4*x+4,2*x+12,-6*x,-4,4*x+12,11*x+16,16,-2*x+2,x-28,-4*x-4,-6*x-6,x,x,-12*x-16,-8*x+12,7*x-2,4*x-32,-2*x-2,2*x-16,-2*x-4,-4*x-6,-12*x-4,2*x+4,8*x+8,15*x+2,2*x+8,0,x,-2*x+10,14*x+10,-20*x+16,2*x-5,-4,x-16,-10,-7*x-4,-4*x-4,5,x+18,-8*x+4,-4*x,4*x+4,-x-6,-1,48,2*x+2,7*x+14,-1]];
E[310,2] = [x^2-6, [1,-1,x,1,1,-x,-2,-1,3,-1,x+2,x,x+2,2,x,1,-2*x,-3,-2*x,1,-2*x,-x-2,2,-x,1,-x-2,0,-2,-x+8,-x,-1,-1,2*x+6,2*x,-2,3,-x+2,2*x,2*x+6,-1,0,2*x,-x-8,x+2,3,-2,6,x,-3,-1,-12,x+2,-3*x-2,0,x+2,2,-12,x-8,2*x+4,x,x-4,1,-6,1,x+2,-2*x-6,-2*x-8,-2*x,2*x,2,4*x,-3,-4,x-2,x,-2*x,-2*x-4,-2*x-6,-2*x,1,-9,0,-5*x+4,-2*x,-2*x,x+8,8*x-6,-x-2,-4*x+6,-3,-2*x-4,2,-x,-6,-2*x,-x,2*x+4,3,3*x+6,1,4*x+6,12,-4*x-8,-x-2,-2*x,3*x+2,-8*x,0,-2*x+6,-x-2,2*x-6,-2,6*x,12,2,-x+8,3*x+6,-2*x-4,4*x,-x,4*x-1,-x+4,0,-1,1,6,2*x-14,-1,-8*x-6,-x-2,-2*x-12,2*x+6,4*x,2*x+8,0,2*x,2*x+8,-2*x,3*x+2,-2,6*x,-4*x,4*x+10,3,-x+8,4,-3*x,-x+2,2*x-6,-x,-6*x+8,2*x,-6*x,2*x+4,-1,2*x+6,18,2*x,-2*x-18,-1,-4,9,2*x+16,0,2*x+6,5*x-4,4*x+6,2*x,4*x-3,2*x,-6*x,-x-8,-4*x-2,-8*x+6,-2,x+2,4*x+12,4*x-6,-3*x+2,3,3*x+16,2*x+4,-4*x+6,-2,-x+2,x,-4*x-12,6,0,2*x,-6*x+2,x,4*x+2,-2*x-4,2*x+6,-3,3*x-2,-3*x-6,8*x+4,-1,-8*x-12,-4*x-6,2*x-16,-12,0,4*x+8,6,x+2,-4*x-12,2*x,4*x-12,-3*x-2,24,8*x,-x-8,0,2,2*x-6,-4*x,x+2,-4*x-12,-2*x+6,-6*x+6,2,3,-6*x,-2*x+12,-12,-5*x-8,-2,-4*x-12,x-8,10*x,-3*x-6,6,2*x+4,-12,-4*x,6*x-8,x,-6*x+14,-4*x+1,-9*x,x-4,-3,0,-4*x-12,1,4*x-30,-1,-5*x+10,-6,2*x+4,-2*x+14,-12,1,22,8*x+6,2*x-4,x+2,-3*x+24,2*x+12,2*x-18,-2*x-6,-3*x-2,-4*x,6*x-24,-2*x-8,7*x,0,2*x+20,-2*x,-4*x-12,-2*x-8,x+2,2*x,-3*x-10,-3*x-2,-3,2,8*x-6,-6*x,6*x+8,4*x,-12,-4*x-10,0,-3,7,x-8,4*x+12,-4,10*x-6,3*x,2*x+4,x-2,0,-2*x+6,2*x+4,x,2*x+16,6*x-8,6*x+24,-2*x,x-4,6*x,-12,-2*x-4,-8*x-24,1,-8*x-8,-2*x-6,10*x,-18,-6,-2*x,-2*x+6,2*x+18,6*x+10,1,-48,4,24,-9,x+2,-2*x-16,6*x-12,0,-12,-2*x-6,7*x+10,-5*x+4,-3*x+6,-4*x-6,-2*x-8,-2*x,-4*x+4,-4*x+3,36,-2*x,-x-2,6*x,20,x+8,2*x,4*x+2,x+12,8*x-6,-10*x+10,2,0,-x-2,4*x+8,-4*x-12,4*x,-4*x+6,24,3*x-2,-2*x-2,-3,5,-3*x-16,-x+24,-2*x-4,-4,4*x-6,-18,2,0,x-2,6*x+4,-x,2*x+6,4*x+12,x,-6,6*x+10,0,-6*x,-2*x,-14*x+12,6*x-2,-10*x-6,-x,-2*x-4,-4*x-2,-3*x-24,2*x+4,-7*x+20,-2*x-6,-4*x,3,-12*x-12,-3*x+2,-2*x,3*x+6,2*x-2,-8*x-4,24,1,-2*x+2,8*x+12,-x-2,4*x+6,-9,-2*x+16,-2,12,-2*x-26,0,8*x+12,-4*x-8,-4*x-8,-6,-5*x+4,-x-2,2*x+18,4*x+12,-2*x-32,-2*x,6*x-2,-4*x+12,18,3*x+2,-2*x,-24,-2*x+8,-8*x,10*x+24,x+8,6*x+6,0,-10*x+4,-2,8*x-6,-2*x+6,-4*x,4*x,2*x+2,-x-2,-9,4*x+12,-16,2*x-6,-4*x+6,6*x-6,-6*x+12,-2,-2*x-34,-3,0,6*x,8*x-36,2*x-12,-2*x-4,12,-2*x-16,5*x+8,0,2,-5*x,4*x+12,8*x+22,-x+8,-x,-10*x,0,3*x+6,4*x+16,-6,18*x,-2*x-4,-10*x-22,12,-2*x,4*x,-9*x-6,-6*x+8,4*x+24,-x,-2,6*x-14,-4*x,4*x-1,2*x+4,9*x,6*x-6,-x+4,16*x+12,3,7*x-6,0,-16*x+12,4*x+12,3*x+6,-1,-8*x,-4*x+30,-7*x+2,1]];
E[310,3] = [x, [1,1,2,1,-1,2,0,1,1,-1,2,2,0,0,-2,1,2,1,-4,-1,0,2,-4,2,1,0,-4,0,-4,-2,-1,1,4,2,0,1,-8,-4,0,-1,6,0,2,2,-1,-4,0,2,-7,1,4,0,8,-4,-2,0,-8,-4,8,-2,0,-1,0,1,0,4,4,2,-8,0,0,1,6,-8,2,-4,0,0,-4,-1,-11,6,6,0,-2,2,-8,2,-6,-1,0,-4,-2,0,4,2,-2,-7,2,1,2,4,8,0,0,8,-8,-4,-18,-2,-16,0,14,-8,4,-4,0,8,0,-2,-7,0,12,-1,-1,0,16,1,4,0,20,4,0,4,4,2,18,-8,2,0,0,0,0,1,4,6,-14,-8,-14,2,4,-4,2,0,1,0,6,-4,16,-1,0,-11,24,6,-4,6,12,0,-13,-2,-4,2,-2,-8,0,2,16,-6,14,-1,-24,0,0,-4,8,-2,4,0,0,4,-8,2,2,-2,0,-7,8,2,16,1,8,2,0,4,-6,8,-4,0,-8,0,-16,8,0,-8,-2,-4,0,-18,12,-2,0,-16,-8,0,1,14,8,-8,4,4,0,-4,-26,0,0,8,-8,0,12,-2,-2,-7,-10,0,7,12,0,-1,12,-1,14,0,-8,16,-4,1,10,4,0,0,-4,20,-24,4,-8,0,-12,4,0,4,-20,2,0,18,2,-8,0,2,-1,0,10,0,-24,0,8,0,0,1,-13,4,-4,6,-18,-14,-8,-8,-8,-14,0,2,0,4,4,-4,0,2,-16,0,16,1,8,0,-22,6,0,-4,2,16,-8,-1,-16,0,-8,-11,0,24,-36,6,0,-4,-30,6,-8,12,-4,0,14,-13,28,-2,-2,-4,0,2,8,-2,-22,-8,10,0,0,2,30,16,0,-6,0,14,-8,-1,-3,-24,-14,0,-6,0,4,-4,6,8,0,-2,-26,4,-2,0,0,0,16,4,32,-8,16,2,0,2,2,-2,-36,0,-8,-7,40,8,4,2,-14,16,0,1,38,8,0,2,11,0,-16,4,6,-6,36,8,0,-4,-6,0,4,-8,-24,0,-22,-16,0,8,2,0,0,-8,0,-2,-24,-4,26,0,8,-18,16,12,40,-2,-7,0,-28,-16,6,-8,-28,0,6,1,12,14,8,8,0,-8,2,4,-8,4,-8,0,36,-4,2,-26,8,0,0,0,12,8,4,-8,-4,0,8,12,24,-2,0,-2,0,-7,2,-10,32,0,48,7,2,12,-8,0,-2,-1,0,12,10,-1]];
E[310,4] = [x, [1,1,-2,1,-1,-2,-4,1,1,-1,0,-2,-4,-4,2,1,0,1,-4,-1,8,0,-6,-2,1,-4,4,-4,6,2,1,1,0,0,4,1,8,-4,8,-1,-6,8,-10,0,-1,-6,0,-2,9,1,0,-4,0,4,0,-4,8,6,-12,2,14,1,-4,1,4,0,8,0,12,4,0,1,-4,8,-2,-4,0,8,8,-1,-11,-6,6,8,0,-10,-12,0,-18,-1,16,-6,-2,0,4,-2,-10,9,0,1,-6,0,-16,-4,-8,0,-12,4,2,0,-16,-4,6,8,6,6,-4,-12,0,2,-11,14,12,1,-1,-4,2,1,20,4,-12,0,16,8,-4,0,-12,12,-4,4,0,0,0,1,-6,-4,-18,8,-18,-2,8,-4,0,0,-1,8,14,8,0,-1,24,-11,-16,-6,0,6,6,8,3,0,-4,-10,6,-12,-4,0,24,-18,24,-1,2,16,-28,-6,-8,-2,0,0,-16,4,0,-2,14,-10,-8,9,-12,0,-4,1,-16,-6,-24,0,6,-16,-6,-4,0,-8,20,0,0,-12,10,4,-4,2,8,0,0,-16,-10,-4,1,6,24,8,14,6,0,6,-18,-4,0,-12,-16,0,12,2,14,-11,10,14,-9,12,16,1,-12,-1,-12,-4,0,2,0,1,-18,20,-32,4,6,-12,6,0,0,16,36,8,-6,-4,-28,0,-32,-12,0,12,8,-4,1,4,6,0,32,0,-8,0,24,1,-17,-6,20,-4,30,-18,12,8,0,-18,24,-2,40,8,12,-4,-14,0,20,0,32,-1,-24,8,32,14,4,8,-30,0,0,-1,24,24,0,-11,-4,-16,-4,-6,0,0,20,6,8,6,-8,8,8,3,-12,0,0,-4,-8,-10,-12,6,18,-12,14,-4,-16,0,0,24,0,-18,0,24,0,-1,-3,2,22,16,4,-28,14,-6,-6,-8,0,-2,-10,0,2,0,-24,-16,-28,4,-4,0,-30,-2,0,14,-10,-10,-30,-8,0,9,24,-12,-8,0,2,-4,-32,1,-6,-16,-4,-6,11,-24,0,0,-22,6,24,-16,48,-6,-6,-4,8,0,-36,-8,-10,20,0,0,0,0,-56,-12,0,10,0,4,-16,-4,12,2,24,8,8,0,9,0,36,-16,18,-10,36,-4,-30,1,0,6,-16,24,-16,8,-28,14,0,6,-30,0,26,6,2,-18,12,-4,-32,0,-28,-12,0,-16,-4,0,0,12,0,2,-32,14,-48,-11,10,10,26,14,32,-9,12,12,0,16,0,1,0,-12,-40,-1]];
E[310,5] = [x^3-2*x^2-4*x+4, [1,1,x,1,1,x,-x^2+4,1,x^2-3,1,x^2-3*x-2,x,-x-2,-x^2+4,x,1,-x^2+4,x^2-3,2*x^2-2*x-4,1,-2*x^2+4,x^2-3*x-2,-x^2+2*x+2,x,1,-x-2,2*x^2-2*x-4,-x^2+4,-3*x^2+5*x+8,x,1,1,-x^2+2*x-4,-x^2+4,-x^2+4,x^2-3,2*x^2-x-10,2*x^2-2*x-4,-x^2-2*x,1,3*x^2-4*x-10,-2*x^2+4,2*x^2+x-12,x^2-3*x-2,x^2-3,-x^2+2*x+2,-x^2+4*x+8,x,4*x+1,1,-2*x^2+4,-x-2,2*x^2-x-14,2*x^2-2*x-4,x^2-3*x-2,-x^2+4,2*x^2+4*x-8,-3*x^2+5*x+8,-2*x+8,x,-x^2+3*x-4,1,-x^2-4*x-4,1,-x-2,-x^2+2*x-4,-4*x^2+6*x+8,-x^2+4,-2*x+4,-x^2+4,-2*x^2+4*x+8,x^2-3,-3*x^2+2*x+4,2*x^2-x-10,x,2*x^2-2*x-4,4*x^2-4*x-12,-x^2-2*x,-6*x+4,1,-x^2+4*x+1,3*x^2-4*x-10,2*x^2-x-4,-2*x^2+4,-x^2+4,2*x^2+x-12,-x^2-4*x+12,x^2-3*x-2,2*x^2-2,x^2-3,4*x^2-12,-x^2+2*x+2,x,-x^2+4*x+8,2*x^2-2*x-4,x,-x^2-2*x+2,4*x+1,-3*x^2+x+10,1,-4*x-2,-2*x^2+4,-4*x,-x-2,-2*x^2+4,2*x^2-x-14,-4*x^2+4*x+16,2*x^2-2*x-4,2*x+2,x^2-3*x-2,3*x^2-2*x-8,-x^2+4,x^2-6*x+2,2*x^2+4*x-8,-x^2+2*x+2,-3*x^2+5*x+8,-4*x^2-x+10,-2*x+8,4*x+8,x,x^2-8*x+9,-x^2+3*x-4,2*x^2+2*x-12,1,1,-x^2-4*x-4,3*x^2-10,1,5*x^2-4*x-8,-x-2,2*x+4,-x^2+2*x-4,-8*x-8,-4*x^2+6*x+8,2*x^2-2*x-4,-x^2+4,-x^2-4*x,-2*x+4,-5*x^2+9*x+14,-x^2+4,2*x^2+4*x+4,-2*x^2+4*x+8,-x^2+4*x+8,x^2-3,-3*x^2+5*x+8,-3*x^2+2*x+4,4*x^2+x,2*x^2-x-10,-2*x^2+6*x+18,x,-4*x^2+6*x+12,2*x^2-2*x-4,-x^2-4*x-4,4*x^2-4*x-12,1,-x^2-2*x,4*x^2-26,-6*x+4,3*x^2-6*x-8,1,-2*x^2+4*x+8,-x^2+4*x+1,2*x^2+6*x-12,3*x^2-4*x-10,-x^2+2*x-4,2*x^2-x-4,x^2-6*x+6,-2*x^2+4,x^2+4*x-9,-x^2+4,2*x^2+6*x+4,2*x^2+x-12,-2*x^2+8*x+14,-x^2-4*x+12,-x^2+4,x^2-3*x-2,-2*x^2+8*x,2*x^2-2,3*x^2+3*x-10,x^2-3,-5*x^2+3*x+20,4*x^2-12,x^2-8*x+4,-x^2+2*x+2,2*x^2-x-10,x,4*x^2-4*x-12,-x^2+4*x+8,-8*x-8,2*x^2-2*x-4,-3*x^2-2*x+8,x,-2*x^2+6,-x^2-2*x+2,-x^2-2*x,4*x+1,-x+2,-3*x^2+x+10,-2*x^2+12,1,-2*x^2-8*x+16,-4*x-2,-6*x^2+12*x+28,-2*x^2+4,3*x^2-4*x-10,-4*x,x^2-2*x-6,-x-2,-2*x^2-8*x+24,-2*x^2+4,4*x^2-8*x,2*x^2-x-14,8,-4*x^2+4*x+16,2*x^2+x-12,2*x^2-2*x-4,-x^2+4,2*x+2,-4*x^2-8*x+12,x^2-3*x-2,4*x^2-12,3*x^2-2*x-8,x^2+8*x-14,-x^2+4,x^2-3,x^2-6*x+2,-4*x^2-2*x+20,2*x^2+4*x-8,x^2-7*x-8,-x^2+2*x+2,4*x^2+4*x-16,-3*x^2+5*x+8,5*x^2-10*x-6,-4*x^2-x+10,-x^2+4*x+8,-2*x+8,-6*x^2+4*x,4*x+8,4*x^2+2*x-32,x,-2*x^2+6*x+10,x^2-8*x+9,-4*x^2+3*x+16,-x^2+3*x-4,4*x+1,2*x^2+2*x-12,-6*x^2+16,1,3*x^2+4*x-8,1,-3*x^2+3*x-2,-x^2-4*x-4,6*x-16,3*x^2-10,-2*x^2+4,1,-2*x^2+4*x+14,5*x^2-4*x-8,4*x^2-8*x-28,-x-2,3*x^2-7*x-20,2*x+4,x^2-8*x+10,-x^2+2*x-4,2*x^2-x-14,-8*x-8,4*x^2+6*x-8,-4*x^2+6*x+8,-x^2+7*x-12,2*x^2-2*x-4,2*x^2-2*x+8,-x^2+4,8*x^2+4*x-16,-x^2-4*x,x^2-3*x-2,-2*x+4,2*x^2-x-30,-5*x^2+9*x+14,x^2-3,-x^2+4,8*x-10,2*x^2+4*x+4,-2*x^2+10*x-4,-2*x^2+4*x+8,2*x^2+4*x-8,-x^2+4*x+8,6*x^2-12*x-32,x^2-3,4*x-9,-3*x^2+5*x+8,-4*x^2-2*x+4,-3*x^2+2*x+4,2*x^2-6*x+6,4*x^2+x,-2*x+8,2*x^2-x-10,-2*x^2-8*x+24,-2*x^2+6*x+18,2*x^2-2*x-8,x,2*x^2-8*x-28,-4*x^2+6*x+12,-4*x^2-2*x,2*x^2-2*x-4,-x^2+3*x-4,-x^2-4*x-4,-2*x^2-4*x+16,4*x^2-4*x-12,-4*x^2,1,-6*x^2+16*x+24,-x^2-2*x,-x^2-8*x+12,4*x^2-26,-x^2-4*x-4,-6*x+4,2*x^2-6*x-10,3*x^2-6*x-8,3*x^2+10*x-48,1,-4*x^2+16,-2*x^2+4*x+8,-8*x-8,-x^2+4*x+1,-x-2,2*x^2+6*x-12,2*x^2+2*x,3*x^2-4*x-10,-12*x^2+4*x+40,-x^2+2*x-4,3*x^2-11*x-2,2*x^2-x-4,-2*x^2+7*x+18,x^2-6*x+6,-4*x^2+6*x+8,-2*x^2+4,-3*x^2+2*x+8,x^2+4*x-9,-4*x^2+6*x-4,-x^2+4,x^2-3*x-2,2*x^2+6*x+4,-2*x^2-8,2*x^2+x-12,-2*x+4,-2*x^2+8*x+14,2*x^2-3*x-12,-x^2-4*x+12,2*x^2+2*x-30,-x^2+4,-6*x^2+16,x^2-3*x-2,-x^2+10*x,-2*x^2+8*x,-2*x^2+4*x+8,2*x^2-2,4*x^2+8*x,3*x^2+3*x-10,5*x^2-6*x-16,x^2-3,4*x^2-3,-5*x^2+3*x+20,-6*x^2+13*x-4,4*x^2-12,-3*x^2+2*x+4,x^2-8*x+4,5*x^2-10*x-2,-x^2+2*x+2,-3*x^2+8*x+22,2*x^2-x-10,8*x^2-8*x-44,x,8*x^2-22*x-26,4*x^2-4*x-12,x,-x^2+4*x+8,7*x^2-6*x-28,-8*x-8,2*x^2-6*x-8,2*x^2-2*x-4,6*x^2+2*x-12,-3*x^2-2*x+8,3*x^2-4*x+22,x,4*x^2-4*x-12,-2*x^2+6,9*x+16,-x^2-2*x+2,9*x^2-15*x-24,-x^2-2*x,-2*x^2+4*x+8,4*x+1,2*x^2+4*x,-x+2,-6*x+4,-3*x^2+x+10,-6*x^2+10*x+14,-2*x^2+12,-8*x^2-8*x,1,-6*x+6,-2*x^2-8*x+16,-x-2,-4*x-2,-x^2+4*x+1,-6*x^2+12*x+28,-9*x^2+12*x+32,-2*x^2+4,-2*x^2+2*x+14,3*x^2-4*x-10,-6*x^2-4*x+4,-4*x,-4*x^2+24,x^2-2*x-6,2*x^2-x-4,-x-2,-x^2-6*x+20,-2*x^2-8*x+24,-6*x^2+6*x+32,-2*x^2+4,-8*x^2+6*x+26,4*x^2-8*x,11*x^2-32,2*x^2-x-14,-x^2+4,8,2*x^2+4*x-12,-4*x^2+4*x+16,2*x^2+4*x+4,2*x^2+x-12,x^2+10*x-24,2*x^2-2*x-4,x^2-4*x+4,-x^2+4,-x^2-4*x+12,2*x+2,4*x-16,-4*x^2-8*x+12,x^2-2*x-8,x^2-3*x-2,9*x^2+4*x-19,4*x^2-12,2*x^2+12,3*x^2-2*x-8,2*x^2-2,x^2+8*x-14,2*x^2+10*x+8,-x^2+4,2*x^2-2*x+6,x^2-3,-6*x^2-2*x+48,x^2-6*x+2,-2*x^2-4*x+16,-4*x^2-2*x+20,4*x^2-12,2*x^2+4*x-8,-5*x^2-4*x+24,x^2-7*x-8,-8*x-8,-x^2+2*x+2,7*x^2-5*x-20,4*x^2+4*x-16,-3*x^2-2*x+10,-3*x^2+5*x+8,x,5*x^2-10*x-6,8,-4*x^2-x+10,-4*x^2+16*x+24,-x^2+4*x+8,8*x^2-10*x-16,-2*x+8,-13*x^2+22*x+28,-6*x^2+4*x,2*x^2-2*x-4,4*x+8,-6*x^2+7*x+30,4*x^2+2*x-32,6*x^2-4*x-40,x,-7*x^2+4*x+28,-2*x^2+6*x+10,8,x^2-8*x+9,-x^2-2*x+2,-4*x^2+3*x+16,3*x^2-8*x-18,-x^2+3*x-4,10*x^2-4*x-8,4*x+1,3*x^2-19*x-10,2*x^2+2*x-12,-6*x^2+12*x+28,-6*x^2+16,-3*x^2+x+10,1,-8*x^2+8*x+32,3*x^2+4*x-8,-3*x^2+13*x+6,1]];

E[311,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^3-x^2+2*x,x^2-2,x^3+x^2-3*x-1,-x^2-x+1,x^3-3*x,x^3-4*x,x^3+x^2-2*x-2,-1,-1,x^3+x^2-3*x,x^2+x-3,-x^3+x-1,x^2+x-2,-x^3-3*x^2+x+3,-3*x^3-3*x^2+7*x,x^2-x-1,-x^3-x^2+2*x-1,-2*x^3-2*x^2+5*x+2,x^2+2*x-2,-x,3*x^2+3*x-4,2*x^2+3*x-3,-x^3-2*x^2+2*x-1,x^3+x^2-3*x,4*x^3+4*x^2-8*x-1,-x^3-2*x^2+4*x+1,-x^3-2*x^2+3*x+1,x^3+x^2-2*x,x^3+2*x^2+x-3,-4*x^3-2*x^2+10*x+1,x^3+x^2-2*x,-2*x^2-3*x+3,-x^2+3,-x^3-3*x^2+3*x+4,-4*x^3-8*x^2+7*x+6,-x^2-2*x+1,2*x^3+x^2-6*x+1,-x^2+4,2*x^3+x^2-4*x,x^3+2*x^2-2*x,4*x^3+7*x^2-4*x-7,-x^2+2,-2*x^3-3*x^2+5*x+4,3*x^3+3*x^2-4*x,-3*x^2-5*x+7,x^2+3*x,x^2-x-5,-x^3-x^2-2*x+1,3*x^3+2*x^2-7*x+4,-2*x^2-x+5,x^3+2*x^2-5*x-2,4*x^2+3*x-4,-x^3-x^2+3*x+1,x^3+x^2-2*x+3,2*x^3+2*x^2-4*x+1,-x^3+1,-x^3+2*x^2+4*x-4,-x^2-x+3,-x^3+6*x-4,x^3+4*x^2-2*x-1,-2*x^3-x^2+4*x+2,4*x^3+4*x^2-5*x-2,-3*x^3-3*x^2+8*x+2,x^2+x-1,x^2-4*x-1,4*x^3+3*x^2-11*x,x^3-2*x^2-8*x+3,-x^3+3*x,x^3-4*x^2-8*x+6,-2*x^3-2*x^2+5*x+3,x^3+6*x^2+3*x-11,-4*x^3-5*x^2+2*x+4,3*x^3+3*x^2-5*x+1,x^3-3*x+2,-x^3+3*x,-x^3+3*x-2,-8*x^3-11*x^2+13*x+6,3*x^3+4*x^2-6*x-4,-6*x^3-6*x^2+12*x+2,-x^3+2*x^2+2*x-2,5*x^3+7*x^2-10*x-2,x^3-x^2-3*x+3,3*x^2+3*x-7,3*x^3+8*x^2-3*x-4,x^3-2*x+2,-x^3+4*x,2*x^2-2*x-3,-x^3-x^2+2*x+2,-3*x^3-2*x^2+8*x,-x^2-3*x+5,x^3-2*x^2-6*x+2,-3*x^3-5*x^2+7*x,-x^3+4*x-1,x^3-x^2-6*x+6,5*x^3+2*x^2-15*x-2,x^3-x^2-5*x,-x^3-x^2+2*x+2,2*x^3-x^2-4*x+3,-8*x^3-12*x^2+17*x+12,-x^3+2*x^2+7*x-3,-2*x^3-3*x^2-3*x+4,-4*x^3-3*x^2+11*x,-2*x^3-2*x^2+5*x,x^3-2*x^2-x-1,x^3-9*x^2-9*x+17,-4*x^3-5*x^2+12*x+2,2*x^3+3*x^2-8*x-9,1,2*x^3+3*x^2+x+3,2*x^3+5*x^2-4*x-3,x^3+5*x^2-x-8,2*x^2+3*x-2,-4*x^3-4*x^2+9*x+1,3*x^3+x^2-6*x-1,-2*x^3-3*x^2+4*x+5,3*x^3+x^2-5*x+1,-x^3+3*x^2+7*x-7,-3*x^3-3*x^2+7*x,-10,x^3+3*x^2-5*x+1,-x^3-x^2+3*x-2,x^3-3*x^2-2*x+5,-6*x^3-5*x^2+20*x+4,x^3-2*x^2+2,-6*x^3+x^2+20*x-8,8*x^3+11*x^2-18*x-6,-4*x^2-7*x,-x^2-x+3,9*x^3+7*x^2-22*x-3,-x^3-x^2+3*x,-x^3+x^2+5*x-2,x^3-4*x^2-x,-x^3-5*x^2-x+9,-x^3+5*x^2+10*x-10,9*x^3+9*x^2-23*x-2,-3*x^3-5*x^2+4*x-1,6*x^3+x^2-16*x+4,x^3+2*x^2-x-5,-4*x^3+x^2+16*x-5,-5*x^3-5*x^2+7*x-1,-x^2-x+3,2*x^3+5*x^2-5*x-6,x^3+2*x^2-x-4,5*x^3+6*x^2-10*x-1,4*x^3+5*x^2-8*x-1,7*x^3+6*x^2-14*x-8,-7*x^3-4*x^2+21*x-4,4*x^2+4*x-3,8*x^3+15*x^2-19*x-18,-x^3+2*x^2+7*x-3,3*x^3+4*x^2-7*x-4,x^3-x+1,-3*x^3-4*x^2+7*x+2,-3*x^3-2*x^2+9*x-1,11*x^3+14*x^2-33*x-10,-3*x^3-11*x^2-2*x+8,3*x^2+2*x-4,x^3+5*x^2-x-11,-4*x^3-6*x^2+9*x,-6*x^2-4*x+6,-4*x^3-7*x^2+8*x+10,-x^3-3*x^2+5*x+1,-x^2-x+2,2*x^3+5*x^2+3*x-5,-6*x^3-5*x^2+20*x+2,-4*x^3-4*x^2+8*x-1,x^3-2*x^2-5*x-5,3*x^3+3*x^2-7*x,1,-3*x^3-8*x^2+7*x+11,8*x^3+9*x^2-9*x-3,-x^3+x^2+3*x-1,-2*x^3+3*x^2+7*x-3,x^3+3*x^2-x-3,2*x^3-9*x+3,2*x^3-2*x^2-3*x,-4*x^3-x^2+9*x+3,4*x^3+5*x^2-9*x-7,-3*x^3-6*x^2+9*x,x^3-x^2-3*x+3,4*x^3-13*x+5,-7*x^3-9*x^2+13*x,6*x^3+10*x^2-10*x-13,-3*x^3-3*x^2+3*x-1,3*x^3+3*x^2-7*x,-2*x^3+4*x^2+7*x-11,-x^3-4*x^2-5*x+8,x^3+x^2-2*x+1,-6*x^3-7*x^2+14*x+13,-2*x^3-5*x^2+x-1,-9*x^3-6*x^2+17*x-8,-3*x^3+3*x-5,x^3-x^2-4*x+5,-2*x^3-4*x^2+3*x+9,7*x^3+6*x^2-19*x-1,-x^2+x+1,-x^3+10*x^2+15*x-20,-x^3+4*x^2+9*x-4,4*x^2+3*x-4,-4*x^3-7*x^2+4*x+8,-x^3+3*x^2+2*x-4,-3*x^3+10*x-7,-2*x^2-x+4,-x^3-9*x^2+2*x+2,-x^3-4*x^2+2*x+5,x^3+3*x^2-2*x-6,x^3+x^2-2*x+1,-x^2-2*x+2,9*x^3+2*x^2-24*x-1,-5*x^3-2*x^2+10*x+3,-2*x^3+4*x^2+15*x-7,-10*x^3-6*x^2+18*x-1,-7*x^3-11*x^2+14*x+11,-x^3-8*x^2-8*x+12,-5*x^3-3*x^2+8*x,x^3-2*x^2-7*x-2,5*x^3-20*x+4,2*x^3+2*x^2-5*x-2,7*x^3+4*x^2-21*x+3,x^3+7*x^2+5*x-2,3*x^3+10*x^2-3*x-4,x^3+3*x-8,-x^3+x^2+x+1,4*x^3+2*x^2-7*x-1,-5*x^3-12*x^2+8*x+28,-2*x^3-x^2+6*x-2,5*x^3-27*x+1,-3*x^2-3*x+4,-x^2-2*x+2,3*x^2+2*x-5,8*x^3-2*x^2-26*x+9,-x^3-2*x^2+3*x+2,7*x^3+7*x^2-18*x-2,-4*x+5,5*x^3+8*x^2-4*x+5,4*x^3+4*x^2-8*x+1,-6*x^3-6*x^2+10*x+4,-x-3,-11*x^3-10*x^2+31*x-1,-10*x,-8*x^3-8*x^2+16*x+9,4*x^3-2*x^2-10*x+7,-5*x^3-5*x^2+14*x+6,-3*x+1,2*x^3-7*x+4,-6*x^3-7*x^2+10*x+1,-5*x^3-5*x^2+8*x-5,x^3+2*x^2-2*x+6,2*x^3+9*x^2+10*x-7,x^3+5*x^2-5*x-5,-3*x^2-3*x+4,7*x^3+2*x^2-14*x+6,4*x^3+x^2-14*x+3,-5*x^3-2*x^2+12*x-4,3*x^3-2*x^2-4*x+8,-4*x^3-7*x^2,3*x^3+12*x^2-3*x-11,5*x^3+5*x^2-13*x-4,x^3+4*x^2-4*x-4,-2*x^3+5*x^2+6*x-9,6*x^3-11*x+4,-2*x^2-3*x+3,-2*x^3-3*x^2+4*x+7,2*x^3+2*x^2-3*x+1,x^3+3*x^2-2*x-2,-5*x^3+9*x+1,7*x^3+20*x^2-22,-4*x^3-4*x^2+8*x+1,-9*x^3-14*x^2+21*x+19,-2*x^3+x^2+11*x+1,2*x^3-7*x+5,4*x^2+7*x-9,x^3+2*x^2-2*x+1,-4*x^3-x^2+12*x-3,18*x^3+17*x^2-43*x-1,-5*x^3+2*x^2+10*x-6,-3*x^3-2*x^2+4*x+4,3*x^3+2*x^2-10*x-1,-3*x^3-x^2+12*x+4,5*x^3+4*x^2-9*x+4,-5*x^3-15*x^2-3*x+19,-2*x^3+10*x-7,x^3-x^2-5*x+3,-x^3-x^2+3*x,-x^3-2*x+3,7*x^3+5*x^2-14*x-8,9*x^3+4*x^2-24*x-2,x^3+2*x^2-3*x-1,5*x^2+8*x-10,-x^3-7*x^2-2*x+17,-8*x^3-8*x^2+28*x+15,x^3+4*x^2+3*x-4,-4*x^3-3*x^2+10*x,7*x^3+17*x^2-5*x-15,-4*x^3-4*x^2+8*x+1,3*x^3-11*x+7,3*x^3-x^2-10*x+9,-2*x^3-2*x^2+7*x-2,-8*x^3-10*x^2+11*x+7,7*x^3+5*x^2-10*x-8,-x^2+3*x+9,x^3+4*x^2+2*x-3,-4*x^3-3*x^2+12*x-2,x^3+2*x^2-x-3,-10*x^3-4*x^2+39*x+3,x^3+2*x^2-4*x-1,-x^3+6*x^2+10*x-5,-x^3-2*x^2-x+3,-1,3*x^3-10*x+7,-20*x^2-15*x+29,3*x^3+x-11,2*x^3+4*x^2-5*x-6,8*x^3+11*x^2-21*x-9,-6*x^3-7*x^2+27*x+18,3*x^3+2*x^2-4*x,x^3+2*x^2-3*x-1,-2*x^3-6*x^2+2*x+7,-8*x^3-x^2+33*x-8,-2*x^3-3*x^2-4*x+4,6*x^3+5*x^2-14*x+4,6*x^3+8*x^2-18*x-4,2*x^3-8*x+5,-3*x^3-4*x^2+6*x+4,6*x^3+10*x^2-9*x-6,-2*x^2-4*x+5,9*x^3+6*x^2-20*x+2,-x^3-x^2+2*x,-5*x^3-4*x^2+28*x+10,-7*x^3-5*x^2+17*x+2,6*x^3+13*x^2-15*x-15,x^3+2*x^2-4*x+6,-x^3-x^2+2*x+5,-2*x^3-2*x^2+x-2,15*x^3+16*x^2-31*x-16,-3*x^3-2*x^2-4*x-1,3*x^3+2*x^2-11*x,-4*x^2-3*x+11,-x^3-2*x^2-x+3,x,-10*x^3-2*x^2+33*x+2,-11*x^3-18*x^2+14*x+11,3*x^3+2*x^2-7*x+5,x^3+15*x^2+5*x-8,-8*x^3-4*x^2+14*x-19,2*x-3,11*x^3+3*x^2-27*x+2,5*x^3+x^2-5*x+2,-8*x^3-5*x^2+23*x-1,4*x^3+2*x^2-10*x-1,-x^3+6*x^2+9*x-14,-2*x^3-3*x^2+5*x-2,6*x^3+5*x^2-14*x+2,-4*x^3-x^2+6*x+4,4*x^3-x^2-17*x+6,3*x^3-3*x^2-x+4,-12*x^3-15*x^2+35*x+12,3*x^3+5*x^2-7*x-8,3*x^3+3*x^2-6*x-17,-3*x^3-3*x+3,10*x^3+10*x^2-20*x,4*x^3+4*x^2-12*x-1,-11*x^3-12*x^2+27*x+8,-4*x^3-x^2+9*x-4,-9*x^3-15*x^2+17*x+10,-2*x^3-6*x^2-x-3,-3*x^3-x^2+5*x+2,4*x^3+8*x^2-7*x-6,2*x^3-3*x^2-x+6,-2*x^3-2*x^2+8*x-1,-6*x^3+3*x^2+27*x-9,2*x^2+3*x-3,x^3-7*x^2-11*x+14,12*x^3+11*x^2-27*x+2,3*x^3+3*x^2-9*x-1,-3*x^3-8*x^2+7*x+1,-7*x^3-15*x^2+13*x+3,2*x^3+x^2-6*x+1,7*x^3-x^2-29*x+14,-x^3-4*x^2+7*x+6,7*x^3+16*x^2-19,-5*x^3-3*x^2+9*x-10,x^2-3,3*x^3-10*x^2-17*x+9,-8*x^3-10*x^2+15*x+14,-7*x^3-10*x^2+22*x+7,-11*x^3-19*x^2+17*x+7,-2*x^3-x^2+6*x-1,6*x^3-3*x^2-28*x+9,-4*x^3-x^2+17*x+2,-4*x^3+14*x-13,-x^3+2*x^2+6*x-7,6*x^3+14*x^2-7*x-19,x^3+3*x^2-3*x-4,-16*x^3-14*x^2+46*x+21,11*x^3+12*x^2-21*x+1,x^3-2*x^2-7*x+4,x^3+8*x^2+3*x-5,-3*x^3+10*x^2+7*x-31,4*x^3+3*x^2-4*x,x^3-x^2-5*x+7,13*x^3+16*x^2-30*x-20,2*x^3+8*x^2-14,4*x^3-x^2-5*x+1,4*x^3+8*x^2-7*x-6,5*x^3-3*x^2-24*x+9,7*x^3-6*x^2-28*x,-2*x^3-x^2+4*x,-7*x^3-2*x^2+19*x-14,-4*x^3+5*x^2+7*x-7,-3*x^3-5*x^2+10*x-1,-3*x^3-x^2+4*x+1,-2*x^3-7*x^2-x+12,10*x^3+7*x^2-27*x-1,-5*x^3-x^2+19*x-10,x^2+2*x-1,-8*x^3-18*x^2+13*x+27,3*x^3+2*x^2-8*x,2*x^3+12*x^2-4*x-18,-7*x^3+3*x^2+8*x-9,4*x^3+5*x^2-6*x-9,x^3-x^2+7,8*x^3+8*x^2-17*x+4,6*x^3+9*x^2-9*x+2,-7*x^3-x^2+16*x-5,2*x^3+6*x^2+7*x-24,-2*x^3-x^2+6*x-1,-4*x^3-7*x^2+4*x+7,5*x^3+8*x^2-29*x-20,x^3-x^2-13*x-3,-x^3-11*x^2-x+12,2*x^3-7*x^2-5*x+5,2*x^3+x^2-6*x,-7*x^3-10*x^2+15*x+17,x^3-5*x^2-11*x+7,-5*x^3-5*x^2+9*x-5,3*x^3-29*x+1,x^2-4,-4*x^3-7*x^2+10*x+11,-3*x^3+10*x-7,-18*x^3-10*x^2+41*x,2*x^3+2*x^2-3*x-7,-3*x^3-3*x^2+7*x+5,7*x^3+6*x^2-x-3,8*x^3+x^2-26*x+14,-5*x^3-4*x^2+x+5,4*x^3+16*x^2-x-38,2*x^3-2*x^2+1,-2*x^3-x^2+4*x,-4*x^3-5*x^2+5*x+12,3*x^3+6*x^2-10*x-11,-7*x^3-7*x^2+23*x+5,3*x^2+2*x-8,x^3-4*x^2-10*x+6,3*x^3+5*x^2-5*x-15,-5*x^3-12*x^2+6*x-5,-9*x^3-5*x^2+21*x-16,5*x^3+5*x^2-14*x-2,-11*x^3-15*x^2+7*x+13,-x^3-2*x^2+2*x,-21*x^3-28*x^2+46*x+13,-3*x^3+7*x+2,2*x^3+x^2-4*x+4,-10*x^3-2*x^2+17*x-8,2*x^3+27*x^2+7*x-46,3*x^3+6*x^2-7*x-9,4*x^3-2*x^2-3*x+5,3*x^2+5*x-7,-4*x^3+7*x^2+16*x-22,-6*x^3-6*x^2+15*x-2,-4*x^3-7*x^2+4*x+7,3*x^3+11*x^2+10*x-5,4*x^3+5*x^2-7*x+2,2*x^3-2*x^2-9*x+10,-2*x^3-7*x^2+8*x+8,-8*x^2-2*x+6,3*x^3+5*x^2+x-9,6*x^3+5*x^2-17*x,7*x^3+9*x^2-19*x-10,x^3-2*x^2-12*x+11,6*x^3+5*x^2-11*x+5,-10*x^2+20,-2*x^3-7*x^2+4*x+17,-8*x^2+x+8,3*x^3-x^2-15*x,-8*x^3-4*x^2+21*x-6,-3*x^3-3*x^2+9*x+4,-x^2+x+5,20*x^3+20*x^2-53*x-13,2*x^3-x^2-5*x+4,2*x^3-6*x+7,-2*x^3-x^2+6*x-2,2*x^3+3*x^2-5*x-4,-3*x^3-2*x^2-x-4,7*x^3+9*x^2-16*x+3,-7*x^2-10*x+5,11*x^3+25*x^2-23*x-26,13*x^3+11*x^2-33*x-9]];
E[311,2] = [x^22-2*x^21-35*x^20+70*x^19+517*x^18-1033*x^17-4195*x^16+8357*x^15+20417*x^14-40403*x^13-61287*x^12+119701*x^11+113017*x^10-215615*x^9-124399*x^8+228609*x^7+76453*x^6-133295*x^5-23503*x^4+36742*x^3+3587*x^2-3200*x-473, [106341562018576649119,106341562018576649119*x,-1333218028123436678*x^21+1367946423136236257*x^20+49328489263264063408*x^19-48698618113739814119*x^18-780071490285978038489*x^17+731764058773877640305*x^16+6883435129930837071209*x^15-6029718454604453812991*x^14-37117408682963362048611*x^13+29643589741202443321628*x^12+125904278451589035925849*x^11-88764078616540344648331*x^10-266400248133720180154691*x^9+159042733994278329421197*x^8+336261615438596631255820*x^7-162008001244132052237259*x^6-230084343080867524283273*x^5+85032171085335940948597*x^4+71086649415902837709445*x^3-17051195074052769029465*x^2-6284781941061791629214*x-87513220437116449887,106341562018576649119*x^2-212683124037153298238,-21242974024529590*x^21-1434491652110563978*x^20+3209217338769634321*x^19+48282217898366329351*x^18-94578303848943192367*x^17-676590780104692901915*x^16+1270815302353166006692*x^15+5102603103564094427213*x^14-9439579417621543494677*x^13-22357866355125222974699*x^12+41280678241435124160901*x^11+57441564627509462184517*x^10-106882614769975285857639*x^9-83882843771650414225579*x^8+158593036380613931304765*x^7+66319079553842412941717*x^6-126427357236440356717803*x^5-28369596568106140688094*x^4+47782658911006380501745*x^3+8238984211089590694971*x^2-6439892278957108980653*x-1313955819411519890238,-1298489633110637099*x^21+2665858278943779678*x^20+44626643854900753341*x^19-90797769746161275963*x^18-645450164277632448069*x^17+1290585501953020206999*x^16+5111984606423106505055*x^15-9897096202767155393885*x^14-24222418249068768779606*x^13+44195345161987972241263*x^12+70823452567863149144947*x^11-115723946249293737117165*x^10-128419071139556469905773*x^9+170410625958069231949298*x^8+142777638947138683283643*x^7-128155825176746419940139*x^6-92679125973377551045413*x^5+39752026100917705466411*x^4+31933901715258541393611*x^3-1502528874183024265228*x^2-4353810910432113819487*x-630612127302385548694,504418815307781939*x^21-1021065885099576655*x^20-16604493185137817773*x^19+33056103831567470983*x^18+226015020692329680027*x^17-435479859114799908685*x^16-1641199345467818455453*x^15+2956466065705411278227*x^14+6861291586789371631471*x^13-10597470554231302540041*x^12-16835996047441621774817*x^11+16674122550262725807072*x^10+24918511100968457522896*x^9+4438859628397342489851*x^8-26019738542206463779319*x^7-47775179818655449476697*x^6+24030985031406062666739*x^5+52435121331955185077307*x^4-16943596953875463472297*x^3-19178717695756638586794*x^2+5034806783502259963324*x+1702627579036366605456,106341562018576649119*x^3-425366248074306596476*x,2046403089845571866*x^21-3320501250721280963*x^20-69436507984912614568*x^19+114229840938650420436*x^18+984593027842667859606*x^17-1647333477805559999578*x^16-7554077366172048872258*x^15+12913841625992631704837*x^14+33934916106603120681242*x^13-59748486152308080949246*x^12-90354129204143133078118*x^11+166314229434478003793370*x^10+138283868513786033925878*x^9-274038136524740361292930*x^8-113182368936346686594406*x^7+255694038610765851693374*x^6+42269138950209474008131*x^5-122382397121220694901858*x^4-3796040728454798420212*x^3+23868564658330153413544*x^2-540233279487050585897*x-580743841078344429161,-1476977600159623158*x^21+2465713247911098671*x^20+49769226080083400651*x^19-83595686278261394337*x^18-698534772272031968385*x^17+1181701026320264376642*x^16+5280130637487088210843*x^15-9005861616962722855647*x^14-23216146234638291999469*x^13+39978760092393779178571*x^12+59984369861219678637107*x^11-104481797574645025184609*x^10-88463147615949361773429*x^9+155950431654936474838355*x^8+71175414602616097982027*x^7-124803268143342995973533*x^6-31201178790705812387144*x^5+47283385292507861547975*x^4+9019493562698856890751*x^3-6363693731131121341323*x^2-1381933336290014578238*x-10047926713602496070,-949531404212230610*x^21+1404606076267666588*x^20+31860596932911204463*x^19-46971051976902102427*x^18-443194299396015920727*x^17+654211796697056201475*x^16+3289263238009343513027*x^15-4909640949988760976063*x^14-13911354804136965503755*x^13+21492498277511827879899*x^12+32809246067622506014675*x^11-55848212667582391995663*x^10-37152948138636735453445*x^9+85393270687204170694965*x^8+5583375858342452495631*x^7-76499001320510405514675*x^6+25817695878266203276277*x^5+39666285577392711382787*x^4-19730812320902394420787*x^3-10921342107175992074971*x^2+3730720089149782086801*x+1218984835905548181194,2735315068969378836*x^21-3556386150244017638*x^20-98560473954944805849*x^19+123266212268046560352*x^18+1509388691521688160710*x^17-1798707522023771405860*x^16-12812488598723235299960*x^15+14348281499360016496659*x^14+65967285881345625627588*x^13-68044261058993353384722*x^12-212101995579495437581464*x^11+195860488958789092408572*x^10+423237279982359574157795*x^9-336838640910748120037252*x^8-503832639518150045886488*x^7+330610304435094091558952*x^6+326838536617170381921752*x^5-168648842302412644241380*x^4-95966721606237671392660*x^3+34406261551641279513556*x^2+7783784928867158992934*x-439159155587098448053,321226424163746048*x^21+3801901583102434231*x^20-18552232937067380885*x^19-129228358922459727636*x^18+415822499184604316188*x^17+1838181668057575308290*x^16-4909941181790293676126*x^15-14192061774488959599914*x^14+33996329744624815911691*x^13+64611826293534390239510*x^12-143009619717835957566812*x^11-177164866440755054595842*x^10+363135701598845915429974*x^9+289742407609106508486970*x^8-534122568544790467437490*x^7-275603753317877822408499*x^6+420748487273236095304854*x^5+145078038418898400990846*x^4-153245015674186693664582*x^3-38930610655526174141722*x^2+18299352733124579928085*x+4161012749318365661141,-12228254484012777*x^21+1050165350634550092*x^20-2253213239977264747*x^19-34769506821793582436*x^18+85584777098138834302*x^17+474837584748326778652*x^16-1258961973821722385996*x^15-3437427365349612217092*x^14+9782562840649011141376*x^13+14078319886326409920676*x^12-43705314060894080073167*x^11-32089390148671133877067*x^10+113199122490984745267336*x^9+36729457663266301650342*x^8-163089860767352170769548*x^7-14533346655319789915628*x^6+119671627318405978636312*x^5-5088241537696664559980*x^4-37712073807795162589532*x^3+3225456492993246148131*x^2+3316767788021268810256*x+238590099640580857147,-3742303588968530107*x^21+3342400388448693194*x^20+133746740179511662120*x^19-113314885334183648100*x^18-2030356591407612687132*x^17+1601516699860616206053*x^16+17075571556833547170124*x^15-12186624276226513165584*x^14-87078358215154879522920*x^13+53795495238609565759988*x^12+277365657525005451628137*x^11-138266908354537623105784*x^10-549017649597967552746466*x^9+196895002163903242319749*x^8+650546317324946249637884*x^7-137489413085018415956440*x^6-422988250481854722664560*x^5+32138160482011131466836*x^4+126213526087593167637433*x^3+5730202195059084526405*x^2-10657578977563476319208*x-1870253588648265690674,106341562018576649119*x^4-638049372111459894714*x^2+425366248074306596476,4452381647471694094*x^21-9068371874454525600*x^20-153992947179709981857*x^19+309305459277894660434*x^18+2241142934119782305766*x^17-4414101082400495089032*x^16-17849102933154097864728*x^15+34138690020226395806430*x^14+84888616078482178708090*x^13-154986667317321532177050*x^12-247940630886815257914596*x^11+419002856056921869273834*x^10+444151988255289405124854*x^9-657580637032014020631760*x^8-476755702015183905849788*x^7+565228902091487119925104*x^6+285426523932612121998880*x^5-239125370165520923828736*x^4-80207143469841117045912*x^3+39063917958108087392762*x^2+6022433751456583734384*x-598516936521015541253,772304928969862769*x^21+2187600159682400742*x^20-29018375350539610184*x^19-73397369607492795116*x^18+466600914004915738000*x^17+1030583595730125105612*x^16-4187948995846812379325*x^15-7846495778773920106880*x^14+22932337886722559152752*x^13+35063776963222429873424*x^12-78642266823126794138696*x^11-92994469491290961653844*x^10+167197065692312616594660*x^9+141388129037352607964128*x^8-212132125355740487021020*x^7-114184516477754031863167*x^6+150392902739744806976612*x^5+44300571092185677146386*x^4-51320377668775848087028*x^3-7880681162763116869239*x^2+5967746046427485542039*x+967948661496955492618,2060947601905836306*x^21-4832671238044683175*x^20-68573303399040677761*x^19+163608169101819422096*x^18+945067357347588828552*x^17-2310696191041279916506*x^16-6945163366149052550342*x^15+17606989366145028973364*x^14+29110744005390982374894*x^13-78197087165562781870272*x^12-68512622918921845946016*x^11+204416013113214253913886*x^10+80351459485752749582826*x^9-304229490665913015656534*x^8-24090178091362483895616*x^7+240402390067988455671396*x^6-34263402855534371727222*x^5-89455854323221778141268*x^4+26829327840793157634146*x^3+12894732713698986951570*x^2-4229275899838336784401*x-708462148060371566945,-445756004359088465*x^21+943993378717718077*x^20+13374311055372958081*x^19-31501788786239454401*x^18-154860226946739960838*x^17+437391165026854866863*x^16+795609582864915862375*x^15-3265900779307454837009*x^14-816407051612388284749*x^13+14180576390487300102159*x^12-10247458340808221870653*x^11-36422699433728155694777*x^10+51257135936469899341463*x^9+55206565663659965201143*x^8-104338968709679568055841*x^7-50919969433386968972004*x^6+103264370552111606137971*x^5+31045282162359515184465*x^4-47661900568079008273577*x^3-12561983106696627700434*x^2+8143408310689821359636*x+1929301233947538026742,-2249893811685617514*x^21+4889151217053188472*x^20+78448856556918336317*x^19-165965583596167928108*x^18-1156614060025552531081*x^17+2352019130624422535113*x^16+9411342247030654010618*x^15-17995360684792647361044*x^14-46423948334502659938116*x^13+80250391160832653875260*x^12+144429564505690955661176*x^11-210078747092599937527244*x^10-288095361393536824443956*x^9+309201303395171840828680*x^8+367366130426128360182060*x^7-230047035257201422215924*x^6-284482773420770565536964*x^5+65025589344599718946708*x^4+117881342225203702773187*x^3+2447208805807854457205*x^2-19239928901254527029690*x-2118508941443705868263,-494456732156794632*x^21-1373002214516866887*x^20+19496146317954040273*x^19+47713436581707304643*x^18-326654143854178018655*x^17-694021002660963895923*x^16+3025592995012850231707*x^15+5475227875664146860615*x^14-16871419046874925455931*x^13-25384685102332471380395*x^12+57811645948025824251947*x^11+70160242571216931396925*x^10-119339943032015932280185*x^9-112537381294254823157759*x^8+140572423465043422006815*x^7+98412220324503870102607*x^6-86901502947076567777163*x^5-42047648914102450447617*x^4+23966340746389784997649*x^3+7136689236059053284871*x^2-1819515657573589770806*x-449128354192385078530,-183828183402467739*x^21+1039361525618415970*x^20+6101367191790319672*x^19-36335263579768053016*x^18-86097238365453050162*x^17+535013726770783983898*x^16+679936098218707440588*x^15-4304659386907177462172*x^14-3352483334807843958878*x^13+20525485479955595004164*x^12+10989624956073174280880*x^11-58778429143237160633642*x^10-24843801449515718243784*x^9+97604340848147573252008*x^8+38249882878989736086178*x^7-85409928933297878885242*x^6-36526711348597203705336*x^5+31341260738901659239774*x^4+18666517891163488220250*x^3-1652994415952016698357*x^2-3937341625041663583766*x-223348084060957326008,4511223253916014232*x^21-8156163098904105945*x^20-157459130269611464850*x^19+276826340356841854424*x^18+2317773272776861827866*x^17-3919012888302731496938*x^16-18734715744863295445903*x^15+29914550523732128720746*x^14+90915510170713997285398*x^13-132853431271545061342058*x^12-273206365247640821929358*x^11+345548069331234760483913*x^10+509774459964197437498434*x^9-504383432169566751965520*x^8-580262616061204001327458*x^7+374027144002747301653322*x^6+381313231762615809794066*x^5-111182663742085771542974*x^4-129962488142948720465978*x^3+977267524840045638658*x^2+17021470885979141466121*x+2555028282227287286816,-719816243709360152*x^21+3480636582222939563*x^20+20974008119275552707*x^19-118897405477588296255*x^18-229919874272320623243*x^17+1694847346023944139209*x^16+1024365485846039534061*x^15-13039838467624206709527*x^14+358740843870346752281*x^13+58505328019139688374477*x^12-21828299221105886443334*x^11-154545795270897105008091*x^10+87825063743642909970975*x^9+232062869301826606115644*x^8-156531603625948067533695*x^7-183078835958843793038639*x^6+135467093277583434283893*x^5+64932817451593238462845*x^4-53115752474249641776155*x^3-8139381250059636113759*x^2+7474549838328303569920*x+1074308601185429602275,4444354431429926327*x^21-7309308091336269205*x^20-151714208613921950996*x^19+249748437891947609372*x^18+2170008564218724975874*x^17-3562396332423379004766*x^16-16876551001225385323050*x^15+27437849842473612849675*x^14+77590337509022221816854*x^13-123322615860112453523036*x^12-215615990639579620287490*x^11+326831654819131828323158*x^10+359003643055172612626490*x^9-494162322605244622812338*x^8-349039004919527642695731*x^7+396189763466645218697110*x^6+187895914627804930459006*x^5-145695231027066170298438*x^4-50733111932150531437338*x^3+17147113549649222853909*x^2+5188937306642353014741*x+151940098629451880704,-352284225223252022*x^21+2845168931599921220*x^20+8336344563743999271*x^19-99082035402916844873*x^18-47531220165652833382*x^17+1449078797750534236601*x^16-414797840351158752689*x^15-11555907204671722096607*x^14+7173057466625397070929*x^13+54669563080241202467654*x^12-42058554506695254106363*x^11-156952658430579100530203*x^10+126747017976260365443049*x^9+270777843566910619082773*x^8-206155218592006223084826*x^7-272110890152956370642859*x^6+174672823246396058360079*x^5+149033777499581949774553*x^4-68116683806157067981879*x^3-36914964703432353737948*x^2+8953094622225115223125*x+1859496212887448672932,16871211050960660*x^21-639070376718558632*x^20-704542637637052500*x^19+25794577003238498045*x^18+10175756481682219957*x^17-439299783152556168141*x^16-52837151691080528797*x^15+4119294981038277452931*x^14-138321453169901571397*x^13-23259805984993166057084*x^12+3046336236202923092244*x^11+81232878027478965671401*x^10-15744159629241028308305*x^9-173488762653703561195273*x^8+40301619458428814580203*x^7+216156873695783106429687*x^6-54780176781955273003673*x^5-142869717136843285041977*x^4+37561940926995770545259*x^3+41718065928368699814943*x^2-9870153881712779955901*x-3411039122443671254433,-4949554546469626151*x^21+5638410761951578121*x^20+176207117842749094505*x^19-191397314944231603028*x^18-2660490697073345263440*x^17+2707190973281190920048*x^16+22216248394573400487934*x^15-20597631528218833688502*x^14-112317687824702088138006*x^13+90712069956071996243772*x^12+354554649317530165235914*x^11-231162104592895901963896*x^10-697751720167008818836016*x^9+319889567020050596788750*x^8+831647493859939158411512*x^7-199844244260598778871414*x^6-560612132770439918559736*x^5+15800073124336849081422*x^4+188323919933396899399728*x^3+26727855000532543053163*x^2-23537886238855188251027*x-4919079211515789372153,-4142206789488367020*x^21+2766114565613108375*x^20+148646365893613459390*x^19-95585635910882621813*x^18-2264282907543875394478*x^17+1376608001110563371259*x^16+19087806816783492938615*x^15-10671745839184400328301*x^14-97404796666485956153133*x^13+48011097467891146960428*x^12+309690573548584399232223*x^11-126073724883511185643647*x^10-610001786171546376701056*x^9+185007493160850072857191*x^8+718034868085488283274723*x^7-136877914194443690394089*x^6-466692196409549089145729*x^5+38258164836065804532612*x^4+143229920660940817717799*x^3+2766063996066641174601*x^2-13845625073347562033074*x-1770109597582114740611,-132904553112721313*x^21-1176708245964174219*x^20+9904292068140553639*x^19+39065139067194949432*x^18-246905618631975767242*x^17-538471726425906035698*x^16+3080826924353390203226*x^15+3987676782018307963186*x^14-22005835609083581847834*x^13-17217508630054096872000*x^12+94182905922897950077050*x^11+44530024615877316807794*x^10-240788420412776223839324*x^9-70388526602452924678018*x^8+352048707552451713628708*x^7+71335855328798875924316*x^6-268841807668535375834654*x^5-45754557196087629322204*x^4+89914375314152864848222*x^3+16149501277969156542849*x^2-8829343406548919375683*x-1994351157734614954841,106341562018576649119*x^5-850732496148613192952*x^3+1276098744222919789428*x,1006495042118223334*x^21-5837465978972957077*x^20-30060645769735490952*x^19+195512224103113106461*x^18+346714791065022627065*x^17-2724629993380080843565*x^16-1801507725219849119889*x^15+20399173913522690726623*x^14+2501816494514050819683*x^13-88321838110296443051387*x^12+15688079072925932736055*x^11+221350366634349870944903*x^10-77429910519443275365569*x^9-303112090167529668807735*x^8+135145380976671634633313*x^7+194967501932903735915569*x^6-102473588037526024969487*x^5-32556072526807797835445*x^4+28789543729733679305901*x^3-9348612469908886632777*x^2-1583834343778972683170*x+947070714537569632831,-163608579511137412*x^21+1840410481799311433*x^20-2361256045123926146*x^19-60738377623083540832*x^18+185209159437764910070*x^17+828638077989658859602*x^16-3069863407694551737128*x^15-6015660017947399609108*x^14+24902908385477324302832*x^13+24932483141782458024382*x^12-113951679527087385472060*x^11-59042828397019046296744*x^10+302419631887595301446050*x^9+77116122548647367749718*x^8-452625613955369395210142*x^7-54971410161541306569702*x^6+354354841534218540430994*x^5+24437182390686109245370*x^4-124525488533296897008986*x^3-9948259218024382980794*x^2+13649104335388405559547*x+2105976519254111306462,-3229700687340763982*x^21+7737086920446803710*x^20+106381235166050629089*x^19-262015042159619387671*x^18-1446159258894733761513*x^17+3702051152123841607427*x^16+10428867785229687369663*x^15-28235954384274523463250*x^14-42604862684218626355034*x^13+125723366914348543343543*x^12+97270044638881937773841*x^11-330801525223516647890469*x^10-114273910130507915658541*x^9+499989209909604519359403*x^8+59493184004550343315955*x^7-407415705716671360116998*x^6-18045187244393863729842*x^5+155272284488725782390971*x^4+15805298199278316026709*x^3-17898132518519438907763*x^2-5808257435761813451995*x-1219262314567305653036,-360596162069017452*x^21+4653299664848148657*x^20+11414301334442040190*x^19-161140416149804154445*x^18-140811468329342373223*x^17+2346537136792881935786*x^16+807506662169034477103*x^15-18663495100040392411595*x^14-1602619204814446033153*x^13+88186957663265347283499*x^12-4731883385626238809677*x^11-252714979334030371556153*x^10+31340919269617501050307*x^9+432018108552662194165671*x^8-64375636111932016432676*x^7-420040203216319814688493*x^6+62706678698804586923979*x^5+211595899319244226376495*x^4-28664627406064217887413*x^3-44539641050447719037452*x^2+4519790993174617525212*x+1526787913559433948059,7394664530843307306*x^21-7606811372112628985*x^20-265748373574771212515*x^19+262649542497701585053*x^18+4059724885732822776975*x^17-3798927284152887127595*x^16-34396095662365500835307*x^15+29807565684935758419707*x^14+176999555379210375255647*x^13-137367368061688512257791*x^12-570418410750884597129585*x^11+376728273526138216865739*x^10+1147527903105757245029711*x^9-597146212364599738977311*x^8-1393620714368475271214341*x^7+510797249529005350919693*x^6+946073752160513183531115*x^5-205880561965320549938131*x^4-309538691264250150171849*x^3+23820849468389444377459*x^2+33753100856119673756800*x+2947761978590836822678,-710776034233010563*x^21+3559862667663592949*x^20+19341836968410880676*x^19-120442552837728541650*x^18-181737318272551012408*x^17+1700511823845930753328*x^16+383650257017954964122*x^15-12967623182720477484708*x^14+5071378794238722401046*x^13+57796672759081143739806*x^12-42281475782516257750620*x^11-152570655638839152212376*x^10+140141726519013879461656*x^9+232289642638121646734478*x^8-230748780256102876406958*x^7-191829029864041274829840*x^6+185258156272816672267002*x^5+75267779328386028334064*x^4-62828604075525250603482*x^3-11621894947874571614023*x^2+5886570178038304612255*x+974828215701460572738,-4415146752866207201*x^21+5181651513678346525*x^20+154668170736746784432*x^19-175206154172062805885*x^18-2287390211858970054684*x^17+2464684828297736190004*x^16+18587620922574132577532*x^15-18616147811246015874064*x^14-90600248195632507731509*x^13+81252064141666856413448*x^12+272108383473283715710986*x^11-205306657232325923037296*x^10-500383290519108566730012*x^9+285163621592594384125332*x^8+544890069243474310893256*x^7-193417015000993581095077*x^6-327021762184739207048708*x^5+48150317214029181014532*x^4+96393002743324170110360*x^3-418753182868645807757*x^2-10850012977193473945620*x-76334832673671602106,3006436570318787463*x^21-7158575593017335536*x^20-99837320641270063153*x^19+242786999863431564241*x^18+1373994757067980419288*x^17-3437738908061989001584*x^16-10100979125852728956690*x^15+26296316523312566616450*x^14+42602989015643632849702*x^13-117524026764751234982250*x^12-103033999678380264620026*x^11+310598737430411050759586*x^10+136021180015673829367026*x^9-471691433205818763690086*x^8-91366964238092310040873*x^7+386950290640062988499682*x^6+34030593142726443016578*x^5-152705274523546387562422*x^4-14223003119932713100906*x^3+22469722560588114366237*x^2+3266748692578484095218*x-190746736634643851805,2330198925192321413*x^21-3090146595879975727*x^20-82530308525790117069*x^19+107831472204266184399*x^18+1234962920256167687279*x^17-1581141102230608848213*x^16-10160071052272144450167*x^15+12640327980660647116483*x^14+50135748115114353511897*x^13-59837040316205255203393*x^12-152177657649097679243841*x^11+170801310729443889903205*x^10+281180766342045539290163*x^9-287691489337670032976877*x^8-303280268575613208481891*x^7+269273936002067725022281*x^6+174530655583878613015541*x^5-123561478045454973427181*x^4-44441458604538740115375*x^3+21425693416436163745758*x^2+3287195290360532440862*x-854063470366461243224,389363593681953444*x^21-297426852078276673*x^20-8473016778174702128*x^19+6581040615911723657*x^18+27878823153179643151*x^17-26962292990511460612*x^16+807001899464058203454*x^15-487866381317407154778*x^14-10652068512701350542882*x^13+6540322468914515080658*x^12+59235792059980164516070*x^11-33819112478263389864218*x^10-175909550811422579452430*x^9+87481590146249227057974*x^8+284298939138435912042102*x^7-112471641835970049739122*x^6-234874006284034667581922*x^5+65002087969156634341645*x^4+85112807234760813156593*x^3-11169559798738217006972*x^2-9318169138837681913063*x-1064199772927297084122,-1846887930365785853*x^21+1520460471718293757*x^20+65228337920815452692*x^19-53903403124830438332*x^18-974995848187826736698*x^17+804583313629561954126*x^16+8029648120167743713362*x^15-6567820853326488395724*x^14-39749807100398915734988*x^13+31937380360396640454946*x^12+121146429673465218266196*x^11-94868169680078926942140*x^10-223775296201610850482780*x^9+171199885701321029964760*x^8+236190999739405980566038*x^7-183118669100660712214770*x^6-123537648119379271536652*x^5+109590480708375665563888*x^4+21533258937944195916016*x^3-30560571877557140837337*x^2+611758770632449038147*x+2068041214299549076020,-462852870405994931*x^21-619051460069105023*x^20+18604213966860519957*x^19+22922090624689010943*x^18-318406208186900909325*x^17-357076589779015652483*x^16+3028876310279792574185*x^15+3043185953547872497739*x^14-17539510843389513889581*x^13-15477120350691304119235*x^12+63728715731872393612607*x^11+48238498801313310635885*x^10-144843773320968626829549*x^9-91724040932938014809283*x^8+200282727689451629138233*x^7+103899200237527663252483*x^6-159591650783474797472611*x^5-66987446984276782003821*x^4+64765643130768790495389*x^3+21796784855024816724120*x^2-9492830075393692074532*x-2671847706121260223324,-1875331532051550760*x^21-42355614104089117*x^20+70570162169537527360*x^19+3466254573139866200*x^18-1136298480402724726801*x^17-81760282856627740631*x^16+10222872675551465669574*x^15+925825504369484130933*x^14-56311618992418263263689*x^13-5866258812338537108723*x^12+195868156483854948200501*x^11+21891501585050430877930*x^10-428892210394463384444516*x^9-48192589911353246795259*x^8+573831501664724012335099*x^7+61026959678476211568189*x^6-442126042903998756724751*x^5-44040530471937333653176*x^4+174760598068680635920105*x^3+19590602552178440663093*x^2-26240991090142435759457*x-4549210373233950083683,671705158813480492*x^21-332619227296051193*x^20-23467290741595311286*x^19+8941932453622770901*x^18+345119213316034809511*x^17-91223131154644724517*x^16-2768407258212754567349*x^15+400736685720339868285*x^14+13098275385945690945347*x^13-276652920113866039213*x^12-36774011761778369807603*x^11-4068091645919021785221*x^10+57968227083824491707523*x^9+15381840691906151822317*x^8-43385151753843131540191*x^7-22472495242928337655569*x^6+6837883032269721969769*x^5+14346004096655288950533*x^4+5101220698621452967981*x^3-3277949931177011803973*x^2-811598270948854090808*x-86950730749367240547,46433189470467441*x^21-260910529208913032*x^20+1102414192456999097*x^19+4848720540267625609*x^18-67967816668863141080*x^17+8269561906940516219*x^16+1095964759322511218505*x^15-894759696815022412013*x^14-8785323976504499826133*x^13+9511233472955728605475*x^12+39609030186997763045779*x^11-48037600070679816175273*x^10-102042145051328087705565*x^9+131284907768696687297631*x^8+143039524972192757416067*x^7-193402437290703085076549*x^6-95431283716181665350249*x^5+144012450011764084757347*x^4+18843115423488915093727*x^3-45739654395445164349379*x^2+3121181580244386542379*x+3202232636731587682858,-4604346729010835153*x^21+7546455917937068546*x^20+158161660492610469882*x^19-261061574033810650782*x^18-2277696650050865116702*x^17+3787280849361927069057*x^16+17839234988202468383842*x^15-29886698003209298282664*x^14-82521049906267589581738*x^13+139361496433096649076670*x^12+229754125773224816062209*x^11-391791436441206927776654*x^10-378170590241184491648430*x^9+654606327324190493193614*x^8+350386186184561295863010*x^7-624803928539213409402934*x^6-163536233345691418332038*x^5+313362476598664650511478*x^4+27159345941933193511834*x^3-67972810029100160611175*x^2+1423372837024214843348*x+3012126910276471627842,-1837162954946091114*x^21+4124768178998741099*x^20+56006570683680470834*x^19-134613515475556352808*x^18-672119569422556110975*x^17+1804728521483079438315*x^16+3833026945784038809763*x^15-12716136612206147561021*x^14-8401279694879692511481*x^13+49710867582165985637483*x^12-14532822048538900066905*x^11-102566535249603255760009*x^10+117330141457610957085179*x^9+85857551035248886392379*x^8-238233826737976867631185*x^7+23140005173708111601059*x^6+203844506779469528753983*x^5-70266357225776820265485*x^4-65928579795386333806349*x^3+23237237991139048364057*x^2+4739136283800186144715*x+440917102957500496718,2041004094804219259*x^21-4219560410552052613*x^20-68510268417933085615*x^19+142225123725418575341*x^18+951277166272175102193*x^17-1995263656514726303579*x^16-7024334118945083919263*x^15+15055229091684352975665*x^14+29422592324550410153221*x^13-65943677349321442078958*x^12-68383071082642985453539*x^11+169176536158943666269559*x^10+76859689914432916942164*x^9-246076024527148761082343*x^8-18522364300690678050071*x^7+190499204557895145984749*x^6-31015088753645922997995*x^5-70033593650150733428611*x^4+18308107176309674591025*x^3+10056530704513778435144*x^2-1229103378684522884125*x-340473083274527351896,-222605708712306317*x^21+1771986897240991535*x^20+8394798908269413398*x^19-62017982854151391479*x^18-132176113976852008411*x^17+916715585382541573219*x^16+1123306939319408079145*x^15-7448652883060561611931*x^14-5528817026912409326735*x^13+36313416861504178574269*x^12+15360082454472940698983*x^11-109127996961946725807235*x^10-19098865139104622514483*x^9+201327736407691446605617*x^8-9559071275841843823533*x^7-222767472264933468746219*x^6+56969010041559400351915*x^5+140287832509254146508645*x^4-53955153924484974955805*x^3-41120291681001944586220*x^2+14202381196830081378342*x+2730337795097604944335,936947923196091353*x^21-3765606680079398013*x^20-24251906434012471748*x^19+130734041014372520087*x^18+196976796874526258649*x^17-1908847497491994997865*x^16+116262222594305887188*x^15+15234076631495335198323*x^14-11750023256298771956637*x^13-72458493187602505963661*x^12+80857224458210132188555*x^11+211045771159766738119615*x^10-262164245070172888676181*x^9-375650573222289254517198*x^8+448415478341462125882947*x^7+399319191917448417797873*x^6-394781981636086331150681*x^5-236433526568049774955549*x^4+160342674378424257076439*x^3+67108259272155555563236*x^2-22224831187043943729066*x-6219845852570376169611,-4329495292882069520*x^21+3590648999357842600*x^20+157834344269401771754*x^19-121578407619976126612*x^18-2453229843310026810308*x^17+1710515726801216197192*x^16+21222111958947484846100*x^15-12873973887185376166692*x^14-111931351259342458686112*x^13+55442921615837726993416*x^12+370993421497117886286343*x^11-134494962220095370602912*x^10-768709379680133068426630*x^9+163900780714104315301205*x^8+958696497623291479603728*x^7-60153947228933081329268*x^6-662952536783890749549336*x^5-42866591282817099793888*x^4+219735069544521293825964*x^3+34101833190801002709676*x^2-24675882841215763025544*x-4857906764628828252290,2140600481153417176*x^21-3993603319069821499*x^20-74422139637289203333*x^19+134599724274768461992*x^18+1085169193094914897875*x^17-1892630165162700984979*x^16-8611867934481004948753*x^15+14365644493008533604103*x^14+40436223528546151022788*x^13-63648997817952700778677*x^12-114783884387130610244781*x^11+166561124258316639213423*x^10+194820080345399134359243*x^9-249979023925553551369604*x^8-191575545708893949145461*x^7+201606009117389345198045*x^6+102076051698448571502063*x^5-76396419951579160254945*x^4-23971337700279627945624*x^3+10216738138100920226039*x^2+732186692173042202532*x-166630438530598206406,5133811269953029378*x^21-9938727077924034338*x^20-170463474635010406872*x^19+336905751277832562339*x^18+2346112342999698035313*x^17-4758295268115660570377*x^16-17253940486900953856815*x^15+36193542687693709860647*x^14+72815745820650027399475*x^13-160102781590780881776313*x^12-175995921285597947257711*x^11+415859846416191574498105*x^10+229782550921787107076793*x^9-614305839247049752074983*x^8-142086824752113292744949*x^7+483697768892184506330255*x^6+28172077887243618742051*x^5-180539481854049386386041*x^4+2806649666748001404977*x^3+27161916079765229391583*x^2-1907868891067820449211*x-1679325437235191915123,-580871445648611758*x^21-2214380952122529584*x^20+29120018709625781339*x^19+70992354011922723609*x^18-593041376333191474965*x^17-931737590828954117401*x^16+6496226217928843989303*x^15+6392073761501859067567*x^14-42143284126199224793856*x^13-24076317624769670779688*x^12+166624005315256083855075*x^11+46527887008754818534609*x^10-396249321464920169024045*x^9-31058534084575333577141*x^8+538479684543338382446843*x^7-27003338169794788511397*x^6-379964123696617441139901*x^5+48134948075719828057199*x^4+116522331507524628424287*x^3-16381583901739068139583*x^2-9990586823123134762945*x-469200116454057322114,-1515226547923546864*x^21-287941676419326044*x^20+62979416181645953973*x^19+3470883540143996887*x^18-1118592674146516257387*x^17+71050177281203256639*x^16+11069521981701794150101*x^15-1827300217980204334975*x^14-66682379711341487061989*x^13+16525306422392143905047*x^12+250740744058149814404499*x^11-77462166385667124334167*x^10-580263029092215484783009*x^9+200009869014168311914185*x^8+784568843478796961627209*x^7-276129928550897108300671*x^6-557618967968196856253989*x^5+185336653928182326688559*x^4+165366152010107734909125*x^3-46138220127267305038101*x^2-9626569884556356147255*x+787731540418031992022,-4260698330987674181*x^21+2972708716312179220*x^20+155071503308642227542*x^19-101570996548548543373*x^18-2405698873221932893935*x^17+1452867072133318784489*x^16+20765795816627832055405*x^15-11262632649431731013039*x^14-109264782384940309135081*x^13+51211299828046187319577*x^12+361304524174064817936955*x^11-138367913988651080128449*x^10-747308636516997845759115*x^9+215927857833664134853263*x^8+931668471053275985882545*x^7-182203839029197590437333*x^6-643950800147331968716123*x^5+71994539427721275972775*x^4+208584388146919547093205*x^3-5783834080668639247390*x^2-20757653760218593055353*x-2341139300480133169423,5621201825032573579*x^21-5869770867581617546*x^20-202351920148973395193*x^19+202124940046268440782*x^18+3099951025120276990996*x^17-2916766870429402637702*x^16-26383161120727253344686*x^15+22847192319660510025410*x^14+136723741747188899987842*x^13-105214964878282080161496*x^12-445351075155958324900552*x^11+288797256058635698858996*x^10+910027379077656309521142*x^9-459308662970412530043192*x^8-1129124749097739113376530*x^7+395384518793226206507186*x^6+787018738003471785670762*x^5-159512684543623942037332*x^4-264077679257747932409868*x^3+15835578795075255115283*x^2+29230993778949366469350*x+3559330917174734596365,1966308164573434549*x^21-3015672515376772698*x^20-73124641005720254653*x^19+103867773289977651062*x^18+1158421570384305613863*x^17-1491784064841439122391*x^16-10206466813097211482409*x^15+11539887906951059625375*x^14+54810232982502413297208*x^13-51763844436008281842493*x^12-184978745024975068238901*x^11+134671815265135645009852*x^10+389920875441250923332823*x^9-191041518647881570285755*x^8-491024796906190093594677*x^7+124970765437241866547211*x^6+332099211794923367930832*x^5-18400686476426535286933*x^4-97468026319738113051425*x^3-10447933709570958585144*x^2+6289986631182063433805*x+1781243365868533780888,-3583420793017939023*x^21+8675354254760796882*x^20+119688299254442002703*x^19-294123955840994350382*x^18-1660248998262814109632*x^17+4159718928604024571886*x^16+12349384159626636232842*x^15-31734818675980894163120*x^14-53093368806306371640876*x^13+141051895415042979466510*x^12+132913509957353983447354*x^11-368488364473189425949808*x^10-187706333270731286203004*x^9+545413760525016522438188*x^8+143091001473558586379412*x^7-420998049638230728658378*x^6-58457047224399135589678*x^5+141730916081843913365122*x^4+15994914982044283437864*x^3-11563599974223539290013*x^2-2012326590968649994070*x-454403661117885525077,-1442517352189616845*x^21+5252632709195307684*x^20+48368457785085441342*x^19-178193964672698848421*x^18-675762129791347152027*x^17+2523292324045524295191*x^16+5098360132381319975927*x^15-19292323348181150800313*x^14-22587251289467376081139*x^13+86037584576278598967219*x^12+60438832528023170695207*x^11-225767946533635799208003*x^10-99044741821852330580513*x^9+335515514049782295012821*x^8+101719032311344982567933*x^7-258680855869408493291865*x^6-63470069603247816738539*x^5+86790719602344575828783*x^4+21032680368436763025095*x^3-8352614774533588025952*x^2-2419645727695323156441*x-62863853622317181049,2144623226442556759*x^21+4570163441740534407*x^20-84909506785462639782*x^19-160912311273673496791*x^18+1442501953795581308027*x^17+2392331262297492801525*x^16-13720406796047213861208*x^15-19551259673819401423796*x^14+79931309382582541340203*x^13+95886371388387788375973*x^12-293296568413370212222335*x^11-289822368795064814683072*x^10+672901130714373863201224*x^9+535901980956985209755469*x^8-932520051606723144038033*x^7-584968891760440095522323*x^6+735884980631498100096888*x^5+349650782064952656862944*x^4-299025876417177166950857*x^3-100494566360115162277420*x^2+48084649594435996705812*x+10180815568607157036757,106341562018576649119*x^6-1063415620185766491190*x^4+2552197488445839578856*x^2-850732496148613192952,10705439568268214180*x^21-12310076072275089625*x^20-380815616646236121703*x^19+421903862231200801731*x^18+5746700600917992896198*x^17-6045857185963881579897*x^16-47983650327093417503779*x^15+46881621196062991166251*x^14+242756395480554070355355*x^13-212808144705444193351381*x^12-767762563497020681577761*x^11+572331016747178043184540*x^10+1516181291090485446415942*x^9-884994657354098799348073*x^8-1814974773271163752609615*x^7+735346515074983318160131*x^6+1222300217804795165935491*x^5-287428217305726165374773*x^4-396712523250381151225253*x^3+33461457413411106274372*x^2+42191738584254104423562*x+3438689009502912482608,-3824475894736510409*x^21+5166680704402325738*x^20+125057571154837473081*x^19-173643145710098836613*x^18-1684920614871956139543*x^17+2420738976466097766241*x^16+11987894846540698324385*x^15-18047792780413714990595*x^14-47656418923593865687785*x^13+77373140719225486206913*x^12+100871903597756419641769*x^11-191180960694518521904247*x^10-86096661661208944647325*x^9+260352357721136499159579*x^8-35126323150701182246837*x^7-179423153492590553523789*x^6+101604684112340781470085*x^5+52445196704638282324903*x^4-46329253307416648370605*x^3-5194132059857039782228*x^2+4167854849315884301631*x+476072154921919636982,-5139989178742198646*x^21+9096432451439969938*x^20+178457705070845854600*x^19-310180784696958907786*x^18-2611012691539536760801*x^17+4417958393008438338545*x^16+20953972198205476085753*x^15-34009895747143110966363*x^14-100789819551293731589895*x^13+153014944617366737382517*x^12+299524111019582346001085*x^11-407004012587977765984095*x^10-551189859953466073292259*x^9+620984884257968779456093*x^8+617055042025566397030765*x^7-509767937695390462370227*x^6-396024171620222462096715*x^5+202617699320811656098293*x^4+127287329737312799119569*x^3-32163034780923796223689*x^2-13756478961471129781276*x+685103824925500893393,-7391569972166351579*x^21+10049187420895315634*x^20+258700117302116041722*x^19-348816123510766368794*x^18-3822655452884910698526*x^17+5072000766057216997596*x^16+31049822747335371472432*x^15-40034075287096574769224*x^14-151455026453170384248834*x^13+185994576095056600312796*x^12+456422543952674128886260*x^11-517095529395638220209614*x^10-846464317833225335588370*x^9+842182916426052663137990*x^8+935942387622288117749782*x^7-763594595919390710859578*x^6-568224071080475196084930*x^5+349879959353494688054250*x^4+156477334150056061902734*x^3-63891867606121319329133*x^2-10462438438094695880706*x+1119647014933263086630,-4226683294771459313*x^21+11201532357723083086*x^20+140996887402064922022*x^19-384602694663770451011*x^18-1951104561127140120787*x^17+5535683268167689775407*x^16+14438069653056519170171*x^15-43309299382087838759127*x^14-61333694143299839900669*x^13+199881565435434061614703*x^12+148891245337066999856391*x^11-553997255338152682132303*x^10-191852000482640726735879*x^9+904656071953098769171893*x^8+102351314236593538921159*x^7-829687189453018928849509*x^6+15918584848071483763279*x^5+390401494064420115795123*x^4-36974715997283215156229*x^3-79494290046827485853040*x^2+10574081973278426497161*x+4455389031053923817683,1277685545765275746*x^21-6658288890876110281*x^20-35935994045765908931*x^19+223595996460441217181*x^18+365770342100832414021*x^17-3119726598164817534827*x^16-1245345740167758865676*x^15+23335936249217751865460*x^14-4766229956280343821203*x^13-100668621386171464390993*x^12+55796876751860141518913*x^11+250737172450683207295153*x^10-196382703791374306619527*x^9-342278351799953355280863*x^8+330922938715613353044040*x^7+228875119404869564986004*x^6-275230668630361352589719*x^5-60102357055291659842237*x^4+100767530135754911318881*x^3+5776678929729506951439*x^2-11554304514057750395436*x-1527648425112181363486,-1901706762010969543*x^21+4951119299593067454*x^20+56374537709591765869*x^19-163748260250769199528*x^18-638285998164339576484*x^17+2239333865145155630962*x^16+3105011878761310803492*x^15-16293237239499247670400*x^14-1679666132527592115772*x^13+67512737162793830257494*x^12-48501000091180529386524*x^11-157978727050907009066766*x^10+216006380948428053571158*x^9+194159596453057846140580*x^8-399253374832029919616500*x^7-106278903696007819417762*x^6+339550454560840591654842*x^5+15847595271237072081500*x^4-115256075297850952347358*x^3-2212576023886727671423*x^2+9367489454545716919356*x+1568445025501589176955,2387497482770388215*x^21-5581764657338372114*x^20-77861934103893712437*x^19+192411486675325239693*x^18+1040839473365755431870*x^17-2766361429170743945261*x^16-7274094981935988806581*x^15+21452664193696523498091*x^14+27753115153745716864839*x^13-96959294296794971137249*x^12-52266724491953325256909*x^11+258083354700753569730679*x^10+19874035683525763063371*x^9-392009696151860934372280*x^8+86659575509597170037815*x^7+318644370032975241908069*x^6-137255571583235068841069*x^5-125740861187543689354541*x^4+71350138473843816357988*x^3+21574611752042416864014*x^2-11562611897916392982419*x-2106459307652556240032,-2789916658354649060*x^21+1704517612700781238*x^20+102262239995605387209*x^19-57406009413617968533*x^18-1598292922823348440603*x^17+801988954017805169318*x^16+13905562290019809137749*x^15-5977236690084860592107*x^14-73795574277336734189179*x^13+25372292869987189776749*x^12+246415211981593237820521*x^11-60115941605201895701091*x^10-516116563500689013863647*x^9+69707121589242372231853*x^8+656178858295618999851513*x^7-19071665053752701147843*x^6-471185859289182112823403*x^5-27369396677342522993039*x^4+166159660774939433312568*x^3+20072018805045962214097*x^2-20260756142588732114615*x-3152903376556056466354,7182517689573985627*x^21-6935114995255456805*x^20-254976974661329926367*x^19+236683323286832899773*x^18+3839761176208249319503*x^17-3375477955477826686637*x^16-31989645799321760736535*x^15+26022689652982569989045*x^14+161399262977973632826527*x^13-117221605649090822266763*x^12-508420465480336510969767*x^11+311805101823439183227509*x^10+997254380453179965805879*x^9-473731841396098685655247*x^8-1179689614202552288997661*x^7+380729464783949810065497*x^6+779791246673438097415139*x^5-135741890795839898558931*x^4-247873914723855352659593*x^3+7228439183984730450178*x^2+26610688477289420201878*x+3497676323088884355738,-3941827903697772101*x^21+4527154452278575877*x^20+146615174760852439959*x^19-157918548118262307365*x^18-2335527315218552820596*x^17+2312440890293099092022*x^16+20830239323091849609877*x^15-18413544852267032160954*x^14-114167983533437187827984*x^13+86277229281567173021685*x^12+397301774457869275706666*x^11-240192875440112884816038*x^10-875794703292196567448030*x^9+381036584028100445553238*x^8+1181855076472120546201145*x^7-307676584493835268984378*x^6-905861551298186308153832*x^5+90627222211817872871033*x^4+345545416768957389177882*x^3+13343306189869471377033*x^2-48629350348973600156088*x-7606878284148018713641,-1983584604614100789*x^21+4130018246344877321*x^20+66458376356663553282*x^19-141482446777723395529*x^18-923854534211946815355*x^17+2023337175493035485349*x^16+6862658867662896890967*x^15-15630685647115958880911*x^14-29142299362817146786871*x^13+70551367738570787615343*x^12+69535192272730137081319*x^11-188360524646502473567545*x^10-81667250954534424972419*x^9+289290373193170873879473*x^8+18841124728658004758259*x^7-241205663717943882502751*x^6+49051693556365628793423*x^5+99377735438339858416865*x^4-39165217579671612776569*x^3-17353341614565860401404*x^2+7158896705832500339940*x+1080727231928529137591,774339678748812773*x^21-7706091468604493195*x^20-21865497485012262860*x^19+261072851641499521173*x^18+224967798328919074303*x^17-3686347716677782308535*x^16-821234090041840870845*x^15+28036467064288928881437*x^14-2046954923277788101339*x^13-123832357793657679272975*x^12+27324465930833038554645*x^11+318977906172668951855177*x^10-89746420010113583768005*x^9-455970912526380291133595*x^8+127134716234588481777157*x^7+319945353259555673305831*x^6-71657269577681081951195*x^5-77541564263604157583733*x^4+2348320139032067001393*x^3-7876636480566639323916*x^2+5844627192896649413642*x+2631159394983687803507,-3648641992054067877*x^21+138034386429532397*x^20+133854118528571698185*x^19-4759340627140931767*x^18-2096161767413055848629*x^17+66080294300393369337*x^16+18281233602456877704693*x^15-456196942363155308692*x^14-97133110114386513128555*x^13+1517284430372474983299*x^12+323190824232511945129605*x^11-1396649950428427494595*x^10-666808245526652881518283*x^9-4349771666328998703943*x^8+815925269024997180918332*x^7+10529452512140932089345*x^6-540366669209271907842763*x^5-7376191389290297734743*x^4+161802568810941539171385*x^3+4987118425337611284367*x^2-14204804441845534645306*x-2088364414105716006073,-1726901511470136247*x^21+4295273743451919212*x^20+57679160459632123303*x^19-140180149476046527618*x^18-802587987786053498780*x^17+1878117117232186395958*x^16+6041430759023182130698*x^15-13192620978947716099841*x^14-26919854486033331430210*x^13+50969431627962623499110*x^12+74450774975769738174386*x^11-100208715162087142743210*x^10-136232495444372064585942*x^9+59828690756671267076474*x^8+182319651120205014153614*x^7+94246172500924518580466*x^6-177877187983066661916609*x^5-154085872495877199164522*x^4+103304605577791656307928*x^3+65904417252489204177043*x^2-22369128980941599052062*x-6655924280097277020185,-254190443661583680*x^21+3499972562452061898*x^20+5587817830370525669*x^19-117329372214353790281*x^18-22369477029201630629*x^17+1636239956580874716869*x^16-419693060571371936591*x^15-12247624881940141108351*x^14+5577844089063511454837*x^13+52860325625772662420537*x^12-28779809791701683607671*x^11-130911862984588261949291*x^10+74027116030526796461733*x^9+172217607345674601166578*x^8-91670229844585558517603*x^7-93980563101081876948153*x^6+41508947012873175042221*x^5-5653288732449281726947*x^4+7331031230093241947845*x^3+17606626928238248866305*x^2-6856966332994166689477*x-2436557970134289583485,3205334092053028100*x^21-5246987427746830818*x^20-112469043404465949237*x^19+186368279207506553677*x^18+1666879405926228740963*x^17-2798372143149344210561*x^16-13581309699432052309593*x^15+23119882254207906848904*x^14+66401753280529495477223*x^13-114754092056924010623249*x^12-200070616687762438270345*x^11+351537034472237131290130*x^10+368860967473896809785628*x^9-659682901117657600335953*x^8-401103554881920257033627*x^7+728651152512327577811447*x^6+233890403776970175377886*x^5-429078667635896115846681*x^4-53714945908475357111519*x^3+106550911353354421848683*x^2-1151968048196283339843*x-4508555757460742615067,1570251254504667099*x^21-973346144058867614*x^20-55282452559196314511*x^19+30250075931737516758*x^18+825954387493059171416*x^17-384886561090356122632*x^16-6833144437171582931958*x^15+2560076659462727222676*x^14+34309986858340106846046*x^13-9366756120835876805310*x^12-108125830815002175554308*x^11+17828674413584950157142*x^10+214734351917672348487118*x^9-13405852480613617026104*x^8-263430510087223680882236*x^7-3620042843849935972548*x^6+187042387688055509318654*x^5+10325206734256390054364*x^4-64190475492980109610688*x^3-5071228254304324467569*x^2+6602573090248967278376*x+1102184091615968028349,534565224725554563*x^21+408540771200337000*x^20-14339266000307448628*x^19-16492647855950985018*x^18+128509517421139113302*x^17+282226651255100281606*x^16-150074055035157764802*x^15-2655042166488549832546*x^14-5123818339527707184078*x^13+14856185771657420648190*x^12+39224317685562121807331*x^11-49903337414297490560750*x^10-130443341113187113331564*x^9+96893008217644525987295*x^8+220554210919635949248934*x^7-100663641667863719272202*x^6-182573536978149919838338*x^5+51779602948767121031314*x^4+65005064524126894356962*x^3-9678741020968647085591*x^2-6247033152391215637522*x-753713331158714291204,4981087958656865243*x^21-4623593433412708532*x^20-177572124055661690057*x^19+158509012411945568819*x^18+2688478419334051509202*x^17-2263656086288992169192*x^16-22564462427778800107522*x^15+17389016364679500713058*x^14+115119676413451799954822*x^13-77402063695699262512022*x^12-369285453016968810386814*x^11+200243238106623963221510*x^10+747624944185057267773946*x^9-285667225961466443135102*x^8-936215924476264464982638*x^7+195452049402601790195794*x^6+685867855030533749733553*x^5-35787158912131672942491*x^4-261238241408207955992794*x^3-15609233960990557831101*x^2+38661621529364007996058*x+4421186862698975715538,7142390511677727567*x^21-8445118233342000420*x^20-265510867088070397479*x^19+294066146608575392541*x^18+4217717621066578805435*x^17-4304186003434504147113*x^16-37386419761739653868883*x^15+34334906840279322168429*x^14+202634282574943139832331*x^13-161808102327914378578399*x^12-692187666656409206291431*x^11+456640803325193349210435*x^10+1481544904500262136031139*x^9-747539367098840967854465*x^8-1909776653137983299391263*x^7+654822783907798196948551*x^6+1360638105772626127504707*x^5-259388523841356023502999*x^4-455957329693697491753737*x^3+21073030215914649073496*x^2+48309914161812787417369*x+6330110560852418177252,-2173315389013277949*x^21+587260358012947837*x^20+75378752000774571378*x^19-20154788188715450697*x^18-1103251918438294832023*x^17+281953252283272060027*x^16+8866621580740383977797*x^15-2041896226120665974287*x^14-42682432690172205363813*x^13+7956209085137300693385*x^12+126206162472636005447813*x^11-15045562975460830734279*x^10-227016855404497886729835*x^9+6439988089832586238691*x^8+239096533772331225853707*x^7+17662474820876154282757*x^6-136590445969731759711747*x^5-21874148089442868987043*x^4+37297784459942562973589*x^3+7236545776854522892858*x^2-3842000162870965653580*x-873577991063016708469,-3697245924396039131*x^21+10506534338132706080*x^20+115667647811512239833*x^19-355507615223626477380*x^18-1448265784258292312930*x^17+5009986182648128024538*x^16+9002134224794484062342*x^15-38001865704929665710842*x^14-26254365670807663777502*x^13+167427557563687856291064*x^12+10231612351685788653940*x^11-431769096185541485891406*x^10+138157853877599393794018*x^9+627246647137131207237830*x^8-341914778083928508825106*x^7-470083804279664680671548*x^6+310680641040408853549834*x^5+145351766231646266312346*x^4-103350187703348827106438*x^3-6433452197387609391693*x^2+7946348451302336998968*x-933353539078363835825,-555843736567505621*x^21+5150367931684431146*x^20+16329498917200575567*x^19-174538147350416139284*x^18-181895317200052378896*x^17+2475250524248571630486*x^16+860061401505071672692*x^15-19039899539638609104584*x^14-434926779954866404566*x^13+86131222067965125037200*x^12-11980841654270338632378*x^11-232854015608728160506572*x^10+47157823478505252703522*x^9+367779056052325912032282*x^8-71433314841915085580168*x^7-321029600931333007218082*x^6+45119585549109259222860*x^5+137982509945821592527330*x^4-9129756473297687516376*x^3-22105955301365494826777*x^2-513945576273264460912*x+679327300682734554697,2035238649709749187*x^21-4454007344983795609*x^20-72515892912051579371*x^19+156983849781700369402*x^18+1092517918055596859130*x^17-2337612390558999574569*x^16-9051963794705115145044*x^15+19127861820947459149004*x^14+44927002885639648894688*x^13-93743096900175172768224*x^12-136402817864560099496760*x^11+281707000074425374284192*x^10+247788593349020694259452*x^9-512268436551646988287652*x^8-249654775260405184509656*x^7+538795401014137771247828*x^6+113424034383828066256868*x^5-299639007774704740304216*x^4-7620418457172234087451*x^3+72352381471875732512215*x^2-3616489619198151607375*x-4061251425917131430185,-3793018678207190637*x^21+4933558547733250760*x^20+134739461816748419400*x^19-166752078332072983881*x^18-2018977755465879675711*x^17+2355856898595210231374*x^16+16597971117724293832253*x^15-18022975102521751396769*x^14-81635278701817342465003*x^13+80934712879011556772381*x^12+246370561303153108400690*x^11-216947866636593272201596*x^10-452542198194648363912659*x^9+340542134409043149341859*x^8+489744625889249179261029*x^7-298751321284061546470471*x^6-294012847036748792207376*x^5+130684681070873038407825*x^4+88494033702816518687013*x^3-19514176884673523183337*x^2-10550271275798912515683*x-887031814660383509480,11042725959472783794*x^21-18789229283869095843*x^20-382687526629640301086*x^19+637200394355856665961*x^18+5582916484752994247963*x^17-9013206749300218455962*x^16-44598891854393244832554*x^15+68743313779004556339521*x^14+212919970768789524134487*x^13-305145535912931385440491*x^12-624782258002744934506939*x^11+794351936571768338211673*x^10+1124843315581726387809177*x^9-1165807582710072720639339*x^8-1212848633088305876181191*x^7+882249818068128416731829*x^6+731044113108797077118553*x^5-281941881931558508193718*x^4-213201313861317202663866*x^3+12852734885144809169395*x^2+20503264273064062661208*x+4727130320961581845871,1378447457135845269*x^21-2036333234360326006*x^20-50280163046901502883*x^19+70518173369001501179*x^18+774842774630586724043*x^17-1020631570531771871205*x^16-6572575522921331484535*x^15+7993389932265214664527*x^14+33567217281042874196819*x^13-36658188653487780902727*x^12-106451120773197798719873*x^11+99610983436675688210443*x^10+209899151408506184592465*x^9-155034383398900118319899*x^8-252530105652098771623553*x^7+126303866392098455685377*x^6+176934365937892578542345*x^5-41794214431588633508091*x^4-65290776658628888481537*x^3+84984156291224781102*x^2+9937189027537097501385*x+764412708240690924732,10518968468730652719*x^21-14428010937779243848*x^20-367800550646737746237*x^19+490991515778968945802*x^18+5426670121933207651298*x^17-6972246631222350980304*x^16-43967728816750348980692*x^15+53416172385723132349646*x^14+213509425326136647696180*x^13-238408369494721802892988*x^12-638190703624498434404362*x^11+625307133268886695516406*x^10+1165781702332036061245788*x^9-929696613065784255498726*x^8-1253926985362812065650164*x^7+726136638072803322438432*x^6+726570617935624932385580*x^5-261442194784129015341392*x^4-189595021842654217394832*x^3+32638126783696029895421*x^2+13035519928600890794028*x-310522774073678794703,-168044150267978150*x^21+2727575823923359532*x^20+1598397277334904739*x^19-91973775625094808077*x^18+56235046629933382772*x^17+1290751989151122133500*x^16-1282801861219718816450*x^15-9733350405923033569030*x^14+11387273627131024624198*x^13+42454781070074301102346*x^12-53595699283484239330414*x^11-107289884825711906485062*x^10+141296599916371524588846*x^9+148815767309129436609026*x^8-204017482302357176296118*x^7-98981240350767312617022*x^6+150201762002230042305442*x^5+19934434675613311359550*x^4-47445702642969079066601*x^3+2954625729613819831512*x^2+3350818843037083494058*x+21962898619531099593,4531762627692538269*x^21-9555087809716274218*x^20-153101475357656452170*x^19+326719215487710042857*x^18+2154409672273616484425*x^17-4670638812297875127897*x^16-16314295100835551581595*x^15+36143299555564995204453*x^14+71631464434310871475165*x^13-163899172574717609155359*x^12-182708120577595395966845*x^11+441459768093764380949585*x^10+254715504638494279906189*x^9-687825953053817783554527*x^8-159236642879584017603405*x^7+585264266339813039190127*x^6+1790190687992619777445*x^5-247300599427820680032841*x^4+31550839147575929926551*x^3+43704767050870839492708*x^2-4737504796638700623833*x-2164723003435538925125,-10684684047916630224*x^21+13321851175039451417*x^20+376160957536170739628*x^19-450902071865947051449*x^18-5604555867259989299724*x^17+6362026236607477910883*x^16+46061259100860841982763*x^15-48343203787517625704429*x^14-228498944800556118180785*x^13+213274390335427884724414*x^12+705766201863400694731315*x^11-548897274631036456129655*x^10-1357708812579875603317349*x^9+786376921781475917596003*x^8+1588316404955632606744159*x^7-559574400878120641686373*x^6-1063000384170066240795789*x^5+141308712254163077996823*x^4+361125073774113385512307*x^3+15984629504305989259843*x^2-45764724394516483794000*x-7287912567276699601001,-5197187447595617615*x^21+5939013618558465321*x^20+181877619637387851064*x^19-199759935883166555137*x^18-2683693939142740016415*x^17+2794461185712232579141*x^16+21720479637311107810857*x^15-20976866147431402499441*x^14-105198684482171158200617*x^13+90865039292985178692927*x^12+313099287869482412218263*x^11-227029155658101197365127*x^10-569613033557758812649477*x^9+308072140018246555020371*x^8+616197745356728639593275*x^7-193108002650671244785289*x^6-374886068567764374986255*x^5+25019422612978476944661*x^4+117013821061364148432057*x^3+15049366697910302287080*x^2-15275311393231544596762*x-1653055901867287844497,450442269106558871*x^21-8294132739432718156*x^20-6012108629329974828*x^19+277693678284572994963*x^18-93060810976232682447*x^17-3873871650214813413467*x^16+2637034202278335878677*x^15+29108076356254649763057*x^14-24516027286520933641459*x^13-127127028068319986170623*x^12+117343707620398796676905*x^11+324960787136753336516117*x^10-310262339495452549152731*x^9-466775061170315656121671*x^8+443131991140979055081485*x^7+344301126173963032692625*x^6-315150993305316035306115*x^5-109107420725484313258691*x^4+90738279281768328074645*x^3+11329039803191814970633*x^2-5438004352869991068082*x-868978077689501096922,1349011998303465830*x^21-5941397502307415143*x^20-37739177313947879080*x^19+201196757889760462639*x^18+384567095488303073855*x^17-2840159166286652015903*x^16-1364587158714982454275*x^15+21606355668339424175183*x^14-4098660275128814286931*x^13-95629036210543053823973*x^12+52086417996992255705123*x^11+248211612221136536405669*x^10-180450220187556933298233*x^9-363170428361309794858441*x^8+287237408846329939932317*x^7+272068349267248250326653*x^6-207228121410754611854499*x^5-80179983318047934484691*x^4+51240114445642205914903*x^3+680867010343992592779*x^2+1428189242818663302434*x+1048217548791110786229,1302080266475106209*x^21-4036398264231290676*x^20-42593179149427878203*x^19+133872860213570337800*x^18+572933321962673437454*x^17-1852016633289272406176*x^16-4050173100286586439920*x^15+13831088656181078961272*x^14+15801529405312735137857*x^13-60306709162656176476160*x^12-31477096551004410365332*x^11+155283120673738678963943*x^10+18344945886777154504992*x^9-228749234514793818681018*x^8+36970506700693520471408*x^7+179101697103974688070956*x^6-68912139388389195867992*x^5-63587808486693237090388*x^4+41297463201716437973276*x^3+7728577433372014861360*x^2-8758359656557632862936*x-1183222265528463495043,-2305676162159528626*x^21-2109491083221092809*x^20+85554227532875639983*x^19+69540070055630567007*x^18-1353541122421693145401*x^17-951542193593201063269*x^16+11900312236187768419465*x^15+6973559054092491351359*x^14-63498987638876215581361*x^13-29393831504723024491651*x^12+210804421304433493730687*x^11+70843279466354237263625*x^10-429501134541500732834383*x^9-90488526980167277585607*x^8+511673352052009829863263*x^7+50389523785769399600157*x^6-324945049439225484249383*x^5-7940428354703305215413*x^4+89938040660955143225747*x^3+3469647199394351446369*x^2-6739029710566135989062*x-2058734844232127750938,1326775479816378901*x^21+603599103338692303*x^20-46435583244289949289*x^19-17088962572589642522*x^18+686763888282729147758*x^17+189475991271283079330*x^16-5588336975351817720762*x^15-983876272133251252546*x^14+27319478412400866448518*x^13+1717246384621823449004*x^12-82481871023374947356018*x^11+6059364242434100513906*x^10+153330606523687520065662*x^9-37250998833944037352016*x^8-171877803801921833923166*x^7+73987884289741355205516*x^6+110615604566447275984130*x^5-59187055896350310324256*x^4-32941312731494385887006*x^3+15000867873981124137421*x^2+2017999527218224729935*x-105292500220920887941,4253756875097807947*x^21-11583641394180592476*x^20-142190191794517745412*x^19+392479191082793045496*x^18+1974579270853724415738*x^17-5546286126033195747212*x^16-14717134337900824205122*x^15+42267473949199628658644*x^14+63557576170623223697466*x^13-187563176338107013055314*x^12-160902506740873983404246*x^11+488633720259630844956598*x^10+234022998468202117786954*x^9-719323467223174492595038*x^8-192050838455902065593598*x^7+549152865192713753400512*x^6+90092435710575092816068*x^5-182214164225628922962658*x^4-27897392504128960597584*x^3+17601788562050749565757*x^2+5478448715361890131410*x-652640318930554483674,-10780419696547067961*x^21+23159887060523264017*x^20+368576103618490027369*x^19-786922155201748189596*x^18-5280997421267882581964*x^17+11171551425248667122555*x^16+41157104839796370407402*x^15-85755388689140594810188*x^14-189783661264755270662110*x^13+384925183547353889985938*x^12+530124149084430647649142*x^11-1021718598144289201764498*x^10-891637832872709242693083*x^9+1553295508249621939729470*x^8+883202473982568455071358*x^7-1258793988141487540755810*x^6-487334882401236638975426*x^5+473754223471434332742874*x^4+134149142542385829945986*x^3-59879890486846769120095*x^2-13599487111627589869493*x+139296170412847448561,-436159943274449104*x^21-10205287179124046265*x^20+31158949355807562707*x^19+351044982637460686778*x^18-761443667277368863424*x^17-5072324594148093382851*x^16+9363409133431373952883*x^15+39991255835092081224981*x^14-65964207392792236088408*x^13-187317436042926786671400*x^12+278092225588125228360167*x^11+533937662234293071687973*x^10-698938420134296291034063*x^9-919348033586937173454503*x^8+1005022079858530122552318*x^7+929505057421930847748626*x^6-763222515896174365782237*x^5-516047284255607358286043*x^4+259917083042876718750481*x^3+132299759379235932410246*x^2-25915386573332751784983*x-8294945035211625067976,-5068341586406296440*x^21+6302009018529338554*x^20+181486262881768739788*x^19-214880776889996868468*x^18-2761852910745961616968*x^17+3059879205307203209700*x^16+23307618275430078811948*x^15-23536045864569245296272*x^14-119481676702476527823144*x^13+105651643482254491614103*x^12+383749953833181233010608*x^11-279402810164480217484790*x^10-769603346860663104253595*x^9+420111612684054913385248*x^8+929607642181543949568412*x^7-331949633157177888536776*x^6-619966666347532556462288*x^5+117978941675914013897404*x^4+193176149241874001013516*x^3-9145983225647779657304*x^2-18712291701851450716290*x-2047851273533218882960,469934768631105493*x^21+2190850940160389099*x^20-27087440237578847760*x^19-66972551082916362744*x^18+599829689188875689014*x^17+807819009008487376035*x^16-6954052703493680600894*x^15-4679037486049086506090*x^14+47006012870718960136410*x^13+11181690490237039872914*x^12-191647276173931782619574*x^11+9485912759636947311486*x^10+466215136157709341049350*x^9-108584597038611802839234*x^8-642771304503075921231774*x^7+215933386607560102054386*x^6+452790741239945864412722*x^5-172180682093993063287698*x^4-129034487296217672299501*x^3+47849377467550613084283*x^2+5630279166449006118763*x-1867056284901573154168,992166093683516897*x^21-5191460660119444613*x^20-31914998533458738870*x^19+176642815144431907629*x^18+413672572200084624593*x^17-2530206511543488368635*x^16-2693758047288256230351*x^15+19843397914180276733610*x^14+8491568488838019241393*x^13-92932028859163536714577*x^12-5553784922838041958227*x^11+266801152628041586439657*x^10-41927487134180237852462*x^9-466842673587711244033783*x^8+124555910905400244179513*x^7+482642503418739109431053*x^6-140410725309026534500183*x^5-271728359590894763607202*x^4+67800162871876202309205*x^3+66883782173140442268116*x^2-11222898143289893689456*x-2706488398189331021616,3839228818168648903*x^21-1804272774475491401*x^20-137803882316575544220*x^19+60144416607652844106*x^18+2098788131958868518376*x^17-828293666073927381368*x^16-17684544079540863864036*x^15+6053414042107313555424*x^14+90204102314252124716456*x^13-25055103246415837495757*x^12-286927449224449146082356*x^11+57857910275844724224680*x^10+567127793468757447108188*x^9-67988676783789180365536*x^8-674982378709704590267943*x^7+31335815956337432921824*x^6+450630586846979962587654*x^5+2155940398272536301564*x^4-145213004632731706427468*x^3-5773820173706061131377*x^2+14988498407351232389499*x+2487285304975159802598,328895461982024418*x^21+9219919813345621358*x^20-22461037618879494121*x^19-308068083566018153113*x^18+544931773745818777097*x^17+4282397790552004383895*x^16-6709718095303756651299*x^15-32001278877980973411151*x^14+47318595149131364183021*x^13+138639970016013364231775*x^12-198662496408455995077873*x^11-350425397374494414136633*x^10+492620877723872677262487*x^9+496554163418773608848873*x^8-689937691720507586744947*x^7-364323195134475336294183*x^6+503771891374339664554469*x^5+123466615944454050876111*x^4-161464577600848976014893*x^3-20322849916389336828097*x^2+14748870626614502094477*x+2428292730687782895794,6478887908984672559*x^21-15447248351572840366*x^20-215412084030917737615*x^19+527568733548732256353*x^18+2965128982669736163849*x^17-7537682462272710731541*x^16-21743094425251512496465*x^15+58364799854473464298815*x^14+90768143269875045865137*x^13-265438828764678182578589*x^12-211884635152072877297615*x^11+720573077712318636140977*x^10+243675442756536857367465*x^9-1144051091492937454052507*x^8-64813806031967417446249*x^7+1016314309567777396937299*x^6-114376700643544882470449*x^5-469617510680422111246373*x^4+94400362420337426731759*x^3+99569104069939853394652*x^2-21929461790149942824707*x-7837330195362463235422,-3409866265521674420*x^21+10067658865361487073*x^20+113062440482599651669*x^19-344319992939336192169*x^18-1552129307147334503329*x^17+4938070069738030000775*x^16+11352090736169468586767*x^15-38522221782468073436632*x^14-47268623736970728495368*x^13+177543748995775947156697*x^12+109966107451933448394479*x^11-493066729347008945312961*x^10-124814811579618701161701*x^9+813197382883503850753947*x^8+25185863231631067712819*x^7-767868506454010339264901*x^6+80268042291898669781935*x^5+388609544194131876359967*x^4-70163087099709316017665*x^3-91343132804318964016885*x^2+17412319020895944964088*x+6547326051095549147332,1996796037215994989*x^21+451770132854530111*x^20-74874391748584281581*x^19-14344005161901428425*x^18+1202683856387319155159*x^17+187960014619414644715*x^16-10792888307021795366473*x^15-1320164051178539737873*x^14+59117106525829108200232*x^13+5431982116223768000559*x^12-202482893543603431772935*x^11-13631642463631891716213*x^10+426256562932701503250139*x^9+21570122243637523689735*x^8-519177117820042977974173*x^7-21863975190206964915194*x^6+322723061361660697714515*x^5+13013886044129088264523*x^4-78934785276427919062017*x^3-6419584715532343484952*x^2+2848990888421303309126*x+1672302304044685566444,-3318394772266419772*x^21+9946487004321813733*x^20+109536741894792277367*x^19-335220548870042528699*x^18-1494178846723820653873*x^17+4713146613162515055621*x^16+10835448043016876807473*x^15-35745999282386430739701*x^14-44694391793362920041145*x^13+157877054615559397750531*x^12+103911966627329358833497*x^11-409016670325539988854321*x^10-126695703116367245167175*x^9+596076176143655655292473*x^8+70264497343357016731505*x^7-441775352699797927860597*x^6-16635468777286852548321*x^5+129753782454260612964533*x^4+9534233696539653838987*x^3-4191452257154593546087*x^2-4060993412937317972778*x-716702157167837666672,-4344485182548714848*x^21+9478292159177643185*x^20+144758780682958897962*x^19-320229987773386975292*x^18-2001381118842553877152*x^17+4504119637225667330248*x^16+14815251829868821146194*x^15-34061498536675054810410*x^14-63209256653967407390606*x^13+149204510890516194764790*x^12+156126833912598738016546*x^11-379878883615739576672042*x^10-214950873788618932281218*x^9+534335024352231189795766*x^8+156785235122332499488238*x^7-364549145571889475053816*x^6-63293412050377177851964*x^5+75039754015569915381806*x^4+23069321575160175764290*x^3+16135548663373973425036*x^2-6663613076628614913465*x-2246309582313902409284,4350421147276083160*x^21-5329759799829525035*x^20-155736349064909539713*x^19+179876793787157863698*x^18+2372547090369741882396*x^17-2522215628427842973986*x^16-20088473486514538858290*x^15+18921158495272701995400*x^14+103701680810555363660646*x^13-81245034349320762081536*x^12-337467361706155823460396*x^11+196546915942027931082754*x^10+692760827531774403988980*x^9-238137274663360888137174*x^8-871464842000314700416128*x^7+81480857872866243186698*x^6+625289020939599083135852*x^5+76845049025042542654318*x^4-225885095870313313288544*x^3-58930238848030891874432*x^2+31100398518069685953431*x+7822848112474408856693,-7896842136634968260*x^21+12433502999088054508*x^20+270698315184263472278*x^19-427238450930103432254*x^18-3882961501793065421783*x^17+6157152369771586629167*x^16+30189437090863978633895*x^15-48286953398287766505125*x^14-137733224032937493527170*x^13+224015862243198237679435*x^12+373175979994599900653210*x^11-628408900227013786953961*x^10-579903874711014855326703*x^9+1055310107286891668556218*x^8+469495526696095757217531*x^7-1028984226293385717453252*x^6-145526027589442961934677*x^5+542542363799154586572935*x^4-18104122465809989098477*x^3-128919998937154189010473*x^2+14125832472887662793588*x+6705647132012528999701,5372632782483529612*x^21-5609856272833319928*x^20-191359187706011709748*x^19+193789681578436450653*x^18+2889934614829245869405*x^17-2802219464715607180781*x^16-24129191332136707374293*x^15+21955664085498845225399*x^14+121898452458508990150841*x^13-100844478905186987964379*x^12-384066223599588391120883*x^11+274736012417949941343299*x^10+752706768533985822192893*x^9-429852863265511992722509*x^8-889672809225645406814425*x^7+357260994874256437835475*x^6+589765412724092953175473*x^5-131962572764007355582631*x^4-190698618660271563324335*x^3+9067742832557525041477*x^2+21547176757278970049165*x+2658828463240407302867,4869876516852732580*x^21+1528311456288120166*x^20-188289567396283432282*x^19-51459884550942198397*x^18+3128884711840398584349*x^17+729724676725739558251*x^16-29172369573646910604617*x^15-5714546465837119183753*x^14+167014266988815098449723*x^13+27402101307314025181103*x^12-603584429073234536337357*x^11-85038338156028110631293*x^10+1363308815736949898130725*x^9+176124468853471653808805*x^8-1842216762487907961209989*x^7-238588720862327154362305*x^6+1369778873762117626052357*x^5+186716149788454758428243*x^4-485088888176548099387917*x^3-71807079591464960067195*x^2+58842999191273604577703*x+8915496421199520373693,9201357392746830440*x^21-9836084376876262188*x^20-331066530017389686148*x^19+333011521121605195656*x^18+5067978084250669555682*x^17-4711020064932780291872*x^16-43068163057956118777848*x^15+36007610864775400766877*x^14+222490497670224106547020*x^13-160491811478545278955194*x^12-720078385439637842404443*x^11+419842075372677442195784*x^10+1452927588599712273398992*x^9-616433013863119554848008*x^8-1760614713928702998814576*x^7+455524882077677957144313*x^6+1177082753139487601213480*x^5-127770215199900289911502*x^4-369153869614209726220100*x^3-6295288747276128642660*x^2+35764679639198648403836*x+4470282957007464022899,-5206634423187384474*x^21+7757602096052307080*x^20+181664173867111553085*x^19-265536320833603270683*x^18-2671503112482059810513*x^17+3807861160880402690607*x^16+21535963081834371663203*x^15-29647317384878750604233*x^14-103785337426805865463709*x^13+135883432850860051776683*x^12+306744391722367623482143*x^11-372626880454226224555873*x^10-551638903972435095865201*x^9+598072644999827753110583*x^8+582644577223820231503687*x^7-533309929603176986657789*x^6-333051020725761867630701*x^5+240054746646010521022459*x^4+85644419829919292566307*x^3-43351710069309917911943*x^2-5730065025974491183109*x+641469629728218904595,1508512668724918836*x^21-5731428501185863102*x^20-43284500329738618772*x^19+192379551727460365259*x^18+458045249416493561127*x^17-2683066067083617968643*x^16-1788171108729977747909*x^15+20069333524740889391715*x^14-3729054885260810879759*x^13-86703600184336445455247*x^12+60450687871850893042315*x^11+217281134493777128359387*x^10-227225513761546400005957*x^9-302682961757080010142765*x^8+398204194432807293450629*x^7+215506222664201356535741*x^6-335921158523482268705663*x^5-68226223916256337419705*x^4+120098446802841576293053*x^3+10841403793586697281431*x^2-11921350198775290398677*x-1694958035097485157879,5525450783903843832*x^21-19820734220014340798*x^20-171078068436021243053*x^19+674296701468489612280*x^18+2100756215707442513712*x^17-9581768691325484258270*x^16-12513154645589995665192*x^15+73628958053186809696382*x^14+31808535994484610536406*x^13-331210310789524680688080*x^12+18569522200779173098334*x^11+884400698165694157722876*x^10-296683405127471280337448*x^9-1367212032077583813691234*x^8+649023661655647085257002*x^7+1158274323358112275830016*x^6-583166833598835990948470*x^5-486522494505638902476450*x^4+208573805625421192379934*x^3+88923107018258047831938*x^2-20803531173349573400046*x-6308851723299160833217,2633407111041516620*x^21+233766950377200205*x^20-97026334155706776549*x^19-8110936843705142026*x^18+1526983136497601628790*x^17+123943292797689382548*x^16-13398859684639303233100*x^15-1110728073848584883146*x^14+71767227213928673274352*x^13+6466288824486316859692*x^12-241462988804982373398758*x^11-25075807461193037224736*x^10+506063975982970506656794*x^9+63048369421214686022814*x^8-633005821607595803230676*x^7-95857001133892791936386*x^6+432193984479300350143816*x^5+78638309432099456961468*x^4-135180392848688415603406*x^3-29544338541329480619124*x^2+12979767432468747666317*x+3306391607883541141997,-7594547366359444297*x^21+11955976225230306907*x^20+265975143056838947990*x^19-415535276410132399629*x^18-3934644388586472701243*x^17+6064494468152057893283*x^16+32015079573711497860098*x^15-48212631774059768109809*x^14-156560076260424211914647*x^13+226746528764597866803296*x^12+473624682595625765134331*x^11-642828857831674986377113*x^10-884224203265067779815125*x^9+1078427553033931539021435*x^8+991593954612711371224338*x^7-1018823730024553305932721*x^6-624255179652733268163419*x^5+490545802261722534857596*x^4+190581254588213029412943*x^3-94044883348612320128858*x^2-19378861648702879237978*x+1262924599169074837119,8859409894625647925*x^21-9847693859973153217*x^20-311035937124652469921*x^19+333731745724779463624*x^18+4607727055212653933572*x^17-4723712361120688257203*x^16-37473875977199848258759*x^15+36144536968304859991700*x^14+182535583606346409109850*x^13-161859044734385236133502*x^12-546535913623465301292131*x^11+430522247531515425969321*x^10+998314917926397085347254*x^9-665731066860495525775192*x^8-1075249062934246553640554*x^7+571922101100285308201061*x^6+635518335033613260053849*x^5-248620796726097755444080*x^4-179292312946067582716598*x^3+40391886081186545611279*x^2+17043609893223338665557*x+1014406786107329347007,73023868285413491*x^21+2694135330959561333*x^20-7229855044544458490*x^19-91779145070423084625*x^18+192240332002112756317*x^17+1310830561528779330743*x^16-2427795157771073258064*x^15-10181421670451147178733*x^14+17115639473600142471637*x^13+46700808326207541225971*x^12-70952427575275379869097*x^11-128943940293616735336413*x^10+172395723273646802903515*x^9+210817903697939019572391*x^8-234558660198556276420529*x^7-195469918520974700449249*x^6+163540099184082796706607*x^5+94007255996009849944928*x^4-48157560206808358311213*x^3-19501952968417881832618*x^2+2724343273066917463908*x+1224373601574062138119,106341562018576649119*x^7-1276098744222919789428*x^5+4253662480743065964760*x^3-3402929984594452771808*x,12119220941118221914*x^21-13026943337433057445*x^20-430881892668814994179*x^19+444463934093574400617*x^18+6498294159059315163127*x^17-6325426254119823689773*x^16-54221119491309688397553*x^15+48516378697280672626745*x^14+274101226007551538839503*x^13-216245804308914251845811*x^12-866360636119072029497775*x^11+562811730657724795639161*x^10+1711499161991591879637841*x^9-815023281089406932638585*x^8-2056613763734910489293355*x^7+579976995039176972305769*x^6+1404612237753065157762075*x^5-131764956462817352976579*x^4-475270672879148943893847*x^3-31304470666111264335883*x^2+56908384388593605855830*x+10841015274972794496524,9100803064261338735*x^21-6125231756848625403*x^20-327476907547574190869*x^19+211988344123326165138*x^18+5012861888057183668043*x^17-3074331338208259018679*x^16-42583737275954474736009*x^15+24183435815221941442295*x^14+219723730171296464163159*x^13-111658288676566639128101*x^12-709120805014095462375640*x^11+306284627403516684434882*x^10+1423258695158052201072627*x^9-483228796418166176831795*x^8-1712013319187244857315489*x^7+403837246491985387231951*x^6+1139553349946585443748327*x^5-145102577077373313352713*x^4-359877803203899619127188*x^3+3791326852876020159902*x^2+37696095627961197858608*x+5063672915790865307140,-1768258652554076848*x^21+1013358622230937203*x^20+72652603701836501975*x^19-36021592006114831978*x^18-1278123855261467118726*x^17+538820404700727200182*x^16+12552453758162167548936*x^15-4380648191337145575088*x^14-75186496796654887728232*x^13+20779316814705982854680*x^12+281560775863098360475508*x^11-56872007350791302243102*x^10-649178354974381520176504*x^9+81062060522471236870514*x^8+872225241131633514527424*x^7-41002854896098792796106*x^6-612647305654381986654704*x^5-14510346146905933950876*x^4+185448180716977331372234*x^3+18812998649692798466282*x^2-15428468301742184635047*x-3048132714571532521383,-4495261169307141748*x^21+2875846797005522920*x^20+154191458460927873921*x^19-98691025499406471012*x^18-2223374204926762740386*x^17+1393478454881198845760*x^16+17516367722339000737196*x^15-10370442407803914120478*x^14-82150791844841845487280*x^13+43124925657632792308160*x^12+235236470235484645091352*x^11-96566602734472489643178*x^10-409402191283589641945818*x^9+95336880355030996999442*x^8+424595694373885085300666*x^7+4062335826823739938224*x^6-252391141609212822703778*x^5-71103765207793256842442*x^4+77745673805084467053448*x^3+36583474823553520404268*x^2-8594582020676968305478*x-3703118527285508689119,-4979177147695677794*x^21+7957028720677953816*x^20+175298750409215455463*x^19-276785939471313032808*x^18-2607886236809327771688*x^17+4055665506784645980244*x^16+21333614272511718916654*x^15-32519880225622005606826*x^14-104680095686668445812918*x^13+155311604126283637913406*x^12+315817410112401803590462*x^11-451765954033555578270342*x^10-578827155605091673387286*x^9+789982827323938700324584*x^8+614420953041566781218500*x^7-796554739877025898789316*x^6-337994565891093168187274*x^5+424036942392746759790834*x^4+73169360169172113226466*x^3-94331669048502417919434*x^2-150830837145708228986*x+3542659951317903184883,-1183545906044427354*x^21-1441916185131098010*x^20+49618457814994997434*x^19+46361713870179939181*x^18-891650428632252862773*x^17-608282406618047234217*x^16+8944993819605443118259*x^15+4153339511085738165487*x^14-54656038171354314511821*x^13-15490405777990782416317*x^12+208257832096642154140751*x^11+29716297060440991082723*x^10-487273882516530381601197*x^9-22354471820784372332989*x^8+665279848467684827893187*x^7-3056578937845149014077*x^6-482517158259629712420277*x^5+6482164069334904342631*x^4+156690447624422066427643*x^3+4680662222677136761926*x^2-15762861547049534773807*x-2431214881545059959558,5723613991780898023*x^21-15001616776637732123*x^20-200995485246005599164*x^19+511713503264966815744*x^18+2987576520544824051999*x^17-7295449914088586895887*x^16-24545184784638173309436*x^15+56250678165518984837310*x^14+122517106012743926316845*x^13-253453594428822631698654*x^12-386777770406682845601041*x^11+673007886595337541168878*x^10+784473515157054345524976*x^9-1010936553845761828257015*x^8-1014787182841166439514034*x^7+776116338044428141364101*x^6+789599299943615468660814*x^5-234552287640205015266742*x^4-326270896865762733312291*x^3-6031113244058436981762*x^2+53230962113230782069077*x+8726905948312680317752,-4406735364415112700*x^21-3685652687304886409*x^20+173316286631126094028*x^19+120262977971260149481*x^18-2933909334066154003651*x^17-1615089441881791120677*x^16+27877001785686728850735*x^15+11489977704444815157825*x^14-162452842261335151139205*x^13-46449571215049976384677*x^12+595586146896821001092385*x^11+106994402505137313408961*x^10-1356389706897785835460195*x^9-137793770442528587825675*x^8+1831436051758325547684317*x^7+106826448324641494323761*x^6-1344089043154856226530543*x^5-66121099687141917749243*x^4+456740173377808564404457*x^3+35947641488114773194755*x^2-49831585566775873085264*x-7708165635342906909791,-3804966461344764632*x^21+8517681479872446810*x^20+126007272745804519631*x^19-287910126661993855826*x^18-1726812198408458673836*x^17+4055942530820109090746*x^16+12601272418975902354774*x^15-30782527023246782760874*x^14-52356879038433102294810*x^13+135863576285792538109315*x^12+122044391842396899215166*x^11-351602760095484428977494*x^10-143389761279879824318322*x^9+514092373462141520495662*x^8+53333582619260470302401*x^7-391381760278172185089386*x^6+35679207129761733725832*x^5+130392468618692009916998*x^4-31267075927847913388022*x^3-11053954387595662036618*x^2+5662707064493919212156*x-1035839328784675703411,2748165768180164460*x^21-6937027914936153933*x^20-88734864029768299101*x^19+234090702269704344034*x^18+1169519424668772305078*x^17-3292866768509752647864*x^16-7986907087682753280386*x^15+24962498686049044892852*x^14+29110880276782790991564*x^13-110149493749591427059440*x^12-48059038270714230906890*x^11+285835065442545290441442*x^10-6680246649049430600602*x^9-423443860949681228156728*x^8+136570651881389613236108*x^7+339061202783233862620068*x^6-172994255712141553331212*x^5-136314453474296823389668*x^4+75802507569665472225206*x^3+25735194951623651052892*x^2-9069997512214745983917*x-1999221198426900255049,1276562288247316034*x^21-5471600134640945920*x^20-37360557951845189711*x^19+184636152819502395896*x^18+408597770634146741818*x^17-2603807132372775809740*x^16-1755591863628704132320*x^15+19889155316327351617148*x^14-1714264847157990740320*x^13-89296653344474017311908*x^12+46488659668015220332031*x^11+240260935447406756801808*x^10-184384319301850752355990*x^9-382367638197403194831253*x^8+331473496840948262777860*x^7+347629922587229317782832*x^6-286200120833157073095004*x^5-164876729664741178979124*x^4+107841735299813441144012*x^3+33971716962961531295010*x^2-12349077154251840043956*x-1876728130849032959311,2356483575335969175*x^21-6691173784874865241*x^20-78604462075229343217*x^19+229236999259423628681*x^18+1092441088400179833817*x^17-3289557179930110326060*x^16-8199417427202032283188*x^15+25619173024379068199215*x^14+36163433087820224284713*x^13-117344343033520490523071*x^12-96743154340729940324475*x^11+320820159329904820175729*x^10+161757637411242406010009*x^9-510112676895941148148112*x^8-182201663536085044663220*x^7+441917849772588741035339*x^6+146297112256278498180517*x^5-179747595459575377604823*x^4-72778639791334886561511*x^3+19658902470321083319188*x^2+14177460192860327927704*x+3042869892281586733930,-1417679786963228449*x^21+6560760427015876197*x^20+35242612647031188170*x^19-222624266499655075706*x^18-248495140919270813868*x^17+3149420619122530797920*x^16-859549726866179304264*x^15-24037855220381263075063*x^14+22613227667762260008608*x^13+107165828096770109386720*x^12-140364408086496841709276*x^11-283558974542112818156237*x^10+426976389657556733843417*x^9+438011828294746111502632*x^8-678598537415264101169810*x^7-383488254810709249015752*x^6+535271073036932932628247*x^5+181798542931010803212256*x^4-180964417171219754810706*x^3-47663893713388716069269*x^2+17778620821777420354485*x+6256880294166478632688,1147705775571128368*x^21-10185198960792168136*x^20-30628786910001331518*x^19+344896397795331677247*x^18+274870779987824093043*x^17-4872647987874706429393*x^16-400673829373575199549*x^15+37147480827450373043659*x^14-9321921142735372188335*x^13-165050902414546819768365*x^12+69657474068568056199877*x^11+430931574070621798412389*x^10-215876907037937351873365*x^9-635823794319432519796157*x^8+328468377460557916837925*x^7+484941641636865246125821*x^6-237640407571015113152685*x^5-159951889325394769516487*x^4+67659933825920315277483*x^3+16188911609879064670097*x^2-4517016612933513360645*x-899507298431188593839,-10394049281518622615*x^21+28026913515618124032*x^20+348287527568111640991*x^19-955219420853761819429*x^18-4853423509891827859345*x^17+13607117963339219135879*x^16+36351060882359122094919*x^15-104877612022295580798237*x^14-158025420803219679836581*x^13+473292891143458443149745*x^12+403109619746442189505355*x^11-1266465339004196829345949*x^10-587685916148728734141359*x^9+1953046120527342944414809*x^8+466576574256718327779715*x^7-1630825963416062230017073*x^6-183484996345609404479701*x^5+661483194641886515465827*x^4+34190891982032661386471*x^3-106179834597011427597158*x^2-3707688619049084774039*x+4472818309996710393972,-85577367659560780*x^21-3606121536626422226*x^20+2458060212513984263*x^19+128784107073073033605*x^18-18453592810248172720*x^17-1951617315299974116228*x^16-114665594153679768870*x^15+16334569248103485502374*x^14+2708004909205915979702*x^13-82318081591935237291202*x^12-18238714713092192373682*x^11+255476191341325541281022*x^10+60088735056441318504331*x^9-480374342236573694735742*x^8-98407769781816404669514*x^7+520293489799160070334522*x^6+67087258380726033915926*x^5-295728306827092202177857*x^4-8817565947778751156690*x^3+68952716732281662565280*x^2-3506049349136549002456*x-1924289517768474270423,-20339227633857151809*x^21+35675808603915735439*x^20+708941751451345419668*x^19-1218622459438994258737*x^18-10424209980316373408581*x^17+17405717896260026532477*x^16+84181210799709683125247*x^15-134566601989549550812629*x^14-408000411163354605266601*x^13+609262141964644322353315*x^12+1222567104870986675872407*x^11-1634872038542435974159451*x^10-2264198583595085978362069*x^9+2520746135922023106350379*x^8+2530353785122767494473955*x^7-2079254692514274677068169*x^6-1594787708378236566321819*x^5+795058130583444314557799*x^4+494517073077377988063603*x^3-92441701756145708335128*x^2-54562889030597473996576*x-3316763469398975827513,-3875315704008516882*x^21+4615156953192670109*x^20+137888156671207465667*x^19-155906010453994876583*x^18-2079994954062547309662*x^17+2201861908222056331049*x^16+17338096823784941602313*x^15-16833845863709864331159*x^14-87348709877515696194431*x^13+75429589741011860880301*x^12+273839872316507951429969*x^11-200808552523421641049627*x^10-531840758701895284840047*x^9+309116015912959011436573*x^8+618728392296045265809697*x^7-257888361007994128239223*x^6-399251337652725469445739*x^5+100588249553630116455388*x^4+122579136666312477976617*x^3-10253325089070605936395*x^2-12080636683290933458354*x-1319630579401749005380,-8669495149852599385*x^21+16317017460827625889*x^20+304603846091700503702*x^19-568649461216129372470*x^18-4519981140191968316116*x^17+8343614217698276047596*x^16+36865538787516836451116*x^15-66954941174180032230100*x^14-180357096495180325130975*x^13+319799029504584932110285*x^12+543132230319881828019267*x^11-929460620191578395180800*x^10-996957920255954837393806*x^9+1621929719271464243653069*x^8+1066731743767987899530937*x^7-1629572530349895795828247*x^6-595965052530451974103586*x^5+864845126062653655889860*x^4+133067969513161694676472*x^3-194514220798683029440037*x^2-1914900884279896997911*x+6644685922489706361668,-7359408677794100163*x^21+11624767217984828548*x^20+265403832166196330913*x^19-398899554296904419762*x^18-4075386953613545087896*x^17+5738870476746883223920*x^16+34790580645943773774820*x^15-44861332059929948559346*x^14-181025454195653831490376*x^13+206509232283961370667764*x^12+592887373365512723949152*x^11-567948768321679601532258*x^10-1220129095970118264749064*x^9+908100828591961426970134*x^8+1525982707025081072291336*x^7-790928277305572527565278*x^6-1070495699685101851470196*x^5+332697922464843131408050*x^4+362405756762157650886642*x^3-46794701411991354997089*x^2-41024468782513709151462*x-2498193090013178443785,-6526816040822715179*x^21+3862180199299193505*x^20+235804545836725900218*x^19-128108201951469346753*x^18-3629064836217311098961*x^17+1746619225713249016597*x^16+31068274871001094918973*x^15-12487972878399497273987*x^14-162213731010400884274961*x^13+48993115767815910591957*x^12+533417107931973683135097*x^11-96472502353642815818653*x^10-1103194669453456626297845*x^9+48992404259994562297005*x^8+1391184829242301466299871*x^7+125281106853819123822019*x^6-995446593314722916892375*x^5-196004666808936757496687*x^4+352009588632650386442023*x^3+89452441757850066902778*x^2-44295778412667322227212*x-10225169135390361153653,-3356501355116968325*x^21+8651198131430416424*x^20+118009405140581739705*x^19-297602289006804644379*x^18-1759467334226699488311*x^17+4294271267079695646182*x^16+14528310938935249287103*x^15-33687683223639774841867*x^14-72984443511533913175018*x^13+155718967723943916952679*x^12+231647866460414133445763*x^11-430301139099985457909313*x^10-468880639427694686003877*x^9+691495627080021394608846*x^8+593460750742608713253131*x^7-604496982576780537716079*x^6-434798728211576659331762*x^5+252900635548348651488079*x^4+158173947027533013911975*x^3-34490013658409691629801*x^2-20220727575980889436841*x-1864484598449046203773,-408447150663131419*x^21-5817269883242189020*x^20+21087378255243484006*x^19+198278236533306410682*x^18-440041844003583662300*x^17-2829164230509769534210*x^16+4925662493006134323984*x^15+21907571684178278223876*x^14-32598671344500187242888*x^13-99865361164188968850508*x^12+131450153391420761445928*x^11+272684832816447868348474*x^10-319961058511163469514370*x^9-437971163488389791625698*x^8+451458931468457802806630*x^7+398485167907736936534022*x^6-343603674410282549699704*x^5-196581285925764678019300*x^4+119670543345202951275546*x^3+49179340116259742340779*x^2-12292833060939426777686*x-4236502492696436486690,1584401105582696869*x^21-10086810140157160231*x^20-41315198391558101651*x^19+342543812049000375858*x^18+337768915471771395128*x^17-4859502196385117425544*x^16+178830379608171484518*x^15+37291793875029903991558*x^14-19734158630130171364716*x^13-167626102908416545453736*x^12+133639487675442520477784*x^11+447652841582815708322746*x^10-418683674368726226664074*x^9-692494101776974812761508*x^8+673757189670486837583666*x^7+584360747061010026074520*x^6-535540486979330050786894*x^5-236320965198688880288564*x^4+181184732079215931994998*x^3+37517804578332423098129*x^2-17039883858913202611719*x-2887891949385390818673,8692177144906222951*x^21-14944260295645514851*x^20-300118477633729616276*x^19+517687458003795731115*x^18+4348452054396540747663*x^17-7541452856585174058913*x^16-34294689758280640031095*x^15+59992839995898740791163*x^14+159757867457157994823159*x^13-283544557668132248419223*x^12-446678045036366039667453*x^11+813989293288829457078101*x^10+729043119310914090815327*x^9-1401600127758787456540567*x^8-638860718773417884136759*x^7+1390264032840423040069171*x^6+229342323523872061996281*x^5-727914566875003485521057*x^4+21238353434849955044023*x^3+165736625370099473695842*x^2-22847758063994953115928*x-8637163029297679844085,-6157412111106867649*x^21+5236391271196184195*x^20+206869074129082627063*x^19-175365815584217129338*x^18-2886454828530258714026*x^17+2427120862309428711890*x^16+21565310368985100537476*x^15-17856648144292298487680*x^14-92546711753169396805456*x^13+74781421822311526973496*x^12+226288672286757314114304*x^11-177259967483268156934146*x^10-289011662692955025083200*x^9+223461797931262041925584*x^8+142924333640468334083074*x^7-130857861037064064885364*x^6+25674043215218840993302*x^5+20547625608665413605212*x^4-36327424957155518229482*x^3+3067070765224657996891*x^2+5109046366979888677107*x+366262668048188441629,-10803386415609744101*x^21+10832769169737170679*x^20+391309749579054620130*x^19-375708423386606128049*x^18-6035983984463201157759*x^17+5468560590762114381123*x^16+51752870152946513485871*x^15-43300116883445652007377*x^14-270216182085757140864785*x^13+202263991171449328770111*x^12+886004807299110070036097*x^11-566381909609365901066115*x^10-1817104302362179997038553*x^9+927991851631237272063939*x^8+2248449321372979896074151*x^7-836727229313419289999761*x^6-1545804422651107563787833*x^5+364760991978828310587467*x^4+504412900849056223062965*x^3-47998858546836037238058*x^2-55467560860678119360738*x-5271707021490647106447,1671043908053811045*x^21-4211654220677370560*x^20-58690742656849749241*x^19+140598450823022855550*x^18+871813540226481361764*x^17-1954189210805409419330*x^16-7139737659915575215667*x^15+14593509059873422464282*x^14+35301698416676986011886*x^13-62927625817839425674990*x^12-108867321806131879971790*x^11+156163640953973553811218*x^10+209714866255150289456726*x^9-208289389329725577163255*x^8-245138288813319286404074*x^7+125416987011224905747672*x^6+160321598649341138697958*x^5-20252098356363580170810*x^4-53740482989260166999619*x^3-279619250610301554993*x^2+7936007165708214678767*x-1573137996894230901609,3721395039640418637*x^21-1091857193979774031*x^20-137262468890160312699*x^19+39299761363550619617*x^18+2165661788520415339049*x^17-594360426200667018935*x^16-19084951491440653675779*x^15+4877899537546113572306*x^14+102897814226825272294413*x^13-23407481673268269448715*x^12-349560939936148035477271*x^11+65795705919085220768177*x^10+743049829100457122790825*x^9-101905344094307601200611*x^8-949400564687602199168795*x^7+72666686282540362917293*x^6+670066100480253448081568*x^5-9028629859809855751787*x^4-220903705813433366402101*x^3-10605506279647825464022*x^2+22476148916675380529214*x+3205257699643681537864,841470720511646718*x^21-2762392441822645342*x^20-19297043673136990328*x^19+90220093644006940919*x^18+94227855883535652807*x^17-1202921081594039425467*x^16+1239094952408212516338*x^15+8338293673652440324789*x^14-18802570139965291288431*x^13-31385837957700501995503*x^12+106503122662399636158937*x^11+58936732677448323641257*x^10-312517178638962159820431*x^9-32505170005168464836939*x^8+489031400136600895870889*x^7-45850386726640335424718*x^6-384273209467289010208387*x^5+62717239353709044094687*x^4+129354232586924950164317*x^3-16174733259298220334073*x^2-12182009116801713010585*x-816824414925374444831,-5312451244937926874*x^21+12327546538692826724*x^20+176835705906637350144*x^19-418078855440206220559*x^18-2437437545936726741356*x^17+5922869743388956195624*x^16+17908668095580418188789*x^15-45376871427466142670908*x^14-75066250937021643107426*x^13+203531856108839080965780*x^12+177434219010976949133076*x^11-542128920131469872518564*x^10-215791811141395369905016*x^9+837320516979709412345240*x^8+100272696091135048000300*x^7-711672788343926054647764*x^6+12018429269131951035320*x^5+299300758325369923005249*x^4-8221379313103167635416*x^3-45984068455788988703554*x^2-2559607170039222091949*x-648056597405063827960,-3021281465508680388*x^21+11008303488249767941*x^20+100138600124497193625*x^19-376527017383025996551*x^18-1374328285857502063147*x^17+5389455844392262528977*x^16+10078602907445171618789*x^15-41824982669323067783503*x^14-42615708900773568701907*x^13+190689674017113307360669*x^12+105582986668907495370441*x^11-518442517458994102294879*x^10-154632025195765422730674*x^9+820091599565994620654249*x^8+146863588510133726634713*x^7-712958012277993744870103*x^6-107596790205772964385703*x^5+306767342279807815841649*x^4+55392098449117582638677*x^3-50884630332756294761791*x^2-9783464775008325549921*x+261261393417358622970,-6062157530738062438*x^21+16922380130579644565*x^20+208819987371075594583*x^19-581680508295494121315*x^18-3023389986085599885873*x^17+8386993205324879387569*x^16+23919761084825947686727*x^15-65785482540138507518469*x^14-112795037744560622034307*x^13+304667926489158019210109*x^12+325862094416227130475651*x^11-848014739068156480198657*x^10-575145954063593416044361*x^9+1391159678332639231195623*x^8+601840551817532931116017*x^7-1283103200038435893909953*x^6-337444497231819232425531*x^5+613287666036258013311291*x^4+78408245295465106289855*x^3-124669204136557859771965*x^2-825873271957433805252*x+4699718285630966621202,1163680756359225382*x^21-282350182609965737*x^20-38005107236205413323*x^19+9721680334813213263*x^18+512737973941433816739*x^17-134933183269599430093*x^16-3667094753079248982796*x^15+958447123082820759523*x^14+14751021264294483701051*x^13-3625306188108505105645*x^12-32144661680602385307970*x^11+6603724392339733007928*x^10+31435209140356053445547*x^9-2363199164615614421727*x^8-4117068937823123101453*x^7-11167003562759981951414*x^6-1823659835687735257181*x^5+21620021257046962322781*x^4-11219473856857936601517*x^3-12649501436390495134543*x^2+5748513337108947304933*x+1516123025541082291300,-12014544956620963971*x^21+18308537549815683409*x^20+420303871810405441884*x^19-620885451571255160795*x^18-6207793358884266809541*x^17+8785753415181145889033*x^16+50410639245006429988321*x^15-67072864186613132227148*x^14-246018737155484811269415*x^13+298293694074959928240593*x^12+743407505717876413802621*x^11-779272802926407194062583*x^10-1389977766622480863631667*x^9+1151609448805665171770589*x^8+1568158124952784120847193*x^7-884981028349864953760403*x^6-996552468113428216269516*x^5+296906222940391406695589*x^4+309056851663555390173071*x^3-23008937567988547550314*x^2-32005126539030247279790*x-2346036729381621340285,-2493241485434176242*x^21+5856634540226985408*x^20+85393105167991053966*x^19-201528455494386087565*x^18-1232742855699370383923*x^17+2916341779936713244773*x^16+9757629030111513176667*x^15-23030488966202975547203*x^14-46195390915312519028207*x^13+107784238452235867348891*x^12+134223344296317152227425*x^11-304333355571569392846975*x^10-237197660924680899055545*x^9+507290154397242467520019*x^8+243966925266319040155943*x^7-471555903476725254445755*x^6-129429463464301235015513*x^5+219838095832553028071471*x^4+26117517361762677211723*x^3-41881304992531601097253*x^2-447402474690162136575*x+2450855784113630024275,11106401285143858111*x^21-11281346944858558520*x^20-401954679221152348370*x^19+391523800256655186644*x^18+6185843519902426936056*x^17-5713097965530446583424*x^16-52803571467188401147266*x^15+45484523997071537263544*x^14+273684426670180851400250*x^13-214640169357286581870492*x^12-887424155171921464535992*x^11+611735497594812755952264*x^10+1792363080695965129574676*x^9-1032002598097310333244228*x^8-2179567237124101998830548*x^7+973835572086014753892220*x^6+1480930136788948503738678*x^5-454565248864793988117356*x^4-484194645099979399958382*x^3+72416843740245611992919*x^2+52759554152008998525728*x+3601665510609897596742,1477671220651446126*x^21+4370516865086961077*x^20-53912213586739804428*x^19-147860703761972595769*x^18+834432528396598145185*x^17+2092427062688543626983*x^16-7122403749520009315537*x^15-16038036532749354696849*x^14+36454224546244001657079*x^13+71986216613317184309912*x^12-113891329379171097306413*x^11-190858299115995113378135*x^10+212153289146844973088540*x^9+287053590310270211331571*x^8-222870063127148022365069*x^7-223442652104092742843377*x^6+123034474578559916506399*x^5+77568951000851603251151*x^4-29319736507834972839337*x^3-8164518613481779855003*x^2+956895387963060310396*x+252849351295187308299,-2407135393562566483*x^21-2627689194409739431*x^20+104871451568450609273*x^19+82970131782204431463*x^18-1942867671185560429197*x^17-1056838816103222694649*x^16+19972310438678520671605*x^15+6843724938042680964235*x^14-124558254954282494009707*x^13-22825086615552825617705*x^12+483753027311059947801357*x^11+31119050039524981606535*x^10-1156065134667631169086241*x^9+15895295230084775102735*x^8+1623741989416226694436229*x^7-83382033077947344084725*x^6-1229853570099174402246557*x^5+67447278572530014653359*x^4+428364476462353940527323*x^3-7673809378223421846586*x^2-47085556954962698647392*x-5035990035934242715848,4559855296537115066*x^21-2639191798514853206*x^20-173221111137685593935*x^19+100093863476628731257*x^18+2826050128697190340525*x^17-1614873855232227491913*x^16-25851939504744038529601*x^15+14396536324189396598047*x^14+145152970123316764986671*x^13-77090160232594540400389*x^12-514469555752521792262973*x^11+252315551318061108334251*x^10+1140149155867178715139203*x^9-491536743799807539734629*x^8-1511867366014857340225397*x^7+529992020999280530788718*x^6+1097914973105104514787038*x^5-274171907054208920869855*x^4-368849982207482726902593*x^3+43133578619138266383361*x^2+38997006608076308319264*x+4484454150299291428183,9424812070873127735*x^21-8629319243023378751*x^20-335723745187758750282*x^19+292018153742410713757*x^18+5074748784328462711871*x^17-4109581250599478968979*x^16-42449996043141720450875*x^15+30998856882786009514549*x^14+215074518666394685101769*x^13-134437330498461656405396*x^12-680158059085885830975659*x^11+332729444540112858185229*x^10+1337786063296405486462889*x^9-432278929756293662797715*x^8-1582892638599461527422774*x^7+223181614203563759123709*x^6+1043681337507818168472107*x^5+30301585273807267648885*x^4-332393341274900898156691*x^3-53686922569269085620372*x^2+36263162301367452290586*x+9032635857128006091636,5839662790013454714*x^21-15527199179349932634*x^20-205901189208865537149*x^19+525101726529193653296*x^18+3073903395128588429598*x^17-7424091565251586725318*x^16-25354050665811447108990*x^15+56808095498018976096892*x^14+126765901515400848311102*x^13-254451979367216316892702*x^12-398310483313142318287032*x^11+674333356041980399591500*x^10+792467163076552261504240*x^9-1021270415875785667784030*x^8-977991968576335424415752*x^7+814580923983328821824856*x^6+692656419412726672540266*x^5-288089725497735860746536*x^4-241352681964148417193218*x^3+22690159396424778634540*x^2+29185760198221146391652*x+3378350712023565139191,7715536060914801456*x^21-16475973107631330424*x^20-264192159288529302961*x^19+559701034407027220207*x^18+3789079002880328234969*x^17-7953553000390893213621*x^16-29508825125554945733633*x^15+61236625986468924164683*x^14+135352996056701179362823*x^13-276708968729846307720773*x^12-371564222582525655749861*x^11+744791406221594201959403*x^10+594563194233116867051607*x^9-1166802637874149277542613*x^8-512277121331548659712083*x^7+1014033165121608156045603*x^6+183938032352798988106325*x^5-456621754271600544133479*x^4+6931280216746991587535*x^3+93046009989854515004983*x^2-14493199201578302001127*x-4610538785179469811934,-65594559282036355*x^21-3728207558126744351*x^20+1520613200583100349*x^19+128158943931230744274*x^18-13089848191790587894*x^17-1859603103429440926510*x^16+61204239527810418782*x^15+14825789313964867312368*x^14-352638376368336810086*x^13-70864578494614041122442*x^12+2809603057887116506578*x^11+208341069275773601116578*x^10-14608817109043637769384*x^9-373661498708173597653464*x^8+42119933109000651793622*x^7+395803373667821803752690*x^6-64490926629209210125694*x^5-232962608544787839789534*x^4+44021981924091989462984*x^3+65074825892633944024157*x^2-9051704777170404221563*x-5164060607602378621917,-2052416165263178831*x^21-4871158010767430730*x^20+89249773575943123364*x^19+162282949634877484827*x^18-1655908488685217719261*x^17-2244577114169783809267*x^16+17085949474179066717505*x^15+16650892504071320310725*x^14-107067010994944986864167*x^13-71489408672320562621939*x^12+417669752953368773559029*x^11+179405769657410111939510*x^10-1000430996516411423135396*x^9-256199502662586963657579*x^8+1401472132654344400495875*x^7+199411999829292888029805*x^6-1048190169994076095005711*x^5-79167196494772026889955*x^4+352029874720984642517597*x^3+19288485054738700205090*x^2-33724534435265024828741*x-3923450526060192801101,3112042489340627818*x^21-13735959542349129752*x^20-96700400515903738210*x^19+463210358654459917797*x^18+1190731142747019602215*x^17-6507812428046900092203*x^16-7103981514751966693075*x^15+49232304367586267160125*x^14+18047730480314687281271*x^13-216361498616774261567657*x^12+10794938210588794128425*x^11+556009496515066548262245*x^10-169935032851520769992735*x^9-801848473832871380682375*x^8+375139889250589429027231*x^7+593346183698259233232177*x^6-347472629260723769654299*x^5-190246558664428934802331*x^4+129410757556771660359509*x^3+21208369582110929361865*x^2-12764540497145689055025*x-1748797322239326508963,9846793541848603714*x^21-18287450024814256249*x^20-330429796375410018718*x^19+623745193368756532591*x^18+4611917207832060359407*x^17-8896713627629427538018*x^16-34575761269134166783328*x^15+68741892021004209904770*x^14+149997252509359674245254*x^13-311900975467833170885098*x^12-377975281355765851690674*x^11+845269083389433234750715*x^10+527628878844550898751247*x^9-1343763167752989910695862*x^8-366116953881136676181756*x^7+1202784854058015311643358*x^6+96368605707503713911970*x^5-558077912630098032903314*x^4-2958897955634089269438*x^3+110250977430900146246541*x^2+2209974515954276483582*x-3053318296776270290656,4964386199361409766*x^21-1886928942523911122*x^20-172837513724411785728*x^19+59631713355970005275*x^18+2537876360748140142643*x^17-757549893837583102437*x^16-20452466053703549778257*x^15+4827362882448150863913*x^14+98752489266207223211099*x^13-15092596035900447388135*x^12-293776395961605957392465*x^11+13500617451528414200309*x^10+537618355434260441219465*x^9+42868362038699812291619*x^8-594524175537275372983359*x^7-120182893734150560039793*x^6+383074620647005525721357*x^5+111781142154709791880903*x^4-131214430993939784290773*x^3-42113703803255255246625*x^2+17886287494454100716561*x+5080781324846090287915,-3594054598942208692*x^21+14174168889674345151*x^20+111932085451068112848*x^19-481348846630504840648*x^18-1385816451905848219986*x^17+6829343821767475247410*x^16+8370392365426132080736*x^15-52415030284285959040058*x^14-22098163879718166519294*x^13+235615402130633718680066*x^12-7586692542252890548406*x^11-629190039505531730887034*x^10+186714546486467518700610*x^9+974358490490014288001174*x^8-423200736340378547761654*x^7-831390707582451558629404*x^6+389793162184662524498730*x^5+359062249556393591033714*x^4-139115663451088237265998*x^3-68744343247071099048744*x^2+10884691439781984137101*x+3181426881239902602398,-383530045564297235*x^21-1282540172210357826*x^20+14517144302017926312*x^19+40299536155656529451*x^18-235210865408828664398*x^17-514137659172717305579*x^16+2119372425323085193245*x^15+3373535374515699743709*x^14-11513349735952176365863*x^13-11669146739798701073091*x^12+38086898465518686851105*x^11+17772026874773970392273*x^10-73440455094479417332647*x^9+3526877524837904603957*x^8+73521528542641719356945*x^7-42176066102431388336843*x^6-28351871961643722423051*x^5+40213795526956001054610*x^4-2426356995759872116539*x^3-10916890655707021941144*x^2+2451512253154065968215*x+962667881312711365451,-6356761478235802089*x^21+15820582677994002934*x^20+210563517750116339964*x^19-535487149111353179277*x^18-2881921876123198518965*x^17+7559398776432648861233*x^16+20950950231414693256689*x^15-57567414985918233018519*x^14-86312649938790506855043*x^13+255593634783223308506965*x^12+197393496347251989207665*x^11-668928655625054680543908*x^10-219840975357620983183960*x^9+1001688741817558615701833*x^8+56121246307182283649371*x^7-808234445765488578831951*x^6+88643096893531570548597*x^5+318703550991387982466629*x^4-59404667159086203876483*x^3-53710071232719010756080*x^2+7083832835519411057011*x+4254639485445852579591,1098184255421971006*x^21+2068519307704925339*x^20-42381095196644694011*x^19-64919607979041848782*x^18+710265564812631756955*x^17+849778328358384591300*x^16-6770463359847190582508*x^15-6044867357600099491240*x^14+40308617208242959993048*x^13+25640343196546090048317*x^12-154656050804224242163061*x^11-67649609409807161446690*x^10+380494832896326509034136*x^9+114282075161659364799384*x^8-579296117607241926806736*x^7-126079109388726869573193*x^6+509346342167243075898412*x^5+87427776652787584451954*x^4-229672280747346196638893*x^3-36125918381426601026950*x^2+39457290595361477971034*x+7304322911675898996065,-2584556142078837887*x^21-5281602456202484463*x^20+104841800514771485274*x^19+176921799179773416533*x^18-1815834620435592941731*x^17-2465340821561913640561*x^16+17487748883427338512043*x^15+18465129713736527361349*x^14-102137009379776347704551*x^13-80156583172113098319475*x^12+370011211586020184943727*x^11+202802268235208561700971*x^10-816881253585240558040125*x^9-286341347186156506901049*x^8+1039522573493399596728245*x^7+204400968106103347179885*x^6-686577032184619295512371*x^5-59094773652113835353213*x^4+189020707163407651134719*x^3+6621457094930890954786*x^2-11155094497411897899236*x-1332440596365515305605,3296222635076471745*x^21+3807881951907131704*x^20-135790422807238199619*x^19-126172836294434973535*x^18+2393929166835167203240*x^17+1725343545595083183276*x^16-23540747064309497826937*x^15-12539365145766302587611*x^14+141013721027647498188491*x^13+51993287875463565875939*x^12-527473403503083354713921*x^11-123172444180009218237321*x^10+1215169775041651557103971*x^9+160855433544148955008615*x^8-1642216720800985213630717*x^7-113205414670775662284129*x^6+1189998274836366207627512*x^5+46335874364171634846516*x^4-392879102317804212989753*x^3-19106993743564812807870*x^2+40063853391274489986671*x+5223209378830626734562,-13215400042216853834*x^21+14262771551004096955*x^20+475547591770061899376*x^19-489449268738872835062*x^18-7280523518609697436934*x^17+7017552190750862806022*x^16+61904105513270483844652*x^15-54352810889375925187634*x^14-320390211226901764677238*x^13+245451356216957130912924*x^12+1042036929836153505192536*x^11-650369141437779041019334*x^10-2126451934999258422488192*x^9+965944137538971056247226*x^8+2638370585869483589682278*x^7-715974560858106821807430*x^6-1848428837498295190017636*x^5+186886639218572372567796*x^4+637535231700780263463174*x^3+27320878618865532947990*x^2-77779648631406504919721*x-12314474091828187972058,-622848637715596452*x^21-1369263592554816082*x^20+20961432852682954921*x^19+44301574384109178168*x^18-286933773942513327350*x^17-607542177927171132046*x^16+2010519049406464886192*x^15+4621982177259641603076*x^14-7161326814719606390014*x^13-21416905627485517640244*x^12+8157467893614613281080*x^11+62247338437222403396334*x^10+26243110903796175940490*x^9-111816301815669059649856*x^8-102051324828583732335062*x^7+116492912983342475502626*x^6+128270173302794417683726*x^5-61585134266875695025296*x^4-60764373711036908028458*x^3+11548597861144844129428*x^2+6798641112973103967148*x+825907108723989293331,17052149084298628888*x^21-23955392983278337408*x^20-598504619881890507765*x^19+810238732503586970255*x^18+8883371645941170777583*x^17-11408163878592625405859*x^16-72673441677093566990725*x^15+86312025243014405428707*x^14+358660219240401321720885*x^13-377621837877461422821395*x^12-1102254033650371046659497*x^11+956224854589164649273243*x^10+2112904663634579590311797*x^9-1324013789018663410576595*x^8-2467502438578936439489343*x^7+866557980239681015815031*x^6+1639141640559948063863387*x^5-154808427191716474627059*x^4-536316430098992132986629*x^3-49608261506813933531773*x^2+58198022128196721054035*x+10856901653909112117824,6609925999682061590*x^21+363345758835098928*x^20-245336277032176744528*x^19-11636576400539804425*x^18+3893847796976413278423*x^17+159343909574739175513*x^16-34490847107458932423037*x^15-1256353899937088867643*x^14+186589513547402758912769*x^13+6485316918597078784991*x^12-633823911406641165600613*x^11-23040557098496117097435*x^10+1338350773319575430508459*x^9+54622173178812401940717*x^8-1678594224595242464999439*x^7-77636078404239659940127*x^6+1140683707255323338837713*x^5+57632294077922313459825*x^4-353849812694405612306077*x^3-24696019968735960509025*x^2+33350176325864409906097*x+4975472085709598736087,-6594873628746478750*x^21-858385905544697668*x^20+251386652636035786001*x^19+24448208742487762414*x^18-4104886091523319833516*x^17-267032898228213566246*x^16+37475039426399455619118*x^15+1309003390857441468426*x^14-209318022418481898627950*x^13-1795638289124896415054*x^12+735433844833974208932458*x^11-8677432915216361335746*x^10-1609626208368646263426910*x^9+37505735256560502807778*x^8+2100276853087160173471814*x^7-46872153270020013826006*x^6-1497624805153481797689886*x^5+6257385550328280043242*x^4+496647768593824340928558*x^3+24004379243783794490968*x^2-52711388973685643880142*x-8519200412579274099193,2298621144446468350*x^21-3761326923626504447*x^20-82415513491250335771*x^19+133416431237942835104*x^18+1253098015262026986710*x^17-2004286195407768188138*x^16-10520934960778562606490*x^15+16607750436782379336774*x^14+53235941219806179560162*x^13-82917088066869273420414*x^12-166392892368480180043470*x^11+256363645788567243517942*x^10+316667217951755503207906*x^9-487491822088936764773230*x^8-346643885146540610555806*x^7+549854116004073945960490*x^6+188397557098006494555798*x^5-339420144330245539040745*x^4-28557326948217957168642*x^3+95432902000938649816866*x^2-6758141542726772065165*x-6483950156539929030666,17453272019911837099*x^21-29468543292430545639*x^20-601698160458651699720*x^19+1009688281955299498709*x^18+8710472871200132224446*x^17-14482259784497838017844*x^16-68742126925553475532969*x^15+112679232239350616209353*x^14+321544681698550732490445*x^13-515688206172868337669000*x^12-909666370375355532086328*x^11+1412250331869657838423073*x^10+1528478425043540053980591*x^9-2271830773787297471844790*x^8-1436760398105163265131070*x^7+2059231919330623334775893*x^6+635557017589580344181543*x^5-978465142553084233136915*x^4-51794274177252502564046*x^3+207222664782461686912961*x^2-28081710162160378377864*x-11798062233315843975977,-491562554331197680*x^21+5510216611582387245*x^20+9495831549232364027*x^19-188511606243425800648*x^18+10671982108516903980*x^17+2696449122334646456860*x^16-1728640724061547109580*x^15-20893533135287682363008*x^14+19197632871944014527048*x^13+95030015585797196925358*x^12-100996750203660142387984*x^11-257450712255433317641384*x^10+289290045916108855315908*x^9+404510096242740050521926*x^8-450737456214350441947694*x^7-344676657486985008502412*x^6+356760700030456208533514*x^5+138060856186233656862858*x^4-122801255415808401586890*x^3-20992937342171835394736*x^2+12336917405180583535675*x+2143523722898570601237,14679832219546647975*x^21-22104650046393957253*x^20-516187172696884131342*x^19+762178827210259215510*x^18+7672294563483679052424*x^17-11015270498303385286490*x^16-62779587569931759840492*x^15+86491830773886431489534*x^14+309053430128937417811750*x^13-400215445318672361079428*x^12-941856690378623285585726*x^11+1109944135012348478221674*x^10+1769343519987916537709004*x^9-1806962748593700072143390*x^8-1982129272683843326023548*x^7+1641641777364932870099046*x^6+1219111385635162266283212*x^5-755817626851218387833240*x^4-345385760768727525788492*x^3+136578782775541681706927*x^2+27802199049009140817111*x-1717527558480415432718,1161176537227861275*x^21-12895895976785455304*x^20-19297509497003875533*x^19+441548933580529827648*x^18-119859084788670877105*x^17-6335552178873275945031*x^16+5270230824516716309855*x^15+49423645412176317667951*x^14-53376799440012547052382*x^13-227789022247459119960313*x^12+270561839042182466188951*x^11+633424997345932050261767*x^10-761060048727699324854897*x^9-1050060260569529262878445*x^8+1182268162262929685466023*x^7+1003483622423730708525551*x^6-955833781221501311047181*x^5-516722008601400475665321*x^4+354242598908992429926383*x^3+128506857343560790041838*x^2-44325647194658346004497*x-11078109375217509351636,4641875841887867409*x^21-6609184360478630689*x^20-164830182216217013156*x^19+222486526906363989137*x^18+2481539583132476807642*x^17-3118543542765001373323*x^16-20662643424864392750953*x^15+23493955795695756690221*x^14+104260310106326191653189*x^13-102340630224792199582315*x^12-329432033525519136331043*x^11+257618944281420493264613*x^10+653263170259518805976321*x^9-351992382782544052572067*x^8-794628810302585663872871*x^7+219236916630882455350985*x^6+558930478675697273549041*x^5-23021149293433856228455*x^4-205838404854545765732735*x^3-25250134308544764792617*x^2+31354238307232497637476*x+5812900627433960361931,-4455361276632769909*x^21-23941028458765461*x^20+164043185448526677913*x^19+3251971264194290540*x^18-2574233447654040417154*x^17-81721705352508084068*x^16+22456029352125173909114*x^15+912291635388566644838*x^14-119116925152220559805918*x^13-5420739231310204552242*x^12+395079379006541826767988*x^11+17757500207155103344978*x^10-812519431495082537037854*x^9-30327175936718596095110*x^8+995015822556715302562246*x^7+22454503363263378533340*x^6-667739678214279373046764*x^5-5135675519475652373288*x^4+206004427897468484697410*x^3+3366999981293935788243*x^2-18284055734173264212497*x-2458269662712727131895,-7140278261468968871*x^21+19013815229387746858*x^20+234917302469118012709*x^19-637086545129319900737*x^18-3197955696978584082382*x^17+8858444504862490451108*x^16+23218033973393935132315*x^15-65854783337052921302794*x^14-96655310629428234147059*x^13+280545461968648094311093*x^12+231725244244086114364245*x^11-678765621368058891193478*x^10-310761023878027069636382*x^9+855791282903509356546281*x^8+233784735869341291398547*x^7-425467906650025843914235*x^6-122360275441727566469138*x^5-47662965799992501215199*x^4+72465457726140070460074*x^3+76930716077892806056543*x^2-24443262879624872190519*x-8760486922756547939160,-3718922291327418186*x^21+1503834431402103459*x^20+134149578079752932325*x^19-56712433153210913138*x^18-2064325647382625877774*x^17+917182478214191465892*x^16+17677676421763059658584*x^15-8280433870457250988624*x^14-92125249679848303082648*x^13+45528227802800498928916*x^12+300108041179506933232356*x^11-156036902923862001556520*x^10-604313234232126879321364*x^9+327451456905068099290256*x^8+717793622951735451014556*x^7-395868666452736003872796*x^6-456754732023864606056712*x^5+241857738384133421750728*x^4+126636049542451296545049*x^3-53528216754433314466473*x^2-8905835384148884999152*x-668775012627598647453,2505463797367738155*x^21-1201235719126375569*x^20-88936385906096053728*x^19+39211334291649360480*x^18+1343787443124032503406*x^17-522764092984980767310*x^16-11292038336014414420474*x^15+3609950345687894017855*x^14+57930579442399808520034*x^13-13305482178322568863886*x^12-187855345154818364802286*x^11+22471785484262060890426*x^10+386474574252407789111398*x^9+146998786136406562950*x^8-493390300405780036481202*x^7-51796521655344704669366*x^6+368642544323117632766441*x^5+59077562973937305792686*x^4-142850275851542589311144*x^3-20971991496843117447671*x^2+20364067718418241563969*x+2349200371548980099704,-3243373505700483483*x^21+9476242626673424970*x^20+106765918008517854539*x^19-312872107634588760255*x^18-1446629772039171813513*x^17+4294518174168056702575*x^16+10332662398517360233873*x^15-31641438244490676138041*x^14-41124904443088123894483*x^13+134763316337016766028333*x^12+86733527012213373088839*x^11-332911509199819731007343*x^10-72303206347108009922991*x^9+455053152423282785718487*x^8-36327934652908769603817*x^7-310364135717049484955489*x^6+99636570995812543325159*x^5+82945943441768563317393*x^4-48884531831321948933081*x^3-3410716795095868629776*x^2+5365055943362201442229*x+638082675197539337590,1216824967498805765*x^21-304952658217322251*x^20-50814702842748950732*x^19+14128861594157563407*x^18+909338094757607804395*x^17-270473833663612588773*x^16-9087790226246240815955*x^15+2782712592143639104537*x^14+55394275642712448678127*x^13-16679734794735151913327*x^12-211144053478552160168729*x^11+58768309299603541501673*x^10+496423962830189416831637*x^9-116297978861314875578343*x^8-685425555035468778202733*x^7+115683474966100106925645*x^6+507211429200848999978253*x^5-46553202683642654662139*x^4-171693449435021870730751*x^3-191254339848740025512*x^2+17769293455372371736608*x+2058803056902648279153,-5514245920889516776*x^21+11418750998304944338*x^20+179747778396179074400*x^19-384692423255793623281*x^18-2409522050564837896665*x^17+5402580930605936713993*x^16+16998272107138784211185*x^15-40893501578678214282626*x^14-66543944805363280620375*x^13+180210851439098308023567*x^12+136188952861687961547512*x^11-467165331907327256456679*x^10-101720577687629627311811*x^9+691100038824227779929485*x^8-81520841933251511162183*x^7-549458491117000782834167*x^6+172003158140397891034257*x^5+211967443004982326060625*x^4-76728670070075686651768*x^3-33541982981431395704907*x^2+5441641344560922142007*x+1296830132591779940649,196649874043799138*x^21+10761694739477969011*x^20-19509654807928557937*x^19-374320539947430364617*x^18+531633576355429722347*x^17+5493932647032642788611*x^16-6946830613156920611189*x^15-44273212621213710384577*x^14+51186776925584424063516*x^13+213729929341936001954455*x^12-224922374551381403472920*x^11-634360628899217022106377*x^10+592295748490325722344661*x^9+1148575133915293232973740*x^8-906796589326807935484393*x^7-1224441047188617500921262*x^6+760016350124845634446715*x^5+711194636844750210189999*x^4-313058223211824989693801*x^3-192317228239064532619527*x^2+49393142827359641969922*x+15782876097347240440250,-6720843407540150061*x^21+4855561857292138073*x^20+230937401406797570827*x^19-161506546585216845759*x^18-3333305669103994133927*x^17+2228000735928545833395*x^16+26242094741259672078841*x^15-16423997436065119624319*x^14-122550065484454459567929*x^13+69496446354162462829025*x^12+346835021753011973324451*x^11-168920531722717286109741*x^10-587626892684194042280597*x^9+224849543155526628317489*x^8+577487845540897079261391*x^7-148669189813643042205805*x^6-315275532389757673418083*x^5+35747733821719741928869*x^4+88184800749459752222861*x^3+1531430683100093192400*x^2-9436898563142619354138*x-1090584824701457040098,-15151119092983088608*x^21+17955131180803412397*x^20+535978718674176376380*x^19-609240568560995085753*x^18-8032039302142248712207*x^17+8620514944850693290951*x^16+66474821456699265904683*x^15-65722906884308683535553*x^14-332541833886530570482341*x^13+291128585784963096981131*x^12+1037025840915388528918643*x^11-753195433389328080038835*x^10-2013941119466746510111981*x^9+1086734940076640087812237*x^8+2367990120685747396235075*x^7-781036019984237826812989*x^6-1568878896823880923529815*x^5+200296451651151563339597*x^4+504773479129399932445931*x^3+23098336481524092945515*x^2-53920060879993087947372*x-11020125573963333838555,3702361480396062739*x^21-3542415245198670824*x^20-126752843976274992388*x^19+124856930925964038899*x^18+1824387289875306500885*x^17-1855945008287191377505*x^16-14318352835597545886493*x^15+15128009207110981650663*x^14+66380590149467798839577*x^13-73794615914876890798969*x^12-183477152376012151712661*x^11+221638416045173277425815*x^10+287019426524873744416065*x^9-409483733703627008228901*x^8-210206788823917521326127*x^7+454714583337912597358415*x^6+3727461602655114580709*x^5-282333773647878325594093*x^4+74162791043537680468489*x^3+79499439243120762784488*x^2-24264373358468671161425*x-4833110788242062668497,12880181741830485388*x^21-32690064784924735233*x^20-425968971817100599679*x^19+1104743817978317958333*x^18+5826370785238058857643*x^17-15566913498314196397739*x^16-42420054913890103199473*x^15+118245963566717538210889*x^14+175982049643782910166107*x^13-522711527418148918222613*x^12-412099913627594631330009*x^11+1355493681320587720200245*x^10+503162661695582914155239*x^9-1983921567935192118463641*x^8-258932774385533289449947*x^7+1500322067958743680077495*x^6+12972033184124511035629*x^5-478657028416779820625393*x^4+2548328964529729217565*x^3+28875054248872364283593*x^2+9906859102905120802324*x+2523832377184923243418,-3076127643984976582*x^21+6691298833905532733*x^20+94716209825946489206*x^19-224613033571842292861*x^18-1152155274057160137961*x^17+3127375753134480132543*x^16+6718827744007247645565*x^15-23291377948248721156433*x^14-15698637313530278572673*x^13+99797490863245372243543*x^12-20545231446451864107249*x^11-246723842284726842959145*x^10+197850321401039367897367*x^9+337112263049390145205255*x^8-423294240266521023555211*x^7-235120038661277618155923*x^6+384790358440533387332707*x^5+72078655331294819580757*x^4-138689746542792910022917*x^3-9779777195613946974479*x^2+12959381681382430946726*x+2012027001921263158931,2422288920571891227*x^21-3021109234255483210*x^20-90991697987126882646*x^19+108872954843592796609*x^18+1456455953025503605641*x^17-1666221535106171727861*x^16-12936130022039760089667*x^15+14100754870171249313445*x^14+69507747330316891697681*x^13-72009871904199939567697*x^12-230628761552182028780461*x^11+227498694172208180072477*x^10+460699871359391121065565*x^9-439472954392868808090637*x^8-509464061302775596175921*x^7+497463186066624446243669*x^6+250328759632987282509507*x^5-302886780927668036284523*x^4-13992251699496780129825*x^3+77585394961830048038848*x^2-14085699200120174369949*x-4106985072554334496447,-274848178963054611*x^21-1207372400498555240*x^20+16211036424571511170*x^19+31011479818206513699*x^18-358575715033506598456*x^17-249060792234589693263*x^16+4104054269714640365513*x^15-147985583344454499019*x^14-27136066939639752929071*x^13+14341553517355505450657*x^12+106993971035671115858053*x^11-95358682347582739183976*x^10-246796194481028341329183*x^9+293430190596388256825315*x^8+308876021583516866974545*x^7-461777839176020487748839*x^6-173657856707634428817259*x^5+353643991550539641569701*x^4+15528941246837087750089*x^3-109146640204424368219858*x^2+10091615515550117431493*x+7340553188673989193669,3287747550156254644*x^21-10530787325869561559*x^20-111065433131661312961*x^19+356681998366712989726*x^18+1559269970947949700050*x^17-5043472517268060460836*x^16-11741431212876117104236*x^15+38499001475390093051636*x^14+51042974157401997597044*x^13-171229912607619722114252*x^12-128412256752679124758920*x^11+446469232380109163560824*x^10+177779222041869708453692*x^9-652001096197167980432936*x^8-120572674644857401168576*x^7+476314029125236831484972*x^6+30892824422321369770660*x^5-128703423431053774065980*x^4-7703774453407638762028*x^3-4807021487822393238964*x^2+4512413708226541082149*x+1730429036343457930427,-11077607065672944473*x^21+15893351341201844067*x^20+381576178666672124058*x^19-535948976604478676656*x^18-5522877815550599307283*x^17+7533718171395059961603*x^16+43636244481036652387109*x^15-57059129830957808732040*x^14-204939606231044353820312*x^13+251361291144664066123319*x^12+586146443604187903885877*x^11-649644931825247876647295*x^10-1013390659756057517013463*x^9+950764219075131928463822*x^8+1029215145893959382964962*x^7-729876779753012908434125*x^6-574185223894375051603723*x^5+249666015896097341459169*x^4+148325148015025741389414*x^3-24350880856807302848935*x^2-9690656853689862200776*x-206303653168814426192,2809974844104170827*x^21-13507448823284242798*x^20-88859637170539510852*x^19+455234061627456259153*x^18+1129721979151727654239*x^17-6396726692118918417625*x^16-7214754300012478210457*x^15+48450940973426297337857*x^14+22614513826525187126089*x^13-213505797117779808511009*x^12-19348496236536352692033*x^11+551265192098413393911753*x^10-74186474286925645002879*x^9-800653327290291074977289*x^8+214305547703377921672893*x^7+597649457334540601314309*x^6-207049515272951867923713*x^5-192897378417331341434929*x^4+70126319128117554814633*x^3+18713871135162712288454*x^2-3230819738973284905815*x-277261906628946257263,4824316431480884714*x^21-3086990641167320812*x^20-175765554380359661176*x^19+101636504666045895736*x^18+2730742033169552607796*x^17-1375106133146767148236*x^16-23624139144866795639392*x^15+9746601241551578925720*x^14+124738140885365813921007*x^13-37759340204576910894504*x^12-414704096924295899893036*x^11+72195338650408041711709*x^10+864719900891327443327908*x^9-28690544254021551873558*x^8-1090674126677003824892272*x^7-112168852584145812076432*x^6+768299423483668229026276*x^5+159788099502201015371972*x^4-262395115746950223510752*x^3-68735816813014070805362*x^2+31085221332398158560128*x+7318487958887478288460,-1967264153625005592*x^21+6859174078765772621*x^20+57130029009488203408*x^19-232452579419032749552*x^18-613280472238138952708*x^17+3290994804786541374550*x^16+2424690124190047810546*x^15-25215209065285768081216*x^14+5523671484151006302912*x^13+113395534181195582211110*x^12-90364453182420701519852*x^11-305190231375270015466268*x^10+359937217202457264065866*x^9+487339323881437962920354*x^8-691718713613293225731164*x^7-457095651531944276489148*x^6+671672628286812471381848*x^5+251283352278432271487910*x^4-299679733861631243824742*x^3-78282649593875994091030*x^2+46592269794416081132173*x+9718437244395942896974,3130720477422600085*x^21-10639723335490155505*x^20-99867984887093747254*x^19+356873413806594149133*x^18+1293261625004419350304*x^17-4982676349086193057759*x^16-8606282347499235111091*x^15+37411354699577679285829*x^14+30168464947239595106593*x^13-162846384008837220270083*x^12-46765748980275011306107*x^11+413104518411327691546969*x^10-7259611900215991966039*x^9-584311889220135029008067*x^8+108502069085571706405149*x^7+416862818373791956156393*x^6-109540727109309856598263*x^5-117989610429080799897522*x^4+30583034198506535060477*x^3+3944623151369230715372*x^2-363265025282035576568*x+222279145562512898189,1756525977107810022*x^21-10118610383475489791*x^20-58875812178473896425*x^19+349168610484849810382*x^18+823139106765876363902*x^17-5066188046619134701616*x^16-6237016346074218585886*x^15+40131204582648572729862*x^14+28060526201231173404706*x^13-188670108787977429138026*x^12-78682781410763011840812*x^11+536856769272945312286362*x^10+145766951862878160043876*x^9-907503071847309157288422*x^8-191609010259077644857168*x^7+864953868461955906726136*x^6+169698722382268397288050*x^5-419270660890759576439822*x^4-79087987159206423201376*x^3+81669736289808976878198*x^2+10544672250332338623911*x-2602026673550206343119,-7488329435059245171*x^21+10798021383603995523*x^20+256035467861164131505*x^19-368476746783830535140*x^18-3675637322958245209784*x^17+5253639046039499122522*x^16+28775601738229135922887*x^15-40496775631915412452862*x^14-133717989233160705570662*x^13+182551094096649059665566*x^12+377605647822292150841422*x^11-487181371060643545427557*x^10-642556941988938017005614*x^9+747938428644643165388624*x^8+638975496325631893415702*x^7-619476817904191142222614*x^6-343629683530247521825713*x^5+243911882474878220449286*x^4+78372290959579920329790*x^3-35215274197534509251073*x^2-995930282748161356280*x+802555439373499905093,-5921861378620140006*x^21+4265909254379283513*x^20+219004779125682899762*x^19-142844014426241854863*x^18-3464913387572303255221*x^17+1979597045154442926047*x^16+30623352466122277749157*x^15-14554436799237333761195*x^14-165606420732987284531431*x^13+60061293672537674290135*x^12+564146328514746792628257*x^11-132339975626976729808211*x^10-1200321768299556188378521*x^9+116675213516140165289121*x^8+1525331083012031177701557*x^7+52709218027266637693975*x^6-1054359226517500634231321*x^5-144525696050320410100649*x^4+337163960894525845320065*x^3+68285014530977566768751*x^2-33803611108274630514408*x-7760561353860688962813,5874184861861806405*x^21-3430873680672832615*x^20-208601600664152579104*x^19+113906832965677035525*x^18+3137629703094286935431*x^17-1578979187323381715951*x^16-26031021191328085326947*x^15+11818567533702820063905*x^14+130061258694052084132152*x^13-51632632645347160764195*x^12-401701618487760718113323*x^11+133229670125791254037837*x^10+759806644845644052854809*x^9-197386152958342835383646*x^8-846346444936379224144103*x^7+157110026011532248006595*x^6+513905945716062591826949*x^5-54979609719313951260259*x^4-146834765410858559125403*x^3+1217184636580288774438*x^2+14772817523114836292198*x+1815955230993770931119,-9397792303423745303*x^21+8387522340281022282*x^20+340345214516776217585*x^19-292565488777761602492*x^18-5244162681044135867218*x^17+4301164878804555728236*x^16+44838048350656481960507*x^15-34624920217010133254384*x^14-232732158991817282726934*x^13+166159226701980990979336*x^12+754429291248570370945608*x^11-486224957036202603450361*x^10-1515373070087615008492585*x^9+856465540446542133520332*x^8+1808894637566093702536470*x^7-869058198972490348724452*x^6-1170542386393705642898276*x^5+459136866503799187453371*x^4+338087918774054857275536*x^3-93575023371445507861239*x^2-24551580685385884824962*x+104464013707994271551,-389911802596388562*x^21+8927757706339429185*x^20+9836183365260951371*x^19-298918682654552971687*x^18-70077883219960462937*x^17+4186588903942156922965*x^16-241977279962843758747*x^15-31783548873543048080579*x^14+6296841725173041993279*x^13+141700082951598098980719*x^12-37802670498008824480229*x^11-376269593535332925382829*x^10+107903856610453589582357*x^9+579588253348693772979801*x^8-155338008298497370978847*x^7-488768691164941060935395*x^6+110962580774860758189319*x^5+207344416150213316653443*x^4-38020426314028880804207*x^3-40754709555045478276055*x^2+7296495991165901931816*x+3514218427987881379960,-129753992038886705*x^21+1308302281840434609*x^20+1412717147018270311*x^19-50637108042358616336*x^18+43380886823278875942*x^17+833428304295452500602*x^16-1099038083966678038742*x^15-7600717302438660626984*x^14+10716011082594134502868*x^13+41934259518489025745046*x^12-56479651257189787893860*x^11-143328088899962670136056*x^10+171866212523614695315960*x^9+298110985402103960876526*x^8-297288724941142479970770*x^7-354350523222881813501866*x^6+271684023201689949201462*x^5+210497211599525005504614*x^4-116351251163782082945330*x^3-47979590432799872077241*x^2+18847589342108452902059*x+2218667704616877946967,-2489472533603495248*x^21+11348992783545801950*x^20+74046579919805177223*x^19-384456066275339549154*x^18-844991252291543978094*x^17+5435840352939188888540*x^16+4220733599088555723252*x^15-41511311167865013771966*x^14-3672320577970457177312*x^13+185186968125870749825818*x^12-54956283881055653843882*x^11-488549032053183881233038*x^10+252894325002792719756278*x^9+741153370957816864220792*x^8-464817776417299612103132*x^7-609707117949150053623676*x^6+393985853147689817505532*x^5+246673664945204185885936*x^4-138478195481974985768126*x^3-45169232719677963293840*x^2+12895111113388488953378*x+3064513980949750120407,6364688218650641716*x^21-11439440497425661178*x^20-217913771378500556718*x^19+389986244444671386638*x^18+3131084516090780070086*x^17-5547441161411799921446*x^16-24513798714422503315522*x^15+42573208523222520286358*x^14+113758632705899488842013*x^13-190358481003952789886774*x^12-319907901219898652472492*x^11+500301248295017002750626*x^10+538659988612261938198782*x^9-745580706053607323008022*x^8-521977187146421599474094*x^7+583362930908110571042317*x^6+266531898407872076126742*x^5-208263765525910562656130*x^4-64477338571387686812542*x^3+22412724035385363489842*x^2+7543117136808560638292*x+824876029242441044700,4409669225615361749*x^21-1854116906413893863*x^20-163869391772070545447*x^19+68786844103525724593*x^18+2601760970120523274845*x^17-1088823066036047370331*x^16-23018421837361128287298*x^15+9566468283181580002638*x^14+124061490522302185153149*x^13-50861731113554070224685*x^12-418150338128311163274691*x^11+167502270133334739694221*x^10+870477710972888358733737*x^9-336881022163849041306479*x^8-1065301758446042636676807*x^7+394969224229416821236989*x^6+694019667724655166825869*x^5-246575070089704886025323*x^4-199102489491570859325819*x^3+62406677118800327387794*x^2+15616927647672460529222*x-674466510683637356432,8287611280295834827*x^21-6472578813497504629*x^20-295181527828822144732*x^19+220524707443525514527*x^18+4464162657636335000117*x^17-3135514043624958500178*x^16-37400907269109185597249*x^15+24046785911718736641526*x^14+190159809680935015411132*x^13-107376970979790316203569*x^12-605858148711321217186720*x^11+281444318562303591349411*x^10+1211017246323498884181345*x^9-416413783422448257935460*x^8-1486167399631761967815681*x^7+315063748923067073326142*x^6+1065898523368399103938664*x^5-86459576031627658473781*x^4-406588011745436426068198*x^3-17896086470469252898434*x^2+64801541009640413427216*x+9702521609655622589418,4445362207286520089*x^21-4986530446024456966*x^20-154119727767021077655*x^19+170340305146649745846*x^18+2250650321063537468352*x^17-2416328930900696387618*x^16-18007388534192609860946*x^15+18348521833990138509819*x^14+86108532407861613541126*x^13-80105254810746746882092*x^12-252650124914423707894502*x^11+200584665194661397578326*x^10+452109299807964283242970*x^9-270777687586410417337562*x^8-478349520462118363355495*x^7+170062013928386232820498*x^6+279176813824835140323278*x^5-32004088013740388835550*x^4-79785864714922431370790*x^3-4313516497072470716417*x^2+8062049623135869531244*x+944484525603165629797,6186444555881956983*x^21-9594640738739353020*x^20-217063592908772977601*x^19+334005380107766788580*x^18+3220605616891343067010*x^17-4886035396804485637584*x^16-26327707397911628393158*x^15+38985421735087575675950*x^14+129681967076707586958008*x^13-184465337329571265621708*x^12-396564964601054752773318*x^11+528619364428366329117868*x^10+751136025995016485868922*x^9-904706786807072084667428*x^8-853926579815748168496864*x^7+886943957831514314951556*x^6+534148052910569605076958*x^5-455322550563769395434536*x^4-149683081392437496662664*x^3+97582236669472137636521*x^2+10885824700103355208012*x-4199823800259345800561,6340150555636067917*x^21-6031191781693762565*x^20-228891747174685052605*x^19+214489483457630374477*x^18+3522430161704335945919*x^17-3227318381203160649345*x^16-30153218133959549005299*x^15+26711874707960981113729*x^14+157168710054362213826393*x^13-132513106625346997543161*x^12-513282985806776904535147*x^11+403263651632200966873283*x^10+1041106545505862525718711*x^9-742560231960149960313893*x^8-1252298129164337893457867*x^7+789325623848591954881737*x^6+802666287221401901963771*x^5-439131306492402663439447*x^4-212999295554757268101513*x^3+100118528889716939825588*x^2+7917574340692331357438*x-3145063808118080536200,-9407015936566443498*x^21+19247944779086546248*x^20+326594054285410795247*x^19-658376483420644185344*x^18-4777613620433843746913*x^17+9415257797613387130403*x^16+38331951579141523316515*x^15-72872460520278422120661*x^14-184342176107468829453145*x^13+330275324660991903632495*x^12+547874815537684985071719*x^11-887098787572992355858837*x^10-1008740305177037987188713*x^9+1369129764806646396326811*x^8+1128824537407821707621271*x^7-1131229283949115266935677*x^6-718346429236331521581033*x^5+435378848497150602354335*x^4+223539233415460542503663*x^3-51668270266399543335467*x^2-22747910381585846138654*x-2854706817528623327070,789321794080213489*x^21-7298200706246121718*x^20-16116024994976935932*x^19+244717720535131699264*x^18+16266443652844892264*x^17-3409863510923037641166*x^16+2245364133884555174326*x^15+25492097318129703661010*x^14-26325723939999531238954*x^13-110133629470264348872830*x^12+140160337220524139348406*x^11+276049808087489173695198*x^10-402401148283009962155754*x^9-383664377101545078888114*x^8+628639267525389677632616*x^7+268855513611019718422180*x^6-504058398392261030282354*x^5-79039113670282269308254*x^4+175760623240578854370252*x^3+8920055273173625246311*x^2-16148662166469789922884*x-2054941491345542123104,-1880336986455861105*x^21+11364339313163098861*x^20+47887668472698409313*x^19-386949313583729304415*x^18-359764869927783596941*x^17+5522776671732752808351*x^16-844003299366811528917*x^15-42887756971897086441519*x^14+28808684884451531346965*x^13+197143979273025671935419*x^12-186148447667641343414255*x^11-549308057936110926681073*x^10+581855843293133303242029*x^9+922236076857002041906045*x^8-951121529138888629684065*x^7-910798778136773424481057*x^6+778977975860807218025603*x^5+495106342805523671015851*x^4-281160295084843979780559*x^3-129410008494642867767748*x^2+31190334365501307840368*x+10309624152414004172886,11892479156697989647*x^21-9417026342870987553*x^20-434795693139452412586*x^19+326521350325103975422*x^18+6783167163152216718164*x^17-4744190917958007571068*x^16-58966902665769189083530*x^15+37404397545483035809004*x^14+313054596033955444102106*x^13-173265700509138889472630*x^12-1046811894156196135126316*x^11+477825108707375473752158*x^10+2194496054040567473924456*x^9-762132517367645501101814*x^8-2776401512291323823702832*x^7+657093951025295878179038*x^6+1944636036145871984898764*x^5-267626226501326082724614*x^4-635942188935087833525562*x^3+27063106024127654153291*x^2+63259503304195061079399*x+6740027803621853673526,-13308828596363308952*x^21+19713546044888132836*x^20+466238313769717270339*x^19-672606240777978571225*x^18-6904567430772966338029*x^17+9576952384827079822735*x^16+56331289286047721249633*x^15-73562327553099920560437*x^14-277111753885378404166535*x^13+328928531019569902989657*x^12+848712885448690704449167*x^11-861680241051485883026635*x^10-1623298174689065194698999*x^9+1265392233123577716915873*x^8+1902564826179453058709589*x^7-935260644090316549147445*x^6-1290379858109421197173351*x^5+260555834568865918401461*x^4+447969529427553552045041*x^3+10685157972189089999295*x^2-57871030591265184672303*x-7812647201614071313004,-3360181274181882012*x^21-5691159597960416822*x^20+125540498634344345946*x^19+199705882847213168637*x^18-2000285557372335583413*x^17-2937815672319713216805*x^16+17706956337570663243695*x^15+23496601870738653437250*x^14-95040250603264384929345*x^13-110797784033347399097410*x^12+316851000370328548736299*x^11+312573533045059352513717*x^10-647367510003657012823682*x^9-512863738259157659358209*x^8+776304957720597741497088*x^7+458211244282710266447103*x^6-510067208803603507643765*x^5-203703603203141648113257*x^4+161225774847087814798447*x^3+42451805216997293942208*x^2-18564247705219369432299*x-3735206330628339986980,-3103186131282110821*x^21+10890830557101039812*x^20+92441941844767416252*x^19-362117388578984090812*x^18-1065895348198653425007*x^17+4982977922298255700036*x^16+5571845082408322652698*x^15-36513147873826437080588*x^14-8174987863319472125085*x^13+152358054170219285362092*x^12-45706308879109644153254*x^11-357272064602236964900952*x^10+232495621500171566612644*x^9+427690840727159084227448*x^8-409353181251408982255712*x^7-188642303359547083782329*x^6+304786609219583898534528*x^5-38831471845706516891696*x^4-77906592171735388511792*x^3+35782211278186339560108*x^2+2269939981668958639712*x-3462264722983750906370,-6106994357931407862*x^21+8422501416075061764*x^20+222409227102536168199*x^19-291966413807275821563*x^18-3452191850650675073577*x^17+4242536931240504623451*x^16+29822894163738494947287*x^15-33488975700778253988183*x^14-157221480088882741026427*x^13+155636251497043848532753*x^12+522328646033805613058391*x^11-432086582761226641684503*x^10-1091487404025638374473413*x^9+697294662223348253475147*x^8+1387278285298957443518827*x^7-611757518981572749265135*x^6-989854962029808847292615*x^5+254599738713686717221165*x^4+339821827654043544857109*x^3-29395614623639960899645*x^2-38610734190711030877433*x-4577406528234759686254,-11741187985497648999*x^21+20254447387982039282*x^20+412769539075144276852*x^19-696578931772133811917*x^18-6137224056466426768192*x^17+10026952949460366895509*x^16+50283520731971724101479*x^15-78227043018242059158587*x^14-248254502431388564626415*x^13+358038781990018304576766*x^12+760607351660467849075989*x^11-973439668459534611310223*x^10-1440421348694030341643251*x^9+1524896392320876711047969*x^8+1626367939550217508849644*x^7-1282487567117269856075679*x^6-995307305119466064153969*x^5+507147289058714135179633*x^4+269242908882303793159065*x^3-63700899106979620414039*x^2-15408328571582625481877*x-2861278788427842728553,11268064489993585326*x^21-17843889306437791982*x^20-392351240730633478997*x^19+611158552627535840489*x^18+5760307118634612313391*x^17-8743237585449697431517*x^16-46412104517175405354813*x^15+67585998144232857363863*x^14+224159722217714979610843*x^13-305124306984881114706897*x^12-667967427099817053189873*x^11+812929981431804620136865*x^10+1226142894034673589045505*x^9-1236408993667944880990569*x^8-1351886321503513496743525*x^7+997462204419175662113617*x^6+835846340102339747679343*x^5-370632180400958325560177*x^4-250736082573668060521555*x^3+41374752125322852813243*x^2+24499101275128264629693*x+2303451592471342510340,-5533365413166833120*x^21+13656200452237422608*x^20+175872338924102803618*x^19-462899324143458419320*x^18-2260520901547283214184*x^17+6536122332145226359422*x^16+14768909968972937435952*x^15-49681388425372990945950*x^14-48898057026782861084798*x^13+219385548784513111288398*x^12+55700742194344737231708*x^11-567537204143472361370642*x^10+112311795165547531006344*x^9+830791602462939862659692*x^8-402610265093517661691180*x^7-642708015007845980238524*x^6+425401275672473974708558*x^5+236170467062308763196032*x^4-168028014755640251907676*x^3-39086228295822522249072*x^2+16905107365365705755240*x+3391757168919681647076,4634014079470529594*x^21-2987676240497075352*x^20-164834214359232425838*x^19+103140765620602916078*x^18+2477138981006084324922*x^17-1484900665700286837266*x^16-20475199240215438255385*x^15+11546607968609950202790*x^14+101650165295600084717710*x^13-52627106038346281543177*x^12-311612115846560771824854*x^11+143674149613372447541808*x^10+587675909491486443806946*x^9-233892018332626898337506*x^8-665938636308402015724293*x^7+223669845517330440489738*x^6+434526294876441737726634*x^5-116092993859627899814914*x^4-149435509432103946566290*x^3+23655278090557684785844*x^2+21334653351433194563289*x+789755315032183236344,-2385926114640386363*x^21+682066893523602859*x^20+89800566138644110033*x^19-20496017091547716114*x^18-1444485801153763887652*x^17+242785966346904084784*x^16+12968496652441742900350*x^15-1376486915527728685418*x^14-71212615022740885609266*x^13+3183899119510159950654*x^12+246492396493231377892390*x^11+2780821927458963656038*x^10-534257041868310241040526*x^9-28359482973009073067288*x^8+694994284628847173836296*x^7+47753032127859845035122*x^6-493553046848706023285550*x^5-24784575197361844554744*x^4+158332457674253651838082*x^3+1574838653626529006317*x^2-13783991390756865388435*x+845857086227386265907,-2655666750322461868*x^21-568030944446903505*x^20+98928088789513642497*x^19+20326884305817962545*x^18-1570592198272165471035*x^17-305868323436706205227*x^16+13864526489698221444985*x^15+2518517591410963341949*x^14-74480217749179843126339*x^13-12354612171517608775895*x^12+250612466635726884366401*x^11+36799298632933535232857*x^10-524555836155720150250927*x^9-65055538386267209677439*x^8+656973559247267790558877*x^7+65011800830183237560021*x^6-453963588792751892439371*x^5-36727109018253804726115*x^4+147950451907440962431765*x^3+12946132649998656925129*x^2-16019760524471411412205*x-2462738082167632856202,2877438018619956793*x^21+4757698302814304809*x^20-112983407963145528089*x^19-165897267620113564272*x^18+1901182255017890927687*x^17+2433964821061777964607*x^16-17884037150650730120796*x^15-19528755030918883934818*x^14+102827773603187758231010*x^13+93318447909175284426793*x^12-371119497092508244965578*x^11-271762776673617809593354*x^10+831843257379371554539166*x^9+476462907501232655279430*x^8-1109359383377175413050187*x^7-482655108501353699431090*x^6+812420765294054339102452*x^5+259790080849694191607286*x^4-279812383468807952741737*x^3-63652456249344467731390*x^2+31345875414568764426705*x+4395828884113612574027,4452438422299852616*x^21-7837265433888053276*x^20-152592933592167958667*x^19+266392111367699223679*x^18+2195725516234851408209*x^17-3779398320636992374661*x^16-17236075167046529786421*x^15+28941279309344309571869*x^14+80431574782769193557413*x^13-129200887030090965188773*x^12-229116360379972348123357*x^11+339263638903548299805447*x^10+397987663851505937087383*x^9-504965859140514573146183*x^8-415535352967450786402207*x^7+390744621690952968842385*x^6+249765066710229990004271*x^5-127908812107804483034683*x^4-76574198644792837466609*x^3+5794814806955504316617*x^2+7156935686759555105461*x+1622333814542657659582,2748815164748662323*x^21-13689876269205122120*x^20-77546604529906125536*x^19+463610421511856643648*x^18+789293703972112688968*x^17-6551318697756104788967*x^16-2606638778273652415087*x^15+49989588920760913684461*x^14-11903952407449585888174*x^13-222826099079065314701552*x^12+134027210146395217251140*x^11+587912637572349209791616*x^10-483234561157097034203076*x^9-895940622370265734567052*x^8+853494016317337407105440*x^7+752453776583088718044628*x^6-764180872552647982162021*x^5-327183055592759367195397*x^4+321390733884575794177449*x^3+73196735039308975185539*x^2-48530717768914964563138*x-9895278095257292519310,-8769832652206653134*x^21+22312709000613291067*x^20+287515146595220544040*x^19-755901839570844747432*x^18-3873978031552813579814*x^17+10666111392886629210048*x^16+27452765852102386792358*x^15-81004592660480168981538*x^14-107965522767457678343784*x^13+357207824393894050030118*x^12+222998713881620147188644*x^11-921153276371931998698592*x^10-175841961306156525854554*x^9+1336384213722501354113970*x^8-104893454899361558759672*x^7-1005604122380636563436366*x^6+249992467734823961109990*x^5+338438475399513233963430*x^4-114093005683936982243406*x^3-40623323135212661225430*x^2+11372590785193139429183*x+2613538220786518132536,7440464165216892816*x^21+4938197302429412181*x^20-292851003352462790423*x^19-167123064590156152897*x^18+4951327738521280714025*x^17+2364270050738518562717*x^16-46916745297796279498353*x^15-18170409122256384979415*x^14+272452382752677542332085*x^13+82812022844587260209431*x^12-995687216725094212315099*x^11-231204387264441711447389*x^10+2263624928138243138931417*x^9+401088772280464867464285*x^8-3057442837388078291377079*x^7-436349149574831678707379*x^6+2248573266774899199827811*x^5+287559901461622438295397*x^4-773116201368992014960687*x^3-109305499705116803496419*x^2+89788394841277722818094*x+16269492277567214566028,8385615876839467135*x^21-15362350687644310217*x^20-289186350186782188110*x^19+521899589434535233092*x^18+4195777098086270355062*x^17-7398301501911189602582*x^16-33314831565585179228340*x^15+56585600924156330044438*x^14+158038338910831465019830*x^13-252144536343138142243256*x^12-461174937116019959545770*x^11+659980097581663021230260*x^10+828939927312135953205140*x^9-976443638500706767244938*x^8-901315632004672830053832*x^7+748223822357660266578686*x^6+556598449504874048301446*x^5-246868864722568802141112*x^4-168366343352090410321354*x^3+20238965674230003602281*x^2+16572585818607040638879*x+1371329270767271723358,-2226635387913874137*x^21+11108295754992820256*x^20+62275751949180476980*x^19-370710404670728861152*x^18-626437827731592376079*x^17+5120563935102771863811*x^16+2029875215664306134524*x^15-37663605265069351268161*x^14+9218460617701591880509*x^13+157663678372498838416879*x^12-100145417061203692489289*x^11-369826029343951535027789*x^10+344146311330746268529211*x^9+437076892145012033659131*x^8-561296255447105866661893*x^7-173970782007809028019665*x^6+433524243300512177262487*x^5-63773851196091689452158*x^4-127863055711366538516061*x^3+44508493482446278738054*x^2+6070873336933129259726*x-1323636225345937063071,-3233118507488581687*x^21+165985234258397595*x^20+116083039235028701161*x^19-8263400178639999694*x^18-1780672961297248065518*x^17+155953371833629034183*x^16+15255000566606107880220*x^15-1502202681463437702798*x^14-80095968478422761128395*x^13+8177658153554502504092*x^12+266246056468916855418084*x^11-25911243561222463701076*x^10-559070777363660043076220*x^9+46839856784962860121835*x^8+717358148851512895360152*x^7-43629249852454673324878*x^6-521769388937159592711019*x^5+12086607836667010100552*x^4+184993975986166382231516*x^3+7862779754428447455361*x^2-23039626973181146913281*x-3592220904288017152481,2452229888091293043*x^21+3788117397639572153*x^20-100041706533480130420*x^19-126756185641497089900*x^18+1747003611689877960106*x^17+1773625118867097304284*x^16-17037485838099684252754*x^15-13468398290700642261752*x^14+101496294625755240064148*x^13+60399163002667886359558*x^12-379606960248050085693826*x^11-164153620198376122481558*x^10+883350101018404504473356*x^9+271321842212514917885156*x^8-1229188570515810768085214*x^7-274303901257308038890928*x^6+950393171221080850830980*x^5+168485889255191850305508*x^4-357165636860795649874938*x^3-57463559442604419419803*x^2+48007238812885137688883*x+7665164143268968764354,3581879476393029115*x^21-10096917696235861360*x^20-116607933328090611562*x^19+349236762238540949929*x^18+1543054152436443433268*x^17-5093313993840240816434*x^16-10452737928987251995109*x^15+40755531135413358272717*x^14+36225074473009734299867*x^13-195342002188318793664602*x^12-43364839438328831856434*x^11+576695727455619863173673*x^10-101311663859534174828765*x^9-1044951293366680996929417*x^8+411621367713256849790802*x^7+1128127653880678790288470*x^6-539475716084968215474981*x^5-670371166322586293261211*x^4+312931200567205323452643*x^3+186254039321431464113422*x^2-66804780739962590704617*x-16171130257056382604989,5571938307169407559*x^21-1064675047346496004*x^20-202048849906730824310*x^19+33424085754536718710*x^18+3115857128390641373802*x^17-414265425302087667758*x^16-26664217273432636664126*x^15+2448611977862110230662*x^14+138681556161969971232014*x^13-5683590034306350116922*x^12-452103676607809859657522*x^11-8355897701933373837674*x^10+921508561400087948731582*x^9+74423684095067353526438*x^8-1138921882438116579452698*x^7-151981110939514103976774*x^6+796361229088308352912062*x^5+130785116310978059655014*x^4-272546484094907521669258*x^3-48611347321171389210187*x^2+30607278222943321041622*x+6586329036977567097106,2840183067530388315*x^21-4674019654554986305*x^20-96890815850402028995*x^19+154486992098553981470*x^18+1386264217467611466946*x^17-2121460030313763663319*x^16-10791682137712347723020*x^15+15624711154816855225890*x^14+49651191676543102502844*x^13-66477013759667243246180*x^12-137684970351249015622604*x^11+164142784751634226391168*x^10+226562945058298449434356*x^9-225474564007719123553620*x^8-212163832025834793213268*x^7+157957205382058079079184*x^6+103740972519114041227773*x^5-46441280230496285032240*x^4-22184995936960544318940*x^3+2462406657527139271691*x^2+1458049980087385309319*x+34540289699000581243,506323585045443335*x^21-9797201920660172831*x^20-267565658154213656*x^19+327481314334132579368*x^18-319391214718015232948*x^17-4526967303462036564474*x^16+5896876822139129897676*x^15+33276422114473299510668*x^14-48797367273779715497786*x^13-138797609030931553260422*x^12+218987430657898604720090*x^11+321733674076375026471364*x^10-547398060356052385418158*x^9-363143504140829174057808*x^8+724814877462886742744220*x^7+95849616229119624005800*x^6-444508800093710322186146*x^5+133064537110804548203582*x^4+81887464568555161919002*x^3-78246357381438953425851*x^2+5863566415685573100433*x+4756531916416909742486,106341562018576649119*x^8-1488781868260073087666*x^6+6380493721114598947140*x^4-8507324961486131929520*x^2+1701464992297226385904,12856312958404398349*x^21-20224081689324809004*x^20-451173992834246538271*x^19+691948680252973349332*x^18+6690336547525174951578*x^17-9907364243421923730654*x^16-54602952047129378998580*x^15+76887257661914315166188*x^14+268145437898728031811636*x^13-350302227740813501219610*x^12-816199604035647568199686*x^11+950469626631232777027450*x^10+1537064210796611762950904*x^9-1496804224491890323420682*x^8-1740152302709929170649562*x^7+1288643974955298736765906*x^6+1097138601160542395692652*x^5-538901501714645351403484*x^4-327592146710305517422548*x^3+77028264644300282413853*x^2+29752449385421174269220*x+2431278513440148940147,11211498544803386383*x^21-6709159729677227189*x^20-403881531784701133363*x^19+232656932501194433589*x^18+6193728978055299547389*x^17-3380987643318747468323*x^16-52763950707644307908553*x^15+26663092052740802021365*x^14+273407079375085268145531*x^13-123609942300759563054457*x^12-887871135215067485688553*x^11+341821168889233793583303*x^10+1798062542129798485348525*x^9-548994797880744801413669*x^8-2190585985088918621231857*x^7+478061439141753737771033*x^6+1483666598883536037050051*x^5-190432623100047374249105*x^4-476588886484676973900071*x^3+13436738872802543850312*x^2+49622522286551104621324*x+5732391505148918965322,22637562012091023021*x^21-36354950005402082301*x^20-793334151415878783253*x^19+1251910229767477483894*x^18+11739998058248686687670*x^17-18068842287938509920708*x^16-95527627028461076078268*x^15+141683216093042093694000*x^14+467090851017033408751308*x^13-654675494343438980180640*x^12-1413303852761581681543642*x^11+1812781968079014931123710*x^10+2642211282017421434968614*x^9-2944365037614446423632120*x^8-2972943335516621358508560*x^7+2661319909845355130218670*x^6+1876476278008711686997800*x^5-1207422836829519962028846*x^4-568123150479106340012080*x^3+211854220362019464854953*x^2+55286570678556523071529*x-1633835341063645131657,-9334504764862376293*x^21+15671351846122844106*x^20+336563362917504697094*x^19-536061020628330061414*x^18-5166602974662281897820*x^17+7685845950549604417110*x^16+44095325261376768641458*x^15-59850608383853271121838*x^14-229471333432323910928606*x^13+274256401796177591379067*x^12+752434526802411539672169*x^11-749948798249927605109948*x^10-1553321725898428518316654*x^9+1190106795911999018675922*x^8+1953261305316592505581566*x^7-1026923376875353322878890*x^6-1376611468236248498541870*x^5+428874805826886955911063*x^4+462834667166548214809038*x^3-61871399790366436732581*x^2-50197234447081059587984*x-2572698169610211743561,-3264802138147491209*x^21+7378548758851823968*x^20+108597389619228190641*x^19-238530707181430364388*x^18-1495310045544278399014*x^17+3152187133185844549326*x^16+10999244685140112017760*x^15-21668937719823485317128*x^14-46661746262029520572700*x^13+80510671550432470276940*x^12+116322442637432726674142*x^11-143999412665931731535888*x^10-174178805144429183854174*x^9+40729352437697023587826*x^8+179994940811488850812432*x^7+229495459203325854141542*x^6-159283563392196172136938*x^5-289222025645114990816330*x^4+101360576355181211297722*x^3+104703768264854879196719*x^2-23628850039272533077478*x-7781809945458791191613,-2523158682877216493*x^21+10763550862443812295*x^20+87756513672670547382*x^19-363934131891009388310*x^18-1287790783387634183802*x^17+5134608710697815171576*x^16+10396689368057274643648*x^15-39083959887458300722616*x^14-50663637524436384035064*x^13+173189507824016652692132*x^12+154790321618584250539346*x^11-449335066838677417046088*x^10-300201028847976042711006*x^9+652255633012558908713072*x^8+363236987405636161348326*x^7-477458626890665149394560*x^6-250210383239101607405036*x^5+143888797605998863213690*x^4+83782358061834690015498*x^3-9085724515030710981271*x^2-8706560402744578434983*x-836386342658078349104,7917681551104743192*x^21-11518813274923156677*x^20-274415305298171983187*x^19+394751104397666005783*x^18+4001913734333307785491*x^17-5661701812955325064237*x^16-31921772744871909621893*x^15+44029385551222477019565*x^14+151765052084674692634123*x^13-201275197759561170152155*x^12-440701224049897217447001*x^11+550015853675842566308191*x^10+773928681731399738944545*x^9-881121037963738947244485*x^8-788177212252549031911925*x^7+790620254882515272401803*x^6+415038996471724063427359*x^5-362900562021944468296247*x^4-78128721618900264814083*x^3+67706200372642508036595*x^2-4340835231457576551268*x-2257580695619545334454,1534276247864260242*x^21-13476043873626738735*x^20-34137885957581494814*x^19+447962111025227216556*x^18+119714896730833699162*x^17-6182730835836654428146*x^16+3220665491014472818788*x^15+45724541009729497562826*x^14-43184273518695924360714*x^13-195010882486293123632150*x^12+239776847297248845450632*x^11+481000661677032640796392*x^10-701715533342710481700928*x^9-655315015269027039327944*x^8+1101972142782362472300430*x^7+450131367553007192403644*x^6-873508970995270279082272*x^5-132796842866417850099602*x^4+294406867321069819250494*x^3+17918183913341828709054*x^2-26423663967700130885981*x-3078402842926117320768,-22375160396361538749*x^21+35811198508578007749*x^20+786587178564641780161*x^19-1224492858375596804436*x^18-11698404477533707366972*x^17+17503264012908381733830*x^16+95943737041510222533027*x^15-135366882336989100503486*x^14-474988043582760176935472*x^13+612604083213589941749521*x^12+1465221024596184528270794*x^11-1640685195892389252089254*x^10-2819833477757503045852362*x^9+2518133088214958152934534*x^8+3303485813359524784005643*x^7-2058468590168548485008510*x^6-2198380305956899345604376*x^5+774928149119837602089389*x^4+725497860879954450495494*x^3-81570778501021054828487*x^2-85501265519927873415889*x-8421259142599505127183,-2001325574713401772*x^21+1027550239866732673*x^20+71756460867384412772*x^19-33651651450662352190*x^18-1087824486784989180958*x^17+445966137928350570824*x^16+9091103197670773717632*x^15-3020235862165792292820*x^14-45862090172064831997576*x^13+10658580261576798629584*x^12+144246529722764749349252*x^11-16095491903969256142788*x^10-283602453376464867228726*x^9-4983704954627840677306*x^8+341729968680535306019230*x^7+42678464581684486197408*x^6-239662475509348611760396*x^5-43856240333119401965916*x^4+88613257712132175587714*x^3+17709477591638688018092*x^2-12390706921308265755917*x-2355150790860055596562,-10019241722223319890*x^21+3162763885972963099*x^20+380993631518008644908*x^19-116970372953456557365*x^18-6212277856056260903811*x^17+1833580660653017363211*x^16+56702755109466232807272*x^15-15789622291838322258893*x^14-317146710008548939751051*x^13+80919466414263797983603*x^12+1117961168822741048371259*x^11-249731012846553929428016*x^10-2460421248185088884460304*x^9+447229808156100300771739*x^8+3235517735653787275299877*x^7-422294592007289656743833*x^6-2329562811108660819457545*x^5+167088067524479926440384*x^4+783625192534159384687279*x^3+8868530956524186123325*x^2-85301691881939102356258*x-14568538306533370041961,6470970360264444574*x^21-9998513799439899832*x^20-227705482848401855239*x^19+340604374186633894817*x^18+3391140055517132830703*x^17-4855898042267806308861*x^16-27863711748511934608641*x^15+37528210086640980707523*x^14+138270428082683682379811*x^13-170308035081836139868881*x^12-427660296479299702218293*x^11+460494950322848196634011*x^10+824834997554378570318819*x^9-723921847214273449429245*x^8-966597416954067450105021*x^7+627504352285965816815539*x^6+640769755763587884384631*x^5-276361830446963421870005*x^4-206408153572064111636544*x^3+52808587179779418592369*x^2+21294396142055032070194*x-1930024863410015925228,-203817235242530981*x^21-2323329479747589742*x^20+8098238083269586931*x^19+77469568188500935320*x^18-138817369940479394686*x^17-1079271300620442483480*x^16+1342585658528191809968*x^15+8133386692970207339016*x^14-8036070348760392813408*x^13-35875428224774444106616*x^12+30785499140451616307784*x^11+93904180410564941315660*x^10-76010373519511596472574*x^9-143382759656234356153222*x^8+120351436785548974716506*x^7+128263286566893349251274*x^6-118441449686534963040834*x^5-76262234378587789877630*x^4+61095925420509257548562*x^3+28550420608267558904515*x^2-12090821318104088959632*x-2642478776193058853987,-3554388793075936077*x^21-668995533674168359*x^20+111060523840303954134*x^19+28468086794099774108*x^18-1382956660578919238128*x^17-534624089117306102951*x^16+8418436036206020059099*x^15+5658079142553331381254*x^14-22202418318899008875385*x^13-35994639692406948465440*x^12-12114431834827733082245*x^11+137607832647952593659585*x^10+223160476992076498972130*x^9-302775325877614506350857*x^8-532353333002611174775906*x^7+352011839429990472108395*x^6+528376839394229786709043*x^5-191748797216936287077722*x^4-216328138530072192142828*x^3+32700358724712700860576*x^2+27042470722011553991352*x+2707269418112364764879,-5651748402449639073*x^21+1234348674207669535*x^20+214984040749851208243*x^19-50074452235051979140*x^18-3503987166013212430762*x^17+869057065989313424596*x^16+31938268458094090385600*x^15-8370642912030262516062*x^14-178153638553367493555694*x^13+48620284805874537821810*x^12+625261977096777518534582*x^11-173451491176481097024790*x^10-1367405657995754712474112*x^9+371093740306721861288364*x^8+1783427756441682279514908*x^7-445167013716040608801838*x^6-1270790143460558088014358*x^5+261476409652451392300604*x^4+417322144774579612387238*x^3-49863779955427362445285*x^2-41474828109977465203491*x-3274211755633977665443,2284016528197591349*x^21-1017825965193481740*x^20-88665781123914044963*x^19+42005096357991999837*x^18+1478063832447218857275*x^17-753254600149102920957*x^16-13782580349808830953139*x^15+7587624248121354395143*x^14+78415152762826993694891*x^13-46478595572201211578107*x^12-278360055544357539060859*x^11+175837362573593396974933*x^10+604976619625557558540565*x^9-401123253691655383358963*x^8-757638961996360241941503*x^7+520008287499553806441713*x^6+482931252074096027074117*x^5-346591246599029205492143*x^4-115094756052657279787313*x^3+93759109397623774827902*x^2-884841925281875788379*x-4323679857234874480360,-18270189182536862224*x^21+35203373480590171201*x^20+624715375018228073234*x^19-1210406881166974304832*x^18-8943080158067423045190*x^17+17456622011524520960195*x^16+69469475278085813453723*x^15-136998083926408368061134*x^14-317452204913238845951968*x^13+635650137925227091719426*x^12+866322900409588473726467*x^11-1779674461019510729813533*x^10-1372704821654455918116705*x^9+2966455627669792395984965*x^8+1161405039181012496064480*x^7-2839004116111114061408650*x^6-390365731677845929920758*x^5+1452896445902150527987585*x^4-53178871106368936728647*x^3-339376253554434305646090*x^2+43189337770289212743281*x+21113109521930738694044,907748557182917546*x^21-7166553401262242489*x^20-21562474367860331586*x^19+240355462106784640908*x^18+125412176250967225890*x^17-3360561886365385276466*x^16+1015577694211415268750*x^15+25329121202842957196734*x^14-17868483651919987317381*x^13-111150587674039690786218*x^12+103855530293945242237538*x^11+286636133281921440096422*x^10-306315470100709905633018*x^9-420000440205566905153767*x^8+478467817483393112667502*x^7+326580307998953024136128*x^6-376790535846258391705442*x^5-120695202668833916533918*x^4+128748123335133680072326*x^3+19311121761337589947140*x^2-13211732005087922525811*x-1799749136216073670936,4210524281573168965*x^21+4935217209999023318*x^20-168566879840211564124*x^19-157009486907813197655*x^18+2901965398197913623459*x^17+2031427017951451888613*x^16-28006251073683792498939*x^15-13580217760557706865025*x^14+165503311478333569310181*x^13+48592844596040987182075*x^12-614176142408961816843793*x^11-82358629054181705472497*x^10+1413187234564957307650637*x^9+20612809971184864388239*x^8-1925692965942654318790571*x^7+111446986819611741986167*x^6+1428268352910744364508749*x^5-116601666881192608968507*x^4-492707588494951213346895*x^3+21345777856881248268902*x^2+53699934423655380355481*x+5866125158240410641865,7012670210967093613*x^21-14952126858908709173*x^20-240274676307037012210*x^19+517923111847168181280*x^18+3448197592274637480890*x^17-7529718226502342921500*x^16-26880061944745627839710*x^15+59620178552024050729998*x^14+123552036068791437419278*x^13-279395333707124614876276*x^12-340905615848522575297800*x^11+790724813404838286888184*x^10+552805902121766385357930*x^9-1330872418628963646448138*x^8-493896853787852432258390*x^7+1276274605719218190907426*x^6+198165132899135230779474*x^5-640410340509636354061660*x^4-1288479708285521223970*x^3+140060911970977975804143*x^2-14353254686807226977371*x-7610895653758629845786,103525150078465278*x^21-2642397483443931213*x^20-2230779949567046905*x^19+99425476448381773998*x^18+4024381889336624910*x^17-1603856149806646798153*x^16+319218429289208236988*x^15+14456685709182641576964*x^14-4264988383064703813028*x^13-79481882088357068989948*x^12+26205935663576836840248*x^11+272838873862246906984636*x^10-89604062289361089684128*x^9-574699995933076933237932*x^8+172732121530347095034816*x^7+701612930360609210330084*x^6-177797771537578120531200*x^5-445336868101303159727644*x^4+91307115670587509089545*x^3+120672531161475430388902*x^2-18852963366851059024767*x-8050686444441194429513,-2918475558146313852*x^21+7319122136810871479*x^20+95276792642190273516*x^19-251384932389715647760*x^18-1285118288613298346618*x^17+3599586935568786630310*x^16+9220924273444531521010*x^15-27777837086303442206498*x^14-37719707212417707590206*x^13+124725332627828478107789*x^12+87455152981914780215974*x^11-328657559432697668570568*x^10-107121660416958148160343*x^9+490276568936626130091426*x^8+55796294433298646566126*x^7-383797137456529125842406*x^6+5282640547184811772906*x^5+137844778760490109891114*x^4-12931734631821354426218*x^3-16928106082194962657914*x^2+2208271191542378349489*x+603813962340980484082,8301839273779578885*x^21-13916485260656259832*x^20-286566802077313296215*x^19+473107353773166065864*x^18+4158189311415940129808*x^17-6723098530843282391034*x^16-32952676492160576444468*x^15+51698995030601054046176*x^14+155311474624745466365342*x^13-232840845943275001258712*x^12-445997129628714065425748*x^11+622400940732837923488434*x^10+774737547407755196657022*x^9-961449968887911767307470*x^8-794558546703302613156718*x^7+809382784549603276015882*x^6+465504175121175208158738*x^5-332391603623632267412530*x^4-155243210201350391593756*x^3+47219637600588641411613*x^2+25355311885473357894510*x+1912207454117495480221,-4533577725733478383*x^21+17189040843281798470*x^20+136155137077437604293*x^19-573052912969398664020*x^18-1586850330809718996327*x^17+7925484367661993475591*x^16+8416731265631891535092*x^15-58620764568249762092182*x^14-12602877226660640303140*x^13+249015897313228531285736*x^12-72847034625106309078772*x^11-606039411723869236831272*x^10+390745936782872458758567*x^9+795499240352040895299331*x^8-758641381332618542180316*x^7-491613365338621483127766*x^6+684821219975555338756240*x^5+102810507790369716642988*x^4-268458077326182918746424*x^3-5828604251328807405899*x^2+33692226361472188884802*x+4169913581358276146747,-5855431855749893562*x^21+6405743110407771887*x^20+211512864477822435464*x^19-221316307762739689307*x^18-3245868110499785694565*x^17+3224577008986726488447*x^16+27584923855411246982853*x^15-25758674007987252191659*x^14-141945266255127289283363*x^13+122938634969423833476013*x^12+454661993195983179594915*x^11-359114575011808675789129*x^10-898659219660837589144231*x^9+635089727470586749707397*x^8+1049226048353939315756703*x^7-652825071420199669189999*x^6-653647587890968058505857*x^5+356491560848578461721769*x^4+167879361911375269522053*x^3-83685071253686379041249*x^2-4833174198977549696694*x+4018831440218967826597,3725400853089419299*x^21-14376179896681807545*x^20-123386681412229084276*x^19+484445308940718294265*x^18+1684957399189515810103*x^17-6806716433176922647819*x^16-12190305240729562926770*x^15+51557995878190495251841*x^14+49887311664094790361773*x^13-227249749190112223663139*x^12-113861286362827409582488*x^11+587198306140779923464050*x^10+132338801028669609471497*x^9-854956485233702756996961*x^8-59393896392832556518311*x^7+643656945789632637239644*x^6-7171084272252732897199*x^5-214284145204216513047553*x^4+4424497019214223603889*x^3+22863838217614520801048*x^2+1720304975884147595888*x-670562539233607056377,-6708603794403080964*x^21+14274835610738530880*x^20+242670095817936286168*x^19-501541622387501433059*x^18-3738440701822403836193*x^17+7430464480528612853663*x^16+32023404913903717628731*x^15-60303093485844996257209*x^14-167193105374528737670615*x^13+291613631544399220604287*x^12+549079387024167529862291*x^11-857323499318947901115265*x^10-1130172537294053091869065*x^9+1503473572899565481065475*x^8+1402910518716094441131501*x^7-1489046024408022014209515*x^6-956434178422790112475919*x^5+748180740403662407254243*x^4+298079302464468788672761*x^3-145466382064066766525113*x^2-27591525447397294732453*x+1879624201302415080845,-4086373885627972314*x^21-361323364197973546*x^20+151807918086169159749*x^19+9003414519089125843*x^18-2410495925381051672281*x^17-64715831143002957713*x^16+21346079903479831665299*x^15-168155483572604736991*x^14-115320813699091336084517*x^13+4971443610408139974505*x^12+390552045211343220407469*x^11-29629716573845548506089*x^10-820373975416519783872153*x^9+82922635329715022407597*x^8+1021072521653385000278709*x^7-112828149838738951435865*x^6-686069357092322397013611*x^5+62939272126694401147587*x^4+204532056599546570867757*x^3-4208685182133695473815*x^2-15961827725695011654951*x-2594025219158034635846,-9739293712974758374*x^21+6338859331223353882*x^20+368287052669007933240*x^19-225795543976054035731*x^18-5970540750507617687707*x^17+3410206847985420940041*x^16+54186558410981226134521*x^15-28369962227837353201053*x^14-301524694202730349868535*x^13+141301074739905248905197*x^12+1058985042959487333662835*x^11-428695306215771809030085*x^10-2328385773054006625140629*x^9+771423186859716624765791*x^8+3071531582470634161680961*x^7-765251309088132295101527*x^6-2226358850516553118365475*x^5+358860847033774458387231*x^4+749398279623183759609895*x^3-40537453663718241758055*x^2-79166643208139625803695*x-10068513805722177684127,7238814952580878802*x^21-15504197285040150534*x^20-227635971147458236379*x^19+520299968653300032610*x^18+2870065055530481974584*x^17-7251975853611499775006*x^16-18014542176644451604682*x^15+54189883377546038093874*x^14+53342118022261533635900*x^13-233910478569989634700150*x^12-22287245957136183707834*x^11+587018351500661437938096*x^10-288066815307294870718416*x^9-826432762314916806903670*x^8+745347248782628567375462*x^7+611171253374333850304894*x^6-723991604338138286000598*x^5-210100448281499525933874*x^4+275718324104545804523172*x^3+33575766153758214545966*x^2-28788139390862881974028*x-4916385310158308496895,18242485977844919649*x^21-30947952016700983722*x^20-623331733052507590882*x^19+1051123407808300880089*x^18+8921765148186304426131*x^17-14895780648185988393449*x^16-69393925479889737533809*x^15+113919108293125850618401*x^14+318714975209829957965245*x^13-508179800254985586107273*x^12-882730291528337163469949*x^11+1337172991843030668343585*x^10+1457590973941832862502651*x^9-2015375312045868449806593*x^8-1389715338888667081609921*x^7+1639579894807502963192077*x^6+713792014560331489840481*x^5-652641950081750993683191*x^4-170818172943775741848351*x^3+105373335443044173971344*x^2+10862680990015651097419*x-3921341667443345169911,-8552271237486320216*x^21+10626381659106101191*x^20+290498391017029713079*x^19-359033067080905728846*x^18-4121697682823811265708*x^17+5059060206855950649552*x^16+31597929273506412553996*x^15-38450090362681878571220*x^14-141281894284975905215220*x^13+170435093748746248376956*x^12+370253336811449276721620*x^11-446406276984285240283767*x^10-538574177731541418442184*x^9+674965883562423762603826*x^8+366538095223250260613912*x^7-563658835195548049586872*x^6-32624198882803218665819*x^5+240652831555205970540052*x^4-70603276572858387971936*x^3-46348306835426538212624*x^2+20927086701553717198415*x+4172440520402140231124,-1983359111041268203*x^21-2140481664646147962*x^20+77731366509748762486*x^19+75372224864745020641*x^18-1315428607646899111999*x^17-1129400921280516398893*x^16+12563529204935149704011*x^15+9429658461030055778343*x^14-74246551057566089492157*x^13-48326791206158412265069*x^12+279923973699503369853835*x^11+158136179747512217902215*x^10-670251049893241908519801*x^9-332526666747252715237669*x^8+985807758694467840343267*x^7+435657516388767554101031*x^6-833769689478077479968137*x^5-323369795226103939090109*x^4+357377663818453623546615*x^3+113720226161241386536340*x^2-56233422307711098166279*x-12257170432181244740520,-5002646663798568179*x^21-2931215733654893647*x^20+205123474931006367893*x^19+91170706387774076672*x^18-3604704249514411286220*x^17-1141849124321068713508*x^16+35408323346594666855184*x^15+7265599437106863217752*x^14-212503672126086182185712*x^13-23963139125216587045776*x^12+799753848457898954529658*x^11+34479905900547747635684*x^10-1864696430352086680947156*x^9+174206698571666586164*x^8+2570475797634174940835512*x^7-39792738086955739068342*x^6-1916059216871544735822856*x^5+16484205998833349096676*x^4+654862199967033763431150*x^3+18393920492048129542307*x^2-68402291897741861616313*x-9620454670814432805657,-11363959537127858997*x^21+27309025901386757483*x^20+375098294077703014637*x^19-939761351995256503463*x^18-5106248385323314332183*x^17+13561642298512089174479*x^16+36759685604900647584491*x^15-106470667027502138387463*x^14-148249988362012679055685*x^13+494086451177951323495357*x^12+320151958740750811831811*x^11-1383336777791755542190841*x^10-283347487624655437555829*x^9+2305417160592016637466061*x^8-115129679029361211860417*x^7-2202797695504592700840623*x^6+385110467574788689452201*x^5+1115523903580011695445387*x^4-228754554170189971464959*x^3-252566624333286236731748*x^2+41653122537595563068400*x+14755309561430208965616,2444358861884934465*x^21-1156928194492187679*x^20-89158391164609469261*x^19+38355283737091855398*x^18+1395246631627955273149*x^17-522830462566397056313*x^16-12258957105350307023783*x^15+3728084231395914169577*x^14+66446357906629221675213*x^13-14411186975036402270663*x^12-229759811401084637398387*x^11+26367679428439059015129*x^10+505772947394540671651437*x^9-2771249145394970257927*x^8-684314029821549092065111*x^7-64828496026656925970507*x^6+526399761366179084316004*x^5+86236385029685351685049*x^4-200185797042268545283087*x^3-38323916863104307830814*x^2+26800871452948461201450*x+4472782425116084447522,5344404824934110056*x^21-12069949676898149376*x^20-176290174561198268759*x^19+404975150872086241255*x^18+2398312974334777867073*x^17-5644918282510469734505*x^16-17283586013023084194163*x^15+42169261089467411587893*x^14+70313986645533816745507*x^13-181519281727816829462361*x^12-158166666150392234441645*x^11+450042640161458968462797*x^10+175223646601737502724077*x^9-606252819937258846957339*x^8-63270735997991531883629*x^7+383595078931834646783245*x^6-17714410640805236543127*x^5-67500867199919317908825*x^4+6388198159664072176917*x^3-11032484511843884476383*x^2-544411035270039094233*x-102044878214612866672,-1021972838877572881*x^21+1171515846859525227*x^20+38215199273552584480*x^19-37852147718174434071*x^18-611974272099459117109*x^17+497006633885182031041*x^16+5496029793138140830345*x^15-3352014020639803487430*x^14-30474583034909640841870*x^13+11804881070865569510772*x^12+108286618740927603803085*x^11-17157586905063612699261*x^10-247343477464003972743706*x^9-11744783378525611363678*x^8+352352086362757096977218*x^7+66843860161228806677819*x^6-290755229936948579133715*x^5-70691174993823948669183*x^4+124020369997201177163633*x^3+29182578218241376996084*x^2-21097698557038611670332*x-4100671205880279509105,7068813465057085377*x^21+3692169138389937135*x^20-277038824099616570041*x^19-117578626673699800209*x^18+4662089956543346984679*x^17+1534311324943573435605*x^16-43950052505604809779223*x^15-10529273503256573173229*x^14+253777329881892057297801*x^13+40526933029706217445207*x^12-921386690748924419879699*x^11-86652429343068234271579*x^10+2077688099367833795458833*x^9+98684739147021727677401*x^8-2773394770933603173188279*x^7-64885622335132745346027*x^6+1994934684768160627871455*x^5+38982305670889370912013*x^4-644538029955331347160899*x^3-27788687838711850626902*x^2+57054598364805222471024*x+7491154134038459599488,-17459085516751343032*x^21+21694758433913738818*x^20+626213002471342444382*x^19-743939313767661103171*x^18-9542921039830920883465*x^17+10668817153553176964309*x^16+80620537859038867975915*x^15-82813786527096828440495*x^14-413631482480900923870979*x^13+376294505027727351792897*x^12+1329820740779625004018539*x^11-1012001009078740813082311*x^10-2673206834376973411286869*x^9+1557943309708370177424793*x^8+3250878009521363494593311*x^7-1269305757609609131839351*x^6-2207856950588597644649313*x^5+460921356199642711873515*x^4+719352521675230178511043*x^3-29083148223235732767137*x^2-79269677813533139369141*x-10476352950774378088575,-16273791209564579282*x^21+18302902856446078152*x^20+566586578276885332215*x^19-620039006215957981765*x^18-8321210314422436839059*x^17+8739408400380301363131*x^16+67109279652657936215293*x^15-66163115289106304286171*x^14-324683698805868820500423*x^13+289798870069701841256175*x^12+970366373888625438861947*x^11-737522307101304386172313*x^10-1791479434615944202248399*x^9+1042147200161228292601235*x^8+2004409991228663777685201*x^7-736516134037102434316143*x^6-1294542231454750769816719*x^5+191610409573406313415215*x^4+434686830937354101971687*x^3+17237696585331268468861*x^2-56244934336936262376005*x-9641393293654987869154,-9191451882346236853*x^21+7365984407930868953*x^20+328768920906120715777*x^19-254700943111967351418*x^18-4995581744456615763310*x^17+3688281579749804743068*x^16+42056628774755933476916*x^15-28955727904923508465318*x^14-214709832729544250785180*x^13+133408133238071937959724*x^12+684793904548877013822826*x^11-365553500967795824912802*x^10-1358287036381995171023080*x^9+579255440579996520747450*x^8+1617369995130259218178030*x^7-496451926545703873312288*x^6-1065996610970400577281492*x^5+198609831225194111589986*x^4+329260716729758268009596*x^3-20884089274236242880139*x^2-31110980466023049726453*x-3087183987309144279667,2950950144986504726*x^21-13115438451557357333*x^20-95622455733156543753*x^19+436557955264269444758*x^18+1274458993266372690120*x^17-6013009710434590363580*x^16-8998093370897487395126*x^15+44067555877562774645556*x^14+36337636890165360763972*x^13-183322060008524866908466*x^12-86788582535770629754190*x^11+423490398218573685868012*x^10+134820711928986635539594*x^9-474269708778457627553726*x^8-176243354392451141591582*x^7+122027248455578105080398*x^6+197524759069319564499272*x^5+163219733580661050022640*x^4-132935812250664417997942*x^3-95315691126661371206370*x^2+30833113157610938397993*x+9597439426640718466903,9821851228592023976*x^21-8522451193069303424*x^20-355877543670321741547*x^19+291680962605297750444*x^18+5498059997680973007649*x^17-4177094026366631020316*x^16-47297880045110969769596*x^15+32372334360423293438415*x^14+248442210540027421373672*x^13-146616490653773850331882*x^12-823128119306867783851820*x^11+390846825103785492814724*x^10+1719372993980869404110031*x^9-586157829388787920515020*x^8-2200880717229086618308444*x^7+437169038878851457988219*x^6+1617218890014404974914868*x^5-101968348745416838372566*x^4-602256274406616819788415*x^3-34867569594915266809132*x^2+84653411763123855468403*x+13626131427325711409557,-3719199967458742292*x^21+4137866360944988487*x^20+132551212278663357750*x^19-145526045208317146682*x^18-1997745883333338849938*x^17+2162367525402555685144*x^16+16569894252680038051750*x^15-17666804221876119011452*x^14-82489305697408280799276*x^13+86653729028861307078348*x^12+252424805328212156010522*x^11-262323698717610766830568*x^10-467854374933282624819364*x^9+487933613725326282070796*x^8+497254750595703228483804*x^7-541154753913016868044220*x^6-266344551274060675117758*x^5+333189383392649556866980*x^4+49877797311507222185926*x^3-95682328265218854325266*x^2+973399620706053220183*x+6648241349075768390906,-6634164184568451858*x^21+6791727982033884341*x^20+226869537079725610012*x^19-228874667110744718677*x^18-3251090137144784290037*x^17+3212226695974298021279*x^16+25320964522270067492459*x^15-24259405869411033061165*x^14-116367851392431467572365*x^13+106417652868729426169675*x^12+321576365197975362334193*x^11-273799586884668345933247*x^10-526038495878620872533383*x^9+400648514373114917414449*x^8+491859862573684747100193*x^7-312376664400634163322897*x^6-251025248873406780514905*x^5+110070809963167373534789*x^4+64186505325924516937677*x^3-10827733131510774377733*x^2-5543533374818457027490*x-193195502263661161187,10522297716984433455*x^21-25472136079258457394*x^20-362906378049668956553*x^19+881020073111690798163*x^18+5260348114338404921395*x^17-12790298325074059788191*x^16-41637285758348290863347*x^15+101100530997315595786703*x^14+196012247673781787133073*x^13-472462729847311198224203*x^12-562098155970734092517077*x^11+1329750674720154041849699*x^10+971376476900784692248963*x^9-2213188869446628417601199*x^8-965727714605427710207841*x^7+2081197754524457053549243*x^6+480690398011317648583793*x^5-1021708257513557293706637*x^4-75998808727604199753069*x^3+218481393540255133211948*x^2-9033720404451108096261*x-10197317718011820578518,-2950838719763564915*x^21+5878803811146534122*x^20+98718981944884488464*x^19-198401562559036095087*x^18-1375106785894297929157*x^17+2778718666541513879275*x^16+10325636100349512475391*x^15-20821504708580175577267*x^14-45326946313924550281787*x^13+89639942756147688257501*x^12+118928060298001036243939*x^11-221026884825360931572757*x^10-187538955487692777407235*x^9+292274356417526997631451*x^8+184470145257539268032781*x^7-174261377268556209507049*x^6-123231606942774558722055*x^5+19667440387046339673375*x^4+57634174316356200290469*x^3+11983552604493384521986*x^2-12135601823185761517753*x-1412032740916442656145,-7571767861244082839*x^21+7222710052491933953*x^20+283659763650846225083*x^19-255828985290757455681*x^18-4546987974038147035939*x^17+3834776461710893770497*x^16+40719668297715831506927*x^15-31617158755102061864851*x^14-223148622523597835743867*x^13+156004794924916932081641*x^12+770800172073192913722241*x^11-469680563348625673090027*x^10-1667170001614734124987871*x^9+843451007195754777415295*x^8+2171040885167619375265893*x^7-845192369693425714915943*x^6-1569392029854093494336509*x^5+409597520202153845382193*x^4+539918793782036077598933*x^3-58931018297738485647004*x^2-59883353773560628377640*x-5617588740073340531736,2440093994166931051*x^21+4107722437988187009*x^20-90764942139639875455*x^19-145403529519976518004*x^18+1437566134102954249470*x^17+2168993364600965248350*x^16-12647684404082564410344*x^15-17710313310392359167408*x^14+67645475517513877470030*x^13+86039415643501646330484*x^12-226473003133590336379550*x^11-253320665074952508437840*x^10+472563647340167805039298*x^9+442437425875771344744690*x^8-596845892079443682535988*x^7-435200695735643401276522*x^6+430709185655271502732488*x^5+225530592871580913061376*x^4-153631347288044969969800*x^3-54026597482773574841165*x^2+19177803834402233599115*x+4111399789540643455823,-7022479060480883678*x^21+8938152471787720311*x^20+250787688235762174206*x^19-315481388752265699676*x^18-3801537640297828918074*x^17+4705545234069774852160*x^16+31887887935401221070030*x^15-38584958994678174141094*x^14-161884431137872315689798*x^13+189757755234685409006480*x^12+511724722355631706991498*x^11-574313180089910390547144*x^10-999969942980167831768038*x^9+1060432494405206539855878*x^8+1159009165422429633431184*x^7-1148899477115141820215158*x^6-721946035851169227397400*x^5+667254219818574789478782*x^4+190229969640506238381428*x^3-166181371555347202683238*x^2-7894118892239030981271*x+7062521243996596014566,-8627112308515176649*x^21+6771833177551245738*x^20+299384027163288131812*x^19-225218470371007181839*x^18-4383421445121803718133*x^17+3107661996247355366991*x^16+35243313048311476196703*x^15-22903762809278337778697*x^14-169902589856183670446373*x^13+96584071820666075055991*x^12+505139487766668930409513*x^11-231075230477328067706521*x^10-924675774384818058677541*x^9+288890249483645687682313*x^8+1022512531801788877930563*x^7-143464035173439153249363*x^6-656890082585962345765853*x^5-25961953277291913416463*x^4+224606066273449055153663*x^3+42948956570653501581902*x^2-31026710473287086862455*x-8174774718520924004991,-2431878953440551331*x^21-5179295910989113346*x^20+104404241590470356768*x^19+187257890369509618453*x^18-1916342246459056105899*x^17-2872667971378062652763*x^16+19619039429415714996179*x^15+24401125021425962504001*x^14-122494398205962467469921*x^13-125744914811639444279527*x^12+478918189471700122291111*x^11+405529243245342990104195*x^10-1159013578308073082393285*x^9-814612033716980391941795*x^8+1659034118207102738692409*x^7+976425479395256630619583*x^6-1292408123557312816941547*x^5-628404837306787765996681*x^4+481096419248250114634005*x^3+183990068226823089771592*x^2-64131190304595070698273*x-16160583541616114647901,-10774003661482317523*x^21+13191225032713576595*x^20+380528625706075959021*x^19-450633207592963457542*x^18-5691337576562751275210*x^17+6432664139463636982176*x^16+46983783391804979444680*x^15-49643441638252995554668*x^14-234225230178431162142592*x^13+223897664045635683318110*x^12+726794247725536077567686*x^11-596137979829213547975836*x^10-1401380310370457702273176*x^9+904518854657543339653852*x^8+1633024135772708699185748*x^7-719853121018495798034080*x^6-1075276400289872529355328*x^5+250500909922980407457162*x^4+348939165135497180520884*x^3-16715813787885967270451*x^2-39842543551441828229647*x-5110001774583408959773,106341562018576649119,6427717579538387284*x^21-480274647825427460*x^20-244082859797887313970*x^19+17402521016942915033*x^18+3964322681040289087413*x^17-261869054230624620566*x^16-35933872084646031848169*x^15+2096388830668636523505*x^14+198853781428031728233255*x^13-9488622673982912423473*x^12-690243634348999572345537*x^11+23651796799489581573151*x^10+1485629233958602654340986*x^9-28562554362675248809233*x^8-1888449227815043145275397*x^7+11506373722621258695883*x^6+1283223037786212978757991*x^5+286444760309149460502*x^4-385282252142206505313153*x^3-8032264183156028108382*x^2+32183811392569033733003*x+4967132596720884636431,-5799445469689796696*x^21+13356275306633823499*x^20+197349751958639694014*x^19-459652205120652001150*x^18-2808205084450720521297*x^17+6635129789987020203760*x^16+21637182279454715030330*x^15-52106661821904672040664*x^14-97674671997862186190148*x^13+241744709662731920136028*x^12+261022468737422865553676*x^11-675545865953758971306068*x^10-396194771353440595232252*x^9+1120245475149455113440212*x^8+298979216512407614974288*x^7-1064550680254946882804940*x^6-53156434624062383144184*x^5+549840561497378660051992*x^4-48807828962917669981936*x^3-135921536123722805547215*x^2+18563207209264477496999*x+9764723129077821041238,6350932885301063243*x^21-7013642502745660404*x^20-221197891411278684973*x^19+241700553026318903720*x^18+3249840649747885433086*x^17-3473699300149097493564*x^16-26221798808728864977103*x^15+26918091702486844982784*x^14+126948042113323564741996*x^13-121487802141705698471452*x^12-379659001720912530499360*x^11+322468925905415929692996*x^10+700483247377761263216144*x^9-486462743151373761144632*x^8-778077712334616101268640*x^7+385554285514624522027007*x^6+487014721949059746467128*x^5-133439758196764607176690*x^4-147337002826116087024676*x^3+9127504909485198878295*x^2+15113721826493021176264*x+1760219853749918015301,-10643642642169984705*x^21+9236173041714915736*x^20+381491177108797651045*x^19-332200463323175486311*x^18-5806126912750708498512*x^17+5055923770390231838842*x^16+48923908021540946115054*x^15-42364344550374598841429*x^14-249692347425862024203869*x^13+213219081133087834413782*x^12+794872326951342781610985*x^11-660973350681148111467797*x^10-1572544452347891917097487*x^9+1246726302346412201139791*x^8+1877728442540670072409772*x^7-1359403151833585450724461*x^6-1273694887034823882709213*x^5+755178293815969286719850*x^4+431291791880023065009696*x^3-151957260456172213135071*x^2-54476857567548768123761*x-4415940345035363174847,2374352022140920588*x^21+1563884057866806378*x^20-84041177711072575947*x^19-60452207668892645163*x^18+1271494148266598631787*x^17+1012830390490197706432*x^16-10776738655709755558933*x^15-9597635882756150130155*x^14+56451812535198223212271*x^13+56135475454471681566783*x^12-190689703990055776498833*x^11-207200244734852651462217*x^10+421393530286694371436515*x^9+474052134784186701790423*x^8-602857468912497408287208*x^7-637098515464414973900573*x^6+530635455010442317203715*x^5+457303063922864581306515*x^4-253701261627920456662685*x^3-147009199096255398142137*x^2+46614139852595093156893*x+13709864210996562937984,1980157629925347087*x^21-6412266817484931550*x^20-48449717327091570868*x^19+206611730338780913330*x^18+317149862994393763601*x^17-2715931644716403976382*x^16+1685884045047786746496*x^15+18523888140117764581106*x^14-35862659894305807135974*x^13-68148189048692416603302*x^12+218176067463479283652298*x^11+121430504552550633637942*x^10-663623568903179663817670*x^9-43304631548638504964134*x^8+1060509190638760211306962*x^7-154796114299441288696746*x^6-834037287925838540524262*x^5+194244463525646049595490*x^4+266211703232484757499002*x^3-61598804864568248695118*x^2-18612852787542450016756*x-180470221698578785844,1702644048816972976*x^21-9100087666190090446*x^20-46207268294551339379*x^19+309099747696181452502*x^18+435107607368077734782*x^17-4377064876934185047641*x^16-980716373519887784890*x^15+33398066130876009879032*x^14-11107111540387978524442*x^13-148149980437533775193762*x^12+93776806338844912226110*x^11+384605491207754311613842*x^10-308123658197581690592270*x^9-560590926327898117198426*x^8+502801378310088470090502*x^7+418171264298371274333242*x^6-408822430368631039664581*x^5-133079920922879262955038*x^4+149206015185720320500954*x^3+16496155445553121605089*x^2-17647900581206429824760*x-2512789438855639411402,9211572290244968483*x^21-8898480002035917285*x^20-337783786395332209319*x^19+312857423191233546776*x^18+5292918515897441187168*x^17-4629980990426418919754*x^16-46291089359800114363010*x^15+37426364019667381865342*x^14+247695690716914620151022*x^13-179520704836743605752826*x^12-836237279650149880173602*x^11+520663306706622605563462*x^10+1772132211269036542814406*x^9-895690938589667064929898*x^8-2266801317841830795250326*x^7+869543769768405697309602*x^6+1602732405913939176755954*x^5-435776168015074642463310*x^4-524708451896248577157810*x^3+85479058136395121002753*x^2+49618827133859726489697*x+739877597900009038137,5474121444555574525*x^21-12606196293210743751*x^20-176212950458159420729*x^19+422332976239193278011*x^18+2313211044580198949431*x^17-5868152753525492042609*x^16-15736747340924281907805*x^15+43565044544397440996591*x^14+57465150788039070734631*x^13-185302941759268324409989*x^12-99232485172736183955549*x^11+448647868160805632578504*x^10+20603764319286905872163*x^9-573416019209029807285255*x^8+161074581959651286985395*x^7+311350367878925931214367*x^6-178972264690918086561253*x^5-4310502369834369066593*x^4+45461230812777156158415*x^3-34159382014705186730775*x^2+4307093369777914760324*x+3444049807082973343446,12241477646391340515*x^21-13969879493378743398*x^20-442047535337217550466*x^19+477636910242736930478*x^18+6801601068907120220970*x^17-6826043074380890220446*x^16-58247653769390485332753*x^15+52738142454801803427842*x^14+304574203506409648477788*x^13-237883001766989545986742*x^12-1005134587244750202221186*x^11+631257949358107685676455*x^10+2092806636336463700632529*x^9-945041891032699754667854*x^8-2665260923765418845398032*x^7+720407342946575280514942*x^6+1925459260414550876765018*x^5-213610231571743530302839*x^4-686070987425926473621354*x^3-12807763762033919680011*x^2+87282957804800730263248*x+10496207055251763175026,4798065069103519689*x^21-3355526204756590747*x^20-157329481143829750655*x^19+110745457305978394573*x^18+2124784476072460889115*x^17-1510989756620224240683*x^16-15124032055760519724103*x^15+10976032560518398762339*x^14+59738575774748082527595*x^13-45669354170116502162055*x^12-122368420481279668307619*x^11+109980903587830186511085*x^10+84067582342551898626253*x^9-152285782848751298108745*x^8+102760570906061821978789*x^7+126025632465697855146883*x^6-194767622023472019361919*x^5-64070643149471575190459*x^4+98066587857820030325031*x^3+20919085790799996159854*x^2-14699185812730833180398*x-2867400512039103533174,25970915923142797285*x^21-44241265543473406209*x^20-902404957720318212503*x^19+1513833733028279823523*x^18+13219379803801011651579*x^17-21671241097717537678745*x^16-106248561162650825880749*x^15+168072422962458735163523*x^14+511604363281416865035787*x^13-764633637315315154882453*x^12-1518091351313361356777885*x^11+2068731198050156839459639*x^10+2767603655946015709057091*x^9-3240397953283727858311165*x^8-3012410574734712320749837*x^7+2764067738938599783111287*x^6+1813167692292225216589659*x^5-1143812480599315029327593*x^4-514819533216164251869609*x^3+170541089874130452705208*x^2+44887183340270882875218*x+613507099480037661434,-4365656853997571173*x^21+13217694091861136683*x^20+153202114198599334997*x^19-461621535511298813109*x^18-2266609773802977092413*x^17+6811290306146389915816*x^16+18396186441052878861335*x^15-55247613246707634621051*x^14-89412619149985712951145*x^13+268682024948233481925162*x^12+267451207550908972097836*x^11-803154567845568784132207*x^10-489178107830014853253053*x^9+1460009455707823355865871*x^8+525012212170554376762202*x^7-1548092849726274749010121*x^6-291047959877990441139301*x^5+874287850231645169244991*x^4+52024432030409560103051*x^3-211527432242660437837667*x^2+7543837542283170193386*x+9567532512679398835820,5859864914389361339*x^21-7043809434126250653*x^20-224896366600217460862*x^19+251270445872093681874*x^18+3707258864509345061097*x^17-3788244812021594479540*x^16-34267297370241580533214*x^15+31340745447494651408651*x^14+194391733247354310934073*x^13-154533208594678997503540*x^12-695600406918305462136678*x^11+461652607428395453824868*x^10+1552210746978081677075128*x^9-813679311039980463361248*x^8-2056003861388158330063556*x^7+792013241568642507668487*x^6+1461033649349630726256929*x^5-382681978702978633167336*x^4-460746907169938832140858*x^3+67047289793023867653214*x^2+37917109324885948941323*x+1688574776785727222576,-5720552363426244533*x^21-205201671328297101*x^20+220132695392212317175*x^19+3726383688771563466*x^18-3625271525008309893010*x^17+9623151981486129976*x^16+33332688015868263678499*x^15-717772776154589873508*x^14-187129965807396879079720*x^13+7072088961447394911944*x^12+658880242926078814230088*x^11-32129939260049378521160*x^10-1438906662016163974836576*x^9+73560746894092823818764*x^8+1861652079638296998685936*x^7-78004462544885657794653*x^6-1304572547052399985818856*x^5+26679001548092873962658*x^4+418429473228178910672168*x^3+11091046220369150484187*x^2-40792580590568706047485*x-5682879764481715958283,-8604247363547255138*x^21+18303053961674440875*x^20+303955550624228828596*x^19-630122130219770167667*x^18-4550181669441963912553*x^17+9094144810693348256597*x^16+37650053638650223359481*x^15-71308701813759372494066*x^14-188663387513357630523831*x^13+329264666097053326696253*x^12+591553185767011561622257*x^11-908635186494483430589463*x^10-1161927434616437858858279*x^9+1459649862349632712499661*x^8+1388811319584441263252321*x^7-1282211905011402247913299*x^6-929389833731375454088026*x^5+549690925938253637391565*x^4+296386644995411668096851*x^3-85219450751579224606685*x^2-31095554273541715370668*x-1035786542456832230203,-2270350939650701274*x^21+76345465912620724*x^20+83563353604398878397*x^19-4237159593376300325*x^18-1311085449502909156045*x^17+68254120895856086741*x^16+11471819001913601171107*x^15-411032826128397140645*x^14-61570171000441369048727*x^13+153565620184546494591*x^12+210361805106391288605283*x^11+8923663207463496972285*x^10-459758812319992139873047*x^9-39378117318979816120407*x^8+625282559441343703826095*x^7+68426413509297713159209*x^6-486583303344506512743227*x^5-53131550738909547112731*x^4+178106324651251121607687*x^3+18638311242170876978617*x^2-18732663149773668506877*x-3383671405842301419164,-7825156555473306546*x^21+25533796913071837363*x^20+255741169223702131455*x^19-866490969734005040679*x^18-3434594204638185631023*x^17+12273716097096014822557*x^16+24269391676254149899541*x^15-93898942518040927837835*x^14-95425026806141714885459*x^13+419546897468405637311440*x^12+199536383059012838024020*x^11-1107655449265648108716379*x^10-173493959012322422137785*x^9+1678546524679218206018586*x^8-43305062768489648100470*x^7-1376879713346648770327099*x^6+167997963398122545561075*x^5+561305169368605476502797*x^4-81648646913281674874651*x^3-102943818646409787010469*x^2+8444499250479876822020*x+8327562611051748782016,10931455625429157702*x^21-13230634241117314485*x^20-385924289703414881126*x^19+443834055483052292669*x^18+5759814562023158845239*x^17-6212218076009916371621*x^16-47331671542875684970083*x^15+46925031631398700347963*x^14+234091761766380717388241*x^13-206746139609309832487135*x^12-717711842638192203792547*x^11+537150926652861717443789*x^10+1362704114998982633359037*x^9-797942023653491193680259*x^8-1565187719309437505005379*x^7+631812439335845119578395*x^6+1025862510438456578788389*x^5-223160895695243302775549*x^4-335654552278510022721443*x^3+12920892742197979481571*x^2+39142149623070243551942*x+5253327807873044886503,2943731825931854302*x^21+5496808121654047833*x^20-121962440744504891019*x^19-183703844734380520213*x^18+2169206922774198138507*x^17+2558271916277500771383*x^16-21587993048128031887173*x^15-19211447364351844641809*x^14+131290577780688816802891*x^13+84162202222316017924627*x^12-500235443964672071204650*x^11-217996094555306955415521*x^10+1177896726255505829092309*x^9+326209989111076790237150*x^8-1632088137527015526505093*x^7-270099602516988828305597*x^6+1211714862194194329366947*x^5+117184424870269575465979*x^4-402854897978225604994245*x^3-30768469479186223418759*x^2+38443415103144391528852*x+5720545457213912474828,6256728856938744203*x^21-3010802406339864018*x^20-222619157206958927333*x^19+103461803031702468079*x^18+3361842398779209248537*x^17-1488026281397393380179*x^16-28086786813663174442227*x^15+11594695567180525767629*x^14+141936203620352976506846*x^13-53041664822420759878631*x^12-446185657270318109721123*x^11+144957995631075467387898*x^10+866548352777405994452189*x^9-232835257384617827711385*x^8-1002360014025271088759979*x^7+211389360081822344379725*x^6+639682210313885954292997*x^5-98149235706398276602587*x^4-192467243650911002130419*x^3+15013970761423617227616*x^2+17475463562162246186543*x+2206365149685562600006,13233991342559615501*x^21-24019708034121351636*x^20-462574197334701684103*x^19+816118044328049490467*x^18+6830057937004556540999*x^17-11576605879865663646531*x^16-55508000494940591029083*x^15+88662469571216254553887*x^14+271725975728617281368525*x^13-395958032003021583895405*x^12-827444476874881455410867*x^11+1039757867152630681461923*x^10+1573640202607580462241703*x^9-1544539090363600737185181*x^8-1838093826808555239872147*x^7+1187325492713359573675977*x^6+1252635574473455769372915*x^5-386826828094826321950123*x^4-455986165610542826756625*x^3+14766613470787987985086*x^2+69407108103040495788255*x+8518459044604314869798,-7441959981534872397*x^21+20621712793760782368*x^20+251469609331584085273*x^19-698378672713713557486*x^18-3543409677653353871588*x^17+9874377462683554275420*x^16+26960155422045049062666*x^15-75411771623915574126296*x^14-120080577921661199230354*x^13+336226920445790935757736*x^12+319255563784357752188118*x^11-884017913893370592877030*x^10-503119202652907997129310*x^9+1324296753592436986517512*x^8+466910782108997417027422*x^7-1045820847855135506921758*x^6-253411833712392284698126*x^5+371789573307452940477374*x^4+80769159252052395871800*x^3-38451162298253772672871*x^2-12738823295334455461448*x-1138575041155093946459,-6827114652811981903*x^21-717745480901170740*x^20+256241963037186834318*x^19+27059982676990612865*x^18-4116815416355220415059*x^17-456489104859438616324*x^16+36974146381213462676091*x^15+4527445541235273864114*x^14-203388201680547335226457*x^13-28753272385844094709409*x^12+706081332364007443744927*x^11+118408236317670681000763*x^10-1537971750577575726535609*x^9-306340034985015607157297*x^8+2024810117032653753277931*x^7+463977107727556621916847*x^6-1492897528754762143815046*x^5-365559396545660381568501*x^4+534867515126633403413678*x^3+127793567017561543141316*x^2-65030167485121331757111*x-15405767985156880093977,-3481657122754353560*x^21-4378988892061149561*x^20+136048240830354056751*x^19+151586915563610713765*x^18-2281500172577490647139*x^17-2196034363192856489347*x^16+21418750466586326206529*x^15+17276371804559485258033*x^14-123097679513509080298435*x^13-80205576802253096188987*x^12+445067218501209518592613*x^11+224321513605195655282061*x^10-1003613432407072010326931*x^9-373291475058003876859859*x^8+1359999910465756122630800*x^7+358396257313748876254552*x^6-1038101705363361667614491*x^5-190105385348707565621413*x^4+398071858130187496613977*x^3+53859273581378792239724*x^2-58247251959509956352733*x-6685562170135896004858,136863947841483295*x^21+5918379974679997437*x^20-19266993951217413015*x^19-198885824976403343233*x^18+561029599560410858571*x^17+2782241147991816718875*x^16-7497533956202892230952*x^15-20951680930732174050133*x^14+55514514135361758995289*x^13+91811179248339583086415*x^12-242237834904359797830349*x^11-237191550975198829473793*x^10+625557711729892153437715*x^9+353789386371050673654759*x^8-921979232298701203500705*x^7-295236383083914554571389*x^6+719631990844242857449187*x^5+133243282183133793741382*x^4-258134072445867313440677*x^3-34183696067383106919686*x^2+32434707397543654945876*x+5876370271915445225222,10220304898722876719*x^21-5855322707199279557*x^20-367718691218708227693*x^19+202120943687055672876*x^18+5626249618612461981276*x^17-2912909405828949602550*x^16-47764297593500718966846*x^15+22648130615378036136274*x^14+246353351601025323471809*x^13-102539601698284451480714*x^12-795429985155471404822006*x^11+272622077482537209236394*x^10+1599851924905015773784310*x^9-410455441794915310316509*x^8-1931415248506671099246906*x^7+323126180253354933748152*x^6+1286581910260840829085710*x^5-110881983173169777000986*x^4-399973367677289544859742*x^3+2456361403145543105141*x^2+39192034483922014843636*x+4457936109522989418655,-7556553607716627257*x^21+16201192238012672513*x^20+267272837040854927286*x^19-569974449055297905820*x^18-3999729247740141264271*x^17+8449431020588140385059*x^16+32988626561372390903643*x^15-68576315506415577842201*x^14-163858684348761304626566*x^13+331676575968891006152191*x^12+503801260237200402393685*x^11-977171362706641156117169*x^10-949922053849753133091697*x^9+1728269390183896652337831*x^8+1043584835015053577930683*x^7-1754165434690311250854774*x^6-575417716889145863022245*x^5+936402379805514852917563*x^4+91022027821093825520479*x^3-218233335900151243081306*x^2+17676386003090538422767*x+12145373448299122694547,-18132654622678478340*x^21+15377244908289378681*x^20+647347065404392618274*x^19-533334560525518442622*x^18-9827155145300845616626*x^17+7751706745164003710466*x^16+82778873085355842789760*x^15-61132307348862500921494*x^14-423780648812188985747622*x^13+283201134754241037926684*x^12+1359695213727398269453848*x^11-780795613112785048328768*x^10-2725241332407558901687198*x^9+1243534977036230264260064*x^8+3299134759497109551894556*x^7-1063448887687768374606278*x^6-2230968085448144669653320*x^5+414673960272249855955922*x^4+720043928553145409040226*x^3-33907170661386413814458*x^2-74554556683558954610747*x-9898060622028472274782,9284701984514750049*x^21-14854383134424738027*x^20-328788721361445784315*x^19+512136791951263570878*x^18+4928015621747646447010*x^17-7395806876131278858608*x^16-40733446162678635482496*x^15+57949452276548729579108*x^14+203018262908637944945420*x^13-266842845177207050808336*x^12-628245579793461267875004*x^11+732144542288127367876052*x^10+1202906451904685475138064*x^9-1164521221176663214786112*x^8-1381202117838379365228556*x^7+1008967932842490390097776*x^6+883597329789238886535192*x^5-429034292432840991997776*x^4-274759696443439490814324*x^3+69100263302514415311893*x^2+28950940863096785323581*x+462697228190950850579,-1044900985801727512*x^21+5851602843488747999*x^20+19613510142991118287*x^19-199853140612624117783*x^18+16595750534096690427*x^17+2857848649982646374287*x^16-3242108874596071603109*x^15-22175103698996321964329*x^14+35021834739294415505995*x^13+101297835982759781084011*x^12-178765975805968447125253*x^11-277423544763291249101145*x^10+496782669899995638392827*x^9+447527849110191726612861*x^8-749807818228063690009101*x^7-405937846112320327609243*x^6+571820624968037915944041*x^5+188269524256427570207903*x^4-190438215960277120091369*x^3-42168827052079694823799*x^2+20079176609747894847266*x+3649448556812701088688,-792882883054737663*x^21-5580987315964976016*x^20+36607197878886394574*x^19+185843479623330607220*x^18-702967403248592792288*x^17-2559718037109253144196*x^16+7331763826721324172592*x^15+18754857326722464294980*x^14-45249335534530790564776*x^13-78014815596907722577348*x^12+167995012180834039221527*x^11+180403975176849856470171*x^10-362673027409569240269075*x^9-202912580635504009722469*x^8+411671323092455759155786*x^7+52835590803087262688536*x^6-185859327882065696376724*x^5+73175458320994896941524*x^4-14555844823120952387760*x^3-43571905907423792099523*x^2+19618457500007417457512*x+3975216038702539757928,487234101335738837*x^21-1949717090314067750*x^20-18006940920575853632*x^19+61132115334453109035*x^18+279141553708805182821*x^17-777871441226876210497*x^16-2359280115595922824491*x^15+5070398192734331398523*x^14+11850069907058254754119*x^13-17122908867105646969077*x^12-36219521328879376049193*x^11+22895609148255926432209*x^10+66229041201225907122881*x^9+21080059349209438790595*x^8-67394187273933598874529*x^7-94800975430171993242393*x^6+31474856615176643694235*x^5+86228609176172026985505*x^4-7110667730110602167611*x^3-23289508646734785601894*x^2+2310037128437036349243*x+1716129755585630221023,-10293173175036855265*x^21+13511241241291382719*x^20+368843670723886723535*x^19-468696214076717046760*x^18-5606564027946875552732*x^17+6822138988074528690624*x^16+47139715274709515172560*x^15-54016662961248705817602*x^14-239990472303081208335102*x^13+252332880921529518802666*x^12+762959305204562709106596*x^11-706562552749752490895054*x^10-1512458805943694473352004*x^9+1156186793934601162969576*x^8+1816851985067881287094724*x^7-1033846821939679693375692*x^6-1233419513130575096204006*x^5+433592838806657804023594*x^4+408614433568228540633180*x^3-49673060396360643213641*x^2-45949766025952521691581*x-6252535172395482105539,-8975990341293788392*x^21+17415207791731864279*x^20+305952081203300002997*x^19-594809331244154263634*x^18-4364723012886647541690*x^17+8476063660900031521460*x^16+33802934397175705801392*x^15-65162830148766664671640*x^14-154413178997448776930832*x^13+291883323432884332543532*x^12+425082037055577881189041*x^11-768473078766862741192269*x^10-698731214135807267303644*x^9+1146153614111770217098306*x^8+668612806953942937405884*x^7-891276796911210283839268*x^6-352744009243527449168100*x^5+303791937588804150452604*x^4+94698359798838416813692*x^3-26362517650466002361944*x^2-10491182254902365060301*x-970792846169483587063,-12178871465075258674*x^21+20744352151173293554*x^20+415783816167936271639*x^19-703679097896739124025*x^18-5949167215916277704135*x^17+9959705006462949751485*x^16+46302178120825906679477*x^15-76072366939096476497895*x^14-213178586027755955498147*x^13+338871265601032533825689*x^12+594021230891565058466473*x^11-890175933968343668076867*x^10-994452718687415812560019*x^9+1339323341153007135399597*x^8+978118006428561950881805*x^7-1090827640069680719478595*x^6-541806566332172470032639*x^5+443946301788472467932753*x^4+159735266664557802833701*x^3-79646621128323847633945*x^2-19632755601684295953313*x+2902484750759495912248,-117382714875795854*x^21-8791982065247176740*x^20+14032088777591490871*x^19+292820406205167975069*x^18-396540968041446930349*x^17-4068935637264289045641*x^16+5220696834577672360415*x^15+30512890385306420542849*x^14-38116914578329548281999*x^13-133332428872567861371937*x^12+163031673795132480511947*x^11+341889453501752467683171*x^10-407161140248890701292341*x^9-492218431392188225517047*x^8+565734818420444666037227*x^7+354769994861046573119243*x^6-396788137128587656901689*x^5-88150440279548096658729*x^4+113566079845455236285785*x^3-11060532511635302254805*x^2-7682958258953991489299*x+3338703175614844629564,-3458924561172814148*x^21-5482665334523082804*x^20+148012803977850096107*x^19+179978918099256201410*x^18-2700850155828914784040*x^17-2445241183800522476968*x^16+27399855822609197150384*x^15+17736964499585394904778*x^14-168805827946220184981276*x^13-73981222389083639306296*x^12+647459696772903483414528*x^11+178980108859972745908834*x^10-1524582120017288495370138*x^9-246129723542201738368508*x^8+2097626982436654993442316*x^7+192603363284544025702256*x^6-1538303105830003825292100*x^5-92480441831559680617274*x^4+510652055320203628524838*x^3+39440852309697862656674*x^2-52752949614233395506682*x-9756957250849321120077,1406137058882951179*x^21+14207977589291111272*x^20-65530354560645727389*x^19-478875053303667760731*x^18+1275024101100180098544*x^17+6731537638920725796902*x^16-13547761608224571333128*x^15-51044731234563267783484*x^14+85939024003475964971644*x^13+225505154443509524129244*x^12-333401950363386478418799*x^11-585226186874552747193891*x^10+779353221772696779098248*x^9+858814315931287777236130*x^8-1048280770750452134810468*x^7-656448300947447585834472*x^6+754450432530611599154316*x^5+228470290658433643820704*x^4-251539910883701251413247*x^3-33110473918656665038536*x^2+28456421037139261594144*x+4657533345294389556722,-429975683843645064*x^21-8444320859256863889*x^20+5941464787953066822*x^19+306423462788868820469*x^18+80558252609685918836*x^17-4740323964016300915292*x^16-2385596910130236031461*x^15+40739899951239417844328*x^14+22356385558406852288655*x^13-212301132341926790735740*x^12-107298720724750928022037*x^11+686741900834321606771760*x^10+281031889031377483251142*x^9-1356946613452547716934347*x^8-377277516417730049219428*x^7+1555515595786620759121873*x^6+198239542679391946786996*x^5-942284309646731560502605*x^4+14499573393967210497928*x^3+245104093458551459023336*x^2-24769508909648719159076*x-13072532454663774943126,9153530929333919652*x^21-9384732610131306210*x^20-320534318433729829479*x^19+320364990379123572189*x^18+4734451684502857943633*x^17-4577366995879579070859*x^16-38380135388625293895933*x^15+35474415313122538227845*x^14+186353353136808324196695*x^13-161786503097273487138023*x^12-556779691689691018934901*x^11+442266351558488314708587*x^10+1018948845456999673580665*x^9-712517608827567183567289*x^8-1112219628700132914074951*x^7+645591604409893679317523*x^6+683269829500370388194153*x^5-290501482041991755615135*x^4-206255668593596797836245*x^3+44290944800075713539473*x^2+21994708315349130460939*x+989500070932477709924,4250889133528893738*x^21+1823679009745425572*x^20-171598308788927833912*x^19-50605316258580484569*x^18+2965393059671036477538*x^17+500137257334623012450*x^16-28582521893926068859162*x^15-1516034937289903523130*x^14+167705903398063268967366*x^13-8137604235165611515494*x^12-613268971151508977784434*x^11+80835468682451663019030*x^10+1374913007558462819549678*x^9-263955799554065467144518*x^8-1789091158045006517091362*x^7+402915734777188958102322*x^6+1215244300330290749369390*x^5-283611900552500468288294*x^4-347622623498635558657598*x^3+70568479163289281393672*x^2+22321736855905294468219*x-936786970607278884626,6986059691789927767*x^21-13859825511909191372*x^20-229765024704550232208*x^19+472309775747273673778*x^18+3116685421060173668574*x^17-6706666677136433382204*x^16-22379516000925921001014*x^15+51281648866884908345270*x^14+90404814169571660897190*x^13-227855516747624034655010*x^12-198978109957550408245942*x^11+592903815095119118444374*x^10+199426408139089960875594*x^9-870297534394190366837762*x^8-9757479772872171759976*x^7+664569418437591205628206*x^6-120007258209608116566426*x^5-223586728690026968154074*x^4+63308410827263532712720*x^3+23776565286187686715305*x^2-8319547835375165212002*x-1699987825299664711316,15401130593498946605*x^21-23934081156603909323*x^20-543813496696199767095*x^19+823566601453949921755*x^18+8128333681052409560453*x^17-11876493193248966447703*x^16-67039138596883178441063*x^15+93022319410827981188943*x^14+333926506374116088775037*x^13-429027681436015904798853*x^12-1036530726839791744572579*x^11+1183532538903655858679083*x^10+2006015570641915463675775*x^9-1905887015203935550887381*x^8-2360002024177569551985361*x^7+1685873168663419535613143*x^6+1574913428018334294803073*x^5-720160531400679828205923*x^4-514036645255873842588687*x^3+99364232191852977734206*x^2+57912229228674241014114*x+4396830387409748289580,-6120077562758450670*x^21+10001607397235114305*x^20+212178425169260494643*x^19-350893531415487732707*x^18-3095360032351830067594*x^17+5185688665298857441558*x^16+24682623554706762026692*x^15-41938540437560838016876*x^14-117018916942012300048172*x^13+202067686363369947746108*x^12+336486592587986112712528*x^11-593509040083789985293036*x^10-574745139947549432239472*x^9+1050347647507782684195484*x^8+544811904604787407278584*x^7-1076620651416392048411252*x^6-237756910664193131398451*x^5+587837551892751930577688*x^4+18415607192760855242128*x^3-140877528417158264874270*x^2+6968350973903263428201*x+7941093140282350268215,21175712054195447725*x^21-41539793464138686542*x^20-730448030331488176648*x^19+1434820928454933402538*x^18+10576834289728511923600*x^17-20813511222110925103884*x^16-83449002699847077706568*x^15+164573341005419502239892*x^14+389969881170336300507268*x^13-771146239820075156252964*x^12-1101474603341600676791780*x^11+2186912059810636612584846*x^10+1848399452972507291397156*x^9-3703371205046450619440460*x^8-1744912307702688889748046*x^7+3600721979216830733352212*x^6+798518525437799631107442*x^5-1851159214234777451274890*x^4-92051868192502779070422*x^3+409161894774642673789013*x^2-26402259894487196888614*x-17903035753303415317948,3107059721522398756*x^21-11923133988136733151*x^20-90513845634847033047*x^19+404523808124711161048*x^18+992864169415065303296*x^17-5715664169784496506666*x^16-4443959312301634960746*x^15+43473349162349864396070*x^14-1238599221937803294902*x^13-192193344369385613420878*x^12+91982050081249065311481*x^11+498581136628154661508553*x^10-368924384312253851717902*x^9-734653524823873260420140*x^8+644978439012519900932250*x^7+574636582189093347658914*x^6-528620970250053256986626*x^5-208807632182062260374250*x^4+179850059000620829597958*x^3+29885536257951233150254*x^2-16086997244908714105209*x-3006748179205534388097,5930006651613871098*x^21+3478374767595618731*x^20-236792673820001441918*x^19-115656302042277699689*x^18+4063381559094027188989*x^17+1601807094739075249523*x^16-39097770889819406288269*x^15-12015052014885072348741*x^14+230720175249252464597636*x^13+53484278090110666440023*x^12-857853552882067437967991*x^11-147930303747591451885373*x^10+1988505871369932353567555*x^9+266448029640385439388971*x^8-2749198096151905418493577*x^7-327738296007651987913816*x^6+2083573037389058425877367*x^5+258927954634842294447223*x^4-745527629653481344209717*x^3-112293282177120164841839*x^2+90023199915943278816834*x+17554982752649904184633,11850925174963248625*x^21-13811763352342210321*x^20-411271429492076658002*x^19+476008461423618714615*x^18+6022158175141039991920*x^17-6875294205542442675086*x^16-48418335415610098852888*x^15+53932939470336080757084*x^14+233280839071994669533741*x^13-249221058100201018663101*x^12-691844485574378729637276*x^11+690277076174488156252226*x^10+1256151469783764371083392*x^9-1123767363235090454315060*x^8-1356623165614986597805905*x^7+1022889503855590219517636*x^6+821835941052756794111476*x^5-465231018333909688900525*x^4-253463471699773697103428*x^3+74546457440509914339186*x^2+31919055080624031246631*x+2293504782135359304798,5981900540253147998*x^21-23062661996611516265*x^20-179577761227216592116*x^19+779064577014892223797*x^18+2089284009044756890599*x^17-10973262429912600162915*x^16-11015695836635740460795*x^15+83350735534422424067281*x^14+15787236960056546515389*x^13-368969173824184579695023*x^12+100025244339113696555493*x^11+962302869651537585512761*x^10-522474749239684143128907*x^9-1435248659840502450738251*x^8+991945389840293942637293*x^7+1152972345490570279181185*x^6-856010270168685158327083*x^5-454218770061435261609991*x^4+311154002212157223016085*x^3+85721146907062019995955*x^2-36116716985510024856528*x-8611905879615663092876,-10450714740360160237*x^21+14382335542012159229*x^20+357840729125292068623*x^19-479619094980833754152*x^18-5135187316329353177832*x^17+6645535867406613576078*x^16+40064265393089375583008*x^15-49368126626952714565672*x^14-184580404980524385467936*x^13+211611519306434447363158*x^12+512176222998187535612758*x^11-524782472075916536565046*x^10-843610419760485137906554*x^9+718006373974934242423332*x^8+795253763190604397689068*x^7-488979961454265902537560*x^6-403603184610512531500878*x^5+128275884156128724276558*x^4+101583218867191552598940*x^3-1884291615775106398567*x^2-9603020251017796544005*x-1222495055203290320551,12332463694622304020*x^21-19582967757777993308*x^20-437044484093234815042*x^19+670204799576184621332*x^18+6551423889465878319448*x^17-9615444043255820341712*x^16-54105045333878543989020*x^15+74969541390015966517668*x^14+268998996999579297081856*x^13-344550535322514070306437*x^12-828161417398007776846452*x^11+949185990887410099653972*x^10+1570151213150801278972484*x^9-1534453185588921120778788*x^8-1768917223818029207991837*x^7+1383280875059196612725684*x^6+1085953667345549523378842*x^5-631941348001788151600820*x^4-302233527782585005706724*x^3+112650804419046693377936*x^2+22798556361369982940708*x-74769474126583989594,-11685124696885492394*x^21+17155827988176503142*x^20+408466632509492606487*x^19-584618724211082020847*x^18-6035491441876910000065*x^17+8313320388436738055262*x^16+49111886001686112704532*x^15-63771884070717938108216*x^14-240669370537120794479800*x^13+284833264958711140002876*x^12+731830926184191906428312*x^11-746063291650322726524040*x^10-1378116154157290365311564*x^9+1099445244200038236254216*x^8+1558945691123638960925548*x^7-826507470419392120156631*x^6-976382355710904218140815*x^5+248475782137515118820418*x^4+286185821921089867665072*x^3+2534833028965567498566*x^2-25235406735052789003854*x-7895147335531992556357,-2558872492801674572*x^21+978897329574315416*x^20+108978792292242836604*x^19-38650714467353316731*x^18-1984258820152639142928*x^17+642342094926416932816*x^16+20164149403503393066420*x^15-5811531962763535017620*x^14-125164951592374344866756*x^13+30827524206323829419495*x^12+487884378740699239434788*x^11-95672724738394639954756*x^10-1182089818032871254798196*x^9+161526904581695470517744*x^8+1702113031561606126758441*x^7-119472832428221427414896*x^6-1334692451551810763070394*x^5+6601435803740004920984*x^4+489586956379064313835476*x^3+31899056925701160675700*x^2-58228370826869796442879*x-9030778204487929465620,-12168028533429610713*x^21+13008590292472015186*x^20+435628734216306933318*x^19-448161696783584004756*x^18-6633956052859147204500*x^17+6465502336170782011022*x^16+56088287263430322303104*x^15-50571388564960259948460*x^14-288490451688730414542178*x^13+232104707448809184268178*x^12+931527459015620579764300*x^11-632887068428036252731014*x^10-1883494342563615883170684*x^9+994388036017749189586512*x^8+2305184827393045916329476*x^7-838071858070690063846834*x^6-1574660109408723159235234*x^5+326933684508557547802672*x^4+512881106969997176516818*x^3-30376008679974650217163*x^2-54603754226922120240858*x-6250884219968571863482,605116958722892373*x^21+5436755016159308389*x^20-44511708436962671973*x^19-176430691858511986909*x^18+1103170265391802710515*x^17+2356696045734232127550*x^16-13707855274108121670201*x^15-16642136878373919958749*x^14+97523318148236845977803*x^13+66313886225976740891499*x^12-415434608921108594478589*x^11-147316792451112005288461*x^10+1055543110715385600302923*x^9+169720612390499249532411*x^8-1531125043234262350595157*x^7-89200513085114129692153*x^6+1162812763936892739363555*x^5+17364823834137679434035*x^4-397556351661135527644378*x^3-11339326192875932421464*x^2+44089965092606748726694*x+5476028153291647198504,-5371855782257699524*x^21+3234397001357731113*x^20+188461305118003935574*x^19-105957374981552964024*x^18-2800630369948555715048*x^17+1438932155253081512462*x^16+22972279288491544121510*x^15-10431406043010702958584*x^14-113716293699194509484038*x^13+43301320740914415332810*x^12+349705184766812611736932*x^11-102586371480851636264712*x^10-665910113653729757832766*x^9+130535694286034021272388*x^8+763941928507064808045000*x^7-76718912582131998142272*x^6-498476475306961281179326*x^5+8185243619910695576368*x^4+165014855825349065931886*x^3+8862830863876498878268*x^2-21041586587040114355839*x-1823432822120858971260,422638844538426068*x^21-12051370614422192748*x^20+9076048958367726895*x^19+405467302443276494224*x^18-585212123440093591326*x^17-5670711627174520157064*x^16+9490455540476392080728*x^15+42569644890761880796966*x^14-76232540808199832193732*x^13-184806950425598304805196*x^12+344690358914441177765144*x^11+466135707067986079813888*x^10-895909152622753516856094*x^9-653860272773888736699766*x^8+1292672733456091970754154*x^7+464778659614230582689014*x^6-954573388777345351616926*x^5-140778659189296406852406*x^4+309415764758656168855868*x^3+24296596498827495292886*x^2-32278730593631752912304*x-5688496890330176517409,10148905185318920368*x^21-1679401931438496685*x^20-383411703397317051905*x^19+67410569358779642487*x^18+6206706125487858235445*x^17-1139676268460818805565*x^16-56192784654469236188309*x^15+10506491386276215714589*x^14+311336141575456080140469*x^13-57178972720960978000641*x^12-1084934442950465527249245*x^11+185721930574401449276701*x^10+2352685335792385457109525*x^9-346232144641271304451031*x^8-3031716769772744235641761*x^7+335453686618064989489123*x^6+2118157784999869262998901*x^5-135539770170721458231965*x^4-676138323162114156134669*x^3-2968036637182460767221*x^2+65423778723664724559424*x+8065666516873251464024,-9445014542868393756*x^21+16032778802439443955*x^20+329713746904017253110*x^19-545952983340841175322*x^18-4855560270321562912674*x^17+7760628314633822878373*x^16+39270124483612560988779*x^15-59548537383900191798799*x^14-190574256157358296759727*x^13+266319411440151991645901*x^12+571400580090030571006309*x^11-699627471584472051632663*x^10-1056804613113992130979163*x^9+1036725563064316408661753*x^8+1172269542138334969390585*x^7-787176740745605024400855*x^6-717259318736962129920675*x^5+244012762834364722707889*x^4+195801158492395265696605*x^3-8409006712675410357552*x^2-11452569146759704389001*x-3207254541133270165437,-7454739179262083330*x^21+14867154832253898818*x^20+261269704915191376749*x^19-505466976417150455211*x^18-3865942776620106504613*x^17+7182285723652017907621*x^16+31439952154220620386111*x^15-55197690359552157269553*x^14-153472693568521882186599*x^13+248095362325316948851693*x^12+462126098062558297326699*x^11-659297499924265515241383*x^10-851742037063812010823009*x^9+1003067185970774825732423*x^8+919129319460068053331891*x^7-816938241343975960779421*x^6-514438855665707151672285*x^5+324387667644379911926477*x^4+111632122636254167340859*x^3-55635881802387204808075*x^2+56195427490414236031*x+3747540545996972721476,-7629489134626112661*x^21+17750471877960276648*x^20+249239509707130403299*x^19-589147464058492063065*x^18-3351908516534192603447*x^17+8098450353279318718633*x^16+23817675755737005787649*x^15-59339057898195112109951*x^14-95244353058434070241517*x^13+247934668946716983785873*x^12+210583878828575838063689*x^11-583058576513268149048019*x^10-237321830636607714570783*x^9+698999211343618930046127*x^8+132504439160054293053859*x^7-295093449390049030632059*x^6-92196629179335728405817*x^5-102758420749778928811235*x^4+98039588729227498240403*x^3+91663269707134550043884*x^2-31900903364214825807455*x-11350340212851109729968,-14048133163037655168*x^21+20566075629909029751*x^20+486089362754741274914*x^19-695336425461390319766*x^18-7079537356723326114996*x^17+9809544553807977262868*x^16+56422362306291764382176*x^15-74670487540365041989200*x^14-268248317511368877351304*x^13+331253824748988765781208*x^12+780735535319365891518004*x^11-864293375468605474538160*x^10-1384447942205611512873472*x^9+1279881168544726963450564*x^8+1460775312124083746732744*x^7-993426931614927257816136*x^6-872806294793433604938008*x^5+341648453697395850867308*x^4+266313226111186916723468*x^3-29055577267372024603892*x^2-29622796024568006099193*x-3119375226397084448750,3427811264108064974*x^21+2569222178971294344*x^20-141936561252084946148*x^19-73754308736610142356*x^18+2518179961464480123732*x^17+803662386657519571489*x^16-24953583060032600930384*x^15-3729798187572229086993*x^14+150869175689756993097076*x^13+1851095035332074958172*x^12-570749982340133128863543*x^11+51606763808159555777316*x^10+1333558265573969024356950*x^9-208493559120963063446427*x^8-1835630875442645871060704*x^7+338012156686022817975756*x^6+1365459518044389012486291*x^5-237460363782715662408996*x^4-474745619001163871386317*x^3+43101477979628048574094*x^2+57137778936757226000166*x+9264976450169163803476,1172003665802388553*x^21-7418925083470662585*x^20-30683843427979758874*x^19+248658434833392465914*x^18+257719353545566851868*x^17-3459723238127872145240*x^16-36222744917319031276*x^15+25771694125488702396272*x^14-12820445222060661923760*x^13-110426860428938076481712*x^12+88407794744149014215420*x^11+271463721721272802666080*x^10-274467823861854540665672*x^9-358329248016803267502208*x^8+432403599398025615527576*x^7+210623555443175275027292*x^6-333428962885713624938379*x^5-14401703541519234257692*x^4+105868369197624667834368*x^3-20912547047083893699639*x^2-5830000180385397298782*x+1043322004084117330364,6144444462528732804*x^21-24151531889915986692*x^20-173671996541259840836*x^19+816867217936238793079*x^18+1780462913748520319687*x^17-11526603310624554537607*x^16-6134920503163905402449*x^15+87828427340886154107127*x^14-23481465601723042858199*x^13-391244256874694136895259*x^12+280429161021284448552187*x^11+1034764515093527992037743*x^10-1004155748093437118257541*x^9-1594780455804288134825311*x^8+1709336049635635098684815*x^7+1382441461452058339424577*x^6-1392996706966663842653359*x^5-636993580805630554116433*x^4+477678026110137840980917*x^3+151441765731929311665085*x^2-51525897625700647533381*x-16334926023011747604763,5438000747393128559*x^21+9166360238262598745*x^20-212040759438529098221*x^19-312868763094287555737*x^18+3546970212071089705423*x^17+4474349197976681097336*x^16-33177762031052606426990*x^15-34798773131989245559838*x^14+189476343247629616641897*x^13+159992311908981228200085*x^12-676923782185808974164326*x^11-444038018830836039437092*x^10+1491356472785993284256095*x^9+734409187899849358147431*x^8-1930743143869401832589398*x^7-698797988148739337548304*x^6+1347968751341064092974290*x^5+358409978106735404773751*x^4-434045455773139031778497*x^3-90686596897584138051977*x^2+44052408230402034740823*x+8255397665418298947827,7239232411863408324*x^21-22355914833318037324*x^20-237430444998795084752*x^19+765358906506857184375*x^18+3206578954131455320469*x^17-10972692639648441782679*x^16-22857161205038632418989*x^15+85385242875358980446247*x^14+91103474493847080194783*x^13-391121984562507788078549*x^12-194516130535404902515513*x^11+1072557273452985851415317*x^10+173541667159838499089855*x^9-1725597436135094988533955*x^8+54814829186494192523861*x^7+1554921556898937199688229*x^6-216133402955355026226585*x^5-727525947292105837044311*x^4+137968462643317632933435*x^3+157576052640409527839835*x^2-27846426517993108404597*x-11276235880583797881425,-4536433752465084653*x^21+11401317767072993663*x^20+152100723275070941292*x^19-388628608277673981174*x^18-2120154340836713715430*x^17+5550531985114828878614*x^16+15843045332929239811942*x^15-43052733567405912849298*x^14-68093515165467925890012*x^13+196675200678478963708574*x^12+166806058215756167785986*x^11-538074565068570938382702*x^10-210909173186369697063652*x^9+863764559697038464967040*x^8+86172252255283797131518*x^7-776186400682886813617700*x^6+68957644130671422552368*x^5+360246748725386819405752*x^4-66033624266086830089278*x^3-73309381814175089371581*x^2+10045533142316139272903*x+4096936918672421347610,7039101963406161404*x^21-13157445661036262496*x^20-236526158699391846087*x^19+442259862039588160670*x^18+3303383919011084027264*x^17-6178857098134034827665*x^16-24763358756269189748126*x^15+46312249374638905670370*x^14+107400315214830575958646*x^13-200491197879746706238326*x^12-271374543779379089481045*x^11+502866213956586256649106*x^10+386835134970678355526780*x^9-696529648758567708260115*x^8-301328351722407088005102*x^7+477102435608679867854890*x^6+144790279432083834726174*x^5-116452070565712328705350*x^4-66816466937967583319343*x^3-9175221946637471765950*x^2+18694062278298160279484*x+4281247408723886868431,7255014392699338697*x^21-2393045012751452217*x^20-265409428158006142740*x^19+82821305978062049349*x^18+4148996184488302071685*x^17-1197691408933571585367*x^16-36187527084864905637541*x^15+9335295702453506106175*x^14+192893815847670857054497*x^13-42173813139267871141901*x^12-647246461499604831033801*x^11+110272922031413023518429*x^10+1358229275423850430986235*x^9-155972824404459864581523*x^8-1714299986513406776817729*x^7+96794172954162388650537*x^6+1200930608853252053994385*x^5-365664112722658432067*x^4-402787612635041258190523*x^3-24854359122504685469214*x^2+45257935544068858087282*x+6943560639845564492175,1404869403456822173*x^21-1267519577310370238*x^20-52160661713740901259*x^19+43296134535631289265*x^18+835271796728711911727*x^17-614437599185219337965*x^16-7555471624685175320577*x^15+4651129077417661291412*x^14+42451909070389704196559*x^13-19916746948038659653093*x^12-153373107140830340810485*x^11+46046235970299931625811*x^10+356286017012829528764739*x^9-42988307262776159918689*x^8-516427191401028595361929*x^7-24070480796430669516385*x^6+436947959608473663611680*x^5+74330406597983976253987*x^4-190066542909759900572463*x^3-45210677254289343592204*x^2+30366980558383187877665*x+7895855403229237664710,10795825193503527694*x^21-5300033044107633742*x^20-392055339097761940858*x^19+181616789196418946618*x^18+6073054918603083351492*x^17-2582686075027361463286*x^16-52402825111158602972750*x^15+19601866774441460704801*x^14+276123882987270395495082*x^13-84821915191589369298952*x^12-917101399063581561679638*x^11+205501811826492389687738*x^10+1915724443664607252565378*x^9-246036481245413434977258*x^8-2438604594486658643179242*x^7+74539590734058294267990*x^6+1764057786268519774577382*x^5+98916306555132697479062*x^4-636407238535492059948826*x^3-80460046442306662917608*x^2+84167104332944614316364*x+15125061636662177585077,-1862991459912978111*x^21+15209317637882665427*x^20+34948134603192557804*x^19-509842288405569122452*x^18+52491175863548423936*x^17+7085361212073366283950*x^16-6371865232274610538962*x^15-52600499578490995864706*x^14+68475381898696521802488*x^13+223794120521052649262290*x^12-349053013158464824673712*x^11-542970852234215776755444*x^10+962483814220201110201398*x^9+700990637777096852954480*x^8-1424485241953151938590902*x^7-401805671304421299653400*x^6+1044222271311282229372156*x^5+39683633631388883435826*x^4-306961423953369426890526*x^3+22768241131489921261093*x^2+15902902614463198377057*x-1853078488738290545264,2674567323297104129*x^21-2364527750141653841*x^20-102444782025786729493*x^19+81689772876449357189*x^18+1676514201905165660174*x^17-1189974268144788970198*x^16-15298200614961151246792*x^15+9487131042501602763636*x^14+85205079415003307343512*x^13-44945388803737406435660*x^12-298018235868399123460096*x^11+128652288236877695013368*x^10+648865676866108478819468*x^9-217184097447576846060680*x^8-841937677707261025153096*x^7+204045144935844146528764*x^6+595717691051009430054200*x^5-96740396942655218019008*x^4-195801936491188789134095*x^3+14703829662380717241393*x^2+20666903321475136070731*x+2195607273212961284457,1440406163473997696*x^21+2456988676669350169*x^20-44649642477858805249*x^19-92176353706870082237*x^18+538338608511093761565*x^17+1468349969852643880455*x^16-2953724764709249819651*x^15-12913386232566477553005*x^14+4375209052912353239591*x^13+68189114438714571842999*x^12+30444032812632932475057*x^11-220184120045303296232257*x^10-169056031082978316109143*x^9+425103385883374148863577*x^8+343534573085084369389413*x^7-465400092748939207324563*x^6-308685211413189503186745*x^5+270279840662961448346059*x^4+112210769825992936703975*x^3-66628879255253866819691*x^2-11246515853624534986816*x+1802791038425841697362,1459711313466929951*x^21-3772486470737199544*x^20-48627978646287517958*x^19+128708204131434736073*x^18+683277974171320632765*x^17-1823133574773761017423*x^16-5295213450413590847363*x^15+13801918327653508425017*x^14+24966668073238309215665*x^13-59706426140421100030749*x^12-75129875357590530214339*x^11+145070445222325614497853*x^10+148256169517624345274809*x^9-175370944931617751388187*x^8-191405301260453004526629*x^7+59102062769468274376591*x^6+150759080247288032579067*x^5+51251226586811539636861*x^4-66961758115393129079393*x^3-32401408230712123123074*x^2+13835197038525498352829*x+1198725919887275522037,-16798390908847349873*x^21+26764940093489516117*x^20+588161466169048091676*x^19-921679041478415587644*x^18-8700991698727219010274*x^17+13297579028180579500970*x^16+70836892238523154880250*x^15-104153460985004713102422*x^14-346928975817871363800217*x^13+480045778974957528837114*x^12+1052560177954779734802800*x^11-1322281029625147938154286*x^10-1972654519020981157623594*x^9+2125217650022933671283046*x^8+2213168567517953129239422*x^7-1882726202375151446439695*x^6-1366708437659826841805998*x^5+825350629154894406157006*x^4+386891030864717927176890*x^3-135664224358136212177303*x^2-30866342394864026079117*x+303134269644362165760,4733258706449809116*x^21-14992436682295897776*x^20-137267066826492079767*x^19+493568164200872823925*x^18+1482537060765045607365*x^17-6735433333468389281530*x^16-6183477905956748447847*x^15+49127750634983703292148*x^14-7943200629482654983920*x^13-205880989566562580832732*x^12+175932826808038151634093*x^11+496211804398411385257425*x^10-683759814443122366574384*x^9-654458739579136967184982*x^8+1206863966426133660716204*x^7+423535418482359510625425*x^6-999426356662498706875144*x^5-95352502253165104915039*x^4+339278819960785660314825*x^3+1168915244264319149758*x^2-31609377359457248326360*x-3377351617674822275983,14398751531917551575*x^21-9241362901866104855*x^20-526363348117580605124*x^19+328458574188683562182*x^18+8207078742280785854092*x^17-4930255439273655714344*x^16-71226806487523461872376*x^15+40606639715531684677144*x^14+376645350847987789112372*x^13-199781094973582113854076*x^12-1248979173988266055537156*x^11+600317488201972203106276*x^10+2576846213402692965074320*x^9-1085717403099812372528188*x^8-3170504044410659362359848*x^7+1127149727318181934471300*x^6+2122935786948441374730244*x^5-606106352738228821146448*x^4-641545042241328246629412*x^3+122556468012133988253555*x^2+51593288928342409870201*x+1796506869285469599066,-6834894689465850655*x^21+20575563362158732127*x^20+215636344498368309538*x^19-697030179335496665538*x^18-2738342626774566155352*x^17+9824540710074167195248*x^16+17524531313609311034424*x^15-74412165970325705505200*x^14-55695334960659310757124*x^13+326440506847563427208220*x^12+54434399029523689372056*x^11-833933367906682731226436*x^10+146120706051411925421328*x^9+1188713531173527268337684*x^8-431953542636624369952492*x^7-861034218432935568867704*x^6+376445978172277285260088*x^5+257445060380351613436873*x^4-98364132490017971625751*x^3-18224140731541065907236*x^2-1693317639135354706489*x-21094088418866608134,6193052764459647790*x^21-8350632379140111344*x^20-218245701167390862479*x^19+286653746192708124983*x^18+3253589228951707837601*x^17-4119627644314874948269*x^16-26720249125807589056701*x^15+32098168983859405940909*x^14+132003396495619737967075*x^13-146801359577382240912063*x^12-402596310961430033466813*x^11+399394366720218514504257*x^10+749016403062845630347531*x^9-628765863332615665211571*x^8-804609192509240910812547*x^7+539453924686137484162031*x^6+428429395533550507576915*x^5-232344712522156042750787*x^4-63759071322778986883039*x^3+48936360063374993625261*x^2-12922088087498430308775*x-5256482056097526191296,3809691875609100741*x^21-1245152998225218303*x^20-136171131524092310370*x^19+48462659884911877271*x^18+2065380009695892746805*x^17-781617706056752860249*x^16-17328210608914293743480*x^15+6776525091542698609399*x^14+87922771626726155812579*x^13-34302985405541796496801*x^12-277434736524453564001229*x^11+103314572265298126047763*x^10+540362575455581268853275*x^9-181713109477030777737357*x^8-624568094907785956545761*x^7+177092320622961947602226*x^6+393043359844069963163411*x^5-83964360222008639454179*x^4-113027742339728552738681*x^3+11376969077260164801984*x^2+10366684523125742195704*x+1185084376154940147315,-6976757572030972111*x^21+3931733529975201100*x^20+257412244283015659479*x^19-135501871555555027190*x^18-4051947763025461826805*x^17+1962825019644865596219*x^16+35508719174571843752335*x^15-15487174990895917654737*x^14-189643312433394548709805*x^13+72120546438196318607303*x^12+635532394532252136301055*x^11-200897178208155767630374*x^10-1327883946374970644537774*x^9+324438069971359241540515*x^8+1665808733866229741706721*x^7-280638491715194613002117*x^6-1159369184889769693786729*x^5+109948804885418470457099*x^4+379874691284873269242099*x^3-9757977844526867348080*x^2-35331299895651654963066*x-1489981565981918390352,291471618665526344*x^21+5130640313615762920*x^20-10357607607659158285*x^19-172199185371542778080*x^18+174979151802851116926*x^17+2407028874677136054494*x^16-1807391539921770762060*x^15-18117658913880200972438*x^14+11918617136457760438546*x^13+79214967389433949514164*x^12-48849293187950669019006*x^11-202170087295629540936118*x^10+116633614366786906127908*x^9+286540501334076375311348*x^8-143374579645027536254976*x^7-196534492907364893602348*x^6+65076714820931841159906*x^5+35246427300295456735352*x^4+13277083660066883672804*x^3+15637302687621850510192*x^2-12597091028681334412878*x-3630550765778550259917,3998694159153825242*x^21+8227925139212095564*x^20-175451881745620762311*x^19-265507759117961647123*x^18+3268662001034579105833*x^17+3501518644222701158535*x^16-33714498533692191173041*x^15-24078453620086835678089*x^14+210253731819028262962689*x^13+90544703609883715051825*x^12-812178172010670803852947*x^11-173414942125557095392805*x^10+1913748302021028031154243*x^9+112656069524546515718427*x^8-2611447176088719379299655*x^7+95989891971531506543357*x^6+1871779973077938186365319*x^5-154519823963809601087573*x^4-584157806878881604430613*x^3+41856842125276350566327*x^2+49277251071894797226085*x+1458594382894988297912,2128697276780289279*x^21-8225828980290748957*x^20-71048886130758840143*x^19+280239586560725223890*x^18+986506357762653766472*x^17-3983209487588750631780*x^16-7386293661243880673568*x^15+30550360281289331374122*x^14+32483644367119097409968*x^13-136568501695452851249174*x^12-86886856134971007374592*x^11+358902055478376885688632*x^10+146067736505940129442132*x^9-534053745903584839842498*x^8-162493664028834380205240*x^7+414181509960662802826708*x^6+115643481359110659783536*x^5-143094412223897438835956*x^4-44899837295689861443142*x^3+13404542296954155457553*x^2+5952642952898826727153*x+575558209626935126845,-13288836008732565613*x^21+10082346553927433103*x^20+481638123026384814674*x^19-333171284097313662535*x^18-7440227798000118450659*x^17+4532453420201237952163*x^16+63969190782163154042793*x^15-32439753718074599462441*x^14-335576687535828186427439*x^13+128389070735660913849977*x^12+1108686113390848875630849*x^11-261920325780698211278801*x^10-2300607001552442768259613*x^9+177685476318124550442455*x^8+2898141803668544694270009*x^7+206827265183684034901341*x^6-2054024045328947392605289*x^5-363857657560815265079451*x^4+720169556896809287798283*x^3+157533322866822445319282*x^2-91808165787213312415948*x-15432775867105530370839,-2213901376424301632*x^21-5178032306491431408*x^20+86491149505328307445*x^19+173597370107901600927*x^18-1439501749598280990523*x^17-2429956264414193851783*x^16+13289397782768650294246*x^15+18378236849075825472673*x^14-74184285313226308552875*x^13-81149218566555500150880*x^12+255849612171077611877961*x^11+210916712206063532233495*x^10-534543987181919688737739*x^9-309989051216398871217771*x^8+637206741210243716867601*x^7+235380407322214740967873*x^6-385229688243207420860311*x^5-79154374975355525257320*x^4+86467514240458353732333*x^3+9764086596047589094799*x^2+1167962498860591983321*x-241793789523814444962,2641295007223421538*x^21+9668245192288712872*x^20-126184375421203644715*x^19-324383382407292945335*x^18+2511184047675322471307*x^17+4537480503622233915443*x^16-27325814483899471518029*x^15-34276937018806196217701*x^14+178413785803389194001304*x^13+151732102782607600911579*x^12-719241054465569007568579*x^11-402237171967993192887433*x^10+1772850927490678174286751*x^9+637580249043161064783895*x^8-2560309959673704720495917*x^7-605407344851685590868270*x^6+2001879757853175590059595*x^5+340088775722208513294335*x^4-733955234201791122426865*x^3-110326024712683307862287*x^2+89665474457853613901987*x+17137359745268425579252,11154994487565567287*x^21-12626909216395588107*x^20-388086031130496304277*x^19+429965591474785568001*x^18+5697071966919887298165*x^17-6121884391543183227279*x^16-45916615618597739780843*x^15+47171776447232177062970*x^14+221675174202927618527069*x^13-212870293720859085702314*x^12-657899815472133822724115*x^11+570070969675517675165315*x^10+1190975796507246984113610*x^9-882333541645633366516331*x^8-1269396978243896378060304*x^7+744981877304575058949201*x^6+737407081805418416289709*x^5-308436361222173578553387*x^4-199542537911181800547923*x^3+48687759729164534461916*x^2+16412155694287397681850*x+93015390422716992274,-20005530811215516972*x^21+30426860668990205482*x^20+701559989717835426720*x^19-1032723839929208655613*x^18-10394587323308170376241*x^17+14613781972996773659515*x^16+84756087650046425217481*x^15-111394694900081525810031*x^14-415847744774247966789103*x^13+493081174024244601953437*x^12+1265338363196037982806493*x^11-1272966289742765033793571*x^10-2387278382944800469982353*x^9+1825289955601498553549315*x^8+2726620723586467278860897*x^7-1287262750506954170635971*x^6-1769818358253499313283033*x^5+309506611873433935786033*x^4+577975683545720807931381*x^3+37016383626631917492863*x^2-71537290765151926658989*x-13783994014381029072639,-3974772633469104797*x^21-73135690665495690*x^20+137844036876842378545*x^19+2290232483002313596*x^18-2007548259217042888816*x^17-48758966184855300516*x^16+15941466448372377596528*x^15+722276259107801524790*x^14-75047814562929788922836*x^13-6277645155455154480754*x^12+213962302394379228880646*x^11+30256107773062622636190*x^10-365262839078241361416260*x^9-77601299553355493005734*x^8+364429396636683463362818*x^7+97774061075370619995236*x^6-210216989307893591953360*x^5-53894325148549784229996*x^4+68592577841030000282168*x^3+7731472340915196021931*x^2-9119224307697665257174*x+938510756697764523023,-16210079443820656298*x^21+22385059022013106418*x^20+558790381883192383117*x^19-756540153409818965645*x^18-8090985470174385056360*x^17+10663353686888315630822*x^16+63910878144446879450349*x^15-81053690421088024627153*x^14-299740300082038780730437*x^13+358992015320508145894394*x^12+854333845135517140042376*x^11-936453084791917761702875*x^10-1467574150341415741602725*x^9+1395979368791023239822902*x^8+1481046328496818509017684*x^7-1117050722843083828415353*x^6-845994432770995906661139*x^5+424080123710677677675923*x^4+266723465932839674101296*x^3-53910282937980894648108*x^2-43068485365026373841547*x-2717250268567022348765,-12347107005162764819*x^21+5689550419768275100*x^20+451337767947821116807*x^19-198910731069991901871*x^18-7030591078200837241113*x^17+2915876861635209194123*x^16+60894995375750987961503*x^15-23201435365094850372805*x^14-321022078928832632047893*x^13+108459205063733977400147*x^12+1060408673159840609427373*x^11-301607092935076784901645*x^10-2180073603156908562401683*x^9+483206056637744156488483*x^8+2682646164743533076773283*x^7-410530388808044850182391*x^6-1819271967848029232663763*x^5+148676727087018400892107*x^4+579780754195908734580651*x^3+427003306537250889524*x^2-59503706671509217384155*x-7166479330981000911584,-4150939304427587980*x^21+5280019019186056067*x^20+150742518746253510891*x^19-179214208443095034529*x^18-2339998371772109469833*x^17+2528528408249267435659*x^16+20305783788695755293147*x^15-19083420815844434934741*x^14-108222179795000385205853*x^13+82252051130561462670087*x^12+366727125655371969013987*x^11-197863083868175275474213*x^10-790477395326325175455257*x^9+228521449598710767653379*x^8+1048847565168516826283523*x^7-41371995955244493397937*x^6-789093743776204622065353*x^5-131205455014504776873469*x^4+288315067539187228661211*x^3+86249779673685687055979*x^2-36716270047233967445710*x-10621364212604007420730,1208756755960696852*x^21+1622609630909818871*x^20-41437206213180454253*x^19-55555670344278650134*x^18+595066624396483136366*x^17+834101592121371144952*x^16-4635951733855279217636*x^15-7242771651512111597494*x^14+21152938152763499147812*x^13+39994982903777698474424*x^12-56574213472965933783188*x^11-143529089389916279185310*x^10+82139723844595019109260*x^9+324865274643760362046766*x^8-47922964730107241495304*x^7-427304949237547780415090*x^6-10058709251379694767348*x^5+279553504709986963671718*x^4+9349899193397397402162*x^3-67546479736611596481060*x^2+2978446894588888636433*x+1961801980669179451429,-3136415513028367281*x^21-6798188656832707560*x^20+125604096500176382748*x^19+236419283599499708182*x^18-2162225034829991566022*x^17-3458260107039566835186*x^16+20863147190682093925950*x^15+27658882690869900933370*x^14-123290493987699593019110*x^13-131780271870023091781158*x^12+457833606702549792635078*x^11+383198671688914167383945*x^10-1055644228645884749832513*x^9-673981404754708340809478*x^8+1445092995988655908502696*x^7+693961209520530796753450*x^6-1081500270941093017732366*x^5-392850545385969503918030*x^4+381311177475379044213086*x^3+110027488837060042008569*x^2-44790031455544341035626*x-10287303199033730663984,-6929701301263764457*x^21+24837389146966388901*x^20+203131096050183981173*x^19-832683175288302087953*x^18-2261685759003304991935*x^17+11612307493088783003187*x^16+10606284750240171823373*x^15-86992620979170110000689*x^14-2313544502971817091249*x^13+377287784783970326644347*x^12-186276953358263211228743*x^11-952516838220873052940357*x^10+793238818329587988469979*x^9+1343348954116437262331865*x^8-1444203399859381753987797*x^7-971756501524041588333135*x^6+1238206796860514729168067*x^5+305271240442771627291729*x^4-444368583309463329842303*x^3-36294352805040830284432*x^2+43740413951042476485018*x+6092325963885819588524,21354505248200814487*x^21-34987589110260905839*x^20-744190094701421692285*x^19+1210974123975677548719*x^18+10930758824659701583987*x^17-17594984752058467319593*x^16-88008093389203869677533*x^15+139238268457850977264022*x^14+423508003349636485376403*x^13-652037004958519741140633*x^12-1248702275574447677908289*x^11+1843534286082111867639751*x^10+2232109152590489394822303*x^9-3100642642397954575599289*x^8-2311938137110050539928521*x^7+2981315472414783579731287*x^6+1232513920423664975318138*x^5-1517494800032827241881817*x^4-239817645904995623509959*x^3+337617024412847733423830*x^2-9016628600483612067820*x-15977249378731469911332,-7968470204260036325*x^21+10219025074833493788*x^20+275096285096141558703*x^19-346755664282513336059*x^18-3999422644809449508139*x^17+4907044529556662378499*x^16+31850089448335376549585*x^15-37428287104688269015267*x^14-151602446677926083993935*x^13+166054486312854902222345*x^12+443296726309666805691329*x^11-431762401177972223647935*x^10-794192995844834816096583*x^9+632685491395740859810647*x^8+852212102814288024465711*x^7-478336185179310704844671*x^6-518138650394832819549069*x^5+153440353891886031295653*x^4+159038089707939983796533*x^3-11210125583744957185154*x^2-18788478889554442166289*x-149727737743784955938,9229182005278387696*x^21-3099876575504770931*x^20-351604270365757669635*x^19+116320391822354063330*x^18+5743090244321602443690*x^17-1847857749938804849006*x^16-52510904851567826478366*x^15+16112158355157829693668*x^14+294276901763271729125250*x^13-83557068862699243072566*x^12-1040218549558044788195810*x^11+260713890929836822866374*x^10+2300564469534167397280300*x^9-470504829405382744892206*x^8-3055980516683974719615990*x^7+441593323265477920122726*x^6+2250053090678878056700426*x^5-163600632120717631694726*x^4-795064792316138575691984*x^3-14438698077885437917702*x^2+97425305163933034731131*x+14001437168181978966137,1823468606888299244*x^21-6211585767110689701*x^20-60687269596439589281*x^19+204132581089835841282*x^18+836002919844591909630*x^17-2774628000240676392402*x^16-6142313639048045670594*x^15+20051874439000588516022*x^14+25857867353666181676784*x^13-82173940477092531151312*x^12-62451711909167771690650*x^11+186940044423117690263706*x^10+82808871216239518818968*x^9-208133741872552899428348*x^8-56293861776395035269574*x^7+65137504788504482531676*x^6+19992220739962204818442*x^5+42938804800704379378356*x^4-11414344557822379423586*x^3-22774449558211548201198*x^2+3644339473275717429953*x+1145742659430504550371,-13185727586542211685*x^21+27282666238414085764*x^20+441229100868790084437*x^19-918853987627925214128*x^18-6133231839691027485202*x^17+12887040401354842958948*x^16+45707818353078095549267*x^15-97249337787679315175380*x^14-196580419153355740507182*x^13+425934169667277287127499*x^12+489253681209248836529180*x^11-1090599116240095180777272*x^10-671509227366889074030768*x^9+1572504776640554473557008*x^8+456365103009241512855971*x^7-1183683413107913891309156*x^6-114841724029416323835746*x^5+407630839895442041641859*x^4-1391372513749036304564*x^3-53243399806130250506133*x^2+3760173532629609017096*x+2335450083018339748403,19803770634669471460*x^21-39728423960181928249*x^20-686901354891359718269*x^19+1357365103893889014623*x^18+10029015881432340057502*x^17-19392036691532707972742*x^16-80165289031342947929696*x^15+149986285708530122684092*x^14+382804185072221751326644*x^13-679701016403145392058180*x^12-1122707378646387434490949*x^11+1827703518449417605171200*x^10+2017444466234687722260716*x^9-2831905833530552043038184*x^8-2165350019796592446325456*x^7+2364943087401603066869144*x^6+1291677868338132555147308*x^5-938439262446200250257992*x^4-367346453497735475594468*x^3+130837276907184132561340*x^2+33660013239247394177455*x-408595529475219728125,-8390912371422562757*x^21+20278373906116665379*x^20+290291854029386355584*x^19-699142799927823792042*x^18-4224725041124585722985*x^17+10125399359710190910417*x^16+33620415517050629793152*x^15-79949508720048006605051*x^14-159463782174890742289349*x^13+374084456886853523549493*x^12+462309811336514948524757*x^11-1058593511578712056184375*x^10-812285542031632272498291*x^9+1785053534133075214922401*x^8+829549188034297137359397*x^7-1722574578170319078346255*x^6-435972043664395707248799*x^5+879973174858146302954554*x^4+84150476304261127543229*x^3-193263319317356857725728*x^2+3122448668875904343097*x+7374456051342997359259,-3955292225557052271*x^21+4005731123807599579*x^20+126539669855775164646*x^19-140495512482833950898*x^18-1647229297956649413584*x^17+2050669760029371127344*x^16+11023295198734272991728*x^15-16082967574138253469504*x^14-38395048338656565732720*x^13+73083927353747253607908*x^12+52922562878855326419380*x^11-193792142834139722647256*x^10+56886591829772864633124*x^9+288419832847030520290380*x^8-275294650568434386425224*x^7-220465339029774766527072*x^6+309536886267024188706000*x^5+69568156217914814135904*x^4-125605441975663501368812*x^3-7280736754183944325879*x^2+12251221196843472791227*x+1555104591223908446612,12449692932855663339*x^21-19002637795196948078*x^20-427164273155623771300*x^19+642064931567169007997*x^18+6154872140321744323681*x^17-9032285456523455114096*x^16-48384968829221518916445*x^15+68302866491180817765835*x^14+226073081383218298851695*x^13-298996338602511240709945*x^12-644122170927435403709041*x^11+759676144681849115176387*x^10+1115745634432682571900819*x^9-1063684537264489726309009*x^8-1156060839551162777181109*x^7+721028033025107509953799*x^6+694450403270032981061223*x^5-151364463500994242431157*x^4-232538624764008657800356*x^3-31530844029101845786834*x^2+36543958068014715905767*x+8494322718186150725709,-5389542903595146671*x^21+14270505726367160033*x^20+177165619281012311040*x^19-497844927872608388298*x^18-2386562592890353952158*x^17+7310332028834837088576*x^16+16789614150008240323055*x^15-58750614441384008965033*x^14-64278852344135437242484*x^13+281868011456143729311926*x^12+120171260366618792994944*x^11-829308066483484494884368*x^10-39857188121347412013947*x^9+1489867971705185110377241*x^8-207480265793646990510704*x^7-1586279045746343123306706*x^6+299521413869570939495108*x^5+920062717661729244012581*x^4-137171608135605414522931*x^3-234554799067592875196617*x^2+16176126883343266830174*x+11350181928359947400223,7924029061406380052*x^21-23268157903537680100*x^20-249252245422162398760*x^19+787918786350296579712*x^18+3149007257244850234212*x^17-11123702111570258086266*x^16-19913635978573017067630*x^15+84661298942253084569430*x^14+60802412539041724342416*x^13-375223235456052426820840*x^12-40736005686506871472426*x^11+977908401786868388697976*x^10-252727058605660485694702*x^9-1449568557339214227076502*x^8+684002959767955882059172*x^7+1136897291211174027603522*x^6-651632406226865876354492*x^5-407256318881068381703226*x^4+233130969663133991902146*x^3+48942677185195569566422*x^2-21537586149077319777272*x-659869652415228408442,-7887499135075901144*x^21+9489482373106468093*x^20+258535822540164301263*x^19-323035015250128663320*x^18-3494022678159309953334*x^17+4573090171004518408808*x^16+24967981201247741736618*x^15-34756742565549668648770*x^14-99974383491438994587728*x^13+152866432034075964782316*x^12+214908393284300041749026*x^11-391761401243046719357938*x^10-194780601278770282113684*x^9+563863608335092668380866*x^8-44736081801269787275334*x^7-421880522029248040160344*x^6+181658218427534108950036*x^5+136169157889097881761614*x^4-84530224586912732237180*x^3-13310199504774945662264*x^2+8714657594504400389137*x+1329118101261272801171,-7119356500682940600*x^21+20651631867601948840*x^20+234327065031273941260*x^19-704794431685814380063*x^18-3164566838592766631928*x^17+10089500554514000642932*x^16+22369584288601136735677*x^15-78626063231865932405969*x^14-86485622560420766740797*x^13+362541398575099976787658*x^12+165892276217223797640455*x^11-1009955242408477393811065*x^10-69119806712258322559577*x^9+1676876494967754882451807*x^8-264344044229174491108830*x^7-1594755440763435486704993*x^6+426173291395056991109489*x^5+797673494913843147169243*x^4-231824755009032739815220*x^3-178303614215126580483494*x^2+40012514964555283705249*x+12354714938570811909855,16698325394607041496*x^21-19518497315587373294*x^20-599038171301153513820*x^19+666331991873928947594*x^18+9132118562064909995262*x^17-9505890125418890683562*x^16-77185447727194332253074*x^15+73312164032959081307813*x^14+396120869981498329851526*x^13-330339502752635901654324*x^12-1272780070180647805460021*x^11+878295751083612730575350*x^10+2550711136841055614242742*x^9-1330757212285323074125882*x^8-3074266292031647284796082*x^7+1063365225662015927060386*x^6+2042778690931510656249178*x^5-384967090009683017872418*x^4-632343149622232738994182*x^3+32072364743971784405618*x^2+60180883943329210805840*x+6377604219156896235642,18343680961151412476*x^21-22611148930674163535*x^20-651680753782436853545*x^19+762114506360674327553*x^18+9815578698174897102475*x^17-10693247823822619457863*x^16-81754132965818806594943*x^15+80621366196039750332331*x^14+412463911465114492719775*x^13-351477371958237716999401*x^12-1301882153502822320536275*x^11+886604331474953819694645*x^10+2574103832954884173707315*x^9-1220967673595999102828895*x^8-3109425664050125885405933*x^7+786732532014600734105715*x^6+2144892498879748743573755*x^5-118951834962713454608297*x^4-734730425810816934408029*x^3-64957197378540322226031*x^2+87222598591708885608966*x+14141324311180026524700,2924645771515761437*x^21-11724216367386992312*x^20-94744088665282358112*x^19+403795095185988938356*x^18+1258810934091910598014*x^17-5827983000266850647894*x^16-8774782533441596348872*x^15+45689303708712745474776*x^14+33912160582284481277534*x^13-210932171365636419236756*x^12-69706744922203221098276*x^11+582271510052694521056930*x^10+63167663397582382201274*x^9-936444407060090296370372*x^8-7361360635885373107620*x^7+822075874623905023907024*x^6-10943123079012848897730*x^5-345916343264279750253518*x^4-6001430061386038629766*x^3+53648846313468976190677*x^2+3423191952795925002574*x-930515944664627645016,9321143702675691980*x^21-23727250183727820299*x^20-303757768367110125209*x^19+804881951487945739690*x^18+4055633960646436811602*x^17-11392818811159578575118*x^16-28292565955931442594332*x^15+87074472989899932408808*x^14+107759664039355931976694*x^13-388799462279325118675350*x^12-203916178410094534295978*x^11+1028211553541163579005098*x^10+91168382149618390854072*x^9-1574099280366640103081360*x^8+276854297686598741764092*x^7+1336965801688360600892336*x^6-426971781678012293326258*x^5-594362332955245930621208*x^4+201976866698328919363042*x^3+126358408994017741660936*x^2-25782115661432600546429*x-8271543636508109864681,-5318151917907166321*x^21+5325529942376477523*x^20+191897860862169838703*x^19-191375759657232168153*x^18-2948301474286398547982*x^17+2911452037271597493414*x^16+25156029076744371577272*x^15-24393380068199457816672*x^14-130367910300969829308648*x^13+122743335939049800357460*x^12+421648698891228604011532*x^11-380056073616359880395456*x^10-841711865796079793779492*x^9+715129759833689340057532*x^8+986694549756840615788176*x^7-780760472984820105005540*x^6-606261706870927050392891*x^5+448525721767356031433628*x^4+146984665962343402991304*x^3-107291914312898128250029*x^2-1019973659583179067337*x+5214943355624036148541,-5494566564647114405*x^21+15239134574272739533*x^20+185564292001111775304*x^19-534825046499997981714*x^18-2613742738814369573288*x^17+7891357381243885927458*x^16+19859969313422568672382*x^15-63540743465214997141974*x^14-87913570260515677633346*x^13+303440834652290254532308*x^12+228345602194514578114150*x^11-876578063359122210242844*x^10-331678244182939089359150*x^9+1505801509670359629339738*x^8+230022540654023479068644*x^7-1469682760965460971009410*x^6-20002109370011317748562*x^5+753408830767930803693404*x^4-50820398043371036474800*x^3-173849196837277795538479*x^2+17898285073481060947347*x+12303101269352393999968,-6605558429259869747*x^21+2602597020299454345*x^20+226211792087303108842*x^19-84984823398861417472*x^18-3251696712266766948890*x^17+1131610127893044456404*x^16+25451916991958604376008*x^15-7802464673378983814468*x^14-117701189734890580819160*x^13+28969426148243340977502*x^12+326598853287163344842940*x^11-52750344491915205212498*x^10-528769723293208699394892*x^9+26901064767156814069610*x^8+463396221361316565406738*x^7+35407041854444997676084*x^6-185134530772174039557332*x^5-37804357119241564254310*x^4+17131458838913821049874*x^3+4244013570446624074997*x^2+3018856453194785727281*x+830836787171994140406,7459304542079729055*x^21-4139704916755333807*x^20-283442497923570804676*x^19+149335551689496707411*x^18+4616708848173619342657*x^17-2271580655248726814589*x^16-42091122683374626413221*x^15+18892108159992962627363*x^14+235248100498385607184431*x^13-93131558098257914064852*x^12-829526474560505726413489*x^11+275871198815692617406175*x^10+1829179969477229005176035*x^9-475654232904261196773421*x^8-2412520832146126646964812*x^7+440865892489320710312335*x^6+1734473919773113022670217*x^5-186885566719257637477337*x^4-568559118924414221777709*x^3+12525403656634558204234*x^2+52766705577014998491116*x+7510968949446284667073,-6162969673881528613*x^21+4326858954329439746*x^20+219536310737234104570*x^19-157456635321479271635*x^18-3309150404776870388307*x^17+2422472781242579167812*x^16+27470709551451211901887*x^15-20515562985916650381575*x^14-136983017045725661461133*x^13+104532459454143265475499*x^12+420286720491059244702768*x^11-329850719482930478394021*x^10-782802748227295506451617*x^9+641120150109119341456039*x^8+843310864104467348715499*x^7-736409440069141269629356*x^6-473423538953290795618793*x^5+445830803429172008290181*x^4+104320600161659872203399*x^3-107902856945471533464135*x^2-714302466236297263195*x+1870996973595639077349,8089688804202856894*x^21-6856809615911138078*x^20-286766740959524615221*x^19+233153951226686453828*x^18+4308108905085334955954*x^17-3301845284092159133390*x^16-35748857508909141444948*x^15+25145286457480188511122*x^14+179168681265263622055176*x^13-110982850937666997121914*x^12-558029318413806376295326*x^11+285620815674554789930668*x^10+1073129736053338397941950*x^9-412669546524173079963170*x^8-1224995608150727770132816*x^7+313324593866902377615466*x^6+755399380599909600503772*x^5-116992004709824395162208*x^4-204081635375922599327080*x^3+17276752053154891584190*x^2+10186903588623422226250*x+2175232854015925230999,-7577813502860996499*x^21+11739630873977999552*x^20+271686282077167945557*x^19-403311054825690872119*x^18-4137685758960161700151*x^17+5781143982810790423987*x^16+34934558741891176268947*x^15-44699776965699886028929*x^14-179199671607851842372283*x^13+201213210203254272080535*x^12+576512753255232649049995*x^11-531050760872043825320419*x^10-1160166927635041322104569*x^9+788657449373064381095163*x^8+1406500025932238224325629*x^7-601615158537855070352603*x^6-933880208513491972200419*x^5+197982452912816694759047*x^4+285866045304238750869203*x^3-12561894343164188312886*x^2-26710517765445136982013*x-2801040432087326222838,-3658853733528081351*x^21+16799290262390923049*x^20+114157936246367456211*x^19-583219026716519644771*x^18-1429058295474095638019*x^17+8518257356690959604913*x^16+8929301008886185500157*x^15-67975335910150953983909*x^14-26650321837399876049937*x^13+322358818478628821260753*x^12+14682217060537978536409*x^11-927634563151174679264737*x^10+124128220220477140596001*x^9+1593864984756463869396875*x^8-330173171461590689174329*x^7-1558590199868138766059263*x^6+331536467244424371601339*x^5+788392433875615158668035*x^4-142668436391046015189969*x^3-171948498212109005344914*x^2+24793020225018391221310*x+11696754982992679471294,639038406713482389*x^21+603415049961627873*x^20-21678342731498324385*x^19-19612703703572664166*x^18+291477511062127263662*x^17+267771636330047304764*x^16-1902907197794568334608*x^15-1978801714795044349581*x^14+5293853699951153984108*x^13+8419755633995486021426*x^12+3938766424969457717644*x^11-19791926239081170068436*x^10-65079370905524341585947*x^9+20373631261945991562564*x^8+164183256345575728101836*x^7+2135258559467040901836*x^6-173241312251404391681092*x^5-13085679399065595791816*x^4+75813893707517210696864*x^3+5249756771028658980217*x^2-9363650025750913351879*x-2196081170289685175631,-7489409784903467974*x^21+11695016198205580324*x^20+260391407173608457422*x^19-390815678208196866643*x^18-3824689146972282502639*x^17+5423907849372759896891*x^16+30933251955250182428547*x^15-40290592762242571353553*x^14-150847495763459714367181*x^13+171820164609233991732871*x^12+458633511825875708039123*x^11-417695732160810328914345*x^10-874976987868685792516685*x^9+534701135754822780312363*x^8+1034266150750062845732471*x^7-284539872516484650824277*x^6-722397203012224247406189*x^5-2977855063442480376165*x^4+268598630313158112484483*x^3+37202136992632338915021*x^2-35916344114078011322757*x-5392964135185211714043,-10408062266566468324*x^21+11422483896945131980*x^20+365279972461900568718*x^19-385504060174059545567*x^18-5406754570632173169763*x^17+5414309637793870414422*x^16+43912430062702106242787*x^15-40857433532814674875583*x^14-213539775733248590497773*x^13+178466794348639292560647*x^12+638700179475923133064042*x^11-453262777331573585583434*x^10-1169839447056168709986013*x^9+639818672812483210588573*x^8+1279361701720908641249075*x^7-452052971420050043248017*x^6-793541858581068942710014*x^5+117211606266686571419127*x^4+251718661440949742061587*x^3+9158300306995089576899*x^2-29968471357247990698049*x-4445155759519431528319,7011795316357458191*x^21-2656097594581199443*x^20-258521387264036002845*x^19+94005372596075683052*x^18+4067803018498141507377*x^17-1391860236729504847222*x^16-35646403878485035232180*x^15+11143557508731563595186*x^14+190395183134157391922574*x^13-52100608561106959165734*x^12-637575796498764568689870*x^11+143649287809648962539714*x^10+1326460371714889210061694*x^9-226579243473889023693318*x^8-1640200963041862276494134*x^7+195681732728059497415798*x^6+1099282492367010651920898*x^5-94641070406540826823054*x^4-335659142601675961666926*x^3+22912166792574823055014*x^2+28719963400136277105147*x+611617071505696558307,7490143177182603225*x^21-22250569352303891015*x^20-226702781235046784105*x^19+747642685854408729843*x^18+2693946464368449984225*x^17-10442452872958702544127*x^16-15105619748637515565347*x^15+78260228754745454085935*x^14+31309286093033483544191*x^13-338979135175760418743073*x^12+67728231964169372032879*x^11+852821313553478463967177*x^10-489724335415871901340803*x^9-1196950973467232729400831*x^8+980244039555831905324757*x^7+869418898087713125508271*x^6-852172660325551625827285*x^5-294117755299359902929115*x^4+296500585097648982298735*x^3+49340809459857821359904*x^2-27231240593549566207394*x-5041013744003657581414,12837699477803994395*x^21-21888915437503508643*x^20-450888093583196696885*x^19+765091353919508699670*x^18+6685349933844669429483*x^17-11282356720142953716481*x^16-54453266802757944517748*x^15+91279385522470118486060*x^14+265883775977575951856802*x^13-441737890799587669593357*x^12-798937176882663963488939*x^11+1311028934717439553026779*x^10+1465624104486164035502891*x^9-2363437165178637261968169*x^8-1579105496156653612829265*x^7+2486216332244795482560070*x^6+906136152936853026485858*x^5-1386848922106734832424290*x^4-209302962698746593198223*x^3+321467081188999525615162*x^2+1832168590135744451099*x-8419477630023778069509,1048794297762661199*x^21-3128672574342764364*x^20-41554328599636546986*x^19+110463700707383302427*x^18+699392430519282534337*x^17-1643356080569807766217*x^16-6516363190969684433299*x^15+13365198338052084358853*x^14+36691808978141886202931*x^13-64431884167277037383195*x^12-127796406298915892660851*x^11+186530619441873554054945*x^10+270134078408639403977951*x^9-313429991796787947186065*x^8-324687592856863962758521*x^7+281604105155038954458827*x^6+193201653230701602161639*x^5-119400859238672037172945*x^4-43212169257307096762131*x^3+19313016911551939512894*x^2+1803454930092440490967*x-61373638234393411465,-899564035262525972*x^21-596210352435796611*x^20+34037560373043177761*x^19+27735612080487322797*x^18-557766438703237183009*x^17-541396772568075702829*x^16+5197427179104822455075*x^15+5801766632472993080053*x^14-30383807263668713141923*x^13-37353246980019013376543*x^12+115723556411126149898443*x^11+148182663505409406097563*x^10-287435029210728451508603*x^9-356560654993537679456275*x^8+449542102710465318409591*x^7+492152562840673750865831*x^6-408215004152120153017655*x^5-349852472330241343495649*x^4+187049145836565208422389*x^3+106861872522885016159947*x^2-31080598016005212473250*x-11182072713228652019768,-6587728101630533664*x^21+17809537946828524275*x^20+220631179138740593436*x^19-613071419516001447584*x^18-3066042739612694030342*x^17+8852761245167314620974*x^16+22779399645962421008500*x^15-69574359568334823296526*x^14-96931477189061360409400*x^13+323349070481343298049120*x^12+233212589995833858043040*x^11-906899113091578330082460*x^10-282965134888174478411658*x^9+1513596512860834090645930*x^8+89036320549346226418854*x^7-1448315122376276954173722*x^6+143592824865616051744674*x^5+742246752921586287910876*x^4-142501757730693194355342*x^3-177313359048455480381350*x^2+38957125453718450976221*x+14497139882330473218540,1442305687150350343*x^21-17476703176132983873*x^20-19382256430345463394*x^19+577423183405854996043*x^18-310645385949171726690*x^17-7895044435728630160538*x^16+8916061675672489137218*x^15+57498772031303125669490*x^14-84941007220717852331030*x^13-238662300668895922901369*x^12+421178208551870075985614*x^11+557841198673987789684982*x^10-1173951195034100788638598*x^9-669424792323989261121302*x^8+1821589539888767484115941*x^7+304455396032971366942846*x^6-1482481150572618240973840*x^5+46037428486792764879342*x^4+546869681617598531058206*x^3-41403531710737927081735*x^2-60444819877397550898048*x-3919538880304525372350,1289935939875622254*x^21+4850316274271903342*x^20-55541930860873533482*x^19-159459292951601697086*x^18+1027281768454312971182*x^17+2186068362816938683098*x^16-10616490920040892534254*x^15-16189206654290663073559*x^14+66794017094189087364774*x^13+70164745636543226376000*x^12-261558296165683461296290*x^11-180657979794977636618390*x^10+626741544210750790587318*x^9+269783662565499579354590*x^8-871662078069393981010727*x^7-220067609972625434986606*x^6+640117350579126724878090*x^5+85111928631558345438606*x^4-211438650494276514439430*x^3-15287019503491291197000*x^2+21191878328924494535900*x+3010497527421753531668,-5063918232257246831*x^21+2435879519153368109*x^20+185387569329311934585*x^19-91719831147596793575*x^18-2890820955976790646539*x^17+1474598893988181916245*x^16+25045601965763636974909*x^15-13186702397941393329903*x^14-131932060667383161449761*x^13+71641350014246069638397*x^12+435009945912259669689389*x^11-242410027803904344833839*x^10-892879515572469615813849*x^9+502334941624360258520469*x^8+1102555752784896011539829*x^7-596952646949569444628997*x^6-762532265306046896966641*x^5+346786582245992385073951*x^4+250311243664682241185405*x^3-62663330118661127196842*x^2-24916208005179885881270*x-5030915624636801133708,13784954075860178475*x^21-29666286606255858378*x^20-466014882654748901175*x^19+1010601966356053634950*x^18+6570623858319290323044*x^17-14395999575380745751793*x^16-49989318907624935307289*x^15+111073717507849491197080*x^14+221839382082924847510898*x^13-502982438289574382077122*x^12-580271760745916573811786*x^11+1358243582795534910572926*x^10+863539431076444584527558*x^9-2143138082215724951970850*x^8-663492574232547548265790*x^7+1892624239326704593559374*x^6+180675704754897418743762*x^5-872681122070196764859006*x^4+40712784630659338041366*x^3+182485709744028085969329*x^2-21388163030506369687808*x-11008878558475032187387,-6366833725164280832*x^21-2867110962642645959*x^20+249277735811684456427*x^19+87438129946726115365*x^18-4186060629458993468775*x^17-1053475844722464116323*x^16+39299927446614561967003*x^15+6136619083866226534525*x^14-225230376179260587548077*x^13-15311064071630526240427*x^12+807202497570811880745499*x^11-6868374636495233812353*x^10-1781070810057337135902763*x^9+122801991909974237431387*x^8+2293955155960037928713201*x^7-255194310679728758464619*x^6-1556600257996621130455657*x^5+219381369588335711023961*x^4+454119480248393024753711*x^3-67069356178598521084051*x^2-31096402740868949222008*x+924481673372729046712,10102643747094165025*x^21-5115133018467925787*x^20-359608082177182923363*x^19+179467625723388394558*x^18+5425588408920638876113*x^17-2634377948268158497984*x^16-45212781557713555007713*x^15+20951650171134955748273*x^14+227467387578002298311712*x^13-97935316175830388144371*x^12-710591039300388133277316*x^11+274376282258304519538286*x^10+1370519522778538168288145*x^9-455196843974240411171708*x^8-1579558778254083430639501*x^7+432285778155941643910033*x^6+1018237569575405644791184*x^5-211804283824643420129217*x^4-322399500131098816112068*x^3+35073879347219253902767*x^2+36222877706602294035818*x+3920040135579929873171,-1409088386903313157*x^21+6071678534830960271*x^20+50497608932665196057*x^19-197496689820741184881*x^18-780241339719969411337*x^17+2646780719502424223819*x^16+6849829763951622558979*x^15-18725610178548785508921*x^14-37975606285589923552729*x^13+73955539048370626512467*x^12+139455158139081110946991*x^11-155203063656986662978285*x^10-341682751575232629563377*x^9+131438734451651392739595*x^8+534997703187814835305767*x^7+46244661808868623761511*x^6-480084204574742699703173*x^5-131017242566728737390877*x^4+209472067068972550541899*x^3+59697237931583972388886*x^2-29996717140736878048798*x-8242918132436949239342,-89398105883406766*x^21+564409222298065238*x^20+8913734133761902778*x^19-18913929779790560811*x^18-229637483548359445999*x^17+264985896135512622979*x^16+2784406481740280858992*x^15-2012099675950187640241*x^14-18733498601407692126689*x^13+8928824451097712798923*x^12+73436150707464519950807*x^11-23028915845672574223117*x^10-164804041127730394848105*x^9+31508848274842401816546*x^8+192166440722908117742643*x^7-16956512628427250210651*x^6-84905655316805089001325*x^5-1334288845325526248069*x^4-9775444164337953702421*x^3+4955704816663808941905*x^2+9471661812077423296345*x-1241948284042847130791,-9804881180665641233*x^21+1891678084245315450*x^20+365405537646832493928*x^19-68671562345621196271*x^18-5825614900960293204139*x^17+1041762966528836300995*x^16+51893257706368202926841*x^15-8516221910956256413263*x^14-283047697666638997371963*x^13+40306789172447796693575*x^12+974607275402093555970335*x^11-109795448142159266816337*x^10-2108123196831413796754675*x^9+157117542159137687108851*x^8+2763297240567725931612799*x^7-78995185346399063462877*x^6-2035494208997832666109491*x^5-51282842280001569281957*x^4+729597273560870670883123*x^3+68759932324638560022450*x^2-91797093701160391942295*x-17321005757978921813819,2778248373024560946*x^21-538033452904483196*x^20-99045738803970200230*x^19+22213781500371306799*x^18+1504561829421575925855*x^17-375572485986818849473*x^16-12714695418417938830981*x^15+3373328579265671236097*x^14+65485582061727442362441*x^13-17416337104717255156197*x^12-211904235355259803704215*x^11+51962621622905353521211*x^10+429183456109416070222117*x^9-84339063508588601768647*x^8-527332945644103988975091*x^7+61175807279726347855659*x^6+369299576512516060614449*x^5-4283074995543861691215*x^4-129720109202742725832865*x^3-11304951921845224490009*x^2+15596798778562916545039*x+2926188274932165652959,25407836535037952435*x^21-14566368822163737053*x^20-946483524252409697523*x^19+525263300284153859900*x^18+15069512677790027578553*x^17-8021680832408690367295*x^16-133816000739673155741403*x^15+67407833712337708529437*x^14+725197139277023357360833*x^13-339087403359576109208452*x^12-2466205739919898876473060*x^11+1041662423128906888908821*x^10+5212435517312718245662963*x^9-1914986762380027076895412*x^8-6548373314271090782536956*x^7+1988153549530194294792273*x^6+4464541386861905518784951*x^5-1041137631361663677123263*x^4-1388059976899992697564883*x^3+193770759463318534720956*x^2+128630828862963039966389*x+6435530912088483837328,13285898874111212813*x^21-26879451736066302976*x^20-448394539226478934447*x^19+915013422180573890228*x^18+6310414836216538816662*x^17-12982579779391274204726*x^16-47943659571523392083586*x^15+99213854724713476644406*x^14+213036779860742894589680*x^13-440468287934628005607030*x^12-563482643282650716526528*x^11+1142595090810621015651764*x^10+877862736326055313944412*x^9-1655742092481077991235930*x^8-800618849211527929018726*x^7+1201493462190953457226564*x^6+439249999375680714653710*x^5-323494301954163989777328*x^4-151899750218542775258800*x^3-6441641188065057168667*x^2+25265404795791972743756*x+4432295527151535458085,5724995835754081302*x^21-18364378563007293464*x^20-190129311246615075707*x^19+619723476077222293585*x^18+2618109013358549912167*x^17-8723936431147130325317*x^16-19284475867720603205517*x^15+66244982388393502096511*x^14+81802629797540554554375*x^13-292991053168522420197681*x^12-201033948567496212153293*x^11+761062386960409144831128*x^10+277300316211622036818270*x^9-1118704481012798818273353*x^8-207359232146569982209767*x^7+860913543341637066322307*x^6+87521570707834314479431*x^5-306703825558604169845101*x^4-34031447002840372322089*x^3+42602481868795048970229*x^2+10024023198012921233687*x-421996669361990892572,433912905953659252*x^21-2651503494414727183*x^20+114632139006859516*x^19+85813618771007541553*x^18-302189664859749003031*x^17-1130480274754707157595*x^16+5741971661607346192125*x^15+7720868269408247445521*x^14-49796340224102113017199*x^13-28652970166662637590207*x^12+238930427049947497295261*x^11+54412414925891757624753*x^10-659163976356127318494459*x^9-41398838085107297086431*x^8+1019299222293402814698605*x^7+848160161982783171561*x^6-818529340767473483711575*x^5+2446137858339420970169*x^4+293964309274924723668049*x^3+10995055782877986688672*x^2-32957157814541242520670*x-4449518537995927774554,-4376980404299215342*x^21+13137892410192103284*x^20+166135629318681022143*x^19-472049537688073939504*x^18-2688181165287298426932*x^17+7197509002700313230034*x^16+24161819355499288479362*x^15-60634848354446600751230*x^14-131699832616517256901676*x^13+307897593067280904103364*x^12+445571460925229243808242*x^11-965187146479125116684258*x^10-916907252793914411802472*x^9+1841703263023058920345102*x^8+1066547173706708204891176*x^7-2039291189034723088041224*x^6-580224376055157631045658*x^5+1195298373269349704431828*x^4+61039759901788051905270*x^3-297265267107902344848098*x^2+32202628535210668236980*x+14807191628055405409693,2969413247011734956*x^21-7446346520524750187*x^20-100052366416401040890*x^19+248647051660148469035*x^18+1408268140046930647275*x^17-3451670214400283899815*x^16-10734768574736282758951*x^15+25681690063614859576953*x^14+48175852283893331504449*x^13-109873519766714206080831*x^12-130686467810903937184683*x^11+268149837746905703302017*x^10+216426989106298017105057*x^9-341839939317288224140805*x^8-225161022656528806061097*x^7+164693873628703357950761*x^6+152760358972394143411929*x^5+44232545335706281238607*x^4-66219849235241930295107*x^3-51251056768583462557999*x^2+13798114402968370868626*x+4865968373227745798865,-432131945117013340*x^21-1330760575890106772*x^20+29652960090952446221*x^19+39249519188667388969*x^18-712572163894818087873*x^17-431945079820327308953*x^16+8672405616706511828023*x^15+1894916186896637091731*x^14-60620156884571859897725*x^13+986608138319073092839*x^12+253831716124322499789571*x^11-40590336862076053954450*x^10-633503611186675584847504*x^9+149512865904977869674199*x^8+902134901856978592909325*x^7-228312002410538828187597*x^6-673686071787176797602101*x^5+146777961762186518355259*x^4+226073026975643218627083*x^3-26721711638705128253185*x^2-23461366536699302495049*x-1101680398472741331616,7603665340251376651*x^21-17924126053256729362*x^20-255325724531819027065*x^19+612369352069896594344*x^18+3580388564723848286886*x^17-8732016957549148864392*x^16-27173780776085455187034*x^15+67199525136920847527750*x^14+121172724009249515710104*x^13-301388660556561702956390*x^12-324229840320357896551468*x^11+794365888491415357745814*x^10+516807217522321549751470*x^9-1185033569917011295284960*x^8-480936820000085473128112*x^7+922735379486317167086168*x^6+244466824195889665024876*x^5-325353855277516083331374*x^4-60322666938281619047838*x^3+37935103135918481624003*x^2+4292545795755248636886*x-889399394593622302665,-18986324388546513987*x^21+37725297072723192228*x^20+658488362544280352618*x^19-1283634822239060474657*x^18-9621627592255442236775*x^17+18237578405357313037543*x^16+77087483117245661037115*x^15-139950373228885627033933*x^14-369977398154725354974853*x^13+626668868056242269719551*x^12+1095801346636488399404213*x^11-1652472255967403960305957*x^10-2003433946320544959774243*x^9+2474050793674222579307243*x^8+2207477180017752227451803*x^7-1938321344784450261089767*x^6-1359285542965128480861327*x^5+678596791994964454457397*x^4+399671215009979795310953*x^3-67139642732478531445846*x^2-35253363027920831490327*x-3019973311086115881269,5667089675972825421*x^21-7899403055363724871*x^20-194479492513936220442*x^19+275001851565040343269*x^18+2795645870171531969491*x^17-4033521346565436566393*x^16-21804103794012985954395*x^15+32403532101107185488507*x^14+99822773237819258913819*x^13-155467455381004919467555*x^12-270781815416218938062597*x^11+457349905303974915823949*x^10+416542720940242728658131*x^9-820714448350528833331331*x^8-318704132507645436199729*x^7+872458611433108096043277*x^6+67003740811534281000547*x^5-510123349365300068160757*x^4+41879828589356745120305*x^3+138461658265181155964474*x^2-17404835931083951362936*x-10020553583830668610355,24639640769924688323*x^21-38414451183967322149*x^20-872586452506227601281*x^19+1313636360401781300663*x^18+13095921539557521303131*x^17-18775114861074320468351*x^16-108632634950588176223685*x^15+145109704764487953587021*x^14+545510850994269703213977*x^13-655514228843923727480717*x^12-1712386490391110381876159*x^11+1747835124105726529105911*x^10+3362406261675914481616945*x^9-2654096585437483586727043*x^8-4020596168830003140322829*x^7+2113946709244375396734385*x^6+2728223765914540410733833*x^5-743645764264787582950113*x^4-925655148586819618480733*x^3+50053917219172543061368*x^2+117360609341673930417772*x+16802428567557679265314,-6904111147838485068*x^21+429312897001457019*x^20+259011760967453055415*x^19-23903046453135609845*x^18-4171067555216218324681*x^17+500753324303640195993*x^16+37659553026708252351427*x^15-5385400433428725293551*x^14-208788070759296868597999*x^13+33054707263372588707943*x^12+731399850761798561836717*x^11-119174293213873106870815*x^10-1604190844681297142769607*x^9+246959857620453788389741*x^8+2107257352495703147060323*x^7-272879985431657137866095*x^6-1513444473183381348355379*x^5+135172130927226701746185*x^4+499678138259769787513679*x^3-10132262416109995461479*x^2-50400898709976659959404*x-6295075926079845134296,-12523469962470475081*x^21+19264829481222295156*x^20+433492004471118047113*x^19-660788688106279602572*x^18-6306056612228155539094*x^17+9497777479962473782036*x^16+50066391266681527439772*x^15-74165004756731785160548*x^14-235984914630353295626392*x^13+341450868247151199741232*x^12+674556333015710971184040*x^11-944121039026454318210131*x^10-1152082656493508044083675*x^9+1541902752923265989788240*x^8+1122675118649219713467942*x^7-1428884326068533817629840*x^6-563283163544638642968440*x^5+699279965015792343752084*x^4+110424809369336684962812*x^3-154674943115975230789041*x^2+2331698055647088562388*x+8506261162541002904851,3382162126945755674*x^21-16932851960197633490*x^20-106478058328582035079*x^19+591405063239904281299*x^18+1357040075036533508365*x^17-8703308847165505054979*x^16-8801237402651315856256*x^15+70138477268282633119909*x^14+28907260011757009026094*x^13-337116153866852929492015*x^12-31561368243294990074291*x^11+989207897514584320434444*x^10-77561474269854438722183*x^9-1752318447180137536026136*x^8+287387871799964616893349*x^7+1804797182738195352726175*x^6-360546910966329687033443*x^5-1002833293238318131275459*x^4+202119830524607981024066*x^3+251328720399579419365691*x^2-42739451353785688012556*x-15000660006713088191078,-17325471807960063677*x^21+23995028039593365200*x^20+621066836299418158629*x^19-840881580578472123699*x^18-9446305153736491381805*x^17+12407507380004158033295*x^16+79462608574509516629595*x^15-100120290979965101043293*x^14-404247170933483114044353*x^13+480740249764509273725727*x^12+1279047851275619948607874*x^11-1403790673259420988746022*x^10-2496539563424669367995162*x^9+2458336179367370296324144*x^8+2876545649508665512738437*x^7-2474214190474503808932689*x^6-1761579172108163872648693*x^5+1314238228111158651910811*x^4+452126568239182633422619*x^3-297238444560089102581774*x^2-19887552870984366027125*x+12417201720759643347674,4684458294536818170*x^21-16169572750106462483*x^20-144894359389236333342*x^19+538451881674197869450*x^18+1777386648683835221943*x^17-7446020738320132241397*x^16-10579821374701836949491*x^15+55182763379067384507272*x^14+26980024908028161861229*x^13-235891277306996370039881*x^12+14182418498362982483569*x^11+583208408499281885269601*x^10-241402636969233240442467*x^9-795386432796772286277291*x^8+520773974926724988895660*x^7+542034498514495117132441*x^6-452470667214955478776891*x^5-150840775815258839137755*x^4+149799476113753655345290*x^3+13401068634577890154639*x^2-13392460343086505533570*x-1467807040096438418333,-7098452007125212015*x^21-213304051364527769*x^20+270797256414516651025*x^19+2717642479952698641*x^18-4429957121578272541500*x^17+25105928534520741825*x^16+40552700853268869959683*x^15-611108340766110615347*x^14-227208373723033408204347*x^13+3689090530968823221900*x^12+800061878528476882703485*x^11-6129129655879392543659*x^10-1748601789631278150652263*x^9-18762824839968044932351*x^8+2256920522598632729551620*x^7+79382514231536489762125*x^6-1560084743463059004936873*x^5-86351048225256812894267*x^4+487428188855279717600825*x^3+39278288785383821283989*x^2-46417336110693052181152*x-6815745984589264699472,-14536752864754813184*x^21+19884137120603532885*x^20+518241566659946148273*x^19-682455130757010110229*x^18-7845857470161131436805*x^17+9808491761647453327759*x^16+65805558812727936263137*x^15-76446304453994877158771*x^14-334901546463476803617315*x^13+349738240629637395348755*x^12+1067059196076697593046525*x^11-950765247511204334820357*x^10-2124878463330003897075769*x^9+1487280020697672222338907*x^8+2563701972642059284287673*x^7-1237478912131391797690079*x^6-1738962899674966200095071*x^5+460214284787596377041785*x^4+576384809396018953414629*x^3-34840431093926120959393*x^2-67214141988173204942984*x-8206265257782370524460,-16656333913872662411*x^21+14516926150040750645*x^20+590845804941852099100*x^19-503296841605378182516*x^18-8877685722745141650782*x^17+7322928665153502227858*x^16+73612681434822512676662*x^15-57997139715033943686318*x^14-368155523555925725295982*x^13+271627569110383213640310*x^12+1142230262092131077628182*x^11-767761282008983459826302*x^10-2186219663446382955339382*x^9+1291060799211921797218966*x^8+2495538449387839342711198*x^7-1238189334813852637039326*x^6-1575818000299300567378998*x^5+611984017456482576259754*x^4+468161188942062850724262*x^3-116972113575874524526173*x^2-42539451391912817508429*x+1453416765082033767868,-3227928583013258716*x^21+1827959582726561887*x^20+125304227212701618013*x^19-67029867964142235709*x^18-2101694239558704520458*x^17+1029237132809086550674*x^16+19894064976561793526056*x^15-8534667331483065013832*x^14-116340436188043207929831*x^13+41025163593273434874276*x^12+431992274592519471519076*x^11-113467506137042544723268*x^10-1006679855172198877871416*x^9+165775895342295471023043*x^8+1401653677059362183936712*x^7-97658260064214305233422*x^6-1057894363468194988142072*x^5-6710232340847451264432*x^4+367693829856174999107219*x^3+26707312732397441477536*x^2-40433080342020319525353*x-5553581917140387976527,-7842230510655880575*x^21+14346700784016962740*x^20+277256802647337224432*x^19-494368306350452816290*x^18-4145100473838018761698*x^17+7137039567244759841476*x^16+34155136503378344227008*x^15-55943346109704768197176*x^14-169794710843474707800150*x^13+258115543844492271415636*x^12+525944766477092614277388*x^11-712085762218955648629230*x^10-1018168666197541209821840*x^9+1147191960923899784815966*x^8+1207161280000278131420834*x^7-1019796989852450360477912*x^6-823504230528658865059132*x^5+448356390947853634735612*x^4+280564860172078372959728*x^3-70790258892479247765257*x^2-30631847004703179916134*x-2530553641609195116678,-5047513360156086490*x^21-1025606493434232919*x^20+198973173120551732233*x^19+37637546409813096643*x^18-3361096390967120958457*x^17-602023335103794028745*x^16+31763522348650286003715*x^15+5528742457190186377407*x^14-183889231373300483679965*x^13-32185761316208239677517*x^12+671300252061551535704053*x^11+122736725881124777519549*x^10-1533462900131877777186529*x^9-302399304719744783392061*x^8+2105914774402048036742061*x^7+451546447373514477475275*x^6-1608213271731498621635721*x^5-359335062442258341461063*x^4+597541302987074739541185*x^3+127694713132451194199721*x^2-79324740422096393601866*x-12501198338632074888188,-10672844723604877016*x^21+6290558292615915832*x^20+372560384145255329171*x^19-196988732674551602768*x^18-5487884977933802904414*x^17+2462068573873918959905*x^16+44391921469076853874932*x^15-15152402187764387545288*x^14-215215638685879646611793*x^13+42472277538738963825656*x^12+642235266963583863927827*x^11-4868361760298632347812*x^10-1172343345410294270536086*x^9-267909412448148278226865*x^8+1268413431054770305300024*x^7+614198351607208999602205*x^6-762941772802377303056036*x^5-527409715314540952200644*x^4+232536860284660832829047*x^3+165092243720753253186868*x^2-27213452565573222096134*x-9039383664990810886321,2589469625903756368*x^21-17795450536736355582*x^20-75563745221780100920*x^19+600229017059969508856*x^18+820155860343887746462*x^17-8443557939261927502448*x^16-3439053667537766562110*x^15+64076664613844370726242*x^14-4179014003666447258962*x^13-283422623882410964193732*x^12+94812169178010729926478*x^11+737676154065423509729384*x^10-362284981097026860509108*x^9-1090955389126058534986060*x^8+622269118730810572491556*x^7+848443661605317867231918*x^6-501399475685764257534368*x^5-298078702061300330727036*x^4+164220683714753260245968*x^3+36753289102395136156680*x^2-14315012153214184336924*x-2617281840427912065760,16775545190457512693*x^21-20374353603168765521*x^20-596873211604822890860*x^19+698876365581074512340*x^18+9006251715210550155886*x^17-10038020545440123123886*x^16-75138026341974264062826*x^15+78194953870992566861666*x^14+379245976783484583431758*x^13-357855096961281967801338*x^12-1193083853911862677833761*x^11+976058214398848767817390*x^10+2330685129104209228432240*x^9-1546041353280869134428525*x^8-2733756040571403432280034*x^7+1337611456329394535967970*x^6+1778392434727258279951598*x^5-557707118680399787336526*x^4-549246876892576761402074*x^3+72154615202424538678479*x^2+55505407476466683762509*x+6538957306426137335124,-12122362867049677044*x^21+17028447175988634328*x^20+440892840092445216794*x^19-584669340323389866488*x^18-6833920290108568878028*x^17+8386529953028993975189*x^16+58956478422386971941428*x^15-64977721894500519536742*x^14-310380030525946687450835*x^13+293376327999040133313012*x^12+1029134801165946269419300*x^11-775730610473389283709720*x^10-2140584249787013206725180*x^9+1143394108889891504935729*x^8+2685521948681058138164144*x^7-830807747696674575612074*x^6-1852567593415578860009644*x^5+215018153877492490304496*x^4+591700072011070938883296*x^3+17303022342924662194931*x^2-55910758909059418870528*x-6748677254425367547836,4862205317601968814*x^21+8699964166100402888*x^20-208041514424336327517*x^19-276495494597664350574*x^18+3791734680927866820820*x^17+3564276325862622805912*x^16-38350287797984048401702*x^15-23573928354416098507680*x^14+234829195762115166073262*x^13+81667817431538992966304*x^12-890580378806007204851908*x^11-120680721356987460205384*x^10+2054846201280449878667802*x^9-52060854322678174206678*x^8-2723541726142218322519574*x^7+384017044711626681442068*x^6+1854845273903416978970386*x^5-425702986512503649619984*x^4-513422443470970056265814*x^3+154398622280506140225622*x^2+25089123752152611956548*x-7927078743830678099823,-4089785335757169867*x^21+6293152126230587328*x^20+146518810933279329296*x^19-210961999884684137981*x^18-2221875710076615028195*x^17+2959536601525322107565*x^16+18562697624521980150173*x^15-22499161540128117235895*x^14-93214673690305370273635*x^13+100266142705266018863209*x^12+288378563776027851693501*x^11-264606830169997695453355*x^10-542800942181195978725533*x^9+398187461893697750665459*x^8+593197215269683931094189*x^7-311141837606104564675111*x^6-342816596648352144810829*x^5+102256036201860651148493*x^4+89238535957743604755663*x^3-5225674417541799504354*x^2-6789106480621850095693*x-1128543052224902749699,-2244406801199290955*x^21-8702315580490927330*x^20+102589549130672017235*x^19+301040428140752608735*x^18-1976956155158288054285*x^17-4388926345671929637555*x^16+21006206338432181767777*x^15+35112595643149613148249*x^14-134756568655085369092983*x^13-168493765627095402394457*x^12+536279774893785605337691*x^11+499744710301972825190069*x^10-1309466175104098350144379*x^9-915111908414787578259939*x^8+1877618798335505690124645*x^7+1002966477373128411299077*x^6-1461993207839548858978473*x^5-598898301270694153697413*x^4+545360790363013678992317*x^3+163893278485773757024822*x^2-71706422362313226021903*x-11743421804845715789078,4533904401282941707*x^21-9535451663877137043*x^20-157104790905832812865*x^19+333460153311753856087*x^18+2293834148444310306155*x^17-4891717849665311472489*x^16-18360001539812966153581*x^15+39035165061911362041083*x^14+87919158968815695298719*x^13-183912247193005939691081*x^12-258803519131452703669961*x^11+520833413873925971796575*x^10+465620683187825366384143*x^9-869534018825751649579621*x^8-493168033492989540265741*x^7+815689960476005258070411*x^6+275387832949037375840227*x^5-394575177017408900896757*x^4-60768199269492034253429*x^3+80209536247555095132197*x^2+499258368749471532416*x-2539069632358962272754,-10983032847942747625*x^21+25380699762483721393*x^20+377068723455147044240*x^19-858608305101643250966*x^18-5433074221122333020570*x^17+12109152302078180565428*x^16+42696937532967829449608*x^15-92000464508774697730856*x^14-199616762558601352324310*x^13+405958340811614004320404*x^12+571711084824175883516384*x^11-1044773853562791066077066*x^10-1008860395867941214887804*x^9+1492112465514495860228620*x^8+1095069423625551954734396*x^7-1042469487096228819753324*x^6-714437430522419149270800*x^5+237738124060264087315888*x^4+267866681419870470640394*x^3+38070231405077619657569*x^2-47476911785156477711089*x-10042848512440943064164,10512574340054218395*x^21-12273077311447040334*x^20-367317928923510539782*x^19+413546799391373265706*x^18+5406358294296193331776*x^17-5813184662540011374161*x^16-43575504552525862853919*x^15+44079121577024100388329*x^14+209575576175477398734372*x^13-194769953245346952992987*x^12-616194984940445257672247*x^11+506643844828999897664685*x^10+1096881705885974639202125*x^9-751408971298871407957780*x^8-1140463336500043401922027*x^7+592431996456502782407223*x^6+643338181541641332330221*x^5-212183957717183108235858*x^4-169375283929478920219796*x^3+21024505241778979410214*x^2+13603630543697474311627*x+1361028182807239563089,16518475693672610158*x^21-23734638271770288828*x^20-581013103958076712287*x^19+804133661632230676436*x^18+8641156792003061626776*x^17-11348617160039812202716*x^16-70803674024342522510816*x^15+86139737718265803265372*x^14+349604876177308448718920*x^13-378577919322101673583960*x^12-1072431433134741208052758*x^11+964737945974335452842804*x^10+2042815852923629732046908*x^9-1347250316475192521452876*x^8-2355397144918948178828030*x^7+889681246022799599333240*x^6+1540101912192656517789704*x^5-155451357941266077195162*x^4-507261433077637594100186*x^3-59751953032701197045886*x^2+62674677906015613744064*x+13915792895886882996529,-1949413926738185716*x^21+14705268190698609097*x^20+41290422466186778103*x^19-490944251549093124781*x^18-96119929234231744587*x^17+6808036148668587874985*x^16-4691406368355603244225*x^15-50612527534808676086889*x^14+58149092316611601814993*x^13+217167433576191610063929*x^12-314599068427868144266999*x^11-539775838309110762733863*x^10+909497678806760948664571*x^9+743709457842388599461107*x^8-1423531262458208624750017*x^7-521649653318263355118259*x^6+1137421284439618908826363*x^5+164523909427033273406649*x^4-397993571310868833086561*x^3-30496768521203410790993*x^2+39712837163452766828136*x+5495919443942800603126,-10213673241786008222*x^21+12526963801121439206*x^20+361701445887331199545*x^19-442352707927680850728*x^18-5426688910769463448275*x^17+6599249855089264493564*x^16+44935121551565230762462*x^15-54096258466213311458824*x^14-224364416636498883181052*x^13+265699744804287839619699*x^12+694174467311044987221964*x^11-801653738292268588615020*x^10-1320685285603412928136748*x^9+1470256442572468474698180*x^8+1487416274379188656070001*x^7-1570144912501577898900792*x^6-913262878114728747554342*x^5+883004911908348225151024*x^4+255193607369299181713664*x^3-202872923488238421452465*x^2-17968104636699519357262*x+6198562090409433882573,-8192245939707797474*x^21+18661926236297055769*x^20+271193359979450281038*x^19-631843736202945732023*x^18-3711792632570736609308*x^17+8924640837846986029898*x^16+27017740588956342651150*x^15-68026511626123024536865*x^14-111765719977725110865383*x^13+302493845148346485040841*x^12+258876713536769581066193*x^11-793897404631496603961567*x^10-303254840622982907793407*x^9+1195443873996906251424317*x^8+124049890585061773045921*x^7-974336038343177462742340*x^6+39220261792413577148888*x^5+385996136701663604754918*x^4-27800231743886375886127*x^3-58390717764868416315739*x^2-1099069568061573085710*x+1300189572926117278779,6126704364895413878*x^21-4213957166598404173*x^20-230686071133362717828*x^19+145750882526786991956*x^18+3720612543835700486583*x^17-2112266911797359903974*x^16-33562915187771904594620*x^15+16575556884650541355842*x^14+185459003772334597836826*x^13-75857931250827594886338*x^12-646192850450621002410310*x^11+202426003103014604683090*x^10+1408118328691039721948266*x^9-295138098173149333536814*x^8-1838542890519624205771582*x^7+196569532125342756841686*x^6+1316867101913854665016218*x^5-27800082696242046547766*x^4-439077619500687637973658*x^3-21770298375771492425587*x^2+43736180784713444728537*x+7484251813976433146042,-6277857871607702865*x^21+20212472208016365946*x^20+200142582955663458054*x^19-688567953298953134096*x^18-2594638168257728504798*x^17+9826855258746445411768*x^16+17311208105190822589684*x^15-76169765613728060699670*x^14-60736796242180577615696*x^13+347942601704880357941346*x^12+91465417528298241897674*x^11-953503180783105524055028*x^10+38843556671906399301456*x^9+1538572197153950625406330*x^8-298788772903619967639764*x^7-1396076163222245338496340*x^6+335797299221299386363840*x^5+652834606502527854101092*x^4-135549743078678196535870*x^3-135016233527857691443035*x^2+16157136080424374903828*x+8469572602104574734052,-8104896611272014448*x^21+18096110652676519310*x^20+257664099630166260015*x^19-608198639430803169295*x^18-3307254785861235002677*x^17+8486134682519661846575*x^16+21481872964902972612763*x^15-63392167065183286907425*x^14-69561661676045787628429*x^13+272511280742550922358779*x^12+67221365266637672817207*x^11-674117572505513260318725*x^10+220047968582831063636635*x^9+909032956925667797233951*x^8-707246047841778777704521*x^7-594031106272650366056689*x^6+747008839458039643240175*x^5+146011247210352276648003*x^4-298687457923823737314405*x^3-15873407443364293790989*x^2+27540089651129606721705*x+6122418403696930638918,19819125632863197813*x^21-32434757569871541863*x^20-687955556155338650017*x^19+1104607765104147128153*x^18+10050269533407568841645*x^17-15703998124711414135233*x^16-80350368150973958242727*x^15+120540425891444241707813*x^14+383429096511845380654279*x^13-539683489431446502300907*x^12-1121835388305068998415405*x^11+1422725989577925563545545*x^10+2005364453263705211986125*x^9-2131856535699262041959495*x^8-2137306221920900328480323*x^7+1679727459951572093366163*x^6+1279336572364208166204117*x^5-598242972093899383106239*x^4-382683034063515879341891*x^3+63099449880644728287102*x^2+40078977606261271577228*x+3519339550147590301968,3499308720003021277*x^21+5187539277231728216*x^20-120457435660108697872*x^19-176826440233379678590*x^18+1729072866188565732874*x^17+2537768108168223438796*x^16-13328532083963947926920*x^15-19909508193364587825008*x^14+58844526945246066536008*x^13+92651207731377724904304*x^12-144205337288460972274858*x^11-259443256384293520251068*x^10+159808060828535626448766*x^9+424357358188506086869908*x^8+19502278543954632615238*x^7-379618516295778173417686*x^6-192787752976008170473464*x^5+170503895653904832603584*x^4+139729538318395865962500*x^3-25322659040009190802825*x^2-28956535179545022112570*x-4675314724837395693380,-3857933156048409187*x^21+3842671601844761205*x^20+128959146367186086740*x^19-123364436552323869681*x^18-1789926574131223309707*x^17+1614940452161006637889*x^16+13304728410687509663443*x^15-10949324298902765709173*x^14-56874952499050498136555*x^13+39821725478867829037591*x^12+139139469118066712501141*x^11-68625607318244029541683*x^10-180507023181906074245501*x^9+15749858615850670027405*x^8+97208205584458130774823*x^7+107206961140651851302063*x^6+6503834622147269331081*x^5-128555832262931328170385*x^4-17504547175228866665077*x^3+45582058751042833263882*x^2+2245765211716071222724*x-2646386906022014329139,5838324562377408298*x^21-18404749245712575669*x^20-193267467648426991231*x^19+613331766382758679138*x^18+2654516710618250659564*x^17-8462582363959805791756*x^16-19569968725036561746182*x^15+62187475972155531442196*x^14+84036974752847358008576*x^13-259928079596868766809136*x^12-216380202664916396227364*x^11+606648313419885288995468*x^10+344896383478293540318574*x^9-701083669585537162547464*x^8-372010114817656744772130*x^7+232339296354368906305980*x^6+288491154606729585736198*x^5+174636035397857787501018*x^4-145282783173851421810936*x^3-113233604812895436797418*x^2+29010069444376090245067*x+9151861424464953284195,6655024979165071982*x^21-15656486627805117815*x^20-214845927516757671562*x^19+524732667819880552750*x^18+2820449579387739880290*x^17-7310860236634395870191*x^16-19055613328273105105252*x^15+54679675332739160135638*x^14+67700928794614581659668*x^13-236609220080281296723608*x^12-103295546775272886954752*x^11+595793962966608581870540*x^10-43019097020037938390124*x^9-838287471068203895430556*x^8+335058107387793824565768*x^7+603757198612691596658548*x^6-360573215228071542543573*x^5-180195667233506322357972*x^4+126319530905177842279708*x^3+14057814473380195789145*x^2-8448869466670334301471*x-1053198538483262466801,9217315943071673893*x^21-23519778506567584691*x^20-308348843062182128217*x^19+808947658995676163371*x^18+4280720915178253865719*x^17-11668963550976699559498*x^16-31776302073333473358309*x^15+91570215145630709137407*x^14+135107100828024083782911*x^13-424564792055554593827001*x^12-324750428100079971573985*x^11+1185984687692120681802583*x^10+393532772446768345482351*x^9-1965780218131543036983997*x^8-125645332395215680105901*x^7+1860602146465317095173311*x^6-186561454302285704883829*x^5-940229947610013229051145*x^4+173979454424565855917154*x^3+221246169371121751324200*x^2-39906853191302966617866*x-16529136230626595712652,8888842952000122815*x^21-20988060977532271698*x^20-313895390768117177584*x^19+721919859894613465919*x^18+4685430730770869553998*x^17-10436920508612608083311*x^16-38513190461804356264735*x^15+82339875637091147394702*x^14+190670123616341760433525*x^13-385395135028731584039677*x^12-586153090287583277454151*x^11+1091984292660526966197685*x^10+1118179416322947879309580*x^9-1841693666429422255963831*x^8-1287697170199420244890171*x^7+1763059680364971554870634*x^6+829638435686443050458725*x^5-872085612818782822873237*x^4-254508489219852143026771*x^3+176647335810405035855704*x^2+24819523169154279925075*x-4055114252380248812189]];

E[312,1] = [x, [1,0,1,0,2,0,0,0,1,0,0,0,1,0,2,0,2,0,-4,0,0,0,0,0,-1,0,1,0,6,0,0,0,0,0,0,0,-2,0,1,0,6,0,-12,0,2,0,-4,0,-7,0,2,0,6,0,0,0,-4,0,-8,0,-2,0,0,0,2,0,4,0,0,0,-12,0,-14,0,-1,0,0,0,0,0,1,0,8,0,4,0,6,0,-18,0,0,0,0,0,-8,0,-6,0,0,0,14,0,16,0,0,0,4,0,-2,0,-2,0,-6,0,0,0,1,0,0,0,-11,0,6,0,-12,0,16,0,-12,0,12,0,0,0,2,0,6,0,4,0,-4,0,0,0,12,0,-7,0,10,0,8,0,2,0,0,0,14,0,6,0,0,0,12,0,0,0,-12,0,1,0,-4,0,6,0,0,0,-8,0,20,0,22,0,-2,0,-4,0,0,0,0,0,16,0,2,0,2,0,2,0,-24,0,4,0,0,0,12,0,0,0,0,0,4,0,-12,0,-24,0,0,0,-14,0,2,0,16,0,-1,0,0,0,-26,0,0,0,-14,0,-8,0,0,0,-20,0,26,0,1,0,-14,0,-4,0,8,0,-12,0,0,0,4,0,-6,0,0,0,6,0,16,0,12,0,-18,0,-26,0,-8,0,0,0,0,0,-10,0,0,0,6,0,12,0,-8,0,0,0,-13,0,-6,0,10,0,-16,0,0,0,0,0,0,0,14,0,-4,0,20,0,16,0,-16,0,10,0,0,0,-6,0,0,0,4,0,-8,0,-1,0,-2,0,0,0,-36,0,-2,0,8,0,2,0,-6,0,0,0,0,0,0,0,28,0,22,0,1,0,30,0,-24,0,0,0,-12,0,-3,0,-11,0,-28,0,8,0,6,0,0,0,-26,0,-12,0,6,0,-28,0,16,0,4,0,0,0,-12,0,6,0,0,0,12,0,0,0,22,0,0,0,6,0,0,0,2,0,0,0,-30,0,6,0,0,0,16,0,4,0,28,0,6,0,-4,0,-2,0,0,0,0,0,4,0,2,0,12,0,0,0,-32,0,-7,0,36,0,-36,0,10,0,6,0,0,0,8,0,0,0,34,0,2,0,42,0,24,0,0,0,-20,0,0,0,14,0,0,0,4,0,6,0,36,0,-2,0,0,0,-12,0,-8,0,12,0,-12,0,12,0,0,0,0,0,4,0]];
E[312,2] = [x, [1,0,1,0,-4,0,-4,0,1,0,-2,0,-1,0,-4,0,-6,0,4,0,-4,0,4,0,11,0,1,0,-6,0,8,0,-2,0,16,0,-10,0,-1,0,-4,0,-4,0,-4,0,-6,0,9,0,-6,0,6,0,8,0,4,0,-6,0,-6,0,-4,0,4,0,0,0,4,0,10,0,-2,0,11,0,8,0,0,0,1,0,-10,0,24,0,-6,0,8,0,4,0,8,0,-16,0,-10,0,-2,0,-14,0,16,0,16,0,8,0,10,0,-10,0,-10,0,-16,0,-1,0,24,0,-7,0,-4,0,-24,0,-8,0,-4,0,0,0,-16,0,-4,0,12,0,-12,0,-6,0,2,0,24,0,9,0,8,0,-8,0,-6,0,-32,0,-2,0,6,0,-16,0,-20,0,8,0,2,0,1,0,4,0,-6,0,-44,0,-6,0,12,0,-26,0,-6,0,40,0,12,0,-4,0,16,0,10,0,4,0,20,0,-24,0,0,0,24,0,16,0,4,0,-8,0,4,0,10,0,16,0,-32,0,-2,0,6,0,-8,0,11,0,-22,0,-6,0,8,0,-2,0,24,0,0,0,-6,0,14,0,1,0,-36,0,-4,0,-10,0,-16,0,-8,0,24,0,14,0,40,0,-6,0,-4,0,-24,0,8,0,10,0,20,0,4,0,-22,0,-18,0,8,0,-4,0,4,0,-16,0,16,0,19,0,-10,0,-24,0,24,0,-2,0,-4,0,16,0,-14,0,24,0,16,0,16,0,20,0,6,0,16,0,28,0,12,0,8,0,-24,0,-11,0,10,0,24,0,24,0,-10,0,0,0,-18,0,-10,0,-16,0,-8,0,-16,0,12,0,6,0,-1,0,-4,0,-40,0,24,0,18,0,-3,0,-7,0,8,0,-24,0,-4,0,-24,0,26,0,-24,0,6,0,12,0,-8,0,-18,0,-32,0,-4,0,6,0,-24,0,0,0,0,0,22,0,-16,0,-24,0,-8,0,-4,0,20,0,-10,0,12,0,24,0,40,0,-12,0,0,0,-22,0,-6,0,-66,0,24,0,2,0,-2,0,-2,0,24,0,16,0,40,0,9,0,0,0,-32,0,8,0,0,0,8,0,-8,0,-16,0,-26,0,-6,0,36,0,-36,0,-32,0,-8,0,0,0,-2,0,8,0,44,0,6,0,6,0,10,0,-16,0,40,0,-40,0,-20,0,24,0,36,0,8,0,-40,0,24,0]];
E[312,3] = [x, [1,0,1,0,0,0,0,0,1,0,6,0,-1,0,0,0,2,0,0,0,0,0,4,0,-5,0,1,0,-6,0,-4,0,6,0,0,0,-2,0,-1,0,0,0,4,0,0,0,10,0,-7,0,2,0,-10,0,0,0,0,0,-6,0,-6,0,0,0,0,0,-12,0,4,0,2,0,6,0,-5,0,0,0,-16,0,1,0,6,0,0,0,-6,0,4,0,0,0,-4,0,0,0,14,0,6,0,-6,0,-8,0,0,0,-8,0,-6,0,-2,0,-10,0,0,0,-1,0,0,0,25,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,16,0,20,0,10,0,-6,0,0,0,-7,0,4,0,20,0,2,0,0,0,14,0,-10,0,0,0,-16,0,0,0,18,0,1,0,0,0,18,0,0,0,-6,0,-20,0,-10,0,-6,0,0,0,12,0,0,0,16,0,26,0,0,0,-24,0,16,0,-12,0,0,0,0,0,4,0,0,0,4,0,2,0,0,0,0,0,6,0,-2,0,-4,0,-5,0,-14,0,-22,0,0,0,6,0,0,0,-16,0,-14,0,-10,0,1,0,0,0,0,0,6,0,0,0,24,0,0,0,-26,0,0,0,-6,0,12,0,0,0,4,0,-22,0,-8,0,0,0,-30,0,14,0,-4,0,0,0,-4,0,0,0,0,0,-13,0,14,0,20,0,0,0,6,0,-4,0,0,0,-6,0,0,0,28,0,-8,0,20,0,-26,0,0,0,16,0,-36,0,-8,0,0,0,5,0,-6,0,0,0,28,0,-2,0,0,0,-34,0,-10,0,-24,0,0,0,0,0,-4,0,-34,0,-1,0,32,0,0,0,0,0,2,0,-19,0,25,0,0,0,24,0,0,0,0,0,26,0,0,0,6,0,-8,0,0,0,-18,0,0,0,4,0,30,0,8,0,0,0,0,0,-2,0,0,0,-12,0,4,0,0,0,-12,0,-18,0,16,0,0,0,0,0,20,0,0,0,-6,0,10,0,-10,0,0,0,-6,0,-2,0,30,0,0,0,0,0,-16,0,-7,0,16,0,0,0,4,0,-4,0,0,0,20,0,0,0,-18,0,2,0,40,0,-16,0,0,0,-24,0,0,0,14,0,24,0,0,0,-10,0,30,0,2,0,0,0,0,0,12,0,-16,0,40,0,-12,0,0,0,0,0,-36,0]];
E[312,4] = [x, [1,0,-1,0,-2,0,4,0,1,0,0,0,1,0,2,0,2,0,8,0,-4,0,8,0,-1,0,-1,0,-2,0,4,0,0,0,-8,0,-10,0,-1,0,2,0,-4,0,-2,0,-12,0,9,0,-2,0,6,0,0,0,-8,0,0,0,-2,0,4,0,-2,0,8,0,-8,0,-12,0,10,0,1,0,0,0,-8,0,1,0,0,0,-4,0,2,0,-14,0,4,0,-4,0,-16,0,2,0,0,0,6,0,8,0,8,0,4,0,-18,0,10,0,18,0,-16,0,1,0,8,0,-11,0,-2,0,12,0,0,0,4,0,12,0,32,0,2,0,2,0,4,0,12,0,0,0,4,0,-9,0,-18,0,-12,0,2,0,-8,0,-2,0,-6,0,32,0,-16,0,0,0,12,0,1,0,8,0,-18,0,-4,0,0,0,20,0,-10,0,2,0,20,0,0,0,-4,0,-24,0,-14,0,2,0,14,0,8,0,-8,0,-8,0,-4,0,8,0,0,0,-4,0,12,0,8,0,16,0,-10,0,2,0,20,0,-1,0,0,0,-10,0,0,0,26,0,24,0,8,0,-20,0,-14,0,-1,0,-18,0,8,0,0,0,28,0,0,0,4,0,-14,0,-40,0,-2,0,-16,0,-12,0,14,0,-18,0,-20,0,-4,0,0,0,-10,0,4,0,-30,0,-4,0,16,0,8,0,-13,0,-2,0,-2,0,0,0,0,0,8,0,-16,0,-6,0,4,0,-32,0,-8,0,24,0,10,0,-8,0,-10,0,0,0,-4,0,16,0,-1,0,18,0,-48,0,16,0,-10,0,-16,0,-30,0,-18,0,0,0,8,0,16,0,20,0,30,0,-1,0,-6,0,24,0,-8,0,-20,0,45,0,11,0,-20,0,8,0,2,0,24,0,22,0,-12,0,-2,0,-16,0,0,0,12,0,0,0,-4,0,22,0,16,0,-12,0,16,0,-18,0,-32,0,-22,0,4,0,-2,0,0,0,10,0,-2,0,0,0,0,0,-4,0,-4,0,22,0,-12,0,-2,0,-8,0,0,0,12,0,18,0,-4,0,64,0,8,0,9,0,4,0,28,0,18,0,-6,0,0,0,12,0,-8,0,-6,0,-2,0,-10,0,-4,0,8,0,-12,0,32,0,2,0,0,0,-8,0,6,0,4,0,-10,0,-32,0,-4,0,28,0,16,0,12,0,-4,0,0,0,-48,0,-24,0]];
E[312,5] = [x, [1,0,-1,0,4,0,0,0,1,0,-2,0,-1,0,-4,0,2,0,8,0,0,0,4,0,11,0,-1,0,-6,0,-4,0,2,0,0,0,6,0,1,0,-12,0,4,0,4,0,-6,0,-7,0,-2,0,-2,0,-8,0,-8,0,-14,0,10,0,0,0,-4,0,-4,0,-4,0,2,0,-2,0,-11,0,0,0,-8,0,1,0,14,0,8,0,6,0,0,0,0,0,4,0,32,0,-10,0,-2,0,-6,0,-8,0,0,0,0,0,10,0,-6,0,-18,0,16,0,-1,0,0,0,-7,0,12,0,24,0,-8,0,-4,0,8,0,0,0,-4,0,-12,0,-12,0,6,0,2,0,-24,0,7,0,-16,0,20,0,2,0,-16,0,-2,0,2,0,0,0,24,0,8,0,18,0,1,0,8,0,18,0,0,0,14,0,-12,0,6,0,-10,0,24,0,-4,0,0,0,0,0,26,0,4,0,12,0,-8,0,4,0,0,0,-48,0,4,0,-16,0,-20,0,-2,0,16,0,0,0,2,0,-2,0,28,0,11,0,-6,0,10,0,0,0,-2,0,-24,0,8,0,2,0,-18,0,-1,0,-28,0,-8,0,-14,0,8,0,-8,0,-8,0,14,0,0,0,-6,0,-20,0,-8,0,0,0,26,0,8,0,0,0,-22,0,-2,0,-4,0,20,0,20,0,-32,0,0,0,-13,0,10,0,0,0,-56,0,2,0,-4,0,0,0,6,0,40,0,-12,0,8,0,-12,0,6,0,0,0,-12,0,12,0,0,0,16,0,-11,0,-10,0,0,0,-28,0,6,0,-16,0,30,0,18,0,8,0,0,0,-16,0,-12,0,6,0,1,0,-28,0,8,0,0,0,-30,0,45,0,7,0,-8,0,-8,0,-12,0,0,0,26,0,-24,0,6,0,-16,0,8,0,30,0,0,0,4,0,-26,0,8,0,-8,0,-32,0,-10,0,0,0,0,0,4,0,4,0,-12,0,6,0,12,0,0,0,56,0,12,0,-24,0,26,0,-6,0,22,0,0,0,-2,0,14,0,-2,0,24,0,32,0,0,0,-7,0,8,0,0,0,16,0,-8,0,24,0,-20,0,0,0,-10,0,-2,0,28,0,-16,0,16,0,0,0,0,0,2,0,-8,0,88,0,-2,0,14,0,-6,0,0,0,-40,0,28,0,-24,0,0,0,-12,0,-8,0,0,0,36,0]];
E[312,6] = [x, [1,0,-1,0,0,0,-4,0,1,0,-2,0,-1,0,0,0,-6,0,-4,0,4,0,4,0,-5,0,-1,0,10,0,-8,0,2,0,0,0,-2,0,1,0,0,0,-4,0,0,0,2,0,9,0,6,0,-2,0,0,0,4,0,10,0,10,0,-4,0,0,0,8,0,-4,0,2,0,-10,0,5,0,8,0,8,0,1,0,6,0,0,0,-10,0,-12,0,4,0,8,0,0,0,-2,0,-2,0,2,0,-16,0,0,0,-16,0,-6,0,2,0,-18,0,0,0,-1,0,24,0,-7,0,0,0,0,0,16,0,4,0,8,0,16,0,0,0,0,0,-12,0,-2,0,2,0,0,0,-9,0,-12,0,-24,0,-6,0,0,0,14,0,2,0,-16,0,4,0,0,0,-6,0,1,0,-4,0,-22,0,20,0,-10,0,4,0,-10,0,-10,0,0,0,12,0,4,0,16,0,-22,0,0,0,-8,0,16,0,-8,0,-40,0,0,0,4,0,8,0,12,0,-2,0,0,0,32,0,10,0,6,0,8,0,-5,0,-22,0,26,0,-8,0,22,0,0,0,-8,0,2,0,-26,0,-1,0,0,0,4,0,-6,0,-24,0,-8,0,0,0,22,0,8,0,10,0,12,0,0,0,12,0,10,0,-28,0,-4,0,10,0,-2,0,-8,0,32,0,-4,0,0,0,0,0,19,0,2,0,-12,0,0,0,2,0,-4,0,16,0,-2,0,0,0,8,0,16,0,-12,0,6,0,0,0,32,0,-20,0,16,0,24,0,5,0,6,0,-8,0,32,0,-2,0,0,0,14,0,18,0,16,0,-8,0,0,0,-28,0,-18,0,1,0,-16,0,0,0,-24,0,-22,0,-3,0,7,0,0,0,8,0,0,0,8,0,-6,0,0,0,-10,0,-12,0,-16,0,6,0,0,0,-4,0,30,0,-24,0,-8,0,0,0,-18,0,-16,0,4,0,8,0,0,0,4,0,14,0,0,0,-40,0,0,0,12,0,-24,0,-22,0,2,0,30,0,-40,0,-2,0,-10,0,-2,0,0,0,-16,0,-8,0,9,0,24,0,0,0,12,0,12,0,0,0,24,0,0,0,-18,0,6,0,-8,0,-4,0,0,0,-32,0,-32,0,-14,0,8,0,20,0,-2,0,30,0,2,0,16,0,0,0,-8,0,-4,0,0,0,-60,0,0,0,-8,0,0,0]];

E[313,1] = [x^2-x-1, [1,x,-x+2,x-1,x+1,x-1,2*x,-2*x+1,-3*x+2,2*x+1,-2*x+1,2*x-3,-3*x+5,2*x+2,1,-3*x,2*x+1,-x-3,-2*x,x,2*x-2,-x-2,x+2,-3*x+4,3*x-3,2*x-3,-2*x+1,2,-8,x,3*x+5,x-5,-3*x+4,3*x+2,4*x+2,2*x-5,-2*x-7,-2*x-2,-8*x+13,-3*x-1,4*x+4,2,-x-10,x-3,-4*x-1,3*x+1,-4*x+1,-3*x+3,4*x-3,3,x,5*x-8,-10*x+7,-x-2,-3*x-1,-2*x-4,-2*x+2,-8*x,-4*x+3,x-1,3,8*x+3,-2*x-6,2*x+1,-x+2,x-3,10*x,x+1,-x+3,6*x+4,3*x-5,-x+8,3*x-10,-9*x-2,6*x-9,-2,-2*x-4,5*x-8,-1,-6*x-3,6*x-2,8*x+4,4*x+1,-2*x+4,5*x+3,-11*x-1,8*x-16,5,7*x-3,-5*x-4,4*x-6,2*x-1,-2*x+7,-3*x-4,-4*x-2,6*x-11,2*x-4,x+4,-x+8,-3*x+6,-3*x+12,x+1,10*x+1,-7*x+11,2*x,-3*x-10,3*x+7,x-3,-5*x+7,-4*x-3,5*x-12,-6*x-6,4*x-9,-2,4*x+3,-8*x+8,-12*x+19,-x-4,6*x+4,-2*x+1,-6,3*x,4,5*x-2,-2*x-5,-8*x-2,-13,x+12,9*x-19,x-1,-8*x+17,4*x-7,-4*x-4,10*x+10,-3*x-1,-4*x-3,-2*x+9,2*x-1,5*x+9,2*x+2,-5*x+6,-2*x+3,-7*x+11,3*x+9,-8*x-8,-7*x+3,7*x-10,-7*x+5,12*x-10,-3*x+6,-5*x+8,2*x+4,-5*x-4,-6*x-2,11*x+8,13*x-21,-14*x+7,-x,-17*x+24,-3*x-4,6*x+2,4*x+6,9*x-13,4*x,-2*x+1,5*x+4,-3*x+16,2*x-6,-21*x+21,8*x+5,2*x+6,-10*x+9,3*x-1,-8*x+8,6,3*x+6,-7*x+10,4*x+7,-6*x+6,-x-3,-6*x-3,-2*x+4,-3*x+6,-5*x,-11*x-9,5*x-2,-4*x-3,x-5,-2*x-4,-6*x-4,8*x-14,x,-x-10,-2*x+2,-3*x+5,-3*x+7,16*x-9,7*x-1,12*x,3*x-9,10*x-10,9*x-3,-16*x,1,12*x+8,11*x+10,-7*x+1,-6*x+9,2*x+4,2*x+2,-9*x-1,7*x-17,8*x-13,10*x+3,-12*x-11,5,16*x+6,2*x-5,13*x-23,-x-2,x-1,-7*x+5,4*x+14,-8*x+2,6*x-15,-5*x+4,-9*x+13,2*x-4,11*x-7,7*x+4,2*x-6,16*x-8,12*x-8,7*x-12,-7*x-3,3*x-7,x-2,10*x+6,6*x+7,-3*x,-3*x-22,-6*x,14*x-13,3*x-3,5*x+1,4*x,-4*x+6,-13*x-1,3*x-2,-7*x-2,6*x+5,-6*x+4,-5*x,-13*x,2*x+1,9*x-1,x+16,-10*x+9,-18*x-4,2*x-3,24*x-16,9*x-8,-9*x+12,-5*x+10,-13*x-3,-8*x-4,10*x-13,10,-16*x-1,-4*x-3,x-15,-9*x-6,10*x-16,7*x-2,3*x-9,3*x-4,-15*x-2,14*x+5,-18*x+1,-8*x-6,12*x-12,x-5,-24*x+17,-5*x+8,-2*x,4*x-7,16*x+8,14*x-13,8*x-12,-16*x-8,6*x-10,-10*x+13,-8*x+17,-3*x+7,-5*x-1,16*x-3,5,2*x+12,-4*x+7,-9*x+15,-22*x-2,3*x-5,-15*x+27,6*x+6,3*x+3,-9*x-5,3*x+9,-4*x+2,9*x-8,19*x+11,-8*x-1,-18*x+29,1,-7*x-14,-10*x-8,-x+1,-10*x,7*x-17,16*x-8,5*x+3,-4*x+11,8*x+6,-6*x-4,-2*x+8,15*x-24,-4*x+9,-12*x+19,-12*x-4,-6*x-8,-x-2,14*x-7,x+3,23*x-8,13*x-3,20*x+10,-6,-12*x+6,-21,13*x-22,3*x+2,-13*x-1,8*x+2,-12*x+8,21*x-8,x+2,2*x+3,-21*x+5,-16*x+24,-17*x+9,6*x,-7*x+11,9*x-7,4*x-7,3*x-7,x-2,-3*x+10,2*x+2,-6,-12*x+13,6*x+7,4*x-15,-9*x-6,6*x-12,-6*x+10,-4*x-7,3*x-3,-22*x+23,-9*x-3,-16*x-4,-20*x-11,-6*x-20,7*x-9,-6*x+23,-7*x-4,3*x-8,2*x+9,24*x-40,-6*x-2,23*x-22,-2*x-2,13*x-26,-6*x+8,-4*x-21,-11*x+23,-8*x-6,-11*x-1,31*x-17,-4*x+6,24*x-9,2*x-3,7*x+4,2*x-11,-25*x+42,7*x+16,-x-1,8*x-9,5*x-13,12*x+12,-4,-9,12*x-5,10,-9*x+16,12*x-15,10*x+4,-16*x-16,16*x-3,-x-2,-20*x-4,20*x+12,-11*x+20,x+9,-2*x-8,-6*x-7,9*x+5,17*x-28,-4*x+13,6*x+2,-9*x+31,2,20*x-25,-10*x-9,x+14,-4*x+27,3*x+3,-5*x+8,6*x,7*x-4,-18*x+29,-23*x-12,-10*x+30,3*x+6,10*x-19,22*x+16,-8,7*x-12,-6*x-2,-10*x+13,-12*x+12,5*x+5,5*x-18,1,8*x-4,-12*x+17,11*x+4,18*x+4,22*x-32,6*x+4,9*x-3,-9*x+6,-12*x-4,-9*x+13,-13*x+21,4*x-9,2*x-2,-2*x+6,2*x+6,4*x+11,-4*x-3,3*x+1,-4*x,-4*x+2,-x-9,24*x,3*x+5,4*x+12,-6*x+14,19*x-31,20*x+20,-10*x-7,-21*x+28,-2*x+11,21*x-8,-x+1,-6,4*x+2,-11*x+44,13*x+6,29*x-16,x-5,17*x-29,-25*x-3,4*x-2,-6*x+6,-2,x+14,-4*x+14,-6*x+3,22*x-35,6*x+5,-19*x-6,4*x-4,-16*x-8,2*x-4,6*x+7,-24*x-9,-4*x+6,x+3,-3,-5*x+3]];
E[313,2] = [x^11+8*x^10+16*x^9-26*x^8-121*x^7-62*x^6+190*x^5+196*x^4-76*x^3-122*x^2+2*x+17, [13,13*x,-29*x^10-184*x^9-159*x^8+1023*x^7+1831*x^6-1251*x^5-3525*x^4+133*x^3+2052*x^2+138*x-290,13*x^2-26,3*x^10+15*x^9-10*x^8-126*x^7-37*x^6+341*x^5+132*x^4-302*x^3-76*x^2+31*x+4,48*x^10+305*x^9+269*x^8-1678*x^7-3049*x^6+1985*x^5+5817*x^4-152*x^3-3400*x^2-232*x+493,73*x^10+482*x^9+502*x^8-2559*x^7-5238*x^6+2582*x^5+9959*x^4+577*x^3-5875*x^2-602*x+834,13*x^3-52*x,-52*x^10-351*x^9-390*x^8+1846*x^7+3939*x^6-1794*x^5-7488*x^4-507*x^3+4524*x^2+455*x-715,-9*x^10-58*x^9-48*x^8+326*x^7+527*x^6-438*x^5-890*x^4+152*x^3+397*x^2-2*x-51,-8*x^10-66*x^9-125*x^8+271*x^7+1013*x^6+135*x^5-1860*x^4-850*x^3+1117*x^2+368*x-197,-21*x^10-131*x^9-112*x^8+713*x^7+1299*x^6-801*x^5-2510*x^4-18*x^3+1520*x^2+121*x-236,73*x^10+482*x^9+502*x^8-2546*x^7-5199*x^6+2517*x^5+9751*x^4+655*x^3-5641*x^2-641*x+795,-102*x^10-666*x^9-661*x^8+3595*x^7+7108*x^6-3911*x^5-13731*x^4-327*x^3+8304*x^2+688*x-1241,130*x^10+858*x^9+884*x^8-4589*x^7-9295*x^6+4797*x^5+17823*x^4+754*x^3-10738*x^2-1001*x+1599,13*x^4-78*x^2+52,-39*x^10-260*x^9-273*x^8+1391*x^7+2821*x^6-1482*x^5-5304*x^4-78*x^3+3016*x^2+143*x-403,65*x^10+442*x^9+494*x^8-2353*x^7-5018*x^6+2392*x^5+9685*x^4+572*x^3-5889*x^2-611*x+884,-36*x^10-232*x^9-218*x^8+1252*x^7+2368*x^6-1349*x^5-4405*x^4-211*x^3+2459*x^2+395*x-373,8*x^10+66*x^9+112*x^8-310*x^7-922*x^6+138*x^5+1652*x^4+317*x^3-948*x^2-95*x+145,-64*x^10-437*x^9-506*x^8+2285*x^7+5062*x^6-2131*x^5-9784*x^4-820*x^3+6063*x^2+617*x-939,-2*x^10+3*x^9+63*x^8+45*x^7-361*x^6-340*x^5+718*x^4+509*x^3-608*x^2-181*x+136,16*x^10+106*x^9+107*x^8-581*x^7-1142*x^6+692*x^5+2225*x^4-120*x^3-1389*x^2+31*x+186,-59*x^10-386*x^9-371*x^8+2114*x^7+3995*x^6-2490*x^5-7536*x^4+228*x^3+4359*x^2+270*x-629,-156*x^10-1027*x^9-1040*x^8+5551*x^7+11102*x^6-6045*x^5-21580*x^4-585*x^3+13247*x^2+1170*x-2041,-102*x^10-666*x^9-648*x^8+3634*x^7+7043*x^6-4119*x^5-13653*x^4-93*x^3+8265*x^2+649*x-1241,68*x^10+457*x^9+497*x^8-2427*x^7-5081*x^6+2473*x^5+9687*x^4+478*x^3-5770*x^2-554*x+823,4*x^10+7*x^9-61*x^8-116*x^7+241*x^6+485*x^5-253*x^4-602*x^3-6*x^2+167*x+66,18*x^10+116*x^9+109*x^8-639*x^7-1236*x^6+720*x^5+2495*x^4+99*x^3-1587*x^2-152*x+245,-182*x^10-1196*x^9-1209*x^8+6435*x^7+12857*x^6-6877*x^5-24726*x^4-858*x^3+14859*x^2+1339*x-2210,-47*x^10-300*x^9-268*x^8+1662*x^7+3054*x^6-2010*x^5-5981*x^4+190*x^3+3678*x^2+251*x-561,13*x^5-104*x^3+156*x,105*x^10+694*x^9+716*x^8-3734*x^7-7587*x^6+3966*x^5+14760*x^4+597*x^3-9017*x^2-787*x+1349,52*x^10+351*x^9+377*x^8-1898*x^7-3900*x^6+2106*x^5+7566*x^4+52*x^3-4615*x^2-325*x+663,-14*x^10-83*x^9-40*x^8+497*x^7+593*x^6-794*x^5-915*x^4+430*x^3+190*x^2-32*x+16,26*x^10+156*x^9+117*x^8-845*x^7-1456*x^6+923*x^5+2808*x^4+65*x^3-1729*x^2-156*x+325,16*x^10+132*x^9+237*x^8-607*x^7-2026*x^6+107*x^5+4019*x^4+1167*x^3-2663*x^2-567*x+433,56*x^10+358*x^9+316*x^8-1988*x^7-3581*x^6+2435*x^5+6845*x^4-277*x^3-3997*x^2-301*x+612,70*x^10+454*x^9+421*x^8-2511*x^7-4655*x^6+3008*x^5+8878*x^4-187*x^3-5097*x^2-399*x+713,20*x^10+100*x^9-6*x^8-606*x^7-420*x^6+1008*x^5+529*x^4-644*x^3+87*x^2+133*x-34,90*x^10+580*x^9+519*x^8-3260*x^7-5907*x^6+4198*x^5+11604*x^4-935*x^3-7142*x^2-175*x+1095,75*x^10+518*x^9+621*x^8-2682*x^7-6099*x^6+2376*x^5+11724*x^4+1199*x^3-7191*x^2-811*x+1088,-63*x^10-406*x^9-349*x^8+2347*x^7+4118*x^6-3300*x^5-8323*x^4+1116*x^3+5197*x^2-40*x-734,35*x^10+227*x^9+243*x^8-1145*x^7-2490*x^6+828*x^5+4621*x^4+940*x^3-2659*x^2-596*x+428,45*x^10+277*x^9+201*x^8-1578*x^7-2492*x^6+2138*x^5+4580*x^4-656*x^3-2336*x^2+10*x+307,-22*x^10-149*x^9-165*x^8+794*x^7+1684*x^6-815*x^5-3256*x^4-173*x^3+1983*x^2+154*x-272,-224*x^10-1471*x^9-1459*x^8+8017*x^7+15702*x^6-9116*x^5-30435*x^4+29*x^3+18458*x^2+1217*x-2786,128*x^10+835*x^9+804*x^8-4570*x^7-8746*x^6+5276*x^5+16812*x^4-89*x^3-9968*x^2-753*x+1475,51*x^10+333*x^9+298*x^8-1908*x^7-3385*x^6+2651*x^5+6677*x^4-935*x^3-4126*x^2+33*x+627,221*x^10+1456*x^9+1495*x^8-7774*x^7-15717*x^6+8060*x^5+29991*x^4+1391*x^3-17862*x^2-1729*x+2652,173*x^10+1125*x^9+1083*x^8-6135*x^7-11810*x^6+6946*x^5+22757*x^4+165*x^3-13552*x^2-1133*x+2003,4*x^10+20*x^9-22*x^8-207*x^7-45*x^6+693*x^5+397*x^4-797*x^3-513*x^2+245*x+144,116*x^10+762*x^9+766*x^8-4092*x^7-8091*x^6+4380*x^5+15257*x^4+430*x^3-8793*x^2-734*x+1225,-87*x^10-591*x^9-659*x^8+3147*x^7+6689*x^6-3233*x^5-12850*x^4-602*x^3+7742*x^2+687*x-1156,-131*x^10-876*x^9-937*x^8+4696*x^7+9784*x^6-4889*x^5-19154*x^4-1000*x^3+11942*x^2+1190*x-1843,179*x^10+1207*x^9+1310*x^8-6465*x^7-13483*x^6+6809*x^5+26076*x^4+952*x^3-15953*x^2-1318*x+2414,-170*x^10-1123*x^9-1171*x^8+5970*x^7+12254*x^6-6033*x^5-23509*x^4-1416*x^3+14204*x^2+1463*x-2129,-28*x^10-179*x^9-171*x^8+942*x^7+1836*x^6-925*x^5-3429*x^4-219*x^3+2044*x^2+209*x-306,-186*x^10-1229*x^9-1265*x^8+6590*x^7+13305*x^6-6985*x^5-25513*x^4-880*x^3+15372*x^2+1419*x-2341,-13*x^9-65*x^8+13*x^7+429*x^6+260*x^5-832*x^4-481*x^3+611*x^2+156*x-104,156*x^10+1014*x^9+975*x^8-5564*x^7-10764*x^6+6409*x^5+21255*x^4+91*x^3-13286*x^2-1105*x+2106,76*x^10+484*x^9+440*x^8-2633*x^7-4924*x^6+2949*x^5+9402*x^4+106*x^3-5483*x^2-467*x+799,29*x^10+210*x^9+276*x^8-1101*x^7-2663*x^6+1030*x^5+5397*x^4+426*x^3-3742*x^2-307*x+693,13*x^6-130*x^4+312*x^2-104,-148*x^10-948*x^9-863*x^8+5176*x^7+9569*x^6-5933*x^5-18017*x^4+83*x^3+10219*x^2+815*x-1441,-146*x^10-964*x^9-1004*x^8+5118*x^7+10476*x^6-5190*x^5-19983*x^4-1037*x^3+12023*x^2+1139*x-1785,-247*x^10-1625*x^9-1638*x^8+8775*x^7+17433*x^6-9568*x^5-33501*x^4-728*x^3+20033*x^2+1586*x-2951,13*x^10+65*x^9-390*x^7-312*x^6+650*x^5+468*x^4-507*x^3-13*x^2+273*x-78,117*x^10+728*x^9+572*x^8-4108*x^7-6929*x^6+5317*x^5+13351*x^4-1092*x^3-7709*x^2-351*x+1092,29*x^10+184*x^9+133*x^8-1101*x^7-1662*x^6+1745*x^5+3174*x^4-874*x^3-1740*x^2+44*x+238,124*x^10+828*x^9+891*x^8-4402*x^7-9234*x^6+4440*x^5+17923*x^4+1137*x^3-11145*x^2-1284*x+1760,-182*x^10-1183*x^9-1157*x^8+6396*x^7+12571*x^6-6916*x^5-24401*x^4-897*x^3+14794*x^2+1495*x-2210,-11*x^10-81*x^9-128*x^8+319*x^7+985*x^6+184*x^5-1316*x^4-886*x^3+257*x^2+324*x+85,4*x^10-19*x^9-191*x^8-90*x^7+1099*x^6+979*x^5-1969*x^4-1447*x^3+1385*x^2+401*x-272,13*x^10+117*x^9+260*x^8-442*x^7-2067*x^6-455*x^5+4043*x^4+1703*x^3-2730*x^2-559*x+429,-18*x^10-116*x^9-96*x^8+691*x^7+1171*x^6-1097*x^5-2443*x^4+681*x^3+1613*x^2-290*x-206,26*x^10+208*x^9+364*x^8-923*x^7-3068*x^6+5824*x^4+2015*x^3-3679*x^2-936*x+572,-106*x^10-699*x^9-691*x^8+3815*x^7+7348*x^6-4422*x^5-13907*x^4+223*x^3+8141*x^2+573*x-1190,48*x^10+344*x^9+451*x^8-1769*x^7-4310*x^6+1504*x^5+8508*x^4+927*x^3-5519*x^2-661*x+818,-76*x^10-458*x^9-310*x^8+2620*x^7+4092*x^6-3547*x^5-7868*x^4+973*x^3+4469*x^2+116*x-630,91*x^10+585*x^9+559*x^8-3133*x^7-6084*x^6+3276*x^5+11596*x^4+520*x^3-6955*x^2-676*x+1131,-140*x^10-921*x^9-920*x^8+4983*x^7+9778*x^6-5496*x^5-18575*x^4-302*x^3+10805*x^2+915*x-1530,-110*x^10-719*x^9-695*x^8+3970*x^7+7640*x^6-4777*x^5-15123*x^4+552*x^3+9564*x^2+367*x-1516,46*x^10+295*x^9+280*x^8-1594*x^7-3098*x^6+1736*x^5+6067*x^4+149*x^3-3787*x^2-296*x+603,-4*x^10-7*x^9+100*x^8+259*x^7-384*x^6-1291*x^5+175*x^4+1564*x^3+201*x^2-323*x+12,98*x^10+659*x^9+709*x^8-3505*x^7-7206*x^6+3647*x^5+13464*x^4+409*x^3-7726*x^2-608*x+1071,89*x^10+575*x^9+531*x^8-3153*x^7-5808*x^6+3755*x^5+10871*x^4-453*x^3-6224*x^2-389*x+890,-49*x^10-323*x^9-361*x^8+1655*x^7+3720*x^6-1349*x^5-7356*x^4-1017*x^3+4890*x^2+720*x-867,-215*x^10-1400*x^9-1372*x^8+7587*x^7+14889*x^6-8340*x^5-28934*x^4-669*x^3+17723*x^2+1544*x-2774,-83*x^10-519*x^9-408*x^8+2953*x^7+4928*x^6-3970*x^5-9476*x^4+1084*x^3+5500*x^2+217*x-765,-81*x^10-548*x^9-627*x^8+2817*x^7+6212*x^6-2369*x^5-11598*x^4-1596*x^3+6667*x^2+1113*x-849,-5*x^10-25*x^9+8*x^8+184*x^7+105*x^6-460*x^5-311*x^4+551*x^3+248*x^2-290*x+2,-13*x^10-91*x^9-104*x^8+507*x^7+1079*x^6-598*x^5-2197*x^4-52*x^3+1404*x^2+117*x-221,321*x^10+2125*x^9+2193*x^8-11402*x^7-23004*x^6+12125*x^5+43933*x^4+1434*x^3-26111*x^2-2338*x+3808,274*x^10+1825*x^9+1938*x^8-9714*x^7-20093*x^6+9920*x^5+38524*x^4+2001*x^3-23213*x^2-2165*x+3416,-71*x^10-472*x^9-500*x^8+2514*x^7+5222*x^6-2528*x^5-10105*x^4-696*x^3+6145*x^2+679*x-918,186*x^10+1229*x^9+1278*x^8-6525*x^7-13305*x^6+6595*x^5+25201*x^4+1465*x^3-14943*x^2-1588*x+2289,-75*x^10-518*x^9-582*x^8+2786*x^7+5813*x^6-3013*x^5-10931*x^4-250*x^3+6255*x^2+525*x-867,-3*x^10-15*x^9+10*x^8+178*x^7+206*x^6-601*x^5-1081*x^4+640*x^3+1181*x^2-343*x-147,13*x^9+52*x^8-78*x^7-442*x^6+91*x^5+1235*x^4+104*x^3-1261*x^2-130*x+325,80*x^10+530*x^9+548*x^8-2853*x^7-5762*x^6+3096*x^5+11047*x^4+167*x^3-6464*x^2-443*x+839,-259*x^10-1685*x^9-1637*x^8+9123*x^7+17672*x^6-10113*x^5-33743*x^4-404*x^3+19973*x^2+1657*x-2941,279*x^10+1850*x^9+1917*x^8-9937*x^7-20107*x^6+10627*x^5+38562*x^4+1047*x^3-23058*x^2-1732*x+3297,192*x^10+1246*x^9+1193*x^8-6829*x^7-13145*x^6+7875*x^5+25725*x^4-23*x^3-15797*x^2-1162*x+2414,-209*x^10-1409*x^9-1574*x^8+7387*x^7+15946*x^6-6982*x^5-30607*x^4-2560*x^3+18689*x^2+1996*x-2818,-166*x^10-1090*x^9-1076*x^8+5945*x^7+11572*x^6-6783*x^5-22306*x^4+23*x^3+13418*x^2+993*x-1972,43*x^10+293*x^9+316*x^8-1637*x^7-3373*x^6+2045*x^5+6975*x^4-355*x^3-4712*x^2-67*x+703,-31*x^10-181*x^9-109*x^8+1016*x^7+1535*x^6-1266*x^5-2924*x^4+174*x^3+1613*x^2+126*x-167,191*x^10+1280*x^9+1387*x^8-6787*x^7-14255*x^6+6756*x^5+27371*x^4+1928*x^3-16595*x^2-1922*x+2560,172*x^10+1159*x^9+1290*x^8-6067*x^7-13011*x^6+5736*x^5+24676*x^4+1986*x^3-14792*x^2-1581*x+2227,-336*x^10-2226*x^9-2312*x^8+11941*x^7+24307*x^6-12582*x^5-46881*x^4-1939*x^3+28337*x^2+2560*x-4231,-233*x^10-1568*x^9-1689*x^8+8408*x^7+17425*x^6-8904*x^5-33626*x^4-1145*x^3+20532*x^2+1722*x-3175,-241*x^10-1621*x^9-1775*x^8+8601*x^7+18217*x^6-8548*x^5-35174*x^4-2580*x^3+21363*x^2+2610*x-3203,237*x^10+1549*x^9+1550*x^8-8316*x^7-16573*x^6+8791*x^5+31904*x^4+1284*x^3-19277*x^2-1789*x+2890,-13*x^10-65*x^9+39*x^8+507*x^7+91*x^6-1300*x^5-78*x^4+1222*x^3-286*x^2-221*x+52,9*x^10+45*x^9-4*x^8-274*x^7-189*x^6+451*x^5+279*x^4-282*x^3-33*x^2+54*x-14,198*x^10+1263*x^9+1134*x^8-6964*x^7-12868*x^6+8284*x^5+25131*x^4-666*x^3-15494*x^2-905*x+2396,259*x^10+1711*x^9+1754*x^8-9201*x^7-18517*x^6+9827*x^5+35576*x^4+1236*x^3-21273*x^2-1969*x+3162,-379*x^10-2493*x^9-2550*x^8+13318*x^7+26874*x^6-13847*x^5-51321*x^4-2325*x^3+30553*x^2+3004*x-4570,351*x^10+2327*x^9+2431*x^8-12441*x^7-25454*x^6+12922*x^5+48971*x^4+2327*x^3-29562*x^2-2782*x+4420,-116*x^10-762*x^9-766*x^8+4118*x^7+8156*x^6-4601*x^5-15699*x^4+181*x^3+9456*x^2+292*x-1290,-234*x^10-1521*x^9-1508*x^8+8112*x^7+16081*x^6-8385*x^5-30485*x^4-1430*x^3+17927*x^2+1794*x-2652,122*x^10+792*x^9+759*x^8-4331*x^7-8347*x^6+4932*x^5+16301*x^4+112*x^3-9985*x^2-724*x+1519,-30*x^10-176*x^9-121*x^8+948*x^7+1553*x^6-1018*x^5-2828*x^4-87*x^3+1449*x^2+145*x-170,115*x^10+718*x^9+570*x^8-4063*x^7-6874*x^6+5367*x^5+13328*x^4-1428*x^3-7901*x^2-168*x+1137,-22*x^10-188*x^9-347*x^8+846*x^7+2828*x^6-113*x^5-5258*x^4-1538*x^3+3231*x^2+635*x-493,-83*x^10-558*x^9-642*x^8+2823*x^7+6319*x^6-2176*x^5-11686*x^4-1841*x^3+6709*x^2+1179*x-960,13*x^7-156*x^5+520*x^3-416*x,25*x^10+164*x^9+155*x^8-920*x^7-1721*x^6+1130*x^5+3323*x^4-12*x^3-1799*x^2-227*x+250,236*x^10+1505*x^9+1328*x^8-8339*x^7-15109*x^6+10103*x^5+29091*x^4-1029*x^3-17241*x^2-1145*x+2516,-243*x^10-1605*x^9-1647*x^8+8633*x^7+17414*x^6-9200*x^5-33598*x^4-1317*x^3+20365*x^2+2104*x-3145,-6*x^10-56*x^9-110*x^8+278*x^7+932*x^6-175*x^5-1941*x^4-267*x^3+1361*x^2+81*x-216,-111*x^10-763*x^9-891*x^8+4025*x^7+8935*x^6-3959*x^5-17546*x^4-955*x^3+11184*x^2+712*x-1747,351*x^10+2314*x^9+2353*x^8-12454*x^7-24882*x^6+13429*x^5+47684*x^4+1261*x^3-28548*x^2-2457*x+4199,-26*x^10-182*x^9-208*x^8+1001*x^7+2106*x^6-1170*x^5-4134*x^4-26*x^3+2509*x^2+247*x-364,-143*x^10-910*x^9-806*x^8+5057*x^7+9256*x^6-6214*x^5-18187*x^4+871*x^3+11089*x^2+546*x-1547,-217*x^10-1436*x^9-1491*x^8+7684*x^7+15646*x^6-8030*x^5-30049*x^4-1304*x^3+18038*x^2+1623*x-2742,-208*x^10-1300*x^9-1066*x^8+7228*x^7+12571*x^6-8879*x^5-24024*x^4+1183*x^3+13923*x^2+858*x-1989,-137*x^10-906*x^9-943*x^8+4818*x^7+9832*x^6-4921*x^5-18755*x^4-916*x^3+11405*x^2+998*x-1864,-20*x^10-165*x^9-267*x^8+853*x^7+2357*x^6-748*x^5-4728*x^4-396*x^3+3202*x^2+244*x-525,50*x^10+367*x^9+518*x^8-1827*x^7-4768*x^6+1233*x^5+9181*x^4+1575*x^3-5600*x^2-844*x+825,-164*x^10-1093*x^9-1178*x^8+5770*x^7+12128*x^6-5637*x^5-23167*x^4-1721*x^3+13844*x^2+1512*x-2108,-63*x^10-393*x^9-310*x^8+2204*x^7+3663*x^6-2884*x^5-6815*x^4+882*x^3+3897*x^2-14*x-656,221*x^10+1443*x^9+1430*x^8-7761*x^7-15288*x^6+8333*x^5+29159*x^4+832*x^3-17251*x^2-1534*x+2444,-11*x^10-42*x^9+93*x^8+397*x^7-341*x^6-1285*x^5+777*x^4+1532*x^3-770*x^2-365*x+163,7*x^10+48*x^9+33*x^8-346*x^7-498*x^6+774*x^5+1270*x^4-579*x^3-1018*x^2+107*x+187,122*x^10+805*x^9+824*x^8-4344*x^7-8789*x^6+4646*x^5+17198*x^4+684*x^3-10635*x^2-906*x+1623,-83*x^10-519*x^9-460*x^8+2797*x^7+5279*x^6-2943*x^5-10269*x^4-645*x^3+6215*x^2+854*x-934,121*x^10+826*x^9+966*x^8-4250*x^7-9483*x^6+3696*x^5+17778*x^4+1816*x^3-10380*x^2-1081*x+1379,13*x^10+52*x^9-104*x^8-494*x^7+351*x^6+1573*x^5-845*x^4-1742*x^3+1027*x^2+403*x-221,61*x^10+396*x^9+399*x^8-2055*x^7-4141*x^6+1764*x^5+7429*x^4+1343*x^3-3764*x^2-1129*x+467,-84*x^10-524*x^9-409*x^8+2969*x^7+4949*x^6-3893*x^5-9481*x^4+799*x^3+5508*x^2+432*x-918,208*x^10+1378*x^9+1430*x^8-7345*x^7-14833*x^6+7696*x^5+27885*x^4+754*x^3-16198*x^2-1105*x+2275,-52*x^9-247*x^8+78*x^7+1612*x^6+884*x^5-3081*x^4-1703*x^3+2236*x^2+520*x-442,104*x^10+676*x^9+637*x^8-3757*x^7-7124*x^6+4550*x^5+14170*x^4-299*x^3-8866*x^2-637*x+1326,9*x^10+97*x^9+217*x^8-456*x^7-1684*x^6+217*x^5+3243*x^4+459*x^3-2165*x^2-180*x+376,113*x^10+734*x^9+698*x^8-4057*x^7-7768*x^6+4819*x^5+15424*x^4-204*x^3-9718*x^2-635*x+1546,-40*x^10-317*x^9-521*x^8+1498*x^7+4480*x^6-612*x^5-8481*x^4-1871*x^3+5195*x^2+722*x-816,256*x^10+1644*x^9+1517*x^8-8971*x^7-16790*x^6+10253*x^5+31999*x^4-113*x^3-18779*x^2-1454*x+2716,110*x^10+706*x^9+656*x^8-3892*x^7-7419*x^6+4556*x^5+14811*x^4-19*x^3-9330*x^2-744*x+1360,-313*x^10-2059*x^9-2094*x^8+11079*x^7+22251*x^6-11896*x^5-42983*x^4-1182*x^3+26099*x^2+2048*x-3897,-143*x^10-897*x^9-767*x^8+4927*x^7+8918*x^6-5694*x^5-17316*x^4-39*x^3+10426*x^2+949*x-1547,-208*x^10-1378*x^9-1456*x^8+7293*x^7+15119*x^6-7215*x^5-28834*x^4-1963*x^3+17043*x^2+1768*x-2405,19*x^10+160*x^9+305*x^8-642*x^7-2362*x^6-371*x^5+3930*x^4+2035*x^3-1881*x^2-900*x+190,14*x^10+148*x^9+391*x^8-510*x^7-3024*x^6-922*x^5+6128*x^4+2807*x^3-4350*x^2-891*x+725,161*x^10+1065*x^9+1110*x^8-5670*x^7-11597*x^6+5777*x^5+22112*x^4+1204*x^3-13053*x^2-1296*x+1870,256*x^10+1670*x^9+1634*x^8-9075*x^7-17700*x^6+10123*x^5+34183*x^4+498*x^3-20417*x^2-1779*x+2768,-223*x^10-1492*x^9-1640*x^8+7832*x^7+16786*x^6-7425*x^5-32315*x^4-2689*x^3+19698*x^2+2133*x-2958,-291*x^10-1923*x^9-1981*x^8+10272*x^7+20723*x^6-10665*x^5-39259*x^4-1932*x^3+22985*x^2+2544*x-3352,25*x^10+164*x^9+155*x^8-868*x^7-1539*x^6+935*x^5+2348*x^4-103*x^3-811*x^2+20*x+68,45*x^10+329*x^9+513*x^8-1448*x^7-4507*x^6-85*x^5+8493*x^4+3296*x^3-5365*x^2-1537*x+931,x^10-47*x^9-259*x^8-42*x^7+1487*x^6+1444*x^5-2153*x^4-2510*x^3+954*x^2+955*x-198,206*x^10+1342*x^9+1324*x^8-7183*x^7-14089*x^6+7538*x^5+26471*x^4+1237*x^3-15233*x^2-1884*x+2190,-137*x^10-893*x^9-839*x^8+4961*x^7+9273*x^6-6039*x^5-17897*x^4+540*x^3+10469*x^2+712*x-1513,52*x^10+364*x^9+468*x^8-1833*x^7-4511*x^6+1339*x^5+8892*x^4+1326*x^3-5980*x^2-598*x+1118,-x^10-31*x^9-105*x^8+81*x^7+593*x^6+298*x^5-655*x^4-714*x^3+60*x^2+423*x-23,155*x^10+1035*x^9+1117*x^8-5457*x^7-11419*x^6+5407*x^5+21640*x^4+1184*x^3-12927*x^2-1228*x+1901,320*x^10+2068*x^9+1997*x^8-11126*x^7-21670*x^6+11916*x^5+41471*x^4+1383*x^3-24686*x^2-2344*x+3655,193*x^10+1251*x^9+1181*x^8-6871*x^7-13010*x^6+8084*x^5+25184*x^4-531*x^3-15207*x^2-1000*x+2216,55*x^10+366*x^9+393*x^8-1959*x^7-4132*x^6+2018*x^5+8192*x^4+504*x^3-5237*x^2-619*x+797,229*x^10+1509*x^9+1555*x^8-8019*x^7-16236*x^6+8185*x^5+30655*x^4+1513*x^3-17939*x^2-1824*x+2680,100*x^10+669*x^9+711*x^8-3589*x^7-7391*x^6+3792*x^5+14280*x^4+511*x^3-8769*x^2-687*x+1377,-108*x^10-709*x^9-732*x^8+3769*x^7+7754*x^6-3748*x^5-15009*x^4-1075*x^3+9015*x^2+938*x-1301,59*x^10+386*x^9+384*x^8-2088*x^7-4138*x^6+2269*x^5+8043*x^4+214*x^3-4866*x^2-296*x+629,362*x^10+2408*x^9+2559*x^8-12773*x^7-26491*x^6+12803*x^5+50638*x^4+3135*x^3-30391*x^2-3015*x+4582,13*x^10+104*x^9+169*x^8-494*x^7-1404*x^6+273*x^5+2496*x^4+416*x^3-1469*x^2-195*x+221,-24*x^10-146*x^9-115*x^8+800*x^7+1440*x^6-843*x^5-2993*x^4-483*x^3+2233*x^2+818*x-591,5*x^10-x^9-138*x^8-197*x^7+623*x^6+1175*x^5-612*x^4-1773*x^3-92*x^2+732*x+115,207*x^10+1360*x^9+1351*x^8-7407*x^7-14526*x^6+8384*x^5+28140*x^4+66*x^3-17074*x^2-1241*x+2629,-367*x^10-2446*x^9-2590*x^8+13061*x^7+26908*x^6-13536*x^5-51703*x^4-2389*x^3+31263*x^2+2868*x-4658,152*x^10+968*x^9+828*x^8-5448*x^7-9601*x^6+6977*x^5+18518*x^4-1283*x^3-10524*x^2-505*x+1195,-160*x^10-1034*x^9-940*x^8+5771*x^7+10562*x^6-7167*x^5-20404*x^4+927*x^3+11953*x^2+730*x-1743,376*x^10+2491*x^9+2573*x^8-13400*x^7-27097*x^6+14325*x^5+52229*x^4+1821*x^3-31478*x^2-2918*x+4579,-259*x^10-1698*x^9-1689*x^8+9201*x^7+18127*x^6-10139*x^5-34991*x^4-807*x^3+21104*x^2+1917*x-3162,-508*x^10-3346*x^9-3407*x^8+17956*x^7+35966*x^6-19085*x^5-68710*x^4-2339*x^3+41036*x^2+3699*x-6068,-20*x^10-48*x^9+240*x^8+554*x^7-893*x^6-1983*x^5+1096*x^4+2425*x^3-373*x^2-783*x+21,283*x^10+1857*x^9+1869*x^8-9936*x^7-19671*x^6+10553*x^5+36905*x^4+874*x^3-21244*x^2-1604*x+2999,9*x^10+58*x^9+100*x^8-157*x^7-787*x^6-511*x^5+1228*x^4+953*x^3-709*x^2-141*x+51,-306*x^10-2050*x^9-2204*x^8+10967*x^7+22871*x^6-11460*x^5-44560*x^4-1865*x^3+27746*x^2+2519*x-4282,-429*x^10-2860*x^9-3068*x^8+15106*x^7+31525*x^6-14885*x^5-59878*x^4-4043*x^3+35594*x^2+3783*x-5304,-43*x^10-241*x^9-69*x^8+1481*x^7+1501*x^6-2578*x^5-2503*x^4+1759*x^3+981*x^2-323*x-79,-110*x^10-732*x^9-773*x^8+3918*x^7+8056*x^6-4153*x^5-15513*x^4-384*x^3+9317*x^2+679*x-1360,-317*x^10-2092*x^9-2163*x^8+11182*x^7+22764*x^6-11614*x^5-43783*x^4-2010*x^3+26417*x^2+2466*x-3950,41*x^10+257*x^9+223*x^8-1397*x^7-2551*x^6+1575*x^5+4846*x^4-41*x^3-2837*x^2-157*x+397,-330*x^10-2170*x^9-2176*x^8+11780*x^7+23349*x^6-13070*x^5-45434*x^4-840*x^3+27834*x^2+2336*x-4223,-382*x^10-2547*x^9-2683*x^8+13652*x^7+27925*x^6-14448*x^5-53637*x^4-1854*x^3+32306*x^2+2739*x-4743,240*x^10+1642*x^9+1904*x^8-8559*x^7-18885*x^6+7871*x^5+35936*x^4+3400*x^3-21719*x^2-2694*x+3336,-298*x^10-1919*x^9-1793*x^8+10501*x^7+19869*x^6-12141*x^5-38449*x^4+389*x^3+23288*x^2+1540*x-3552,278*x^10+1871*x^9+2098*x^8-9765*x^7-21269*x^6+8897*x^5+40962*x^4+4350*x^3-25351*x^2-3415*x+4210,263*x^10+1770*x^9+1953*x^8-9343*x^7-19940*x^6+9103*x^5+38404*x^4+2805*x^3-23502*x^2-2400*x+3553,515*x^10+3381*x^9+3401*x^8-18198*x^7-36139*x^6+19638*x^5+69161*x^4+1760*x^3-41326*x^2-3540*x+6190,6*x^10+56*x^9+97*x^8-330*x^7-893*x^6+474*x^5+2045*x^4-58*x^3-1673*x^2-172*x+372,-102*x^10-731*x^9-973*x^8+3660*x^7+9032*x^6-2728*x^5-17007*x^4-2251*x^3+10410*x^2+1182*x-1566,-51*x^10-372*x^9-519*x^8+1830*x^7+4711*x^6-1195*x^5-8783*x^4-1444*x^3+5179*x^2+617*x-731,196*x^10+1292*x^9+1314*x^8-7010*x^7-14100*x^6+7736*x^5+27838*x^4+662*x^3-17623*x^2-1619*x+2740,241*x^10+1569*x^9+1528*x^8-8510*x^7-16566*x^6+9432*x^5+31950*x^4+461*x^3-19140*x^2-1479*x+2839,-71*x^10-485*x^9-552*x^8+2566*x^7+5560*x^6-2528*x^5-10716*x^4-748*x^3+6483*x^2+718*x-918,-248*x^10-1669*x^9-1821*x^8+8856*x^7+18598*x^6-8919*x^5-35508*x^4-2079*x^3+21380*x^2+2178*x-3247,-179*x^10-1168*x^9-1141*x^8+6335*x^7+12313*x^6-7004*x^5-23567*x^4-510*x^3+13821*x^2+1266*x-1972,45*x^10+290*x^9+279*x^8-1591*x^7-3168*x^6+1774*x^5+6582*x^4+280*x^3-4481*x^2-497*x+762,-262*x^10-1726*x^9-1770*x^8+9184*x^7+18476*x^6-9453*x^5-34707*x^4-1519*x^3+20140*x^2+1847*x-2919,462*x^10+3064*x^9+3205*x^8-16349*x^7-33414*x^6+16959*x^5+63917*x^4+2801*x^3-38432*x^2-3559*x+5712,-500*x^10-3319*x^9-3516*x^8+17529*x^7+36240*x^6-17335*x^5-68410*x^4-4349*x^3+40036*x^2+4124*x-5689,-62*x^10-375*x^9-270*x^8+2162*x^7+3616*x^6-2974*x^5-7629*x^4+920*x^3+5202*x^2-73*x-867,-260*x^10-1716*x^9-1794*x^8+9061*x^7+18629*x^6-8905*x^5-35204*x^4-2405*x^3+20592*x^2+2054*x-2886,307*x^10+2081*x^9+2335*x^8-10944*x^7-23490*x^6+10616*x^5+44656*x^4+3047*x^3-26792*x^2-2721*x+4097,345*x^10+2232*x^9+2126*x^8-12059*x^7-22988*x^6+13267*x^5+43078*x^4+682*x^3-24418*x^2-2324*x+3346,-7*x^10+4*x^9+188*x^8+164*x^7-1023*x^6-1060*x^5+1850*x^4+1567*x^3-1283*x^2-510*x+229,-162*x^10-1057*x^9-1020*x^8+5751*x^7+11007*x^6-6467*x^5-20895*x^4-319*x^3+12268*x^2+1420*x-1841,39*x^10+247*x^9+169*x^8-1482*x^7-2106*x^6+2392*x^5+3770*x^4-1274*x^3-1807*x^2+78*x+221,-236*x^10-1583*x^9-1744*x^8+8339*x^7+17865*x^6-8049*x^5-34577*x^4-2611*x^3+21349*x^2+2094*x-3257,29*x^10+210*x^9+302*x^8-984*x^7-2663*x^6+419*x^5+4812*x^4+1089*x^3-2936*x^2-450*x+459,227*x^10+1499*x^9+1540*x^8-8013*x^7-16142*x^6+8339*x^5+30645*x^4+1463*x^3-18118*x^2-1940*x+2725,-321*x^10-2034*x^9-1816*x^8+11090*x^7+20560*x^6-12489*x^5-39474*x^4-446*x^3+23251*x^2+2000*x-3366,340*x^10+2207*x^9+2108*x^8-12044*x^7-23013*x^6+13782*x^5+44223*x^4-145*x^3-26419*x^2-2003*x+3959,11*x^10+68*x^9+63*x^8-358*x^7-725*x^6+336*x^5+1498*x^4+171*x^3-1115*x^2-194*x+279,-506*x^10-3349*x^9-3483*x^8+17872*x^7+36392*x^6-18563*x^5-69545*x^4-2965*x^3+41748*x^2+3828*x-6230,539*x^10+3514*x^9+3464*x^8-18985*x^7-37345*x^6+20689*x^5+71959*x^4+1749*x^3-43234*x^2-3812*x+6443,-81*x^10-548*x^9-627*x^8+2804*x^7+6121*x^6-2382*x^5-10948*x^4-1232*x^3+5393*x^2+645*x-394,-481*x^10-3159*x^9-3185*x^8+16991*x^7+33826*x^6-18239*x^5-64805*x^4-1924*x^3+38818*x^2+3406*x-5759,232*x^10+1498*x^9+1389*x^8-8236*x^7-15324*x^6+9865*x^5+29240*x^4-1428*x^3-17196*x^2-337*x+2528,166*x^10+1090*x^9+1102*x^8-5880*x^7-11793*x^6+6341*x^5+22917*x^4+640*x^3-13860*x^2-1058*x+1972,-93*x^10-608*x^9-652*x^8+3126*x^7+6750*x^6-2641*x^5-12945*x^4-1545*x^3+7881*x^2+976*x-1060,39*x^10+208*x^9+78*x^8-1105*x^7-1365*x^6+1157*x^5+1924*x^4-39*x^3-182*x^2+26*x-234,-343*x^10-2248*x^9-2254*x^8+12157*x^7+24233*x^6-13239*x^5-47267*x^4-1360*x^3+29095*x^2+2570*x-4418,-184*x^10-1193*x^9-1159*x^8+6415*x^7+12496*x^6-6879*x^5-23800*x^4-713*x^3+14160*x^2+1275*x-2074,158*x^10+998*x^9+847*x^8-5518*x^7-9714*x^6+6632*x^5+18184*x^4-535*x^3-10000*x^2-885*x+1242,-88*x^10-609*x^9-712*x^8+3189*x^7+6970*x^6-3026*x^5-13011*x^4-1043*x^3+7451*x^2+824*x-1088,212*x^10+1411*x^9+1512*x^8-7435*x^7-15528*x^6+7271*x^5+29465*x^4+2024*x^3-17530*x^2-1900*x+2562,-202*x^10-1270*x^9-1073*x^8+7041*x^7+12497*x^6-8522*x^5-23968*x^4+839*x^3+13862*x^2+907*x-1955,-28*x^10-153*x^9-41*x^8+942*x^7+1056*x^6-1549*x^5-2181*x^4+665*x^3+1264*x^2+209*x-7,-70*x^10-415*x^9-278*x^8+2368*x^7+3849*x^6-3138*x^5-8020*x^4+707*x^3+5435*x^2+165*x-1012,51*x^10+398*x^9+662*x^8-1830*x^7-5764*x^6+337*x^5+11292*x^4+3485*x^3-7571*x^2-1748*x+1485,106*x^10+686*x^9+665*x^8-3724*x^7-7322*x^6+4084*x^5+14427*x^4+401*x^3-8947*x^2-794*x+1411,-429*x^10-2821*x^9-2847*x^8+15197*x^7+30238*x^6-16419*x^5-57993*x^4-1521*x^3+34801*x^2+3016*x-5148,13*x^8-182*x^6+780*x^4-1040*x^2+208,-239*x^10-1533*x^9-1357*x^8+8608*x^7+15562*x^6-10925*x^5-30497*x^4+1851*x^3+18292*x^2+841*x-2572,-36*x^10-245*x^9-270*x^8+1304*x^7+2680*x^6-1427*x^5-4912*x^4+101*x^3+2823*x^2+200*x-425,115*x^10+679*x^9+362*x^8-4089*x^7-5574*x^6+6537*x^5+11027*x^4-3443*x^3-6367*x^2+469*x+916,-87*x^10-552*x^9-477*x^8+3095*x^7+5597*x^6-3883*x^5-11251*x^4+529*x^3+7209*x^2+414*x-1130,283*x^10+1844*x^9+1817*x^8-9962*x^7-19645*x^6+10761*x^5+38010*x^4+1290*x^3-22856*x^2-2059*x+3389,339*x^10+2241*x^9+2315*x^8-11989*x^7-24266*x^6+12572*x^5+46311*x^4+1897*x^3-27542*x^2-2659*x+4131,194*x^10+1256*x^9+1169*x^8-6978*x^7-13109*x^6+8501*x^5+25878*x^4-857*x^3-15943*x^2-864*x+2213,284*x^10+1914*x^9+2130*x^8-10030*x^7-21499*x^6+9579*x^5+40875*x^4+2979*x^3-24697*x^2-2482*x+3672,-373*x^10-2437*x^9-2414*x^8+13079*x^7+25643*x^6-13971*x^5-48249*x^4-1434*x^3+27905*x^2+2520*x-4081,125*x^10+885*x^9+1139*x^8-4496*x^7-10841*x^6+3544*x^5+20801*x^4+2748*x^3-12830*x^2-1525*x+1887,2*x^10+36*x^9+158*x^8-6*x^7-1134*x^6-986*x^5+2376*x^4+1844*x^3-1784*x^2-534*x+267,-13*x^9-52*x^8+39*x^7+325*x^6+130*x^5-533*x^4-416*x^3+299*x^2+325*x-65,-11*x^10-81*x^9-154*x^8+228*x^7+1115*x^6+717*x^5-1524*x^4-1640*x^3+491*x^2+597*x+111,26*x^10+208*x^9+325*x^8-1040*x^7-2782*x^6+806*x^5+5070*x^4+533*x^3-2925*x^2-312*x+442,74*x^10+461*x^9+347*x^8-2653*x^7-4258*x^6+3805*x^5+8092*x^4-1829*x^3-4518*x^2+600*x+597,208*x^10+1352*x^9+1339*x^8-7267*x^7-14456*x^6+7683*x^5+27963*x^4+1235*x^3-16874*x^2-1807*x+2587,-91*x^10-572*x^9-455*x^8+3237*x^7+5395*x^6-4238*x^5-10062*x^4+910*x^3+5356*x^2+377*x-650,300*x^10+1981*x^9+2042*x^8-10611*x^7-21484*x^6+11181*x^5+41228*x^4+1546*x^3-24851*x^2-2308*x+3689,13*x^10+39*x^9-156*x^8-455*x^7+624*x^6+1560*x^5-1105*x^4-1391*x^3+1001*x^2-195*x-130,130*x^10+806*x^9+676*x^8-4381*x^7-7917*x^6+4862*x^5+15249*x^4+299*x^3-9100*x^2-871*x+1352,-527*x^10-3454*x^9-3478*x^8+18559*x^7+37080*x^6-19689*x^5-71379*x^4-2840*x^3+43086*x^2+4209*x-6609,190*x^10+1249*x^9+1256*x^8-6745*x^7-13415*x^6+7275*x^5+25936*x^4+993*x^3-15716*x^2-1590*x+2329,-29*x^10-171*x^9-120*x^8+880*x^7+1389*x^6-822*x^5-2069*x^4-101*x^3+661*x^2+73*x-17,-63*x^10-315*x^9+67*x^8+2139*x^7+1336*x^6-4418*x^5-2824*x^4+3430*x^3+1284*x^2-573*x-136,196*x^10+1292*x^9+1314*x^8-6971*x^7-13970*x^6+7567*x^5+27097*x^4+688*x^3-16739*x^2-1502*x+2740,-33*x^10-282*x^9-527*x^8+1282*x^7+4333*x^6-319*x^5-8225*x^4-1800*x^3+5256*x^2+725*x-850,31*x^10+194*x^9+161*x^8-1042*x^7-1756*x^6+1266*x^5+3015*x^4-603*x^3-1834*x^2+381*x+531,-29*x^10-210*x^9-276*x^8+1088*x^7+2663*x^6-887*x^5-5423*x^4-894*x^3+3794*x^2+788*x-732,63*x^10+302*x^9-171*x^8-2204*x^7-530*x^6+5198*x^5+705*x^4-4756*x^3+848*x^2+1015*x-319,111*x^10+698*x^9+566*x^8-3960*x^7-6790*x^6+5155*x^5+13230*x^4-891*x^3-7700*x^2-530*x+1071,221*x^10+1495*x^9+1716*x^8-7696*x^7-17069*x^6+6513*x^5+32175*x^4+4225*x^3-18811*x^2-2938*x+2561,39*x^10+260*x^9+299*x^8-1339*x^7-3107*x^6+1001*x^5+6318*x^4+1339*x^3-4160*x^2-988*x+663,455*x^10+3055*x^9+3367*x^8-15990*x^7-34060*x^6+15054*x^5+64246*x^4+5551*x^3-37791*x^2-4563*x+5642,46*x^10+269*x^9+111*x^8-1672*x^7-1967*x^6+2867*x^5+3688*x^4-1606*x^3-1707*x^2+185*x+187,345*x^10+2206*x^9+1970*x^8-12189*x^7-22247*x^6+14580*x^5+42675*x^4-1047*x^3-24977*x^2-1804*x+3645,14*x^10+83*x^9+92*x^8-289*x^7-762*x^6-428*x^5+681*x^4+1286*x^3+447*x^2-475*x-289,-6*x^10-17*x^9+124*x^8+395*x^7-472*x^6-1865*x^5+282*x^4+2372*x^3+321*x^2-569*x-138,-171*x^10-1128*x^9-1172*x^8+5973*x^7+12210*x^6-5982*x^5-23228*x^4-1363*x^3+13978*x^2+1379*x-2074,183*x^10+1188*x^9+1119*x^8-6555*x^7-12384*x^6+7775*x^5+24068*x^4-430*x^3-14412*x^2-969*x+2103,137*x^10+906*x^9+1021*x^8-4584*x^7-10287*x^6+3543*x^5+19561*x^4+2801*x^3-12042*x^2-1570*x+1955,-x^10+8*x^9+77*x^8+68*x^7-460*x^6-690*x^5+788*x^4+1314*x^3-408*x^2-552*x+94,-142*x^10-970*x^9-1104*x^8+5158*x^7+11198*x^6-5212*x^5-21900*x^4-1184*x^3+13681*x^2+1137*x-2057,-356*x^10-2326*x^9-2293*x^8+12586*x^7+24662*x^6-13863*x^5-47475*x^4-801*x^3+28679*x^2+2310*x-4353,-78*x^10-546*x^9-676*x^8+2808*x^7+6513*x^6-2405*x^5-12376*x^4-1391*x^3+7449*x^2+871*x-1079,-388*x^10-2564*x^9-2689*x^8+13592*x^7+28064*x^6-13518*x^5-53732*x^4-3746*x^3+32185*x^2+3808*x-4738,-92*x^10-577*x^9-469*x^8+3240*x^7+5546*x^6-4161*x^5-10613*x^4+872*x^3+6313*x^2+345*x-1037,-596*x^10-3890*x^9-3794*x^8+21145*x^7+40986*x^6-23736*x^5-78627*x^4-665*x^3+46719*x^2+3808*x-6909,184*x^10+1167*x^9+977*x^8-6597*x^7-11443*x^6+8673*x^5+22149*x^4-2238*x^3-13042*x^2-170*x+1840,-113*x^10-695*x^9-464*x^8+4187*x^7+6403*x^6-6587*x^5-13396*x^4+3012*x^3+8743*x^2-15*x-1273,-286*x^10-1898*x^9-1937*x^8+10335*x^7+20592*x^6-11635*x^5-40014*x^4-390*x^3+24271*x^2+1859*x-3536,667*x^10+4401*x^9+4528*x^8-23568*x^7-47729*x^6+24639*x^5+91722*x^4+4273*x^3-55191*x^2-5540*x+8360,-104*x^10-663*x^9-650*x^8+3458*x^7+7020*x^6-3081*x^5-13351*x^4-1794*x^3+7878*x^2+1430*x-1144,-73*x^10-560*x^9-905*x^8+2611*x^7+7968*x^6-801*x^5-15575*x^4-3931*x^3+10230*x^2+1668*x-1679,-156*x^10-1027*x^9-1053*x^8+5460*x^7+10998*x^6-5590*x^5-20683*x^4-962*x^3+12051*x^2+1118*x-1768,4*x^10+72*x^9+264*x^8-194*x^7-1982*x^6-802*x^5+4414*x^4+2011*x^3-3737*x^2-899*x+781,237*x^10+1471*x^9+1160*x^8-8225*x^7-13921*x^6+10377*x^5+26509*x^4-1927*x^3-15364*x^2-788*x+2227,-13,-170*x^10-1110*x^9-1119*x^8+5905*x^7+11825*x^6-6046*x^5-22352*x^4-1130*x^3+13151*x^2+1320*x-1921,128*x^10+926*x^9+1298*x^8-4492*x^7-11853*x^6+2468*x^5+22415*x^4+4617*x^3-13790*x^2-2105*x+2112,-93*x^10-569*x^9-444*x^8+3178*x^7+5528*x^6-3889*x^5-11047*x^4+301*x^3+6880*x^2+586*x-956,-64*x^10-476*x^9-740*x^8+2090*x^7+6232*x^6+14*x^5-10655*x^4-4239*x^3+5439*x^2+1774*x-640,-404*x^10-2579*x^9-2315*x^8+14186*x^7+26125*x^6-16641*x^5-50289*x^4+677*x^3+29778*x^2+2204*x-4352,32*x^10+264*x^9+487*x^8-1123*x^7-3922*x^6-111*x^5+7154*x^4+2139*x^3-4546*x^2-731*x+723,-22*x^10-188*x^9-412*x^8+651*x^7+3192*x^6+1005*x^5-5843*x^4-2916*x^3+3738*x^2+908*x-610,-218*x^10-1493*x^9-1739*x^8+7778*x^7+17240*x^6-7134*x^5-32875*x^4-3019*x^3+19905*x^2+2241*x-2999,445*x^10+2914*x^9+2941*x^8-15622*x^7-31302*x^6+16487*x^5+60166*x^4+2311*x^3-36138*x^2-3271*x+5321,217*x^10+1371*x^9+1140*x^8-7723*x^7-13358*x^6+10084*x^5+25629*x^4-2713*x^3-14658*x^2+93*x+1754,65*x^10+351*x^9+91*x^8-2119*x^7-2392*x^6+3302*x^5+4797*x^4-1482*x^3-2587*x^2+91*x+169,403*x^10+2652*x^9+2678*x^8-14300*x^7-28431*x^6+15548*x^5+54548*x^4+1144*x^3-32812*x^2-2444*x+5031,286*x^10+1872*x^9+1885*x^8-10049*x^7-20111*x^6+10686*x^5+38805*x^4+1235*x^3-23608*x^2-1989*x+3536,229*x^10+1418*x^9+1087*x^8-7993*x^7-13233*x^6+10343*x^5+25091*x^4-2205*x^3-14208*x^2-771*x+2017,288*x^10+1843*x^9+1692*x^8-10029*x^7-18749*x^6+11312*x^5+35461*x^4+167*x^3-20192*x^2-1678*x+2737,-440*x^10-2902*x^9-3014*x^8+15386*x^7+31431*x^6-15377*x^5-59439*x^4-3928*x^3+34525*x^2+4159*x-4803,36*x^10+167*x^9-146*x^8-1330*x^7-54*x^6+3468*x^5+63*x^4-3286*x^3+817*x^2+697*x-238,42*x^10+275*x^9+328*x^8-1296*x^7-3209*x^6+393*x^5+5904*x^4+2220*x^3-3261*x^2-1074*x+433,-3*x^10-28*x^9-94*x^8-56*x^7+479*x^6+1076*x^5-106*x^4-1921*x^3-782*x^2+814*x+295,-137*x^10-854*x^9-670*x^8+4792*x^7+7986*x^6-6130*x^5-14959*x^4+1151*x^3+8389*x^2+790*x-1188,-378*x^10-2462*x^9-2419*x^8+13276*x^7+25995*x^6-14457*x^5-49678*x^4-961*x^3+29453*x^2+2256*x-4352,368*x^10+2360*x^9+2149*x^8-12921*x^7-23848*x^6+15032*x^5+45065*x^4-758*x^3-25967*x^2-1900*x+3784,200*x^10+1338*x^9+1474*x^8-7009*x^7-15055*x^6+6583*x^5+28885*x^4+2452*x^3-17499*x^2-1920*x+2585,-219*x^10-1420*x^9-1350*x^8+7729*x^7+14700*x^6-8721*x^5-27888*x^4-184*x^3+16013*x^2+1442*x-2112,405*x^10+2675*x^9+2706*x^8-14488*x^7-28707*x^6+16031*x^5+55104*x^4+869*x^3-32958*x^2-2770*x+4947,389*x^10+2595*x^9+2755*x^8-13894*x^7-28709*x^6+14533*x^5+55544*x^4+2406*x^3-33714*x^2-2944*x+5060,-28*x^10-231*x^9-418*x^8+968*x^7+3253*x^6+180*x^5-5353*x^4-2039*x^3+2668*x^2+664*x-449,85*x^10+555*x^9+553*x^8-2985*x^7-5932*x^6+3192*x^5+11488*x^4+422*x^3-7102*x^2-790*x+1071,-31*x^10-207*x^9-278*x^8+938*x^7+2705*x^6-57*x^5-5524*x^4-1945*x^3+3953*x^2+841*x-765,-186*x^10-1242*x^9-1291*x^8+6694*x^7+13383*x^6-7375*x^5-25227*x^4-87*x^3+14631*x^2+834*x-2055,-251*x^10-1593*x^9-1434*x^8+8618*x^7+15918*x^6-9637*x^5-29634*x^4+212*x^3+16529*x^2+1016*x-2159,-665*x^10-4391*x^9-4539*x^8+23458*x^7+47674*x^6-24364*x^5-91478*x^4-4171*x^3+55188*x^2+5175*x-8249,-306*x^10-1972*x^9-1827*x^8+10837*x^7+20310*x^6-12669*x^5-39139*x^4+423*x^3+23248*x^2+1778*x-3502,87*x^10+578*x^9+659*x^8-2822*x^7-6286*x^6+1712*x^5+10640*x^4+2487*x^3-5051*x^2-1272*x+558,25*x^10+203*x^9+337*x^8-998*x^7-2917*x^6+623*x^5+5650*x^4+963*x^3-3554*x^2-461*x+549,611*x^10+3991*x^9+3952*x^8-21489*x^7-42250*x^6+23166*x^5+80483*x^4+2314*x^3-47424*x^2-4394*x+6968,-52*x^10-364*x^9-481*x^8+1781*x^7+4563*x^6-988*x^5-8866*x^4-2028*x^3+5746*x^2+1014*x-884,-31*x^10-168*x^9-83*x^8+847*x^7+1223*x^6-616*x^5-1871*x^4-593*x^3+599*x^2+386*x+41,75*x^10+557*x^9+777*x^8-2838*x^7-7204*x^6+2233*x^5+14194*x^4+2018*x^3-9479*x^2-1461*x+1751,523*x^10+3434*x^9+3409*x^8-18716*x^7-36710*x^6+21323*x^5+71333*x^4-341*x^3-43626*x^2-2660*x+6608,-205*x^10-1363*x^9-1427*x^8+7336*x^7+15017*x^6-7810*x^5-29196*x^4-1147*x^3+17682*x^2+1591*x-2635,50*x^10+367*x^9+596*x^8-1489*x^7-4911*x^6-639*x^5+8323*x^4+3772*x^3-4560*x^2-1182*x+773,-62*x^10-323*x^9-62*x^8+1876*x^7+1978*x^6-2649*x^5-3469*x^4+972*x^3+1250*x^2-73*x+108,328*x^10+2199*x^9+2382*x^8-11683*x^7-24490*x^6+11872*x^5+47088*x^4+2428*x^3-28520*x^2-2647*x+4255,-293*x^10-1907*x^9-1853*x^8+10343*x^7+20050*x^6-11486*x^5-38359*x^4-539*x^3+22546*x^2+1830*x-3281,-304*x^10-1949*x^9-1760*x^8+10753*x^7+19735*x^6-12927*x^5-37881*x^4+1461*x^3+22569*x^2+1244*x-3430,92*x^10+551*x^9+287*x^8-3383*x^7-4428*x^6+5682*x^5+8676*x^4-3225*x^3-4909*x^2+253*x+595,-375*x^10-2486*x^9-2585*x^8+13332*x^7+27089*x^6-14194*x^5-52003*x^4-1328*x^3+31067*x^2+1962*x-4374,-323*x^10-2109*x^9-2065*x^8+11473*x^7+22383*x^6-12855*x^5-43371*x^4-535*x^3+26114*x^2+2222*x-3893,446*x^10+2945*x^9+3059*x^8-15664*x^7-31973*x^6+15994*x^5+61055*x^4+3129*x^3-36692*x^2-3642*x+5500,31*x^10+207*x^9+265*x^8-925*x^7-2432*x^6+18*x^5+4107*x^4+2023*x^3-1821*x^2-1049*x-2,166*x^10+1064*x^9+1011*x^8-5659*x^7-10896*x^6+5769*x^5+20083*x^4+1121*x^3-11026*x^2-1188*x+1530,155*x^10+996*x^9+961*x^8-5314*x^7-10444*x^6+5511*x^5+20093*x^4+807*x^3-12238*x^2-1085*x+1836,-160*x^10-1099*x^9-1291*x^8+5693*x^7+12668*x^6-5126*x^5-23901*x^4-2258*x^3+14371*x^2+1744*x-2380,-76*x^10-510*x^9-570*x^8+2633*x^7+5717*x^6-2247*x^5-10728*x^4-1484*x^3+6406*x^2+1091*x-1007,24*x^10+159*x^9+193*x^8-670*x^7-1570*x^6-106*x^5+1719*x^4+1497*x^3+224*x^2-818*x-215,-488*x^10-3233*x^9-3361*x^8+17311*x^7+35247*x^6-18142*x^5-67817*x^4-2879*x^3+41149*x^2+3858*x-6154,-119*x^10-777*x^9-756*x^8+4231*x^7+8180*x^6-4760*x^5-15688*x^4-206*x^3+9220*x^2+846*x-1203,26*x^10+143*x^9+52*x^8-845*x^7-1079*x^6+1222*x^5+2262*x^4-377*x^3-1417*x^2-39*x+221,-511*x^10-3348*x^9-3332*x^8+18095*x^7+35639*x^6-19907*x^5-68465*x^4-958*x^3+41307*x^2+3135*x-6410,46*x^10+269*x^9+176*x^8-1464*x^7-2331*x^6+1567*x^5+4221*x^4+409*x^3-2110*x^2-543*x+408,169*x^10+1144*x^9+1274*x^8-6084*x^7-13052*x^6+6084*x^5+25480*x^4+1742*x^3-15795*x^2-1521*x+2405,-683*x^10-4468*x^9-4453*x^8+24032*x^7+47493*x^6-25812*x^5-90619*x^4-2580*x^3+53564*x^2+4781*x-7701,-289*x^10-1926*x^9-2018*x^8+10357*x^7+21097*x^6-11040*x^5-40614*x^4-1518*x^3+24386*x^2+2192*x-3631,-296*x^10-1961*x^9-2025*x^8+10521*x^7+21218*x^6-11190*x^5-40506*x^4-1342*x^3+24013*x^2+2215*x-3519,-466*x^10-3045*x^9-3001*x^8+16517*x^7+32354*x^6-18406*x^5-62494*x^4-626*x^3+37775*x^2+2924*x-5505,-58*x^10-368*x^9-357*x^8+1929*x^7+3896*x^6-1813*x^5-7505*x^4-631*x^3+4520*x^2+406*x-593,364*x^10+2379*x^9+2353*x^8-12844*x^7-25207*x^6+14079*x^5+48295*x^4+754*x^3-28964*x^2-2288*x+4316,-248*x^10-1604*x^9-1496*x^8+8791*x^7+16401*x^6-10362*x^5-31075*x^4+1028*x^3+18039*x^2+891*x-2584,-163*x^10-1049*x^9-930*x^8+5936*x^7+10690*x^6-7872*x^5-21199*x^4+2282*x^3+13095*x^2+23*x-1877,388*x^10+2564*x^9+2611*x^8-13826*x^7-27531*x^6+15052*x^5+52497*x^4+1185*x^3-31080*x^2-2781*x+4556,366*x^10+2506*x^9+2927*x^8-13032*x^7-29045*x^6+11793*x^5+55689*x^4+5393*x^3-34115*x^2-3732*x+5259,-517*x^10-3443*x^9-3624*x^8+18399*x^7+37637*x^6-19211*x^5-71875*x^4-2902*x^3+42954*x^2+3827*x-6392,134*x^10+865*x^9+784*x^8-4874*x^7-8963*x^6+6374*x^5+18064*x^4-1798*x^3-11719*x^2+76*x+1678,2*x^10-3*x^9-89*x^8-162*x^7+413*x^6+1029*x^5-445*x^4-1510*x^3+205*x^2+532*x-175,-90*x^10-619*x^9-792*x^8+2935*x^7+7272*x^6-1312*x^5-12761*x^4-3433*x^3+6843*x^2+1475*x-874,718*x^10+4721*x^9+4748*x^8-25502*x^7-50581*x^6+27810*x^5+97229*x^4+2428*x^3-58277*x^2-5052*x+8636,74*x^10+487*x^9+451*x^8-2783*x^7-5051*x^6+3844*x^5+9899*x^4-1517*x^3-5714*x^2+418*x+558,262*x^10+1596*x^9+1198*x^8-8885*x^7-14849*x^6+10922*x^5+28207*x^4-1393*x^3-15733*x^2-989*x+2074,64*x^10+463*x^9+610*x^8-2389*x^7-5738*x^6+2118*x^5+10954*x^4+937*x^3-6596*x^2-604*x+952,-407*x^10-2659*x^9-2578*x^8+14572*x^7+28099*x^6-16865*x^5-54594*x^4+264*x^3+32922*x^2+2433*x-4811,441*x^10+2933*x^9+3145*x^8-15389*x^7-32141*x^6+14767*x^5+60341*x^4+4421*x^3-35378*x^2-3542*x+5268,-8*x^10-14*x^9+57*x^8-54*x^7-365*x^6+720*x^5+1351*x^4-1305*x^3-1405*x^2+719*x+141,-131*x^10-850*x^9-833*x^8+4488*x^7+8718*x^6-4499*x^5-15670*x^4-818*x^3+8133*x^2+709*x-946,398*x^10+2692*x^9+3011*x^8-14155*x^7-30432*x^6+13580*x^5+58111*x^4+4490*x^3-34813*x^2-3670*x+5202,554*x^10+3706*x^9+4038*x^8-19537*x^7-41417*x^6+18962*x^5+79535*x^4+5946*x^3-48320*x^2-5126*x+7243,572*x^10+3770*x^9+3848*x^8-20228*x^7-40599*x^6+21450*x^5+77571*x^4+2782*x^3-46033*x^2-4186*x+6643,-157*x^10-967*x^9-703*x^8+5528*x^7+8770*x^6-7658*x^5-16606*x^4+2822*x^3+9537*x^2-201*x-1492,103*x^10+619*x^9+363*x^8-3702*x^7-5244*x^6+5667*x^5+10187*x^4-2287*x^3-5569*x^2+7*x+731,61*x^10+409*x^9+438*x^8-2159*x^7-4401*x^6+2219*x^5+8014*x^4+160*x^3-4531*x^2-245*x+714,-12*x^10-73*x^9-38*x^8+452*x^7+551*x^6-805*x^5-918*x^4+623*x^3+187*x^2-254*x+192,-176*x^10-1075*x^9-787*x^8+6027*x^7+9741*x^6-7690*x^5-18040*x^4+1671*x^3+9650*x^2+270*x-1318,444*x^10+2909*x^9+2940*x^8-15593*x^7-31268*x^6+16447*x^5+60122*x^4+2325*x^3-36208*x^2-3316*x+5389,325*x^10+2158*x^9+2301*x^8-11362*x^7-23647*x^6+11154*x^5+44720*x^4+2626*x^3-26507*x^2-2249*x+3692,447*x^10+2937*x^9+2943*x^8-15836*x^7-31227*x^6+17282*x^5+59409*x^4+1087*x^3-35101*x^2-2999*x+5185,-437*x^10-2809*x^9-2582*x^8+15429*x^7+28755*x^6-18143*x^5-55303*x^4+1230*x^3+32941*x^2+2045*x-4994,470*x^10+3104*x^9+3200*x^8-16581*x^7-33530*x^6+17266*x^5+63840*x^4+2754*x^3-37924*x^2-3563*x+5610,86*x^10+638*x^9+905*x^8-3235*x^7-8410*x^6+2426*x^5+16589*x^4+2501*x^3-10503*x^2-1343*x+1601,-49*x^10-271*x^9-114*x^8+1577*x^7+2082*x^6-2311*x^5-4106*x^4+1180*x^3+2251*x^2-515*x-100,-451*x^10-2970*x^9-3012*x^8+15991*x^7+31909*x^6-17247*x^5-61093*x^4-1642*x^3+36199*x^2+3183*x-5199,-278*x^10-1936*x^9-2319*x^8+10155*x^7+22751*x^6-9664*x^5-43640*x^4-3479*x^3+26586*x^2+2856*x-4080,-30*x^10-215*x^9-329*x^8+896*x^7+2749*x^6+243*x^5-4505*x^4-2024*x^3+2190*x^2+626*x-235,81*x^10+483*x^9+367*x^8-2531*x^7-4327*x^6+2421*x^5+7347*x^4+686*x^3-3222*x^2-632*x+238,-358*x^10-2310*x^9-2100*x^8+12826*x^7+23482*x^6-15698*x^5-45041*x^4+1827*x^3+26316*x^2+1635*x-3866,-353*x^10-2350*x^9-2537*x^8+12369*x^7+26133*x^6-11858*x^5-50138*x^4-4223*x^3+30501*x^2+3654*x-4726,-265*x^10-1767*x^9-1903*x^8+9297*x^7+19501*x^6-8910*x^5-36919*x^4-3180*x^3+21750*x^2+2869*x-3170,84*x^10+563*x^9+643*x^8-2891*x^7-6483*x^6+2398*x^5+12471*x^4+1606*x^3-7692*x^2-965*x+1165,-266*x^10-1759*x^9-1839*x^8+9300*x^7+19015*x^6-9236*x^5-35572*x^4-2334*x^3+20172*x^2+2343*x-2764,-739*x^10-4839*x^9-4808*x^8+26176*x^7+51568*x^6-28689*x^5-99180*x^4-2186*x^3+59290*x^2+5160*x-8755,-6*x^10-82*x^9-253*x^8+200*x^7+1686*x^6+1034*x^5-2604*x^4-2633*x^3+958*x^2+1212*x-8,340*x^10+2181*x^9+1978*x^8-12057*x^7-22298*x^6+14471*x^5+43378*x^4-1263*x^3-26276*x^2-1626*x+3842,637*x^10+4160*x^9+4043*x^8-22776*x^7-44070*x^6+26286*x^5+85839*x^4-481*x^3-52208*x^2-3614*x+7579,85*x^10+659*x^9+1008*x^8-3310*x^7-9052*x^6+2373*x^5+17741*x^4+2658*x^3-11262*x^2-1362*x+1734,158*x^10+1050*x^9+1081*x^8-5661*x^7-11300*x^6+6164*x^5+21369*x^4+531*x^3-12145*x^2-1288*x+1437,-50*x^10-289*x^9-128*x^8+1814*x^7+2389*x^6-3183*x^5-5398*x^4+2013*x^3+3819*x^2-495*x-539,-376*x^10-2491*x^9-2573*x^8+13426*x^7+27201*x^6-14377*x^5-52749*x^4-1977*x^3+32037*x^2+2840*x-4839,-276*x^10-1822*x^9-1914*x^8+9616*x^7+19888*x^6-9402*x^5-37754*x^4-2727*x^3+22293*x^2+2348*x-3332,-343*x^10-2222*x^9-2059*x^8+12430*x^7+23310*x^6-15462*x^5-46721*x^4+1916*x^3+29693*x^2+1608*x-4782,-297*x^10-1966*x^9-2026*x^8+10563*x^7+21304*x^6-11308*x^5-40927*x^4-1172*x^3+24697*x^2+2105*x-3763,-357*x^10-2331*x^9-2281*x^8+12732*x^7+24891*x^6-14449*x^5-48910*x^4-449*x^3+30429*x^2+2564*x-4779,83*x^10+584*x^9+720*x^8-3031*x^7-6930*x^6+2774*x^5+13168*x^4+1087*x^3-7944*x^2-776*x+1207,-584*x^10-3882*x^9-4081*x^8+20771*x^7+42658*x^6-21618*x^5-82298*x^4-3940*x^3+49847*x^2+4699*x-7452,-67*x^10-413*x^9-366*x^8+2164*x^7+4215*x^6-1900*x^5-8213*x^4-1324*x^3+5112*x^2+1093*x-904,118*x^10+746*x^9+625*x^8-4163*x^7-7249*x^6+5123*x^5+13733*x^4-300*x^3-7951*x^2-1177*x+1492,264*x^10+1723*x^9+1681*x^8-9346*x^7-18102*x^6+10443*x^5+34574*x^4+217*x^3-20572*x^2-1614*x+3043,-369*x^10-2430*x^9-2501*x^8+12885*x^7+26040*x^6-13044*x^5-48879*x^4-2608*x^3+28536*x^2+2908*x-4405,-414*x^10-2759*x^9-3001*x^8+14411*x^7+30586*x^6-13440*x^5-57892*x^4-5033*x^3+34577*x^2+3834*x-5219,-54*x^10-374*x^9-418*x^8+2125*x^7+4540*x^6-2719*x^5-9968*x^4+392*x^3+7231*x^2+40*x-1216,370*x^10+2422*x^9+2372*x^8-13226*x^7-25697*x^6+15073*x^5+49833*x^4+228*x^3-30117*x^2-2395*x+4454,-179*x^10-1181*x^9-1193*x^8+6426*x^7+12807*x^6-7186*x^5-25153*x^4-276*x^3+15693*x^2+798*x-2544,40*x^10+265*x^9+287*x^8-1394*x^7-3011*x^6+1301*x^5+6011*x^4+558*x^3-3869*x^2-332*x+608,180*x^10+1121*x^9+830*x^8-6494*x^7-10371*x^6+9228*x^5+20036*x^4-3287*x^3-11567*x^2-90*x+1618,681*x^10+4484*x^9+4529*x^8-24260*x^7-48335*x^6+26590*x^5+93651*x^4+2036*x^3-56876*x^2-4689*x+8500,-331*x^10-2240*x^9-2528*x^8+11744*x^7+25515*x^6-11147*x^5-49105*x^4-3894*x^3+30221*x^2+3136*x-4649,587*x^10+3858*x^9+3928*x^8-20702*x^7-41668*x^6+21959*x^5+80324*x^4+2780*x^3-48701*x^2-4187*x+7404,-84*x^10-485*x^9-201*x^8+3021*x^7+3753*x^6-5102*x^5-7596*x^4+2632*x^3+3896*x^2-205*x-138,364*x^10+2366*x^9+2301*x^8-12831*x^7-25025*x^6+14196*x^5+48555*x^4+832*x^3-29666*x^2-2366*x+4420,-242*x^10-1600*x^9-1659*x^8+8539*x^7+17341*x^6-8887*x^5-33021*x^4-1318*x^3+19499*x^2+1733*x-2524,107*x^10+665*x^9+588*x^8-3545*x^7-6784*x^6+3422*x^5+13223*x^4+1700*x^3-7993*x^2-1737*x+1187,464*x^10+3048*x^9+3116*x^8-16225*x^7-32767*x^6+16610*x^5+62315*x^4+3202*x^3-37109*x^2-3794*x+5459,-528*x^10-3394*x^9-3089*x^8+18757*x^7+34657*x^6-22472*x^5-66938*x^4+1802*x^3+39766*x^2+2656*x-5865,78*x^10+429*x^9+104*x^8-2678*x^7-2795*x^6+4628*x^5+5343*x^4-2600*x^3-2483*x^2+130*x+169,-414*x^10-2798*x^9-3118*x^8+14762*x^7+31652*x^6-14402*x^5-60869*x^4-4383*x^3+37190*x^2+3821*x-5661,371*x^10+2427*x^9+2425*x^8-13008*x^7-25770*x^6+13670*x^5+48798*x^4+2138*x^3-28188*x^2-2922*x+3762,239*x^10+1572*x^9+1539*x^8-8595*x^7-16511*x^6+9885*x^5+31433*x^4-44*x^3-18344*x^2-1517*x+2754,-498*x^10-3283*x^9-3358*x^8+17627*x^7+35483*x^6-18737*x^5-68166*x^4-2401*x^3+40995*x^2+3889*x-6150,-39*x^10-325*x^9-546*x^8+1599*x^7+4628*x^6-1040*x^5-8762*x^4-1287*x^3+5408*x^2+585*x-767,-594*x^10-3945*x^9-4104*x^8+21217*x^7+43102*x^6-22590*x^5-83050*x^4-3280*x^3+49654*x^2+4925*x-7045,305*x^10+2032*x^9+2203*x^8-10691*x^7-22681*x^6+10263*x^5+43645*x^4+3413*x^3-26698*x^2-2785*x+4012,-180*x^10-1199*x^9-1298*x^8+6286*x^7+13270*x^6-5991*x^5-25132*x^4-1887*x^3+14986*x^2+1520*x-2424,-40*x^10-252*x^9-222*x^8+1394*x^7+2595*x^6-1600*x^5-5153*x^4-168*x^3+3154*x^2+293*x-465,79*x^10+512*x^9+469*x^8-2837*x^7-5169*x^6+3498*x^5+9755*x^4-573*x^3-5676*x^2-319*x+816,-317*x^10-2092*x^9-2111*x^8+11325*x^7+22413*x^6-12485*x^5-43029*x^4-866*x^3+25754*x^2+2271*x-3859,187*x^10+1221*x^9+1175*x^8-6710*x^7-12832*x^6+7870*x^5+24803*x^4-356*x^3-14626*x^2-1075*x+2078,138*x^10+794*x^9+476*x^8-4353*x^7-6655*x^6+4948*x^5+12208*x^4+187*x^3-6174*x^2-914*x+665,-102*x^10-653*x^9-609*x^8+3504*x^7+6614*x^6-3768*x^5-12197*x^4-340*x^3+6588*x^2+844*x-890,-513*x^10-3332*x^9-3204*x^8+18127*x^7+34862*x^6-20377*x^5-66785*x^4-579*x^3+39477*x^2+3279*x-5780,275*x^10+1726*x^9+1432*x^8-9600*x^7-16747*x^6+11871*x^5+31964*x^4-1809*x^3-18645*x^2-1054*x+2724,-538*x^10-3535*x^9-3580*x^8+19008*x^7+38052*x^6-20246*x^5-73137*x^4-2751*x^3+43694*x^2+4195*x-6511,105*x^10+694*x^9+651*x^8-4007*x^7-7418*x^6+5578*x^5+15189*x^4-1821*x^3-9368*x^2+357*x+868,699*x^10+4613*x^9+4716*x^8-24834*x^7-49935*x^6+26595*x^5+96211*x^4+3292*x^3-57904*x^2-5218*x+8602,52*x^10+468*x^9+1027*x^8-1768*x^7-8073*x^6-1846*x^5+15379*x^4+7202*x^3-10179*x^2-2951*x+1781,-40*x^10-174*x^9+129*x^8+1238*x^7+359*x^6-2757*x^5-1253*x^4+2380*x^3+840*x^2-643*x-23,271*x^10+1797*x^9+1818*x^8-9848*x^7-19484*x^6+11334*x^5+38184*x^4+210*x^3-23618*x^2-2014*x+3685,100*x^10+669*x^9+698*x^8-3680*x^7-7404*x^6+4442*x^5+14644*x^4-763*x^3-9237*x^2-232*x+1377,373*x^10+2450*x^9+2492*x^8-13118*x^7-26358*x^6+13867*x^5+50511*x^4+1629*x^3-30284*x^2-2650*x+4354,-13*x^10-143*x^9-377*x^8+507*x^7+2847*x^6+741*x^5-5590*x^4-2392*x^3+3848*x^2+767*x-663,306*x^10+1959*x^9+1723*x^8-10954*x^7-19647*x^6+13826*x^5+38008*x^4-2503*x^3-22845*x^2-1089*x+3476,-358*x^10-2323*x^9-2204*x^8+12748*x^7+24249*x^6-14840*x^5-46900*x^4+436*x^3+27967*x^2+2064*x-3944,285*x^10+1971*x^9+2391*x^8-10137*x^7-23379*x^6+8592*x^5+44923*x^4+5227*x^3-27695*x^2-3295*x+4215,-6*x^10-30*x^9-32*x^8+57*x^7+321*x^6+579*x^5-498*x^4-1606*x^3+282*x^2+1056*x-242,-436*x^10-2791*x^9-2516*x^8+15322*x^7+28071*x^6-17986*x^5-52997*x^4+1125*x^3+30216*x^2+1999*x-4295,136*x^10+836*x^9+708*x^8-4503*x^7-8407*x^6+4725*x^5+16683*x^4+813*x^3-10370*x^2-874*x+1581,53*x^10+291*x^9+79*x^8-1810*x^7-1984*x^6+3251*x^5+4061*x^4-2640*x^3-2569*x^2+1241*x+400,364*x^10+2496*x^9+2925*x^8-12870*x^7-28587*x^6+11284*x^5+53287*x^4+5642*x^3-31070*x^2-3900*x+4641,328*x^10+2199*x^9+2395*x^8-11683*x^7-24750*x^6+11677*x^5+48193*x^4+3195*x^3-29729*x^2-2933*x+4554,496*x^10+3234*x^9+3239*x^8-17270*x^7-34505*x^6+17903*x^5+65868*x^4+3027*x^3-39276*x^2-3732*x+5831,576*x^10+3803*x^9+3943*x^8-20175*x^7-41008*x^6+20310*x^5+77136*x^4+4715*x^3-44674*x^2-5085*x+6553,35*x^10+201*x^9+113*x^8-1106*x^7-1593*x^6+1296*x^5+2749*x^4-48*x^3-1203*x^2-258*x+90,132*x^10+894*x^9+1003*x^8-4673*x^7-10000*x^6+4474*x^5+18678*x^4+1168*x^3-10910*x^2-1080*x+1619,-266*x^10-1681*x^9-1410*x^8+9404*x^7+16428*x^6-11836*x^5-31503*x^4+2008*x^3+18391*x^2+926*x-2686,-457*x^10-3052*x^9-3304*x^8+16100*x^7+33933*x^6-15680*x^5-64841*x^4-4717*x^3+38782*x^2+3836*x-5701,155*x^10+1048*x^9+1143*x^8-5574*x^7-11588*x^6+5745*x^5+21861*x^4+937*x^3-12810*x^2-1202*x+1836,14*x^10+70*x^9-77*x^8-692*x^7+5*x^6+2302*x^5+304*x^4-2744*x^3+31*x^2+786*x-185,-285*x^10-1880*x^9-1923*x^8+10124*x^7+20415*x^6-10815*x^5-39528*x^4-1418*x^3+23964*x^2+2138*x-3604,-124*x^10-841*x^9-969*x^8+4285*x^7+9390*x^6-3686*x^5-16974*x^4-1436*x^3+9598*x^2+764*x-1513,116*x^10+723*x^9+649*x^8-3819*x^7-7298*x^6+3678*x^5+13775*x^4+1366*x^3-7935*x^2-1215*x+1160]];
E[313,3] = [x^12-6*x^11-2*x^10+69*x^9-68*x^8-268*x^7+399*x^6+368*x^5-701*x^4-57*x^3+262*x^2-22*x-19, [2,2*x,2*x^10-6*x^9-24*x^8+70*x^7+108*x^6-278*x^5-224*x^4+400*x^3+200*x^2-94*x-34,2*x^2-4,2*x^11-8*x^10-18*x^9+94*x^8+36*x^7-380*x^6+68*x^5+580*x^4-226*x^3-210*x^2+66*x+16,2*x^11-6*x^10-24*x^9+70*x^8+108*x^7-278*x^6-224*x^5+400*x^4+200*x^3-94*x^2-34*x,-3*x^11+11*x^10+31*x^9-134*x^8-94*x^7+566*x^6+27*x^5-919*x^4+198*x^3+387*x^2-69*x-33,2*x^3-8*x,-6*x^11+24*x^10+56*x^9-290*x^8-122*x^7+1216*x^6-188*x^5-1962*x^4+712*x^3+824*x^2-212*x-74,4*x^11-14*x^10-44*x^9+172*x^8+156*x^7-730*x^6-156*x^5+1176*x^4-96*x^3-458*x^2+60*x+38,2*x^11-10*x^10-14*x^9+126*x^8-22*x^7-558*x^6+344*x^5+982*x^4-688*x^3-520*x^2+190*x+64,6*x^11-24*x^10-56*x^9+292*x^8+118*x^7-1238*x^6+220*x^5+2050*x^4-780*x^3-958*x^2+232*x+106,-2*x^11+4*x^10+30*x^9-44*x^8-184*x^7+154*x^6+552*x^5-144*x^4-710*x^3-104*x^2+160*x+28,-7*x^11+25*x^10+73*x^9-298*x^8-238*x^7+1224*x^6+185*x^5-1905*x^4+216*x^3+717*x^2-99*x-57,-2*x^11+8*x^10+18*x^9-94*x^8-36*x^7+380*x^6-70*x^5-576*x^4+238*x^3+192*x^2-84*x-6,2*x^4-12*x^2+8,2*x^11-8*x^10-18*x^9+94*x^8+38*x^7-386*x^6+54*x^5+626*x^4-204*x^3-302*x^2+72*x+36,-12*x^11+44*x^10+124*x^9-530*x^8-392*x^7+2206*x^6+246*x^5-3494*x^4+482*x^3+1360*x^2-206*x-114,6*x^11-24*x^10-54*x^9+282*x^8+110*x^7-1146*x^6+190*x^5+1784*x^4-652*x^3-714*x^2+192*x+66,6*x^11-20*x^10-68*x^9+240*x^8+270*x^7-992*x^6-432*x^5+1548*x^4+222*x^3-568*x^2-6*x+44,4*x^11-8*x^10-62*x^9+96*x^8+378*x^7-372*x^6-1090*x^5+416*x^4+1324*x^3+206*x^2-282*x-66,2*x^11-10*x^10-12*x^9+114*x^8-22*x^7-454*x^6+246*x^5+714*x^4-406*x^3-334*x^2+108*x+38,-7*x^11+29*x^10+63*x^9-352*x^8-114*x^7+1486*x^6-333*x^5-2431*x^4+996*x^3+1075*x^2-307*x-101,8*x^11-32*x^10-74*x^9+386*x^8+154*x^7-1618*x^6+290*x^5+2626*x^4-1016*x^3-1152*x^2+306*x+114,4*x^11-14*x^10-44*x^9+172*x^8+156*x^7-728*x^6-160*x^5+1162*x^4-70*x^3-436*x^2+18*x+42,-8*x^11+26*x^10+94*x^9-320*x^8-382*x^7+1350*x^6+592*x^5-2112*x^4-218*x^3+684*x^2-16*x-38,4*x^11-12*x^10-48*x^9+140*x^8+214*x^7-552*x^6-430*x^5+772*x^4+350*x^3-140*x^2-34*x-8,-11*x^11+37*x^10+123*x^9-446*x^8-464*x^7+1846*x^6+617*x^5-2853*x^4-78*x^3+961*x^2-73*x-67,-2*x^11+8*x^10+18*x^9-92*x^8-44*x^7+370*x^6-4*x^5-592*x^4+92*x^3+294*x^2-38*x-30,-4*x^11+14*x^10+44*x^9-172*x^8-156*x^7+728*x^6+160*x^5-1164*x^4+78*x^3+440*x^2-50*x-38,3*x^11-15*x^10-17*x^9+176*x^8-64*x^7-728*x^6+581*x^5+1225*x^4-1054*x^3-689*x^2+285*x+77,2*x^5-16*x^3+24*x,4*x^11-14*x^10-44*x^9+168*x^8+168*x^7-694*x^6-260*x^5+1072*x^4+146*x^3-354*x^2-22*x+14,4*x^11-14*x^10-44*x^9+174*x^8+150*x^7-744*x^6-110*x^5+1198*x^4-188*x^3-452*x^2+80*x+38,-2*x^11+6*x^10+24*x^9-68*x^8-114*x^7+262*x^6+274*x^5-368*x^4-308*x^3+94*x^2+54*x+2,-16*x^11+52*x^10+186*x^9-628*x^8-766*x^7+2602*x^6+1298*x^5-4006*x^4-748*x^3+1290*x^2+46*x-80,8*x^11-28*x^10-88*x^9+342*x^8+318*x^7-1440*x^6-366*x^5+2282*x^4-62*x^3-822*x^2+78*x+62,12*x^11-42*x^10-132*x^9+518*x^8+462*x^7-2204*x^6-424*x^5+3554*x^4-372*x^3-1380*x^2+198*x+114,8*x^11-32*x^10-74*x^9+384*x^8+162*x^7-1608*x^6+224*x^5+2638*x^4-864*x^3-1234*x^2+240*x+132,8*x^11-28*x^10-86*x^9+334*x^8+304*x^7-1366*x^6-348*x^5+2076*x^4-34*x^3-662*x^2+56*x+38,-6*x^11+20*x^10+68*x^9-242*x^8-262*x^7+1002*x^6+364*x^5-1528*x^4-70*x^3+456*x^2-34*x-28,16*x^11-54*x^10-180*x^9+650*x^8+700*x^7-2686*x^6-1056*x^5+4128*x^4+434*x^3-1330*x^2+22*x+76,5*x^11-19*x^10-49*x^9+230*x^8+124*x^7-964*x^6+93*x^5+1553*x^4-550*x^3-655*x^2+191*x+61,-2*x^11+12*x^10+4*x^9-138*x^8+126*x^7+564*x^6-710*x^5-968*x^4+1156*x^3+624*x^2-298*x-90,-2*x^11+6*x^10+24*x^9-68*x^8-114*x^7+262*x^6+276*x^5-370*x^4-326*x^3+108*x^2+94*x-22,-13*x^11+49*x^10+131*x^9-590*x^8-390*x^7+2460*x^6+145*x^5-3911*x^4+676*x^3+1527*x^2-255*x-133,x^11-9*x^10+7*x^9+104*x^8-164*x^7-438*x^6+737*x^5+819*x^4-1094*x^3-637*x^2+259*x+103,4*x^11-10*x^10-54*x^9+114*x^8+290*x^7-426*x^6-758*x^5+492*x^4+864*x^3+126*x^2-174*x-60,-8*x^11+34*x^10+68*x^9-406*x^8-96*x^7+1692*x^6-466*x^5-2764*x^4+1184*x^3+1292*x^2-328*x-144,10*x^11-36*x^10-104*x^9+428*x^8+344*x^7-1756*x^6-310*x^5+2734*x^4-208*x^3-1030*x^2+130*x+76,-10*x^11+40*x^10+92*x^9-478*x^8-198*x^7+1988*x^6-294*x^5-3216*x^4+1106*x^3+1438*x^2-336*x-156,-18*x^11+70*x^10+172*x^9-838*x^8-426*x^7+3476*x^6-272*x^5-5538*x^4+1648*x^3+2288*x^2-534*x-208,6*x^11-18*x^10-74*x^9+212*x^8+352*x^7-850*x^6-806*x^5+1228*x^4+820*x^3-268*x^2-134*x-8,12*x^11-40*x^10-136*x^9+486*x^8+520*x^7-2026*x^6-700*x^5+3154*x^4+88*x^3-1082*x^2+80*x+76,4*x^11-16*x^10-36*x^9+188*x^8+74*x^7-766*x^6+120*x^5+1212*x^4-422*x^3-538*x^2+140*x+56,-15*x^11+51*x^10+167*x^9-616*x^8-626*x^7+2558*x^6+825*x^5-3979*x^4-98*x^3+1375*x^2-111*x-95,-10*x^11+36*x^10+104*x^9-428*x^8-342*x^7+1750*x^6+294*x^5-2684*x^4+246*x^3+920*x^2-156*x-58,-4*x^11+14*x^10+46*x^9-180*x^8-166*x^7+794*x^6+144*x^5-1310*x^4+180*x^3+486*x^2-74*x-38,-13*x^11+45*x^10+143*x^9-550*x^8-506*x^7+2314*x^6+501*x^5-3673*x^4+330*x^3+1373*x^2-229*x-103,-6*x^11+20*x^10+68*x^9-240*x^8-272*x^7+996*x^6+448*x^5-1574*x^4-264*x^3+614*x^2+42*x-64,4*x^11-12*x^10-50*x^9+148*x^8+228*x^7-626*x^6-454*x^5+988*x^4+360*x^3-344*x^2-64*x+26,3*x^11-11*x^10-31*x^9+140*x^8+76*x^7-616*x^6+121*x^5+1049*x^4-518*x^3-501*x^2+143*x+57,-11*x^11+49*x^10+85*x^9-586*x^8-20*x^7+2452*x^6-1143*x^5-4061*x^4+2432*x^3+2015*x^2-637*x-223,2*x^6-20*x^4+48*x^2-16,-4*x^11+14*x^10+44*x^9-172*x^8-154*x^7+724*x^6+140*x^5-1126*x^4+132*x^3+344*x^2-74*x-4,10*x^11-36*x^10-108*x^9+440*x^8+378*x^7-1856*x^6-400*x^5+2950*x^4-126*x^3-1070*x^2+102*x+76,11*x^11-39*x^10-121*x^9+482*x^8+430*x^7-2060*x^6-447*x^5+3347*x^4-192*x^3-1323*x^2+101*x+119,6*x^11-20*x^10-66*x^9+234*x^8+252*x^7-934*x^6-382*x^5+1364*x^4+184*x^3-364*x^2-18*x+4,6*x^11-16*x^10-78*x^9+192*x^8+372*x^7-766*x^6-768*x^5+1028*x^4+592*x^3-36*x^2-60*x-50,-6*x^11+20*x^10+70*x^9-250*x^8-274*x^7+1072*x^6+368*x^5-1710*x^4-20*x^3+578*x^2-42*x-38,-4*x^11+14*x^10+40*x^9-156*x^8-134*x^7+594*x^6+170*x^5-850*x^4-72*x^3+292*x^2+16*x-14,-20*x^11+66*x^10+228*x^9-794*x^8-902*x^7+3270*x^6+1390*x^5-4976*x^4-586*x^3+1518*x^2-20*x-76,-8*x^11+26*x^10+94*x^9-320*x^8-382*x^7+1350*x^6+596*x^5-2120*x^4-240*x^3+722*x^2+8*x-66,20*x^11-72*x^10-210*x^9+862*x^8+704*x^7-3558*x^6-662*x^5+5546*x^4-366*x^3-2018*x^2+238*x+152,-2*x^11-4*x^10+56*x^9+44*x^8-480*x^7-194*x^6+1696*x^5+460*x^4-2314*x^3-546*x^2+544*x+84,18*x^11-60*x^10-202*x^9+714*x^8+792*x^7-2920*x^6-1242*x^5+4472*x^4+608*x^3-1518*x^2-6*x+96,-4*x^11+6*x^10+70*x^9-80*x^8-460*x^7+336*x^6+1366*x^5-382*x^4-1650*x^3-276*x^2+366*x+84,16*x^11-58*x^10-168*x^9+706*x^8+536*x^7-2968*x^6-306*x^5+4744*x^4-778*x^3-1856*x^2+308*x+152,6*x^11-22*x^10-60*x^9+256*x^8+190*x^7-1034*x^6-166*x^5+1620*x^4-100*x^3-704*x^2+94*x+88,8*x^11-30*x^10-82*x^9+368*x^8+238*x^7-1556*x^6-4*x^5+2478*x^4-650*x^3-904*x^2+226*x+64,-4*x^11+24*x^10+12*x^9-286*x^8+212*x^7+1212*x^6-1278*x^5-2126*x^4+2116*x^3+1304*x^2-546*x-174,-16*x^11+56*x^10+172*x^9-670*x^8-606*x^7+2758*x^6+680*x^5-4276*x^4+114*x^3+1538*x^2-160*x-114,8*x^11-28*x^10-88*x^9+344*x^8+312*x^7-1458*x^6-318*x^5+2344*x^4-162*x^3-916*x^2+96*x+82,34*x^11-132*x^10-330*x^9+1596*x^8+846*x^7-6696*x^6+420*x^5+10818*x^4-3066*x^3-4582*x^2+992*x+436,-4*x^11+12*x^10+50*x^9-148*x^8-226*x^7+620*x^6+438*x^5-938*x^4-332*x^3+238*x^2+82*x-16,11*x^11-39*x^10-115*x^9+464*x^8+376*x^7-1902*x^6-287*x^5+2955*x^4-370*x^3-1119*x^2+171*x+95,-4*x^11+20*x^10+26*x^9-244*x^8+56*x^7+1046*x^6-692*x^5-1782*x^4+1324*x^3+914*x^2-358*x-98,-4*x^11+20*x^10+24*x^9-238*x^8+72*x^7+996*x^6-724*x^5-1674*x^4+1322*x^3+894*x^2-350*x-114,-4*x^11+12*x^10+50*x^9-144*x^8-240*x^7+594*x^6+554*x^5-918*x^4-586*x^3+312*x^2+146*x-12,-6*x^11+20*x^10+70*x^9-250*x^8-274*x^7+1074*x^6+366*x^5-1728*x^4-6*x^3+618*x^2-66*x-38,4*x^11-26*x^10-6*x^9+308*x^8-278*x^7-1298*x^6+1522*x^5+2266*x^4-2434*x^3-1390*x^2+600*x+184,-15*x^11+47*x^10+181*x^9-570*x^8-796*x^7+2360*x^6+1539*x^5-3575*x^4-1206*x^3+1001*x^2+195*x-45,-2*x^11+42*x^9+10*x^8-338*x^7-124*x^6+1222*x^5+534*x^4-1746*x^3-830*x^2+374*x+154,-3*x^11+9*x^10+35*x^9-96*x^8-170*x^7+338*x^6+451*x^5-393*x^4-580*x^3-3*x^2+125*x+19,6*x^11-22*x^10-62*x^9+266*x^8+192*x^7-1108*x^6-90*x^5+1736*x^4-300*x^3-624*x^2+70*x+72,-2*x^11+18*x^10-14*x^9-210*x^8+338*x^7+882*x^6-1560*x^5-1584*x^4+2386*x^3+1082*x^2-584*x-152,2*x^10-6*x^9-30*x^8+88*x^7+156*x^6-424*x^5-334*x^4+712*x^3+256*x^2-168*x-40,-14*x^11+52*x^10+146*x^9-640*x^8-452*x^7+2726*x^6+180*x^5-4424*x^4+836*x^3+1768*x^2-320*x-152,-4*x^11+6*x^10+68*x^9-78*x^8-432*x^7+322*x^6+1230*x^5-376*x^4-1410*x^3-206*x^2+288*x+64,16*x^11-56*x^10-174*x^9+680*x^8+612*x^7-2844*x^6-626*x^5+4478*x^4-320*x^3-1618*x^2+260*x+106,14*x^11-42*x^10-172*x^9+498*x^8+798*x^7-2006*x^6-1722*x^5+2898*x^4+1600*x^3-606*x^2-258*x-30,-20*x^11+72*x^10+212*x^9-878*x^8-692*x^7+3696*x^6+464*x^5-5904*x^4+868*x^3+2284*x^2-376*x-190,4*x^11-18*x^10-34*x^9+228*x^8+30*x^7-1020*x^6+378*x^5+1838*x^4-904*x^3-1048*x^2+246*x+132,-22*x^11+84*x^10+216*x^9-1010*x^8-584*x^7+4210*x^6-98*x^5-6746*x^4+1698*x^3+2814*x^2-572*x-266,-2*x^5+4*x^4+12*x^3-16*x^2-18*x+4,18*x^11-62*x^10-202*x^9+760*x^8+758*x^7-3200*x^6-980*x^5+5026*x^4+74*x^3-1706*x^2+124*x+114,10*x^11-36*x^10-106*x^9+438*x^8+350*x^7-1844*x^6-264*x^5+2970*x^4-364*x^3-1222*x^2+162*x+130,24*x^11-88*x^10-246*x^9+1056*x^8+762*x^7-4384*x^6-402*x^5+6956*x^4-1098*x^3-2784*x^2+408*x+244,-4*x^11+24*x^10+12*x^9-292*x^8+232*x^7+1256*x^6-1446*x^5-2194*x^4+2486*x^3+1260*x^2-632*x-170,8*x^11-28*x^10-88*x^9+346*x^8+306*x^7-1476*x^6-260*x^5+2382*x^4-310*x^3-908*x^2+144*x+76,-16*x^11+56*x^10+172*x^9-676*x^8-590*x^7+2814*x^6+544*x^5-4442*x^4+414*x^3+1702*x^2-220*x-142,-17*x^11+63*x^10+173*x^9-754*x^8-534*x^7+3118*x^6+307*x^5-4907*x^4+676*x^3+1897*x^2-279*x-151,-6*x^11+24*x^10+58*x^9-300*x^8-130*x^7+1308*x^6-222*x^5-2216*x^4+854*x^3+1020*x^2-252*x-102,-24*x^11+84*x^10+262*x^9-1022*x^8-930*x^7+4284*x^6+996*x^5-6764*x^4+350*x^3+2464*x^2-278*x-190,2*x^11-10*x^10-8*x^9+100*x^8-56*x^7-316*x^6+328*x^5+278*x^4-442*x^3+124*x^2+88*x-48,-6*x^11+22*x^10+60*x^9-254*x^8-190*x^7+1000*x^6+170*x^5-1440*x^4+74*x^3+386*x^2-50*x-16,2*x^11-22*x^10+26*x^9+258*x^8-480*x^7-1090*x^6+2126*x^5+1978*x^4-3194*x^3-1386*x^2+766*x+180,-33*x^11+117*x^10+347*x^9-1390*x^8-1170*x^7+5688*x^6+1111*x^5-8783*x^4+632*x^3+3177*x^2-389*x-247,14*x^11-50*x^10-148*x^9+602*x^8+494*x^7-2502*x^6-418*x^5+3948*x^4-408*x^3-1514*x^2+230*x+128,-8*x^11+28*x^10+86*x^9-336*x^8-300*x^7+1386*x^6+314*x^5-2142*x^4+116*x^3+734*x^2-96*x-38,2*x^11-14*x^10-2*x^9+180*x^8-180*x^7-824*x^6+1052*x^5+1548*x^4-1834*x^3-974*x^2+498*x+126,12*x^11-42*x^10-128*x^9+500*x^8+446*x^7-2050*x^6-484*x^5+3164*x^4-116*x^3-1112*x^2+114*x+76,16*x^11-70*x^10-132*x^9+852*x^8+108*x^7-3624*x^6+1422*x^5+6066*x^4-3302*x^3-2956*x^2+920*x+324,x^11+5*x^10-33*x^9-72*x^8+316*x^7+380*x^6-1217*x^5-865*x^4+1778*x^3+735*x^2-447*x-97,-8*x^11+32*x^10+74*x^9-384*x^8-164*x^7+1616*x^6-212*x^5-2710*x^4+868*x^3+1400*x^2-310*x-162,-17*x^11+63*x^10+173*x^9-768*x^8-496*x^7+3246*x^6-13*x^5-5279*x^4+1388*x^3+2245*x^2-465*x-209,x^11-5*x^10-7*x^9+68*x^8-26*x^7-322*x^6+299*x^5+605*x^4-632*x^3-349*x^2+183*x+49,2*x^7-24*x^5+80*x^3-64*x,-12*x^11+52*x^10+100*x^9-624*x^8-114*x^7+2608*x^6-850*x^5-4230*x^4+2054*x^3+1856*x^2-602*x-182,-10*x^11+36*x^10+104*x^9-426*x^8-348*x^7+1736*x^6+346*x^5-2672*x^4+116*x^3+974*x^2-92*x-76,13*x^11-55*x^10-115*x^9+682*x^8+156*x^7-2956*x^6+985*x^5+5039*x^4-2592*x^3-2503*x^2+739*x+299,16*x^11-60*x^10-162*x^9+722*x^8+488*x^7-3002*x^6-210*x^5+4740*x^4-792*x^3-1810*x^2+340*x+162,8*x^11-34*x^10-70*x^9+418*x^8+94*x^7-1790*x^6+582*x^5+2976*x^4-1506*x^3-1348*x^2+412*x+146,27*x^11-99*x^10-277*x^9+1178*x^8+888*x^7-4836*x^6-701*x^5+7519*x^4-696*x^3-2781*x^2+361*x+209,6*x^11-24*x^10-56*x^9+288*x^8+132*x^7-1212*x^6+108*x^5+2024*x^4-544*x^3-1018*x^2+178*x+126,8*x^11-26*x^10-92*x^9+312*x^8+374*x^7-1288*x^6-624*x^5+1994*x^4+354*x^3-686*x^2-24*x+38,8*x^11-30*x^10-80*x^9+358*x^8+236*x^7-1480*x^6-80*x^5+2342*x^4-444*x^3-936*x^2+222*x+80,20*x^11-66*x^10-222*x^9+780*x^8+842*x^7-3162*x^6-1180*x^5+4798*x^4+306*x^3-1632*x^2+82*x+114,-4*x^11+30*x^10-6*x^9-360*x^8+428*x^7+1550*x^6-2158*x^5-2816*x^4+3406*x^3+1878*x^2-850*x-274,-12*x^11+46*x^10+116*x^9-546*x^8-308*x^7+2238*x^6-50*x^5-3490*x^4+852*x^3+1342*x^2-278*x-118,8*x^11-36*x^10-62*x^9+440*x^8-6*x^7-1876*x^6+1006*x^5+3134*x^4-2150*x^3-1488*x^2+572*x+130,-10*x^11+32*x^10+120*x^9-406*x^8-478*x^7+1766*x^6+622*x^5-2876*x^4+64*x^3+1064*x^2-102*x-76,-6*x^11+20*x^10+66*x^9-234*x^8-252*x^7+936*x^6+386*x^5-1394*x^4-206*x^3+456*x^2+36*x-16,-22*x^11+84*x^10+214*x^9-1006*x^8-558*x^7+4166*x^6-212*x^5-6594*x^4+1874*x^3+2640*x^2-608*x-220,-4*x^11+12*x^10+52*x^9-156*x^8-240*x^7+700*x^6+444*x^5-1186*x^4-230*x^3+462*x^2-42*x-12,-22*x^11+78*x^10+232*x^9-926*x^8-794*x^7+3788*x^6+824*x^5-5848*x^4+266*x^3+2104*x^2-242*x-152,2*x^11+4*x^10-52*x^9-58*x^8+450*x^7+316*x^6-1636*x^5-770*x^4+2290*x^3+738*x^2-522*x-98,32*x^11-114*x^10-342*x^9+1380*x^8+1166*x^7-5762*x^6-1082*x^5+9090*x^4-754*x^3-3358*x^2+436*x+256,12*x^10-36*x^9-146*x^8+430*x^7+652*x^6-1750*x^5-1284*x^4+2590*x^3+1014*x^2-654*x-152,-16*x^11+52*x^10+182*x^9-616*x^8-730*x^7+2494*x^6+1196*x^5-3716*x^4-660*x^3+1068*x^2+40*x-38,-12*x^11+48*x^10+112*x^9-580*x^8-248*x^7+2444*x^6-342*x^5-4030*x^4+1348*x^3+1894*x^2-402*x-216,24*x^11-82*x^10-264*x^9+980*x^8+980*x^7-4016*x^6-1304*x^5+6118*x^4+252*x^3-1962*x^2+96*x+114,18*x^11-60*x^10-204*x^9+724*x^8+796*x^7-2998*x^6-1184*x^5+4626*x^4+436*x^3-1536*x^2+18*x+112,-18*x^11+62*x^10+196*x^9-732*x^8-736*x^7+2962*x^6+1090*x^5-4454*x^4-504*x^3+1414*x^2-4*x-76,2*x^10-8*x^9-20*x^8+100*x^7+50*x^6-422*x^5+44*x^4+628*x^3-218*x^2-114*x+46,22*x^11-72*x^10-250*x^9+856*x^8+996*x^7-3474*x^6-1592*x^5+5162*x^4+784*x^3-1416*x^2+24*x+40,-4*x^11+8*x^10+60*x^9-86*x^8-372*x^7+286*x^6+1136*x^5-200*x^4-1482*x^3-342*x^2+314*x+78,14*x^11-48*x^10-158*x^9+598*x^8+574*x^7-2560*x^6-588*x^5+4106*x^4-362*x^3-1478*x^2+220*x+114,-8*x^11+38*x^10+52*x^9-448*x^8+96*x^7+1858*x^6-1260*x^5-3114*x^4+2376*x^3+1704*x^2-592*x-206,2*x^11-10*x^10-12*x^9+114*x^8-20*x^7-464*x^6+230*x^5+806*x^4-380*x^3-546*x^2+128*x+76,-16*x^11+66*x^10+144*x^9-810*x^8-234*x^7+3472*x^6-992*x^5-5840*x^4+2798*x^3+2814*x^2-814*x-300,4*x^10-10*x^9-60*x^8+140*x^7+318*x^6-654*x^5-688*x^4+1076*x^3+502*x^2-262*x-76,-18*x^11+72*x^10+170*x^9-886*x^8-360*x^7+3808*x^6-718*x^5-6430*x^4+2560*x^3+3150*x^2-786*x-362,-28*x^11+100*x^10+298*x^9-1210*x^8-1006*x^7+5060*x^6+884*x^5-8046*x^4+766*x^3+3120*x^2-398*x-248,-6*x^11+26*x^10+50*x^9-314*x^8-52*x^7+1324*x^6-466*x^5-2186*x^4+1114*x^3+1026*x^2-320*x-116,20*x^11-72*x^10-208*x^9+856*x^8+686*x^7-3510*x^6-600*x^5+5446*x^4-460*x^3-2000*x^2+258*x+152,-19*x^11+75*x^10+179*x^9-896*x^8-432*x^7+3720*x^6-301*x^5-5987*x^4+1674*x^3+2621*x^2-547*x-251,40*x^11-154*x^10-390*x^9+1858*x^8+1016*x^7-7774*x^6+418*x^5+12512*x^4-3512*x^3-5256*x^2+1140*x+494,-4*x^11+22*x^10+18*x^9-262*x^8+144*x^7+1098*x^6-1014*x^5-1854*x^4+1732*x^3+1006*x^2-424*x-128,-12*x^11+42*x^10+128*x^9-498*x^8-452*x^7+2034*x^6+534*x^5-3136*x^4+10*x^3+1130*x^2-104*x-76,10*x^11-40*x^10-94*x^9+492*x^8+192*x^7-2108*x^6+444*x^5+3514*x^4-1514*x^3-1608*x^2+482*x+142,17*x^11-55*x^10-197*x^9+664*x^8+798*x^7-2748*x^6-1279*x^5+4235*x^4+608*x^3-1401*x^2-45*x+87,-18*x^11+78*x^10+152*x^9-950*x^8-166*x^7+4032*x^6-1402*x^5-6670*x^4+3400*x^3+3068*x^2-992*x-304,-4*x^11+18*x^10+32*x^9-216*x^8-26*x^7+904*x^6-310*x^5-1480*x^4+686*x^3+690*x^2-186*x-76,7*x^11-29*x^10-59*x^9+342*x^8+74*x^7-1400*x^6+467*x^5+2229*x^4-1136*x^3-997*x^2+261*x+105,-8*x^10+30*x^9+76*x^8-328*x^7-256*x^6+1218*x^5+454*x^4-1646*x^3-550*x^2+394*x+104,34*x^11-138*x^10-312*x^9+1672*x^8+620*x^7-7040*x^6+1386*x^5+11454*x^4-4554*x^3-4962*x^2+1370*x+478,-12*x^11+42*x^10+132*x^9-512*x^8-478*x^7+2150*x^6+554*x^5-3390*x^4+84*x^3+1194*x^2-100*x-76,x^11-21*x^10+47*x^9+234*x^8-618*x^7-944*x^6+2483*x^5+1693*x^4-3524*x^3-1297*x^2+845*x+205,-12*x^11+46*x^10+116*x^9-546*x^8-306*x^7+2236*x^6-72*x^5-3472*x^4+928*x^3+1290*x^2-358*x-70,14*x^11-48*x^10-156*x^9+586*x^8+578*x^7-2468*x^6-724*x^5+3944*x^4+34*x^3-1528*x^2+42*x+114,-2*x^11+2*x^10+32*x^9-6*x^8-226*x^7-74*x^6+794*x^5+370*x^4-1162*x^3-448*x^2+272*x+76,-16*x^11+50*x^10+194*x^9-614*x^8-844*x^7+2586*x^6+1550*x^5-4054*x^4-1048*x^3+1364*x^2+148*x-100,-17*x^11+53*x^10+203*x^9-636*x^8-880*x^7+2604*x^6+1655*x^5-3899*x^4-1206*x^3+1071*x^2+135*x-19,2*x^11-8*x^10-16*x^9+86*x^8+24*x^7-310*x^6+70*x^5+404*x^4-166*x^3-110*x^2+46*x+2,-12*x^11+38*x^10+148*x^9-474*x^8-660*x^7+2020*x^6+1270*x^5-3148*x^4-944*x^3+898*x^2+110*x-38,8*x^11-36*x^10-64*x^9+446*x^8+12*x^7-1932*x^6+958*x^5+3298*x^4-2126*x^3-1658*x^2+596*x+202,-11*x^11+47*x^10+97*x^9-582*x^8-138*x^7+2524*x^6-763*x^5-4321*x^4+2014*x^3+2185*x^2-565*x-263,2*x^11+6*x^10-60*x^9-78*x^8+540*x^7+400*x^6-1984*x^5-1000*x^4+2772*x^3+1092*x^2-598*x-172,14*x^11-50*x^10-148*x^9+600*x^8+500*x^7-2484*x^6-472*x^5+3906*x^4-282*x^3-1502*x^2+204*x+114,-3*x^11+15*x^10+15*x^9-164*x^8+66*x^7+618*x^6-497*x^5-909*x^4+784*x^3+407*x^2-147*x-33,-2*x^11+2*x^10+36*x^9-26*x^8-234*x^7+90*x^6+668*x^5-760*x^3-312*x^2+152*x+82,12*x^11-44*x^10-124*x^9+536*x^8+372*x^7-2252*x^6-82*x^5+3596*x^4-836*x^3-1420*x^2+286*x+128,2*x^11-6*x^10-30*x^9+88*x^8+156*x^7-424*x^6-334*x^5+712*x^4+256*x^3-168*x^2-40*x,2*x^10-4*x^9-32*x^8+54*x^7+190*x^6-240*x^5-508*x^4+368*x^3+558*x^2-66*x-122,-16*x^11+50*x^10+190*x^9-592*x^8-834*x^7+2382*x^6+1660*x^5-3450*x^4-1398*x^3+764*x^2+196*x+22,16*x^11-68*x^10-140*x^9+834*x^8+198*x^7-3574*x^6+1072*x^5+6020*x^4-2788*x^3-2942*x^2+758*x+346,-18*x^11+60*x^10+198*x^9-704*x^8-750*x^7+2826*x^6+1096*x^5-4214*x^4-434*x^3+1336*x^2-24*x-76,-14*x^11+68*x^10+94*x^9-826*x^8+168*x^7+3516*x^6-2344*x^5-5934*x^4+4568*x^3+3020*x^2-1224*x-356,20*x^11-70*x^10-216*x^9+844*x^8+756*x^7-3498*x^6-790*x^5+5428*x^4-290*x^3-1872*x^2+198*x+152,-2*x^11-16*x^10+92*x^9+186*x^8-898*x^7-810*x^6+3342*x^5+1632*x^4-4658*x^3-1416*x^2+1116*x+200,42*x^11-144*x^10-468*x^9+1750*x^8+1746*x^7-7308*x^6-2254*x^5+11414*x^4+192*x^3-3926*x^2+278*x+266,6*x^11-20*x^10-66*x^9+226*x^8+272*x^7-856*x^6-554*x^5+1120*x^4+572*x^3-120*x^2-110*x-18,-28*x^11+92*x^10+318*x^9-1096*x^8-1268*x^7+4468*x^6+2044*x^5-6720*x^4-1068*x^3+1988*x^2+42*x-68,-14*x^11+54*x^10+134*x^9-640*x^8-344*x^7+2618*x^6-118*x^5-4066*x^4+1068*x^3+1542*x^2-310*x-148,6*x^11-26*x^10-48*x^9+302*x^8+52*x^7-1218*x^6+366*x^5+1900*x^4-820*x^3-802*x^2+220*x+76,-31*x^11+127*x^10+281*x^9-1538*x^8-524*x^7+6468*x^6-1429*x^5-10487*x^4+4388*x^3+4469*x^2-1275*x-405,-12*x^11+32*x^10+164*x^9-404*x^8-834*x^7+1728*x^6+1894*x^5-2648*x^4-1736*x^3+616*x^2+318*x-2,14*x^11-54*x^10-136*x^9+648*x^8+358*x^7-2694*x^6+100*x^5+4302*x^4-1116*x^3-1792*x^2+404*x+174,-2*x^6+4*x^5+12*x^4-16*x^3-18*x^2+4*x,-15*x^11+57*x^10+153*x^9-702*x^8-442*x^7+2990*x^6+21*x^5-4851*x^4+1154*x^3+1947*x^2-449*x-183,34*x^11-130*x^10-334*x^9+1558*x^8+920*x^7-6462*x^6+14*x^5+10236*x^4-2320*x^3-4056*x^2+778*x+358,14*x^11-34*x^10-196*x^9+398*x^8+1092*x^7-1544*x^6-2954*x^5+1948*x^4+3478*x^3+182*x^2-738*x-142,24*x^11-86*x^10-252*x^9+1030*x^8+836*x^7-4254*x^6-710*x^5+6646*x^4-652*x^3-2458*x^2+350*x+190,14*x^11-52*x^10-142*x^9+622*x^8+438*x^7-2582*x^6-260*x^5+4142*x^4-534*x^3-1786*x^2+244*x+184,32*x^11-118*x^10-328*x^9+1422*x^8+1008*x^7-5926*x^6-476*x^5+9418*x^4-1592*x^3-3716*x^2+612*x+304,14*x^11-66*x^10-102*x^9+804*x^8-62*x^7-3444*x^6+1864*x^5+5892*x^4-3784*x^3-3106*x^2+1020*x+354,4*x^10-16*x^9-40*x^8+184*x^7+150*x^6-722*x^5-318*x^4+1032*x^3+416*x^2-258*x-76,22*x^11-86*x^10-214*x^9+1052*x^8+536*x^7-4488*x^6+388*x^5+7480*x^4-2242*x^3-3518*x^2+686*x+400,12*x^11-40*x^10-134*x^9+474*x^8+520*x^7-1920*x^6-802*x^5+2874*x^4+392*x^3-876*x^2-28*x+40,18*x^11-70*x^10-176*x^9+858*x^8+436*x^7-3646*x^6+384*x^5+5954*x^4-2024*x^3-2530*x^2+654*x+238,-40*x^11+140*x^10+428*x^9-1678*x^8-1474*x^7+6928*x^6+1446*x^5-10802*x^4+790*x^3+3972*x^2-494*x-304,-13*x^11+35*x^10+171*x^9-414*x^8-870*x^7+1642*x^6+2103*x^5-2231*x^4-2218*x^3+159*x^2+457*x+95,-9*x^11+37*x^10+85*x^9-458*x^8-186*x^7+1974*x^6-301*x^5-3283*x^4+1124*x^3+1425*x^2-303*x-133,18*x^11-74*x^10-164*x^9+898*x^8+330*x^7-3824*x^6+660*x^5+6468*x^4-2208*x^3-3302*x^2+660*x+384,-12*x^11+46*x^10+114*x^9-538*x^8-300*x^7+2172*x^6-8*x^5-3352*x^4+678*x^3+1320*x^2-234*x-114,-5*x^11+25*x^10+33*x^9-306*x^8+62*x^7+1322*x^6-821*x^5-2299*x^4+1572*x^3+1267*x^2-427*x-163,-40*x^11+142*x^10+426*x^9-1706*x^8-1464*x^7+7072*x^6+1480*x^5-11106*x^4+604*x^3+4170*x^2-406*x-340,-26*x^11+104*x^10+242*x^9-1248*x^8-548*x^7+5210*x^6-614*x^5-8450*x^4+2610*x^3+3760*x^2-808*x-388,2*x^11-4*x^10-38*x^9+80*x^8+220*x^7-470*x^6-458*x^5+960*x^4+238*x^3-436*x^2-4*x+38,12*x^11-44*x^10-122*x^9+532*x^8+354*x^7-2230*x^6-30*x^5+3606*x^4-874*x^3-1546*x^2+260*x+130,-6*x^11+20*x^10+68*x^9-238*x^8-276*x^7+976*x^6+480*x^5-1512*x^4-316*x^3+550*x^2-38,-8*x^11+8*x^10+148*x^9-96*x^8-1040*x^7+328*x^6+3324*x^5-80*x^4-4326*x^3-870*x^2+1002*x+190,-10*x^11+30*x^10+120*x^9-344*x^8-554*x^7+1328*x^6+1242*x^5-1792*x^4-1272*x^3+242*x^2+224*x+38,4*x^11-16*x^10-36*x^9+190*x^8+64*x^7-772*x^6+208*x^5+1156*x^4-636*x^3-330*x^2+228*x-12,-55*x^11+191*x^10+601*x^9-2314*x^8-2144*x^7+9650*x^6+2359*x^5-15155*x^4+636*x^3+5511*x^2-515*x-421,-34*x^11+146*x^10+286*x^9-1764*x^8-324*x^7+7458*x^6-2528*x^5-12458*x^4+6140*x^3+6178*x^2-1700*x-736,34*x^11-120*x^10-364*x^9+1446*x^8+1250*x^7-6004*x^6-1204*x^5+9406*x^4-716*x^3-3438*x^2+436*x+266,3*x^11+3*x^10-71*x^9-46*x^8+586*x^7+282*x^6-2073*x^5-835*x^4+2858*x^3+1055*x^2-669*x-201,-8*x^11+30*x^10+80*x^9-364*x^8-214*x^7+1514*x^6-94*x^5-2344*x^4+806*x^3+772*x^2-298*x-24,-12*x^11+50*x^10+110*x^9-626*x^8-178*x^7+2724*x^6-812*x^5-4590*x^4+2300*x^3+2094*x^2-684*x-220,-2*x^11+2*x^10+42*x^9-44*x^8-288*x^7+254*x^6+812*x^5-432*x^4-860*x^3-26*x^2+170*x+38,-12*x^11+44*x^10+122*x^9-528*x^8-362*x^7+2188*x^6+92*x^5-3456*x^4+766*x^3+1356*x^2-290*x-96,22*x^11-80*x^10-228*x^9+966*x^8+710*x^7-4020*x^6-344*x^5+6320*x^4-1148*x^3-2342*x^2+468*x+176,-2*x^11+8*x^10+18*x^9-96*x^8-26*x^7+386*x^6-152*x^5-532*x^4+416*x^3+40*x^2-122*x+26,26*x^11-100*x^10-252*x^9+1196*x^8+664*x^7-4962*x^6+178*x^5+7914*x^4-2044*x^3-3272*x^2+676*x+304,2*x^10-6*x^9-22*x^8+66*x^7+88*x^6-250*x^5-146*x^4+350*x^3+66*x^2-80*x+12,5*x^11-9*x^10-79*x^9+104*x^8+496*x^7-384*x^6-1475*x^5+381*x^4+1828*x^3+293*x^2-361*x-95,-4*x^11+10*x^10+58*x^9-130*x^8-316*x^7+574*x^6+780*x^5-922*x^4-794*x^3+278*x^2+164*x-26,-16*x^11+58*x^10+168*x^9-708*x^8-528*x^7+2980*x^6+234*x^5-4740*x^4+944*x^3+1786*x^2-338*x-152,-x^11-x^10+19*x^9+36*x^8-172*x^7-278*x^6+727*x^5+759*x^4-1186*x^3-665*x^2+307*x+87,-17*x^11+41*x^10+235*x^9-480*x^8-1270*x^7+1866*x^6+3263*x^5-2407*x^4-3588*x^3-41*x^2+691*x+123,-8*x^11+32*x^10+66*x^9-352*x^8-114*x^7+1324*x^6-228*x^5-1894*x^4+618*x^3+720*x^2-206*x-78,x^11-5*x^10-x^9+42*x^8-54*x^7-100*x^6+237*x^5+69*x^4-292*x^3-79*x^2+71*x+19,4*x^11-10*x^10-58*x^9+130*x^8+318*x^7-580*x^6-798*x^5+974*x^4+838*x^3-390*x^2-184*x+44,2*x^8-28*x^6+120*x^4-160*x^2+32,-2*x^11+22*x^10-26*x^9-262*x^8+490*x^7+1128*x^6-2210*x^5-2094*x^4+3382*x^3+1508*x^2-822*x-230,-20*x^11+76*x^10+204*x^9-930*x^8-608*x^7+3938*x^6+186*x^5-6358*x^4+1172*x^3+2542*x^2-446*x-228,16*x^11-56*x^10-170*x^9+662*x^8+596*x^7-2690*x^6-696*x^5+4102*x^4-4*x^3-1412*x^2+114*x+98,-16*x^11+56*x^10+176*x^9-684*x^8-636*x^7+2888*x^6+728*x^5-4642*x^4+140*x^3+1840*x^2-148*x-182,8*x^10-20*x^9-112*x^8+258*x^7+564*x^6-1120*x^5-1184*x^4+1722*x^3+874*x^2-362*x-144,23*x^11-89*x^10-215*x^9+1040*x^8+528*x^7-4202*x^6+255*x^5+6521*x^4-1762*x^3-2667*x^2+585*x+247,-22*x^11+78*x^10+234*x^9-926*x^8-828*x^7+3782*x^6+1008*x^5-5770*x^4-70*x^3+1876*x^2-174*x-84,16*x^11-58*x^10-166*x^9+696*x^8+530*x^7-2882*x^6-348*x^5+4524*x^4-646*x^3-1712*x^2+310*x+152,14*x^11-50*x^10-148*x^9+598*x^8+508*x^7-2480*x^6-526*x^5+3956*x^4-198*x^3-1638*x^2+214*x+126,14*x^11-54*x^10-134*x^9+638*x^8+354*x^7-2610*x^6+32*x^5+4102*x^4-892*x^3-1684*x^2+322*x+152,-22*x^11+108*x^10+144*x^9-1308*x^8+294*x^7+5560*x^6-3736*x^5-9408*x^4+7148*x^3+4852*x^2-1924*x-556,41*x^11-145*x^10-443*x^9+1760*x^8+1540*x^7-7354*x^6-1523*x^5+11537*x^4-858*x^3-4067*x^2+601*x+275,-16*x^11+66*x^10+144*x^9-794*x^8-276*x^7+3320*x^6-642*x^5-5350*x^4+2018*x^3+2242*x^2-576*x-196,12*x^11-44*x^10-126*x^9+540*x^8+396*x^7-2286*x^6-184*x^5+3662*x^4-676*x^3-1394*x^2+258*x+114,9*x^11-25*x^10-121*x^9+308*x^8+624*x^7-1278*x^6-1513*x^5+1833*x^4+1574*x^3-177*x^2-287*x-79,10*x^11-36*x^10-108*x^9+450*x^8+352*x^7-1948*x^6-186*x^5+3234*x^4-598*x^3-1392*x^2+250*x+144,28*x^11-120*x^10-238*x^9+1454*x^8+292*x^7-6158*x^6+1994*x^5+10250*x^4-4932*x^3-4922*x^2+1336*x+520,18*x^11-64*x^10-194*x^9+780*x^8+664*x^7-3272*x^6-602*x^5+5164*x^4-480*x^3-1874*x^2+256*x+152,-2*x^11+22*x^10-22*x^9-268*x^8+440*x^7+1172*x^6-1984*x^5-2150*x^4+3002*x^3+1418*x^2-734*x-214,42*x^11-150*x^10-444*x^9+1818*x^8+1454*x^7-7628*x^6-1026*x^5+12270*x^4-1676*x^3-5086*x^2+674*x+480,6*x^11-32*x^10-30*x^9+380*x^8-178*x^7-1584*x^6+1360*x^5+2640*x^4-2372*x^3-1374*x^2+632*x+172,6*x^11-14*x^10-84*x^9+156*x^8+478*x^7-562*x^6-1344*x^5+602*x^4+1650*x^3+198*x^2-362*x-76,17*x^11-85*x^10-105*x^9+1028*x^8-308*x^7-4362*x^6+3239*x^5+7367*x^4-6048*x^3-3793*x^2+1531*x+419,-14*x^11+52*x^10+142*x^9-624*x^8-430*x^7+2594*x^6+190*x^5-4140*x^4+698*x^3+1710*x^2-298*x-152,-4*x^11+18*x^10+32*x^9-226*x^8+4*x^7+990*x^6-564*x^5-1710*x^4+1274*x^3+876*x^2-420*x-98,12*x^11-46*x^10-112*x^9+538*x^8+268*x^7-2186*x^6+190*x^5+3458*x^4-1032*x^3-1524*x^2+306*x+152,-9*x^11+39*x^10+71*x^9-456*x^8-54*x^7+1862*x^6-709*x^5-2991*x^4+1586*x^3+1389*x^2-491*x-141,-20*x^11+72*x^10+204*x^9-846*x^8-646*x^7+3424*x^6+464*x^5-5246*x^4+638*x^3+1934*x^2-328*x-162,-2*x^11+8*x^10+20*x^9-100*x^8-60*x^7+454*x^6+30*x^5-890*x^4+82*x^3+674*x^2-30*x-122,-16*x^11+54*x^10+180*x^9-660*x^8-672*x^7+2780*x^6+814*x^5-4412*x^4+114*x^3+1608*x^2-148*x-114,8*x^11-36*x^10-66*x^9+450*x^8+38*x^7-1976*x^6+840*x^5+3454*x^4-1924*x^3-1828*x^2+516*x+196,-8*x^11+38*x^10+56*x^9-466*x^8+74*x^7+2026*x^6-1278*x^5-3596*x^4+2558*x^3+2120*x^2-664*x-266,-10*x^11+28*x^10+134*x^9-360*x^8-648*x^7+1570*x^6+1330*x^5-2484*x^4-1004*x^3+700*x^2+134*x-32,-12*x^11+44*x^10+120*x^9-512*x^8-372*x^7+2040*x^6+286*x^5-3034*x^4+234*x^3+1006*x^2-100*x-76,12*x^11-40*x^10-138*x^9+484*x^8+560*x^7-2006*x^6-930*x^5+3056*x^4+514*x^3-880*x^2-2*x+34,-38*x^11+136*x^10+404*x^9-1650*x^8-1344*x^7+6902*x^6+1056*x^5-10916*x^4+1330*x^3+4078*x^2-652*x-286,20*x^11-90*x^10-152*x^9+1072*x^8+12*x^7-4448*x^6+2148*x^5+7226*x^4-4488*x^3-3376*x^2+1184*x+360,16*x^11-48*x^10-196*x^9+586*x^8+852*x^7-2434*x^6-1506*x^5+3692*x^4+852*x^3-1046*x^2-54*x+38,-20*x^11+72*x^10+216*x^9-888*x^8-740*x^7+3810*x^6+660*x^5-6344*x^4+598*x^3+2882*x^2-378*x-292,38*x^11-134*x^10-408*x^9+1618*x^8+1406*x^7-6734*x^6-1362*x^5+10586*x^4-802*x^3-3912*x^2+484*x+304,22*x^11-96*x^10-182*x^9+1170*x^8+148*x^7-4984*x^6+1994*x^5+8354*x^4-4664*x^3-4086*x^2+1306*x+466,12*x^11-36*x^10-146*x^9+430*x^8+652*x^7-1750*x^6-1284*x^5+2590*x^4+1014*x^3-654*x^2-152*x,-10*x^11+30*x^10+118*x^9-330*x^8-564*x^7+1220*x^6+1420*x^5-1588*x^4-1722*x^3+260*x^2+346*x-8,-40*x^11+158*x^10+376*x^9-1906*x^8-834*x^7+7968*x^6-1220*x^5-12796*x^4+4784*x^3+5324*x^2-1478*x-472,-4*x^11+10*x^10+56*x^9-128*x^8-286*x^7+554*x^6+626*x^5-856*x^4-522*x^3+188*x^2+120*x+10,-24*x^11+88*x^10+248*x^9-1064*x^8-772*x^7+4446*x^6+386*x^5-7064*x^4+1210*x^3+2742*x^2-480*x-228,-28*x^11+110*x^10+262*x^9-1316*x^8-588*x^7+5460*x^6-762*x^5-8740*x^4+3098*x^3+3716*x^2-910*x-326,26*x^11-96*x^10-272*x^9+1184*x^8+832*x^7-5040*x^6-230*x^5+8132*x^4-1810*x^3-3156*x^2+654*x+264,-8*x^11+30*x^10+78*x^9-348*x^8-234*x^7+1402*x^6+170*x^5-2204*x^4+140*x^3+998*x^2-50*x-134,48*x^11-168*x^10-518*x^9+2020*x^8+1826*x^7-8366*x^6-1998*x^5+13054*x^4-510*x^3-4698*x^2+508*x+342,-28*x^11+104*x^10+290*x^9-1278*x^8-878*x^7+5448*x^6+236*x^5-8924*x^4+1892*x^3+3780*x^2-704*x-354,-38*x^11+148*x^10+370*x^9-1800*x^8-942*x^7+7600*x^6-562*x^5-12358*x^4+3688*x^3+5264*x^2-1204*x-510,2*x^11-28*x^10+40*x^9+344*x^8-666*x^7-1518*x^6+2948*x^5+2818*x^4-4488*x^3-1882*x^2+1100*x+226,2*x^11-8*x^10-20*x^9+100*x^8+50*x^7-422*x^6+44*x^5+628*x^4-218*x^3-114*x^2+46*x,-2*x^11+22*x^10-26*x^9-256*x^8+468*x^7+1092*x^6-2034*x^5-2078*x^4+3010*x^3+1652*x^2-736*x-288,28*x^11-90*x^10-326*x^9+1080*x^8+1350*x^7-4434*x^6-2322*x^5+6718*x^4+1394*x^3-2028*x^2-92*x+114,2,-16*x^11+52*x^10+190*x^9-644*x^8-786*x^7+2732*x^6+1272*x^5-4286*x^4-570*x^3+1362*x^2-10*x-76,14*x^11-54*x^10-134*x^9+640*x^8+348*x^7-2630*x^6+86*x^5+4172*x^4-1022*x^3-1770*x^2+372*x+154,24*x^11-86*x^10-248*x^9+1014*x^8+812*x^7-4106*x^6-714*x^5+6212*x^4-480*x^3-2040*x^2+234*x+90,16*x^11-60*x^10-162*x^9+730*x^8+468*x^7-3086*x^6-36*x^5+5040*x^4-1172*x^3-2194*x^2+390*x+222,-10*x^11+36*x^10+104*x^9-448*x^8-286*x^7+1932*x^6-170*x^5-3232*x^4+1248*x^3+1504*x^2-382*x-152,4*x^11-20*x^10-32*x^9+266*x^8-14*x^7-1240*x^6+638*x^5+2276*x^4-1406*x^3-1208*x^2+402*x+142,-14*x^11+52*x^10+140*x^9-620*x^8-404*x^7+2544*x^6+78*x^5-3934*x^4+868*x^3+1412*x^2-332*x-90,-16*x^11+64*x^10+152*x^9-784*x^8-348*x^7+3358*x^6-444*x^5-5660*x^4+1856*x^3+2786*x^2-552*x-348,-30*x^11+112*x^10+294*x^9-1322*x^8-816*x^7+5392*x^6+48*x^5-8418*x^4+1902*x^3+3378*x^2-652*x-304,-18*x^11+56*x^10+220*x^9-696*x^8-946*x^7+2948*x^6+1634*x^5-4564*x^4-902*x^3+1322*x^2+124*x-66,12*x^11-58*x^10-84*x^9+712*x^8-106*x^7-3078*x^6+1868*x^5+5328*x^4-3730*x^3-2870*x^2+1016*x+348,-2*x^11+20*x^10-16*x^9-250*x^8+380*x^7+1140*x^6-1794*x^5-2264*x^4+2798*x^3+1762*x^2-668*x-286,-36*x^11+134*x^10+356*x^9-1584*x^8-1016*x^7+6464*x^6+194*x^5-10058*x^4+2124*x^3+3930*x^2-758*x-342,22*x^11-82*x^10-224*x^9+990*x^8+672*x^7-4122*x^6-230*x^5+6482*x^4-1282*x^3-2388*x^2+562*x+192,-36*x^11+130*x^10+378*x^9-1570*x^8-1232*x^7+6540*x^6+898*x^5-10310*x^4+1296*x^3+3862*x^2-544*x-304,4*x^11-34*x^10+12*x^9+426*x^8-518*x^7-1916*x^6+2592*x^5+3594*x^4-4130*x^3-2360*x^2+1014*x+324,-10*x^11+38*x^10+100*x^9-460*x^8-284*x^7+1928*x^6+22*x^5-3092*x^4+684*x^3+1252*x^2-248*x-114,16*x^11-62*x^10-152*x^9+744*x^8+358*x^7-3106*x^6+368*x^5+5074*x^4-1704*x^3-2400*x^2+506*x+278,32*x^11-112*x^10-348*x^9+1358*x^8+1226*x^7-5664*x^6-1278*x^5+8872*x^4-536*x^3-3150*x^2+400*x+216,26*x^11-90*x^10-282*x^9+1074*x^8+1022*x^7-4410*x^6-1284*x^5+6808*x^4+120*x^3-2402*x^2+166*x+176,-39*x^11+141*x^10+415*x^9-1724*x^8-1372*x^7+7280*x^6+1005*x^5-11645*x^4+1538*x^3+4431*x^2-669*x-361,12*x^11-42*x^10-124*x^9+484*x^8+412*x^7-1878*x^6-406*x^5+2558*x^4-138*x^3-384*x^2+108*x-74,18*x^11-46*x^10-242*x^9+544*x^8+1254*x^7-2150*x^6-3048*x^5+2892*x^4+3156*x^3-176*x^2-610*x-112,-12*x^11+46*x^10+116*x^9-540*x^8-326*x^7+2184*x^6+106*x^5-3332*x^4+488*x^3+1174*x^2-152*x-76,-2*x^11+10*x^10+14*x^9-128*x^8+26*x^7+582*x^6-382*x^5-1072*x^4+778*x^3+624*x^2-216*x-76,14*x^11-34*x^10-198*x^9+418*x^8+1066*x^7-1710*x^6-2646*x^5+2364*x^4+2740*x^3-124*x^2-520*x-90,-22*x^11+80*x^10+230*x^9-972*x^8-730*x^7+4082*x^6+404*x^5-6526*x^4+1110*x^3+2564*x^2-504*x-196,2*x^11-2*x^10-38*x^9+30*x^8+256*x^7-124*x^6-748*x^5+80*x^4+856*x^3+252*x^2-168*x-44,20*x^11-74*x^10-198*x^9+872*x^8+572*x^7-3546*x^6-166*x^5+5496*x^4-1038*x^3-2138*x^2+362*x+190,6*x^11-8*x^10-104*x^9+94*x^8+698*x^7-338*x^6-2154*x^5+238*x^4+2714*x^3+518*x^2-592*x-148,25*x^11-85*x^10-279*x^9+1026*x^8+1056*x^7-4258*x^6-1447*x^5+6615*x^4+308*x^3-2261*x^2+119*x+133,-2*x^11+6*x^10+20*x^9-56*x^8-70*x^7+130*x^6+104*x^5+118*x^4-44*x^3-552*x^2-64*x+170,-30*x^11+116*x^10+292*x^9-1390*x^8-792*x^7+5780*x^6-46*x^5-9218*x^4+2042*x^3+3724*x^2-700*x-342,x^11-9*x^10+5*x^9+110*x^8-148*x^7-480*x^6+691*x^5+865*x^4-1024*x^3-521*x^2+205*x+73,2*x^11-16*x^10+8*x^9+190*x^8-280*x^7-806*x^6+1376*x^5+1446*x^4-2186*x^3-966*x^2+552*x+120,20*x^11-82*x^10-178*x^9+968*x^8+362*x^7-3980*x^6+564*x^5+6366*x^4-1932*x^3-2800*x^2+564*x+292,13*x^11-45*x^10-141*x^9+550*x^8+476*x^7-2326*x^6-347*x^5+3771*x^4-598*x^3-1573*x^2+259*x+133,18*x^11-88*x^10-122*x^9+1082*x^8-214*x^7-4690*x^6+3042*x^5+8184*x^4-5934*x^3-4548*x^2+1538*x+572,-10*x^10+28*x^9+148*x^8-400*x^7-774*x^6+1902*x^5+1702*x^4-3194*x^3-1394*x^2+804*x+228,2*x^11-22*x^10+28*x^9+242*x^8-470*x^7-948*x^6+1950*x^5+1582*x^4-2754*x^3-1052*x^2+648*x+174,66*x^11-244*x^10-674*x^9+2932*x^8+2072*x^7-12180*x^6-1058*x^5+19280*x^4-3024*x^3-7538*x^2+1226*x+646,10*x^11-40*x^10-92*x^9+478*x^8+196*x^7-1984*x^6+306*x^5+3200*x^4-1126*x^3-1440*x^2+354*x+154,-22*x^11+84*x^10+216*x^9-1006*x^8-586*x^7+4154*x^6-82*x^5-6492*x^4+1682*x^3+2420*x^2-632*x-204,-40*x^11+154*x^10+390*x^9-1858*x^8-1016*x^7+7774*x^6-418*x^5-12512*x^4+3514*x^3+5258*x^2-1150*x-504,-15*x^11+49*x^10+165*x^9-550*x^8-676*x^7+2084*x^6+1325*x^5-2823*x^4-1240*x^3+583*x^2+227*x+19,19*x^11-53*x^10-245*x^9+618*x^8+1242*x^7-2412*x^6-3081*x^5+3191*x^4+3430*x^3-111*x^2-711*x-155,-14*x^11+52*x^10+142*x^9-622*x^8-432*x^7+2568*x^6+212*x^5-4028*x^4+618*x^3+1550*x^2-202*x-152,-2*x^11+4*x^10+34*x^9-62*x^8-204*x^7+318*x^6+522*x^5-608*x^4-496*x^3+296*x^2+18*x-26,36*x^11-128*x^10-380*x^9+1530*x^8+1284*x^7-6310*x^6-1208*x^5+9848*x^4-730*x^3-3626*x^2+422*x+266,-10*x^11+40*x^10+94*x^9-486*x^8-202*x^7+2034*x^6-356*x^5-3206*x^4+1322*x^3+1168*x^2-460*x-90,-18*x^11+80*x^10+144*x^9-978*x^8-54*x^7+4188*x^6-1938*x^5-7096*x^4+4306*x^3+3576*x^2-1168*x-406,-12*x^11+48*x^10+110*x^9-576*x^8-210*x^7+2362*x^6-550*x^5-3564*x^4+1716*x^3+1044*x^2-478*x-34,-46*x^11+162*x^10+490*x^9-1932*x^8-1702*x^7+7934*x^6+1834*x^5-12264*x^4+452*x^3+4340*x^2-452*x-304,8*x^11-22*x^10-104*x^9+258*x^8+532*x^7-1024*x^6-1330*x^5+1444*x^4+1492*x^3-260*x^2-342*x-36,-19*x^11+75*x^10+175*x^9-896*x^8-360*x^7+3718*x^6-721*x^5-5973*x^4+2514*x^3+2587*x^2-783*x-233,12*x^11-62*x^10-72*x^9+762*x^8-254*x^7-3300*x^6+2474*x^5+5744*x^4-4582*x^3-3158*x^2+1122*x+390,4*x^11-12*x^10-52*x^9+160*x^8+226*x^7-728*x^6-332*x^5+1236*x^4+4*x^3-478*x^2+46*x+38,-22*x^11+96*x^10+184*x^9-1164*x^8-198*x^7+4924*x^6-1670*x^5-8134*x^4+3988*x^3+3766*x^2-1074*x-400,-30*x^11+124*x^10+270*x^9-1496*x^8-520*x^7+6306*x^6-1176*x^5-10424*x^4+3706*x^3+4914*x^2-1050*x-536,-18*x^11+48*x^10+236*x^9-570*x^8-1178*x^7+2276*x^6+2724*x^5-3182*x^4-2670*x^3+488*x^2+518*x+60,12*x^11-48*x^10-106*x^9+556*x^8+212*x^7-2234*x^6+354*x^5+3482*x^4-1202*x^3-1500*x^2+378*x+152,10*x^11-38*x^10-98*x^9+450*x^8+282*x^7-1854*x^6-96*x^5+2962*x^4-462*x^3-1290*x^2+164*x+170,-13*x^11+57*x^10+107*x^9-694*x^8-84*x^7+2950*x^6-1175*x^5-4911*x^4+2718*x^3+2323*x^2-755*x-247,10*x^11-42*x^10-90*x^9+522*x^8+140*x^7-2272*x^6+672*x^5+3894*x^4-1858*x^3-1932*x^2+514*x+226,18*x^11-56*x^10-216*x^9+676*x^8+936*x^7-2782*x^6-1736*x^5+4174*x^4+1206*x^3-1122*x^2-128*x+38,-14*x^10+40*x^9+182*x^8-496*x^7-876*x^6+2090*x^5+1886*x^4-3188*x^3-1664*x^2+814*x+282,22*x^11-76*x^10-242*x^9+920*x^8+884*x^7-3842*x^6-1066*x^5+6060*x^4-104*x^3-2216*x^2+282*x+122,14*x^10-40*x^9-170*x^8+466*x^7+758*x^6-1844*x^5-1472*x^4+2648*x^3+1102*x^2-654*x-168,-3*x^11+9*x^10+43*x^9-138*x^8-186*x^7+700*x^6+195*x^5-1319*x^4+236*x^3+639*x^2-99*x-57,-10*x^10+30*x^9+120*x^8-348*x^7-544*x^6+1372*x^5+1154*x^4-1968*x^3-1070*x^2+494*x+210,-6*x^11-4*x^10+140*x^9+50*x^8-1122*x^7-298*x^6+3856*x^5+1006*x^4-5198*x^3-1488*x^2+1206*x+266,-4*x^11+14*x^10+38*x^9-142*x^8-138*x^7+466*x^6+308*x^5-492*x^4-458*x^3+126*x+26,28*x^11-100*x^10-292*x^9+1188*x^8+964*x^7-4870*x^6-820*x^5+7576*x^4-736*x^3-2858*x^2+392*x+228,-13*x^11+49*x^10+135*x^9-604*x^8-422*x^7+2594*x^6+211*x^5-4319*x^4+666*x^3+1939*x^2-251*x-205,6*x^11-30*x^10-38*x^9+352*x^8-64*x^7-1444*x^6+824*x^5+2326*x^4-1478*x^3-1076*x^2+380*x+118,-14*x^11+60*x^10+120*x^9-726*x^8-160*x^7+3050*x^6-920*x^5-4948*x^4+2324*x^3+2150*x^2-692*x-224,2*x^11-4*x^10-32*x^9+54*x^8+190*x^7-240*x^6-508*x^5+368*x^4+558*x^3-66*x^2-122*x,18*x^11-56*x^10-212*x^9+652*x^8+944*x^7-2600*x^6-1988*x^5+3836*x^4+1872*x^3-1128*x^2-318*x+44,-18*x^11+54*x^10+220*x^9-642*x^8-1002*x^7+2592*x^6+2078*x^5-3766*x^4-1820*x^3+852*x^2+310*x,-12*x^11+40*x^10+140*x^9-498*x^8-558*x^7+2138*x^6+820*x^5-3470*x^4-216*x^3+1344*x^2-94*x-162,28*x^11-108*x^10-270*x^9+1286*x^8+714*x^7-5312*x^6+132*x^5+8428*x^4-2030*x^3-3434*x^2+698*x+304,-4*x^11+6*x^10+66*x^9-62*x^8-446*x^7+186*x^6+1462*x^5-62*x^4-2054*x^3-304*x^2+584*x+20,-40*x^11+150*x^10+402*x^9-1818*x^8-1134*x^7+7634*x^6-50*x^5-12300*x^4+3130*x^3+5104*x^2-1048*x-470,-16*x^10+46*x^9+214*x^8-590*x^7-1048*x^6+2560*x^5+2254*x^4-3976*x^3-1924*x^2+948*x+320,-16*x^11+66*x^10+140*x^9-784*x^8-236*x^7+3242*x^6-782*x^5-5246*x^4+2222*x^3+2444*x^2-664*x-266,-18*x^11+56*x^10+214*x^9-674*x^8-908*x^7+2768*x^6+1600*x^5-4168*x^4-966*x^3+1188*x^2+46*x-50,18*x^11-64*x^10-188*x^9+756*x^8+638*x^7-3082*x^6-680*x^5+4774*x^4-92*x^3-1806*x^2+72*x+168,2*x^11-16*x^10+6*x^9+188*x^8-244*x^7-778*x^6+1174*x^5+1304*x^4-1806*x^3-720*x^2+462*x+88,-28*x^11+88*x^10+324*x^9-1034*x^8-1346*x^7+4140*x^6+2368*x^5-6060*x^4-1530*x^3+1640*x^2+156*x-38,-8*x^11+48*x^10+24*x^9-568*x^8+416*x^7+2378*x^6-2492*x^5-4050*x^4+4084*x^3+2260*x^2-1004*x-252,80*x^11-300*x^10-804*x^9+3606*x^8+2352*x^7-15000*x^6-598*x^5+23838*x^4-4732*x^3-9514*x^2+1706*x+858,8*x^11-28*x^10-84*x^9+324*x^8+298*x^7-1276*x^6-400*x^5+1826*x^4+168*x^3-456*x^2-46*x+14,16*x^11-54*x^10-188*x^9+680*x^8+752*x^7-2948*x^6-1088*x^5+4778*x^4+222*x^3-1682*x^2+114*x+114,18*x^11-64*x^10-196*x^9+788*x^8+680*x^7-3352*x^6-630*x^5+5396*x^4-494*x^3-2032*x^2+270*x+160,-36*x^11+118*x^10+412*x^9-1416*x^8-1652*x^7+5824*x^6+2656*x^5-8888*x^4-1344*x^3+2810*x^2+68*x-152,-28*x^11+100*x^10+302*x^9-1230*x^8-1008*x^7+5204*x^6+708*x^5-8254*x^4+1298*x^3+2936*x^2-614*x-210,-30*x^11+106*x^10+326*x^9-1296*x^8-1134*x^7+5468*x^6+1086*x^5-8746*x^4+744*x^3+3358*x^2-456*x-266,-22*x^11+102*x^10+160*x^9-1228*x^8+94*x^7+5174*x^6-2890*x^5-8626*x^4+5856*x^3+4296*x^2-1582*x-486,2*x^11-44*x^9+4*x^8+330*x^7+12*x^6-1064*x^5-290*x^4+1348*x^3+744*x^2-284*x-150,-2*x^11+42*x^9-314*x^7-22*x^6+1020*x^5+164*x^4-1280*x^3-316*x^2+204*x+56,-59*x^11+219*x^10+601*x^9-2632*x^8-1840*x^7+10940*x^6+921*x^5-17343*x^4+2702*x^3+6847*x^2-1087*x-589,22*x^11-78*x^10-236*x^9+946*x^8+800*x^7-3942*x^6-688*x^5+6144*x^4-672*x^3-2106*x^2+350*x+124,4*x^11-28*x^10-8*x^9+370*x^8-320*x^7-1738*x^6+1964*x^5+3344*x^4-3464*x^3-2166*x^2+878*x+304,10*x^10-30*x^9-124*x^8+362*x^7+568*x^6-1478*x^5-1156*x^4+2146*x^3+922*x^2-440*x-92,30*x^11-108*x^10-318*x^9+1310*x^8+1058*x^7-5486*x^6-850*x^5+8698*x^4-994*x^3-3264*x^2+482*x+266,19*x^11-85*x^10-149*x^9+1030*x^8+36*x^7-4366*x^6+2075*x^5+7307*x^4-4530*x^3-3615*x^2+1275*x+379,-2*x^7+4*x^6+16*x^5-24*x^4-42*x^3+36*x^2+36*x-8,16*x^11-72*x^10-122*x^9+866*x^8-4*x^7-3642*x^6+1852*x^5+6068*x^4-3908*x^3-3068*x^2+1074*x+360,-33*x^11+123*x^10+333*x^9-1462*x^8-1030*x^7+6006*x^6+669*x^5-9361*x^4+1092*x^3+3481*x^2-513*x-285,-7*x^11+5*x^10+133*x^9-42*x^8-980*x^7-4*x^6+3303*x^5+797*x^4-4480*x^3-1799*x^2+945*x+369,38*x^11-142*x^10-384*x^9+1712*x^8+1134*x^7-7152*x^6-316*x^5+11462*x^4-2266*x^3-4718*x^2+858*x+418,-20*x^11+78*x^10+186*x^9-916*x^8-432*x^7+3698*x^6-392*x^5-5608*x^4+1848*x^3+1940*x^2-550*x-156,50*x^11-168*x^10-568*x^9+2044*x^8+2208*x^7-8540*x^6-3204*x^5+13292*x^4+980*x^3-4406*x^2+166*x+266,28*x^11-96*x^10-312*x^9+1170*x^8+1158*x^7-4912*x^6-1444*x^5+7758*x^4-18*x^3-2790*x^2+220*x+198,38*x^11-132*x^10-414*x^9+1592*x^8+1478*x^7-6598*x^6-1658*x^5+10232*x^4-362*x^3-3494*x^2+394*x+196,4*x^11+10*x^10-118*x^9-120*x^8+1046*x^7+588*x^6-3804*x^5-1522*x^4+5320*x^3+1868*x^2-1248*x-336,32*x^11-114*x^10-344*x^9+1390*x^8+1170*x^7-5846*x^6-1010*x^5+9280*x^4-988*x^3-3424*x^2+492*x+266,17*x^11-67*x^10-155*x^9+788*x^8+330*x^7-3214*x^6+493*x^5+5079*x^4-1836*x^3-2219*x^2+561*x+263,26*x^11-88*x^10-294*x^9+1072*x^8+1126*x^7-4476*x^6-1554*x^5+6928*x^4+304*x^3-2204*x^2+192*x+120,14*x^11-62*x^10-108*x^9+744*x^8+14*x^7-3144*x^6+1554*x^5+5378*x^4-3364*x^3-3042*x^2+986*x+410,18*x^11-74*x^10-162*x^9+890*x^8+308*x^7-3722*x^6+740*x^5+6030*x^4-2308*x^3-2648*x^2+662*x+266,4*x^11-16*x^10-36*x^9+190*x^8+62*x^7-764*x^6+216*x^5+1100*x^4-624*x^3-230*x^2+178*x-24,12*x^11-64*x^10-64*x^9+768*x^8-314*x^7-3234*x^6+2574*x^5+5420*x^4-4556*x^3-2778*x^2+1188*x+340,18*x^11-70*x^10-160*x^9+788*x^8+358*x^7-3028*x^6+244*x^5+4326*x^4-1170*x^3-1348*x^2+318*x+68,46*x^11-170*x^10-466*x^9+2032*x^8+1408*x^7-8390*x^6-616*x^5+13180*x^4-2264*x^3-5078*x^2+884*x+418,x^11-15*x^10+23*x^9+186*x^8-372*x^7-840*x^6+1653*x^5+1653*x^4-2550*x^3-1297*x^2+631*x+247,16*x^11-54*x^10-178*x^9+644*x^8+684*x^7-2638*x^6-1022*x^5+4040*x^4+428*x^3-1356*x^2+16*x+76,-28*x^11+122*x^10+236*x^9-1494*x^8-248*x^7+6414*x^6-2252*x^5-10904*x^4+5422*x^3+5524*x^2-1472*x-638,38*x^11-140*x^10-384*x^9+1660*x^8+1178*x^7-6798*x^6-670*x^5+10594*x^4-1504*x^3-4062*x^2+634*x+342,9*x^11-33*x^10-93*x^9+390*x^8+316*x^7-1590*x^6-369*x^5+2443*x^4+62*x^3-857*x^2+x+81,-68*x^11+236*x^10+738*x^9-2842*x^8-2612*x^7+11778*x^6+2830*x^5-18366*x^4+864*x^3+6582*x^2-744*x-476,-22*x^11+70*x^10+260*x^9-848*x^8-1088*x^7+3502*x^6+1858*x^5-5270*x^4-1030*x^3+1392*x^2+30*x+18,-43*x^11+145*x^10+483*x^9-1754*x^8-1842*x^7+7290*x^6+2553*x^5-11331*x^4-582*x^3+3863*x^2-191*x-247,-28*x^11+96*x^10+312*x^9-1162*x^8-1186*x^7+4856*x^6+1680*x^5-7686*x^4-526*x^3+2900*x^2-4*x-228,17*x^11-59*x^10-183*x^9+710*x^8+630*x^7-2946*x^6-585*x^5+4629*x^4-440*x^3-1739*x^2+227*x+131,-32*x^11+132*x^10+284*x^9-1584*x^8-498*x^7+6620*x^6-1540*x^5-10774*x^4+4498*x^3+4860*x^2-1328*x-498,34*x^11-128*x^10-344*x^9+1554*x^8+1000*x^7-6522*x^6-156*x^5+10410*x^4-2276*x^3-4056*x^2+780*x+342,-22*x^11+94*x^10+188*x^9-1144*x^8-226*x^7+4868*x^6-1660*x^5-8142*x^4+4166*x^3+3932*x^2-1206*x-440,-14*x^11+42*x^10+174*x^9-516*x^8-784*x^7+2164*x^6+1508*x^5-3302*x^4-1072*x^3+870*x^2+126*x-24,14*x^11-38*x^10-184*x^9+454*x^8+934*x^7-1848*x^6-2242*x^5+2734*x^4+2326*x^3-708*x^2-456*x+62,-5*x^11+23*x^10+39*x^9-278*x^8-18*x^7+1174*x^6-459*x^5-1933*x^4+982*x^3+883*x^2-273*x-95,12*x^11-40*x^10-140*x^9+502*x^8+544*x^7-2168*x^6-696*x^5+3512*x^4-66*x^3-1278*x^2+130*x+104,-50*x^11+178*x^10+530*x^9-2140*x^8-1788*x^7+8872*x^6+1622*x^5-13908*x^4+1190*x^3+5146*x^2-664*x-380,-10*x^11+28*x^10+122*x^9-304*x^8-596*x^7+1066*x^6+1490*x^5-1104*x^4-1762*x^3-414*x^2+412*x+180,-52*x^11+190*x^10+546*x^9-2316*x^8-1758*x^7+9760*x^6+1118*x^5-15616*x^4+2278*x^3+6004*x^2-960*x-494,-24*x^11+80*x^10+276*x^9-986*x^8-1074*x^7+4184*x^6+1490*x^5-6690*x^4-264*x^3+2490*x^2-108*x-182,4*x^11-14*x^10-42*x^9+156*x^8+178*x^7-624*x^6-432*x^5+1084*x^4+562*x^3-776*x^2-94*x+134,-14*x^11+48*x^10+156*x^9-582*x^8-592*x^7+2446*x^6+824*x^5-3938*x^4-206*x^3+1612*x^2-36*x-162,28*x^11-98*x^10-296*x^9+1170*x^8+986*x^7-4818*x^6-810*x^5+7538*x^4-862*x^3-2884*x^2+394*x+228,-6*x^11+6*x^10+110*x^9-70*x^8-772*x^7+242*x^6+2464*x^5-108*x^4-3188*x^3-538*x^2+736*x+164,-4*x^11+12*x^10+56*x^9-176*x^8-252*x^7+874*x^6+356*x^5-1642*x^4+60*x^3+800*x^2-70*x-82,2*x^10-6*x^9-24*x^8+62*x^7+132*x^6-212*x^5-424*x^4+236*x^3+648*x^2+24*x-174,-40*x^11+132*x^10+456*x^9-1584*x^8-1816*x^7+6516*x^6+2864*x^5-9934*x^4-1326*x^3+3098*x^2+14*x-152,27*x^11-91*x^10-301*x^9+1092*x^8+1148*x^7-4518*x^6-1635*x^5+7067*x^4+484*x^3-2605*x^2+131*x+197,-34*x^11+144*x^10+294*x^9-1750*x^8-392*x^7+7412*x^6-2364*x^5-12238*x^4+6060*x^3+5616*x^2-1714*x-550,6*x^11-32*x^10-26*x^9+366*x^8-202*x^7-1476*x^6+1360*x^5+2446*x^4-2204*x^3-1424*x^2+484*x+174,8*x^11-28*x^10-86*x^9+336*x^8+300*x^7-1388*x^6-316*x^5+2168*x^4-102*x^3-820*x^2+76*x+76,26*x^11-118*x^10-196*x^9+1416*x^8-14*x^7-5958*x^6+2966*x^5+9968*x^4-6174*x^3-5074*x^2+1632*x+574,-73*x^11+257*x^10+787*x^9-3104*x^8-2750*x^7+12928*x^6+2863*x^5-20353*x^4+1112*x^3+7541*x^2-853*x-551,20*x^11-84*x^10-180*x^9+1040*x^8+284*x^7-4486*x^6+1302*x^5+7534*x^4-3632*x^3-3518*x^2+1078*x+394,-58*x^11+218*x^10+582*x^9-2636*x^8-1654*x^7+11038*x^6+54*x^5-17694*x^4+4240*x^3+7208*x^2-1484*x-646,-10*x^11+40*x^10+94*x^9-488*x^8-218*x^7+2120*x^6-244*x^5-3796*x^4+1130*x^3+2314*x^2-464*x-286,56*x^11-196*x^10-604*x^9+2358*x^8+2120*x^7-9766*x^6-2270*x^5+15222*x^4-684*x^3-5444*x^2+554*x+390,-16*x^11+78*x^10+104*x^9-942*x^8+220*x^7+4018*x^6-2744*x^5-6954*x^4+5246*x^3+3936*x^2-1382*x-464,21*x^11-65*x^10-253*x^9+790*x^8+1086*x^7-3270*x^6-1939*x^5+4961*x^4+1226*x^3-1455*x^2-135*x+57,10*x^11-48*x^10-70*x^9+584*x^8-80*x^7-2492*x^6+1480*x^5+4212*x^4-2914*x^3-2122*x^2+770*x+262,-2*x^11+8*x^10+16*x^9-86*x^8-30*x^7+326*x^6-28*x^5-518*x^4+84*x^3+330*x^2-8*x-76,16*x^11-58*x^10-170*x^9+712*x^8+554*x^7-3020*x^6-354*x^5+4856*x^4-748*x^3-1856*x^2+314*x+146,-22*x^11+86*x^10+202*x^9-994*x^8-492*x^7+3976*x^6-174*x^5-6112*x^4+1410*x^3+2460*x^2-484*x-228,34*x^11-100*x^10-428*x^9+1202*x^8+2030*x^7-4890*x^6-4442*x^5+7044*x^4+4118*x^3-1260*x^2-656*x-68,-14*x^11+66*x^10+98*x^9-784*x^8+78*x^7+3258*x^6-1800*x^5-5358*x^4+3528*x^3+2642*x^2-1002*x-290,14*x^11-48*x^10-156*x^9+586*x^8+578*x^7-2472*x^6-704*x^5+3952*x^4-80*x^3-1496*x^2+176*x+98,-28*x^11+98*x^10+300*x^9-1178*x^8-1028*x^7+4880*x^6+960*x^5-7646*x^4+672*x^3+2854*x^2-360*x-228,30*x^10-92*x^9-368*x^8+1116*x^7+1658*x^6-4602*x^5-3328*x^4+6850*x^3+2766*x^2-1628*x-458,28*x^11-100*x^10-296*x^9+1206*x^8+984*x^7-5022*x^6-808*x^5+7946*x^4-856*x^3-3072*x^2+432*x+266,24*x^11-78*x^10-286*x^9+964*x^8+1208*x^7-4094*x^6-2104*x^5+6494*x^4+1260*x^3-2264*x^2-86*x+226,-4*x^11+14*x^10+42*x^9-162*x^8-150*x^7+646*x^6+204*x^5-986*x^4-74*x^3+402*x^2-18*x-38,17*x^11-65*x^10-165*x^9+772*x^8+448*x^7-3178*x^6+9*x^5+5029*x^4-1094*x^3-2085*x^2+359*x+237,24*x^11-60*x^10-334*x^9+728*x^8+1790*x^7-2948*x^6-4498*x^5+4050*x^4+4814*x^3-224*x^2-964*x-154,2*x^11-6*x^10-28*x^9+88*x^8+126*x^7-438*x^6-174*x^5+832*x^4-66*x^3-430*x^2+112*x+30,2*x^11-6*x^10-22*x^9+66*x^8+88*x^7-250*x^6-146*x^5+350*x^4+66*x^3-80*x^2+12*x,-6*x^11+24*x^10+52*x^9-270*x^8-112*x^7+1048*x^6-74*x^5-1574*x^4+332*x^3+670*x^2-120*x-58,19*x^11-79*x^10-175*x^9+980*x^8+324*x^7-4230*x^6+975*x^5+7063*x^4-2978*x^3-3141*x^2+909*x+289,-36*x^11+132*x^10+376*x^9-1610*x^8-1188*x^7+6794*x^6+636*x^5-10928*x^4+1800*x^3+4342*x^2-672*x-358,-14*x^11+50*x^10+146*x^9-588*x^8-498*x^7+2376*x^6+550*x^5-3598*x^4+50*x^3+1212*x^2-114*x-76,33*x^11-121*x^10-345*x^9+1476*x^8+1088*x^7-6206*x^6-571*x^5+9833*x^4-1652*x^3-3581*x^2+605*x+257,-22*x^11+72*x^10+248*x^9-848*x^8-980*x^7+3386*x^6+1572*x^5-4852*x^4-862*x^3+1054*x^2+116*x+20]];

E[314,1] = [x^6-3*x^5-9*x^4+26*x^3+20*x^2-43*x-25, [13,-13,13*x,13,-5*x^5+8*x^4+51*x^3-56*x^2-103*x+24,-13*x,-2*x^5-2*x^4+23*x^3+14*x^2-49*x-6,-13,13*x^2-39,5*x^5-8*x^4-51*x^3+56*x^2+103*x-24,5*x^5+5*x^4-64*x^3-61*x^2+181*x+171,13*x,8*x^5-18*x^4-66*x^3+126*x^2+92*x-80,2*x^5+2*x^4-23*x^3-14*x^2+49*x+6,-7*x^5+6*x^4+74*x^3-3*x^2-191*x-125,13,8*x^5-5*x^4-92*x^3-4*x^2+248*x+154,-13*x^2+39,6*x^5-7*x^4-56*x^3+36*x^2+82*x+70,-5*x^5+8*x^4+51*x^3-56*x^2-103*x+24,-8*x^5+5*x^4+66*x^3-9*x^2-92*x-50,-5*x^5-5*x^4+64*x^3+61*x^2-181*x-171,-6*x^5-6*x^4+82*x^3+81*x^2-264*x-226,-13*x,-4*x^5+22*x^4+7*x^3-180*x^2+97*x+287,-8*x^5+18*x^4+66*x^3-126*x^2-92*x+80,13*x^3-78*x,-2*x^5-2*x^4+23*x^3+14*x^2-49*x-6,7*x^5-19*x^4-48*x^3+133*x^2+9*x-109,7*x^5-6*x^4-74*x^3+3*x^2+191*x+125,2*x^5+2*x^4-10*x^3-40*x^2-16*x+136,-13,20*x^5-19*x^4-191*x^3+81*x^2+386*x+125,-8*x^5+5*x^4+92*x^3+4*x^2-248*x-154,-17*x^5+22*x^4+163*x^3-115*x^2-345*x-38,13*x^2-39,-10*x^5+16*x^4+76*x^3-86*x^2-76*x+22,-6*x^5+7*x^4+56*x^3-36*x^2-82*x-70,6*x^5+6*x^4-82*x^3-68*x^2+264*x+200,5*x^5-8*x^4-51*x^3+56*x^2+103*x-24,-6*x^5-6*x^4+82*x^3+68*x^2-238*x-200,8*x^5-5*x^4-66*x^3+9*x^2+92*x+50,-10*x^5+16*x^4+76*x^3-86*x^2-76*x+22,5*x^5+5*x^4-64*x^3-61*x^2+181*x+171,-13*x^4+26*x^3+117*x^2-117*x-247,6*x^5+6*x^4-82*x^3-81*x^2+264*x+226,10*x^5-16*x^4-102*x^3+86*x^2+206*x+56,13*x,-x^5-x^4+18*x^3+33*x^2-57*x-94,4*x^5-22*x^4-7*x^3+180*x^2-97*x-287,19*x^5-20*x^4-212*x^3+88*x^2+498*x+200,8*x^5-18*x^4-66*x^3+126*x^2+92*x-80,-14*x^5+12*x^4+148*x^3-58*x^2-317*x-146,-13*x^3+78*x,-2*x^5+24*x^4+10*x^3-233*x^2+29*x+358,2*x^5+2*x^4-23*x^3-14*x^2+49*x+6,11*x^5-2*x^4-120*x^3-38*x^2+328*x+150,-7*x^5+19*x^4+48*x^3-133*x^2-9*x+109,2*x^5+2*x^4-36*x^3-14*x^2+166*x+6,-7*x^5+6*x^4+74*x^3-3*x^2-191*x-125,6*x^5-20*x^4-30*x^3+153*x^2-100*x-190,-2*x^5-2*x^4+10*x^3+40*x^2+16*x-136,-13*x^5+130*x^3+26*x^2-247*x-182,13,2*x^5-24*x^4+16*x^3+246*x^2-198*x-540,-20*x^5+19*x^4+191*x^3-81*x^2-386*x-125,-16*x^5+10*x^4+184*x^3-5*x^2-496*x-230,8*x^5-5*x^4-92*x^3-4*x^2+248*x+154,-24*x^5+28*x^4+237*x^3-144*x^2-484*x-150,17*x^5-22*x^4-163*x^3+115*x^2+345*x+38,-2*x^5-2*x^4+36*x^3+40*x^2-166*x-188,-13*x^2+39,18*x^5-8*x^4-194*x^3+4*x^2+480*x+158,10*x^5-16*x^4-76*x^3+86*x^2+76*x-22,10*x^5-29*x^4-76*x^3+177*x^2+115*x-100,6*x^5-7*x^4-56*x^3+36*x^2+82*x+70,12*x^5-x^4-151*x^3-84*x^2+437*x+348,-6*x^5-6*x^4+82*x^3+68*x^2-264*x-200,-5*x^5+8*x^4+51*x^3-82*x^2-77*x+128,-5*x^5+8*x^4+51*x^3-56*x^2-103*x+24,13*x^4-117*x^2+117,6*x^5+6*x^4-82*x^3-68*x^2+238*x+200,2*x^5+2*x^4-36*x^3-14*x^2+140*x+32,-8*x^5+5*x^4+66*x^3-9*x^2-92*x-50,-12*x^5+27*x^4+112*x^3-176*x^2-281*x+42,10*x^5-16*x^4-76*x^3+86*x^2+76*x-22,2*x^5+15*x^4-49*x^3-131*x^2+192*x+175,-5*x^5-5*x^4+64*x^3+61*x^2-181*x-171,-7*x^5+32*x^4+9*x^3-250*x^2+199*x+356,13*x^4-26*x^3-117*x^2+117*x+247,14*x^5-38*x^4-122*x^3+266*x^2+174*x-140,-6*x^5-6*x^4+82*x^3+81*x^2-264*x-226,8*x^5+8*x^4-92*x^3-56*x^2+222*x+50,-10*x^5+16*x^4+102*x^3-86*x^2-206*x-56,13*x^4-156*x^2+39*x+260,-13*x,-22*x^5+30*x^4+214*x^3-132*x^2-448*x-222,x^5+x^4-18*x^3-33*x^2+57*x+94,26*x^5-26*x^4-247*x^3+169*x^2+442*x-13,-4*x^5+22*x^4+7*x^3-180*x^2+97*x+287,2*x^5+2*x^4-36*x^3-14*x^2+88*x+6,-19*x^5+20*x^4+212*x^3-88*x^2-498*x-200,-8*x^5+5*x^4+92*x^3+30*x^2-274*x-284,-8*x^5+18*x^4+66*x^3-126*x^2-92*x+80,-29*x^5+10*x^4+327*x^3-5*x^2-769*x-425,14*x^5-12*x^4-148*x^3+58*x^2+317*x+146,14*x^5-38*x^4-96*x^3+292*x^2+18*x-244,13*x^3-78*x,20*x^5-58*x^4-152*x^3+406*x^2+178*x-278,2*x^5-24*x^4-10*x^3+233*x^2-29*x-358,-14*x^5-14*x^4+174*x^3+124*x^2-408*x-250,-2*x^5-2*x^4+23*x^3+14*x^2-49*x-6,-14*x^5+38*x^4+96*x^3-240*x^2-83*x+62,-11*x^5+2*x^4+120*x^3+38*x^2-328*x-150,13*x^5-39*x^4-117*x^3+299*x^2+234*x-273,7*x^5-19*x^4-48*x^3+133*x^2+9*x-109,26*x^4-26*x^3-234*x^2+182*x+390,-2*x^5-2*x^4+36*x^3+14*x^2-166*x-6,37*x^5-15*x^4-406*x^3+x^2+978*x+527,7*x^5-6*x^4-74*x^3+3*x^2+191*x+125,-18*x^5+34*x^4+168*x^3-212*x^2-285*x+89,-6*x^5+20*x^4+30*x^3-153*x^2+100*x+190,-24*x^5+28*x^4+224*x^3-118*x^2-458*x-150,2*x^5+2*x^4-10*x^3-40*x^2-16*x+136,-3*x^5+36*x^4-11*x^3-369*x^2+193*x+706,13*x^5-130*x^3-26*x^2+247*x+182,6*x^5-20*x^4-56*x^3+166*x^2+108*x-190,-13,-14*x^5-14*x^4+174*x^3+124*x^2-408*x-250,-2*x^5+24*x^4-16*x^3-246*x^2+198*x+540,-14*x^5-14*x^4+174*x^3+202*x^2-538*x-458,20*x^5-19*x^4-191*x^3+81*x^2+386*x+125,19*x^5-33*x^4-160*x^3+153*x^2+238*x+135,16*x^5-10*x^4-184*x^3+5*x^2+496*x+230,8*x^5+8*x^4-105*x^3-108*x^2+326*x+375,-8*x^5+5*x^4+92*x^3+4*x^2-248*x-154,18*x^5-34*x^4-168*x^3+264*x^2+246*x-206,24*x^5-28*x^4-237*x^3+144*x^2+484*x+150,-52*x^2+26*x+286,-17*x^5+22*x^4+163*x^3-115*x^2-345*x-38,14*x^5-12*x^4-174*x^3+6*x^2+486*x+250,2*x^5+2*x^4-36*x^3-40*x^2+166*x+188,18*x^5-34*x^4-168*x^3+264*x^2+350*x-310,13*x^2-39,18*x^5-34*x^4-168*x^3+251*x^2+285*x-232,-18*x^5+8*x^4+194*x^3-4*x^2-480*x-158,-4*x^5+9*x^4+59*x^3-37*x^2-137*x-25,-10*x^5+16*x^4+76*x^3-86*x^2-76*x+22,2*x^5-24*x^4+3*x^3+194*x^2-29*x-176,-10*x^5+29*x^4+76*x^3-177*x^2-115*x+100,-39*x^5+52*x^4+377*x^3-286*x^2-767*x-52,-6*x^5+7*x^4+56*x^3-36*x^2-82*x-70,13*x^5-26*x^4-130*x^3+130*x^2+273*x+13,-12*x^5+x^4+151*x^3+84*x^2-437*x-348,-2*x^5+50*x^4-42*x^3-454*x^2+302*x+878,6*x^5+6*x^4-82*x^3-68*x^2+264*x+200,13,5*x^5-8*x^4-51*x^3+82*x^2+77*x-128,-30*x^5+22*x^4+306*x^3-37*x^2-748*x-350,5*x^5-8*x^4-51*x^3+56*x^2+103*x-24,-19*x^5-6*x^4+251*x^3+146*x^2-758*x-538,-13*x^4+117*x^2-117,-8*x^5+18*x^4+66*x^3-126*x^2-14*x+54,-6*x^5-6*x^4+82*x^3+68*x^2-238*x-200,18*x^5-8*x^4-181*x^3+69*x^2+272*x-50,-2*x^5-2*x^4+36*x^3+14*x^2-140*x-32,2*x^5+2*x^4-10*x^3+38*x^2-68*x-228,8*x^5-5*x^4-66*x^3+9*x^2+92*x+50,8*x^5+8*x^4-92*x^3-160*x^2+248*x+531,12*x^5-27*x^4-112*x^3+176*x^2+281*x-42,13*x^5-156*x^3+377*x+65,-10*x^5+16*x^4+76*x^3-86*x^2-76*x+22,26*x^4-234*x^2-26*x+312,-2*x^5-15*x^4+49*x^3+131*x^2-192*x-175,3*x^5+29*x^4-67*x^3-307*x^2+366*x+581,5*x^5+5*x^4-64*x^3-61*x^2+181*x+171,8*x^5-18*x^4-66*x^3+126*x^2+92*x+50,7*x^5-32*x^4-9*x^3+250*x^2-199*x-356,12*x^5-14*x^4-112*x^3+46*x^2+242*x+192,-13*x^4+26*x^3+117*x^2-117*x-247,21*x^5-5*x^4-248*x^3-17*x^2+651*x+245,-14*x^5+38*x^4+122*x^3-266*x^2-174*x+140,-2*x^5+24*x^4-3*x^3-220*x^2+68*x+150,6*x^5+6*x^4-82*x^3-81*x^2+264*x+226,-30*x^5+22*x^4+332*x^3-128*x^2-722*x-194,-8*x^5-8*x^4+92*x^3+56*x^2-222*x-50,-20*x^5+6*x^4+191*x^3-29*x^2-295*x+18,10*x^5-16*x^4-102*x^3+86*x^2+206*x+56,-15*x^5-2*x^4+166*x^3+40*x^2-465*x-175,-13*x^4+156*x^2-39*x-260,22*x^5-30*x^4-227*x^3+210*x^2+513*x-38,13*x,36*x^5-29*x^4-388*x^3+112*x^2+960*x+238,22*x^5-30*x^4-214*x^3+132*x^2+448*x+222,-18*x^5+34*x^4+194*x^3-238*x^2-454*x+50,-x^5-x^4+18*x^3+33*x^2-57*x-94,-22*x^5+4*x^4+266*x^3+50*x^2-760*x-456,-26*x^5+26*x^4+247*x^3-169*x^2-442*x+13,-44*x^5+60*x^4+428*x^3-316*x^2-870*x-210,4*x^5-22*x^4-7*x^3+180*x^2-97*x-287,-38*x^5+40*x^4+411*x^3-176*x^2-918*x-400,-2*x^5-2*x^4+36*x^3+14*x^2-88*x-6,22*x^5-43*x^4-175*x^3+288*x^2+149*x-142,19*x^5-20*x^4-212*x^3+88*x^2+498*x+200,4*x^5-22*x^4-46*x^3+232*x^2+72*x-300,8*x^5-5*x^4-92*x^3-30*x^2+274*x+284,-26*x^5+39*x^4+234*x^3-247*x^2-390*x+78,8*x^5-18*x^4-66*x^3+126*x^2+92*x-80,-24*x^5+54*x^4+185*x^3-339*x^2-185*x+240,29*x^5-10*x^4-327*x^3+5*x^2+769*x+425,10*x^5+10*x^4-128*x^3-122*x^2+310*x+342,-14*x^5+12*x^4+148*x^3-58*x^2-317*x-146,-8*x^5+18*x^4+92*x^3-126*x^2-274*x-50,-14*x^5+38*x^4+96*x^3-292*x^2-18*x+244,-30*x^5+22*x^4+332*x^3-128*x^2-722*x-194,-13*x^3+78*x,-4*x^5-4*x^4+46*x^3+2*x^2-202*x+118,-20*x^5+58*x^4+152*x^3-406*x^2-178*x+278,46*x^5-32*x^4-464*x^3+120*x^2+932*x+450,-2*x^5+24*x^4+10*x^3-233*x^2+29*x+358,20*x^5-32*x^4-230*x^3+198*x^2+620*x+60,14*x^5+14*x^4-174*x^3-124*x^2+408*x+250,8*x^5-18*x^4-40*x^3+126*x^2-25*x-184,2*x^5+2*x^4-23*x^3-14*x^2+49*x+6,13*x^5-52*x^4-104*x^3+455*x^2+39*x-611,14*x^5-38*x^4-96*x^3+240*x^2+83*x-62,4*x^5+4*x^4-72*x^3-28*x^2+358*x+64,11*x^5-2*x^4-120*x^3-38*x^2+328*x+150,-24*x^5+28*x^4+224*x^3-144*x^2-484*x+6,-13*x^5+39*x^4+117*x^3-299*x^2-234*x+273,35*x^5-43*x^4-396*x^3+197*x^2+864*x+300,-7*x^5+19*x^4+48*x^3-133*x^2-9*x+109,-4*x^5-4*x^4+72*x^3+41*x^2-332*x-142,-26*x^4+26*x^3+234*x^2-182*x-390,-2*x^5-2*x^4+36*x^3+14*x^2-166*x-162,2*x^5+2*x^4-36*x^3-14*x^2+166*x+6,-7*x^5+6*x^4+48*x^3+23*x^2-87*x-125,-37*x^5+15*x^4+406*x^3-x^2-978*x-527,10*x^5-42*x^4-76*x^3+320*x^2+102*x-230,-7*x^5+6*x^4+74*x^3-3*x^2-191*x-125,36*x^5-42*x^4-336*x^3+242*x^2+596*x+82,18*x^5-34*x^4-168*x^3+212*x^2+285*x-89,13*x^5-156*x^3+351*x,6*x^5-20*x^4-30*x^3+153*x^2-100*x-190,-3*x^5-16*x^4+67*x^3+177*x^2-236*x-412,24*x^5-28*x^4-224*x^3+118*x^2+458*x+150,24*x^5-80*x^4-146*x^3+586*x^2-36*x-500,-2*x^5-2*x^4+10*x^3+40*x^2+16*x-136,8*x^5-18*x^4-66*x^3+100*x^2+118*x+50,3*x^5-36*x^4+11*x^3+369*x^2-193*x-706,-4*x^5-4*x^4+46*x^3+2*x^2-72*x+92,-13*x^5+130*x^3+26*x^2-247*x-182,11*x^5-15*x^4-107*x^3+118*x^2+159*x-292,-6*x^5+20*x^4+56*x^3-166*x^2-108*x+190,-9*x^5+4*x^4+136*x^3-41*x^2-474*x-300,13,17*x^5-35*x^4-150*x^3+219*x^2+293*x-131,14*x^5+14*x^4-174*x^3-124*x^2+408*x+250,-22*x^5+30*x^4+214*x^3-184*x^2-266*x-14,2*x^5-24*x^4+16*x^3+246*x^2-198*x-540,26*x^4-39*x^3-247*x^2+234*x+377,14*x^5+14*x^4-174*x^3-202*x^2+538*x+458,22*x^5-4*x^4-266*x^3-50*x^2+760*x+378,-20*x^5+19*x^4+191*x^3-81*x^2-386*x-125,5*x^5-8*x^4-90*x^3+95*x^2+285*x+67,-19*x^5+33*x^4+160*x^3-153*x^2-238*x-135,11*x^5-54*x^4-68*x^3+339*x^2+55*x-175,-16*x^5+10*x^4+184*x^3-5*x^2-496*x-230,-10*x^5+29*x^4+76*x^3-190*x^2-76*x+48,-8*x^5-8*x^4+105*x^3+108*x^2-326*x-375,7*x^5+33*x^4-126*x^3-283*x^2+477*x+437,8*x^5-5*x^4-92*x^3-4*x^2+248*x+154,4*x^5+4*x^4-98*x^3-106*x^2+462*x+350,-18*x^5+34*x^4+168*x^3-264*x^2-246*x+206,-21*x^5+70*x^4+131*x^3-581*x^2-40*x+1029,-24*x^5+28*x^4+237*x^3-144*x^2-484*x-150,-4*x^5+22*x^4+46*x^3-180*x^2-98*x+144,52*x^2-26*x-286,26*x^5-26*x^4-234*x^3+182*x^2+442*x-208,17*x^5-22*x^4-163*x^3+115*x^2+345*x+38,-18*x^5+34*x^4+168*x^3-212*x^2-311*x-54,-14*x^5+12*x^4+174*x^3-6*x^2-486*x-250,-9*x^5+56*x^4+19*x^3-496*x^2+267*x+636,-2*x^5-2*x^4+36*x^3+40*x^2-166*x-188,13*x^5-156*x^3+39*x^2+260*x,-18*x^5+34*x^4+168*x^3-264*x^2-350*x+310,-20*x^5+6*x^4+230*x^3+88*x^2-646*x-450,-13*x^2+39,19*x^5-20*x^4-225*x^3+114*x^2+693*x+161,-18*x^5+34*x^4+168*x^3-251*x^2-285*x+232,-36*x^5+16*x^4+440*x^3-8*x^2-1168*x-550,18*x^5-8*x^4-194*x^3+4*x^2+480*x+158,-14*x^5+12*x^4+148*x^3-58*x^2-343*x-198,4*x^5-9*x^4-59*x^3+37*x^2+137*x+25,-12*x^5-12*x^4+164*x^3+214*x^2-554*x-712,10*x^5-16*x^4-76*x^3+86*x^2+76*x-22,-8*x^5+44*x^4+66*x^3-321*x^2-53*x+275,-2*x^5+24*x^4-3*x^3-194*x^2+29*x+176,-24*x^5+28*x^4+276*x^3-196*x^2-770*x+110,10*x^5-29*x^4-76*x^3+177*x^2+115*x-100,-22*x^5+30*x^4+214*x^3-184*x^2-266*x-14,39*x^5-52*x^4-377*x^3+286*x^2+767*x+52,8*x^5-18*x^4-66*x^3+48*x^2+92*x+50,6*x^5-7*x^4-56*x^3+36*x^2+82*x+70,53*x^5-77*x^4-525*x^3+435*x^2+1136*x+55,-13*x^5+26*x^4+130*x^3-130*x^2-273*x-13,32*x^5-46*x^4-316*x^3+270*x^2+576*x+122,12*x^5-x^4-151*x^3-84*x^2+437*x+348,-19*x^5+20*x^4+238*x^3-114*x^2-628*x-200,2*x^5-50*x^4+42*x^3+454*x^2-302*x-878,2*x^5+2*x^4-10*x^3-40*x^2+10*x+84,-6*x^5-6*x^4+82*x^3+68*x^2-264*x-200,-26*x^5+26*x^4+260*x^3-156*x^2-481*x-26,-13,-26*x^5+260*x^3+156*x^2-637*x-611,-5*x^5+8*x^4+51*x^3-82*x^2-77*x+128,-22*x^5+30*x^4+214*x^3-184*x^2-396*x+220,30*x^5-22*x^4-306*x^3+37*x^2+748*x+350,-20*x^5+6*x^4+204*x^3+62*x^2-399*x-528,-5*x^5+8*x^4+51*x^3-56*x^2-103*x+24,4*x^5+30*x^4-72*x^3-262*x^2+358*x+350,19*x^5+6*x^4-251*x^3-146*x^2+758*x+538,-19*x^5+20*x^4+173*x^3-140*x^2-199*x+60,13*x^4-117*x^2+117,34*x^5-96*x^4-300*x^3+776*x^2+534*x-1120,8*x^5-18*x^4-66*x^3+126*x^2+14*x-54,2*x^5+28*x^4-114*x^3-222*x^2+582*x+500,6*x^5+6*x^4-82*x^3-68*x^2+238*x+200,56*x^5-48*x^4-540*x^3+206*x^2+1086*x+428,-18*x^5+8*x^4+181*x^3-69*x^2-272*x+50,13*x^5-143*x^3-104*x^2+377*x+624,2*x^5+2*x^4-36*x^3-14*x^2+140*x+32,-26*x^5+260*x^3+130*x^2-624*x-416,-2*x^5-2*x^4+10*x^3-38*x^2+68*x+228,9*x^5-17*x^4-97*x^3+67*x^2+370*x+235,-8*x^5+5*x^4+66*x^3-9*x^2-92*x-50,2*x^5+2*x^4-10*x^3-92*x^2-68*x+240,-8*x^5-8*x^4+92*x^3+160*x^2-248*x-531,-4*x^5-30*x^4+124*x^3+197*x^2-540*x-350,-12*x^5+27*x^4+112*x^3-176*x^2-281*x+42,-32*x^5+98*x^4+264*x^3-738*x^2-264*x+762,-13*x^5+156*x^3-377*x-65,-22*x^5+17*x^4+201*x^3-28*x^2-409*x-430,10*x^5-16*x^4-76*x^3+86*x^2+76*x-22,-39*x^3-26*x^2+286*x+325,-26*x^4+234*x^2+26*x-312,-48*x^5+82*x^4+448*x^3-509*x^2-812*x+194,2*x^5+15*x^4-49*x^3-131*x^2+192*x+175,4*x^5+4*x^4-20*x^3-28*x^2-136*x+220,-3*x^5-29*x^4+67*x^3+307*x^2-366*x-581,8*x^5-44*x^4+12*x^3+386*x^2-402*x-600,-5*x^5-5*x^4+64*x^3+61*x^2-181*x-171,-4*x^5-30*x^4+85*x^3+288*x^2-397*x-350,-8*x^5+18*x^4+66*x^3-126*x^2-92*x-50,52*x^5-78*x^4-520*x^3+468*x^2+1144*x+26,-7*x^5+32*x^4+9*x^3-250*x^2+199*x+356,96*x^5-73*x^4-961*x^3+238*x^2+2118*x+925,-12*x^5+14*x^4+112*x^3-46*x^2-242*x-192,-4*x^5-17*x^4+20*x^3+210*x^2+58*x-324,13*x^4-26*x^3-117*x^2+117*x+247,-x^5-40*x^4+83*x^3+358*x^2-551*x-497,-21*x^5+5*x^4+248*x^3+17*x^2-651*x-245,-20*x^5+6*x^4+256*x^3+75*x^2-685*x-450,14*x^5-38*x^4-122*x^3+266*x^2+174*x-140,24*x^5-28*x^4-224*x^3+222*x^2+302*x-266,2*x^5-24*x^4+3*x^3+220*x^2-68*x-150,-7*x^5+32*x^4+61*x^3-302*x^2-35*x+460,-6*x^5-6*x^4+82*x^3+81*x^2-264*x-226,-26*x^5+26*x^4+260*x^3-182*x^2-468*x,30*x^5-22*x^4-332*x^3+128*x^2+722*x+194,-38*x^5+53*x^4+372*x^3-215*x^2-814*x-348,8*x^5+8*x^4-92*x^3-56*x^2+222*x+50,22*x^5-4*x^4-214*x^3-11*x^2+396*x+14,20*x^5-6*x^4-191*x^3+29*x^2+295*x-18,27*x^5-38*x^4-291*x^3+253*x^2+577*x-75,-10*x^5+16*x^4+102*x^3-86*x^2-206*x-56,-6*x^5-6*x^4+108*x^3+16*x^2-446*x+190,15*x^5+2*x^4-166*x^3-40*x^2+465*x+175,22*x^5-4*x^4-266*x^3+2*x^2+682*x+40,13*x^4-156*x^2+39*x+260,-2*x^5-2*x^4+10*x^3-12*x^2+68*x+150,-22*x^5+30*x^4+227*x^3-210*x^2-513*x+38,-27*x^5+51*x^4+278*x^3-357*x^2-577*x+23,-13*x,-3*x^5+49*x^4-37*x^3-421*x^2+154*x+654,-36*x^5+29*x^4+388*x^3-112*x^2-960*x-238,-26*x^5+260*x^3+130*x^2-624*x-416,-22*x^5+30*x^4+214*x^3-132*x^2-448*x-222,-8*x^5-34*x^4+118*x^3+290*x^2-404*x-310,18*x^5-34*x^4-194*x^3+238*x^2+454*x-50,-7*x^5+19*x^4+100*x^3-94*x^2-399*x-333,x^5+x^4-18*x^3-33*x^2+57*x+94,-56*x^5+48*x^4+566*x^3-258*x^2-1060*x-350,22*x^5-4*x^4-266*x^3-50*x^2+760*x+456,-28*x^5+76*x^4+205*x^3-532*x^2-257*x+644,26*x^5-26*x^4-247*x^3+169*x^2+442*x-13,13*x^5-143*x^3-52*x^2+351*x+364,44*x^5-60*x^4-428*x^3+316*x^2+870*x+210,24*x^5+11*x^4-341*x^3-142*x^2+952*x+475,-4*x^5+22*x^4+7*x^3-180*x^2+97*x+287,6*x^5+32*x^4-108*x^3-354*x^2+342*x+772,38*x^5-40*x^4-411*x^3+176*x^2+918*x+400,32*x^5-124*x^4-160*x^3+1024*x^2-308*x-1360,2*x^5+2*x^4-36*x^3-14*x^2+88*x+6,32*x^5+6*x^4-394*x^3-185*x^2+1070*x+941,-22*x^5+43*x^4+175*x^3-288*x^2-149*x+142,44*x^5-34*x^4-480*x^3+108*x^2+1000*x+574,-19*x^5+20*x^4+212*x^3-88*x^2-498*x-200,-40*x^5+38*x^4+382*x^3-162*x^2-720*x-354,-4*x^5+22*x^4+46*x^3-232*x^2-72*x+300,20*x^5-6*x^4-204*x^3-114*x^2+568*x+450,-8*x^5+5*x^4+92*x^3+30*x^2-274*x-284,-8*x^5+18*x^4+14*x^3-100*x^2+246*x+28,26*x^5-39*x^4-234*x^3+247*x^2+390*x-78,-8*x^5-8*x^4+118*x^3+108*x^2-378*x-414,-8*x^5+18*x^4+66*x^3-126*x^2-92*x+80,-52*x^3+26*x^2+286*x,24*x^5-54*x^4-185*x^3+339*x^2+185*x-240,-16*x^5+36*x^4+132*x^3-304*x^2-145*x+264,-29*x^5+10*x^4+327*x^3-5*x^2-769*x-425,6*x^5+32*x^4-147*x^3-302*x^2+641*x+720,-10*x^5-10*x^4+128*x^3+122*x^2-310*x-342,-52*x^3-52*x^2+234*x+182,14*x^5-12*x^4-148*x^3+58*x^2+317*x+146,15*x^5+2*x^4-166*x^3-157*x^2+530*x+721,8*x^5-18*x^4-92*x^3+126*x^2+274*x+50,35*x^5-56*x^4-253*x^3+340*x^2+110*x-220,14*x^5-38*x^4-96*x^3+292*x^2+18*x-244,20*x^5-6*x^4-204*x^3-10*x^2+464*x+450,30*x^5-22*x^4-332*x^3+128*x^2+722*x+194,44*x^5-60*x^4-428*x^3+316*x^2+818*x+288,13*x^3-78*x,-34*x^5-8*x^4+404*x^3+290*x^2-1158*x-1142,4*x^5+4*x^4-46*x^3-2*x^2+202*x-118,20*x^5-6*x^4-217*x^3-75*x^2+542*x+450,20*x^5-58*x^4-152*x^3+406*x^2+178*x-278,27*x^5-77*x^4-174*x^3+552*x^2-73*x-465,-46*x^5+32*x^4+464*x^3-120*x^2-932*x-450,-4*x^5-17*x^4+72*x^3+158*x^2-306*x-324,2*x^5-24*x^4-10*x^3+233*x^2-29*x-358,26*x^4+13*x^3-156*x^2-26*x+182,-20*x^5+32*x^4+230*x^3-198*x^2-620*x-60,-12*x^5-12*x^4+164*x^3+136*x^2-554*x-88,-14*x^5-14*x^4+174*x^3+124*x^2-408*x-250,-46*x^5+84*x^4+451*x^3-666*x^2-841*x+538,-8*x^5+18*x^4+40*x^3-126*x^2+25*x+184,-18*x^5+21*x^4+142*x^3-69*x^2-90*x+50,-2*x^5-2*x^4+23*x^3+14*x^2-49*x-6,-34*x^5+44*x^4+352*x^3-204*x^2-742*x-232,-13*x^5+52*x^4+104*x^3-455*x^2-39*x+611,20*x^5-32*x^4-178*x^3+172*x^2+308*x-200,-14*x^5+38*x^4+96*x^3-240*x^2-83*x+62,-65*x^5+26*x^4+728*x^3+13*x^2-1729*x-975,-4*x^5-4*x^4+72*x^3+28*x^2-358*x-64,-10*x^5-36*x^4+180*x^3+382*x^2-700*x-1070,-11*x^5+2*x^4+120*x^3+38*x^2-328*x-150,-32*x^5+46*x^4+329*x^3-244*x^2-745*x-18,24*x^5-28*x^4-224*x^3+144*x^2+484*x-6,-44*x^5+47*x^4+428*x^3-251*x^2-922*x-275,13*x^5-39*x^4-117*x^3+299*x^2+234*x-273,20*x^5-84*x^4-152*x^3+692*x^2+126*x-590,-35*x^5+43*x^4+396*x^3-197*x^2-864*x-300,30*x^5-22*x^4-306*x^3-15*x^2+748*x+818,7*x^5-19*x^4-48*x^3+133*x^2+9*x-109,44*x^5-60*x^4-402*x^3+342*x^2+792*x-50,4*x^5+4*x^4-72*x^3-41*x^2+332*x+142,-7*x^5+32*x^4+9*x^3-224*x^2+121*x+252,26*x^4-26*x^3-234*x^2+182*x+390,-67*x^5+24*x^4+751*x^3+14*x^2-1856*x-890,2*x^5+2*x^4-36*x^3-14*x^2+166*x+162,13*x,-2*x^5-2*x^4+36*x^3+14*x^2-166*x-6,44*x^5-34*x^4-480*x^3+108*x^2+1000*x+574,7*x^5-6*x^4-48*x^3-23*x^2+87*x+125,-29*x^5+114*x^4+132*x^3-837*x^2+232*x+1005,37*x^5-15*x^4-406*x^3+x^2+978*x+527,-26*x^5+299*x^3+26*x^2-689*x-312,-10*x^5+42*x^4+76*x^3-320*x^2-102*x+230,20*x^5-19*x^4-256*x^3+146*x^2+698*x-148,7*x^5-6*x^4-74*x^3+3*x^2+191*x+125,8*x^5+8*x^4-144*x^3-108*x^2+612*x+180,-36*x^5+42*x^4+336*x^3-242*x^2-596*x-82,-63*x^5+80*x^4+640*x^3-378*x^2-1355*x-475,-18*x^5+34*x^4+168*x^3-212*x^2-285*x+89,24*x^5-54*x^4-224*x^3+326*x^2+588*x-6,-13*x^5+156*x^3-351*x,-24*x^5+80*x^4+172*x^3-612*x^2-146*x+682,-6*x^5+20*x^4+30*x^3-153*x^2+100*x+190,-6*x^5-6*x^4+82*x^3+146*x^2-290*x-200,3*x^5+16*x^4-67*x^3-177*x^2+236*x+412,-8*x^5+18*x^4+40*x^3-152*x^2+220*x+392,-24*x^5+28*x^4+224*x^3-118*x^2-458*x-150,-28*x^5+24*x^4+283*x^3-51*x^2-595*x-422,-24*x^5+80*x^4+146*x^3-586*x^2+36*x+500,52*x^5-91*x^4-429*x^3+611*x^2+637*x-624,2*x^5+2*x^4-10*x^3-40*x^2-16*x+136,-2*x^5-2*x^4+62*x^3+40*x^2-348*x-344,-8*x^5+18*x^4+66*x^3-100*x^2-118*x-50,52*x^4-104*x^3-390*x^2+572*x+598,-3*x^5+36*x^4-11*x^3-369*x^2+193*x+706]];
E[314,2] = [x, [1,-1,0,1,0,0,-3,-1,-3,0,-2,0,-1,3,0,1,3,3,-4,0,0,2,-1,0,-5,1,0,-3,0,0,-6,-1,0,-3,0,-3,-1,4,0,0,0,0,1,-2,0,1,0,0,2,5,0,-1,12,0,0,3,0,0,-7,0,0,6,9,1,0,0,-2,3,0,0,10,3,12,1,0,-4,6,0,-8,0,9,0,0,0,0,-1,0,2,-3,0,3,-1,0,0,0,0,-2,-2,6,-5,11,0,-8,1,0,-12,3,0,-13,0,0,-3,9,0,0,0,3,7,-9,0,-7,0,0,-6,0,-9,20,-1,0,0,-13,0,12,2,0,-3,-18,0,-12,0,0,-10,2,-3,0,-12,0,-1,16,0,-7,4,-9,-6,0,0,-1,8,0,0,3,-9,-20,0,0,0,-8,0,-12,0,12,1,6,0,15,-2,0,3,-9,0,0,-3,0,1,0,0,-6,0,0,0,-20,0,6,2,0,2,-11,-6,14,5,0,-11,0,0,0,8,3,-1,8,0,-5,12,0,-3,0,0,18,13,0,0,-3,0,0,3,15,-9,-25,0,-2,0,0,0,23,-3,0,-7,0,9,6,0,12,7,0,0,0,0,4,6,0,0,-15,9,2,-20,0,1,-14,0,3,0,0,13,0,0,0,-12,0,-2,-14,0,23,3,0,18,10,0,3,12,18,0,-3,0,14,10,0,-2,0,3,-8,0,0,12,-12,0,0,1,0,-16,1,0,-3,7,0,-4,0,9,-1,6,0,0,18,0,1,1,0,-8,-31,0,0,0,0,-3,-12,9,5,20,0,0,0,0,-20,0,3,8,0,0,-26,12,0,0,12,-12,15,-1,0,-6,16,0,9,-15,0,2,26,0,0,-3,0,9,-9,0,-3,0,0,3,0,0,31,-1,0,0,-36,0,-38,6,0,0,0,0,-19,0,0,20,3,0,0,-6,-3,-2,-17,0,-3,-2,0,11,0,6,-36,-14,0,-5,-16,0,6,11,0,0,2,0,-18,0,0,-8,21,-3,0,1,0,-8,-22,0,-2,5,0,-12,-15,0,0,3,0,0,10,0,30,-18,0,-13,4,0,19,0,-6,3,4,0,0,0,0,-3,22,-15,0,9,0,25,0,0,-13,2,0,0,17,0,27,0,0,-23,-18,3,6,0,0,7,-2,0,20,-9,-36,-6,21,0,1,-12,0,-7,0,0,10,0,0,0,21,0,0,-4,0,-6,-30,0,4,0]];
E[314,3] = [x^7+x^6-17*x^5-6*x^4+84*x^3-19*x^2-73*x+4, [15,15,15*x,15,-5*x^5+55*x^3-20*x^2-95*x+20,15*x,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,15,15*x^2-45,-5*x^5+55*x^3-20*x^2-95*x+20,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,15*x,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,15,x^6-3*x^5-20*x^4+34*x^3+88*x^2-91*x-39,15*x^2-45,2*x^6+4*x^5-15*x^4-32*x^3-4*x^2+68*x+12,-5*x^5+55*x^3-20*x^2-95*x+20,6*x^6+2*x^5-65*x^4-6*x^3+103*x^2+74*x-4,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,3*x^6+x^5-45*x^4-8*x^3+169*x^2+7*x-97,15*x,-10*x^4+5*x^3+100*x^2-105*x-55,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,15*x^3-90*x,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,-5*x^6-10*x^5+70*x^4+90*x^3-255*x^2-80*x+40,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,2*x^6+4*x^5-40*x^4-42*x^3+216*x^2+38*x-118,15,-x^6+3*x^5-39*x^3+67*x^2+x+4,x^6-3*x^5-20*x^4+34*x^3+88*x^2-91*x-39,2*x^6-x^5-20*x^4+33*x^3+11*x^2-117*x+12,15*x^2-45,-7*x^6-9*x^5+95*x^4+62*x^3-346*x^2+37*x+153,2*x^6+4*x^5-15*x^4-32*x^3-4*x^2+68*x+12,4*x^6-2*x^5-30*x^4+46*x^3-48*x^2-24*x+4,-5*x^5+55*x^3-20*x^2-95*x+20,-8*x^6-6*x^5+110*x^4+38*x^3-384*x^2-22*x+172,6*x^6+2*x^5-65*x^4-6*x^3+103*x^2+74*x-4,x^6+7*x^5-25*x^4-66*x^3+178*x^2+9*x-99,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,5*x^6-15*x^5-50*x^4+160*x^3-15*x^2-80*x-40,3*x^6+x^5-45*x^4-8*x^3+169*x^2+7*x-97,-10*x^5+110*x^3-10*x^2-130*x-140,15*x,5*x^5-15*x^4-70*x^3+155*x^2+125*x-110,-10*x^4+5*x^3+100*x^2-105*x-55,-4*x^6-3*x^5+40*x^4+4*x^3-72*x^2+34*x-4,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,2*x^6+4*x^5-30*x^4-32*x^3+146*x^2-7*x-108,15*x^3-90*x,-2*x^6-4*x^5+50*x^4+22*x^3-301*x^2+187*x+68,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,2*x^6+19*x^5-20*x^4-172*x^3+106*x^2+158*x-8,-5*x^6-10*x^5+70*x^4+90*x^3-255*x^2-80*x+40,-3*x^6-x^5+25*x^4+18*x^3+46*x^2-157*x-163,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,6*x^6+12*x^5-70*x^4-106*x^3+193*x^2+174*x-4,2*x^6+4*x^5-40*x^4-42*x^3+216*x^2+38*x-118,-7*x^6+16*x^5+75*x^4-188*x^3-46*x^2+182*x-27,15,8*x^6+6*x^5-100*x^4-28*x^3+254*x^2-38*x+48,-x^6+3*x^5-39*x^3+67*x^2+x+4,10*x^4-20*x^3-115*x^2+180*x+70,x^6-3*x^5-20*x^4+34*x^3+88*x^2-91*x-39,-2*x^6+6*x^5+10*x^4-83*x^3+64*x^2+122*x-12,2*x^6-x^5-20*x^4+33*x^3+11*x^2-117*x+12,6*x^6+12*x^5-80*x^4-116*x^3+308*x^2+204*x-194,15*x^2-45,6*x^6+12*x^5-70*x^4-106*x^3+208*x^2+174*x-64,-7*x^6-9*x^5+95*x^4+62*x^3-346*x^2+37*x+153,-10*x^5+5*x^4+100*x^3-105*x^2-55*x,2*x^6+4*x^5-15*x^4-32*x^3-4*x^2+68*x+12,-2*x^6+6*x^5+25*x^4-83*x^3-56*x^2+227*x+18,4*x^6-2*x^5-30*x^4+46*x^3-48*x^2-24*x+4,-4*x^6-13*x^5+60*x^4+119*x^3-282*x^2-81*x+116,-5*x^5+55*x^3-20*x^2-95*x+20,15*x^4-135*x^2+135,-8*x^6-6*x^5+110*x^4+38*x^3-384*x^2-22*x+172,4*x^6-2*x^5-50*x^4+56*x^3+122*x^2-264*x-16,6*x^6+2*x^5-65*x^4-6*x^3+103*x^2+74*x-4,2*x^6-6*x^5-35*x^4+88*x^3+156*x^2-287*x-28,x^6+7*x^5-25*x^4-66*x^3+178*x^2+9*x-99,-5*x^6-15*x^5+60*x^4+165*x^3-175*x^2-325*x+20,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,-7*x^6-4*x^5+75*x^4+17*x^3-126*x^2-78*x-37,5*x^6-15*x^5-50*x^4+160*x^3-15*x^2-80*x-40,-11*x^6-17*x^5+125*x^4+156*x^3-278*x^2-369*x+39,3*x^6+x^5-45*x^4-8*x^3+169*x^2+7*x-97,2*x^6-6*x^5-30*x^4+48*x^3+76*x^2+28*x-8,-10*x^5+110*x^3-10*x^2-130*x-140,4*x^6+8*x^5-35*x^4-84*x^3+12*x^2+211*x+4,15*x,-10*x^5-10*x^4+130*x^3+60*x^2-340*x+30,5*x^5-15*x^4-70*x^3+155*x^2+125*x-110,7*x^6-11*x^5-105*x^4+133*x^3+351*x^2-327*x-218,-10*x^4+5*x^3+100*x^2-105*x-55,-7*x^6-9*x^5+85*x^4+82*x^3-246*x^2-203*x+173,-4*x^6-3*x^5+40*x^4+4*x^3-72*x^2+34*x-4,4*x^6+8*x^5-35*x^4-84*x^3-18*x^2+226*x+184,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,-3*x^6+14*x^5+45*x^4-157*x^3-79*x^2+158*x-8,2*x^6+4*x^5-30*x^4-32*x^3+146*x^2-7*x-108,x^6+7*x^5-15*x^4-86*x^3+48*x^2+219*x+31,15*x^3-90*x,-3*x^6-11*x^5+25*x^4+98*x^3-54*x^2-137*x+117,-2*x^6-4*x^5+50*x^4+22*x^3-301*x^2+187*x+68,-2*x^6-24*x^5+20*x^4+242*x^3-96*x^2-358*x+28,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,3*x^6+21*x^5-5*x^4-218*x^3-136*x^2+522*x+223,2*x^6+19*x^5-20*x^4-172*x^3+106*x^2+158*x-8,x^6-8*x^5-10*x^4+99*x^3+13*x^2-201*x-84,-5*x^6-10*x^5+70*x^4+90*x^3-255*x^2-80*x+40,-3*x^6+29*x^5+25*x^4-312*x^3+166*x^2+383*x-163,-3*x^6-x^5+25*x^4+18*x^3+46*x^2-157*x-163,4*x^6+13*x^5-55*x^4-114*x^3+217*x^2+66*x-21,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,4*x^6-2*x^5-30*x^4+76*x^3-48*x^2-279*x+259,6*x^6+12*x^5-70*x^4-106*x^3+193*x^2+174*x-4,2*x^6-26*x^5-10*x^4+288*x^3-174*x^2-412*x+32,2*x^6+4*x^5-40*x^4-42*x^3+216*x^2+38*x-118,10*x^6+15*x^5-130*x^4-115*x^3+435*x^2+95*x-140,-7*x^6+16*x^5+75*x^4-188*x^3-46*x^2+182*x-27,6*x^6+12*x^5-50*x^4-116*x^3-22*x^2+294*x+256,15,6*x^6-8*x^5-60*x^4+94*x^3+28*x^2-26*x-4,8*x^6+6*x^5-100*x^4-28*x^3+254*x^2-38*x+48,-5*x^6+5*x^5+75*x^4-100*x^3-290*x^2+385*x+135,-x^6+3*x^5-39*x^3+67*x^2+x+4,-9*x^6-18*x^5+100*x^4+154*x^3-247*x^2-171*x+16,10*x^4-20*x^3-115*x^2+180*x+70,-5*x^6+35*x^5+25*x^4-375*x^3+300*x^2+265*x-20,x^6-3*x^5-20*x^4+34*x^3+88*x^2-91*x-39,4*x^6-2*x^5-70*x^4+36*x^3+352*x^2-114*x-246,-2*x^6+6*x^5+10*x^4-83*x^3+64*x^2+122*x-12,2*x^6-6*x^5-30*x^4+48*x^3+76*x^2+88*x-68,2*x^6-x^5-20*x^4+33*x^3+11*x^2-117*x+12,-10*x^6+110*x^4-10*x^3-130*x^2-140*x,6*x^6+12*x^5-80*x^4-116*x^3+308*x^2+204*x-194,-12*x^6-14*x^5+170*x^4+72*x^3-676*x^2+202*x+238,15*x^2-45,-10*x^5+10*x^4+60*x^3-155*x^2+275*x+20,6*x^6+12*x^5-70*x^4-106*x^3+208*x^2+174*x-64,5*x^6-15*x^5-70*x^4+155*x^3+125*x^2-110*x,-7*x^6-9*x^5+95*x^4+62*x^3-346*x^2+37*x+153,10*x^5+20*x^4-105*x^3-130*x^2+295*x+40,-10*x^5+5*x^4+100*x^3-105*x^2-55*x,3*x^6-4*x^5-35*x^4+87*x^3+94*x^2-328*x+53,2*x^6+4*x^5-15*x^4-32*x^3-4*x^2+68*x+12,-2*x^6-19*x^5+40*x^4+162*x^3-306*x^2-23*x+133,-2*x^6+6*x^5+25*x^4-83*x^3-56*x^2+227*x+18,-6*x^6-12*x^5+60*x^4+126*x^3-78*x^2-324*x-96,4*x^6-2*x^5-30*x^4+46*x^3-48*x^2-24*x+4,-15,-4*x^6-13*x^5+60*x^4+119*x^3-282*x^2-81*x+116,2*x^6+4*x^5-20*x^4-22*x^3+31*x^2+38*x-8,-5*x^5+55*x^3-20*x^2-95*x+20,5*x^6+20*x^5-75*x^4-205*x^3+330*x^2+315*x-55,15*x^4-135*x^2+135,-2*x^6+6*x^5+20*x^4-58*x^3-6*x^2-28*x+148,-8*x^6-6*x^5+110*x^4+38*x^3-384*x^2-22*x+172,-2*x^6+16*x^5+10*x^4-133*x^3+149*x^2-78*x+8,4*x^6-2*x^5-50*x^4+56*x^3+122*x^2-264*x-16,4*x^6-2*x^5-90*x^4+46*x^3+522*x^2-324*x-356,6*x^6+2*x^5-65*x^4-6*x^3+103*x^2+74*x-4,-3*x^6+9*x^5+15*x^4-102*x^3+156*x^2+33*x-48,2*x^6-6*x^5-35*x^4+88*x^3+156*x^2-287*x-28,11*x^6+2*x^5-115*x^4+34*x^3+208*x^2-66*x-44,x^6+7*x^5-25*x^4-66*x^3+178*x^2+9*x-99,-2*x^6-14*x^5+20*x^4+132*x^3-26*x^2-108*x-222,-5*x^6-15*x^5+60*x^4+165*x^3-175*x^2-325*x+20,-6*x^6+13*x^5+55*x^4-139*x^3+57*x^2-44*x-21,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,2*x^6-26*x^5+298*x^3-214*x^2-382*x+12,-7*x^6-4*x^5+75*x^4+17*x^3-126*x^2-78*x-37,x^6+17*x^5-15*x^4-166*x^3+118*x^2+139*x-69,5*x^6-15*x^5-50*x^4+160*x^3-15*x^2-80*x-40,x^6+2*x^5-10*x^4-26*x^3-37*x^2+64*x+356,-11*x^6-17*x^5+125*x^4+156*x^3-278*x^2-369*x+39,6*x^6+32*x^5-70*x^4-311*x^3+288*x^2+434*x-24,3*x^6+x^5-45*x^4-8*x^3+169*x^2+7*x-97,-14*x^6-8*x^5+180*x^4+4*x^3-552*x^2+324*x+136,2*x^6-6*x^5-30*x^4+48*x^3+76*x^2+28*x-8,4*x^6+8*x^5-30*x^4-79*x^3+37*x^2+331*x-246,-10*x^5+110*x^3-10*x^2-130*x-140,5*x^6-50*x^5-35*x^4+560*x^3-260*x^2-760*x+40,4*x^6+8*x^5-35*x^4-84*x^3+12*x^2+211*x+4,6*x^6-8*x^5-60*x^4+109*x^3-2*x^2-161*x+296,15*x,-20*x^5-15*x^4+220*x^3+40*x^2-440*x+50,-10*x^5-10*x^4+130*x^3+60*x^2-340*x+30,-2*x^6+36*x^5+20*x^4-418*x^3+114*x^2+632*x-32,5*x^5-15*x^4-70*x^3+155*x^2+125*x-110,-3*x^6-x^5+55*x^4-12*x^3-314*x^2+233*x+347,7*x^6-11*x^5-105*x^4+133*x^3+351*x^2-327*x-218,4*x^6+28*x^5-60*x^4-284*x^3+312*x^2+366*x+34,-10*x^4+5*x^3+100*x^2-105*x-55,10*x^5-20*x^4-115*x^3+180*x^2+70*x,-7*x^6-9*x^5+85*x^4+82*x^3-246*x^2-203*x+173,-10*x^6+145*x^4-5*x^3-480*x^2-95*x+20,-4*x^6-3*x^5+40*x^4+4*x^3-72*x^2+34*x-4,4*x^6+8*x^5-30*x^4-94*x^3-68*x^2+436*x+144,4*x^6+8*x^5-35*x^4-84*x^3-18*x^2+226*x+184,-x^6-27*x^5+40*x^4+256*x^3-423*x^2-179*x+299,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,-20*x^5-10*x^4+195*x^3-25*x^2-335*x+100,-3*x^6+14*x^5+45*x^4-157*x^3-79*x^2+158*x-8,-13*x^6-31*x^5+155*x^4+298*x^3-494*x^2-507*x+247,2*x^6+4*x^5-30*x^4-32*x^3+146*x^2-7*x-108,6*x^6+22*x^5-80*x^4-196*x^3+318*x^2+244*x-24,x^6+7*x^5-15*x^4-86*x^3+48*x^2+219*x+31,2*x^6+4*x^5-40*x^4-12*x^3+216*x^2-172*x-88,15*x^3-90*x,16*x^6+32*x^5-200*x^4-306*x^3+618*x^2+514*x-74,-3*x^6-11*x^5+25*x^4+98*x^3-54*x^2-137*x+117,6*x^6+32*x^5-70*x^4-296*x^3+288*x^2+374*x-24,-2*x^6-4*x^5+50*x^4+22*x^3-301*x^2+187*x+68,5*x^6+5*x^5-85*x^4-20*x^3+370*x^2-255*x-125,-2*x^6-24*x^5+20*x^4+242*x^3-96*x^2-358*x+28,-8*x^6-16*x^5+110*x^4+148*x^3-394*x^2-257*x+92,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,-10*x^6+5*x^5+130*x^4-120*x^3-355*x^2+315*x+165,3*x^6+21*x^5-5*x^4-218*x^3-136*x^2+522*x+223,5*x^6+5*x^5-85*x^4-50*x^3+400*x^2+75*x-365,2*x^6+19*x^5-20*x^4-172*x^3+106*x^2+158*x-8,-4*x^6+12*x^5+80*x^4-136*x^3-352*x^2+304*x+186,x^6-8*x^5-10*x^4+99*x^3+13*x^2-201*x-84,8*x^6-9*x^5-95*x^4+112*x^3+189*x^2-128*x+8,-5*x^6-10*x^5+70*x^4+90*x^3-255*x^2-80*x+40,5*x^6+5*x^5-85*x^4-50*x^3+415*x^2+45*x-395,-3*x^6+29*x^5+25*x^4-312*x^3+166*x^2+383*x-163,-10*x^6+100*x^4-80*x^3-90*x^2+280*x-160,-3*x^6-x^5+25*x^4+18*x^3+46*x^2-157*x-163,-9*x^6-8*x^5+95*x^4+54*x^3-157*x^2-176*x+16,4*x^6+13*x^5-55*x^4-114*x^3+217*x^2+66*x-21,8*x^6+26*x^5-130*x^4-248*x^3+604*x^2+102*x-122,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,-10*x^6-30*x^5+120*x^4+300*x^3-410*x^2-590*x+340,4*x^6-2*x^5-30*x^4+76*x^3-48*x^2-279*x+259,15*x^5-180*x^3+405*x,6*x^6+12*x^5-70*x^4-106*x^3+193*x^2+174*x-4,-35*x^5+20*x^4+375*x^3-295*x^2-380*x-80,2*x^6-26*x^5-10*x^4+288*x^3-174*x^2-412*x+32,-8*x^6-16*x^5+100*x^4+138*x^3-294*x^2-32*x+52,2*x^6+4*x^5-40*x^4-42*x^3+216*x^2+38*x-118,-6*x^6+18*x^5+80*x^4-214*x^3-188*x^2+276*x-16,10*x^6+15*x^5-130*x^4-115*x^3+435*x^2+95*x-140,7*x^6+19*x^5-95*x^4-172*x^3+386*x^2+123*x-283,-7*x^6+16*x^5+75*x^4-188*x^3-46*x^2+182*x-27,14*x^6+13*x^5-185*x^4-79*x^3+682*x^2+41*x-506,6*x^6+12*x^5-50*x^4-116*x^3-22*x^2+294*x+256,-8*x^6-x^5+100*x^4-12*x^3-249*x^2+118*x-8,15,x^6-8*x^5-10*x^4+144*x^3+13*x^2-516*x+6,6*x^6-8*x^5-60*x^4+94*x^3+28*x^2-26*x-4,7*x^6+9*x^5-45*x^4-72*x^3-124*x^2+233*x+47,8*x^6+6*x^5-100*x^4-28*x^3+254*x^2-38*x+48,5*x^6+5*x^5-75*x^4-25*x^3+345*x^2-105*x-100,-5*x^6+5*x^5+75*x^4-100*x^3-290*x^2+385*x+135,-2*x^6-24*x^5+30*x^4+282*x^3-166*x^2-538*x+8,-x^6+3*x^5-39*x^3+67*x^2+x+4,9*x^6-12*x^5-105*x^4+156*x^3+177*x^2-204*x-96,-9*x^6-18*x^5+100*x^4+154*x^3-247*x^2-171*x+16,3*x^6-44*x^5-25*x^4+462*x^3-211*x^2-548*x+28,10*x^4-20*x^3-115*x^2+180*x+70,-6*x^6-12*x^5+95*x^4+116*x^3-398*x^2-54*x-46,-5*x^6+35*x^5+25*x^4-375*x^3+300*x^2+265*x-20,2*x^6+29*x^5-45*x^4-322*x^3+381*x^2+603*x-313,x^6-3*x^5-20*x^4+34*x^3+88*x^2-91*x-39,-6*x^6-62*x^5+90*x^4+646*x^3-578*x^2-764*x+44,4*x^6-2*x^5-70*x^4+36*x^3+352*x^2-114*x-246,x^6+2*x^5+5*x^4-41*x^3-67*x^2+349*x-334,-2*x^6+6*x^5+10*x^4-83*x^3+64*x^2+122*x-12,-x^6+3*x^5+15*x^4-24*x^3-68*x^2-119*x+109,2*x^6-6*x^5-30*x^4+48*x^3+76*x^2+88*x-68,-14*x^6-8*x^5+180*x^4+34*x^3-582*x^2+24*x+346,2*x^6-x^5-20*x^4+33*x^3+11*x^2-117*x+12,-5*x^6-15*x^5+95*x^4+110*x^3-540*x^2+230*x+235,-10*x^6+110*x^4-10*x^3-130*x^2-140*x,6*x^6+27*x^5-110*x^4-251*x^3+608*x^2+39*x-194,6*x^6+12*x^5-80*x^4-116*x^3+308*x^2+204*x-194,4*x^6+33*x^5-60*x^4-324*x^3+287*x^2+296*x-16,-12*x^6-14*x^5+170*x^4+72*x^3-676*x^2+202*x+238,-18*x^6-26*x^5+240*x^4+238*x^3-764*x^2-452*x+92,15*x^2-45,3*x^6-4*x^5-35*x^4+87*x^3+94*x^2-298*x-112,-10*x^5+10*x^4+60*x^3-155*x^2+275*x+20,-10*x^6-10*x^5+130*x^4+60*x^3-340*x^2+30*x,6*x^6+12*x^5-70*x^4-106*x^3+208*x^2+174*x-64,6*x^6-8*x^5-50*x^4+104*x^3-102*x^2-101*x+156,5*x^6-15*x^5-70*x^4+155*x^3+125*x^2-110*x,4*x^6+8*x^5-80*x^4-84*x^3+402*x^2+106*x-176,-7*x^6-9*x^5+95*x^4+62*x^3-346*x^2+37*x+153,-15*x^6+5*x^5+175*x^4-120*x^3-395*x^2+290*x-40,10*x^5+20*x^4-105*x^3-130*x^2+295*x+40,-3*x^6-11*x^5+15*x^4+118*x^3+76*x^2-377*x-283,-10*x^5+5*x^4+100*x^3-105*x^2-55*x,3*x^6+x^5-45*x^4-8*x^3+184*x^2-23*x-37,3*x^6-4*x^5-35*x^4+87*x^3+94*x^2-328*x+53,-2*x^6-34*x^5+40*x^4+342*x^3-336*x^2-338*x+28,2*x^6+4*x^5-15*x^4-32*x^3-4*x^2+68*x+12,-3*x^6+4*x^5+40*x^4-37*x^3-99*x^2-107*x+12,-2*x^6-19*x^5+40*x^4+162*x^3-306*x^2-23*x+133,15*x^6+15*x^5-205*x^4-70*x^3+730*x^2-225*x-325,-2*x^6+6*x^5+25*x^4-83*x^3-56*x^2+227*x+18,4*x^6+33*x^5-60*x^4-354*x^3+302*x^2+476*x-16,-6*x^6-12*x^5+60*x^4+126*x^3-78*x^2-324*x-96,10*x^6+20*x^5-140*x^4-210*x^3+480*x^2+400*x-170,4*x^6-2*x^5-30*x^4+46*x^3-48*x^2-24*x+4,3*x^6+x^5-25*x^4+42*x^3+44*x^2-248*x-257,-15,11*x^6-3*x^5-115*x^4+74*x^3+68*x^2+124*x-24,-4*x^6-13*x^5+60*x^4+119*x^3-282*x^2-81*x+116,5*x^6+15*x^5-55*x^4-160*x^3+140*x^2+385*x+135,2*x^6+4*x^5-20*x^4-22*x^3+31*x^2+38*x-8,-20*x^5-10*x^4+240*x^3-10*x^2-695*x+220,-5*x^5+55*x^3-20*x^2-95*x+20,6*x^6+2*x^5-80*x^4-36*x^3+238*x^2+104*x-4,5*x^6+20*x^5-75*x^4-205*x^3+330*x^2+315*x-55,4*x^6+3*x^5-40*x^4-49*x^3+12*x^2+191*x-56,15*x^4-135*x^2+135,x^6+27*x^5-65*x^4-266*x^3+628*x^2-61*x-189,-2*x^6+6*x^5+20*x^4-58*x^3-6*x^2-28*x+148,-8*x^6-26*x^5+80*x^4+198*x^3-194*x^2-102*x+12,-8*x^6-6*x^5+110*x^4+38*x^3-384*x^2-22*x+172,8*x^6-4*x^5-60*x^4+92*x^3-126*x^2-78*x-52,-2*x^6+16*x^5+10*x^4-133*x^3+149*x^2-78*x+8,-8*x^6-41*x^5+120*x^4+403*x^3-624*x^2-477*x+352,4*x^6-2*x^5-50*x^4+56*x^3+122*x^2-264*x-16,-x^6+13*x^5-55*x^4-114*x^3+642*x^2-229*x-451,4*x^6-2*x^5-90*x^4+46*x^3+522*x^2-324*x-356,-5*x^6+100*x^4-35*x^3-485*x^2+365*x+60,6*x^6+2*x^5-65*x^4-6*x^3+103*x^2+74*x-4,-14*x^6-8*x^5+200*x^4+54*x^3-692*x^2-6*x+186,-3*x^6+9*x^5+15*x^4-102*x^3+156*x^2+33*x-48,18*x^6+46*x^5-200*x^4-388*x^3+579*x^2+442*x-12,2*x^6-6*x^5-35*x^4+88*x^3+156*x^2-287*x-28,10*x^6+30*x^5-160*x^4-280*x^3+810*x^2+290*x-620,11*x^6+2*x^5-115*x^4+34*x^3+208*x^2-66*x-44,-x^6+13*x^5+10*x^4-169*x^3+52*x^2+386*x-101,x^6+7*x^5-25*x^4-66*x^3+178*x^2+9*x-99,-9*x^6+7*x^5+105*x^4-71*x^3-182*x^2-11*x-4,-2*x^6-14*x^5+20*x^4+132*x^3-26*x^2-108*x-222,-2*x^6+6*x^5+20*x^4-88*x^3-51*x^2+182*x-32,-5*x^6-15*x^5+60*x^4+165*x^3-175*x^2-325*x+20,-15*x^6-15*x^5+195*x^4+90*x^3-660*x^2-15*x+255,-6*x^6+13*x^5+55*x^4-139*x^3+57*x^2-44*x-21,20*x^6-20*x^5-240*x^4+280*x^3+470*x^2-310*x,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,-30*x^4+15*x^3+240*x^2-315*x-30,2*x^6-26*x^5+298*x^3-214*x^2-382*x+12,2*x^6-26*x^5+268*x^3-244*x^2-202*x-168,-7*x^6-4*x^5+75*x^4+17*x^3-126*x^2-78*x-37,9*x^6+13*x^5-90*x^4-119*x^3+142*x^2+271*x-16,x^6+17*x^5-15*x^4-166*x^3+118*x^2+139*x-69,-15*x^6-35*x^5+190*x^4+290*x^3-690*x^2-185*x+255,5*x^6-15*x^5-50*x^4+160*x^3-15*x^2-80*x-40,-6*x^6-37*x^5+70*x^4+381*x^3-218*x^2-499*x-241,x^6+2*x^5-10*x^4-26*x^3-37*x^2+64*x+356,-6*x^6+38*x^5+100*x^4-384*x^3-203*x^2+551*x-16,-11*x^6-17*x^5+125*x^4+156*x^3-278*x^2-369*x+39,2*x^6-6*x^5-10*x^4+68*x^3-94*x^2-92*x-48,6*x^6+32*x^5-70*x^4-311*x^3+288*x^2+434*x-24,5*x^6-10*x^5-65*x^4+135*x^3+110*x^2-330*x+75,3*x^6+x^5-45*x^4-8*x^3+169*x^2+7*x-97,-4*x^6+42*x^5-30*x^4-456*x^3+778*x^2+244*x-524,-14*x^6-8*x^5+180*x^4+4*x^3-552*x^2+324*x+136,-8*x^6+14*x^5+75*x^4-172*x^3+31*x^2+118*x-48,2*x^6-6*x^5-30*x^4+48*x^3+76*x^2+28*x-8,30*x^5-390*x^3+45*x^2+960*x+30,4*x^6+8*x^5-30*x^4-79*x^3+37*x^2+331*x-246,5*x^6+40*x^5-55*x^4-405*x^3+285*x^2+590*x-40,-10*x^5+110*x^3-10*x^2-130*x-140,10*x^6+60*x^5-100*x^4-640*x^3+300*x^2+1280*x+40,5*x^6-50*x^5-35*x^4+560*x^3-260*x^2-760*x+40,-5*x^6+5*x^5+65*x^4-80*x^3-190*x^2+205*x+305,4*x^6+8*x^5-35*x^4-84*x^3+12*x^2+211*x+4,6*x^6+52*x^5-80*x^4-526*x^3+408*x^2+694*x-24,6*x^6-8*x^5-60*x^4+109*x^3-2*x^2-161*x+296,-15*x^5+15*x^4+150*x^3-165*x^2-45*x-165,15*x,-14*x^6-3*x^5+185*x^4-31*x^3-567*x^2+284*x+16,-20*x^5-15*x^4+220*x^3+40*x^2-440*x+50,-17*x^6+21*x^5+205*x^4-278*x^3-446*x^2+407*x+273,-10*x^5-10*x^4+130*x^3+60*x^2-340*x+30,-3*x^6-11*x^5+25*x^4+68*x^3+6*x^2+73*x-303,-2*x^6+36*x^5+20*x^4-418*x^3+114*x^2+632*x-32,2*x^6-x^5+5*x^4+28*x^3-194*x^2+63*x+277,5*x^5-15*x^4-70*x^3+155*x^2+125*x-110,10*x^6-10*x^5-130*x^4+130*x^3+290*x^2-230*x+20,-3*x^6-x^5+55*x^4-12*x^3-314*x^2+233*x+347,-8*x^6+4*x^5+100*x^4-97*x^3-244*x^2+333*x+92,7*x^6-11*x^5-105*x^4+133*x^3+351*x^2-327*x-218,-12*x^6-39*x^5+180*x^4+357*x^3-816*x^2-333*x+228,4*x^6+28*x^5-60*x^4-284*x^3+312*x^2+366*x+34,-9*x^6-53*x^5+100*x^4+509*x^3-342*x^2-641*x+36,-10*x^4+5*x^3+100*x^2-105*x-55,12*x^6-6*x^5-180*x^4+108*x^3+666*x^2-282*x-228,10*x^5-20*x^4-115*x^3+180*x^2+70*x,2*x^6-6*x^5-30*x^4+108*x^3+136*x^2-482*x-338,-7*x^6-9*x^5+85*x^4+82*x^3-246*x^2-203*x+173,25*x^6-15*x^5-255*x^4+240*x^3+215*x^2-145*x+140,-10*x^6+145*x^4-5*x^3-480*x^2-95*x+20,-8*x^6+4*x^5+110*x^4-12*x^3-404*x^2-312*x+822,-4*x^6-3*x^5+40*x^4+4*x^3-72*x^2+34*x-4,-20*x^5+10*x^4+230*x^3-90*x^2-380*x-330,4*x^6+8*x^5-30*x^4-94*x^3-68*x^2+436*x+144,-6*x^6-2*x^5+60*x^4+16*x^3-38*x^2+46*x-16,4*x^6+8*x^5-35*x^4-84*x^3-18*x^2+226*x+184,-7*x^6-19*x^5+105*x^4+212*x^3-396*x^2-513*x-37,-x^6-27*x^5+40*x^4+256*x^3-423*x^2-179*x+299,18*x^6+46*x^5-250*x^4-378*x^3+1004*x^2-8*x-32,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,-8*x^6+4*x^5+60*x^4-92*x^3+126*x^2+78*x-8,-20*x^5-10*x^4+195*x^3-25*x^2-335*x+100,10*x^6+10*x^5-150*x^4-80*x^3+600*x^2-105*x-290,-3*x^6+14*x^5+45*x^4-157*x^3-79*x^2+158*x-8,10*x^6-70*x^4+5*x^3-210*x^2+455*x+310,-13*x^6-31*x^5+155*x^4+298*x^3-494*x^2-507*x+247,10*x^6-30*x^5-70*x^4+380*x^3-300*x^2-340*x+460,2*x^6+4*x^5-30*x^4-32*x^3+146*x^2-7*x-108,4*x^6-7*x^5-50*x^4+126*x^3+117*x^2-434*x+199,6*x^6+22*x^5-80*x^4-196*x^3+318*x^2+244*x-24,8*x^6+x^5-120*x^4-23*x^3+404*x^2+242*x-12,x^6+7*x^5-15*x^4-86*x^3+48*x^2+219*x+31,-2*x^6-34*x^5+332*x^3-26*x^2-638*x+48,2*x^6+4*x^5-40*x^4-12*x^3+216*x^2-172*x-88,10*x^6+30*x^5-110*x^4-260*x^3+280*x^2+260*x+150,15*x^3-90*x,-8*x^6-6*x^5+100*x^4+88*x^3-194*x^2-382*x-138,16*x^6+32*x^5-200*x^4-306*x^3+618*x^2+514*x-74,-10*x^6+10*x^5+60*x^4-155*x^3+275*x^2+20*x,-3*x^6-11*x^5+25*x^4+98*x^3-54*x^2-137*x+117,3*x^6-14*x^5-40*x^4+132*x^3+44*x^2-158*x-92,6*x^6+32*x^5-70*x^4-296*x^3+288*x^2+374*x-24,-11*x^6-7*x^5+130*x^4+6*x^3-318*x^2+151*x+19,-2*x^6-4*x^5+50*x^4+22*x^3-301*x^2+187*x+68,-20*x^6+230*x^4-85*x^3-480*x^2-10*x+310,5*x^6+5*x^5-85*x^4-20*x^3+370*x^2-255*x-125,-12*x^6-24*x^5+140*x^4+272*x^3-296*x^2-678*x-172,-2*x^6-24*x^5+20*x^4+242*x^3-96*x^2-358*x+28,6*x^6-8*x^5-70*x^4+99*x^3+98*x^2+49*x-44,-8*x^6-16*x^5+110*x^4+148*x^3-394*x^2-257*x+92,10*x^6+20*x^5-105*x^4-130*x^3+295*x^2+40*x,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,2*x^6-16*x^5+10*x^4+168*x^3-304*x^2-12*x+222,-10*x^6+5*x^5+130*x^4-120*x^3-355*x^2+315*x+165,-16*x^6-12*x^5+240*x^4+126*x^3-968*x^2-284*x+904,3*x^6+21*x^5-5*x^4-218*x^3-136*x^2+522*x+223,-7*x^6+16*x^5+105*x^4-158*x^3-271*x^2+272*x-12,5*x^6+5*x^5-85*x^4-50*x^3+400*x^2+75*x-365,18*x^6-44*x^5-230*x^4+512*x^3+414*x^2-578*x+48,2*x^6+19*x^5-20*x^4-172*x^3+106*x^2+158*x-8,21*x^6+37*x^5-315*x^4-311*x^3+1288*x^2+34*x-499,-4*x^6+12*x^5+80*x^4-136*x^3-352*x^2+304*x+186,-5*x^6+15*x^5+30*x^4-150*x^3+155*x^2-115*x+20,x^6-8*x^5-10*x^4+99*x^3+13*x^2-201*x-84,-17*x^6-9*x^5+205*x^4+82*x^3-476*x^2-343*x+303,8*x^6-9*x^5-95*x^4+112*x^3+189*x^2-128*x+8,11*x^6-3*x^5-205*x^4+44*x^3+953*x^2-341*x-429,-5*x^6-10*x^5+70*x^4+90*x^3-255*x^2-80*x+40,-6*x^6-42*x^5+90*x^4+426*x^3-438*x^2-534*x+24,5*x^6+5*x^5-85*x^4-50*x^3+415*x^2+45*x-395,-6*x^6-27*x^5+110*x^4+311*x^3-608*x^2-579*x+314,-3*x^6+29*x^5+25*x^4-312*x^3+166*x^2+383*x-163,5*x^5-85*x^3-10*x^2+380*x+10,-10*x^6+100*x^4-80*x^3-90*x^2+280*x-160,-15*x,-3*x^6-x^5+25*x^4+18*x^3+46*x^2-157*x-163,20*x^5-30*x^4-220*x^3+380*x^2+320*x-530,-9*x^6-8*x^5+95*x^4+54*x^3-157*x^2-176*x+16,3*x^6-4*x^5-25*x^4+22*x^3-51*x^2+167*x-72,4*x^6+13*x^5-55*x^4-114*x^3+217*x^2+66*x-21,-4*x^6+2*x^5+80*x^4-41*x^3-362*x^2+159*x+316,8*x^6+26*x^5-130*x^4-248*x^3+604*x^2+102*x-122,3*x^6-9*x^5-30*x^4+42*x^3-66*x^2+417*x+213,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,5*x^6+25*x^5+15*x^4-290*x^3-520*x^2+965*x+435,-10*x^6-30*x^5+120*x^4+300*x^3-410*x^2-590*x+340,15*x^6+10*x^5-175*x^4-90*x^3+410*x^2+310*x-20,4*x^6-2*x^5-30*x^4+76*x^3-48*x^2-279*x+259,-10*x^6+10*x^5+40*x^4-100*x^3+490*x^2-550*x+40,15*x^5-180*x^3+405*x,12*x^6+24*x^5-100*x^4-232*x^3+16*x^2+738*x+62,6*x^6+12*x^5-70*x^4-106*x^3+193*x^2+174*x-4,8*x^6-14*x^5-70*x^4+162*x^3-66*x^2+2*x+8,-35*x^5+20*x^4+375*x^3-295*x^2-380*x-80,-17*x^6-9*x^5+215*x^4+2*x^3-636*x^2+287*x+193,2*x^6-26*x^5-10*x^4+288*x^3-174*x^2-412*x+32,-10*x^6-30*x^5+130*x^4+235*x^3-495*x^2-5*x-100,-8*x^6-16*x^5+100*x^4+138*x^3-294*x^2-32*x+52,24*x^6-12*x^5-295*x^4+251*x^3+787*x^2-699*x-196,2*x^6+4*x^5-40*x^4-42*x^3+216*x^2+38*x-118,2*x^6+44*x^5-60*x^4-502*x^3+516*x^2+858*x-118,-6*x^6+18*x^5+80*x^4-214*x^3-188*x^2+276*x-16,-2*x^6+26*x^5+10*x^4-288*x^3+174*x^2+502*x+148,10*x^6+15*x^5-130*x^4-115*x^3+435*x^2+95*x-140]];

E[315,1] = [x, [1,-1,0,-1,-1,0,1,3,0,1,0,0,-6,-1,0,-1,-2,0,-8,1,0,0,-8,0,1,6,0,-1,2,0,4,-5,0,2,-1,0,-2,8,0,-3,6,0,4,0,0,8,-8,0,1,-1,0,6,-10,0,0,3,0,-2,-4,0,-2,-4,0,7,6,0,4,2,0,1,12,0,-2,2,0,8,0,0,8,1,0,-6,4,0,2,-4,0,0,6,0,-6,8,0,8,8,0,-18,-1,0,-1,10,0,8,-18,0,10,12,0,-18,0,0,-1,-6,0,8,-2,0,4,-2,0,-11,2,0,-4,-1,0,8,3,0,-6,-20,0,-8,-4,0,-6,10,0,0,1,0,-12,0,0,-2,2,0,2,-14,0,8,-24,0,0,-4,0,-14,-8,0,5,-8,0,12,-6,0,-4,-8,0,23,-2,0,-4,-6,0,1,0,0,-6,24,0,-2,6,0,-24,2,0,0,8,0,-8,-4,0,18,18,0,-1,-18,0,-4,3,0,-10,2,0,-6,-8,0,6,0,0,-20,10,0,-12,-4,0,4,18,0,0,12,0,-24,-5,0,6,4,0,22,-8,0,6,18,0,8,4,0,2,4,0,-6,11,0,2,-1,0,48,12,0,1,12,0,0,-8,0,-17,6,0,-2,-6,0,20,-16,0,10,8,0,-4,-14,0,12,2,0,-10,0,0,14,0,0,-3,-18,0,-4,-12,0,0,6,0,-13,2,0,2,-14,0,4,-6,0,14,48,0,4,-8,0,8,2,0,12,0,0,4,-24,0,-10,14,0,-8,-2,0,0,-7,0,8,16,0,-6,-12,0,18,-8,0,-12,-4,0,8,-4,0,-14,-23,0,-2,0,0,1,12,0,6,20,0,14,-1,0,0,-18,0,-12,-6,0,-24,36,0,45,2,0,6,2,0,-8,8,0,-2,-10,0,-10,0,0,-24,-12,0,-4,-8,0,4,32,0,0,-18,0,18,-30,0,16,3,0,18,-8,0,-22,4,0,-1,-18,0,-24,-10,0,-2,0,0,-22,6,0,-8,-4,0,-4,30,0,0,12,0,-26,20,0,-30,-2,0,-2,-12,0,4,-28,0,-2,-4,0,18,64,0,28,0,0,-12,-12,0,-6,24,0,7,30,0,0,6,0,-4,6,0,18,-22,0,-8,2,0,-24,-2,0,-18,-28,0,4,-8,0,-12,0,0,-8,2,0,-4,-32,0,12,6,0,11,18,0,-16,-6,0,1,0,0,-4,-48,0,-4,12,0,20,1]];
E[315,2] = [x^2-x-4, [1,x,0,x+2,-1,0,-1,x+4,0,-x,x-1,0,-x+3,-x,0,3*x,-x+3,0,-2*x-2,-x-2,0,4,-2*x+2,0,1,2*x-4,0,-x-2,-3*x+1,0,0,x+4,0,2*x-4,1,0,6,-4*x-8,0,-x-4,-2*x,0,-2*x+6,2*x+2,0,-8,3*x+1,0,1,x,0,2,2*x,0,-x+1,-x-4,0,-2*x-12,4,0,6*x,0,0,-x+4,x-3,0,4*x,2,0,x,-8,0,-4*x-2,6*x,0,-8*x-12,-x+1,0,x-5,-3*x,0,-2*x-8,-4,0,x-3,4*x-8,0,4*x,2*x-4,0,x-3,-4*x-4,0,4*x+12,2*x+2,0,5*x-7,x,0,x+2,4*x+6,0,x+3,-2*x+8,0,2*x+8,-6*x+2,0,-3*x+13,-4,0,-3*x,14,0,2*x-2,-8*x-10,0,4*x,x-3,0,-x-6,6*x+24,0,0,-1,0,-4*x+4,x-12,0,-2*x+4,-2*x+6,0,2*x+2,4*x+16,0,-2*x+8,2*x+12,0,-2*x-10,x+2,0,-8*x,3*x-7,0,3*x-1,-6*x-16,0,6*x+12,-4*x-2,0,-7*x+11,-12*x-16,0,-4,0,0,4*x+10,-4*x+4,0,-x-4,2*x-2,0,-2*x-2,-6*x-8,0,-4*x,7*x-11,0,-5*x,-2*x+4,0,4,-x+7,0,-1,12,0,-2*x+8,-20,0,-10*x+8,-2*x+4,0,-8*x,-6,0,3*x-7,10*x+14,0,4*x+8,x+11,0,6*x+4,-2*x+20,0,x+2,-2*x+4,0,4*x-12,x+4,0,10*x+16,3*x-1,0,2*x,4*x+4,0,6*x-12,-2*x-6,0,9*x-9,6*x+8,0,-4*x-24,2*x-6,0,0,10*x-12,0,-2*x-2,-5*x+13,0,x-5,-x-4,0,14*x,3*x-19,0,-2*x+16,8,0,-14*x-8,-2*x,0,-3*x-1,4*x+8,0,-2*x+4,-5*x-7,0,-4*x+6,-7*x-4,0,18*x+24,-1,0,-2*x+2,0,0,-x,-2*x+14,0,2*x-10,-16,0,-9*x-4,8*x-10,0,-6,-2,0,4*x-8,-2*x+18,0,-2*x,4*x+8,0,12*x+16,12*x-10,0,-16,6*x-12,0,14*x+8,x-1,0,-4*x+10,-12*x-8,0,x+4,x-15,0,3*x-19,-8*x-16,0,-4*x+12,2*x,0,-5*x-4,2*x+12,0,-14*x-20,3*x-5,0,-4,6*x+24,0,-6*x-16,-6*x+14,0,2*x-6,4*x-28,0,-12*x-24,-6*x,0,3*x-27,-2*x-2,0,0,-10*x-6,0,-13*x+11,14*x+16,0,-2*x-6,-8*x+10,0,x-13,x-4,0,8,-2*x+2,0,-x+3,-4*x-8,0,-10*x-8,-3*x-1,0,12,-4*x-8,0,-4*x+28,-4*x,0,8*x-22,-5*x-20,0,-2,0,0,-1,-4*x+16,0,6*x-4,-2*x-2,0,8*x-10,-x,0,4*x,-5*x+7,0,8,2*x,0,-20*x,-8,0,12*x+1,-2*x-40,0,-2,4*x+2,0,-3*x-1,-24,0,-6*x,-2*x,0,-6*x+20,-4*x+12,0,16*x+16,-7*x+15,0,-8*x+4,8*x+12,0,12*x+4,-4*x+4,0,x-1,10*x+24,0,8*x+6,7*x+7,0,-6*x+14,x+4,0,2*x-8,-x+5,0,x+25,-8*x+16,0,3*x,-x-29,0,0,18*x+28,0,2*x+12,6*x-6,0,8*x-14,2*x+8,0,6*x+10,-4,0,4,-2*x+8,0,-8*x-8,-4*x-16,0,-3*x+5,36,0,10*x+8,-x+3,0,-6*x,-16*x-20,0,-4*x+8,5*x+7,0,4*x-2,0,0,4*x+14,4*x+12,0,6*x-6,-4*x,0,8*x-20,-6*x+18,0,-2*x+4,-4*x+4,0,x-4,5*x-11,0,-8,14*x+28,0,-16*x+12,-x+3,0,-2*x-12,14*x-8,0,4*x+4,2*x+8,0,8*x-8,-6*x-36,0,-2*x-8,x-25,0,-4*x,-4*x-12,0,4*x+16,6*x-14,0,-2*x-2,-2,0,-12*x-20,2*x-10,0,-6*x+18,2*x-16,0,-9*x-16,-5*x+7,0,-2*x+2,30*x+24,0,-x,11*x+13,0,-7*x+15,-8,0,0,8,0,11*x+13,-x-2]];
E[315,3] = [x^2-2*x-1, [1,x,0,2*x-1,1,0,-1,x+2,0,x,-2*x+4,0,-2*x,-x,0,3,-4*x+6,0,2*x-2,2*x-1,0,-2,4*x-2,0,1,-4*x-2,0,-2*x+1,8,0,-6*x+6,x-4,0,-2*x-4,-1,0,-6,2*x+2,0,x+2,4*x-6,0,-4*x,2*x-8,0,6*x+4,-4,0,1,x,0,-6*x-4,2*x+6,0,-2*x+4,-x-2,0,8*x,-4,0,6,-6*x-6,0,-2*x-5,-2*x,0,8*x-12,-14,0,-x,-6*x+8,0,10*x-8,-6*x,0,2*x+6,2*x-4,0,-4*x+4,3,0,2*x+4,-8,0,-4*x+6,-8*x-4,0,-4*x+6,8*x-2,0,2*x,8*x+10,0,-4*x,2*x-2,0,-2*x-4,x,0,2*x-1,4*x+6,0,8*x-12,-8*x-2,0,10*x+2,-2,0,10,-2,0,-3,-6*x+10,0,4*x-2,16*x-8,0,-4*x,4*x-6,0,-8*x+9,6*x,0,-6*x-18,1,0,4*x+4,-11*x+6,0,-4*x-2,4*x-12,0,-2*x+2,4*x+8,0,-10*x+8,-10*x+18,0,2*x+2,-2*x+1,0,-4*x-6,4,0,8,12*x+10,0,-12*x+6,-4*x+8,0,4*x-4,6*x-2,0,2,-6*x+6,0,2*x-8,-4*x-4,0,x-4,-4*x+2,0,-4*x-8,14,0,-8*x,-8*x-4,0,8*x-9,-2*x-4,0,-12*x-8,-4*x+14,0,-1,-6*x+12,0,14*x+8,6*x+8,0,4*x-10,4*x+2,0,14*x,-6,0,-12*x+32,-8*x+4,0,2*x+2,-2*x+4,0,-12*x+10,-8*x-2,0,2*x-1,-2*x+2,0,2*x+18,x+2,0,14*x+4,-8,0,4*x-6,4*x+8,0,-6*x,4*x-12,0,-12,18*x-2,0,-2*x,-4*x,0,6*x-6,10*x,0,2*x-8,4*x+8,0,-4*x+4,-x+4,0,-2*x-6,-20,0,8*x-14,6*x+4,0,8*x+16,10*x-18,0,-4,-8*x+4,0,2*x+4,10*x-20,0,4*x-6,-7*x-8,0,12*x-6,1,0,-4*x-4,-18*x+6,0,x,16*x-20,0,4*x-16,12*x+4,0,-12*x-1,8*x-2,0,6,-6*x-4,0,-4*x+4,-8*x-6,0,2*x+6,-2*x-2,0,28,-12*x+10,0,6*x-22,-12*x+18,0,-2*x-10,-2*x+4,0,4*x-14,6*x+2,0,-x-2,4*x-24,0,-4,-2*x-20,0,4*x,-4*x+6,0,-16*x+35,8*x,0,14*x+28,2,0,-4,-6*x-12,0,-4,-12*x-8,0,4*x,4*x+4,0,6*x-6,6,0,-12*x+24,-2*x+8,0,-6*x-6,-4*x-24,0,-2*x-16,-4*x+2,0,-4*x-12,10*x-10,0,-16*x+32,-2*x-5,0,-6*x-4,4*x-20,0,-2*x,-16*x-4,0,10*x-8,4,0,-12,-16*x+8,0,-20*x-8,8*x-12,0,-20*x+26,7*x+8,0,-14,-12*x+36,0,-1,-16*x-4,0,6*x-4,4*x-10,0,-8*x-10,-x,0,8*x-18,16*x-22,0,-6*x+8,20*x+18,0,20*x+6,6*x-4,0,-11,-2*x+4,0,6*x+4,10*x-8,0,12*x-4,12*x-6,0,-6*x,-2*x-6,0,-10,8*x-12,0,-4*x-8,-16*x,0,-4*x+16,2*x+6,0,-2,8*x+8,0,2*x-4,-14*x-12,0,-14*x,4*x+20,0,-28,x+2,0,-2*x-2,-4*x+4,0,-10*x+28,22*x+2,0,3,-16*x+20,0,12*x+12,24*x+2,0,-8*x,12*x-24,0,-8*x+22,2*x+4,0,28,4,0,-8,4*x-2,0,-4*x+4,-16*x+28,0,14,-12*x,0,14*x+14,-4*x+6,0,-6,-4*x+2,0,-8*x-4,2*x+8,0,14*x-8,6*x+6,0,20*x-10,4*x+12,0,18*x-30,-4*x+6,0,16*x+4,-12*x+30,0,8*x-2,-4*x-4,0,2*x+5,8*x-16,0,12*x-32,2*x-22,0,-20*x,2*x,0,8*x-18,2*x+8,0,8*x+10,-16*x+10,0,4*x-20,24,0,2*x+10,-8*x+28,0,-8*x+12,-4*x,0,-4*x-8,8,0,2*x-2,14,0,10,-4*x-32,0,12*x,2*x+4,0,-6*x-25,-2*x-4,0,-4*x-4,6*x+12,0,x,-10*x+8,0,-32*x+48,-12*x-4,0,-18*x+18,6*x-8,0,4*x+16,2*x-1]];
E[315,4] = [x^2+2*x-1, [1,x,0,-2*x-1,-1,0,-1,x-2,0,-x,-2*x-4,0,2*x,-x,0,3,-4*x-6,0,-2*x-2,2*x+1,0,-2,4*x+2,0,1,-4*x+2,0,2*x+1,-8,0,6*x+6,x+4,0,2*x-4,1,0,-6,2*x-2,0,-x+2,4*x+6,0,4*x,2*x+8,0,-6*x+4,4,0,1,x,0,6*x-4,2*x-6,0,2*x+4,-x+2,0,-8*x,4,0,6,-6*x+6,0,2*x-5,-2*x,0,-8*x-12,14,0,x,-6*x-8,0,-10*x-8,-6*x,0,-2*x+6,2*x+4,0,4*x+4,-3,0,-2*x+4,8,0,4*x+6,-8*x+4,0,4*x+6,8*x+2,0,-2*x,8*x-10,0,4*x,2*x+2,0,2*x-4,x,0,-2*x-1,4*x-6,0,-8*x-12,-8*x+2,0,-10*x+2,2,0,10,2,0,-3,-6*x-10,0,-4*x-2,16*x+8,0,4*x,4*x+6,0,8*x+9,6*x,0,6*x-18,-1,0,-4*x+4,-11*x-6,0,4*x-2,4*x+12,0,2*x+2,4*x-8,0,10*x+8,-10*x-18,0,-2*x+2,-2*x-1,0,4*x-6,-4,0,8,12*x-10,0,12*x+6,-4*x-8,0,-4*x-4,6*x+2,0,2,-6*x-6,0,-2*x-8,-4*x+4,0,-x-4,-4*x-2,0,4*x-8,-14,0,8*x,-8*x+4,0,-8*x-9,-2*x+4,0,12*x-8,-4*x-14,0,-1,-6*x-12,0,-14*x+8,6*x-8,0,-4*x-10,4*x-2,0,-14*x,6,0,12*x+32,-8*x-4,0,-2*x+2,-2*x-4,0,12*x+10,-8*x+2,0,-2*x-1,-2*x-2,0,-2*x+18,x-2,0,-14*x+4,8,0,-4*x-6,4*x-8,0,6*x,4*x+12,0,-12,18*x+2,0,2*x,-4*x,0,-6*x-6,10*x,0,-2*x-8,4*x-8,0,4*x+4,-x-4,0,2*x-6,20,0,-8*x-14,6*x-4,0,-8*x+16,10*x+18,0,-4,-8*x-4,0,-2*x+4,10*x+20,0,-4*x-6,-7*x+8,0,-12*x-6,-1,0,4*x-4,-18*x-6,0,-x,16*x+20,0,-4*x-16,12*x-4,0,12*x-1,8*x+2,0,6,-6*x+4,0,4*x+4,-8*x+6,0,-2*x+6,-2*x+2,0,28,-12*x-10,0,-6*x-22,-12*x-18,0,2*x-10,-2*x-4,0,-4*x-14,6*x-2,0,x-2,4*x+24,0,-4,-2*x+20,0,-4*x,-4*x-6,0,16*x+35,8*x,0,-14*x+28,-2,0,-4,-6*x+12,0,-4,-12*x+8,0,-4*x,4*x-4,0,-6*x-6,-6,0,12*x+24,-2*x-8,0,6*x-6,-4*x+24,0,2*x-16,-4*x-2,0,4*x-12,10*x+10,0,16*x+32,-2*x+5,0,6*x-4,4*x+20,0,2*x,-16*x+4,0,-10*x-8,-4,0,-12,-16*x-8,0,20*x-8,8*x+12,0,20*x+26,7*x-8,0,-14,-12*x-36,0,-1,-16*x+4,0,-6*x-4,4*x+10,0,8*x-10,-x,0,-8*x-18,16*x+22,0,6*x+8,20*x-18,0,-20*x+6,6*x+4,0,-11,-2*x-4,0,-6*x+4,10*x+8,0,-12*x-4,12*x+6,0,6*x,-2*x+6,0,-10,8*x+12,0,4*x-8,-16*x,0,4*x+16,2*x-6,0,-2,8*x-8,0,-2*x-4,-14*x+12,0,14*x,4*x-20,0,-28,x-2,0,2*x-2,-4*x-4,0,10*x+28,22*x-2,0,3,-16*x-20,0,-12*x+12,24*x-2,0,8*x,12*x+24,0,8*x+22,2*x-4,0,28,-4,0,-8,4*x+2,0,4*x+4,-16*x-28,0,14,-12*x,0,-14*x+14,-4*x-6,0,-6,-4*x-2,0,8*x-4,2*x-8,0,-14*x-8,6*x-6,0,-20*x-10,4*x-12,0,-18*x-30,-4*x-6,0,-16*x+4,-12*x-30,0,-8*x-2,-4*x+4,0,-2*x+5,8*x+16,0,-12*x-32,2*x+22,0,20*x,2*x,0,-8*x-18,2*x-8,0,-8*x+10,-16*x-10,0,-4*x-20,-24,0,-2*x+10,-8*x-28,0,8*x+12,-4*x,0,4*x-8,-8,0,-2*x-2,-14,0,10,-4*x+32,0,-12*x,2*x-4,0,6*x-25,-2*x+4,0,4*x-4,6*x-12,0,-x,-10*x-8,0,32*x+48,-12*x+4,0,18*x+18,6*x+8,0,-4*x+16,2*x+1]];
E[315,5] = [x^2-5, [1,x,0,3,1,0,1,x,0,x,-2*x-2,0,2*x,x,0,-1,2,0,-2*x+2,3,0,-2*x-10,-4,0,1,10,0,3,2,0,-2*x+6,-3*x,0,2*x,1,0,-4*x+2,2*x-10,0,x,2,0,4*x,-6*x-6,0,-4*x,-4*x-4,0,1,x,0,6*x,-2*x+8,0,-2*x-2,x,0,2*x,4*x,0,-2,6*x-10,0,-13,2*x,0,-4,6,0,x,2*x-10,0,-2*x-8,2*x-20,0,-6*x+6,-2*x-2,0,4*x+4,-1,0,2*x,4*x+8,0,2,20,0,-2*x-10,2,0,2*x,-12,0,-4*x-20,-2*x+2,0,2*x+4,x,0,3,14,0,0,10,0,8*x-10,4*x+4,0,-2,-2*x-10,0,-1,-2*x+4,0,-4,6,0,20,2,0,8*x+13,-2*x,0,-6*x+18,1,0,-4*x+4,-7*x,0,10,-4,0,-2*x+2,-4*x,0,2*x,2*x-8,0,6*x-6,3,0,-10*x+10,-4*x-20,0,2,-8*x-10,0,-12*x+6,4*x+6,0,-16,2*x-10,0,-2*x-10,-2*x+6,0,-2*x+4,4*x+20,0,-3*x,-4,0,-4*x-8,6,0,8*x+20,8,0,7,2*x,0,12*x,4*x-6,0,1,2*x+2,0,2*x,-2*x-2,0,-4*x+10,10,0,-4*x,-4*x+2,0,-4*x-4,-12*x-12,0,2*x-10,6*x-14,0,-14,4*x+10,0,3,2*x-20,0,6*x+14,x,0,14*x,2,0,2,0,0,-2*x,16,0,-4*x-8,-6*x+24,0,4*x+20,4*x,0,-2*x+6,-2*x,0,-6*x-6,4*x,0,-4*x-4,-3*x,0,4*x-10,-4*x+8,0,8*x+6,-4*x,0,2*x,6*x-4,0,-4*x-4,12*x,0,2*x,2*x+6,0,-4*x-10,13*x+40,0,-6,1,0,4*x-20,6*x-10,0,x,-4*x-8,0,8*x+8,4*x-20,0,-9,-4*x-10,0,-4*x+2,6*x,0,-4*x,4*x-16,0,-2*x+8,2*x-10,0,-12,-8*x+6,0,2*x-6,-2,0,-8*x+10,-2*x-2,0,4*x+10,-6*x+30,0,x,4*x+2,0,12,6*x-30,0,-20*x-20,2,0,-13,2*x,0,-6*x-24,4*x-14,0,4*x,2*x-20,0,6*x+20,-8*x,0,4*x,-16*x,0,2*x-2,-2,0,4*x-24,-6*x-6,0,6*x-10,-8*x-8,0,-6*x-4,4*x-10,0,12*x+12,-10*x+8,0,-4*x-4,-13,0,-4*x,-4*x+4,0,2*x,-8*x-20,0,2*x,-4*x-4,0,4*x-8,12*x+24,0,8*x,-4,0,-8*x-6,7*x,0,6,-8*x+8,0,1,20,0,-6*x+20,8,0,-8*x+6,x,0,6*x+30,-8*x+10,0,2*x-10,6,0,-2*x-10,-2*x-14,0,-8*x+5,10*x-20,0,6*x,-2*x-8,0,-4*x+12,4,0,2*x-20,-2*x+8,0,6,-4*x-20,0,-4*x-20,4*x,0,-8*x-20,-6*x+6,0,-14*x+30,8,0,-2*x-2,-14*x,0,6*x+12,4*x-2,0,-8,x,0,-20*x+10,4*x+4,0,-6*x,14*x+30,0,-1,-10,0,12*x-20,42,0,2*x,4*x+36,0,8*x-6,2*x,0,0,4*x,0,4*x+8,-30,0,16*x,8*x+12,0,22,-8*x-20,0,8*x-10,2,0,-2,12*x+12,0,20,2*x+14,0,2*x+12,6*x-10,0,-6,8*x-8,0,-2*x+6,-2*x-10,0,20,8,0,2,-4*x-20,0,-13,14,0,-4*x-4,-6*x+12,0,8*x-20,2*x,0,4*x-2,6*x+40,0,-12,-8*x+14,0,4*x+12,-2,0,-4*x+30,4*x,0,-4,-4*x-20,0,20,-8*x-40,0,-2*x+2,6,0,6*x+10,8*x,0,4*x-40,-10*x-20,0,24*x+39,2*x+4,0,-4*x-12,-2*x,0,x,14*x-10,0,4,-20*x+20,0,2*x-6,2*x-10,0,-8*x+4,3]];
E[315,6] = [x, [1,0,0,-2,1,0,1,0,0,0,3,0,5,0,0,4,-3,0,2,-2,0,0,6,0,1,0,0,-2,-3,0,-4,0,0,0,1,0,2,0,0,0,12,0,-10,-6,0,0,-9,0,1,0,0,-10,-12,0,3,0,0,0,0,0,8,0,0,-8,5,0,-4,6,0,0,0,0,2,0,0,-4,3,0,-1,4,0,0,-12,0,-3,0,0,0,12,0,5,-12,0,0,2,0,-1,0,0,-2,-6,0,5,0,0,0,-6,0,-7,0,0,4,-6,0,6,6,0,0,-3,0,-2,0,0,8,1,0,-16,0,0,0,6,0,2,0,0,0,12,0,14,-2,0,0,15,0,-3,0,0,-4,6,0,-1,0,0,0,-4,0,14,0,0,0,6,0,2,-24,0,0,3,0,12,0,0,20,9,0,1,12,0,0,-12,0,20,0,0,0,2,0,-9,18,0,0,-9,0,-4,0,0,-2,0,0,-16,0,0,0,-3,0,12,0,0,20,6,0,-13,24,0,0,-10,0,-4,0,0,-6,-15,0,-19,0,0,0,3,0,-4,0,0,0,-24,0,-9,0,0,0,21,0,-10,0,0,-16,1,0,10,0,0,0,-18,0,18,0,0,16,-30,0,2,-10,0,0,-6,0,-12,0,0,8,6,0,-16,-12,0,0,3,0,-10,0,0,0,-3,0,-13,0,0,0,12,0,-8,0,0,-4,21,0,0,0,0,0,30,0,-10,0,0,8,8,0,11,-6,0,0,-18,0,-19,0,0,2,18,0,-9,-8,0,0,-6,0,5,0,0,0,-9,0,-28,24,0,0,-4,0,14,0,0,6,-12,0,1,0,0,0,18,0,26,0,0,0,-15,0,0,-24,0,0,-24,0,-15,0,0,-10,2,0,17,24,0,0,-12,0,-4,0,0,0,-15,0,20,-4,0,0,-12,0,3,0,0,2,3,0,-18,0,0,0,-1,0,-25,0,0,4,15,0,-20,12,0,0,6,0,14,0,0,-10,0,0,-12,0,0,0,12,0,17,0,0,0,-3,0,8,12,0,0,-21,0,2,0,0,14,12,0,26,0,0,0,18,0,12,0,0,-8,9,0,36,12,0,0,5,0,8,0,0,-12,24,0,32,-12,0,0,-15,0,-4,0,0,0,-30,0,2,6,0,0,30,0,10,0,0,4,-1,0,38,0,0,0,-15,0,9,0,0,-16,0,0,-31,-2]];

E[316,1] = [x, [1,0,-3,0,1,0,1,0,6,0,-6,0,-1,0,-3,0,-4,0,-6,0,-3,0,2,0,-4,0,-9,0,-8,0,4,0,18,0,1,0,4,0,3,0,-6,0,4,0,6,0,-3,0,-6,0,12,0,14,0,-6,0,18,0,-9,0,6,0,6,0,-1,0,-10,0,-6,0,5,0,6,0,12,0,-6,0,1,0,9,0,4,0,-4,0,24,0,1,0,-1,0,-12,0,-6,0,-11,0,-36,0,-17,0,5,0,-3,0,3,0,14,0,-12,0,-20,0,2,0,-6,0,-4,0,25,0,18,0,-9,0,19,0,-12,0,-6,0,-6,0,-9,0,2,0,5,0,9,0,6,0,-8,0,18,0,18,0,22,0,-24,0,4,0,18,0,-42,0,2,0,-4,0,18,0,2,0,-12,0,-36,0,-12,0,-4,0,27,0,-6,0,-18,0,-18,0,4,0,24,0,-9,0,-9,0,-4,0,3,0,-18,0,-27,0,30,0,-8,0,-6,0,12,0,36,0,20,0,-15,0,4,0,4,0,-18,0,4,0,8,0,-24,0,-20,0,-14,0,18,0,14,0,-3,0,-3,0,-6,0,1,0,0,0,-6,0,6,0,-12,0,5,0,-12,0,12,0,18,0,4,0,-48,0,-6,0,14,0,-3,0,-15,0,8,0,3,0,24,0,-13,0,24,0,15,0,6,0,18,0,-6,0,-1,0,33,0,20,0,-9,0,54,0,-2,0,4,0,51,0,6,0,20,0,-15,0,-32,0,-26,0,6,0,3,0,48,0,-9,0,24,0,4,0,-42,0,-3,0,-12,0,24,0,-10,0,-29,0,60,0,-24,0,-13,0,-6,0,16,0,16,0,9,0,-6,0,5,0,12,0,-21,0,17,0,-75,0,6,0,-28,0,-36,0,14,0,-4,0,27,0,8,0,-33,0,-57,0,12,0,-6,0,24,0,23,0,-8,0,18,0,1,0,23,0,18,0,8,0,-4,0,9,0,-24,0,10,0,-6,0,-9,0,4,0,-15,0,-29,0,-37,0,-18,0,16,0,6,0,-18,0,32,0,-15,0,24,0,-12,0,-20,0,-36,0,20,0,1,0,-54,0,24,0,36,0,-66,0,-1,0,-37,0,36,0,10,0,11,0,-12,0,-28,0,-10,0,-54,0,-24,0,24,0,84,0,-40,0,-4,0,-6,0,-11,0,10,0,12,0,-13,0,32,0,-36,0,5,0,-16,0]];
E[316,2] = [x, [1,0,-1,0,1,0,3,0,-2,0,2,0,-1,0,-1,0,4,0,6,0,-3,0,6,0,-4,0,5,0,8,0,-4,0,-2,0,3,0,-8,0,1,0,-10,0,4,0,-2,0,-9,0,2,0,-4,0,-2,0,2,0,-6,0,5,0,-6,0,-6,0,-1,0,-10,0,-6,0,-1,0,6,0,4,0,6,0,-1,0,1,0,0,0,4,0,-8,0,9,0,-3,0,4,0,6,0,-11,0,-4,0,7,0,-17,0,-3,0,1,0,-2,0,8,0,-8,0,6,0,2,0,12,0,-7,0,10,0,-9,0,17,0,-4,0,6,0,18,0,5,0,-18,0,7,0,9,0,-2,0,8,0,-2,0,14,0,-10,0,-8,0,-4,0,6,0,2,0,18,0,-20,0,-2,0,10,0,-12,0,-12,0,16,0,-12,0,-5,0,-10,0,6,0,6,0,-8,0,8,0,15,0,21,0,-16,0,1,0,6,0,15,0,10,0,24,0,-10,0,-12,0,12,0,-4,0,1,0,4,0,-12,0,-6,0,-4,0,-4,0,8,0,-4,0,26,0,-6,0,-6,0,-9,0,1,0,6,0,17,0,-16,0,2,0,-6,0,0,0,15,0,12,0,-4,0,-14,0,-24,0,-16,0,-18,0,-2,0,-9,0,-23,0,-8,0,3,0,-8,0,-29,0,8,0,15,0,-14,0,-6,0,-30,0,-1,0,11,0,24,0,5,0,10,0,-6,0,12,0,-7,0,-6,0,12,0,17,0,-24,0,14,0,-6,0,-21,0,16,0,-1,0,24,0,4,0,2,0,-27,0,-28,0,16,0,-10,0,-13,0,8,0,-8,0,-15,0,-6,0,-12,0,16,0,-5,0,-18,0,-1,0,-12,0,25,0,17,0,7,0,6,0,-4,0,20,0,-6,0,8,0,9,0,-8,0,21,0,-17,0,-24,0,6,0,-8,0,7,0,24,0,-6,0,-1,0,-1,0,-18,0,-4,0,4,0,1,0,-16,0,-14,0,18,0,15,0,0,0,-7,0,25,0,19,0,18,0,-16,0,-18,0,2,0,20,0,25,0,-8,0,36,0,32,0,-4,0,28,0,9,0,-14,0,-40,0,-20,0,10,0,-3,0,35,0,20,0,-6,0,17,0,4,0,24,0,-30,0,-6,0,8,0,-24,0,4,0,28,0,8,0,-18,0,-11,0,2,0,20,0,9,0,32,0,-4,0,-3,0,-40,0]];
E[316,3] = [x^2-3*x-1, [1,0,2,0,x,0,0,0,1,0,-x+3,0,-3*x+5,0,2*x,0,-2*x,0,3*x-6,0,0,0,-3*x+6,0,3*x-4,0,-4,0,2*x-6,0,3*x-1,0,-2*x+6,0,0,0,-2,0,-6*x+10,0,2*x,0,-2,0,x,0,6,0,-7,0,-4*x,0,4*x-6,0,-1,0,6*x-12,0,2*x,0,-6*x+6,0,0,0,-4*x-3,0,-3*x+2,0,-6*x+12,0,2*x+6,0,3*x-12,0,6*x-8,0,0,0,-1,0,-11,0,0,0,-6*x-2,0,4*x-12,0,-3*x-3,0,0,0,6*x-2,0,3*x+3,0,3*x-8,0,-x+3,0,x-3,0,10,0,0,0,-8*x+12,0,6*x-14,0,-4,0,4*x,0,-3*x-3,0,-3*x+5,0,0,0,-3*x-1,0,4*x,0,3,0,-4,0,-4,0,-3*x+18,0,0,0,-4*x,0,-6*x+18,0,-2,0,12,0,-5*x+18,0,2,0,-14,0,2*x+12,0,3*x+14,0,-2*x,0,8*x+3,0,-6*x+6,0,8*x-12,0,0,0,3*x+7,0,-2,0,7*x-21,0,-3*x+21,0,3*x-6,0,-2*x+24,0,0,0,4*x,0,-4*x+12,0,3*x+3,0,-12*x+12,0,-2*x,0,2,0,0,0,12*x-18,0,2,0,-8*x-6,0,6*x-6,0,-12*x+18,0,-6*x+4,0,0,0,6*x+2,0,-3*x+6,0,6*x-21,0,-16,0,4*x+12,0,-2*x,0,0,0,6*x-24,0,8*x+6,0,-16,0,3*x-4,0,8*x-18,0,2,0,0,0,-12*x+12,0,6*x,0,-2,0,-9*x+6,0,-3*x-19,0,-10,0,-7*x,0,6*x-39,0,0,0,-6*x+18,0,-6*x+21,0,-12*x-4,0,-11*x+9,0,0,0,2*x-6,0,3*x+3,0,6*x+4,0,-6*x-6,0,x+12,0,-12*x+10,0,0,0,4*x-15,0,3*x+4,0,3*x-1,0,9*x-24,0,9*x-23,0,6*x+6,0,0,0,12*x-13,0,6*x-16,0,12*x-24,0,6*x+2,0,4*x-12,0,-6*x+39,0,0,0,2*x-6,0,-12*x-6,0,-12*x+12,0,20,0,12,0,3*x+23,0,0,0,-12*x+18,0,6*x-20,0,-16*x+24,0,-6*x-6,0,-29,0,12*x-28,0,0,0,26,0,-2,0,-7*x-3,0,9*x-28,0,8*x,0,x-6,0,0,0,-6*x-6,0,-15*x+30,0,-6*x+34,0,12*x-20,0,6*x-12,0,12*x+2,0,0,0,10*x-24,0,-9*x+26,0,-6*x-2,0,-3*x+3,0,-3*x-19,0,2*x,0,0,0,-6*x-4,0,6,0,10*x-36,0,-6*x+18,0,-8,0,9*x-3,0,0,0,-2,0,-11*x+9,0,6*x+6,0,-6*x+36,0,-x,0,12*x-10,0,0,0,8*x-36,0,-9*x-14,0,-11*x,0,2*x-6,0,6*x-2,0,-12*x+36,0,0,0,0,0,-4,0,10*x-12,0,-9*x+16,0,6,0,-10*x-6,0,0,0,-10*x+36,0,-7*x+6,0,-9*x+16,0,4,0,9*x-45,0,-9*x+26,0,-7,0,10*x-6,0,-12*x-3,0,4*x+24,0,14*x-12,0,-2,0,6*x+28,0,0,0,15*x-13,0,8*x,0,6*x,0,6*x-28,0,16*x+6,0,9*x+9,0,0,0,-12*x+12,0,2*x-6,0,-3*x+33,0,4*x-6,0,-8*x+24,0,6*x-10,0,0,0,x+3,0,-9*x+11,0,6*x+14,0,18,0,-4,0,-1,0,0,0,-3*x+5,0]];
E[316,4] = [x^2+5*x+3, [1,0,0,0,x,0,-2*x-6,0,-3,0,-x-5,0,x+1,0,0,0,2*x+6,0,3*x+6,0,0,0,x-2,0,-5*x-8,0,0,0,-2*x-6,0,-x-1,0,0,0,4*x+6,0,2*x+8,0,0,0,-2*x+2,0,-6*x-14,0,-3*x,0,-6,0,4*x+17,0,0,0,2*x,0,3,0,0,0,4*x+8,0,-6,0,6*x+18,0,-4*x-3,0,x+10,0,0,0,-4*x-18,0,3*x+12,0,0,0,6*x+24,0,1,0,9,0,-4*x-16,0,-4*x-6,0,0,0,-7*x-19,0,2*x,0,0,0,-9*x-9,0,3*x+16,0,3*x+15,0,x-3,0,4*x+4,0,0,0,-2*x-4,0,-16,0,0,0,-2*x,0,-7*x-3,0,-3*x-3,0,-4*x-24,0,5*x+11,0,0,0,12*x+15,0,6*x+16,0,0,0,-3*x-18,0,-18,0,0,0,6*x+20,0,6*x+8,0,0,0,-x-2,0,4*x+6,0,0,0,-8*x-28,0,11*x+26,0,-6*x-18,0,4*x+3,0,-10*x-20,0,0,0,8*x+18,0,-5*x-5,0,0,0,-x-21,0,-3*x-15,0,-9*x-18,0,2*x-2,0,-4*x+18,0,0,0,4*x-4,0,-9*x-21,0,0,0,-2*x-6,0,-6*x-24,0,0,0,6,0,-2*x-8,0,0,0,-6*x,0,6*x+24,0,0,0,4*x+24,0,12*x+6,0,-3*x+6,0,-6*x-21,0,-2*x-14,0,0,0,16*x+18,0,-2*x,0,0,0,-2*x,0,-4,0,15*x+24,0,10*x+36,0,2*x+2,0,0,0,6*x+20,0,-6*x,0,0,0,-9*x-18,0,-3*x-11,0,0,0,-3*x-12,0,-6*x-3,0,0,0,6*x+2,0,2*x+13,0,0,0,-7*x-11,0,-8*x-36,0,6*x+18,0,3*x+27,0,-10*x-6,0,0,0,-11*x-40,0,6*x+20,0,0,0,8*x+25,0,3*x+8,0,3*x+3,0,9*x+24,0,-3*x-15,0,0,0,-12*x-24,0,4*x+7,0,0,0,6*x+14,0,-12*x-12,0,0,0,-6*x-5,0,4*x+48,0,0,0,-6*x,0,2*x+36,0,0,0,8*x+2,0,-x-25,0,-12*x-18,0,-12*x-30,0,6*x+24,0,0,0,18,0,12*x+7,0,0,0,12*x+36,0,24,0,-6*x-24,0,5*x-3,0,-3*x-8,0,0,0,x+2,0,-4*x-36,0,0,0,5*x+14,0,8*x+32,0,0,0,12,0,2*x+12,0,0,0,-2*x+8,0,-9*x-10,0,0,0,-3*x-9,0,x+13,0,6*x-6,0,8*x+12,0,-6*x-28,0,0,0,2*x,0,6*x+6,0,0,0,-15*x-39,0,-6*x-18,0,18*x+42,0,-7*x-15,0,-8*x-18,0,0,0,x,0,4*x-2,0,0,0,-10*x-24,0,3*x+2,0,9*x,0,-8*x-34,0,14*x+44,0,0,0,-24,0,4*x+12,0,0,0,-8*x-42,0,3*x-16,0,18,0,4*x-18,0,12*x+36,0,0,0,-7*x-6,0,-9*x-12,0,0,0,-15*x-21,0,-x-10,0,-12*x-51,0,-4*x+12,0,16*x+21,0,0,0,2*x-14,0,-2*x-16,0,0,0,-10*x-6,0,3*x+35,0,0,0,22,0,-2*x-26,0,0,0,-3*x+17,0,-16*x-54,0,0,0,14*x+52,0,21*x-3,0,-6*x,0,8*x+36,0,2,0,0,0,x-9,0,-x-25,0,0,0,12*x+26,0,-4*x-24,0,-9,0,20*x+84,0,x+1,0]];

E[317,1] = [x^11+3*x^10-10*x^9-32*x^8+31*x^7+109*x^6-42*x^5-147*x^4+35*x^3+68*x^2-19*x-1, [1046,1046*x,113*x^10-308*x^9-2162*x^8+4042*x^7+12971*x^6-18250*x^5-28022*x^4+33587*x^3+17524*x^2-20784*x+1175,1046*x^2-2092,468*x^10+1668*x^9-3900*x^8-17176*x^7+7206*x^6+54916*x^5+4*x^4-67560*x^3-3466*x^2+26704*x-1928,-647*x^10-1032*x^9+7658*x^8+9468*x^7-30567*x^6-23276*x^5+50198*x^4+13569*x^3-28468*x^2+3322*x+113,-500*x^10-1192*x^9+4864*x^8+10644*x^7-14082*x^6-24144*x^5+15346*x^4+10090*x^3-4218*x^2+6748*x-3644,1046*x^3-4184*x,-385*x^10+170*x^9+6172*x^8-3080*x^7-33761*x^6+18312*x^5+73248*x^4-41445*x^3-54596*x^2+28982*x+2717,264*x^10+780*x^9-2200*x^8-7302*x^7+3904*x^6+19660*x^5+1236*x^4-19846*x^3-5120*x^2+6964*x+468,14*x^10+184*x^9+232*x^8-1980*x^7-3660*x^6+6542*x^5+12570*x^4-8002*x^3-9844*x^2+4062*x-3446,683*x^10+1804*x^9-6912*x^8-18594*x^7+21305*x^6+59524*x^5-25496*x^4-72997*x^3+12270*x^2+29388*x-2997,118*x^10+206*x^9-1332*x^8-1148*x^7+5612*x^6-2988*x^5-11952*x^4+19522*x^3+8330*x^2-19408*x+1588,308*x^10-136*x^9-5356*x^8+1418*x^7+30356*x^6-5654*x^5-63410*x^4+13282*x^3+40748*x^2-13144*x-500,-836*x^10-2470*x^9+7664*x^8+24692*x^7-18290*x^6-74460*x^5+7592*x^4+82894*x^3+13424*x^2-27980*x-7758,1046*x^4-6276*x^2+4184,-1354*x^10-3002*x^9+14770*x^8+29962*x^7-51276*x^6-88486*x^5+67594*x^4+87134*x^3-27150*x^2-17190*x-546,1325*x^10+2322*x^9-15400*x^8-21826*x^7+60277*x^6+57078*x^5-98040*x^4-41121*x^3+55162*x^2-4598*x-385,365*x^10+912*x^9-3216*x^8-7540*x^7+7759*x^6+13734*x^5-8870*x^4+427*x^3+10830*x^2-7290*x-7507,-948*x^10-2896*x^9+8946*x^8+30072*x^7-23528*x^6-97508*x^5+18954*x^4+120760*x^3-4056*x^2-47924*x+4120,1406*x^10+3536*x^9-14506*x^8-34776*x^7+47544*x^6+100980*x^5-65734*x^4-102660*x^3+38852*x^2+30036*x-6874,142*x^10+372*x^9-1532*x^8-4094*x^7+5016*x^6+13158*x^5-5944*x^4-10334*x^3+3110*x^2-3180*x+14,-154*x^10-2024*x^9-1506*x^8+21780*x^7+22478*x^6-75100*x^5-56682*x^4+102666*x^3+29834*x^2-45728*x+5480,1049*x^10+1982*x^9-12054*x^8-18804*x^7+46211*x^6+49742*x^5-72992*x^4-38773*x^3+39880*x^2+3336*x+457,778*x^10+2156*x^9-7878*x^8-23064*x^7+22694*x^6+77542*x^5-15138*x^4-96514*x^3-12838*x^2+36704*x+5896,-148*x^10-152*x^9+2628*x^8+1954*x^7-15850*x^6-6996*x^5+36868*x^4+4200*x^3-27432*x^2+3830*x+118,-66*x^10-718*x^9-496*x^8+7840*x^7+9484*x^6-28450*x^5-32212*x^4+43402*x^3+33706*x^2-21092*x-4824,-60*x^10+108*x^9+1546*x^8-480*x^7-11062*x^6-2186*x^5+27866*x^4+9788*x^3-25652*x^2-8144*x+7596,-1146*x^10-1912*x^9+13734*x^8+18028*x^7-56790*x^6-48970*x^5+101184*x^4+48042*x^3-67160*x^2-17060*x+7430,38*x^10-696*x^9-2060*x^8+7626*x^7+16664*x^6-27520*x^5-39998*x^4+42684*x^3+28868*x^2-23642*x-836,364*x^10+1646*x^9-2336*x^8-18008*x^7-2066*x^6+64446*x^5+25572*x^4-95084*x^3-27916*x^2+52266*x-3824,1046*x^5-8368*x^3+12552*x,1392*x^10+3352*x^9-14738*x^8-33842*x^7+50158*x^6+104898*x^5-70982*x^4-122900*x^3+39282*x^2+45848*x-5520,1060*x^10+1230*x^9-13366*x^8-9302*x^7+59100*x^6+10726*x^5-111904*x^4+20240*x^3+74882*x^2-26272*x-1354,-580*x^10-2094*x^9+5182*x^8+22556*x^7-12444*x^6-77964*x^5+11358*x^4+107518*x^3-11922*x^2-50832*x+9622,-883*x^10-2490*x^9+8230*x^8+25362*x^7-19825*x^6-79014*x^5+7158*x^4+91677*x^3+14494*x^2-33174*x-4109,-947*x^10-1538*x^9+12250*x^8+16482*x^7-54497*x^6-55126*x^5+99572*x^4+65647*x^3-67818*x^2-18570*x+8805,-183*x^10+434*x^9+4140*x^8-3556*x^7-26051*x^6+6460*x^5+54082*x^4-1945*x^3-32110*x^2-572*x+365,-1814*x^10-2174*x^9+23136*x^8+17914*x^7-102264*x^6-29236*x^5+188488*x^4-23664*x^3-122702*x^2+46590*x+7482,-580*x^10-2094*x^9+4136*x^8+20464*x^7-1984*x^6-60182*x^5-21068*x^4+68816*x^3+26780*x^2-27820*x-1884,-1346*x^10-3644*x^9+11914*x^8+33164*x^7-26022*x^6-79966*x^5+6488*x^4+47894*x^3+21318*x^2+8442*x-11182,-682*x^10-446*x^9+10216*x^8+3958*x^7-52274*x^6-6682*x^5+104022*x^4-10358*x^3-65572*x^2+19840*x+1406,588*x^10+406*x^9-9084*x^8-4710*x^7+48158*x^6+16402*x^5-100706*x^4-13916*x^3+69804*x^2-7216*x-5614,-82*x^10-480*x^9-14*x^8+4574*x^7+5000*x^6-13064*x^5-14600*x^4+14144*x^3+6852*x^2-5412*x+7034,1516*x^10+4384*x^9-15074*x^8-46448*x^7+43592*x^6+155370*x^5-39592*x^4-201844*x^3+2898*x^2+88550*x+120,-1562*x^10-3046*x^9+16852*x^8+27252*x^7-58314*x^6-63150*x^5+80028*x^4+35224*x^3-35256*x^2+2554*x-154,1925*x^10+2288*x^9-25630*x^8-22256*x^7+117551*x^6+61156*x^5-218754*x^4-43815*x^3+140138*x^2-9976*x-6263,-2531*x^10-5172*x^9+28588*x^8+50880*x^7-107209*x^6-147982*x^5+166422*x^4+149159*x^3-92536*x^2-38388*x+7043,-698*x^10-208*x^9+11744*x^8+4876*x^7-64080*x^6-29998*x^5+127910*x^4+53478*x^3-81966*x^2-18872*x+6988,-178*x^10-98*x^9+1832*x^8-1424*x^7-7260*x^6+17538*x^5+17852*x^4-40068*x^3-16200*x^2+20678*x+778,1438*x^10+4106*x^9-14424*x^8-42888*x^7+42914*x^6+138198*x^5-42382*x^4-162342*x^3+4696*x^2+56206*x+2882,56*x^10+736*x^9-118*x^8-8966*x^7-2088*x^6+36628*x^5+6348*x^4-61296*x^3-2766*x^2+36122*x-3324,769*x^10+394*x^9-10418*x^8-124*x^7+51421*x^6-21476*x^5-114146*x^4+62691*x^3+98688*x^2-42340*x-11165,-520*x^10-1156*x^9+5728*x^8+11530*x^7-21256*x^6-34984*x^5+33700*x^4+36016*x^3-16604*x^2-6078*x-66,-1854*x^10-5240*x^9+18588*x^8+55250*x^7-54898*x^6-181666*x^5+54698*x^4+221698*x^3-17770*x^2-81570*x+7316,-328*x^10+1218*x^9+8312*x^8-12038*x^7-56358*x^6+36654*x^5+127788*x^4-50116*x^3-85560*x^2+32744*x+940,1350*x^10+4892*x^9-12296*x^8-54052*x^7+28712*x^6+194056*x^5-11414*x^4-276714*x^3-7544*x^2+130940*x-8780,1526*x^10+2274*x^9-18644*x^8-21264*x^7+75944*x^6+53052*x^5-120420*x^4-27050*x^3+60868*x^2-14344*x-1146,2324*x^10+5440*x^9-25294*x^8-54628*x^7+90122*x^6+163400*x^5-134038*x^4-164134*x^3+72968*x^2+31002*x-1966,862*x^10+3260*x^9-6486*x^8-33898*x^7+4918*x^6+110518*x^5+33086*x^4-138250*x^3-53074*x^2+55846*x+15554,3107*x^10+7064*x^9-32342*x^8-67192*x^7+106503*x^6+182984*x^5-143566*x^4-168021*x^3+73948*x^2+40840*x-7163,554*x^10+1304*x^9-6360*x^8-13350*x^7+24770*x^6+40860*x^5-41576*x^4-40656*x^3+27514*x^2+3092*x+364,-800*x^10-652*x^9+11548*x^8+6152*x^7-56840*x^6-15200*x^5+106560*x^4+4638*x^3-57166*x^2+8914*x-4366,1046*x^6-10460*x^4+25104*x^2-8368,-316*x^10-2360*x^9-156*x^8+24668*x^7+21794*x^6-81316*x^5-73178*x^4+106500*x^3+69776*x^2-48052*x-9784,-824*x^10-818*x^9+10702*x^8+7006*x^7-46830*x^6-12518*x^5+81724*x^4-9438*x^3-48808*x^2+20928*x+1392,-16*x^10+238*x^9+482*x^8-3266*x^7-3438*x^6+16432*x^5+8198*x^4-37626*x^3-6980*x^2+31370*x-4878,758*x^10+3238*x^9-4922*x^8-33684*x^7-2262*x^6+109588*x^5+40872*x^4-136486*x^3-44052*x^2+53166*x+2152,-900*x^10-472*x^9+13776*x^8+4306*x^7-72836*x^6-8732*x^5+153352*x^4-6942*x^3-112820*x^2+16958*x+16662,-354*x^10-618*x^9+3996*x^8+5536*x^7-14744*x^6-13002*x^5+22258*x^4+8378*x^3-11392*x^2-1398*x-580,653*x^10+2904*x^9-2478*x^8-27202*x^7-20313*x^6+72552*x^5+92514*x^4-70195*x^3-96788*x^2+27408*x+15445,-2491*x^10-5244*x^9+27906*x^8+51200*x^7-103321*x^6-144084*x^5+157956*x^4+127641*x^3-83454*x^2-11690*x-113,-1705*x^10-3730*x^9+18218*x^8+35522*x^7-62695*x^6-96724*x^5+89034*x^4+88119*x^3-48870*x^2-23620*x+2469,1303*x^10+2780*x^9-13822*x^8-25140*x^7+48097*x^6+59798*x^5-73562*x^4-34673*x^3+45826*x^2-9188*x-947,-4073*x^10-10346*x^9+42484*x^8+106534*x^7-137429*x^6-338364*x^5+166382*x^4+399037*x^3-59968*x^2-144344*x+2265,253*x^10+486*x^9-2980*x^8-5298*x^7+10889*x^6+18928*x^5-11106*x^4-26559*x^3-9788*x^2+11468*x+14831,-228*x^10-8*x^9+3992*x^8+268*x^7-23626*x^6-2240*x^5+55892*x^4+8534*x^3-50826*x^2-11910*x+13384,3268*x^10+4996*x^9-40134*x^8-46030*x^7+168490*x^6+112300*x^5-290322*x^4-59212*x^3+169942*x^2-26984*x-1814,660*x^10-142*x^9-10730*x^8+2142*x^7+58922*x^6-10472*x^5-125568*x^4+20990*x^3+89708*x^2-19200*x-7198,1542*x^10+4128*x^9-15988*x^8-44148*x^7+50094*x^6+149588*x^5-54352*x^4-194440*x^3+19732*x^2+82944*x-8820,470*x^10+1246*x^9-5660*x^8-14022*x^7+24764*x^6+51816*x^5-51098*x^4-74232*x^3+46830*x^2+32066*x-10340,394*x^10-1546*x^9-9908*x^8+15704*x^7+66748*x^6-50044*x^5-149968*x^4+68428*x^3+99970*x^2-36756*x-1346,1344*x^10+1974*x^9-16430*x^8-17490*x^7+69132*x^6+38088*x^5-121700*x^4-5658*x^3+69596*x^2-31586*x+4950,-1212*x^10-3676*x^9+11146*x^8+38420*x^7-27432*x^6-126582*x^5+20856*x^4+163618*x^3-11488*x^2-71624*x+13066,-412*x^10-3024*x^9+644*x^8+32268*x^7+17902*x^6-112428*x^5-55370*x^4+166302*x^3+43586*x^2-86814*x-4534,-1358*x^10-3204*x^9+14106*x^8+29930*x^7-47690*x^6-76010*x^5+72520*x^4+49224*x^3-47200*x^2+5558*x+588,1452*x^10+2198*x^9-17330*x^8-18718*x^7+70634*x^6+35956*x^5-118722*x^4+4338*x^3+56566*x^2-29688*x+15126,-518*x^10-1578*x^9+5014*x^8+15730*x^7-14158*x^6-44360*x^5+13978*x^4+30390*x^3-6056*x^2+11836*x-110,-889*x^10-1224*x^9+10372*x^8+9624*x^7-41119*x^6-15322*x^5+69462*x^4-1275*x^3-44346*x^2-1144*x+7529,-164*x^10+86*x^9+2064*x^8-3404*x^7-9874*x^6+24080*x^5+21008*x^4-50162*x^3-14538*x^2+28924*x+1516,2766*x^10+5272*x^9-31418*x^8-51092*x^7+118022*x^6+143556*x^5-180988*x^4-131360*x^3+97646*x^2+23564*x-8552,1948*x^10+5280*x^9-19720*x^8-53452*x^7+62152*x^6+164624*x^5-81026*x^4-185918*x^3+49102*x^2+61624*x-12522,-1568*x^10-3872*x^9+15856*x^8+38710*x^7-47182*x^6-116610*x^5+42962*x^4+126368*x^3+8412*x^2-39682*x-14666,-3487*x^10-6380*x^9+39344*x^8+57876*x^7-148669*x^6-137904*x^5+239160*x^4+72763*x^3-140876*x^2+30312*x+1925,-3756*x^10-11858*x^9+34438*x^8+122668*x^7-84546*x^6-395624*x^5+55540*x^4+491602*x^3+1050*x^2-197688*x+12550,323*x^10-686*x^9-6004*x^8+8860*x^7+35475*x^6-39364*x^5-76914*x^4+73595*x^3+53960*x^2-47718*x-3445,1402*x^10+2288*x^9-17262*x^8-22256*x^7+72050*x^6+60110*x^5-122522*x^4-38062*x^3+74240*x^2-16252*x-3648,1886*x^10+4764*x^9-17460*x^8-42442*x^7+46084*x^6+98594*x^5-49128*x^4-57536*x^3+28592*x^2-6274*x-698,-1898*x^10-5370*x^9+17560*x^8+53852*x^7-41602*x^6-163674*x^5+10560*x^4+181248*x^3+36778*x^2-62508*x-7406,-1120*x^10-4260*x^9+8636*x^8+44386*x^7-8448*x^6-144708*x^5-35958*x^4+183058*x^3+58458*x^2-76012*x-11970,-199*x^10+672*x^9+4622*x^8-6822*x^7-29489*x^6+19754*x^5+61234*x^4-12375*x^3-34906*x^2-12088*x+1763,-208*x^10-44*x^9+3128*x^8-1664*x^7-18544*x^6+18014*x^5+49044*x^4-45634*x^3-41578*x^2+30204*x+1438,440*x^10+1300*x^9-3318*x^8-12170*x^7+928*x^6+31372*x^5+29256*x^4-23314*x^3-48630*x^2-248*x+7056,864*x^10+746*x^9-12430*x^8-7732*x^7+62224*x^6+22692*x^5-126800*x^4-13126*x^3+87178*x^2-9920*x-180,-346*x^10-214*x^9+5324*x^8+2462*x^7-29238*x^6-9712*x^5+68890*x^4+14116*x^3-68570*x^2-6100*x+24348,-1913*x^10-2728*x^9+24484*x^8+27582*x^7-105297*x^6-81848*x^5+175734*x^4+71773*x^3-94632*x^2+3446*x+769,1493*x^10+3484*x^9-13662*x^8-29896*x^7+32047*x^6+62362*x^5-8914*x^4-22085*x^3-32632*x^2-13384*x+9517,536*x^10+1964*x^9-4118*x^8-20816*x^7+2728*x^6+68760*x^5+24000*x^4-85208*x^3-38130*x^2+32238*x+9128,2326*x^10+6064*x^9-23916*x^8-62980*x^7+75254*x^6+205278*x^5-87862*x^4-259716*x^3+36446*x^2+108538*x-11424,322*x^10+48*x^9-4078*x^8+2576*x^7+20420*x^6-23170*x^5-50840*x^4+47120*x^3+44502*x^2-27910*x-1854,-970*x^10-2438*x^9+9478*x^8+23620*x^7-28386*x^6-68638*x^5+39248*x^4+77000*x^3-36404*x^2-31594*x+18202,2322*x^10+4816*x^9-25626*x^8-45230*x^7+94530*x^6+118384*x^5-154064*x^4-93656*x^3+106352*x^2+10996*x-15520,-1533*x^10-5504*x^9+12252*x^8+54680*x^7-19199*x^6-160400*x^5-8770*x^4+158663*x^3+10998*x^2-33188*x+8099,842*x^10+1204*x^9-10852*x^8-13138*x^7+46906*x^6+45286*x^5-78264*x^4-54794*x^3+39140*x^2+16870*x+1350,-1348*x^10-2176*x^9+15766*x^8+19550*x^7-61362*x^6-44440*x^5+94200*x^4+12726*x^3-37346*x^2+26092*x-21598,-12*x^10+440*x^9+100*x^8-7418*x^7+298*x^6+41612*x^5-5096*x^4-88626*x^3+16208*x^2+61968*x-13334,1370*x^10-1420*x^9-23620*x^8+20374*x^7+134210*x^6-101582*x^5-286038*x^4+201532*x^3+192076*x^2-124010*x-2944,-1532*x^10-2054*x^9+19740*x^8+18078*x^7-89916*x^6-36430*x^5+177494*x^4-8372*x^3-127030*x^2+42190*x+2324,-862*x^10-2214*x^9+7532*x^8+19254*x^7-16424*x^6-40436*x^5+7708*x^4+8546*x^3+2866*x^2+17374*x+136,598*x^10+3526*x^9-2194*x^8-37056*x^7-16768*x^6+124330*x^5+68460*x^4-168612*x^3-60506*x^2+79216*x+2534,-276*x^10-2432*x^9-1884*x^8+22896*x^7+34050*x^6-62774*x^5-94196*x^4+68246*x^3+67352*x^2-28676*x-204,-2257*x^10-1272*x^9+32232*x^8+10186*x^7-155679*x^6-13072*x^5+288708*x^4-34797*x^3-170436*x^2+51870*x+3107,3884*x^10+9954*x^9-39340*x^8-98632*x^7+123556*x^6+291364*x^5-158780*x^4-307746*x^3+87216*x^2+96306*x-19550,-1086*x^10-4112*x^9+9050*x^8+43612*x^7-15394*x^6-147200*x^5-10362*x^4+198292*x^3+21252*x^2-93642*x+8202,1354*x^10+4048*x^9-12678*x^8-42514*x^7+31402*x^6+143924*x^5-13202*x^4-203240*x^3-24104*x^2+105054*x+7868,1748*x^10+3548*x^9-19448*x^8-32040*x^7+72000*x^6+72960*x^5-112962*x^4-29166*x^3+63314*x^2-19566*x-800,-2937*x^10-2140*x^9+40688*x^8+16252*x^7-195625*x^6-17624*x^5+382422*x^4-48689*x^3-252656*x^2+64520*x+5515,1046*x^7-12552*x^5+41840*x^3-33472*x,-2530*x^10-1722*x^9+35030*x^8+12186*x^7-166420*x^6-3092*x^5+312938*x^4-79590*x^3-184540*x^2+91382*x-6054,-1412*x^10-3316*x^9+14556*x^8+31590*x^7-46872*x^6-86450*x^5+60048*x^4+80836*x^3-26564*x^2-15788*x-316,-172*x^10+728*x^9+3874*x^8-8698*x^7-25714*x^6+32296*x^5+61194*x^4-36026*x^3-47316*x^2+1200*x+4830,-1130*x^10-4242*x^9+10114*x^8+46398*x^7-23018*x^6-162680*x^5+11398*x^4+225832*x^3-1604*x^2-105960*x+10216,-294*x^10-1772*x^9+358*x^8+16476*x^7+12008*x^6-45334*x^5-23390*x^4+56120*x^3-19212*x^2-40324*x+25296,286*x^10+322*x^9-3778*x^8-2942*x^7+18176*x^6+7526*x^5-39978*x^4-6420*x^3+32458*x^2-5182*x-16,-1242*x^10-4668*x^9+11396*x^8+52824*x^7-26164*x^6-194096*x^5+6024*x^4+278342*x^3+14388*x^2-133226*x+5358,-1156*x^10+198*x^9+17304*x^8-7156*x^7-91234*x^6+51256*x^5+198748*x^4-111062*x^3-148142*x^2+69098*x+3466,1496*x^10+4420*x^9-14210*x^8-44516*x^7+38510*x^6+134070*x^5-35882*x^4-142446*x^3+8294*x^2+48528*x+4744,2228*x^10+4776*x^9-24494*x^8-44936*x^7+89368*x^6+115552*x^5-139242*x^4-81320*x^3+78158*x^2-438*x-900,2181*x^10+3710*x^9-24974*x^8-32760*x^7+97247*x^6+74388*x^5-165826*x^4-38019*x^3+112700*x^2-14000*x-19217,1604*x^10+4644*x^9-16156*x^8-48882*x^7+50472*x^6+163318*x^5-66376*x^4-214038*x^3+46518*x^2+94358*x-19598,-2928*x^10-3516*x^9+37998*x^8+32014*x^7-168914*x^6-73414*x^5+301518*x^4+14904*x^3-169626*x^2+48378*x-8804,945*x^10+4052*x^9-6306*x^8-40556*x^7+1375*x^6+119940*x^5+25796*x^4-119643*x^3-16996*x^2+27852*x+653,-298*x^10+118*x^9+3878*x^8-3430*x^7-15786*x^6+25718*x^5+21284*x^4-68608*x^3-5790*x^2+58782*x-5996,3995*x^10+7976*x^9-44972*x^8-76824*x^7+167085*x^6+211362*x^5-252852*x^4-179623*x^3+128710*x^2+18906*x+5727,860*x^10+544*x^9-12048*x^8-2534*x^7+62672*x^6-6672*x^5-148024*x^4+24276*x^3+134072*x^2-15414*x-25196,1385*x^10+1168*x^9-19038*x^8-9840*x^7+89121*x^6+17424*x^5-162516*x^4+10805*x^3+92320*x^2-29926*x-1705,-475*x^10-1760*x^9+2738*x^8+13982*x^7+1423*x^6-22100*x^5-7858*x^4-4797*x^3-16716*x^2+8398*x+16203,765*x^10+2284*x^9-7944*x^8-25260*x^7+26765*x^6+91416*x^5-42276*x^4-131073*x^3+37844*x^2+60950*x-16307,-1021*x^10+478*x^9+17748*x^8-5030*x^7-99555*x^6+21918*x^5+202732*x^4-61957*x^3-126512*x^2+65456*x+1019,1873*x^10+1754*x^9-23802*x^8-11166*x^7+105593*x^6-4684*x^5-199694*x^4+82587*x^3+132620*x^2-75122*x-4073,2865*x^10+7918*x^9-27536*x^8-78542*x^7+76077*x^6+230686*x^5-72002*x^4-230981*x^3+23552*x^2+49972*x-7069,93*x^10-1318*x^9-5482*x^8+10158*x^7+43453*x^6-13400*x^5-97532*x^4-14753*x^3+58484*x^2+20782*x-477,-1880*x^10-4984*x^9+19502*x^8+50858*x^7-64538*x^6-160194*x^5+88286*x^4+196512*x^3-38788*x^2-86424*x-3618,676*x^10+1712*x^9-7028*x^8-16558*x^7+22612*x^6+46316*x^5-24982*x^4-42846*x^3+3594*x^2+9052*x-228,842*x^10+3296*x^9-5622*x^8-34058*x^7-3302*x^6+111184*x^5+60854*x^4-147888*x^3-87426*x^2+73354*x+22270,-1180*x^10-3106*x^9+12274*x^8+31354*x^7-39384*x^6-94594*x^5+44208*x^4+102890*x^3-3804*x^2-32902*x-11696,-1089*x^10-4002*x^9+7506*x^8+39404*x^7+109*x^6-116400*x^5-56614*x^4+126189*x^3+77604*x^2-30034*x-19451,-2122*x^10-4130*x^9+23262*x^8+38462*x^7-82412*x^6-97848*x^5+118010*x^4+66608*x^3-64080*x^2+5342*x+660,3403*x^10+9460*x^9-34460*x^8-100388*x^7+103685*x^6+337140*x^5-104334*x^4-435829*x^3+24212*x^2+179620*x-10537,662*x^10+3620*x^9-3076*x^8-38636*x^7-14522*x^6+130776*x^5+74370*x^4-171870*x^3-75472*x^2+76118*x+5310,4164*x^10+10496*x^9-42022*x^8-101622*x^7+134036*x^6+286224*x^5-191892*x^4-276368*x^3+137192*x^2+75038*x-25710,-164*x^10-960*x^9+1018*x^8+10194*x^7+586*x^6-31358*x^5-5142*x^4+30380*x^3+106*x^2-1410*x+470,-636*x^10-1784*x^9+5300*x^8+15832*x^7-10356*x^6-37188*x^5+3964*x^4+26558*x^3+5488*x^2-3274*x-15296,-36*x^10+1320*x^9+4484*x^8-11794*x^7-40946*x^6+26512*x^5+113370*x^4-9608*x^3-106184*x^2-10744*x+22758,1142*x^10+4848*x^9-8122*x^8-52578*x^7-292*x^6+180690*x^5+71102*x^4-235530*x^3-101422*x^2+97338*x+27176,-2058*x^10-2990*x^9+25518*x^8+27468*x^7-108408*x^6-65252*x^5+191910*x^4+22556*x^3-122978*x^2+30486*x+1344,-3960*x^10-8562*x^9+42414*x^8+81288*x^7-146424*x^6-217496*x^5+207396*x^4+175308*x^3-103112*x^2-5090*x-8066,1324*x^10-82*x^9-20796*x^8+2224*x^7+110074*x^6-16684*x^5-222590*x^4+51648*x^3+141936*x^2-49642*x-4024,-850*x^10-1608*x^9+9524*x^8+14120*x^7-36596*x^6-28702*x^5+64058*x^4-5336*x^3-40538*x^2+26534*x-6404,-1788*x^10-3476*x^9+19084*x^8+30674*x^7-67520*x^6-72674*x^5+105738*x^4+58006*x^3-58798*x^2-12362*x-412,-2208*x^10-10042*x^9+13170*x^8+103672*x^7+18222*x^6-333786*x^5-154210*x^4+420448*x^3+164348*x^2-180246*x-17322,-306*x^10-286*x^9+4642*x^8+3828*x^7-24304*x^6-17320*x^5+51010*x^4+28162*x^3-41706*x^2-10782*x+9870,-71*x^10-2278*x^9-3418*x^8+24536*x^7+35671*x^6-85552*x^5-90122*x^4+123365*x^3+58590*x^2-60124*x+1039,-2158*x^10-2810*x^9+27746*x^8+25622*x^7-122312*x^6-57738*x^5+217782*x^4+5746*x^3-128424*x^2+42714*x+1452,2110*x^10+4570*x^9-22116*x^8-40650*x^7+76434*x^6+91344*x^5-123106*x^4-38082*x^3+94932*x^2-21824*x-17132,140*x^10+794*x^9-818*x^8-7248*x^7+2102*x^6+18350*x^5-16556*x^4-16214*x^3+33356*x^2+872*x-14586,-5628*x^10-11208*x^9+63636*x^8+108738*x^7-237844*x^6-304626*x^5+359910*x^4+272314*x^3-176504*x^2-38820*x-7980,1443*x^10+1482*x^9-18824*x^8-13560*x^7+81579*x^6+32124*x^5-131958*x^4-13231*x^3+59308*x^2-9362*x-889,1370*x^10+1718*x^9-18390*x^8-16236*x^7+87140*x^6+41720*x^5-175162*x^4-25450*x^3+124086*x^2-6858*x+6470,-2454*x^10-8344*x^9+21496*x^8+88106*x^7-45228*x^6-296620*x^5+4914*x^4+394890*x^3+34280*x^2-178700*x-404,-805*x^10-6396*x^9-788*x^8+68872*x^7+60349*x^6-239662*x^5-200298*x^4+338779*x^3+166458*x^2-166098*x+1497,-3026*x^10-3758*x^9+37420*x^8+32276*x^7-157938*x^6-64816*x^5+275242*x^4+836*x^3-164524*x^2+44002*x+2766,-2519*x^10-6658*x^9+24304*x^8+63528*x^7-68805*x^6-171812*x^5+70056*x^4+147829*x^3-7282*x^2-26090*x-19371,2560*x^10+5852*x^9-24820*x^8-52740*x^7+68920*x^6+127090*x^5-59618*x^4-89526*x^3-328*x^2+19382*x+2256,852*x^10+1186*x^9-11284*x^8-13058*x^7+51016*x^6+46522*x^5-95286*x^4-65142*x^3+78282*x^2+35312*x-27112,832*x^10+176*x^9-11466*x^8+1426*x^7+54302*x^6-22894*x^5-104128*x^4+63292*x^3+66942*x^2-44458*x-1568,1630*x^10+8572*x^9-6610*x^8-86330*x^7-39258*x^6+266320*x^5+163628*x^4-315418*x^3-141664*x^2+115948*x+4934,231*x^10-102*x^9-2448*x^8+3940*x^7+7077*x^6-29606*x^5-2318*x^4+68799*x^3-12848*x^2-44376*x+9039,636*x^10-1354*x^9-13668*x^8+13456*x^7+85668*x^6-42308*x^5-178646*x^4+63398*x^3+95974*x^2-44842*x+12158,-590*x^10-3122*x^9+2476*x^8+31890*x^7+13780*x^6-102212*x^5-60530*x^4+132510*x^3+57720*x^2-58814*x-3756,905*x^10+4124*x^9-5624*x^8-44014*x^7-6697*x^6+148468*x^5+63550*x^4-191219*x^3-49090*x^2+78558*x-21479,3407*x^10+7570*x^9-37980*x^8-76298*x^7+139847*x^6+232616*x^5-211768*x^4-255663*x^3+115390*x^2+79468*x-13763,-4067*x^10-8474*x^9+44526*x^8+80432*x^7-160067*x^6-213776*x^5+244242*x^4+165637*x^3-152798*x^2-3784*x+19915,-1918*x^10-3242*x^9+22608*x^8+28588*x^7-92708*x^6-63638*x^5+168032*x^4+25170*x^3-111588*x^2+22990*x+1402,4934*x^10+13294*x^9-49136*x^8-135210*x^7+146120*x^6+422190*x^5-157430*x^4-496818*x^3+50782*x^2+185480*x-7086,502*x^10+1816*x^9-5578*x^8-22134*x^7+21180*x^6+90080*x^5-36114*x^4-144374*x^3+29410*x^2+72880*x-12090,-5100*x^10-11740*x^9+52960*x^8+112962*x^7-171460*x^6-314468*x^5+215942*x^4+297474*x^3-97834*x^2-77192*x+18060,324*x^10-1420*x^9-6884*x^8+17236*x^7+43208*x^6-69156*x^5-97758*x^4+103208*x^3+66556*x^2-43468*x-1898,1054*x^10+1450*x^9-12270*x^8-11442*x^7+47220*x^6+15842*x^5-70520*x^4+22474*x^3+23364*x^2-35036*x+16560,-544*x^10-2368*x^9+4882*x^8+29120*x^7-8108*x^6-118074*x^5-17286*x^4+177794*x^3+32548*x^2-74606*x-2676,-1634*x^10-2498*x^9+19544*x^8+22492*x^7-78492*x^6-51966*x^5+125810*x^4+23330*x^3-56206*x^2+15584*x-12168,1269*x^10+2632*x^9-13190*x^8-23320*x^7+41445*x^6+52876*x^5-41628*x^4-27941*x^3+1444*x^2-2018*x-199,232*x^10+4394*x^9+5040*x^8-48352*x^7-61548*x^6+174906*x^5+165118*x^4-263504*x^3-105898*x^2+140832*x-23932,-2296*x^10-7164*x^9+20528*x^8+73680*x^7-45142*x^6-236088*x^5+8554*x^4+290386*x^3+34956*x^2-114926*x-5972,-1004*x^10-3632*x^9+10110*x^8+42176*x^7-31900*x^6-163424*x^5+46078*x^4+256322*x^3-48360*x^2-140530*x+28364,-20*x^10+1082*x^9+1910*x^8-12712*x^7-16588*x^6+47736*x^5+41366*x^4-64030*x^3-30168*x^2+15416*x+440,2572*x^10+3320*x^9-32242*x^8-25448*x^7+142888*x^6+24810*x^5-275228*x^4+99516*x^3+189526*x^2-131496*x+3038,-1958*x^10-5262*x^9+20152*x^8+53372*x^7-67308*x^6-163768*x^5+101186*x^4+179530*x^3-63140*x^2-56008*x+7512,616*x^10+774*x^9-7574*x^8-6578*x^7+32470*x^6+14842*x^5-57784*x^4-13184*x^3+20828*x^2+5092*x+25150,824*x^10+1864*x^9-8610*x^8-18512*x^7+28002*x^6+54358*x^5-36746*x^4-56460*x^3+17428*x^2+17774*x-346,-5007*x^10-9920*x^9+56892*x^8+95924*x^7-215871*x^6-263016*x^5+345392*x^4+206363*x^3-214032*x^2+9488*x+17583,1473*x^10+4566*x^9-12798*x^8-45746*x^7+23827*x^6+138340*x^5+18854*x^4-153059*x^3-63846*x^2+49102*x+20417,-390*x^10-7666*x^9-8256*x^8+85790*x^7+101210*x^6-315980*x^5-272312*x^4+477838*x^3+187856*x^2-253768*x+16948,-995*x^10+1268*x^9+17880*x^8-14236*x^7-100375*x^6+53792*x^5+197386*x^4-84887*x^3-114908*x^2+37884*x+1493,-546*x^10-2992*x^9+2458*x^8+31196*x^7+9898*x^6-103468*x^5-40450*x^4+142626*x^3+24092*x^2-74738*x+12012,1396*x^10+3554*x^9-15120*x^8-36948*x^7+52848*x^6+116480*x^5-73816*x^4-128922*x^3+28998*x^2+31468*x+668,-136*x^10-1638*x^9-610*x^8+20878*x^7+15232*x^6-92540*x^5-47992*x^4+170230*x^3+31672*x^2-108346*x+18682,-914*x^10-656*x^9+11452*x^8+3148*x^7-48256*x^6+9830*x^5+82206*x^4-44964*x^3-49630*x^2+32770*x+2326,1831*x^10+5386*x^9-17176*x^8-53342*x^7+45445*x^6+156648*x^5-38664*x^4-162229*x^3+1068*x^2+51810*x+9403,2790*x^10+9622*x^9-24296*x^8-100062*x^7+51528*x^6+326016*x^5-14942*x^4-410164*x^3-14266*x^2+167404*x-14310,6324*x^10+12884*x^9-69436*x^8-124090*x^7+244618*x^6+342954*x^5-334210*x^4-301338*x^3+143322*x^2+43962*x+2082,472*x^10-222*x^9-7420*x^8+1684*x^7+37092*x^6-1492*x^5-65590*x^4-2454*x^3+34366*x^2-228*x-970,-942*x^10+2114*x^9+18310*x^8-25318*x^7-109972*x^6+100300*x^5+232794*x^4-156572*x^3-139772*x^2+79038*x-12748,-1494*x^10-4842*x^9+12450*x^8+46624*x^7-21998*x^6-129848*x^5-7898*x^4+125314*x^3+24220*x^2-36890*x+442,7041*x^10+17974*x^9-71750*x^8-180068*x^7+225505*x^6+545380*x^5-273442*x^4-603865*x^3+100604*x^2+200068*x+14027,-905*x^10-3078*x^9+5624*x^8+28324*x^7+6697*x^6-73156*x^5-66688*x^4+64653*x^3+71056*x^2-21028*x-1533,10*x^10+3120*x^9+6890*x^8-33392*x^7-64926*x^6+118388*x^5+164982*x^4-186076*x^3-109390*x^2+115720*x-18002,-4022*x^10-12216*x^9+38398*x^8+128908*x^7-103916*x^6-431012*x^5+91808*x^4+563098*x^3-25298*x^2-244532*x+18402,5056*x^10+9518*x^9-57126*x^8-88210*x^7+215090*x^6+219492*x^5-337484*x^4-124540*x^3+178532*x^2-59600*x+16380,1868*x^10+2286*x^9-23586*x^8-19574*x^7+102492*x^6+37584*x^5-185430*x^4+9834*x^3+117756*x^2-47210*x-1348,-1452*x^10-5336*x^9+12100*x^8+57420*x^7-21472*x^6-200178*x^5-4706*x^4+279128*x^3+5148*x^2-130350*x+22530,-2576*x^10-4568*x^9+29486*x^8+43198*x^7-108968*x^6-111704*x^5+150450*x^4+70728*x^3-58952*x^2+15126*x+2280,-456*x^10-16*x^9+7984*x^8+536*x^7-46206*x^6+750*x^5+102370*x^4-24772*x^3-79686*x^2+35802*x+8986,-5530*x^10-9920*x^9+64214*x^8+91740*x^7-250912*x^6-228498*x^5+402922*x^4+144126*x^3-217170*x^2+23086*x+1370,-372*x^10+1088*x^9+8330*x^8-11344*x^7-53522*x^6+37910*x^5+120260*x^4-51864*x^3-94818*x^2+18334*x+17598,-2106*x^10-6460*x^9+19642*x^8+66832*x^7-49686*x^6-213650*x^5+34500*x^4+254858*x^3+430*x^2-88788*x+2400,2478*x^10+6418*x^9-24834*x^8-63856*x^7+74966*x^6+190384*x^5-84678*x^4-206132*x^3+38950*x^2+70454*x-9538,372*x^10-1088*x^9-8330*x^8+10298*x^7+53522*x^6-28496*x^5-118168*x^4+33036*x^3+75990*x^2-16242*x-862,-371*x^10-1738*x^9+2220*x^8+18998*x^7+4419*x^6-67194*x^5-38656*x^4+93855*x^3+58988*x^2-39130*x-13281,8*x^10-2734*x^9-4948*x^8+32490*x^7+49312*x^6-127460*x^5-146878*x^4+195064*x^3+144700*x^2-97796*x-30510,3376*x^10+11496*x^9-28482*x^8-116294*x^7+55978*x^6+359116*x^5-17476*x^4-413224*x^3+9426*x^2+146458*x-20926,-1604*x^10-4644*x^9+14064*x^8+42606*x^7-32690*x^6-105788*x^5+27674*x^4+77012*x^3-9908*x^2-5448*x-276,938*x^10+3960*x^9-6422*x^8-42704*x^7-1502*x^6+148572*x^5+53506*x^4-210828*x^3-59144*x^2+98518*x-8084,-715*x^10-4466*x^9+2646*x^8+48672*x^7+19935*x^6-172054*x^5-79444*x^4+244601*x^3+57450*x^2-121456*x+12069,-290*x^10-2616*x^9-1070*x^8+26968*x^7+28296*x^6-87098*x^5-88984*x^4+109720*x^3+91840*x^2-39014*x-25000,-1698*x^10-500*x^9+25656*x^8+3152*x^7-131992*x^6+4348*x^5+263202*x^4-48724*x^3-167806*x^2+54246*x+3884,62*x^10+2608*x^9+2970*x^8-32976*x^7-32048*x^6+143434*x^5+85254*x^4-255994*x^3-55848*x^2+157854*x-9732,-1962*x^10-4418*x^9+21580*x^8+44972*x^7-78366*x^6-137694*x^5+121802*x^4+140574*x^3-74822*x^2-18616*x-1814,-3412*x^10-5992*x^9+40288*x^8+57430*x^7-161776*x^6-156876*x^5+274148*x^4+131656*x^3-166864*x^2-9716*x+13350,-14*x^10+862*x^9+814*x^8-10572*x^7-3662*x^6+43666*x^5-4202*x^4-71494*x^3+12982*x^2+33594*x+1354,3382*x^10+6046*x^9-40038*x^8-58716*x^7+159906*x^6+162582*x^5-264922*x^4-135130*x^3+162406*x^2+12966*x-12690,-96*x^10-664*x^9+800*x^8+5508*x^7-3892*x^6-9146*x^5+14670*x^4-7142*x^3-24098*x^2+14584*x+10480,5090*x^10+11758*x^9-55666*x^8-118272*x^7+199776*x^6+356118*x^5-303520*x^4-370806*x^3+187350*x^2+85946*x-23070,6671*x^10+11318*x^9-77732*x^8-104578*x^7+302509*x^6+259068*x^5-480428*x^4-149861*x^3+264236*x^2-50288*x-2937,4478*x^10+14324*x^9-40106*x^8-147226*x^7+91546*x^6+472102*x^5-37278*x^4-592718*x^3-43548*x^2+248478*x+10268,1046*x^8-14644*x^6+62760*x^4-83680*x^2+16736,2839*x^10+6082*x^9-31852*x^8-59922*x^7+118737*x^6+171616*x^5-182762*x^4-151567*x^3+91444*x^2+140*x+8147,5868*x^10+9730*x^9-68774*x^8-87990*x^7+272678*x^6+206678*x^5-451500*x^4-95990*x^3+263422*x^2-54124*x-2530,1266*x^10+2742*x^9-16826*x^8-33804*x^7+76822*x^6+138068*x^5-142272*x^4-213012*x^3+103820*x^2+91924*x-32036,1552*x^10+5156*x^9-13282*x^8-52436*x^7+23870*x^6+163376*x^5+19628*x^4-190144*x^3-59324*x^2+68960*x+18156,-5880*x^10-13474*x^9+63644*x^8+133918*x^7-222172*x^6-392048*x^5+312516*x^4+379740*x^3-154120*x^2-73234*x+6978,1244*x^10+2154*x^9-14202*x^8-20382*x^7+51044*x^6+53970*x^5-61310*x^4-41296*x^3+12896*x^2+1562*x-172,-524*x^10-2404*x^9+4018*x^8+28234*x^7-1980*x^6-110372*x^5-30410*x^4+170696*x^3+45980*x^2-77470*x-5208,796*x^10+450*x^9-11166*x^8-2000*x^7+54150*x^6-11026*x^5-103726*x^4+56822*x^3+68496*x^2-53110*x-3914,-4956*x^10-13882*x^9+48622*x^8+142356*x^7-141564*x^6-456080*x^5+151574*x^4+577532*x^3-53842*x^2-250738*x+15938,-890*x^10-2582*x^9+7068*x^8+21122*x^7-13288*x^6-35738*x^5+12902*x^4-8922*x^3-20332*x^2+19710*x-294,966*x^10+144*x^9-13280*x^8+4590*x^7+64398*x^6-50682*x^5-128462*x^4+132992*x^3+78068*x^2-90006*x+11174,-504*x^10-1394*x^9+5246*x^8+15842*x^7-16772*x^6-60830*x^5+19226*x^4+97700*x^3-10670*x^2-57322*x+10042,-5152*x^10-12274*x^9+52696*x^8+118822*x^7-166682*x^6-334284*x^5+208852*x^4+318230*x^3-104306*x^2-76440*x+16066,-942*x^10-1024*x^9+13080*x^8+12338*x^7-58718*x^6-46140*x^5+95768*x^4+57858*x^3-48770*x^2-18240*x-1242,-1786*x^10-7036*x^9+13140*x^8+71484*x^7-13352*x^6-222214*x^5-22768*x^4+255304*x^3+3004*x^2-83358*x+17326,2150*x^10-732*x^9-34304*x^8+11970*x^7+181784*x^6-68980*x^5-362738*x^4+165290*x^3+235810*x^2-124830*x-5460,-4484*x^10-6782*x^9+53754*x^8+61406*x^7-217440*x^6-143772*x^5+356898*x^4+56262*x^3-182652*x^2+56558*x-16412,-68*x^10+750*x^9+3356*x^8-7866*x^7-28994*x^6+26950*x^5+77466*x^4-44066*x^3-53200*x^2+33168*x+1496,-2196*x^10-9436*x^9+13070*x^8+94354*x^7+16878*x^6-289626*x^5-144930*x^4+352174*x^3+161738*x^2-149120*x-21770,-108*x^10-1270*x^9-1192*x^8+11688*x^7+18372*x^6-28202*x^5-60508*x^4+14062*x^3+73698*x^2+7516*x-31096,-997*x^10-1448*x^9+13364*x^8+15036*x^7-61449*x^6-46662*x^5+108324*x^4+45213*x^3-43868*x^2-4088*x-12061,-2833*x^10-3164*x^9+37032*x^8+29636*x^7-163341*x^6-74224*x^5+282588*x^4+36365*x^3-162308*x^2+22222*x+2181,5278*x^10+12884*x^9-55838*x^8-130366*x^7+189180*x^6+400484*x^5-265174*x^4-442548*x^3+141230*x^2+130780*x-2102,540*x^10+1120*x^9-5546*x^8-10324*x^7+17970*x^6+26996*x^5-22766*x^4-26378*x^3+8070*x^2+13674*x+2764,-1355*x^10-2268*x^9+16696*x^8+22632*x^7-70515*x^6-66016*x^5+125048*x^4+61705*x^3-84724*x^2-14118*x+17781,5268*x^10+8718*x^9-61682*x^8-78146*x^7+245738*x^6+178542*x^5-415512*x^4-67146*x^3+247482*x^2-64436*x-2928,-1862*x^10-6690*x^9+13076*x^8+65646*x^7+390*x^6-191232*x^5-110132*x^4+204454*x^3+151330*x^2-76868*x-30164,-89*x^10-2664*x^9-5360*x^8+26484*x^7+57561*x^6-79618*x^5-165756*x^4+90319*x^3+157168*x^2-36208*x-29945,4768*x^10+16940*x^9-39036*x^8-175240*x^7+59066*x^6+564430*x^5+84132*x^4-698254*x^3-189780*x^2+279124*x+57234,1012*x^10+898*x^9-12966*x^8-6548*x^7+58200*x^6+8768*x^5-112414*x^4+4640*x^3+79046*x^2-11658*x-298,-2788*x^10-4814*x^9+36134*x^8+54054*x^7-159490*x^6-194182*x^5+280778*x^4+251822*x^3-176018*x^2-79408*x+40416,973*x^10+5466*x^9-4796*x^8-59160*x^7-17451*x^6+203106*x^5+91730*x^4-266397*x^3-85846*x^2+105012*x+4221,1196*x^10-270*x^9-21124*x^8-1938*x^7+117088*x^6+31092*x^5-229180*x^4-72586*x^3+145718*x^2+48602*x-15852,-2036*x^10-3448*x^9+24986*x^8+36012*x^7-100412*x^6-111904*x^5+150696*x^4+103972*x^3-73894*x^2-8856*x+860,-1380*x^10-654*x^9+19868*x^8+3604*x^7-97526*x^6+11436*x^5+186954*x^4-75078*x^3-114066*x^2+74188*x-2066,423*x^10+2272*x^9-1956*x^8-24858*x^7-8151*x^6+89102*x^5+36332*x^4-132393*x^3-26366*x^2+71850*x-3553,-2323*x^10-6174*x^9+23368*x^8+63004*x^7-69837*x^6-197376*x^5+69262*x^4+227219*x^3-7026*x^2-66500*x-5901,-335*x^10-2012*x^9-1218*x^8+16148*x^7+29675*x^6-27808*x^5-74622*x^4-91*x^3+40698*x^2+7178*x-475,2398*x^10+6562*x^9-24516*x^8-68680*x^7+76604*x^6+224428*x^5-88666*x^4-277110*x^3+26016*x^2+101784*x+14188,-2617*x^10-5854*x^9+26864*x^8+53330*x^7-88163*x^6-129742*x^5+128506*x^4+80415*x^3-82722*x^2+16604*x+2659,1060*x^10+4368*x^9-7090*x^8-45912*x^7-3660*x^6+150890*x^5+73238*x^4-180592*x^3-94570*x^2+65776*x+16428,3541*x^10+7538*x^9-37702*x^8-67904*x^7+133207*x^6+159850*x^5-212044*x^4-90777*x^3+134884*x^2-18380*x-1021,-7054*x^10-9478*x^9+88420*x^8+84778*x^7-382518*x^6-191556*x^5+693992*x^4+58858*x^3-454724*x^2+96138*x+23392,4281*x^10+15620*x^9-36198*x^8-165538*x^7+66017*x^6+555700*x^5+25154*x^4-731009*x^3-82550*x^2+320202*x-2657,3752*x^10+8518*x^9-36148*x^8-72492*x^7+103822*x^6+143462*x^5-119650*x^4-19064*x^3+51074*x^2-55708*x+16826,-677*x^10+1114*x^9+13138*x^8-12738*x^7-81599*x^6+48328*x^5+190174*x^4-76723*x^3-144848*x^2+47366*x+2865,239*x^10+1348*x^9-2166*x^8-15870*x^7+5135*x^6+60502*x^5-664*x^4-90731*x^3-11450*x^2+47154*x+6771,-2103*x^10-5524*x^9+19094*x^8+51166*x^7-45315*x^6-131482*x^5+21130*x^4+108347*x^3+34034*x^2-21646*x-29569,-1666*x^10-976*x^9+22600*x^8+3408*x^7-109426*x^6+25876*x^5+230070*x^4-93762*x^3-183134*x^2+75186*x+30376,656*x^10+702*x^9-9302*x^8-6258*x^7+44726*x^6+9326*x^5-79848*x^4+27012*x^3+41416*x^2-39338*x-1880,-6718*x^10-13430*x^9+77252*x^8+133490*x^7-295676*x^6-391234*x^5+462212*x^4+379350*x^3-253752*x^2-72058*x+3448,140*x^10-252*x^9-2910*x^8+1120*x^7+19884*x^6+7890*x^5-55258*x^4-37134*x^3+64736*x^2+36436*x-26092,-1662*x^10-3912*x^9+18034*x^8+40050*x^7-62804*x^6-124672*x^5+88118*x^4+139750*x^3-45932*x^2-42748*x+12506,770*x^10+2798*x^9-7114*x^8-29404*x^7+19406*x^6+96218*x^5-24114*x^4-116896*x^3+16098*x^2+38268*x+842,264*x^10-2358*x^9-9522*x^8+26170*x^7+77124*x^6-93308*x^5-214240*x^4+129732*x^3+198850*x^2-62072*x-26728,-6102*x^10-9518*x^9+73862*x^8+89256*x^7-302954*x^6-229952*x^5+510074*x^4+155920*x^3-292546*x^2+19852*x+2448,889*x^10+6454*x^9-958*x^8-71338*x^7-50929*x^6+257994*x^5+186808*x^4-380515*x^3-157532*x^2+193608*x-13805,-735*x^10-3384*x^9+4556*x^8+33868*x^7+2301*x^6-102352*x^5-33894*x^4+115719*x^3+44018*x^2-40142*x-1089,-1668*x^10-6830*x^9+12854*x^8+73474*x^7-12970*x^6-252398*x^5-46226*x^4+343862*x^3+59450*x^2-158204*x+7408,916*x^10+2326*x^9-7982*x^8-20914*x^7+15606*x^6+49830*x^5+5810*x^4-31790*x^3-29778*x^2-1258*x+12274,-1046,-749*x^10-430*x^9+8508*x^8-1808*x^7-33787*x^6+38592*x^5+64412*x^4-94893*x^3-51784*x^2+54120*x+3403,-2348*x^10-5606*x^9+21310*x^8+46068*x^7-52916*x^6-79130*x^5+41212*x^4-31946*x^3+12794*x^2+99210*x-23656,-1450*x^10-4712*x^9+14524*x^8+53252*x^7-41570*x^6-197002*x^5+34148*x^4+290238*x^3-8362*x^2-148000*x+18302,-2469*x^10-6748*x^9+24236*x^8+66020*x^7-73359*x^6-190736*x^5+94776*x^4+194413*x^3-56336*x^2-57308*x+18231,-1996*x^10-382*x^9+31626*x^8+4952*x^7-167652*x^6-17004*x^5+335740*x^4-8548*x^3-208114*x^2+53406*x+4164,4452*x^10+15626*x^9-37100*x^8-161032*x^7+62032*x^6+510310*x^5+50702*x^4-598030*x^3-113728*x^2+214336*x+8748,-1408*x^10-3114*x^9+16266*x^8+33714*x^7-63010*x^6-115662*x^5+108468*x^4+154310*x^3-83918*x^2-66778*x+20516,-5570*x^10-15078*x^9+56528*x^8+154180*x^7-175304*x^6-480298*x^5+204280*x^4+540112*x^3-75628*x^2-175156*x+2250,124*x^10-1060*x^9-4520*x^8+9360*x^7+32136*x^6-22748*x^5-66934*x^4+27748*x^3+39974*x^2-27380*x-636,-168*x^10-4300*x^9-5922*x^8+48864*x^7+69024*x^6-184150*x^5-205232*x^4+279074*x^3+198670*x^2-140792*x-40236,640*x^10+7216*x^9+6870*x^8-71238*x^7-103060*x^6+211946*x^5+285036*x^4-241780*x^3-208236*x^2+95586*x+2656,2298*x^10+3604*x^9-25426*x^8-25548*x^7+95126*x^6+13328*x^5-156934*x^4+108790*x^3+89606*x^2-95188*x+16388,1422*x^10+3298*x^9-16034*x^8-35694*x^7+56212*x^6+119066*x^5-67656*x^4-141392*x^3+19682*x^2+48874*x+1142,-2901*x^10-9736*x^9+24698*x^8+99174*x^7-47987*x^6-309820*x^5+3368*x^4+361537*x^3+12520*x^2-131844*x+20413,496*x^10+990*x^9-5528*x^8-9630*x^7+20806*x^6+29298*x^5-36570*x^4-39632*x^3+31238*x^2+25414*x-11958,-560*x^10-4222*x^9+134*x^8+43636*x^7+33432*x^6-141390*x^5-108458*x^4+188284*x^3+85190*x^2-98674*x+7090,3318*x^10+2814*x^9-45432*x^8-23664*x^7+214144*x^6+41076*x^5-406812*x^4+35488*x^3+264190*x^2-83306*x-3960,-50*x^10+90*x^9+1114*x^8-2492*x^7-12182*x^6+15786*x^5+55822*x^4-27756*x^3-77512*x^2+17620*x+19928,-1630*x^10-204*x^9+22300*x^8-7810*x^7-106136*x^6+86182*x^5+204564*x^4-231640*x^3-116698*x^2+164380*x-24808,2234*x^10+3510*x^9-28728*x^8-36520*x^7+127398*x^6+118804*x^5-229788*x^4-149452*x^3+133860*x^2+65856*x-6262,942*x^10+1024*x^9-13080*x^8-10246*x^7+63948*x^6+28358*x^5-130286*x^4-10788*x^3+84334*x^2-22554*x-850,1865*x^10+2396*x^9-21992*x^8-16460*x^7+87661*x^6+2486*x^5-141726*x^4+100907*x^3+69508*x^2-103892*x+14931,2712*x^10+7252*x^9-27830*x^8-76628*x^7+86414*x^6+255498*x^5-94090*x^4-328822*x^3+22050*x^2+139244*x+7280,-1422*x^10-6436*x^9+8712*x^8+68120*x^7+10732*x^6-232034*x^5-101796*x^4+329672*x^3+104792*x^2-178578*x+13502,-3418*x^10-8910*x^9+33016*x^8+86670*x^7-93114*x^6-246946*x^5+95872*x^4+241628*x^3-30102*x^2-59274*x-2208,3468*x^10+4636*x^9-46682*x^8-50706*x^7+211988*x^6+172584*x^5-368216*x^4-190860*x^3+191294*x^2+16550*x-984,3348*x^10+7990*x^9-34176*x^8-74678*x^7+111414*x^6+190178*x^5-161860*x^4-129444*x^3+104426*x^2-7060*x-1482,4650*x^10+14642*x^9-43980*x^8-154218*x^7+118306*x^6+513026*x^5-111024*x^4-662338*x^3+50838*x^2+283888*x-34310,-2065*x^10-4128*x^9+22264*x^8+37872*x^7-77813*x^6-93104*x^5+112928*x^4+61075*x^3-55296*x^2-310*x-71,-735*x^10-246*x^9+10832*x^8+1442*x^7-53137*x^6+3294*x^5+92672*x^4-28629*x^3-28156*x^2+42492*x-22009,760*x^10+1770*x^9-8774*x^8-17978*x^7+36216*x^6+55234*x^5-74036*x^4-61570*x^3+76326*x^2+19826*x-32410,-8018*x^10-16320*x^9+89480*x^8+158654*x^7-328942*x^6-450452*x^5+498346*x^4+432780*x^3-271204*x^2-101374*x+14266,-1760*x^10-1016*x^9+26870*x^8+11024*x^7-138646*x^6-34486*x^5+272088*x^4+21082*x^3-165304*x^2+22958*x+2110,1934*x^10+7188*x^9-13676*x^8-73438*x^7+4098*x^6+236532*x^5+78994*x^4-306574*x^3-83310*x^2+133920*x-2800,1410*x^10+3738*x^9-12796*x^8-33698*x^7+31406*x^6+78044*x^5-23590*x^4-32324*x^3+3464*x^2-35598*x+360,4470*x^10+10782*x^9-44572*x^8-102312*x^7+131144*x^6+274256*x^5-128888*x^4-231310*x^3+24090*x^2+39796*x-2108,5676*x^10+7356*x^9-71358*x^8-63376*x^7+308826*x^6+123534*x^5-555002*x^4+20476*x^3+343884*x^2-114912*x-5628,2226*x^10+10428*x^9-15412*x^8-113988*x^7+4866*x^6+406302*x^5+76082*x^4-591372*x^3-64186*x^2+306954*x-28052,-1069*x^10-1946*x^9+11872*x^8+17598*x^7-42925*x^6-40708*x^5+59966*x^4+11353*x^3-18794*x^2+28816*x-13615,2746*x^10+3216*x^9-33692*x^8-24056*x^7+142228*x^6+22886*x^5-253636*x^4+81800*x^3+161618*x^2-95954*x-6020,-2392*x^10-4690*x^9+27604*x^8+44670*x^7-107610*x^6-117622*x^5+175940*x^4+76136*x^3-100018*x^2+32500*x+1370,4778*x^10+7508*x^9-58296*x^8-69514*x^7+244134*x^6+171324*x^5-426602*x^4-87278*x^3+251026*x^2-61212*x+12036,-654*x^10-3216*x^9+5450*x^8+37654*x^7-9386*x^6-146314*x^5-7864*x^4+220494*x^3+17248*x^2-104878*x-5486,1813*x^10+7092*x^9-12842*x^8-72314*x^7+3529*x^6+227434*x^5+83396*x^4-277909*x^3-123152*x^2+123842*x+34903,-3981*x^10-8838*x^9+43112*x^8+85304*x^7-151917*x^6-234108*x^5+220444*x^4+194633*x^3-111358*x^2-13798*x-805,-2497*x^10-1886*x^9+35278*x^8+16634*x^7-170639*x^6-33322*x^5+323814*x^4-16565*x^3-200870*x^2+50674*x+5249,-212*x^10-3384*x^9-1720*x^8+38052*x^7+28974*x^6-138962*x^5-82010*x^4+204106*x^3+54478*x^2-101856*x+14078,-472*x^10-5008*x^9-3040*x^8+52708*x^7+58094*x^6-176328*x^5-171852*x^4+238850*x^3+146592*x^2-113786*x-15766,899*x^10-886*x^9-17080*x^8+9284*x^7+102759*x^6-35742*x^5-222464*x^4+80883*x^3+145202*x^2-67232*x-2519,2557*x^10+1778*x^9-32640*x^8-6740*x^7+142999*x^6-42942*x^5-254402*x^4+160539*x^3+143888*x^2-109474*x+1799,-5724*x^10-9780*x^9+68620*x^8+96464*x^7-276254*x^6-281346*x^5+448846*x^4+281908*x^3-252902*x^2-72352*x+27604,-1934*x^10+134*x^9+31458*x^8-1874*x^7-170412*x^6+12416*x^5+347774*x^4-43836*x^3-214800*x^2+42854*x-11844,-1370*x^10-2764*x^9+14206*x^8+24604*x^7-46346*x^6-59502*x^5+60102*x^4+48462*x^3-22624*x^2-10924*x+852,-3236*x^10-10702*x^9+25572*x^8+100678*x^7-40278*x^6-267546*x^5-2218*x^4+238018*x^3-21048*x^2-62952*x+31444,816*x^10+4598*x^9-3662*x^8-48910*x^7-19218*x^6+164036*x^5+99672*x^4-214914*x^3-117858*x^2+93604*x+30164,-4250*x^10-13270*x^9+34022*x^8+127084*x^7-44908*x^6-351664*x^5-90788*x^4+339420*x^3+152950*x^2-105818*x-14238,3682*x^10+9690*x^9-34170*x^8-89788*x^7+88650*x^6+232088*x^5-75808*x^4-198714*x^3+5108*x^2+35904*x+1630,-3456*x^10-15536*x^9+23570*x^8+167954*x^7+52*x^6-586572*x^5-162240*x^4+822360*x^3+185794*x^2-392318*x-11832,6179*x^10+12622*x^9-67356*x^8-115836*x^7+242553*x^6+283192*x^5-375564*x^4-166459*x^3+221668*x^2-47196*x-3619,5534*x^10+5938*x^9-71918*x^8-48822*x^7+323684*x^6+82134*x^5-599266*x^4+50684*x^3+366924*x^2-114870*x+13186,-3262*x^10-7308*x^9+33808*x^8+65952*x^7-111632*x^6-151934*x^5+156890*x^4+73714*x^3-88090*x^2+24242*x+636,-2264*x^10+728*x^9+37346*x^8-10790*x^7-205626*x^6+57400*x^5+430432*x^4-131212*x^3-293126*x^2+102662*x+11106,6160*x^10+20292*x^9-55866*x^8-213266*x^7+131190*x^6+705938*x^5-65300*x^4-904834*x^3-20794*x^2+380410*x-25690,3495*x^10+3646*x^9-46384*x^8-30616*x^7+214717*x^6+53330*x^5-411142*x^4+37575*x^3+260472*x^2-82084*x-9,1409*x^10+3426*x^9-15054*x^8-34752*x^7+49823*x^6+101560*x^5-58184*x^4-80765*x^3+17018*x^2-4284*x+905,-2054*x^10+350*x^9+32458*x^8-4926*x^7-168478*x^6+24780*x^5+321918*x^4-56686*x^3-193930*x^2+32842*x+14854,-3297*x^10-2538*x^9+44734*x^8+16510*x^7-209697*x^6+10054*x^5+398994*x^4-151045*x^3-260128*x^2+146406*x+10297,2870*x^10+7386*x^9-30890*x^8-78502*x^7+108466*x^6+264776*x^5-165762*x^4-348600*x^3+118958*x^2+151764*x-34898,3727*x^10+3856*x^9-49712*x^8-33990*x^7+229527*x^6+73428*x^5-432212*x^4-10453*x^3+272772*x^2-57358*x-4067,5482*x^10+8542*x^9-64860*x^8-75388*x^7+259426*x^6+163780*x^5-431674*x^4-44666*x^3+252714*x^2-62864*x-9728,-292*x^10-1148*x^9+1736*x^8+11262*x^7+1324*x^6-32744*x^5-11732*x^4+31666*x^3+4934*x^2-2536*x+5378,1354*x^10-136*x^9-22092*x^8+2464*x^7+121358*x^6-12976*x^5-259012*x^4+17466*x^3+195556*x^2+10914*x-29788,-1508*x^10+204*x^9+22678*x^8-6834*x^7-115616*x^6+49798*x^5+228480*x^4-121908*x^3-150032*x^2+86660*x+4934,688*x^10+1272*x^9-10266*x^8-16462*x^7+54740*x^6+69556*x^5-121348*x^4-101706*x^3+86756*x^2+34948*x+2646,-3462*x^10-10086*x^9+28850*x^8+90502*x^7-56806*x^6-212218*x^5+27676*x^4+126912*x^3-18440*x^2+9996*x+1898,-2154*x^10-3654*x^9+25272*x^8+35068*x^7-98702*x^6-96364*x^5+155326*x^4+79220*x^3-88500*x^2-2000*x+9732,3560*x^10+1960*x^9-50238*x^8-13360*x^7+241432*x^6+1742*x^5-452226*x^4+80666*x^3+269608*x^2-78840*x-5100,-2836*x^10-7238*x^9+28166*x^8+70406*x^7-86124*x^6-205554*x^5+109770*x^4+234130*x^3-59932*x^2-95128*x+14276,1404*x^10+7096*x^9-7516*x^8-74540*x^7-21268*x^6+243198*x^5+129716*x^4-307280*x^3-139056*x^2+129274*x+15136,4606*x^10+10328*x^9-48146*x^8-99132*x^7+156706*x^6+272656*x^5-192818*x^4-239410*x^3+66684*x^2+27852*x+130,-1712*x^10-1730*x^9+22286*x^8+14546*x^7-99044*x^6-26252*x^5+177412*x^4-13526*x^3-106708*x^2+36586*x+1054,-4770*x^10-12334*x^9+52302*x^8+132338*x^7-186454*x^6-450454*x^5+270310*x^4+586728*x^3-155488*x^2-237416*x+45318,1504*x^10+7962*x^9-5560*x^8-80016*x^7-41882*x^6+249282*x^5+169742*x^4-314528*x^3-154530*x^2+139012*x+23396,2816*x^10+8320*x^9-26256*x^8-85210*x^7+64306*x^6+267934*x^5-25518*x^4-312804*x^3-46594*x^2+112636*x+3946,2404*x^10+3204*x^9-29796*x^8-27838*x^7+126140*x^6+57182*x^5-216868*x^4+984*x^3+126696*x^2-43214*x-1634,-2136*x^10-6406*x^9+20938*x^8+65546*x^7-62016*x^6-201668*x^5+70922*x^4+211636*x^3-21810*x^2-44744*x-16814,-777*x^10-1844*x^9+8044*x^8+15750*x^7-26467*x^6-27838*x^5+36134*x^4-18221*x^3-18498*x^2+48088*x-2257,348*x^10+838*x^9-2900*x^8-6630*x^7+2864*x^6+5566*x^5+19126*x^4+32558*x^3-47448*x^2-46068*x+33138,3698*x^10+7360*x^9-40928*x^8-68740*x^7+149618*x^6+174862*x^5-229400*x^4-114018*x^3+125056*x^2-19524*x+232,1444*x^10+4932*x^9-13428*x^8-52254*x^7+39104*x^6+177014*x^5-65984*x^4-238842*x^3+76088*x^2+103672*x-28630,140*x^10-2344*x^9-6048*x^8+29362*x^7+51264*x^6-123906*x^5-145214*x^4+206584*x^3+124358*x^2-110004*x-5172,-2463*x^10-1738*x^9+38830*x^8+22136*x^7-210011*x^6-90206*x^5+449826*x^4+120005*x^3-333262*x^2-29716*x+26467,-620*x^10+70*x^9+10048*x^8-776*x^7-53988*x^6+3910*x^5+108734*x^4-13220*x^3-72258*x^2+9288*x-1004,-9280*x^10-19906*x^9+101740*x^8+194582*x^7-362280*x^6-554972*x^5+522724*x^4+532032*x^3-260834*x^2-125044*x+190,262*x^10-890*x^9-6716*x^8+8372*x^7+48060*x^6-22218*x^5-125482*x^4+17160*x^3+114036*x^2+556*x-14132,3060*x^10+4952*x^9-33868*x^8-39326*x^7+122750*x^6+56048*x^5-181656*x^4+63560*x^3+85478*x^2-87782*x+7992,-4396*x^10-6522*x^9+56856*x^8+63156*x^7-255538*x^6-167204*x^5+477600*x^4+99506*x^3-306392*x^2+51906*x+2572,178*x^10+98*x^9-4970*x^8-6944*x^7+33410*x^6+52544*x^5-73290*x^4-101142*x^3+65362*x^2+49404*x-17514,-1116*x^10-920*x^9+15576*x^8+8854*x^7-74794*x^6-26434*x^5+145304*x^4+31642*x^3-97220*x^2-9850*x-1598,2255*x^10+9016*x^9-18966*x^8-100158*x^7+32475*x^6+362398*x^5+21802*x^4-524417*x^3-31530*x^2+256568*x-26075,-1074*x^10-1414*x^9+13134*x^8+13374*x^7-52302*x^6-31912*x^5+77368*x^4-732*x^3-36796*x^2+36854*x+616,-1487*x^10-1612*x^9+21980*x^8+19484*x^7-111169*x^6-74800*x^5+219616*x^4+94117*x^3-133418*x^2-24922*x-18017,84*x^10+58*x^9-2792*x^8-2466*x^7+23018*x^6+17286*x^5-73112*x^4-39644*x^3+98882*x^2+27510*x-47872,-2477*x^10-12382*x^9+14540*x^8+131854*x^7+19585*x^6-445066*x^5-151642*x^4+584063*x^3+124270*x^2-242978*x+20499,5101*x^10+6822*x^9-64300*x^8-60654*x^7+282747*x^6+135098*x^5-529666*x^4-38787*x^3+349964*x^2-77550*x-5007,7334*x^10+15250*x^9-79596*x^8-144252*x^7+280030*x^6+383064*x^5-401798*x^4-309900*x^3+195084*x^2+38448*x-5494,3973*x^10+7388*x^9-47578*x^8-77000*x^7+188377*x^6+244416*x^5-287996*x^4-258947*x^3+138202*x^2+41512*x-65,-394*x^10-5776*x^9-2644*x^8+72160*x^7+55634*x^6-302458*x^5-188936*x^4+497458*x^3+169898*x^2-278090*x-12252,-6496*x^10-12156*x^9+73310*x^8+113300*x^7-273470*x^6-288692*x^5+420508*x^4+201506*x^3-227248*x^2+9538*x-390,-1210*x^10-8282*x^9-28*x^8+82368*x^7+72760*x^6-252064*x^5-214342*x^4+320122*x^3+121442*x^2-169816*x+25574,1267*x^10+962*x^9-18752*x^8-9738*x^7+98153*x^6+30872*x^5-213324*x^4-35913*x^3+170808*x^2+9356*x-20029,-3648*x^10-7450*x^9+40860*x^8+71232*x^7-151034*x^6-194832*x^5+223786*x^4+174200*x^3-96706*x^2-32614*x-19114,-1354*x^10-3002*x^9+13724*x^8+26824*x^7-43954*x^6-63382*x^5+62364*x^4+43202*x^3-37610*x^2+1638*x-546,1555*x^10+7138*x^9-10692*x^8-77516*x^7+1045*x^6+272740*x^5+70064*x^4-391047*x^3-75928*x^2+209322*x-12767,-1706*x^10-5088*x^9+15960*x^8+51204*x^7-41140*x^6-152704*x^5+28290*x^4+150554*x^3+12800*x^2-37284*x-16860,2034*x^10-3452*x^9-37870*x^8+42422*x^7+225110*x^6-176830*x^5-492890*x^4+302272*x^3+347858*x^2-162820*x-12322,-1230*x^10-1970*x^9+16526*x^8+19448*x^7-77716*x^6-53704*x^5+150238*x^4+36432*x^3-99098*x^2+16098*x-136,4306*x^10+14006*x^9-40416*x^8-150694*x^7+102442*x^6+516950*x^5-66040*x^4-688366*x^3+9552*x^2+303024*x-36156,-2566*x^10-9816*x^9+21732*x^8+106038*x^7-41052*x^6-366738*x^5-3598*x^4+501792*x^3+22030*x^2-232116*x+21934,3814*x^10+11126*x^9-39454*x^8-122204*x^7+126166*x^6+433336*x^5-155732*x^4-595134*x^3+84136*x^2+247540*x-41022,-107*x^10+1134*x^9+5250*x^8-11316*x^7-42931*x^6+38238*x^5+106928*x^4-63017*x^3-72698*x^2+44192*x+1831,493*x^10+1100*x^9-7072*x^8-16976*x^7+28987*x^6+83110*x^5-24246*x^4-138931*x^3-20148*x^2+60780*x+14781,608*x^10+3508*x^9-2626*x^8-40114*x^7-18934*x^6+148578*x^5+101646*x^4-206156*x^3-111320*x^2+94520*x+6498,-2981*x^10-11684*x^9+19786*x^8+116316*x^7+2813*x^6-352134*x^5-131370*x^4+411895*x^3+129290*x^2-175826*x+1253,-6088*x^10-6196*x^9+78278*x^8+48574*x^7-346362*x^6-68602*x^5+628290*x^4-78018*x^3-386070*x^2+122238*x+6324,-2563*x^10-3650*x^9+32690*x^8+34934*x^7-145465*x^6-96290*x^5+274866*x^4+89597*x^3-189130*x^2-30040*x+14023,302*x^10+2176*x^9-2168*x^8-24780*x^7+3832*x^6+91510*x^5-11566*x^4-136154*x^3+40484*x^2+71186*x-35932,3048*x^10+6438*x^9-34814*x^8-64526*x^7+135600*x^6+195984*x^5-232776*x^4-216484*x^3+161308*x^2+63096*x-19986,4940*x^10+8890*x^9-55462*x^8-80770*x^7+202978*x^6+193230*x^5-295046*x^4-106802*x^3+143094*x^2-30646*x-942,2130*x^10-696*x^9-35532*x^8+10764*x^7+196576*x^6-63084*x^5-408190*x^4+164020*x^3+269448*x^2-136610*x-11296,-5004*x^10-12122*x^9+50068*x^8+114776*x^7-156062*x^6-307414*x^5+213824*x^4+263822*x^3-148002*x^2-49936*x+29546,4372*x^10+2172*x^9-63978*x^8-15232*x^7+320986*x^6-4796*x^5-637370*x^4+158378*x^3+428764*x^2-191562*x-17734,-3149*x^10-1340*x^9+45244*x^8+7234*x^7-222089*x^6+22280*x^5+431162*x^4-145831*x^3-278720*x^2+147806*x+7041,-160*x^10+3426*x^9+11096*x^8-34752*x^7-99232*x^6+103652*x^5+280720*x^4-98024*x^3-262264*x^2+9314*x+41176,2703*x^10+7582*x^9-25140*x^8-74608*x^7+63887*x^6+216102*x^5-50842*x^4-214595*x^3+18516*x^2+47648*x-17103,-740*x^10-2852*x^9+4772*x^8+27552*x^7+3384*x^6-75774*x^5-48918*x^4+61794*x^3+64718*x^2-1770*x-19284,3090*x^10+6990*x^9-33072*x^8-65236*x^7+117298*x^6+165402*x^5-184606*x^4-109740*x^3+115040*x^2-17812*x+10,-1818*x^10-3422*x^9+21426*x^8+32526*x^7-87172*x^6-86842*x^5+156804*x^4+68130*x^3-120786*x^2-744*x+28490,-1834*x^10-4230*x^9+21908*x^8+47042*x^7-86426*x^6-167688*x^5+128392*x^4+225060*x^3-49316*x^2-91756*x-6722,-2232*x^10+252*x^9+35336*x^8-7396*x^7-191428*x^6+52778*x^5+409852*x^4-127088*x^3-297994*x^2+92222*x+14586,-5650*x^10-6566*x^9+73582*x^8+58354*x^7-331612*x^6-125132*x^5+618692*x^4+1572*x^3-403408*x^2+112444*x+5056,5690*x^10+11724*x^9-62758*x^8-111380*x^7+228808*x^6+303712*x^5-351014*x^4-286682*x^3+189692*x^2+76384*x+2432,-622*x^10-554*x^9+8670*x^8+5484*x^7-43304*x^6-18094*x^5+96030*x^4+26924*x^3-99542*x^2-18040*x+45064,-4028*x^10-2582*x^9+58322*x^8+24260*x^7-287340*x^6-57704*x^5+550546*x^4-3692*x^3-344592*x^2+80378*x+7028,-980*x^10-2420*x^9+10956*x^8+23540*x^7-41910*x^6-65690*x^5+65684*x^4+55968*x^3-31614*x^2-5058*x-1452,-4985*x^10-13516*x^9+49038*x^8+135848*x^7-144069*x^6-415314*x^5+162968*x^4+481289*x^3-82314*x^2-202444*x+26513,3184*x^10+2846*x^9-39434*x^8-14276*x^7+168484*x^6-40966*x^5-297752*x^4+208460*x^3+157878*x^2-170600*x+24092,-6380*x^10-21988*x^9+55956*x^8+232426*x^7-118056*x^6-779154*x^5+20338*x^4+1025798*x^3+64460*x^2-453506*x+17978,1352*x^10+3424*x^9-14056*x^8-32070*x^7+50454*x^6+83218*x^5-91804*x^4-63726*x^3+66810*x^2+322*x-456,5756*x^10+13488*x^9-59124*x^8-127588*x^7+192128*x^6+342622*x^5-261272*x^4-299750*x^3+135066*x^2+49360*x-2158,3930*x^10+11754*x^9-37980*x^8-120230*x^7+105852*x^6+373826*x^5-96708*x^4-426684*x^3+14974*x^2+144320*x+358,1192*x^10+574*x^9-15512*x^8+1168*x^7+71512*x^6-46388*x^5-140574*x^4+143682*x^3+90104*x^2-109608*x+18754,2204*x^10+4610*x^9-23248*x^8-41990*x^7+78458*x^6+104636*x^5-106548*x^4-81798*x^3+43630*x^2+10530*x-372,-1337*x^10+6486*x^9+31190*x^8-80778*x^7-206419*x^6+345404*x^5+469504*x^4-609207*x^3-315098*x^2+353170*x-20271,2922*x^10+2690*x^9-40040*x^8-20556*x^7+195736*x^6+18908*x^5-409712*x^4+90884*x^3+308480*x^2-121994*x-6754,-978*x^10-1796*x^9+12334*x^8+19372*x^7-53640*x^6-64606*x^5+101400*x^4+74400*x^3-86964*x^2-17478*x+17332,-1016*x^10-54*x^9+15440*x^8-1852*x^7-79718*x^6+19398*x^5+158134*x^4-47780*x^3-98050*x^2+37544*x+2478,-7443*x^10-24154*x^9+64640*x^8+246934*x^7-127135*x^6-775816*x^5-31162*x^4+914627*x^3+175634*x^2-348982*x-44931,-480*x^10-182*x^9+7138*x^8+3482*x^7-36196*x^6-21672*x^5+72304*x^4+45878*x^3-47270*x^2-28542*x+100,-4895*x^10-13678*x^9+47242*x^8+137614*x^7-133229*x^6-423018*x^5+136336*x^4+492757*x^3-38606*x^2-183952*x-19399,-625*x^10-1490*x^9+7126*x^8+15920*x^7-26755*x^6-54238*x^5+39318*x^4+71973*x^3-13902*x^2-20330*x-371,-4735*x^10-15012*x^9+39284*x^8+143078*x^7-72699*x^6-391736*x^5+6240*x^4+364845*x^3+24918*x^2-82390*x+10553,-3954*x^10-11920*x^9+37134*x^8+123176*x^7-94796*x^6-395202*x^5+59320*x^4+481644*x^3+22672*x^2-188790*x-5060,1826*x^10+688*x^9-24282*x^8-1082*x^7+107196*x^6-30158*x^5-176070*x^4+97646*x^3+75114*x^2-65672*x+19450,1368*x^10+5278*x^9-8262*x^8-48678*x^7-8868*x^6+124316*x^5+83048*x^4-108734*x^3-83110*x^2+43218*x+3376,-5178*x^10-7834*x^9+58840*x^8+62130*x^7-222346*x^6-86876*x^5+345994*x^4-115942*x^3-159842*x^2+167654*x-51352,720*x^10+2888*x^9-4954*x^8-28758*x^7+948*x^6+85854*x^5+29616*x^4-90260*x^3-31080*x^2+26600*x-1196,-1542*x^10-4128*x^9+15988*x^8+45194*x^7-46956*x^6-155864*x^5+31340*x^4+196532*x^3+12694*x^2-79806*x+4636,1146*x^10+2958*x^9-12688*x^8-30580*x^7+46330*x^6+92902*x^5-72942*x^4-91974*x^3+34734*x^2+9738*x+938,-2427*x^10-7242*x^9+22840*x^8+71586*x^7-61327*x^6-203536*x^5+57174*x^4+167269*x^3-5326*x^2+13454*x-20349,2193*x^10-1960*x^9-38672*x^8+21728*x^7+217239*x^6-83330*x^5-437920*x^4+152069*x^3+268036*x^2-105256*x-6929,1812*x^10+9918*x^9-8824*x^8-106840*x^7-30354*x^6+372286*x^5+145034*x^4-529274*x^3-104368*x^2+264986*x-18944,-1746*x^10-3970*x^9+17688*x^8+37286*x^7-55488*x^6-101164*x^5+67090*x^4+101990*x^3-19294*x^2-30510*x-290,6361*x^10+12922*x^9-69570*x^8-122748*x^7+245181*x^6+330582*x^5-339766*x^4-279899*x^3+151226*x^2+36990*x-2393,-3174*x^10-11232*x^9+27496*x^8+117910*x^7-57682*x^6-390842*x^5+19230*x^4+507116*x^3-4722*x^2-220990*x+37402,2992*x^10+13024*x^9-15868*x^8-126688*x^7-40132*x^6+368556*x^5+233668*x^4-412504*x^3-227130*x^2+147264*x+8442,2422*x^10+3590*x^9-30992*x^8-33970*x^7+136676*x^6+87858*x^5-246880*x^4-58018*x^3+153638*x^2-8554*x+62,-3296*x^10-12686*x^9+26072*x^8+134716*x^7-34604*x^6-458012*x^5-55940*x^4+633780*x^3+91372*x^2-310630*x-708,3640*x^10+10184*x^9-35912*x^8-104768*x^7+106952*x^6+333798*x^5-127116*x^4-402736*x^3+72296*x^2+148192*x-18366,-1700*x^10-3216*x^9+14864*x^8+18826*x^7-32398*x^6+21046*x^5+12010*x^4-159204*x^3+32938*x^2+104322*x-48372,4244*x^10+6168*x^9-51754*x^8-56004*x^7+215032*x^6+130844*x^5-369908*x^4-47444*x^3+222300*x^2-51478*x-3412,1014*x^10+8844*x^9+3056*x^8-91258*x^7-91602*x^6+292272*x^5+276850*x^4-361856*x^3-223160*x^2+147466*x+12210,-1804*x^10-7422*x^9+14336*x^8+81800*x^7-17612*x^6-292638*x^5-47148*x^4+419952*x^3+82754*x^2-209020*x-15750]];
E[317,2] = [x^15-x^14-22*x^13+22*x^12+188*x^11-184*x^10-786*x^9+723*x^8+1666*x^7-1315*x^6-1715*x^5+910*x^4+829*x^3-168*x^2-129*x+1, [9028,9028*x,-2929*x^14+6610*x^13+62146*x^12-141208*x^11-497546*x^10+1147126*x^9+1838946*x^8-4378801*x^7-3005667*x^6+7741472*x^5+1592783*x^4-5224775*x^3-153144*x^2+994572*x-29861,9028*x^2-18056,13774*x^14-21574*x^13-289662*x^12+465758*x^11+2307270*x^10-3819202*x^9-8563554*x^8+14681512*x^7+14433530*x^6-25983162*x^5-8822896*x^4+17245030*x^3+1692098*x^2-3153974*x+11572,3681*x^14-2292*x^13-76770*x^12+53106*x^11+608190*x^10-463248*x^9-2261134*x^8+1874047*x^7+3889837*x^6-3430452*x^5-2559385*x^4+2274997*x^3+502500*x^2-407702*x+2929,-12950*x^14+18574*x^13+274022*x^12-405890*x^11-2198614*x^10+3368554*x^9+8232426*x^8-13095188*x^7-14043794*x^6+23391474*x^5+8768112*x^4-15603122*x^3-1681650*x^2+2858842*x-8140,9028*x^3-36112*x,-2215*x^14+2126*x^13+46052*x^12-48728*x^11-363032*x^10+423434*x^9+1338856*x^8-1723911*x^7-2272699*x^6+3244722*x^5+1468925*x^4-2355755*x^3-318822*x^2+517324*x+23731,-7800*x^14+13366*x^13+162730*x^12-282242*x^11-1284786*x^10+2262810*x^9+4722910*x^8-8513954*x^7-7870352*x^6+14799514*x^5+4710690*x^4-9726548*x^3-839942*x^2+1788418*x-13774,186*x^14-3482*x^13-5634*x^12+71166*x^11+61822*x^10-554614*x^9-316222*x^8+2050324*x^7+785234*x^6-3600106*x^5-898688*x^4+2559630*x^3+429786*x^2-492842*x-12592,7247*x^14-9008*x^13-152168*x^12+198578*x^11+1209148*x^10-1662120*x^9-4465208*x^8+6514893*x^7+7421397*x^6-11729414*x^5-4260279*x^4+7900501*x^3+516994*x^2-1511366*x+56041,-8688*x^14+10332*x^13+182784*x^12-226372*x^11-1460388*x^10+1879712*x^9+5467128*x^8-7288292*x^7-9426572*x^6+12901488*x^5+6170340*x^4-8384040*x^3-1335076*x^2+1474732*x+25520,5624*x^14-10878*x^13-120990*x^12+235986*x^11+985754*x^10-1946274*x^9-3732338*x^8+7530906*x^7+6362224*x^6-13441138*x^5-3818622*x^4+9053900*x^3+683242*x^2-1678690*x+12950,7016*x^14-9416*x^13-148156*x^12+209284*x^11+1183552*x^10-1763348*x^9-4389844*x^8+6933420*x^7+7323796*x^6-12428956*x^5-4280748*x^4+8151372*x^3+701900*x^2-1422548*x+41756,9028*x^4-54168*x^2+36112,-5324*x^14+6718*x^13+110738*x^12-146830*x^11-869150*x^10+1217734*x^9+3153282*x^8-4727170*x^7-5078244*x^6+8421990*x^5+2666758*x^4-5587712*x^3-207002*x^2+1019786*x-41414,-89*x^14-2678*x^13+2*x^12+53388*x^11+15874*x^10-402134*x^9-122466*x^8+1417491*x^7+331997*x^6-2329800*x^5-340105*x^4+1517413*x^3+145204*x^2-262004*x+2215,-5113*x^14+8908*x^13+109516*x^12-193874*x^11-890148*x^10+1603764*x^9+3381644*x^8-6220667*x^7-5890799*x^6+11112178*x^5+3910273*x^4-7456363*x^3-1002954*x^2+1353770*x+58729,-21982*x^14+34278*x^13+468682*x^12-749902*x^11-3786930*x^10+6230514*x^9+14252554*x^8-24238576*x^7-24324546*x^6+43300014*x^5+15017244*x^4-28863802*x^3-2906178*x^2+5287974*x-15344,-6246*x^14+15290*x^13+133278*x^12-324718*x^11-1075662*x^10+2622894*x^9+4028790*x^8-9958064*x^7-6769750*x^6+17503770*x^5+3938204*x^4-11671934*x^3-633630*x^2+2096998*x-49812,-3296*x^14-1542*x^13+67074*x^12+26854*x^11-520390*x^10-170026*x^9+1915846*x^8+475358*x^7-3355516*x^6-579698*x^5+2390370*x^4+275592*x^3-461594*x^2+11402*x-186,32230*x^14-48186*x^13-679498*x^12+1048070*x^11+5423926*x^10-8657582*x^9-20145154*x^8+33508624*x^7+33828346*x^6-59648014*x^5-20202244*x^4+39787194*x^3+3413454*x^2-7402966*x+109040,-9123*x^14+11850*x^13+192684*x^12-259500*x^11-1545052*x^10+2157430*x^9+5797580*x^8-8400199*x^7-9979283*x^6+15029230*x^5+6424501*x^4-10040763*x^3-1298870*x^2+1806308*x-13105,-20420*x^14+36392*x^13+433600*x^12-785968*x^11-3484236*x^10+6450496*x^9+13006308*x^8-24823868*x^7-21855968*x^6+43991940*x^5+12909616*x^4-29250248*x^3-2223428*x^2+5338056*x-68572,1644*x^14-8352*x^13-35236*x^12+172956*x^11+281120*x^10-1361640*x^9-1006868*x^8+5047636*x^7+1476768*x^6-8729580*x^5-477960*x^4+5867276*x^3+15148*x^2-1095232*x+8688,21288*x^14-31576*x^13-450864*x^12+684732*x^11+3622272*x^10-5638148*x^9-13591248*x^8+21746828*x^7+23269412*x^6-38550452*x^5-14644868*x^4+25513552*x^3+2847812*x^2-4628652*x+33884,20646*x^14-34410*x^13-435786*x^12+740222*x^11+3485770*x^10-6048982*x^9-13000098*x^8+23183016*x^7+22042010*x^6-40956410*x^5-13600164*x^4+27227190*x^3+2629442*x^2-4979238*x+10656,6212*x^14-3684*x^13-130792*x^12+90960*x^11+1044752*x^10-834636*x^9-3897500*x^8+3501508*x^7+6634464*x^6-6523964*x^5-4117380*x^4+4254232*x^3+647968*x^2-751240*x+47260,-2400*x^14+6196*x^13+54932*x^12-135456*x^11-472404*x^10+1124732*x^9+1860852*x^8-4364860*x^7-3202916*x^6+7751692*x^5+1766812*x^4-5114364*x^3-243860*x^2+946820*x-7016,13366*x^14-22236*x^13-282400*x^12+481912*x^11+2256844*x^10-3968624*x^9-8373872*x^8+15326638*x^7+13974710*x^6-27275640*x^5-8178842*x^4+18286906*x^3+1417268*x^2-3467436*x+21574,9028*x^5-72224*x^3+108336*x,-21280*x^14+36280*x^13+449748*x^12-782144*x^11-3596412*x^10+6405360*x^9+13359616*x^8-24594004*x^7-22343808*x^6+43503224*x^5+13142708*x^4-28974180*x^3-2303664*x^2+5449000*x-1420,1394*x^14-6390*x^13-29702*x^12+131762*x^11+238118*x^10-1031382*x^9-877918*x^8+3791540*x^7+1420930*x^6-6463902*x^5-742872*x^4+4206594*x^3+125354*x^2-728210*x+5324,29576*x^14-51408*x^13-622988*x^12+1105200*x^11+4963300*x^10-9026164*x^9-18364544*x^8+34565552*x^7+30589788*x^6-60968012*x^5-17922180*x^4+40362392*x^3+3138632*x^2-7361472*x+37288,1663*x^14-6208*x^13-36758*x^12+130062*x^11+307554*x^10-1039288*x^9-1195874*x^8+3928093*x^7+2098563*x^6-6982184*x^5-1339447*x^4+4930495*x^3+360688*x^2-1043914*x-47373,20437*x^14-26396*x^13-432586*x^12+584610*x^11+3470350*x^10-4913836*x^9-12974902*x^8+19324327*x^7+22018405*x^6-34867768*x^5-13481329*x^4+23502269*x^3+2426160*x^2-4473918*x+8909,3795*x^14-2970*x^13-81388*x^12+71096*x^11+662972*x^10-637174*x^9-2523968*x^8+2627459*x^7+4388583*x^6-4858522*x^5-2803533*x^4+3235723*x^3+494786*x^2-600848*x+5113,-10502*x^14+13518*x^13+221422*x^12-295170*x^11-1769666*x^10+2441430*x^9+6597794*x^8-9418536*x^7-11191566*x^6+16548066*x^5+6871892*x^4-10596462*x^3-1125058*x^2+1796486*x-104264,27896*x^14-41654*x^13-591758*x^12+910170*x^11+4755398*x^10-7550918*x^9-17791410*x^8+29325374*x^7+30134388*x^6-52280914*x^5-18281562*x^4+34769996*x^3+3274882*x^2-6427858*x+49530,12784*x^14-16874*x^13-271178*x^12+371062*x^11+2183386*x^10-3098742*x^9-8219930*x^8+12119834*x^7+14168716*x^6-21782014*x^5-9092470*x^4+14652244*x^3+1853882*x^2-2752690*x-19986,9044*x^14-4134*x^13-187306*x^12+98586*x^11+1473630*x^10-880566*x^9-5442206*x^8+3636086*x^7+9290280*x^6-6773686*x^5-5988074*x^4+4544304*x^3+1047670*x^2-855546*x+6246,-28130*x^14+43996*x^13+595060*x^12-956600*x^11-4764736*x^10+7898896*x^9+17736964*x^8-30552070*x^7-29792526*x^6+54313692*x^5+17738786*x^4-36102450*x^3-3114600*x^2+6648032*x-51162,-5210*x^14+1526*x^13+110634*x^12-43074*x^11-900134*x^10+434418*x^9+3490810*x^8-1965028*x^7-6484406*x^6+3937942*x^5+5072328*x^4-2848470*x^3-1401898*x^2+560314*x+28480,-29552*x^14+38436*x^13+619640*x^12-837700*x^11-4921832*x^10+6931164*x^9+18220356*x^8-26865708*x^7-30620684*x^6+47884668*x^5+18489436*x^4-31984092*x^3-3077060*x^2+6003672*x-84344,-15956*x^14+29562*x^13+339010*x^12-635314*x^11-2727262*x^10+5187626*x^9+10206334*x^8-19866834*x^7-17265564*x^6+35072206*x^5+10457894*x^4-23305216*x^3-1988326*x^2+4266710*x-32230,11435*x^14-15622*x^13-239854*x^12+337988*x^11+1909042*x^10-2774746*x^9-7110182*x^8+10662339*x^7+12159461*x^6-18791572*x^5-7809617*x^4+12257485*x^3+1601348*x^2-2107968*x+19623,-11767*x^14+9994*x^13+245542*x^12-227084*x^11-1939498*x^10+1951142*x^9+7126146*x^8-7810151*x^7-11810309*x^6+14237384*x^5+6781725*x^4-9536905*x^3-760344*x^2+1832760*x-102959,-38628*x^14+55352*x^13+815924*x^12-1210196*x^11-6530500*x^10+10046832*x^9+24358876*x^8-39060456*x^7-41248044*x^6+69763056*x^5+25227340*x^4-46528832*x^3-4545376*x^2+8529684*x-107596,15972*x^14-15640*x^13-336728*x^12+354724*x^11+2693216*x^10-3043812*x^9-10060208*x^8+12163752*x^7+17139640*x^6-22110684*x^5-10668048*x^4+14704752*x^3+1907496*x^2-2702752*x+20420,-20072*x^14+33372*x^13+425680*x^12-721548*x^11-3420116*x^10+5928592*x^9+12797920*x^8-22852788*x^7-21708112*x^6+40639428*x^5+13289496*x^4-27309160*x^3-2571984*x^2+5123352*x+43580,10668*x^14-19732*x^13-228780*x^12+424792*x^11+1861632*x^10-3474108*x^9-7075232*x^8+13314448*x^7+12285424*x^6-23461476*x^5-7969444*x^4+15420352*x^3+1851112*x^2-2728700*x-52684,-36765*x^14+58408*x^13+778350*x^12-1267462*x^11-6244518*x^10+10447824*x^9+23348738*x^8-40362223*x^7-39644685*x^6+71736928*x^5+24423025*x^4-47773865*x^3-4727864*x^2+8818998*x-29497,-10288*x^14+17472*x^13+216396*x^12-379872*x^11-1721156*x^10+3141120*x^9+6355604*x^8-12196396*x^7-10556732*x^6+21864052*x^5+6141472*x^4-14799940*x^3-1052268*x^2+2780036*x-21288,68412*x^14-110848*x^13-1449872*x^12+2400804*x^11+11642536*x^10-19754464*x^9-43554752*x^8+76202012*x^7+73902300*x^6-135338668*x^5-45236020*x^4+90219276*x^3+8389164*x^2-16563344*x+149344,-25012*x^14+40182*x^13+527990*x^12-867650*x^11-4221626*x^10+7120206*x^9+15720634*x^8-27416038*x^7-26531368*x^6+48690002*x^5+16076574*x^4-32593892*x^3-2877194*x^2+6031370*x-46546,-1386*x^14+11094*x^13+28586*x^12-229174*x^11-212258*x^10+1798594*x^9+646286*x^8-6638716*x^7-486298*x^6+11407646*x^5-867624*x^4-7576942*x^3+770886*x^2+1349942*x-180504,2528*x^14+5872*x^13-45704*x^12-123104*x^11+308372*x^10+985132*x^9-989768*x^8-3714728*x^7+1644816*x^6+6536200*x^5-1398688*x^4-4501780*x^3+292376*x^2+848608*x-6212,-20588*x^14+27888*x^13+429952*x^12-600084*x^11-3404364*x^10+4901208*x^9+12598228*x^8-18758800*x^7-21341772*x^6+33026296*x^5+13425740*x^4-21723108*x^3-2636376*x^2+3918776*x-28076,-10236*x^14+20964*x^13+213656*x^12-439772*x^11-1683972*x^10+3501148*x^9+6150028*x^8-13071356*x^7-10051900*x^6+22508724*x^5+5631132*x^4-14557004*x^3-860180*x^2+2528480*x-81112,-37839*x^14+54342*x^13+799524*x^12-1187964*x^11-6405204*x^10+9865502*x^9+23944236*x^8-38401747*x^7-40767359*x^6+68803130*x^5+25377509*x^4-46291615*x^3-4889918*x^2+8659604*x+8847,-8870*x^14+11652*x^13+187860*x^12-255964*x^11-1509280*x^10+2131804*x^9+5663020*x^8-8293046*x^7-9699350*x^6+14743848*x^5+6123846*x^4-9663146*x^3-1221948*x^2+1745788*x-13366,22928*x^14-37766*x^13-485542*x^12+816114*x^11+3890462*x^10-6697266*x^9-14477786*x^8+25748894*x^7+24233724*x^6-45540342*x^5-14168618*x^4+30226696*x^3+2265878*x^2-5619462*x+85022,9028*x^6-90280*x^4+216672*x^2-72224,27428*x^14-50512*x^13-580640*x^12+1083636*x^11+4650956*x^10-8836608*x^9-17308968*x^8+33828056*x^7+29021540*x^6-59811824*x^5-17186852*x^4+39995560*x^3+3112448*x^2-7409420*x+5640,15000*x^14-18412*x^13-313984*x^12+404228*x^11+2489840*x^10-3366464*x^9-9208564*x^8+13108672*x^7+15520024*x^6-23352492*x^5-9609380*x^4+15337456*x^3+1873960*x^2-2746540*x+21280,13168*x^14-25810*x^13-279606*x^12+552350*x^11+2241998*x^10-4488090*x^9-8315078*x^8+17077622*x^7+13728548*x^6-29845286*x^5-7626978*x^4+19424084*x^3+1051490*x^2-3460306*x+129918,5652*x^14-12470*x^13-120382*x^12+269706*x^11+963414*x^10-2217702*x^9-3522886*x^8+8552866*x^7+5525696*x^6-15196142*x^5-2395462*x^4+10145152*x^3-80014*x^2-1854422*x+81434,8514*x^14-13336*x^13-178824*x^12+288956*x^11+1419300*x^10-2377112*x^9-5223000*x^8+9160114*x^7+8625890*x^6-16235772*x^5-4992538*x^4+10821566*x^3+972188*x^2-2080592*x-113194,-21832*x^14+27684*x^13+454528*x^12-596988*x^11-3584180*x^10+4882192*x^9+13182104*x^8-18683828*x^7-22075572*x^6+32800660*x^5+13448232*x^4-21379872*x^3-2392704*x^2+3852592*x-29576,-43941*x^14+82080*x^13+935284*x^12-1767450*x^11-7534496*x^10+14462504*x^9+28204800*x^8-55498171*x^7-47591579*x^6+98127462*x^5+28485117*x^4-65251763*x^3-5357246*x^2+12026006*x-20863,-4367*x^14+5184*x^13+93472*x^12-111866*x^11-765044*x^10+915512*x^9+2970676*x^8-3506977*x^7-5459333*x^6+6172198*x^5+4097375*x^4-4052765*x^3-1054938*x^2+691162*x-6093,7233*x^14-8212*x^13-147958*x^12+172690*x^11+1148094*x^10-1377444*x^9-4181730*x^8+5159795*x^7+7054225*x^6-8937976*x^5-4497889*x^4+5806573*x^3+677436*x^2-931474*x+125621,-5959*x^14+17028*x^13+134996*x^12-371806*x^11-1153428*x^10+3088580*x^9+4548376*x^8-12029637*x^7-7993113*x^6+21568126*x^5+4904599*x^4-14516113*x^3-1040502*x^2+2645282*x-20437,-24599*x^14+39270*x^13+518902*x^12-848764*x^11-4147138*x^10+6969342*x^9+15449378*x^8-26829811*x^7-26160989*x^6+47538156*x^5+16152565*x^4-31520517*x^3-3238424*x^2+5707608*x+24681,11051*x^14-15714*x^13-231426*x^12+337260*x^11+1841402*x^10-2748626*x^9-6879614*x^8+10507447*x^7+11913501*x^6-18519464*x^5-8038273*x^4+12261457*x^3+2042620*x^2-2212872*x-121253,-70332*x^14+101360*x^13+1482984*x^12-2205828*x^11-11845316*x^10+18223912*x^9+44075632*x^8-70494368*x^7-74391804*x^6+125197536*x^5+45257352*x^4-82859652*x^3-8223132*x^2+15136024*x-140512,3016*x^14-9622*x^13-64126*x^12+204710*x^11+509062*x^10-1656778*x^9-1825590*x^8+6304766*x^7+2737936*x^6-11139038*x^5-1039642*x^4+7581100*x^3+32150*x^2-1459022*x+10502,16978*x^14-24474*x^13-352930*x^12+529950*x^11+2774026*x^10-4364970*x^9-10131314*x^8+16908008*x^7+16673654*x^6-30359062*x^5-9561380*x^4+20821678*x^3+1303762*x^2-4049862*x+112392,30206*x^14-46602*x^13-640906*x^12+1010754*x^11+5155806*x^10-8326182*x^9-19348542*x^8+32136804*x^7+33051418*x^6-57039950*x^5-20649852*x^4+37876702*x^3+4071026*x^2-6927834*x+2792,17866*x^14-16926*x^13-377498*x^12+379286*x^11+3035394*x^10-3219006*x^9-11475894*x^8+12752760*x^7+20125754*x^6-23084862*x^5-13625608*x^4+15434626*x^3+2986078*x^2-2837890*x-57808,-4090*x^14+10070*x^13+89814*x^12-220006*x^11-746486*x^10+1828294*x^9+2877002*x^8-7129428*x^7-4971054*x^6+12832090*x^5+3018804*x^4-8744054*x^3-604978*x^2+1629150*x-12784,51932*x^14-77932*x^13-1100960*x^12+1699984*x^11+8846484*x^10-14081864*x^9-33131404*x^8+54632032*x^7+56321228*x^6-97399000*x^5-34534548*x^4+64937552*x^3+6166960*x^2-11969764*x+180012,17402*x^14-18918*x^13-366938*x^12+422794*x^11+2934854*x^10-3579410*x^9-10960306*x^8+14139104*x^7+18658674*x^6-25485154*x^5-11562144*x^4+16894062*x^3+1931106*x^2-3021074*x+90580,69676*x^14-107912*x^13-1472724*x^12+2339252*x^11+11792208*x^10-19257384*x^9-43977412*x^8+74272424*x^7+74336504*x^6-131700420*x^5-45158956*x^4+87331912*x^3+8138120*x^2-15976536*x+168808,15866*x^14-23800*x^13-337740*x^12+523704*x^11+2722976*x^10-4373216*x^9-10214080*x^8+17072054*x^7+17322742*x^6-30504164*x^5-10504150*x^4+20205170*x^3+1922192*x^2-3679932*x+28130,674*x^14-9948*x^13-15028*x^12+200364*x^11+127092*x^10-1526344*x^9-511056*x^8+5443266*x^7+1011666*x^6-8997264*x^5-1036182*x^4+5713818*x^3+738324*x^2-931676*x-95186,2908*x^14-902*x^13-62602*x^12+25638*x^11+516558*x^10-264198*x^9-2029890*x^8+1244738*x^7+3797824*x^6-2703426*x^5-2888110*x^4+2366008*x^3+608222*x^2-666414*x+5582,11793*x^14-26304*x^13-251426*x^12+558254*x^11+2030314*x^10-4506612*x^9-7635194*x^8+17113883*x^7+13028721*x^6-30183504*x^5-8133797*x^4+20446833*x^3+1840440*x^2-3863446*x-121055,8884*x^14-30504*x^13-187556*x^12+633944*x^11+1493596*x^10-5007516*x^9-5499612*x^8+18612948*x^7+9023788*x^6-32192244*x^5-5091772*x^4+21421548*x^3+1038936*x^2-3896552*x+29552,-34856*x^14+52400*x^13+736616*x^12-1137780*x^11-5897864*x^10+9380800*x^9+21999796*x^8-36223604*x^7-37217304*x^6+64255840*x^5+22677660*x^4-42535436*x^3-4162636*x^2+7819436*x-3972,-50854*x^14+84350*x^13+1074714*x^12-1823674*x^11-8596130*x^10+14980082*x^9+31959662*x^8-57700116*x^7-53566626*x^6+102389382*x^5+31619232*x^4-68335190*x^3-5240806*x^2+12715378*x-202124,-8494*x^14+7040*x^13+180548*x^12-157824*x^11-1467500*x^10+1338472*x^9+5664084*x^8-5290978*x^7-10378994*x^6+9527996*x^5+7818550*x^4-6251630*x^3-1990696*x^2+985204*x+4766,-4187*x^14+11716*x^13+86418*x^12-240738*x^11-670706*x^10+1877728*x^9+2394834*x^8-6891249*x^7-3754547*x^6+11801408*x^5+1851635*x^4-7878267*x^3-186888*x^2+1494738*x-11435,21048*x^14-32762*x^13-439954*x^12+704590*x^11+3482946*x^10-5754986*x^9-12858066*x^8+22041610*x^7+21619296*x^6-38889338*x^5-13334270*x^4+25763176*x^3+2697034*x^2-4723558*x-59806,16473*x^14-37032*x^13-353578*x^12+791698*x^11+2876118*x^10-6437576*x^9-10897770*x^8+24593911*x^7+18722345*x^6-43457140*x^5-11677937*x^4+29076025*x^3+2453644*x^2-5233518*x+37977,-30052*x^14+42360*x^13+630708*x^12-920088*x^11-5016864*x^10+7591680*x^9+18622704*x^8-29377900*x^7-31517796*x^6+52397968*x^5+19593680*x^4-35170036*x^3-3840700*x^2+6530072*x+17264,16724*x^14-33892*x^13-360380*x^12+731564*x^11+2939280*x^10-6002732*x^9-11132412*x^8+23106204*x^7+18967236*x^6-41019680*x^5-11377352*x^4+27477236*x^3+2040180*x^2-5090608*x+38628,-16028*x^14+18824*x^13+335512*x^12-413136*x^11-2657564*x^10+3442220*x^9+9785752*x^8-13440292*x^7-16242992*x^6+24176212*x^5+9401628*x^4-16480996*x^3-1274756*x^2+3397280*x-76136,41172*x^14-58128*x^13-863860*x^12+1262416*x^11+6863508*x^10-10407208*x^9-25396620*x^8+40178024*x^7+42604432*x^6-71259948*x^5-25649000*x^4+47167204*x^3+4427400*x^2-8595304*x+121172,103*x^14+10910*x^13+4816*x^12-226116*x^11-99268*x^10+1787638*x^9+624424*x^8-6688945*x^7-1625977*x^6+11807414*x^5+1823579*x^4-8325093*x^3-1073026*x^2+1623132*x+117793,13300*x^14-15904*x^13-279964*x^12+353420*x^11+2235344*x^10-2978672*x^9-8340732*x^8+11731840*x^7+14244748*x^6-21133984*x^5-9043640*x^4+14067704*x^3+1751256*x^2-2545708*x+20072,48928*x^14-70282*x^13-1033994*x^12+1543258*x^11+8272390*x^10-12867710*x^9-30777546*x^8+50240682*x^7+51699048*x^6-90111290*x^5-30764690*x^4+60448700*x^3+5168002*x^2-11297978*x+155010,-12352*x^14+22620*x^13+260568*x^12-489864*x^11-2073436*x^10+4033096*x^9+7615220*x^8-15582736*x^7-12386592*x^6+27785336*x^5+6668392*x^4-18727212*x^3-966772*x^2+3513952*x-28044,46476*x^14-72092*x^13-980836*x^12+1571524*x^11+7830512*x^10-13010320*x^9-29031612*x^8+50447748*x^7+48433672*x^6-89861036*x^5-28329548*x^4+59758876*x^3+4718512*x^2-11006916*x+131080,21643*x^14-30480*x^13-458632*x^12+667302*x^11+3683064*x^10-5548552*x^9-13781128*x^8+21605805*x^7+23390953*x^6-38628950*x^5-14317715*x^4+25750321*x^3+2642478*x^2-4772182*x+36765,33875*x^14-60464*x^13-720516*x^12+1300258*x^11+5810972*x^10-10626376*x^9-21867104*x^8+40750773*x^7+37484841*x^6-72120150*x^5-23650855*x^4+48204517*x^3+5007682*x^2-8936206*x-70059,-35392*x^14+53212*x^13+748192*x^12-1156476*x^11-5996416*x^10+9545532*x^9+22424324*x^8-36910580*x^7-38203492*x^6+65598456*x^5+23851876*x^4-43550620*x^3-4643972*x^2+7908864*x-57480,16834*x^14-36922*x^13-359926*x^12+793746*x^11+2904394*x^10-6483526*x^9-10819002*x^8+24822776*x^7+17843082*x^6-43727926*x^5-9750948*x^4+28800534*x^3+1476010*x^2-5093566*x+87776,-42436*x^14+55192*x^13+895740*x^12-1218920*x^11-7166656*x^10+10217080*x^9+26740136*x^8-40072092*x^7-45376888*x^6+72090560*x^5+27964356*x^4-48324384*x^3-5070128*x^2+8974492*x-68412,-6504*x^14+3520*x^13+139928*x^12-87940*x^11-1153552*x^10+813684*x^9+4533820*x^8-3428668*x^7-8563712*x^6+6366468*x^5+6962996*x^4-3985732*x^3-2196072*x^2+470032*x+58808,-26122*x^14+46546*x^13+554186*x^12-999814*x^11-4453542*x^10+8159166*x^9+16667834*x^8-31227408*x^7-28284798*x^6+55093814*x^5+17367356*x^4-36596626*x^3-3429530*x^2+6685382*x+3700,2965*x^14-12526*x^13-67168*x^12+267104*x^11+568776*x^10-2168046*x^9-2181620*x^8+8268309*x^7+3532601*x^6-14569298*x^5-1536363*x^4+9639941*x^3+73970*x^2-1568736*x+45043,9708*x^14-1906*x^13-198682*x^12+48310*x^11+1543570*x^10-443110*x^9-5636638*x^8+1822778*x^7+9585056*x^6-3244614*x^5-6315682*x^4+1919880*x^3+1117094*x^2-359298*x+1386,-24504*x^14+45476*x^13+520320*x^12-977468*x^11-4177472*x^10+7980740*x^9+15551596*x^8-30536160*x^7-25927432*x^6+53729240*x^5+14864996*x^4-35270024*x^3-2269076*x^2+6194412*x-120204,-4024*x^14+17280*x^13+82864*x^12-348812*x^11-639220*x^10+2666512*x^9+2252528*x^8-9569848*x^7-3408408*x^6+15984760*x^5+1432500*x^4-10311800*x^3-22624*x^2+1822380*x-97048,9580*x^14-13974*x^13-198882*x^12+306870*x^11+1554126*x^10-2562002*x^9-5577838*x^8+10037786*x^7+8696568*x^6-18137382*x^5-3885126*x^4+12393684*x^3-240482*x^2-2506818*x+131978,7300*x^14-22984*x^13-147148*x^12+466180*x^11+1113016*x^10-3583940*x^9-3873676*x^8+12957836*x^7+5953076*x^6-21882680*x^5-2988028*x^4+14431076*x^3+459992*x^2-2683928*x+20588,-71020*x^14+103076*x^13+1497708*x^12-2242492*x^11-11965752*x^10+18527256*x^9+44540644*x^8-71713428*x^7-75215420*x^6+127610660*x^5+45739944*x^4-84893992*x^3-8155512*x^2+15546176*x-169848,15528*x^14-23928*x^13-324444*x^12+511308*x^11+2562532*x^10-4144932*x^9-9392432*x^8+15730996*x^7+15454216*x^6-27426992*x^5-8775868*x^4+17854192*x^3+1296552*x^2-3295196*x+24268,18112*x^14-30268*x^13-386988*x^12+654260*x^11+3142204*x^10-5372836*x^9-11958484*x^8+20686740*x^7+20978196*x^6-36696936*x^5-14117292*x^4+24526804*x^3+3411804*x^2-4603652*x-34564,16503*x^14-32934*x^13-355506*x^12+708528*x^11+2903126*x^10-5797218*x^9-11044150*x^8+22272415*x^7+19044845*x^6-39516376*x^5-11858125*x^4+26478613*x^3+2302652*x^2-4872384*x+37839,-8178*x^14+7774*x^13+172578*x^12-177726*x^11-1384942*x^10+1534966*x^9+5222126*x^8-6163836*x^7-9148714*x^6+11232022*x^5+6330140*x^4-7440670*x^3-1694594*x^2+1330522*x+90884,-23950*x^14+37192*x^13+503976*x^12-805544*x^11-4013964*x^10+6628448*x^9+14867708*x^8-25575206*x^7-24869622*x^6+45463076*x^5+14766238*x^4-30442530*x^3-2578908*x^2+5777276*x-34278,16380*x^14-19492*x^13-339476*x^12+424336*x^11+2657876*x^10-3503780*x^9-9649528*x^8+13536384*x^7+15684524*x^6-23973492*x^5-8554048*x^4+15748344*x^3+697220*x^2-2881316*x+123268,-14838*x^14+18874*x^13+311698*x^12-420002*x^11-2478514*x^10+3543622*x^9+9171950*x^8-13964324*x^7-15390022*x^6+25152902*x^5+9362216*x^4-16741434*x^3-1767558*x^2+3042734*x-22928,-21999*x^14+28796*x^13+467668*x^12-634310*x^11-3773044*x^10+5303244*x^9+14221148*x^8-20747765*x^7-24464413*x^6+37245362*x^5+15430967*x^4-24962049*x^3-2829042*x^2+4690162*x-9849,9028*x^7-108336*x^5+361120*x^3-288896*x,-19814*x^14+45142*x^13+419030*x^12-958326*x^11-3342226*x^10+7728774*x^9+12301918*x^8-29246764*x^7-20040542*x^6+51108658*x^5+10797356*x^4-33803666*x^3-1641502*x^2+6235722*x-46984,-23084*x^14+22776*x^13+480220*x^12-505508*x^11-3789856*x^10+4249440*x^9+13997612*x^8-16673508*x^7-23744004*x^6+29852168*x^5+15036080*x^4-19625364*x^3-2801516*x^2+3543852*x-27428,-51828*x^14+84916*x^13+1095480*x^12-1837840*x^11-8772116*x^10+15117900*x^9+32720252*x^8-58350056*x^7-55320592*x^6+103888472*x^5+33577064*x^4-69832368*x^3-5981400*x^2+13172944*x-101044,39148*x^14-56544*x^13-825268*x^12+1234128*x^11+6586360*x^10-10229284*x^9-24455560*x^8+39718032*x^7+41060124*x^6-70890828*x^5-24597960*x^4+47387320*x^3+4380788*x^2-8941720*x-12160,-22346*x^14+32404*x^13+474320*x^12-714292*x^11-3817004*x^10+5980860*x^9+14323844*x^8-23453918*x^7-24445786*x^6+42240520*x^5+15244750*x^4-28379578*x^3-3099724*x^2+5229724*x+64874,-12642*x^14+10090*x^13+262654*x^12-233586*x^11-2065178*x^10+2034970*x^9+7557158*x^8-8209340*x^7-12529366*x^6+14956142*x^5+7441204*x^4-9864782*x^3-1248082*x^2+1828590*x-13168,-31588*x^14+37478*x^13+668934*x^12-837234*x^11-5364162*x^10+7086770*x^9+20000890*x^8-27988738*x^7-33630136*x^6+50448478*x^5+19884294*x^4-33529108*x^3-3154458*x^2+6178166*x-45186,-9606*x^14+16742*x^13+204766*x^12-362686*x^11-1653970*x^10+2982350*x^9+6222306*x^8-11473616*x^7-10605622*x^6+20225522*x^5+6487576*x^4-13178710*x^3-1155594*x^2+2266962*x-16300,22456*x^14-30920*x^13-478380*x^12+681680*x^11+3867884*x^10-5707816*x^9-14619824*x^8+22385352*x^7+25307792*x^6-40367056*x^5-16403484*x^4+27328512*x^3+3524120*x^2-5192056*x-47324,-4822*x^14+8484*x^13+101648*x^12-181332*x^11-810536*x^10+1469004*x^9+3004492*x^8-5558434*x^7-5039862*x^6+9608972*x^5+3073826*x^4-6085918*x^3-650240*x^2+985112*x-8514,15365*x^14-20464*x^13-325404*x^12+456878*x^11+2607784*x^10-3868412*x^9-9706040*x^8+15303963*x^7+16259147*x^6-27723790*x^5-9557457*x^4+18730395*x^3+1561118*x^2-3613810*x+60227,-53300*x^14+77040*x^13+1129292*x^12-1690164*x^11-9061496*x^10+14074480*x^9+33829796*x^8-54834564*x^7-57087996*x^6+97942376*x^5+34331608*x^4-65018760*x^3-6092448*x^2+11877040*x-52744,13302*x^14-28270*x^13-287014*x^12+606678*x^11+2352402*x^10-4946818*x^9-9026086*x^8+18906004*x^7+15922886*x^6-33236918*x^5-10737268*x^4+21776890*x^3+2656930*x^2-3651938*x+19160,38139*x^14-31418*x^13-800748*x^12+726412*x^11+6377360*x^10-6332826*x^9-23728828*x^8+25614127*x^7+40345047*x^6-46873698*x^5-25265453*x^4+31069843*x^3+4643918*x^2-5689252*x+43941,-31108*x^14+53392*x^13+660656*x^12-1152304*x^11-5315724*x^10+9446540*x^9+19920324*x^8-36292728*x^7-33832768*x^6+64131084*x^5+20680196*x^4-42334116*x^3-3787300*x^2+7528076*x-124132,-2509*x^14+9814*x^13+57724*x^12-204172*x^11-503124*x^10+1616790*x^9+2042112*x^8-6040097*x^7-3767533*x^6+10572338*x^5+2600099*x^4-7295685*x^3-763870*x^2+1518392*x+99113,-1456*x^14+19588*x^13+31580*x^12-399240*x^11-246688*x^10+3091068*x^9+799756*x^8-11279084*x^7-728716*x^6+19298020*x^5-787240*x^4-13004444*x^3+534876*x^2+2430260*x-76360,-979*x^14+11168*x^13+13564*x^12-211710*x^11-46572*x^10+1503408*x^9-69664*x^8-4995953*x^7+573419*x^6+7906706*x^5-775457*x^4-5318721*x^3+283670*x^2+1058678*x-7233,-19829*x^14+36322*x^13+419994*x^12-779064*x^11-3373786*x^10+6350062*x^9+12659490*x^8-24287485*x^7-21716239*x^6+42854788*x^5+13905059*x^4-28449131*x^3-3123336*x^2+5037248*x+65935,-29805*x^14+56690*x^13+624464*x^12-1202356*x^11-4948576*x^10+9692274*x^9+18228524*x^8-36714073*x^7-30304769*x^6+64420450*x^5+17869235*x^4-43105029*x^3-3208150*x^2+8158688*x-11859,24483*x^14-30740*x^13-516262*x^12+672310*x^11+4137802*x^10-5581108*x^9-15566494*x^8+21696401*x^7+27094251*x^6-38755880*x^5-18209679*x^4+25870471*x^3+4281484*x^2-4746782*x-143317,14671*x^14-22276*x^13-307586*x^12+477474*x^11+2443126*x^10-3885436*x^9-9044734*x^8+14820945*x^7+15190471*x^6-26034720*x^5-9135427*x^4+17154147*x^3+1574976*x^2-3148590*x+24599,44903*x^14-71646*x^13-958890*x^12+1562100*x^11+7766486*x^10-12938918*x^9-29358238*x^8+50217235*x^7+50606857*x^6-89627156*x^5-32288421*x^4+59873961*x^3+7001452*x^2-10901872*x-83773,-12253*x^14+17636*x^13+256914*x^12-378378*x^11-2041186*x^10+3080820*x^9+7565510*x^8-11752383*x^7-12764565*x^6+20631236*x^5+7812113*x^4-13590105*x^3-1345876*x^2+2506022*x-21277,-2040*x^14-7824*x^13+40824*x^12+157508*x^11-310812*x^10-1203024*x^9+1115428*x^8+4313504*x^7-1851728*x^6-7162060*x^5+1003896*x^4+4432972*x^3+354712*x^2-533604*x-98952,31028*x^14-64320*x^13-658524*x^12+1377100*x^11+5282824*x^10-11205320*x^9-19644332*x^8+42781308*x^7+32710956*x^6-75362028*x^5-18857532*x^4+50082096*x^3+3320248*x^2-9213340*x+70332,20116*x^14-34584*x^13-418276*x^12+731976*x^11+3286992*x^10-5884376*x^9-11995456*x^8+22215912*x^7+19716468*x^6-38817516*x^5-11385848*x^4+25821624*x^3+1922000*x^2-4940364*x+44692,14398*x^14-24810*x^13-304486*x^12+532394*x^11+2437498*x^10-4337874*x^9-9071390*x^8+16550352*x^7+15210134*x^6-28963334*x^5-8907244*x^4+18724810*x^3+1297782*x^2-3193406*x+205512,13415*x^14-11480*x^13-276822*x^12+252026*x^11+2174866*x^10-2098600*x^9-8077298*x^8+8197661*x^7+14156139*x^6-14789396*x^5-10082691*x^4+10116835*x^3+2469476*x^2-1949054*x-7541,-7496*x^14+20586*x^13+156434*x^12-417838*x^11-1241018*x^10+3213394*x^9+4632914*x^8-11611694*x^7-8032992*x^6+19555890*x^5+5371698*x^4-12771000*x^3-1197558*x^2+2302554*x-16978,-1499*x^14-1182*x^13+27422*x^12+21656*x^11-179170*x^10-151338*x^9+473906*x^8+526137*x^7-276881*x^6-1045284*x^5-641971*x^4+1207695*x^3+570136*x^2-366484*x-90607,-72188*x^14+106934*x^13+1529738*x^12-2343262*x^11-12279074*x^10+19495210*x^9+45880686*x^8-75922526*x^7-77587836*x^6+135715266*x^5+46952366*x^4-90509740*x^3-8402990*x^2+16755082*x-129266,49632*x^14-76132*x^13-1046436*x^12+1651424*x^11+8349752*x^10-13600220*x^9-30970040*x^8+52441596*x^7+51800892*x^6-92815996*x^5-30545608*x^4+61095948*x^3+5082748*x^2-10974748*x+163508,940*x^14+15554*x^13-13766*x^12-323414*x^11+68338*x^10+2566782*x^9-164358*x^8-9639002*x^7+408928*x^6+17014582*x^5-823434*x^4-11824836*x^3+163598*x^2+2246906*x-17866,1504*x^14-9420*x^13-38276*x^12+202972*x^11+356708*x^10-1665652*x^9-1485364*x^8+6419940*x^7+2626000*x^6-11429148*x^5-1463748*x^4+7678556*x^3+418844*x^2-1327016*x+45444,-19588*x^14+33582*x^13+412330*x^12-719690*x^11-3291038*x^10+5859746*x^9+12267502*x^8-22396782*x^7-20883692*x^6+39568482*x^5+13162786*x^4-26518856*x^3-2765734*x^2+4964986*x+44062,35376*x^14-44564*x^13-745960*x^12+972124*x^11+5971780*x^10-8046548*x^9-22376348*x^8+31166456*x^7+38482892*x^6-55344476*x^5-24774736*x^4+36397224*x^3+5000156*x^2-6353648*x-7448,-26000*x^14+41544*x^13+557480*x^12-916732*x^11-4526376*x^10+7687148*x^9+17085196*x^8-30197484*x^7-29108420*x^6+54528832*x^5+17679432*x^4-36884668*x^3-3245188*x^2+6879240*x-51932,5304*x^14-422*x^13-112462*x^12+24726*x^11+908322*x^10-323542*x^9-3449918*x^8+1634442*x^7+6063968*x^6-3267030*x^5-4003150*x^4+1812240*x^3+566466*x^2-5650*x+113730,-19604*x^14+24174*x^13+414562*x^12-533894*x^11-3324702*x^10+4478798*x^9+12441870*x^8-17605230*x^7-21182084*x^6+31829658*x^5+13034390*x^4-21583760*x^3-2192878*x^2+4046530*x-29894,-22080*x^14+44364*x^13+471068*x^12-944660*x^11-3808048*x^10+7640940*x^9+14341020*x^8-28989076*x^7-24497816*x^6+50742560*x^5+15146032*x^4-33567928*x^3-2947696*x^2+6291240*x-15796,-38236*x^14+60148*x^13+806380*x^12-1306880*x^11-6437000*x^10+10787924*x^9+23896676*x^8-41743712*x^7-40076480*x^6+74335384*x^5+23926752*x^4-49623284*x^3-4270968*x^2+9157012*x-69676,6888*x^14-12456*x^13-148356*x^12+269228*x^11+1203136*x^10-2212060*x^9-4466464*x^8+8521876*x^7+7103380*x^6-15106840*x^5-2969664*x^4+10030520*x^3-475116*x^2-1917944*x+226516,48326*x^14-76680*x^13-1015468*x^12+1653368*x^11+8075600*x^10-13541196*x^9-29872992*x^8+51994126*x^7+49944678*x^6-91921344*x^5-29710462*x^4+60974178*x^3+5214756*x^2-11221220*x+86458,24857*x^14-41042*x^13-525552*x^12+887340*x^11+4206972*x^10-7295254*x^9-15665512*x^8+28168317*x^7+26343453*x^6-50258834*x^5-15633867*x^4+33977273*x^3+2363306*x^2-6432436*x+254903,-9274*x^14-200*x^13+185536*x^12+380*x^11-1402328*x^10+18708*x^9+4955964*x^8-111218*x^7-8110954*x^6+119728*x^5+5100478*x^4+179578*x^3-818444*x^2-8240*x-674,-88262*x^14+143850*x^13+1869410*x^12-3123906*x^11-14988282*x^10+25768674*x^9+55869822*x^8-99597072*x^7-93959694*x^6+177020238*x^5+55949872*x^4-117753470*x^3-9730306*x^2+21558602*x-206996,12426*x^14-1678*x^13-259606*x^12+56002*x^11+2071142*x^10-613038*x^9-7839366*x^8+2883152*x^7+14089406*x^6-5776774*x^5-10424928*x^4+3894430*x^3+2625926*x^2-739914*x-59868,256*x^14+10594*x^13+4914*x^12-223710*x^11-124934*x^10+1795710*x^9+780686*x^8-6747486*x^7-1816168*x^6+11634742*x^5+1463002*x^4-7414636*x^3-638750*x^2+1094614*x-12914,-14511*x^14+8020*x^13+298808*x^12-186770*x^11-2336700*x^10+1634104*x^9+8587544*x^8-6618417*x^7-14675709*x^6+12091198*x^5+9715203*x^4-7935957*x^3-1882222*x^2+1400242*x-11793,71302*x^14-99764*x^13-1503192*x^12+2178420*x^11+12008372*x^10-18059208*x^9-44715892*x^8+70098738*x^7+75642342*x^6-124929852*x^5-46342226*x^4+83040194*x^3+8556232*x^2-15398888*x+18686,37484*x^14-68980*x^13-800784*x^12+1498804*x^11+6470804*x^10-12379116*x^9-24250896*x^8+47954460*x^7+40731584*x^6-85625048*x^5-23641764*x^4+57642284*x^3+3750080*x^2-10831756*x+159804,-43879*x^14+59854*x^13+928892*x^12-1310384*x^11-7458216*x^10+10895142*x^9+27953440*x^8-42440351*x^7-47719543*x^6+76026102*x^5+29590913*x^4-51077739*x^3-5055994*x^2+9655884*x-225181,17544*x^14-30216*x^13-370948*x^12+655064*x^11+2967296*x^10-5397020*x^9-11022716*x^8+20852792*x^7+18420200*x^6-37100380*x^5-10816476*x^4+24732988*x^3+1963628*x^2-4500396*x+34856,-179*x^14+3084*x^13+1272*x^12-67250*x^11+20616*x^10+565752*x^9-283688*x^8-2289117*x^7+1291975*x^6+4468158*x^5-2507941*x^4-3604905*x^3+1686054*x^2+857426*x-191473,65408*x^14-103198*x^13-1382906*x^12+2235050*x^11+11077470*x^10-18386834*x^9-41345342*x^8+70889806*x^7+70047500*x^6-125739790*x^5-42973838*x^4+83527592*x^3+8148558*x^2-15295710*x+115314,11286*x^14-12954*x^13-231482*x^12+282362*x^11+1794162*x^10-2340530*x^9-6465918*x^8+9125760*x^7+10537398*x^6-16503634*x^5-6051456*x^4+11476482*x^3+816214*x^2-2428682*x+53712,-1454*x^14-6320*x^13+29044*x^12+129372*x^11-224424*x^10-1012200*x^9+850184*x^8+3772010*x^7-1641614*x^6-6748660*x^5+1477910*x^4+5050830*x^3-441788*x^2-1090960*x+8494,-20632*x^14+29100*x^13+431576*x^12-637596*x^11-3406660*x^10+5299364*x^9+12427724*x^8-20586568*x^7-20144592*x^6+36567016*x^5+10872076*x^4-23928024*x^3-1444712*x^2+4277468*x+28100,-15341*x^14+25548*x^13+331084*x^12-559526*x^11-2710764*x^10+4653344*x^9+10356316*x^8-18103683*x^7-18023419*x^6+32254074*x^5+11551137*x^4-21230835*x^3-2411374*x^2+3664378*x-35059,44428*x^14-62050*x^13-934382*x^12+1343446*x^11+7444186*x^10-11039834*x^9-27634898*x^8+42482014*x^7+46550112*x^6-75113054*x^5-28175286*x^4+49632588*x^3+4786374*x^2-9106274*x+67374,-11714*x^14+23102*x^13+241534*x^12-474078*x^11-1882154*x^10+3685662*x^9+6823906*x^8-13446672*x^7-11211218*x^6+22763050*x^5+6609496*x^4-14751758*x^3-1187494*x^2+2655386*x-21048,79319*x^14-134496*x^13-1674752*x^12+2898038*x^11+13384092*x^10-23723360*x^9-49736256*x^8+91062681*x^7+83428197*x^6-161020246*x^5-49604391*x^4+106956725*x^3+8604330*x^2-19616790*x+287857,2975*x^14-11160*x^13-61792*x^12+233362*x^11+472452*x^10-1852276*x^9-1568360*x^8+6898629*x^7+1825473*x^6-11901510*x^5+522145*x^4+7871337*x^3-945366*x^2-1502526*x+189445,16409*x^14-15982*x^13-340136*x^12+356728*x^11+2664724*x^10-3010106*x^9-9690216*x^8+11805513*x^7+15840541*x^6-20907994*x^5-8936927*x^4+13182893*x^3+1147410*x^2-2303360*x+98759,12308*x^14-30436*x^13-258944*x^12+632912*x^11+2062112*x^10-4998168*x^9-7650304*x^8+18548836*x^7+12879588*x^6-31945500*x^5-7822716*x^4+21072408*x^3+1481336*x^2-3859444*x+30052,28108*x^14-47904*x^13-594248*x^12+1037152*x^11+4745532*x^10-8534908*x^9-17533320*x^8+32955976*x^7+28820244*x^6-58718484*x^5-15761024*x^4+39550104*x^3+1841636*x^2-7484336*x+183072,60088*x^14-103156*x^13-1268212*x^12+2215560*x^11+10135484*x^10-18081012*x^9-37703000*x^8+69225964*x^7+63468468*x^6-122221804*x^5-38196284*x^4+81233648*x^3+6809776*x^2-14863344*x+198468,-43538*x^14+52718*x^13+916306*x^12-1173142*x^11-7305002*x^10+9906186*x^9+27126182*x^8-39133576*x^7-45672062*x^6+70911766*x^5+27567904*x^4-47951442*x^3-4577262*x^2+9026942*x-179804,2796*x^14-17104*x^13-60520*x^12+355700*x^11+493068*x^10-2812256*x^9-1852048*x^8+10459656*x^7+3099392*x^6-18086392*x^5-1895516*x^4+12012456*x^3+704576*x^2-2143748*x+16028,29176*x^14-60908*x^13-630384*x^12+1308324*x^11+5168948*x^10-10687944*x^9-19792292*x^8+40998784*x^7+34577492*x^6-72650804*x^5-22368916*x^4+48668904*x^3+4838888*x^2-8881372*x+39128,-48900*x^14+73204*x^13+1030088*x^12-1586276*x^11-8217992*x^10+13052196*x^9+30531084*x^8-50315624*x^7-51398048*x^6+89182348*x^5+31036780*x^4-59113692*x^3-5493400*x^2+10837864*x-82012,18100*x^14-32810*x^13-385314*x^12+701070*x^11+3112442*x^10-5684050*x^9-11759998*x^8+21558462*x^7+20433908*x^6-37463430*x^5-13710278*x^4+24061704*x^3+3778250*x^2-4136910*x-223194,11013*x^14+7082*x^13-228382*x^12-118632*x^11+1806590*x^10+705382*x^9-6763414*x^8-1797575*x^7+11942859*x^6+2000224*x^5-8418823*x^4-1158413*x^3+1640436*x^2+131080*x-103,14336*x^14-11612*x^13-302608*x^12+273944*x^11+2419900*x^10-2431664*x^9-9005104*x^8+9983664*x^7+15134968*x^6-18449412*x^5-8938708*x^4+12202016*x^3+1253828*x^2-2258736*x+80308,37540*x^14-54108*x^13-790540*x^12+1178040*x^11+6308760*x^10-9744116*x^9-23479900*x^8+37792524*x^7+39771740*x^6-67512996*x^5-24614288*x^4+45343876*x^3+4832660*x^2-8510932*x-100460,15056*x^14-21596*x^13-321796*x^12+480696*x^11+2607664*x^10-4062796*x^9-9845936*x^8+16073448*x^7+16853292*x^6-29209780*x^5-10356204*x^4+19903352*x^3+1764844*x^2-3802188*x+86024,-21354*x^14+42422*x^13+466842*x^12-926074*x^11-3864958*x^10+7679862*x^9+14865738*x^8-29815000*x^7-25770970*x^6+53146830*x^5+15924220*x^4-35393310*x^3-3078074*x^2+6466722*x-48928,-69714*x^14+103624*x^13+1475768*x^12-2253464*x^11-11854104*x^10+18612680*x^9+44508900*x^8-72033338*x^7-76482894*x^6+128178544*x^5+48985454*x^4-85241678*x^3-10363960*x^2+15467640*x+42622,-11068*x^14+28288*x^13+239440*x^12-600844*x^11-1962936*x^10+4854764*x^9+7498224*x^8-18437056*x^7-13028392*x^6+32407664*x^5+8451996*x^4-21567668*x^3-2263408*x^2+3835948*x+117720,-32524*x^14+37818*x^13+682142*x^12-833366*x^11-5419570*x^10+6961978*x^9+20062974*x^8-27171770*x^7-33698140*x^6+48477258*x^5+20286170*x^4-31898336*x^3-3271682*x^2+5758830*x-169078,-25616*x^14+41636*x^13+549052*x^12-906976*x^11-4458736*x^10+7498524*x^9+16845600*x^8-28995344*x^7-28745096*x^6+51376792*x^5+17465716*x^4-33810092*x^3-3198948*x^2+6126484*x-46476,-31747*x^14+61350*x^13+671930*x^12-1306004*x^11-5391746*x^10+10568146*x^9+20194398*x^8-40176419*x^7-34488497*x^6+70697608*x^5+21719069*x^4-47324857*x^3-4590436*x^2+8892360*x+79229,64693*x^14-99302*x^13-1365544*x^12+2149104*x^11+10922796*x^10-17665378*x^9-40739560*x^8+68058161*x^7+69120965*x^6-120673826*x^5-42790859*x^4+80248161*x^3+8319570*x^2-14809284*x+37351,-34098*x^14+42190*x^13+709870*x^12-922022*x^11-5580494*x^10+7640534*x^9+20316010*x^8-29587768*x^7-33036610*x^6+52372442*x^5+18124308*x^4-34152738*x^3-2116422*x^2+6274798*x-223228,-26589*x^14+24734*x^13+555008*x^12-557528*x^11-4393376*x^10+4758646*x^9+16259148*x^8-18950909*x^7-27574525*x^6+34444770*x^5+17378267*x^4-23074693*x^3-3245206*x^2+4299816*x-33875,85336*x^14-126448*x^13-1793012*x^12+2737396*x^11+14271348*x^10-22502288*x^9-52939584*x^8+86675396*x^7+89178420*x^6-153553340*x^5-54254584*x^4+101761716*x^3+9750748*x^2-18506096*x+141912,38396*x^14-65376*x^13-810644*x^12+1417024*x^11+6475716*x^10-11676028*x^9-24033372*x^8+45152372*x^7+40171440*x^6-80573508*x^5-23626844*x^4+54295876*x^3+4067544*x^2-10183120*x+77968,-5912*x^14+8552*x^13+129568*x^12-191392*x^11-1081624*x^10+1631828*x^9+4239300*x^8-6547916*x^7-7652624*x^6+12212024*x^5+5159320*x^4-8822964*x^3-893968*x^2+1834740*x-21556,-20088*x^14+10422*x^13+423398*x^12-260398*x^11-3386070*x^10+2412522*x^9+12651794*x^8-10202362*x^7-21591216*x^6+19119362*x^5+13481594*x^4-12479376*x^3-2265454*x^2+2259362*x-16834,2823*x^14-5742*x^13-72186*x^12+129628*x^11+707866*x^10-1113302*x^9-3337990*x^8+4475179*x^7+7774993*x^6-8244480*x^5-8335305*x^4+5543121*x^3+3607508*x^2-608524*x-287437,-124068*x^14+183844*x^13+2614416*x^12-3990296*x^11-20876216*x^10+32894368*x^9+77718640*x^8-127082536*x^7-131517380*x^6+225863952*x^5+80764416*x^4-150329236*x^3-14933084*x^2+27584032*x-256252,-40284*x^14+65676*x^13+848320*x^12-1422108*x^11-6755616*x^10+11697620*x^9+24972896*x^8-45100652*x^7-41499612*x^6+80014740*x^5+24094556*x^4-53141076*x^3-3954836*x^2+9581576*x-210120,-2984*x^14-3160*x^13+55148*x^12+69200*x^11-383052*x^10-578324*x^9+1273724*x^8+2271952*x^7-2186292*x^6-4191364*x^5+1932908*x^4+3195744*x^3-622640*x^2-780208*x+6504,27894*x^14-42830*x^13-589222*x^12+932266*x^11+4706050*x^10-7699838*x^9-17426550*x^8+29730216*x^7+28862510*x^6-52487658*x^5-16195216*x^4+34075566*x^3+1949406*x^2-5921990*x+289684,70448*x^14-100862*x^13-1481110*x^12+2192694*x^11+11795970*x^10-18104470*x^9-43782470*x^8+70066530*x^7+73806120*x^6-124811878*x^5-44978754*x^4+83413392*x^3+8051274*x^2-15428778*x+119214,40823*x^14-60210*x^13-863700*x^12+1308352*x^11+6923676*x^10-10794854*x^9-25858948*x^8+41718127*x^7+43820339*x^6-74118250*x^5-26822905*x^4+49307135*x^3+4970878*x^2-9116232*x-15351,-9561*x^14-1938*x^13+201874*x^12+11356*x^11-1622486*x^10+148870*x^9+6124614*x^8-1407089*x^7-10670323*x^6+3548612*x^5+6941791*x^4-2384015*x^3-1070616*x^2+427528*x-2965,-111768*x^14+171274*x^13+2361102*x^12-3706858*x^11-18916702*x^10+30473862*x^9+70782966*x^8-117445494*x^7-120944680*x^6+208407478*x^5+76326198*x^4-138787492*x^3-15309470*x^2+25418538*x-46506,10574*x^14-7294*x^13-222438*x^12+176814*x^11+1767678*x^10-1603338*x^9-6488678*x^8+6688960*x^7+10494002*x^6-12481754*x^5-5179152*x^4+8223046*x^3-270126*x^2-1446166*x+351300,-60404*x^14+97908*x^13+1280696*x^12-2118920*x^11-10294780*x^10+17419576*x^9+38609900*x^8-67120784*x^7-65953640*x^6+118996560*x^5+41341332*x^4-78952220*x^3-8356256*x^2+14314896*x-45344,20972*x^14-18768*x^13-438380*x^12+429280*x^11+3472004*x^10-3708548*x^9-12819768*x^8+14896232*x^7+21506480*x^6-27159364*x^5-12971384*x^4+18044740*x^3+2077740*x^2-3281220*x+24504,-43056*x^14+78836*x^13+914520*x^12-1690868*x^11-7351664*x^10+13769076*x^9+27466192*x^8-52509884*x^7-46272996*x^6+91987404*x^5+27712912*x^4-60034340*x^3-5356192*x^2+10665448*x-20420,8200*x^14-17408*x^13-168876*x^12+363500*x^11+1309352*x^10-2880600*x^9-4680960*x^8+10725032*x^7+7403568*x^6-18541060*x^5-3852584*x^4+12316832*x^3+561596*x^2-2313360*x+16448,-69074*x^14+114310*x^13+1454198*x^12-2458390*x^11-11586390*x^10+20084346*x^9+42928410*x^8-76946724*x^7-71823782*x^6+135812614*x^5+42678304*x^4-89997026*x^3-7534858*x^2+16423402*x-199564,-4394*x^14+11878*x^13+96110*x^12-246914*x^11-799282*x^10+1952042*x^9+3111446*x^8-7263712*x^7-5539682*x^6+12544574*x^5+3675884*x^4-8182302*x^3-897378*x^2+1367798*x-9580,-50284*x^14+85474*x^13+1065166*x^12-1855602*x^11-8534378*x^10+15306662*x^9+31733366*x^8-59191866*x^7-52977804*x^6+105382962*x^5+30764126*x^4-70483120*x^3-5058190*x^2+13135446*x-105438,25492*x^14-42324*x^13-554324*x^12+940784*x^11+4567988*x^10-7938292*x^9-17516520*x^8+31308876*x^7+30400364*x^6-56521120*x^5-19063404*x^4+37854508*x^3+3815224*x^2-6875264*x+48852,-23898*x^14+18114*x^13+496722*x^12-400502*x^11-3918098*x^10+3336650*x^9+14477058*x^8-12867540*x^7-24626602*x^6+22224174*x^5+15731976*x^4-13290150*x^3-2806622*x^2+2045426*x-215980,32056*x^14-64732*x^13-680052*x^12+1386008*x^11+5459576*x^10-11281076*x^9-20365968*x^8+43103900*x^7+34219360*x^6-76059356*x^5-20265792*x^4+50720068*x^3+3614816*x^2-9331428*x+71020,-45227*x^14+75236*x^13+958948*x^12-1616318*x^11-7712400*x^10+13193992*x^9+28966524*x^8-50532717*x^7-49630025*x^6+89289958*x^5+31216391*x^4-59521621*x^3-5954850*x^2+11018182*x-170229,12072*x^14-24756*x^13-257620*x^12+522812*x^11+2080164*x^10-4189720*x^9-7795804*x^8+15727280*x^7+13096128*x^6-27162796*x^5-7538552*x^4+17537848*x^3+1033868*x^2-3029580*x+146696,7492*x^14-9396*x^13-155876*x^12+204732*x^11+1219060*x^10-1692092*x^9-4368136*x^8+6539636*x^7+6762184*x^6-11577852*x^5-2900784*x^4+7608436*x^3-329408*x^2-1394640*x+59428,-12156*x^14+11476*x^13+255796*x^12-262852*x^11-2040228*x^10+2277548*x^9+7591764*x^8-9196396*x^7-12879656*x^6+16944788*x^5+8044884*x^4-11603044*x^3-1560836*x^2+2301884*x-18112,-68496*x^14+106596*x^13+1448048*x^12-2312376*x^11-11602600*x^10+19052044*x^9+43359740*x^8-73553168*x^7-73776108*x^6+130582600*x^5+46076388*x^4-86722032*x^3-9430728*x^2+15898844*x+78548,59247*x^14-101124*x^13-1253586*x^12+2176490*x^11+10049742*x^10-17803796*x^9-37547726*x^8+68354341*x^7+63719787*x^6-121161740*x^5-39294135*x^4+81204895*x^3+7679956*x^2-15152482*x-34197,67742*x^14-121118*x^13-1435402*x^12+2612162*x^11+11501290*x^10-21401546*x^9-42748738*x^8+82186516*x^7+71263454*x^6-145243322*x^5-41154644*x^4+96168182*x^3+6658994*x^2-17532662*x+193052,-404*x^14-7338*x^13+2190*x^12+152522*x^11+30214*x^10-1205782*x^9-251142*x^8+4475834*x^7+477952*x^6-7695130*x^5+1310*x^4+5084968*x^3-43382*x^2-964078*x+8178,-23670*x^14+25786*x^13+496514*x^12-572166*x^11-3952982*x^10+4812454*x^9+14736826*x^8-18917152*x^7-25308318*x^6+34065618*x^5+16643020*x^4-22852314*x^3-3959578*x^2+4250170*x+248816,30982*x^14-46228*x^13-654364*x^12+1000564*x^11+5240208*x^10-8220600*x^9-19585396*x^8+31617170*x^7+33367526*x^6-55795708*x^5-20895722*x^4+36601934*x^3+4197572*x^2-6615404*x+50682,22088*x^14-8062*x^13-458642*x^12+192718*x^11+3630778*x^10-1714226*x^9-13602142*x^8+6988998*x^7+24060192*x^6-12634458*x^5-17239526*x^4+7799112*x^3+4128318*x^2-1196134*x-209038,-3112*x^14+20884*x^13+63976*x^12-421564*x^11-489860*x^10+3225152*x^9+1693644*x^8-11604556*x^7-2433792*x^6+19537652*x^5+842544*x^4-12881800*x^3-129476*x^2+2236288*x-16380,-64716*x^14+94806*x^13+1363110*x^12-2062018*x^11-10876394*x^10+17036158*x^9+40430478*x^8-65975458*x^7-68151692*x^6+117583058*x^5+41207514*x^4-78560604*x^3-6982622*x^2+14487726*x-358642,-41820*x^14+60794*x^13+877518*x^12-1321198*x^11-6967494*x^10+10903814*x^9+25719122*x^8-42167702*x^7-42826516*x^6+74995730*x^5+25098382*x^4-49920248*x^3-3981806*x^2+9301894*x-155206,169372*x^14-267972*x^13-3580720*x^12+5807680*x^11+28678400*x^10-47821096*x^9-106996172*x^8+184634948*x^7+181038500*x^6-328378468*x^5-110430196*x^4+219622800*x^3+20377908*x^2-40870764*x+217580,6797*x^14-16310*x^13-150332*x^12+362768*x^11+1255428*x^10-3070066*x^9-4842488*x^8+12185921*x^7+8316677*x^6-22297318*x^5-4942959*x^4+15408129*x^3+994330*x^2-2847720*x+21999,55200*x^14-70284*x^13-1164128*x^12+1535588*x^11+9312476*x^10-12724068*x^9-34800788*x^8+49284272*x^7+59411856*x^6-87340844*x^5-37449792*x^4+57133744*x^3+7387296*x^2-10175880*x-37248,9028*x^8-126392*x^6+541680*x^4-722240*x^2+144448,46671*x^14-83824*x^13-997882*x^12+1823126*x^11+8082802*x^10-15075056*x^9-30470594*x^8+58480989*x^7+51976659*x^6-104605744*x^5-31877391*x^4+70485579*x^3+6156568*x^2-12932046*x+94071,25328*x^14-16878*x^13-522418*x^12+382806*x^11+4082998*x^10-3271886*x^9-14921242*x^8+12969582*x^7+25053248*x^6-23183654*x^5-15772926*x^4+14784304*x^3+2906970*x^2-2602990*x+19814,10758*x^14-2924*x^13-225536*x^12+80488*x^11+1798208*x^10-790168*x^9-6737964*x^8+3438430*x^7+11722678*x^6-6393916*x^5-7918674*x^4+3759618*x^3+1714116*x^2-449088*x-35042,-55164*x^14+73396*x^13+1163620*x^12-1617336*x^11-9299928*x^10+13526804*x^9+34634160*x^8-52942172*x^7-58546372*x^6+95070668*x^5+35754780*x^4-63656000*x^3-6559156*x^2+11813576*x+11804,-7658*x^14+11096*x^13+167748*x^12-248588*x^11-1396792*x^10+2115380*x^9+5436908*x^8-8426818*x^7-9652614*x^6+15426256*x^5+6295962*x^4-10626726*x^3-1358128*x^2+2132752*x+111062,33088*x^14-44736*x^13-697624*x^12+971548*x^11+5581548*x^10-8016556*x^9-20878412*x^8+31024856*x^7+35734652*x^6-55307956*x^5-22668888*x^4+36984012*x^3+4465840*x^2-6786856*x+51828,6020*x^14+5298*x^13-117550*x^12-112534*x^11+870998*x^10+925342*x^9-3073518*x^8-3671946*x^7+5310760*x^6+7154090*x^5-4173026*x^4-6148552*x^3+1351602*x^2+1665466*x-149570,-47396*x^14+72812*x^13+1000840*x^12-1581920*x^11-8005732*x^10+13047696*x^9+29831156*x^8-50377788*x^7-50451256*x^6+89245844*x^5+30981400*x^4-58747816*x^3-6112776*x^2+10531012*x-81708,-28*x^14-7436*x^13+8420*x^12+137812*x^11-140164*x^10-947352*x^9+846824*x^8+3004528*x^7-2187852*x^6-4438204*x^5+2251236*x^4+2628284*x^3-681224*x^2-284696*x-50428,10058*x^14-17292*x^13-222680*x^12+384044*x^11+1869196*x^10-3240112*x^9-7297760*x^8+12782650*x^7+12855530*x^6-23078640*x^5-8044718*x^4+15425110*x^3+1475596*x^2-2817760*x+22346,16352*x^14-17900*x^13-340084*x^12+399644*x^11+2662160*x^10-3385828*x^9-9570084*x^8+13435280*x^7+14950180*x^6-24565768*x^5-6636848*x^4+17085624*x^3-868748*x^2-3500048*x+397848,-28888*x^14+36150*x^13+603750*x^12-793182*x^11-4775154*x^10+6596726*x^9+17560982*x^8-25623038*x^7-29125184*x^6+45450746*x^5+16893394*x^4-29616032*x^3-2398246*x^2+5276626*x-247194,-23526*x^14+42748*x^13+498996*x^12-921728*x^11-4015640*x^10+7558456*x^9+15104020*x^8-29111490*x^7-26008290*x^6+51799520*x^5+16828074*x^4-34803490*x^3-3973836*x^2+6282440*x+79330,5890*x^14-26002*x^13-142298*x^12+574382*x^11+1274578*x^10-4827278*x^9-5150614*x^8+18995472*x^7+8910258*x^6-34289126*x^5-4784028*x^4+23031994*x^3+871382*x^2-4120038*x+31588,-67408*x^14+114380*x^13+1422664*x^12-2460780*x^11-11362804*x^10+20112556*x^9+42182840*x^8-77088132*x^7-70584484*x^6+136132732*x^5+41536156*x^4-90339972*x^3-6765856*x^2+16593304*x-345356,-4168*x^14+18374*x^13+89410*x^12-387454*x^11-711982*x^10+3107394*x^9+2517294*x^8-11707758*x^7-3457760*x^6+20405570*x^5+353674*x^4-13482524*x^3+813182*x^2+2453370*x-153262,-36600*x^14+56120*x^13+772260*x^12-1217072*x^11-6163684*x^10+10022300*x^9+22832544*x^8-38651796*x^7-37936388*x^6+68462252*x^5+21619620*x^4-45233696*x^3-2949228*x^2+8406044*x-201788,-8464*x^14+15652*x^13+187648*x^12-353844*x^11-1575912*x^10+3030592*x^9+6149664*x^8-12103904*x^7-10837416*x^6+22108556*x^5+6893552*x^4-15091904*x^3-1419448*x^2+2849500*x-22456,-117206*x^14+178670*x^13+2476458*x^12-3880706*x^11-19822578*x^10+32009970*x^9+73910186*x^8-123693456*x^7-124968854*x^6+219720074*x^5+76131472*x^4-145886638*x^3-13992054*x^2+26622442*x-153300,-13366*x^14+22236*x^13+282400*x^12-481912*x^11-2256844*x^10+3968624*x^9+8373872*x^8-15326638*x^7-13983738*x^6+27275640*x^5+8287178*x^4-18295934*x^3-1769360*x^2+3530632*x+231210,11109*x^14-35778*x^13-237260*x^12+743724*x^11+1913780*x^10-5869018*x^9-7146064*x^8+21743289*x^7+11914069*x^6-37319290*x^5-6899123*x^4+24495913*x^3+1557202*x^2-4659132*x-102561,-5099*x^14+12626*x^13+118848*x^12-280836*x^11-1041252*x^10+2370850*x^9+4195068*x^8-9338943*x^7-7518815*x^6+16793518*x^5+4748245*x^4-11176467*x^3-1032490*x^2+2042312*x-15365,-34382*x^14+51244*x^13+731432*x^12-1111208*x^11-5911704*x^10+9149660*x^9+22386364*x^8-35291690*x^7-39014682*x^6+62580004*x^5+25791878*x^4-41443578*x^3-5643704*x^2+7333048*x-71154,67404*x^14-98676*x^13-1426620*x^12+2152880*x^11+11435640*x^10-17828388*x^9-42662872*x^8+69077460*x^7+72004020*x^6-122679212*x^5-43412224*x^4+80852996*x^3+7708048*x^2-14633628*x+112452,7141*x^14+9916*x^13-148666*x^12-183150*x^11+1189254*x^10+1260664*x^9-4569426*x^8-4032741*x^7+8575009*x^6+6171156*x^5-7120761*x^4-4199167*x^3+2323748*x^2+716394*x-265771,-14968*x^14+5630*x^13+314034*x^12-148374*x^11-2499250*x^10+1429286*x^9+9288658*x^8-6238246*x^7-15744788*x^6+12075662*x^5+9672070*x^4-8370428*x^3-1417202*x^2+1735118*x-13302,47138*x^14-75554*x^13-985162*x^12+1620082*x^11+7783394*x^10-13195754*x^9-28549718*x^8+50416052*x^7+47113506*x^6-88800222*x^5-27180200*x^4+58868554*x^3+4387830*x^2-10948226*x+208384,94603*x^14-125850*x^13-1983214*x^12+2742128*x^11+15753742*x^10-22676582*x^9-58369970*x^8+87801815*x^7+98462245*x^6-156111992*x^5-60606881*x^4+103530213*x^3+11432592*x^2-19088140*x+3587,19806*x^14-31790*x^13-417914*x^12+703646*x^11+3325394*x^10-5913978*x^9-12196678*x^8+23255528*x^7+19701758*x^6-41914554*x^5-10098688*x^4+28091846*x^3+682066*x^2-5232414*x+276332,22284*x^14-23720*x^13-467928*x^12+532580*x^11+3722668*x^10-4530564*x^9-13801644*x^8+17993160*x^7+23224064*x^6-32670024*x^5-14025836*x^4+22001232*x^3+2301932*x^2-4137064*x+31108,-3272*x^14+17084*x^13+68240*x^12-351148*x^11-528576*x^10+2741000*x^9+1830340*x^8-10065872*x^7-2546808*x^6+17226260*x^5+605832*x^4-11433408*x^3+128116*x^2+2160980*x-78840,16039*x^14-7842*x^13-335918*x^12+192300*x^11+2685222*x^10-1760986*x^9-10167442*x^8+7426415*x^7+18191669*x^6-14047232*x^5-13207245*x^4+9421621*x^3+3206756*x^2-1606872*x+14695,-49328*x^14+74324*x^13+1040140*x^12-1615488*x^11-8305984*x^10+13332024*x^9+30880044*x^8-51521876*x^7-51999644*x^6+91433332*x^5+31405232*x^4-60475032*x^3-5648008*x^2+11001372*x-112544,18132*x^14-452*x^13-367208*x^12+27040*x^11+2823164*x^10-344660*x^9-10226396*x^8+1696980*x^7+17383380*x^6-3284280*x^5-11679484*x^4+1741900*x^3+2185652*x^2-264184*x+1456,4276*x^14+18046*x^13-81906*x^12-372386*x^11+605178*x^10+2930070*x^9-2231742*x^8-10903034*x^7+4483340*x^6+19124582*x^5-4734526*x^4-13378868*x^3+1716378*x^2+2522914*x-184882,-4277*x^14+8450*x^13+105744*x^12-207900*x^11-972916*x^10+1915730*x^9+4075324*x^8-8115157*x^7-7489129*x^6+15421510*x^5+4567947*x^4-10517885*x^3-460666*x^2+1729424*x-250263,30779*x^14-52742*x^13-658772*x^12+1148812*x^11+5345748*x^10-9518626*x^9-20212408*x^8+37043519*x^7+34622687*x^6-66655322*x^5-21176753*x^4+45613343*x^3+3447690*x^2-8864524*x+240301,16493*x^14-16244*x^13-342826*x^12+354066*x^11+2701526*x^10-2926104*x^9-9951118*x^8+11318875*x^7+16779653*x^6-20101676*x^5-10404741*x^4+13314905*x^3+1705976*x^2-2492006*x+19829,14868*x^14-23804*x^13-318140*x^12+526420*x^11+2573232*x^10-4419968*x^9-9629796*x^8+17357552*x^7+16023988*x^6-31237732*x^5-8892388*x^4+20937592*x^3+1160652*x^2-3900380*x+27304,38803*x^14-65302*x^13-816638*x^12+1398376*x^11+6515010*x^10-11375366*x^9-24261810*x^8+43409635*x^7+41213101*x^6-76382592*x^5-25791677*x^4+50532421*x^3+5232452*x^2-9147268*x+70679,110920*x^14-173358*x^13-2342114*x^12+3758666*x^11+18739494*x^10-30952594*x^9-69892362*x^8+119444326*x^7+118464260*x^6-211980142*x^5-73010798*x^4+140702300*x^3+14045754*x^2-25616346*x+198466,-6257*x^14+22364*x^13+133684*x^12-465002*x^11-1076236*x^10+3677144*x^9+3995192*x^8-13694427*x^7-6560735*x^6+23778666*x^5+3590941*x^4-16014923*x^3-633638*x^2+3014990*x-24483,54068*x^14-94912*x^13-1146148*x^12+2043712*x^11+9196776*x^10-16717756*x^9-34308988*x^8+64109152*x^7+57742420*x^6-113175148*x^5-34370836*x^4+74860364*x^3+5814780*x^2-13463804*x+316440,41593*x^14-63364*x^13-883092*x^12+1382506*x^11+7108304*x^10-11452012*x^9-26684944*x^8+44408207*x^7+45579623*x^6-79050974*x^5-28501593*x^4+52453751*x^3+5792986*x^2-9498058*x-64033,-102836*x^14+146424*x^13+2171364*x^12-3201472*x^11-17362740*x^10+26571268*x^9+64620316*x^8-103208692*x^7-108840940*x^6+183844864*x^5+65575368*x^4-121680696*x^3-11696288*x^2+22142232*x-169748,-26743*x^14+28976*x^13+574234*x^12-675278*x^11-4676766*x^10+5935520*x^9+17752366*x^8-24201541*x^7-30579711*x^6+44720224*x^5+19012231*x^4-30223135*x^3-3358168*x^2+5708714*x-44903,36395*x^14-59296*x^13-774132*x^12+1283594*x^11+6246960*x^10-10552904*x^9-23546096*x^8+40650601*x^7+40542305*x^6-72026342*x^5-25993971*x^4+47822409*x^3+5911494*x^2-8835722*x-253183,-16719*x^14+18776*x^13+354040*x^12-412142*x^11-2856536*x^10+3431904*x^9+10865764*x^8-13365961*x^7-19308461*x^6+23837146*x^5+13636671*x^4-15711053*x^3-3637722*x^2+2823830*x+254759,15196*x^14-38584*x^13-327784*x^12+820828*x^11+2667496*x^10-6629688*x^9-10017456*x^8+25065288*x^7+16679084*x^6-43473824*x^5-9415556*x^4+27905508*x^3+1902828*x^2-4716960*x-68096,-9864*x^14-4056*x^13+202388*x^12+72708*x^11-1578384*x^10-488012*x^9+5788424*x^8+1546912*x^7-9844660*x^6-2494704*x^5+6289372*x^4+2045872*x^3-876324*x^2-362112*x+2040,-83622*x^14+118630*x^13+1754782*x^12-2574934*x^11-13937742*x^10+21220430*x^9+51499378*x^8-81925708*x^7-85996698*x^6+145410678*x^5+50897560*x^4-96578894*x^3-8253726*x^2+17955586*x-291536,107372*x^14-178628*x^13-2271484*x^12+3861216*x^11+18194464*x^10-31704148*x^9-67803200*x^8+122007044*x^7+114223400*x^6-216039584*x^5-68668088*x^4+143317340*x^3+12445628*x^2-26199104*x+249996,8316*x^14-30452*x^13-171516*x^12+634748*x^11+1318688*x^10-5031700*x^9-4572872*x^8+18788028*x^7+6583156*x^6-32731108*x^5-2260412*x^4+22196496*x^3+195636*x^2-4325948*x-135756,-14468*x^14+24276*x^13+289424*x^12-494816*x^11-2183032*x^10+3815720*x^9+7672044*x^8-13796788*x^7-12364976*x^6+23113092*x^5+7516064*x^4-14754164*x^3-1560876*x^2+2639656*x-20116,79216*x^14-136378*x^13-1684082*x^12+2952622*x^11+13560098*x^10-24292218*x^9-50816594*x^8+93734166*x^7+86187188*x^6-166720218*x^5-52520358*x^4+111765412*x^3+9997850*x^2-20833662*x+57214,-16444*x^14+31514*x^13+343890*x^12-678746*x^11-2706766*x^10+5558994*x^9+9791778*x^8-21386466*x^7-15505836*x^6+38063402*x^5+7701914*x^4-25800360*x^3-838842*x^2+4980898*x-35402,36329*x^14-52964*x^13-776210*x^12+1164130*x^11+6302198*x^10-9716428*x^9-23968870*x^8+37976659*x^7+41918273*x^6-68218424*x^5-27770597*x^4+45927917*x^3+6249996*x^2-8564010*x-141835,1935*x^14+18308*x^13-43104*x^12-347154*x^11+369760*x^10+2466892*x^9-1501384*x^8-8193251*x^7+2851329*x^6+12924034*x^5-2090815*x^4-8651559*x^3+304666*x^2+1722994*x-13415,-54668*x^14+67120*x^13+1148596*x^12-1463672*x^11-9150116*x^10+12108020*x^9+34031648*x^8-46857728*x^7-57710316*x^6+83120096*x^5+35708568*x^4-54672628*x^3-6324888*x^2+9789128*x-133120,-20866*x^14+40470*x^13+452934*x^12-891670*x^11-3713922*x^10+7470998*x^9+14070542*x^8-29360672*x^7-23648658*x^6+53234182*x^5+13173120*x^4-36626730*x^3-1564298*x^2+7115762*x-217288,9028,-2681*x^14-5556*x^13+54634*x^12+102642*x^11-427154*x^10-704308*x^9+1609914*x^8+2220453*x^7-3016469*x^6-3212756*x^5+2571785*x^4+1812807*x^3-618316*x^2-283978*x+1499,28120*x^14-31820*x^13-591408*x^12+696932*x^11+4725640*x^10-5790648*x^9-17709236*x^8+22510060*x^7+30628452*x^6-40108148*x^5-20190012*x^4+26482232*x^3+4287412*x^2-4741624*x-39072,-25666*x^14+34806*x^13+526686*x^12-729238*x^11-4098994*x^10+5793282*x^9+14966482*x^8-21596236*x^7-25314790*x^6+37229846*x^5+16481044*x^4-24312542*x^3-3514554*x^2+4414150*x+66604,-3773*x^14+20420*x^13+85090*x^12-427002*x^11-729534*x^10+3399280*x^9+2947770*x^8-12754819*x^7-5637189*x^6+22340372*x^5+4757465*x^4-15214837*x^3-2322940*x^2+2868090*x+318891,-26500*x^14+45468*x^13+559520*x^12-981064*x^11-4467932*x^10+8040712*x^9+16557660*x^8-30886020*x^7-27549916*x^6+54573272*x^5+15930828*x^4-36062180*x^3-2636572*x^2+6566036*x-49632,-34646*x^14+44974*x^13+727634*x^12-979674*x^11-5785546*x^10+8094414*x^9+21403966*x^8-31276332*x^7-35767810*x^6+55363554*x^5+20983000*x^4-36337206*x^3-2849730*x^2+6582698*x-307376,-19238*x^14+40766*x^13+410902*x^12-866954*x^11-3331046*x^10+7012494*x^9+12633166*x^8-26662632*x^7-22000826*x^6+46958390*x^5+14570980*x^4-31484914*x^3-3567330*x^2+5779174*x+114676,-77460*x^14+108116*x^13+1628708*x^12-2360404*x^11-12966592*x^10+19565296*x^9+48042956*x^8-75945352*x^7-80509124*x^6+135392808*x^5+47953200*x^4-90058540*x^3-7957476*x^2+16557316*x-239532,-7916*x^14-5188*x^13+169884*x^12+73956*x^11-1388916*x^10-303220*x^9+5332548*x^8+120336*x^7-9451388*x^6+1115612*x^5+6309916*x^4-827972*x^3-1074344*x^2+239460*x-1504,68400*x^14-95334*x^13-1439170*x^12+2077466*x^11+11477354*x^10-17185746*x^9-42706250*x^8+66565142*x^7+72410072*x^6-118347086*x^5-45090818*x^4+78261532*x^3+9044506*x^2-14128498*x-12202,22174*x^14-38746*x^13-468382*x^12+831518*x^11+3748526*x^10-6785254*x^9-13988662*x^8+26008772*x^7+23752370*x^6-46094814*x^5-14731384*x^4+30960826*x^3+2884158*x^2-5741090*x+45156,60098*x^14-88248*x^13-1262836*x^12+1915492*x^11+10048188*x^10-15792624*x^9-37225160*x^8+61035630*x^7+62461010*x^6-108575968*x^5-37469406*x^4+72436746*x^3+6395316*x^2-13438420*x+108142,-9188*x^14+32312*x^13+193852*x^12-678908*x^11-1537364*x^10+5429188*x^9+5589608*x^8-20453524*x^7-8825036*x^6+35895104*x^5+4205064*x^4-24326548*x^3-410480*x^2+4556056*x-35376,-80691*x^14+104168*x^13+1699128*x^12-2275262*x^11-13580436*x^10+18868024*x^9+50794220*x^8-73293301*x^7-87190121*x^6+130870222*x^5+56047815*x^4-87400581*x^3-11316190*x^2+16148194*x-59457,-88320*x^14+141344*x^13+1857188*x^12-3038344*x^11-14789820*x^10+24812924*x^9+54863324*x^8-95056484*x^7-92303624*x^6+167887432*x^5+55844428*x^4-111566292*x^3-9822680*x^2+20533596*x-334024,-39378*x^14+70266*x^13+841554*x^12-1523366*x^11-6822010*x^10+12545282*x^9+25820058*x^8-48399020*x^7-44620498*x^6+85822818*x^5+28684792*x^4-56792258*x^3-6237030*x^2+9982842*x-153800,4882*x^14+4226*x^13-91962*x^12-88830*x^11+652394*x^10+719026*x^9-2200350*x^8-2772496*x^7+3707730*x^6+5093210*x^5-3014400*x^4-3830550*x^3+885422*x^2+797946*x-5304,-53760*x^14+68372*x^13+1134780*x^12-1519316*x^11-9072368*x^10+12811192*x^9+33760112*x^8-50529340*x^7-56814812*x^6+91378376*x^5+33892560*x^4-61574616*x^3-5290932*x^2+11449500*x-231188,-30234*x^14+21110*x^13+631270*x^12-484738*x^11-4998046*x^10+4191946*x^9+18489074*x^8-16800028*x^7-31266950*x^6+30383838*x^5+19380168*x^4-19729286*x^3-3109154*x^2+3483338*x-161556,41668*x^14-77946*x^13-883398*x^12+1673378*x^11+7090058*x^10-13654162*x^9-26464074*x^8+52288658*x^7+44614128*x^6-92432622*x^5-26837254*x^4+61738908*x^3+5126610*x^2-11545122*x-37294,22284*x^14-14692*x^13-458900*x^12+342992*x^11+3578220*x^10-3013860*x^9-13025236*x^8+12287464*x^7+21707360*x^6-22721168*x^5-13475128*x^4+15356624*x^3+2581800*x^2-2864116*x+22080,65025*x^14-89160*x^13-1371232*x^12+1943406*x^11+10971308*x^10-16087936*x^9-41035392*x^8+62411807*x^7+70238863*x^6-111352854*x^5-44665469*x^4+74245903*x^3+9040410*x^2-13446202*x+21379,-117440*x^14+181012*x^13+2479760*x^12-3927136*x^11-19831916*x^10+32357948*x^9+73855740*x^8-124920152*x^7-124617964*x^6+221752852*x^5+75489388*x^4-147237148*x^3-13542876*x^2+26950952*x-299380,78644*x^14-116108*x^13-1658456*x^12+2523648*x^11+13254896*x^10-20845052*x^9-49399376*x^8+80784212*x^7+83685500*x^6-144439012*x^5-51316796*x^4+97609500*x^3+9144288*x^2-18576628*x+151028,-5568*x^14+3180*x^13+117692*x^12-91808*x^11-944668*x^10+947504*x^9+3541852*x^8-4372028*x^7-6049120*x^6+8843256*x^5+3762440*x^4-6185268*x^3-760760*x^2+1115068*x-6888,-5180*x^14+14652*x^13+104192*x^12-306804*x^11-769304*x^10+2438004*x^9+2455172*x^8-9089420*x^7-2690640*x^6+15674384*x^5-985088*x^4-10280376*x^3+1494060*x^2+1878416*x-174788,-60086*x^14+95304*x^13+1265676*x^12-2057096*x^11-10095164*x^10+16857676*x^9+37482588*x^8-64710546*x^7-63018138*x^6+114176956*x^5+38005818*x^4-75257838*x^3-6946836*x^2+13680376*x-104586,-94528*x^14+147380*x^13+2000964*x^12-3191552*x^11-16060884*x^10+26252352*x^9+60170740*x^8-101209388*x^7-102777128*x^6+179528472*x^5+64591416*x^4-119216504*x^3-13055936*x^2+21618272*x+14124,-16185*x^14+21302*x^13+340486*x^12-466144*x^11-2721566*x^10+3872090*x^9+10196706*x^8-15068309*x^7-17571879*x^6+26995888*x^5+11357403*x^4-18243147*x^3-2256460*x^2+3461456*x-24857,47793*x^14-92160*x^13-1007696*x^12+1967162*x^11+8037528*x^10-15951764*x^9-29792624*x^8+60684855*x^7+49828087*x^6-106523526*x^5-29697661*x^4+70597403*x^3+5710498*x^2-13055206*x+88007,-10822*x^14+1404*x^13+234464*x^12-59544*x^11-1941892*x^10+719288*x^9+7615996*x^8-3547002*x^7-14098914*x^6+7190096*x^5+10691282*x^4-4557934*x^3-3042920*x^2+666332*x+199646,-98264*x^14+153444*x^13+2070736*x^12-3309604*x^11-16536524*x^10+27116244*x^9+61586784*x^8-104174192*x^7-104371512*x^6+184333360*x^5+64588424*x^4-122473644*x^3-12592480*x^2+22593960*x-123972,55588*x^14-72354*x^13-1182142*x^12+1604974*x^11+9528466*x^10-13504110*x^9-35783646*x^8+53084798*x^7+60955708*x^6-95419458*x^5-37435050*x^4+63438892*x^3+6730586*x^2-11592794*x+88262,44448*x^14-63832*x^13-937172*x^12+1397840*x^11+7481752*x^10-11622560*x^9-27785148*x^8+45245220*x^7+46584552*x^6-80859348*x^5-27520508*x^4+53922656*x^3+4359200*x^2-10170064*x+71796,4932*x^14+15570*x^13-92166*x^12-316222*x^11+640230*x^10+2455866*x^9-2041066*x^8-9101786*x^7+2967768*x^6+16292514*x^5-1637010*x^4-12407244*x^3+131210*x^2+2875914*x-23590,-72384*x^14+86480*x^13+1529996*x^12-1924772*x^11-12262628*x^10+16244732*x^9+45863516*x^8-64058764*x^7-78169104*x^6+115567204*x^5+48866580*x^4-77248684*x^3-9510704*x^2+14188932*x+109072,10850*x^14+10546*x^13-229342*x^12-173062*x^11+1842814*x^10+981902*x^9-6932574*x^8-2242664*x^7+11971382*x^6+1902042*x^5-7647596*x^4-850974*x^3+1137622*x^2+20110*x-256,107972*x^14-137294*x^13-2269418*x^12+3014850*x^11+18080094*x^10-25121794*x^9-67205366*x^8+97943994*x^7+113776008*x^6-175083222*x^5-70254090*x^4+116250268*x^3+12906082*x^2-21066406*x+62162,-30077*x^14+32174*x^13+635324*x^12-725140*x^11-5096548*x^10+6195122*x^9+19143424*x^8-24728149*x^7-33048209*x^6+45195846*x^5+21536647*x^4-30746269*x^3-4718486*x^2+5843180*x+256621,-55960*x^14+92860*x^13+1188896*x^12-2004604*x^11-9575372*x^10+16441508*x^9+35960176*x^8-63229692*x^7-61379620*x^6+111986220*x^5+38117468*x^4-74417324*x^3-7513420*x^2+13467736*x+22688,-28462*x^14+65452*x^13+609776*x^12-1396404*x^11-4939640*x^10+11327480*x^9+18547392*x^8-43146790*x^7-31167722*x^6+75940704*x^5+18155374*x^4-50553126*x^3-3420152*x^2+9216644*x-71302,14204*x^14-48602*x^13-302250*x^12+1005526*x^11+2417526*x^10-7886318*x^9-8862086*x^8+28952698*x^7+14104172*x^6-48882082*x^5-6817862*x^4+30739276*x^3+707538*x^2-5033102*x+190154,-49264*x^14+84872*x^13+1049268*x^12-1844076*x^11-8469252*x^10+15226560*x^9+31852752*x^8-58942656*x^7-54381164*x^6+105027784*x^5+33715388*x^4-70167252*x^3-6612316*x^2+12788344*x-96588,-11129*x^14+24018*x^13+244564*x^12-522764*x^11-2046140*x^10+4325650*x^9+8059180*x^8-16783041*x^7-14882609*x^6+30015610*x^5+11439959*x^4-20281605*x^3-4104754*x^2+3732248*x+328353,15975*x^14-36446*x^13-345046*x^12+791036*x^11+2821406*x^10-6535454*x^9-10715834*x^8+25382871*x^7+18325217*x^6-45661572*x^5-11147849*x^4+31319697*x^3+2284212*x^2-5885572*x+43879,-66729*x^14+111886*x^13+1414838*x^12-2423992*x^11-11365126*x^10+19965134*x^9+42520094*x^8-77184513*x^7-72098819*x^6+137736604*x^5+44027727*x^4-92920187*x^3-8324744*x^2+17489048*x+37919,57040*x^14-89780*x^13-1204136*x^12+1944584*x^11+9626804*x^10-15994732*x^9-35831112*x^8+61639104*x^7+60404588*x^6-109240196*x^5-36587372*x^4+72490524*x^3+6772268*x^2-13340840*x-9600,-10312*x^14+21416*x^13+219744*x^12-466812*x^11-1753596*x^10+3863864*x^9+6337288*x^8-14957924*x^7-9541784*x^6+26524272*x^5+3235964*x^4-17526712*x^3+727872*x^2+3424624*x-190904,2905*x^14-2666*x^13-63312*x^12+54268*x^11+532816*x^10-424382*x^9-2159700*x^8+1590189*x^7+4232773*x^6-2814926*x^5-3442015*x^4+1834445*x^3+827354*x^2-214564*x+179,4179*x^14-7392*x^13-89816*x^12+166618*x^11+721584*x^10-1417132*x^9-2610088*x^8+5558461*x^7+3853621*x^6-9635602*x^5-1044631*x^4+5439097*x^3-533306*x^2-500458*x+272381,63918*x^14-112630*x^13-1353354*x^12+2428114*x^11+10840498*x^10-19894818*x^9-40319502*x^8+76478004*x^7+67404982*x^6-135577882*x^5-39232152*x^4+90595706*x^3+6174446*x^2-16877810*x+338840,-22880*x^14+47934*x^13+487874*x^12-1030438*x^11-3933918*x^10+8420606*x^9+14713034*x^8-32287246*x^7-24683720*x^6+57101666*x^5+14418386*x^4-38062368*x^3-2467742*x^2+6975490*x-179134,-1668*x^14+16810*x^13+34070*x^12-327606*x^11-263906*x^10+2404878*x^9+965982*x^8-8265078*x^7-1662544*x^6+13304034*x^5+1206222*x^4-8539880*x^3-532634*x^2+1509606*x-11286,-23800*x^14+48654*x^13+507878*x^12-1049862*x^11-4091082*x^10+8602430*x^9+15223682*x^8-32993694*x^7-25157516*x^6+58057346*x^5+14009746*x^4-37990220*x^3-2354330*x^2+6779454*x+5658,9214*x^14-17024*x^13-199736*x^12+364576*x^11+1655264*x^10-2969604*x^9-6504916*x^8+11362706*x^7+12097318*x^6-20071692*x^5-9263130*x^4+13266838*x^3+2646160*x^2-2149480*x-8078,94612*x^14-161184*x^13-1999140*x^12+3473272*x^11+15993864*x^10-28438892*x^9-59542384*x^8+109222612*x^7+100249488*x^6-193352028*x^5-60258740*x^4+128764720*x^3+10838392*x^2-23698284*x+182300,8468*x^14-22328*x^13-183692*x^12+472156*x^11+1503076*x^10-3789028*x^9-5669632*x^8+14228320*x^7+9435936*x^6-24511804*x^5-5152904*x^4+15659216*x^3+811292*x^2-2633428*x+20632,57620*x^14-100832*x^13-1226364*x^12+2181352*x^11+9890156*x^10-17938904*x^9-37150440*x^8+69227584*x^7+63254088*x^6-123277924*x^5-38837180*x^4+82987192*x^3+7443224*x^2-15639700*x-129632,18581*x^14-29850*x^13-394860*x^12+654820*x^11+3172012*x^10-5457166*x^9-11801808*x^8+21317185*x^7+19589753*x^6-38361494*x^5-10973795*x^4+26062849*x^3+1460866*x^2-5003524*x+38211,5528*x^14-17672*x^13-121140*x^12+371224*x^11+995928*x^10-2959908*x^9-3728864*x^8+11060500*x^7+5935100*x^6-19081064*x^5-2435820*x^4+12537444*x^3-479388*x^2-2409100*x+187632,-17622*x^14+43034*x^13+366030*x^12-908278*x^11-2865082*x^10+7285510*x^9+10360570*x^8-27466936*x^7-16690234*x^6+48018734*x^5+9203108*x^4-32044438*x^3-1642370*x^2+5798586*x-44428,40168*x^14-61660*x^13-845680*x^12+1331420*x^11+6746280*x^10-10927804*x^9-25090012*x^8+42111392*x^7+42392248*x^6-74970056*x^5-25822148*x^4+50574092*x^3+4338852*x^2-9636400*x+217876,-30708*x^14+49350*x^13+663538*x^12-1089102*x^11-5435606*x^10+9126674*x^9+20738682*x^8-35778914*x^7-35879452*x^6+64298662*x^5+22576522*x^4-43002940*x^3-4706634*x^2+7914962*x+131326,-7627*x^14+11268*x^13+160038*x^12-234470*x^11-1272886*x^10+1850660*x^9+4719894*x^8-6865565*x^7-7899711*x^6+11868816*x^5+4445155*x^4-8037915*x^3-119628*x^2+1676702*x-76863,-55177*x^14+70266*x^13+1153020*x^12-1527880*x^11-9128664*x^10+12608478*x^9+33715044*x^8-48717257*x^7-56715761*x^6+86427694*x^5+34776435*x^4-57151121*x^3-6291198*x^2+10520008*x-79319,69440*x^14-88690*x^13-1466886*x^12+1944770*x^11+11760606*x^10-16178394*x^9-44100342*x^8+62941978*x^7+75807936*x^6-112170478*x^5-48788430*x^4+74101280*x^3+10204950*x^2-13426838*x+10098,-41131*x^14+77722*x^13+875068*x^12-1670244*x^11-7057112*x^10+13645142*x^9+26543244*x^8-52318699*x^7-45434075*x^6+92538550*x^5+28519961*x^4-61563691*x^3-5910014*x^2+11040256*x-78929,146108*x^14-233672*x^13-3088932*x^12+5060896*x^11+24726496*x^10-41635884*x^9-92084168*x^8+160548224*x^7+154953236*x^6-284885244*x^5-92606696*x^4+189445848*x^3+15900336*x^2-34627624*x+299316,427*x^14+20862*x^13-4270*x^12-420168*x^11+9150*x^10+3207258*x^9-58194*x^8-11496853*x^7+669841*x^6+19204508*x^5-1749297*x^4-12455651*x^3+453352*x^2+2215520*x-16409,41364*x^14-85166*x^13-886130*x^12+1827030*x^11+7190738*x^10-14902670*x^9-27150486*x^8+57065606*x^7+46338612*x^6-100881450*x^5-28328838*x^4+67266060*x^3+5520338*x^2-12194678*x+92302,41976*x^14-72888*x^13-899280*x^12+1588384*x^11+7300232*x^10-13159576*x^9-27595256*x^8+51130260*x^7+47275112*x^6-91510432*x^5-29315232*x^4+61618076*x^3+5889700*x^2-11442360*x-46836,-43716*x^14+78960*x^13+929852*x^12-1702840*x^11-7494440*x^10+13963496*x^9+28149684*x^8-53763260*x^7-48059532*x^6+95624764*x^5+30151316*x^4-64390012*x^3-6737956*x^2+12091564*x+163176,-19796*x^14+24128*x^13+418776*x^12-538772*x^11-3363036*x^10+4559568*x^9+12633892*x^8-18007684*x^7-21756464*x^6+32444196*x^5+13971824*x^4-21459896*x^3-2762192*x^2+3809004*x-28108,156120*x^14-241900*x^13-3298424*x^12+5248964*x^11+26399600*x^10-43263532*x^9-98429220*x^8+167132136*x^7+166470148*x^6-297127640*x^5-101660412*x^4+198134712*x^3+19047720*x^2-36680132*x+85340,-76516*x^14+121508*x^13+1614384*x^12-2624188*x^11-12903380*x^10+21531632*x^9+48047164*x^8-82850548*x^7-81140556*x^6+146893996*x^5+49308272*x^4-97957648*x^3-8848920*x^2+18131036*x-137344,9426*x^14-27788*x^13-206740*x^12+577324*x^11+1722136*x^10-4544928*x^9-6720796*x^8+16731198*x^7+12128346*x^6-28283264*x^5-8724238*x^4+17767078*x^3+2833440*x^2-2750044*x+21642,9180*x^14-41530*x^13-215306*x^12+880142*x^11+1895194*x^10-7094686*x^9-7655602*x^8+26862246*x^7+13659296*x^6-47099766*x^5-8331862*x^4+31515740*x^3+1712558*x^2-5796206*x+43538,44144*x^14-52996*x^13-930876*x^12+1172316*x^11+7447012*x^10-9846688*x^9-27839600*x^8+38755224*x^7+47577768*x^6-70241040*x^5-30032256*x^4+48011332*x^3+5773092*x^2-9248748*x-42364,17748*x^14-36656*x^13-376836*x^12+793692*x^11+3017336*x^10-6538832*x^9-11133356*x^8+25321840*x^7+18076332*x^6-45452800*x^5-9335160*x^4+31348684*x^3+875492*x^2-6417848*x+149476,31872*x^14-69102*x^13-676954*x^12+1464278*x^11+5447102*x^10-11796322*x^9-20423634*x^8+44666194*x^7+34760172*x^6-78391546*x^5-21435394*x^4+52538292*x^3+4158414*x^2-9795854*x+24018,-31732*x^14+11488*x^13+666452*x^12-316140*x^11-5319560*x^10+3140044*x^9+19904536*x^8-14029724*x^7-34284364*x^6+27667924*x^5+22118744*x^4-19348016*x^3-3979804*x^2+3802832*x-29176,-13442*x^14+45258*x^13+283974*x^12-955838*x^11-2249730*x^10+7685242*x^9+8114246*x^8-29098568*x^7-12399290*x^6+51211470*x^5+4840248*x^4-34509718*x^3+337802*x^2+6408422*x-307412,-58040*x^14+70544*x^13+1217244*x^12-1549624*x^11-9672420*x^10+12910100*x^9+35832316*x^8-50286696*x^7-60330016*x^6+89693176*x^5+36683308*x^4-59289708*x^3-6232136*x^2+10800496*x-193444,-111340*x^14+174668*x^13+2355564*x^12-3781468*x^11-18896420*x^10+31101348*x^9+70754500*x^8-119927180*x^7-120785456*x^6+212932008*x^5+75799756*x^4-141931124*x^3-15123264*x^2+26117204*x-65628,-14710*x^14+12886*x^13+302870*x^12-290358*x^11-2353650*x^10+2466602*x^9+8472162*x^8-9720692*x^7-13661930*x^6+17331222*x^5+7590704*x^4-11226650*x^3-1096110*x^2+2111706*x-18100,12448*x^14-11312*x^13-264932*x^12+259832*x^11+2149028*x^10-2256596*x^9-8219056*x^8+9123556*x^7+14691540*x^6-16769236*x^5-10439100*x^4+11181068*x^3+2648512*x^2-1776920*x-6704,17889*x^14-7916*x^13-370550*x^12+188378*x^11+2930310*x^10-1682472*x^9-11008822*x^8+6973091*x^7+19734273*x^6-13146356*x^5-14827401*x^4+9160845*x^3+4127316*x^2-1825690*x-246599,11960*x^14-18388*x^13-251024*x^12+405988*x^11+1997992*x^10-3410960*x^9-7432888*x^8+13463096*x^7+12659508*x^6-24548444*x^5-7976896*x^4+16928488*x^3+1387520*x^2-3175284*x+134572,2724*x^14+12784*x^13-41448*x^12-275268*x^11+206160*x^10+2262992*x^9-381264*x^8-8748808*x^7+402428*x^6+15647532*x^5-843744*x^4-10630716*x^3+149712*x^2+1929652*x-14336,106838*x^14-163098*x^13-2248902*x^12+3536042*x^11+17924074*x^10-29128982*x^9-66493154*x^8+112550784*x^7+111629158*x^6-200474254*x^5-66876332*x^4+134618602*x^3+11497710*x^2-25482530*x+240716,-43168*x^14+67148*x^13+912088*x^12-1455600*x^11-7307444*x^10+11983884*x^9+27332568*x^8-46233580*x^7-46637392*x^6+82034780*x^5+29269756*x^4-54423408*x^3-5706724*x^2+9833616*x-77684,97591*x^14-142908*x^13-2061490*x^12+3111734*x^11+16506330*x^10-25723084*x^9-61655390*x^8+99557697*x^7+104903099*x^6-176911932*x^5-65552383*x^4+117129611*x^3+13306844*x^2-21202006*x-95021,-6540*x^14+9436*x^13+149464*x^12-222864*x^11-1292492*x^10+1988080*x^9+5187960*x^8-8230004*x^7-9411140*x^6+15464836*x^5+6202392*x^4-10716580*x^3-1272780*x^2+2028248*x-15056,-48752*x^14+47378*x^13+1027498*x^12-1068202*x^11-8227094*x^10+9117394*x^9+30872742*x^8-36285002*x^7-53364080*x^6+65818994*x^5+34984754*x^4-43819816*x^3-7497098*x^2+8039554*x+152938,-76788*x^14+137618*x^13+1611702*x^12-2936922*x^11-12794054*x^10+23816914*x^9+47179034*x^8-90676570*x^7-78331776*x^6+159524690*x^5+45568210*x^4-106273008*x^3-7456754*x^2+19792362*x-288666,-38116*x^14+40428*x^13+789640*x^12-881208*x^11-6193548*x^10+7282540*x^9+22652112*x^8-28152744*x^7-37721176*x^6+49869672*x^5+22781684*x^4-32730316*x^3-3782548*x^2+6015324*x-43144,33910*x^14-57940*x^13-719756*x^12+1252128*x^11+5785304*x^10-10286304*x^9-21630116*x^8+39660630*x^7+36504634*x^6-70574056*x^5-21801938*x^4+47428946*x^3+3755688*x^2-8950484*x+69714,-34444*x^14+59928*x^13+719768*x^12-1274864*x^11-5672004*x^10+10293004*x^9+20633508*x^8-38937820*x^7-33221648*x^6+67771920*x^5+17423056*x^4-44075304*x^3-1882356*x^2+7820832*x-182816,41924*x^14-49296*x^13-878484*x^12+1097576*x^11+6965124*x^10-9267416*x^9-25665332*x^8+36576368*x^7+42626428*x^6-66100296*x^5-24832572*x^4+44366388*x^3+3910068*x^2-8337956*x+67156,-21659*x^14+30100*x^13+465378*x^12-662066*x^11-3802494*x^10+5530832*x^9+14564886*x^8-21635205*x^7-25661963*x^6+38848308*x^5+17006055*x^4-25929587*x^3-3437364*x^2+4584994*x-115235,5294*x^14-33386*x^13-117838*x^12+694942*x^11+977562*x^10-5500890*x^9-3656918*x^8+20486844*x^7+5708198*x^6-35492490*x^5-2301496*x^4+23690714*x^3+294798*x^2-4364674*x+32524,97241*x^14-127522*x^13-2051034*x^12+2794056*x^11+16410918*x^10-23242062*x^9-61352982*x^8+90538845*x^7+104824023*x^6-162029764*x^5-66098403*x^4+108413735*x^3+12709100*x^2-20314416*x+60065,-76932*x^14+129684*x^13+1618248*x^12-2785976*x^11-12875844*x^10+22732064*x^9+47588248*x^8-86964336*x^7-79175592*x^6+153256348*x^5+46159564*x^4-101481036*x^3-7614028*x^2+18662892*x-236544,44545*x^14-88048*x^13-938290*x^12+1874486*x^11+7473682*x^10-15170344*x^9-27641530*x^8+57677839*x^7+46009033*x^6-101473296*x^5-26971757*x^4+67844733*x^3+4956760*x^2-12649258*x-114627,29603*x^14-26504*x^13-607570*x^12+576690*x^11+4726698*x^10-4758744*x^9-17223338*x^8+18402005*x^7+28950303*x^6-32727036*x^5-18435087*x^4+21727827*x^3+3558864*x^2-4016134*x+31747,-11872*x^14+24992*x^13+247776*x^12-529580*x^11-1939232*x^10+4266772*x^9+6907208*x^8-16172300*x^7-10386392*x^6+28508248*x^5+3767328*x^4-19515356*x^3+652872*x^2+4173220*x-21224,-77895*x^14+118662*x^13+1643122*x^12-2574092*x^11-13127994*x^10+21206242*x^9+48847378*x^8-81869183*x^7-82384437*x^6+145415536*x^5+50012961*x^4-96811569*x^3-9225816*x^2+17927112*x-138223,-134148*x^14+210770*x^13+2833394*x^12-4560114*x^11-22669822*x^10+37471086*x^9+84484262*x^8-144290962*x^7-142754156*x^6+255583558*x^5+86882286*x^4-169438812*x^3-16052090*x^2+30915174*x-133146,8092*x^14-40286*x^13-171866*x^12+829930*x^11+1366502*x^10-6485018*x^9-4934914*x^8+23770658*x^7+7533572*x^6-40353762*x^5-3123558*x^4+26150820*x^3+546334*x^2-4621870*x+34098,-42564*x^14+65694*x^13+900054*x^12-1425302*x^11-7214782*x^10+11750014*x^9+26984010*x^8-45421654*x^7-45985508*x^6+80864694*x^5+28747302*x^4-54019728*x^3-5610670*x^2+9720446*x+39610,-69605*x^14+90978*x^13+1468462*x^12-1995160*x^11-11755674*x^10+16612946*x^9+44007146*x^8-64778797*x^7-75489447*x^6+116018432*x^5+48423007*x^4-77611959*x^3-10182500*x^2+14408556*x+166707,-45700*x^14+76980*x^13+971892*x^12-1658452*x^11-7849932*x^10+13571816*x^9+29693044*x^8-52055256*x^7-51665568*x^6+91841060*x^5+34200148*x^4-60455852*x^3-7954896*x^2+10502312*x+83828,-41112*x^14+84380*x^13+860004*x^12-1771820*x^11-6800464*x^10+14134512*x^9+24977468*x^8-52991356*x^7-41336500*x^6+92096656*x^5+24105956*x^4-60992796*x^3-4169648*x^2+11150256*x-85336,-61751*x^14+86794*x^13+1313998*x^12-1916792*x^11-10596514*x^10+16064322*x^9+39801674*x^8-62956931*x^7-67729237*x^6+113025812*x^5+41291677*x^4-75353113*x^3-7098240*x^2+13826304*x-331655,43804*x^14-72356*x^13-924072*x^12+1570220*x^11+7381668*x^10-12945180*x^9-27456584*x^8+50024864*x^7+46324216*x^6-88974616*x^5-28348236*x^4+59338500*x^3+5555352*x^2-10786676*x+76564,-48586*x^14+81790*x^13+1024654*x^12-1737558*x^11-8211866*x^10+14020626*x^9+30896358*x^8-53094808*x^7-53841094*x^6+92828294*x^5+36500808*x^4-61213834*x^3-9131866*x^2+11156398*x+226204,2640*x^14-496*x^13-61328*x^12+29832*x^11+544020*x^10-407532*x^9-2273540*x^8+2196768*x^7+4437744*x^6-4979760*x^5-3443044*x^4+4007080*x^3+841524*x^2-784204*x+5912,-13216*x^14+20156*x^13+281788*x^12-450876*x^11-2275280*x^10+3834568*x^9+8544772*x^8-15292512*x^7-14515388*x^6+28101912*x^5+8916484*x^4-19496940*x^3-1865276*x^2+3778972*x+113156,-43334*x^14+55306*x^13+901390*x^12-1197018*x^11-7092458*x^10+9829678*x^9+25959266*x^8-37770160*x^7-42982522*x^6+66486526*x^5+25302600*x^4-43213570*x^3-4067442*x^2+7578946*x-155464,37938*x^14-50298*x^13-794150*x^12+1100834*x^11+6283978*x^10-9138570*x^9-23064062*x^8+35470128*x^7+37933770*x^6-63038162*x^5-21227464*x^4+41497922*x^3+2344094*x^2-7491786*x+458348,-2919*x^14-10080*x^13+67522*x^12+177142*x^11-593870*x^10-1119112*x^9+2434150*x^8+3071875*x^7-4532235*x^6-3493860*x^5+2974191*x^4+1267241*x^3-134260*x^2+76730*x-2823,17799*x^14-11182*x^13-364766*x^12+257328*x^11+2813174*x^10-2231290*x^9-9973834*x^8+8972179*x^7+15408357*x^6-16265656*x^5-6784569*x^4+10534173*x^3-863592*x^2-2006292*x+331607,144648*x^14-225464*x^13-3052280*x^12+4886408*x^11+24399168*x^10-40232968*x^9-90861644*x^8+155324092*x^7+153468308*x^6-276193324*x^5-93356068*x^4+184568056*x^3+16880864*x^2-34210008*x+260892,74941*x^14-113210*x^13-1585388*x^12+2465328*x^11+12704240*x^10-20390370*x^9-47399540*x^8+79016445*x^7+80087301*x^6-140831642*x^5-48535595*x^4+94114681*x^3+8881014*x^2-17610404*x+4655,25392*x^14-37928*x^13-535860*x^12+817776*x^11+4285364*x^10-6690328*x^9-15975320*x^8+25613532*x^7+27041280*x^6-44992504*x^5-16482636*x^4+29440600*x^3+2813864*x^2-5406756*x+40284,16189*x^14-9922*x^13-336530*x^12+232364*x^11+2666786*x^10-2057546*x^9-10005570*x^8+8516817*x^7+17777383*x^6-16200200*x^5-12966143*x^4+11524863*x^3+3246260*x^2-1999520*x+23033,6864*x^14-17540*x^13-145008*x^12+353820*x^11+1179724*x^10-2699068*x^9-4638256*x^8+9642388*x^7+9012100*x^6-15917588*x^5-8014808*x^4+9822560*x^3+3110624*x^2-1318496*x-114632,-73706*x^14+90066*x^13+1549654*x^12-1976274*x^11-12358286*x^10+16444026*x^9+46056086*x^8-63944300*x^7-78518110*x^6+113711002*x^5+49713264*x^4-74584022*x^3-10101358*x^2+13380610*x+107028,-14936*x^14+24446*x^13+318598*x^12-538022*x^11-2567342*x^10+4498134*x^9+9562854*x^8-17608894*x^7-15807048*x^6+31642994*x^5+8692026*x^4-21174720*x^3-1235798*x^2+3888010*x-27894,-14820*x^14+15916*x^13+311444*x^12-352540*x^11-2490296*x^10+2965452*x^9+9377532*x^8-11690048*x^7-16519124*x^6+21195052*x^5+11778332*x^4-14427772*x^3-3565348*x^2+2873016*x+420264,21830*x^14-24346*x^13-465534*x^12+551374*x^11+3765046*x^10-4728674*x^9-14203042*x^8+18894568*x^7+24396838*x^6-34348062*x^5-15429000*x^4+22843134*x^3+3265546*x^2-4163758*x-77848,-140866*x^14+214850*x^13+2973834*x^12-4667174*x^11-23786118*x^10+38519478*x^9+88650882*x^8-149081108*x^7-149939458*x^6+265874198*x^5+91510696*x^4-178537962*x^3-16664314*x^2+33349298*x-252108,-19387*x^14+34406*x^13+410246*x^12-751048*x^11-3283422*x^10+6227930*x^9+12203098*x^8-24190779*x^7-20436005*x^6+43188540*x^5+12158205*x^4-28871389*x^3-2257968*x^2+5250816*x-40823,70744*x^14-102860*x^13-1490804*x^12+2240276*x^11+11899644*x^10-18530488*x^9-44241196*x^8+71815668*x^7+74586672*x^6-127992028*x^5-45257660*x^4+85454608*x^3+8101964*x^2-15974232*x+196396,-17429*x^14+16584*x^13+356034*x^12-359226*x^11-2747906*x^10+2945760*x^9+9868754*x^8-11278315*x^7-16089305*x^6+19683272*x^5+9389221*x^4-12424429*x^3-1326660*x^2+1901138*x-80525,7666*x^14-10906*x^13-155322*x^12+218886*x^11+1183410*x^10-1650606*x^9-4156350*x^8+5764716*x^7+6443394*x^6-9060602*x^5-3080992*x^4+4845902*x^3-205762*x^2-260642*x+413428,59506*x^14-97794*x^13-1247962*x^12+2095682*x^11+9908550*x^10-17066682*x^9-36637230*x^8+65260808*x^7+61432558*x^6-115355922*x^5-37078612*x^4+77346202*x^3+6641514*x^2-14464578*x+111768,122784*x^14-189512*x^13-2593288*x^12+4110304*x^11+20747660*x^10-33860484*x^9-77312748*x^8+130722292*x^7+130615392*x^6-232156460*x^5-79487528*x^4+154343332*x^3+14685932*x^2-28131728*x+137572,-16136*x^14+14002*x^13+341550*x^12-316854*x^11-2744862*x^10+2708706*x^9+10317234*x^8-10767838*x^7-17747056*x^6+19444486*x^5+11232070*x^4-12875732*x^3-1903922*x^2+2433942*x-13346,172696*x^14-263508*x^13-3642672*x^12+5719752*x^11+29090684*x^10-47150604*x^9-108093176*x^8+182116544*x^7+181571328*x^6-323500500*x^5-108512960*x^4+215211248*x^3+18573084*x^2-39762380*x+624800,37504*x^14-48192*x^13-790032*x^12+1061172*x^11+6305240*x^10-8867644*x^9-23448692*x^8+34679424*x^7+39565300*x^6-62251528*x^5-23984580*x^4+41718660*x^3+4167024*x^2-7837460*x+60404,97442*x^14-162810*x^13-2062146*x^12+3530078*x^11+16526870*x^10-29085142*x^9-61652114*x^8+112371124*x^7+104125154*x^6-199929478*x^5-63202888*x^4+133461182*x^3+11934890*x^2-24371054*x+191852,51212*x^14-67948*x^13-1072744*x^12+1484204*x^11+8505244*x^10-12297256*x^9-31369716*x^8+47639448*x^7+52273680*x^6-84462884*x^5-30769772*x^4+55232000*x^3+4780228*x^2-9658932*x+219436,61088*x^14-101976*x^13-1299376*x^12+2217832*x^11+10460968*x^10-18336740*x^9-39130628*x^8+71135688*x^7+65921736*x^6-127321224*x^5-39068628*x^4+86161056*x^3+6603680*x^2-16358516*x+184840,35780*x^14-32712*x^13-743636*x^12+742864*x^11+5846772*x^10-6375824*x^9-21380396*x^8+25458300*x^7+35368764*x^6-46128128*x^5-20853380*x^4+30337232*x^3+3432040*x^2-5574644*x+43056,-114465*x^14+183394*x^13+2422482*x^12-3969128*x^11-19427174*x^10+32631766*x^9+72607874*x^8-125754005*x^7-123189723*x^6+223054792*x^5+75501451*x^4-148339643*x^3-13680236*x^2+27168260*x-439457,-1160*x^14-23036*x^13+17372*x^12+465376*x^11-93360*x^10-3568784*x^9+291376*x^8+12882064*x^7-941244*x^6-21759104*x^5+1989832*x^4+14387396*x^3-890512*x^2-2570512*x+185896,-25512*x^14+39592*x^13+534544*x^12-846216*x^11-4257976*x^10+6873408*x^9+15946936*x^8-26222236*x^7-27753488*x^6+46229172*x^5+18810372*x^4-30706100*x^3-4268280*x^2+5352532*x-57788,45236*x^14-65430*x^13-938762*x^12+1399522*x^11+7374730*x^10-11363754*x^9-27006222*x^8+43253502*x^7+44980304*x^6-75783606*x^5-27139686*x^4+49727488*x^3+4818970*x^2-9110110*x+69074,-87440*x^14+130646*x^13+1838250*x^12-2816242*x^11-14649106*x^10+23056554*x^9+54486158*x^8-88514710*x^7-92377192*x^6+156581094*x^5+57295306*x^4-104157764*x^3-10675186*x^2+19169274*x-71746,-11676*x^14+27390*x^13+247518*x^12-586950*x^11-1964706*x^10+4781766*x^9+7068826*x^8-18294850*x^7-10626672*x^6+32414938*x^5+3586490*x^4-22042120*x^3+1110570*x^2+4437230*x-259562,62140*x^14-97304*x^13-1306196*x^12+2106036*x^11+10381264*x^10-17302556*x^9-38281132*x^8+66546008*x^7+63336644*x^6-117457564*x^5-36217180*x^4+77139384*x^3+5551452*x^2-14096812*x+264864,35190*x^14-41082*x^13-749354*x^12+919014*x^11+6054406*x^10-7789858*x^9-22836534*x^8+30795340*x^7+39259502*x^6-55472934*x^5-24724680*x^4+36627246*x^3+4687734*x^2-6592074*x+50284,-68971*x^14+102650*x^13+1449986*x^12-2219564*x^11-11541210*x^10+18229186*x^9+42758370*x^8-70188463*x^7-71702841*x^6+124427096*x^5+42953581*x^4-82825557*x^3-7515496*x^2+15532236*x-63715,-31432*x^14+52468*x^13+674256*x^12-1156868*x^11-5473796*x^10+9688072*x^9+20625512*x^8-37984980*x^7-34905292*x^6+68420736*x^5+20632844*x^4-46179796*x^3-3512592*x^2+8705176*x-66668,-153636*x^14+212872*x^13+3236288*x^12-4651228*x^11-25831712*x^10+38589032*x^9+96113364*x^8-149960184*x^7-162454512*x^6+267833452*x^5+99269904*x^4-178876880*x^3-17726184*x^2+33048424*x-252048,-5784*x^14-29034*x^13+125254*x^12+574726*x^11-1060582*x^10-4306770*x^9+4410714*x^8+15187466*x^7-9201696*x^6-25253094*x^5+8457030*x^4+17004820*x^3-1969438*x^2-3298822*x+23898,-39095*x^14+78680*x^13+839316*x^12-1706822*x^11-6808884*x^10+14076356*x^9+25552660*x^8-54436721*x^7-42663865*x^6+96921786*x^5+23911135*x^4-64726777*x^3-3336374*x^2+11885926*x-303161,109364*x^14-180972*x^13-2314640*x^12+3918032*x^11+18548732*x^10-32224464*x^9-69153876*x^8+124240920*x^7+116525124*x^6-220511072*x^5-69930780*x^4+146828376*x^3+12365004*x^2-26886108*x+307640,88313*x^14-118376*x^13-1861854*x^12+2587542*x^11+14878914*x^10-21470160*x^9-55464138*x^8+83418943*x^7+94076857*x^6-148929996*x^5-57967449*x^4+99534509*x^3+10297876*x^2-18573470*x+258221,30009*x^14-36046*x^13-621324*x^12+790276*x^11+4872224*x^10-6581898*x^9-17833596*x^8+25718157*x^7+29816453*x^6-46347914*x^5-18365051*x^4+31538333*x^3+3420046*x^2-6004512*x+45227,-81227*x^14+109494*x^13+1715218*x^12-2406808*x^11-13737670*x^10+20093546*x^9+51385766*x^8-78616155*x^7-87742965*x^6+141588416*x^5+55204273*x^4-95936089*x^3-10827016*x^2+18228296*x+54053,-43740*x^14+55820*x^13+906116*x^12-1211988*x^11-7093536*x^10+9982652*x^9+25784088*x^8-38477816*x^7-42196548*x^6+68018912*x^5+24104064*x^4-44682204*x^3-3594588*x^2+8294376*x-60608,20980*x^14-36634*x^13-453038*x^12+796810*x^11+3719050*x^10-6584134*x^9-14310806*x^8+25478206*x^7+25393268*x^6-45232506*x^5-17385074*x^4+29696984*x^3+4477142*x^2-4993226*x-64910,-1904*x^14+8948*x^13+39908*x^12-189436*x^11-313564*x^10+1520576*x^9+1122920*x^8-5719488*x^7-1725872*x^6+9947996*x^5+790716*x^4-6540276*x^3-135984*x^2+1025896*x-7492,95628*x^14-150596*x^13-2023508*x^12+3262664*x^11+16226620*x^10-26844216*x^9-60656868*x^8+103469880*x^7+103037260*x^6-183300636*x^5-63729144*x^4+121218652*x^3+12677560*x^2-21954804*x-28212,-36904*x^14+48900*x^13+778556*x^12-1063420*x^11-6243564*x^10+8782820*x^9+23509360*x^8-34001240*x^7-40996744*x^6+60591216*x^5+27693500*x^4-40537120*x^3-6563932*x^2+7621068*x+81284,32168*x^14-53044*x^13-686648*x^12+1159768*x^11+5550776*x^10-9622276*x^9-20864304*x^8+37315108*x^7+35387248*x^6-66187984*x^5-21344152*x^4+43339648*x^3+4001460*x^2-7723188*x-34220,38100*x^14-58864*x^13-805464*x^12+1274648*x^11+6448780*x^10-10478116*x^9-24030560*x^8+40338228*x^7+40510360*x^6-71394252*x^5-24390672*x^4+47352456*x^3+4391516*x^2-8757436*x+68496,-60407*x^14+82602*x^13+1270958*x^12-1805908*x^11-10134074*x^10+14988850*x^9+37685626*x^8-58248387*x^7-63762745*x^6+103934692*x^5+39257181*x^4-69205405*x^3-7270436*x^2+12893436*x-77831,-74883*x^14+115716*x^13+1584068*x^12-2505750*x^11-12708600*x^10+20614852*x^9+47607060*x^8-79530545*x^7-81341625*x^6+141347222*x^5+51006375*x^4-94393033*x^3-9804290*x^2+17353434*x-134925,2516*x^14+21386*x^13-44030*x^12-446442*x^11+296666*x^10+3553850*x^9-1062122*x^8-13360626*x^7+2472784*x^6+23581950*x^5-3528542*x^4-16558832*x^3+1660930*x^2+3464014*x-113590,-53376*x^14+54922*x^13+1121838*x^12-1234206*x^11-8937018*x^10+10496474*x^9+33209050*x^8-41594718*x^7-56162592*x^6+75022886*x^5+34522962*x^4-49499124*x^3-6152006*x^2+8931770*x-67742,64625*x^14-116716*x^13-1369600*x^12+2507650*x^11+10996396*x^10-20467144*x^9-41126996*x^8+78333467*x^7+69757707*x^6-138166574*x^5-42747465*x^4+91760975*x^3+8131574*x^2-16979346*x+239891,8614*x^14-22246*x^13-183746*x^12+461618*x^11+1489766*x^10-3638618*x^9-5676326*x^8+13478688*x^7+10071038*x^6-23155594*x^5-7207672*x^4+15172874*x^3+2357238*x^2-2704982*x-181364,30884*x^14-31628*x^13-647464*x^12+701984*x^11+5151380*x^10-5902860*x^9-19185464*x^8+23178732*x^7+32860220*x^6-41595704*x^5-21322156*x^4+27537284*x^3+4657108*x^2-4957608*x-116788,2116*x^14-24226*x^13-51426*x^12+496978*x^11+457174*x^10-3867794*x^9-1803742*x^8+14125902*x^7+2939568*x^6-23951030*x^5-1312614*x^4+15662852*x^3+273610*x^2-2804614*x+23670,-137108*x^14+226236*x^13+2898736*x^12-4905028*x^11-23196480*x^10+40408664*x^9+86304440*x^8-156099216*x^7-144935232*x^6+277774752*x^5+86398696*x^4-185905736*x^3-15353752*x^2+34758216*x-196268,32654*x^14-47144*x^13-688992*x^12+1026680*x^11+5508016*x^10-8490440*x^9-20518232*x^8+32901926*x^7+34684866*x^6-58687744*x^5-21124162*x^4+39398554*x^3+3747388*x^2-7507192*x+37574,-117622*x^14+209416*x^13+2493864*x^12-4516464*x^11-20007200*x^10+36997648*x^9+74557200*x^8-142012802*x^7-125089358*x^6+250688240*x^5+73998414*x^4-165515978*x^3-13438776*x^2+30011660*x-121594,14026*x^14+27294*x^13-293218*x^12-521766*x^11+2349966*x^10+3759026*x^9-8980626*x^8-12738416*x^7+16411262*x^6+20641394*x^5-12300968*x^4-14182634*x^3+2514650*x^2+2640314*x-22088,13264*x^14-23530*x^13-283970*x^12+511906*x^11+2308562*x^10-4228294*x^9-8783494*x^8+16342194*x^7+15356396*x^6-28958602*x^5-10187934*x^4+19037144*x^3+2245718*x^2-3285118*x+230590,-14988*x^14+34496*x^13+325852*x^12-753476*x^11-2663208*x^10+6255172*x^9+9944476*x^8-24321968*x^7-15923676*x^6+43452448*x^5+7058216*x^4-29046316*x^3+319032*x^2+5344804*x-243424]];

E[318,1] = [x^2-x-4, [1,1,1,1,x,1,-x+1,1,1,x,-1,1,-2*x,-x+1,x,1,-x-2,1,x+1,x,-x+1,-1,2*x-1,1,x-1,-2*x,1,-x+1,-x-3,x,x,1,-1,-x-2,-4,1,2*x,x+1,-2*x,x,-3*x-5,-x+1,3*x,-1,x,2*x-1,4*x-2,1,-x-2,x-1,-x-2,-2*x,1,1,-x,-x+1,x+1,-x-3,-3*x,x,-x+3,x,-x+1,1,-2*x-8,-1,-5*x+7,-x-2,2*x-1,-4,-3*x-1,1,4*x-2,2*x,x-1,x+1,x-1,-2*x,-x+8,x,1,-3*x-5,-2*x-8,-x+1,-3*x-4,3*x,-x-3,-1,7*x-4,x,8,2*x-1,x,4*x-2,2*x+4,1,6*x-3,-x-2,-1,x-1,x-8,-x-2,0,-2*x,-4,1,4,1,-5*x+10,-x,2*x,-x+1,x+4,x+1,x+8,-x-3,-2*x,-3*x,2*x+2,x,-10,-x+3,-3*x-5,x,-5*x+4,-x+1,-3*x+16,1,3*x,-2*x-8,-3*x+7,-1,-x-3,-5*x+7,x,-x-2,-x+1,2*x-1,3*x+5,-4,4*x-2,-3*x-1,2*x,1,-4*x-4,4*x-2,-x-2,2*x,-2*x+6,x-1,2*x+10,x+1,-x-2,x-1,x+4,-2*x,6*x+5,-x+8,1,x,x-9,1,5*x+4,-3*x-5,-x,-2*x-8,-5*x+16,-x+1,4*x+3,-3*x-4,x+1,3*x,x+12,-x-3,x-5,-1,-3*x,7*x-4,-6*x+8,x,-4*x-2,8,-x+3,2*x-1,2*x+8,x,x+2,4*x-2,-x+1,2*x+4,11*x-4,1,-4*x-16,6*x-3,-2*x-8,-x-2,-3*x+21,-1,-5*x+9,x-1,-5*x+7,x-8,3*x+1,-x-2,-8*x-12,0,2*x-1,-2*x,-x-1,-4,x-2,1,-3*x-1,4,3*x+12,1,-4,-5*x+10,4*x-2,-x,6*x+8,2*x,-7*x-7,-x+1,x-1,x+4,3*x-11,x+1,10*x-12,x+8,x-1,-x-3,x+7,-2*x,2*x+16,-3*x,-x+8,2*x+2,-4*x+17,x,-2*x-19,-10,1,-x+3,-3*x-4,-3*x-5,-4*x-8,x,-2*x-8,-5*x+4,2*x-20,-x+1,-2*x+1,-3*x+16,-3*x-4,1,-2*x+10,3*x,-8,-2*x-8,-x-3,-3*x+7,-6*x+1,-1,x,-x-3,7*x-4,-5*x+7,2*x-2,x,5*x-5,-x-2,8,-x+1,-x+1,2*x-1,8*x+9,3*x+5,x,-4,-5*x,4*x-2,-3*x-23,-3*x-1,2*x+4,2*x,5*x+7,1,5*x-9,-4*x-4,6*x-3,4*x-2,9*x-7,-x-2,-3*x-12,2*x,-1,-2*x+6,-2*x-16,x-1,-12,2*x+10,x-8,x+1,2*x-4,-x-2,7*x+6,x-1,0,x+4,-8*x-4,-2*x,-24,6*x+5,-4,-x+8,-9*x-5,1,x+3,x,4,x-9,-4*x-6,1,-8,5*x+4,-5*x+10,-3*x-5,2*x-18,-x,-10*x+2,-2*x-8,2*x,-5*x+16,2*x-20,-x+1,-2*x-14,4*x+3,x+4,-3*x-4,-x,x+1,9*x-5,3*x,x+8,x+12,x+4,-x-3,-7*x+2,x-5,-2*x,-1,-13*x+3,-3*x,-4*x-12,7*x-4,2*x+2,-6*x+8,7*x-20,x,3*x-14,-4*x-2,-10,8,2*x+16,-x+3,8*x+8,2*x-1,-3*x-5,2*x+8,-x+1,x,-2*x-17,x+2,-5*x+4,4*x-2,8*x+8,-x+1,-x+35,2*x+4,-3*x+16,11*x-4,-10*x-11,1,4,-4*x-16,3*x,6*x-3,9*x-2,-2*x-8,-5*x-6,-x-2,-3*x+7,-3*x+21,7*x-4,-1,-2*x+33,-5*x+9,-x-3,x-1,2*x-26,-5*x+7,-2*x-8,x-8,x,3*x+1,-2*x,-x-2,-2*x+19,-8*x-12,-x+1,0,12,2*x-1,-10*x-8,-2*x,3*x+5,-x-1,-10*x-14,-4,8*x-3,x-2,4*x-2,1,-2*x-2,-3*x-1,-3*x+7,4,2*x,3*x+12,2*x+4,1,-x+11,-4,-4*x-4,-5*x+10,3*x+7,4*x-2,4*x,-x,-x-2,6*x+8,8*x+6,2*x,3*x+28,-7*x-7,-2*x+6,-x+1,-2*x+20,x-1,3*x+5,x+4,2*x+10,3*x-11,8*x,x+1,16,10*x-12,-x-2,x+8,3*x-11,x-1,11*x-18,-x-3,x+4,x+7,-15*x-1,-2*x,-7*x+27,2*x+16,6*x+5,-3*x,-3*x,-x+8,x+3,2*x+2,1,-4*x+17,-5*x-23,x,-4*x-16,-2*x-19,x-9,-10,3*x+24,1,-2*x+32,-x+3,5*x+4,-3*x-4,12*x+4,-3*x-5,6*x+10,-4*x-8,-x,x,x+11,-2*x-8,12*x+12,-5*x+4]];
E[318,2] = [x, [1,1,-1,1,-3,-1,-4,1,1,-3,-5,-1,-2,-4,3,1,5,1,6,-3,4,-5,-7,-1,4,-2,-1,-4,-8,3,1,1,5,5,12,1,2,6,2,-3,4,4,-1,-5,-3,-7,-6,-1,9,4,-5,-2,1,-1,15,-4,-6,-8,-3,3,-2,1,-4,1,6,5,-10,5,7,12,0,1,-6,2,-4,6,20,2,15,-3,1,4,-10,4,-15,-1,8,-5,-5,-3,8,-7,-1,-6,-18,-1,19,9,-5,4,-3,-5,8,-2,-12,1,-20,-1,-11,15,-2,-4,13,-6,21,-8,-2,-3,-20,3,14,-2,-4,1,3,-4,-19,1,1,6,0,5,-24,-10,3,5,-20,7,4,12,6,0,10,1,24,-6,-9,2,20,-4,-20,6,5,20,-3,2,-17,15,-1,-3,28,1,-11,4,-15,-10,-25,4,-9,-15,6,-1,17,8,-16,-5,3,-5,2,-3,10,8,2,-7,-6,-1,-25,-6,4,-18,27,-1,-4,19,-6,9,-2,-5,0,4,10,-3,32,-5,-12,8,-7,-2,-30,-12,-5,1,0,-20,3,-1,-4,-11,6,15,-10,-2,22,-4,4,13,12,-6,-2,21,-20,-8,-4,-2,18,-3,-15,-20,29,3,-13,14,-1,-2,-27,-4,-12,1,10,3,-2,-4,35,-19,15,1,-8,1,-8,6,-8,0,11,5,-3,-24,5,-10,0,3,-4,5,-8,-20,-20,7,-19,4,1,12,11,6,10,0,18,10,-16,1,8,24,-19,-6,6,-9,9,2,5,20,14,-4,4,-20,3,6,6,5,17,20,-8,-3,28,2,24,-17,12,15,6,-1,40,-3,20,28,30,1,-8,-11,11,4,24,-15,0,-10,2,-25,30,4,8,-9,-13,-15,-5,6,-8,-1,-21,17,-3,8,-21,-16,2,-5,-14,3,0,-5,20,2,-9,-3,17,10,-14,8,18,2,8,-7,4,-6,-4,-1,17,-25,-3,-6,16,4,-26,-18,19,27,-21,-1,-60,-4,-1,19,-5,-6,-35,9,0,-2,-45,-5,-37,0,24,4,0,10,-2,-3,-3,32,-10,-5,-31,-12,20,8,12,-7,30,-2,-4,-30,0,-12,-23,-5,-6,1,20,0,8,-20,-10,3,22,-1,-10,-4,-24,-11,-42,6,28,15,9,-10,6,-2,15,22,-20,-4,-6,4,-20,13,20,12,-24,-6,24,-2,-5,21,-12,-20,-39,-8,3,-4,12,-2,40,18,17,-3,5,-15,24,-20,1,29,0,3,-4,-13,-28,14,-57,-1,-18,-2,11,-27,0,-4,-40,-12,15,1,0,10,16,3]];
E[318,3] = [x, [1,1,-1,1,0,-1,1,1,1,0,5,-1,0,1,0,1,2,1,-1,0,-1,5,3,-1,-5,0,-1,1,-1,0,-4,1,-5,2,0,1,0,-1,0,0,-9,-1,0,5,0,3,6,-1,-6,-5,-2,0,-1,-1,0,1,1,-1,-4,0,-7,-4,1,1,0,-5,1,2,-3,0,7,1,-14,0,5,-1,5,0,-8,0,1,-9,8,-1,0,0,1,5,-12,0,0,3,4,6,0,-1,13,-6,5,-5,12,-2,-4,0,0,-1,12,-1,-6,0,0,1,-4,1,0,-1,0,-4,2,0,14,-7,9,-4,0,1,8,1,0,0,1,-5,-1,1,0,2,-3,-3,-5,0,-6,7,0,1,0,-14,6,0,18,5,2,-1,2,5,0,0,11,-8,1,0,3,1,-8,-9,0,8,-20,-1,-13,0,-1,0,-16,1,-5,5,4,-12,0,0,-6,0,7,3,0,4,10,6,-1,0,0,-1,24,13,0,-6,7,5,17,-5,-1,12,-1,-2,0,-4,3,0,-5,0,10,-1,-7,12,0,-1,-4,-6,14,0,0,0,1,1,-5,-4,27,1,20,0,-5,-1,-29,0,0,-4,8,2,-11,0,5,14,-1,-7,0,9,0,-4,-8,0,-8,1,15,8,0,1,-22,0,0,0,-1,1,-3,-5,0,-1,12,1,-6,0,-29,2,0,-3,-25,-3,23,-5,-4,0,-16,-6,7,7,0,0,-9,1,-13,0,-13,-14,-21,6,0,0,-5,18,0,5,0,2,-12,-1,0,2,-26,5,4,0,0,0,16,11,0,-8,17,1,-5,0,-12,3,-2,1,0,-8,6,-9,6,0,-34,8,0,-20,0,-1,6,-13,4,0,-20,-1,-13,0,0,-16,24,1,-22,-5,0,5,15,4,0,-12,-2,0,-8,0,-18,-6,-14,0,0,7,24,3,-9,0,-1,4,25,10,0,6,0,-1,-27,0,-8,0,1,-1,0,24,0,13,34,0,6,-6,-1,7,0,5,7,17,1,-5,-10,-1,0,12,0,-1,0,-2,11,0,3,-4,-4,3,0,0,5,-5,22,0,19,10,6,-1,-10,-7,-7,12,0,0,32,-1,-17,-4,0,-6,-3,14,40,0,-6,0,-2,0,0,1,-18,1,8,-5,-45,-4,-2,27,0,1,0,20,-2,0,15,-5,34,-1,0,-29,33,0,1,0,-11,-4,0,8,5,2,-1,-11,41,0,0,5,-3,14,0,-1,-8,-7,8,0,-16,9,-2,0,0,-4,7,-8,-20,0]];
E[318,4] = [x, [1,-1,-1,1,4,1,1,-1,1,-4,-1,-1,-4,-1,-4,1,6,-1,-1,4,-1,1,9,1,11,4,-1,1,-3,4,-8,-1,1,-6,4,1,12,1,4,-4,5,1,-8,-1,4,-9,-2,-1,-6,-11,-6,-4,1,1,-4,-1,1,3,4,-4,-7,8,1,1,-16,-1,1,6,-9,-4,-3,-1,6,-12,-11,-1,-1,-4,-4,4,1,-5,-8,-1,24,8,3,1,-4,-4,-4,9,8,2,-4,1,-3,6,-1,11,0,6,8,4,-4,-1,-12,-1,-14,4,-12,1,-16,-1,36,-3,-4,-4,6,4,-10,7,-5,-8,24,-1,8,-1,8,16,-21,1,-1,-1,-4,-6,-17,9,19,4,2,3,4,1,-12,-6,6,12,14,11,-10,1,6,1,-32,4,-13,4,-1,-4,9,-1,4,5,4,8,12,1,3,-24,-1,-8,-8,-3,11,-1,-4,4,20,4,-6,4,7,-9,48,-8,-6,-2,-1,4,24,-1,4,3,16,-6,-3,1,-7,-11,-1,0,-3,-6,20,-8,9,-4,1,4,-14,1,3,12,-32,1,-8,14,-6,-4,-24,12,-7,-1,11,16,-7,1,4,-36,1,3,9,4,-8,4,4,-6,-9,-4,5,10,-1,-7,-24,5,4,8,8,-24,-20,1,-9,-8,-24,1,14,-8,12,-16,-3,21,23,-1,4,1,4,1,-10,4,-29,6,4,17,-11,-9,-17,-19,-8,-4,28,-2,15,-3,4,-4,5,-1,19,12,3,6,-23,-6,16,-12,1,-14,-36,-11,-8,10,0,-1,-28,-6,14,-1,-8,32,4,-4,-16,13,4,-4,11,1,3,4,12,-9,-6,1,-44,-4,14,-5,-2,-4,-10,-8,12,-12,4,-1,22,-3,16,24,8,1,-13,8,-36,8,16,3,34,-11,4,1,37,4,-12,-4,-6,-20,0,-4,-18,6,10,-4,24,-7,8,9,5,-48,1,8,-15,6,-24,2,12,1,29,-4,-8,-24,27,1,-4,-4,-8,-3,-10,-16,54,6,21,3,-16,-1,-33,7,1,11,-6,1,32,0,4,3,-12,6,-5,-20,17,8,4,-9,-32,4,-19,-1,34,-4,-13,14,-2,-1,66,-3,-7,-12,-4,32,-16,-1,7,8,12,-14,-9,6,-32,4,-6,24,-2,-12,-16,7,-14,1,40,-11,-5,-16,10,7,-16,-1,16,-4,-6,36,-19,-1,10,-3,32,-9,3,-4,1,8,13,-4,8,-4,-11,6,1,9,3,4,-48,-5,-9,-10,-12,1,32,7,-4,24,28,-5,-18,-4,-4,-8,-3,-8,28,24]];
E[318,5] = [x, [1,-1,-1,1,-1,1,0,-1,1,1,-1,-1,-2,0,1,1,-7,-1,2,-1,0,1,-5,1,-4,2,-1,0,-4,-1,-1,-1,1,7,0,1,-2,-2,2,1,-4,0,-1,-1,-1,5,6,-1,-7,4,7,-2,-1,1,1,0,-2,4,9,1,10,1,0,1,2,-1,-2,-7,5,0,0,-1,10,2,4,2,0,-2,1,-1,1,4,6,0,7,1,4,1,-1,1,0,-5,1,-6,-2,1,-13,7,-1,-4,7,-7,0,2,0,1,12,-1,-5,-1,2,0,-15,2,5,-4,-2,-9,0,-1,-10,-10,4,-1,9,0,-5,-1,1,-2,8,1,0,2,1,7,-4,-5,-12,0,-6,0,2,1,4,-10,7,-2,-12,-4,4,-2,-7,0,1,2,-7,-1,1,1,0,-1,-19,-4,-1,-6,-11,0,-9,-7,2,-1,11,-4,0,-1,-9,1,18,-1,22,0,-10,5,2,-1,7,6,0,2,25,-1,-12,13,-2,-7,-2,1,0,4,2,-7,0,7,4,0,-5,-2,-2,0,-5,-1,0,-12,1,1,0,5,-10,1,14,-2,-14,0,-4,15,-20,-2,-6,-5,0,4,-4,2,-6,9,-1,0,-9,1,27,10,-1,10,7,-4,-4,1,-6,-9,-10,0,5,5,-7,1,24,-1,0,2,-4,-8,25,-1,1,0,1,-2,-28,-1,24,-7,0,4,4,5,11,12,-1,0,-1,6,-14,0,2,-2,0,-1,32,-4,13,10,-2,-7,-9,2,1,12,10,4,0,-4,-7,2,-10,7,17,0,0,-1,0,-2,4,7,0,1,10,-1,4,-1,-12,0,-14,1,8,19,5,4,0,1,0,6,-2,11,2,0,-4,9,15,7,1,-2,0,1,-5,-11,9,4,-19,0,2,1,-14,9,0,-1,0,-18,-11,1,-15,-22,10,0,-10,10,-36,-5,-4,-2,0,1,23,-7,-9,-6,8,0,-10,-2,5,-25,-23,1,0,12,-1,-13,-7,2,35,7,-8,2,-1,-1,21,0,0,-4,-36,-2,2,7,-1,0,2,-7,-39,-4,4,0,0,5,-6,2,12,2,-36,0,15,5,6,1,28,0,0,12,-2,-1,-30,-1,38,0,-4,-5,-10,10,-4,-1,-7,-14,2,2,1,14,12,0,-30,4,4,-15,-4,20,0,2,-32,6,7,5,24,0,-33,-4,-1,4,-4,-2,0,6,7,-9,1,1,-8,0,-1,9,-24,-1,4,-27,0,-10,13,1,30,-10,19,-7,-12,4,28,4,1,-1,0,6,-28,9]];
E[318,6] = [x^2-x-10, [1,-1,1,1,x,-1,0,-1,1,-x,-x+2,1,6,0,x,1,-x-4,-1,-2*x,x,0,x-2,-x+2,-1,x+5,-6,1,0,2*x-2,-x,3*x-2,-1,-x+2,x+4,0,1,6,2*x,6,-x,-2*x+2,0,-x+6,-x+2,x,x-2,-2*x-4,1,-7,-x-5,-x-4,6,-1,-1,x-10,0,-2*x,-2*x+2,x-2,x,-6,-3*x+2,0,1,6*x,x-2,2*x-8,-x-4,-x+2,0,0,-1,2,-6,x+5,-2*x,0,-6,-3*x-6,x,1,2*x-2,2*x,0,-5*x-10,x-6,2*x-2,x-2,-3*x,-x,0,-x+2,3*x-2,2*x+4,-2*x-20,-1,-3*x,7,-x+2,x+5,x,x+4,4*x-4,-6,0,1,4*x-8,1,x,-x+10,6,0,-x+12,2*x,x-10,2*x-2,6,-x+2,0,-x,-3*x+3,6,-2*x+2,3*x-2,x+10,0,-x+6,-1,-x+6,-6*x,0,-x+2,0,-2*x+8,x,x+4,-2*x+10,x-2,-12,0,-2*x-4,0,-6*x+12,1,20,-2,-7,6,2*x-2,-x-5,-20,2*x,-x-4,0,x+30,6,7*x-4,3*x+6,-1,-x,0,-1,-3*x+10,-2*x+2,x-10,-2*x,x-2,0,23,5*x+10,-2*x,-x+6,-3*x,-2*x+2,0,-x+2,x-2,3*x,-2*x-8,x,4*x-6,0,-6,x-2,6*x,-3*x+2,3*x+2,-2*x-4,0,2*x+20,-3*x+6,1,2*x+6,3*x,6*x,-7,-4*x+2,x-2,0,-x-5,2*x-8,-x,0,-x-4,-20,-4*x+4,-x+2,6,-2*x+20,0,3*x-18,-1,0,-4*x+8,5*x-10,-1,0,-x,2,x-10,-6*x-24,-6,2*x+4,0,x+5,x-12,4*x+8,-2*x,4*x+6,-x+10,0,-2*x+2,-2*x+10,-6,-6*x-20,x-2,-3*x-6,0,3*x+18,x,-3*x,3*x-3,1,-6,-7*x,2*x-2,-12*x,-3*x+2,2*x,-x-10,2*x-16,0,-3*x+14,x-6,-5*x-10,1,2*x-14,x-6,0,6*x,2*x-2,0,5*x-2,x-2,-x,0,-3*x,2*x-8,2*x+14,-x,0,-x-4,0,2*x-10,-4*x,-x+2,x+8,12,3*x-2,0,5*x-16,2*x+4,-2*x,0,-2*x-20,6*x-12,0,-1,9*x+9,-20,-3*x,2,4*x-14,7,-x+10,-6,-x+2,-2*x+2,-6*x+12,x+5,0,20,x,-2*x,-6*x,x+4,x+2,0,4*x-4,-x-30,-24,-6,-6*x-2,-7*x+4,0,-3*x-6,18,1,4*x-24,x,4*x-8,0,10*x+20,1,6*x+30,3*x-10,x,2*x-2,0,-x+10,-4*x+12,2*x,6,-x+2,-6*x+20,0,-6*x+6,-23,-x+12,-5*x-10,5*x-34,2*x,0,x-6,x-10,3*x,x+6,2*x-2,-5*x+20,0,6,x-2,4*x+6,-x+2,0,-3*x,0,2*x+8,x+6,-x,4*x+21,-4*x+6,-3*x+3,0,2*x,6,4*x+8,-x+2,-2*x+2,-6*x,0,3*x-2,-3*x,-3*x-2,x+10,2*x+4,12*x-12,0,-6*x+8,-2*x-20,-x+6,3*x-6,-3*x+6,-1,0,-2*x-6,-x+6,-3*x,-5*x-20,-6*x,3*x+2,7,0,4*x-2,-9*x-30,-x+2,-5*x-12,0,0,x+5,-2*x-22,-2*x+8,18*x-12,x,x,0,-6*x+12,x+4,3*x-4,20,-2*x+10,4*x-4,0,x-2,2*x+20,-6,-12,2*x-20,12,0,-3*x,-3*x+18,-2*x-4,1,-10*x-30,0,0,4*x-8,-6*x+12,-5*x+10,2*x+28,1,4*x-22,0,20,x,-2*x+20,-2,4*x+8,-x+10,-7,6*x+24,6*x,6,-3*x-30,-2*x-4,2*x-2,0,18,-x-5,-4*x+24,-x+12,-20,-4*x-8,0,2*x,6*x-18,-4*x-6,-x-4,x-10,6*x-18,0,3*x+6,2*x-2,x+30,2*x-10,4*x+8,6,0,6*x+20,7*x-4,-x+2,-7*x+22,3*x+6,-12*x-20,0,-1,-3*x-18,8*x-16,-x,36,3*x,0,-3*x+3,-3*x-30,-1,6*x+12,6,-3*x+10,7*x,8*x-20,-2*x+2,-8*x-12,12*x,x-10,3*x-2,0,-2*x,-4,x+10]];
E[318,7] = [x, [1,-1,1,1,0,-1,5,-1,1,0,-3,1,-4,-5,0,1,6,-1,5,0,5,3,-3,-1,-5,4,1,5,3,0,8,-1,-3,-6,0,1,-4,-5,-4,0,-3,-5,-4,-3,0,3,6,1,18,5,6,-4,-1,-1,0,-5,5,-3,-12,0,-1,-8,5,1,0,3,-13,6,-3,0,-15,-1,2,4,-5,5,-15,4,-16,0,1,3,0,5,0,4,3,3,0,0,-20,-3,8,-6,0,-1,5,-18,-3,-5,0,-6,-4,4,0,1,12,1,-10,0,-4,5,12,-5,0,3,-4,12,30,0,-2,1,-3,8,0,-5,-4,-1,-4,0,-15,-3,25,13,0,-6,15,3,-7,0,6,15,12,1,0,-2,18,-4,18,5,-10,-5,6,15,0,-4,-19,16,-1,0,-15,-1,20,-3,0,0,-12,-5,3,0,5,-4,0,-3,-25,-3,-12,0,12,0,14,20,-1,3,0,-8,-18,6,5,0,-24,1,-4,-5,0,18,27,3,5,5,-13,0,15,6,0,4,-3,-4,-15,0,2,-1,-15,-12,0,-1,40,10,2,0,-24,4,29,-5,-5,-12,3,5,-4,0,-15,-3,-15,4,0,-12,-16,-30,3,0,5,2,1,-1,0,3,-20,-8,0,0,24,5,9,4,0,1,6,4,-20,0,3,15,3,3,0,-25,0,-13,-6,0,-25,6,-20,-15,15,-3,-7,7,8,0,24,-6,5,-15,0,-12,-15,-1,19,0,5,2,-9,-18,0,4,-3,-18,12,-5,-20,10,0,5,0,-6,2,-15,-4,0,-24,4,8,19,0,-16,-27,1,-9,0,12,15,30,1,20,-20,-10,3,30,0,2,0,-4,12,0,5,26,-3,12,0,-24,-5,55,4,0,0,-24,3,-10,25,-4,3,21,12,0,0,30,-12,-24,0,6,-14,-2,-20,0,1,8,-3,-3,0,-5,8,-25,18,0,-6,-12,-5,23,0,-4,24,-9,-1,0,4,-4,5,30,0,-18,-18,-15,-27,0,-3,-7,-5,25,-5,18,13,-32,0,0,-15,12,-6,11,0,15,-4,-60,3,0,4,-7,15,-18,0,5,-2,6,1,-30,15,-5,12,12,0,-12,1,23,-40,0,-10,-15,-2,8,0,18,24,30,-4,0,-29,18,5,-12,5,9,12,-10,-3,0,-5,32,4,6,0,27,15,26,3,0,15,33,-4,-65,0,-19,12,12,16,-25,30,-1,-3,39,0,16,-5,-15,-2,0,-1,32,1,20,0,0,-3,18,20,0,8,-75,0,-4,0]];

E[319,1] = [x, [1,2,-3,2,1,-6,4,0,6,2,-1,-6,6,8,-3,-4,4,12,-2,2,-12,-2,3,0,-4,12,-9,8,1,-6,-7,-8,3,8,4,12,-11,-4,-18,0,4,-24,-4,-2,6,6,8,12,9,-8,-12,12,2,-18,-1,0,6,2,-3,-6,2,-14,24,-8,6,6,-15,8,-9,8,-7,0,2,-22,12,-4,-4,-36,6,-4,9,8,-6,-24,4,-8,-3,0,9,12,24,6,21,16,-2,24,-17,18,-6,-8,18,-24,-4,0,-12,4,10,-18,8,-2,33,-16,-13,12,3,2,36,-6,16,0,1,4,-12,-14,-9,48,20,0,12,12,-4,6,-8,-30,-9,0,-13,-18,-12,8,-24,-14,-6,-24,1,4,-27,-22,6,24,-8,0,24,-8,-7,-36,-17,12,-6,-8,12,18,-12,8,3,-12,0,0,23,8,-12,-8,0,-6,-16,4,9,18,-3,12,-5,48,-6,0,-11,42,-4,16,-36,-4,-5,24,12,-34,-18,18,-16,-12,4,0,45,36,4,-24,4,-8,18,-24,2,-24,-14,4,21,20,-4,0,-28,16,-6,-2,24,66,-1,-32,-24,-26,-12,12,29,6,12,0,-4,72,8,-6,-18,32,24,12,6,2,0,4,9,-24,-12,0,18,-18,-9,48,-3,40,-12,16,6,24,-44,12,6,-8,24,0,2,-16,-27,-30,-10,-18,14,-16,-72,-26,4,-18,10,-24,-42,0,-18,-48,-22,-14,6,-12,16,-48,-1,2,51,4,14,-54,-3,0,9,12,18,24,-16,-16,-54,8,2,48,28,-8,12,-14,24,0,11,-34,24,12,19,-12,-1,-8,-30,24,-8,18,-24,-24,-24,0,32,6,13,-12,-66,0,-15,48,-22,46,39,8,7,-24,8,0,-9,0,0,-6,10,-32,-54,8,-17,18,-7,18,-48,-6,16,0,-15,-10,-3,48,2,-12,25,-12,24,-22,8,42,-6,-8,27,0,6,-72,1,-4,-60,-10,35,0,-4,24,-24,-34,-5,-36,12,0,12,-32,6,-12,6,8,24,16,-6,90,-42,36,9,8,11,0,2,8,39,-8,-12,36,-6,-48,36,4,36,-24,-22,-28,48,0,-16,42,8,20,18,-8,-14,36,3,-56,-3,16,-6,-12,-28,0,54,48,-21,66,9,-2,-18,-32,1,-48,-4,-26,24,-24,24,0,10,58,-36,6,28,24,29,-4,21,-8,-17,72,-60,16,51,0,4,-36,8,32,12,48,18,24,-66,12,-36,2,-17,0,19,0,36,18,16,-24,4,-24,-6,28,-28,36,12,-18]];
E[319,2] = [x^3-3*x-1, [1,x,-x,x^2-2,-2*x^2+x+2,-x^2,2*x^2-2*x-5,-x+1,x^2-3,x^2-4*x-2,1,-x-1,x^2+x-4,-2*x^2+x+2,-x^2+4*x+2,-3*x^2+x+4,-x^2+x-2,1,x-4,-x-3,2*x^2-x-2,x,-4*x^2+4*x+8,x^2-x,5*x^2-4*x-5,x^2-x+1,3*x-1,-3*x^2+8,1,4*x^2-x-1,3*x^2-2*x-9,x^2-3*x-5,-x,x^2-5*x-1,5*x-4,-2*x^2+x+6,4*x^2-x-3,x^2-4*x,-x^2+x-1,-3*x^2+5*x+4,-x^2+2*x-3,-x^2+4*x+2,-5*x^2+x+13,x^2-2,2*x^2-2*x-5,4*x^2-4*x-4,-2*x^2+x+3,-x^2+5*x+3,-4*x^2+10,-4*x^2+10*x+5,-x^2+5*x+1,-3*x^2+2*x+9,-x^2-5*x,3*x^2-x,-2*x^2+x+2,4*x^2-3*x-7,-x^2+4*x,x,-2*x^2-3*x+4,x^2+3*x,4*x^2-8*x-11,-2*x^2+3,-5*x^2+2*x+13,3*x^2-4*x-7,5*x^2-7*x-9,-x^2,x^2+4*x+3,-3*x^2+5,-4*x^2+4*x+4,5*x^2-4*x,-x^2-3*x+10,x^2-4,-2*x^2+5*x+1,-x^2+9*x+4,4*x^2-10*x-5,-4*x^2+x+9,2*x^2-2*x-5,x^2-4*x-1,-5*x^2+7*x+15,5*x^2-3*x+3,-6*x^2+x+9,2*x^2-6*x-1,7*x^2-x-18,x+3,9*x^2-7*x-7,x^2-2*x-5,-x,-x+1,x^2+x-14,-2*x^2+x+2,-9*x^2+5*x+20,4*x^2-12,2*x^2-3,x^2-3*x-2,9*x^2-8*x-10,3*x^2+2*x-1,-6*x^2+x+10,-2*x-4,x^2-3,x+6,3*x^2-9*x-7,5*x^2-2*x-1,-2*x^2-4*x+5,2*x-5,-5*x^2+4*x,-5*x^2-3*x-1,2*x^2+3*x+1,-x^2+3*x+5,-x^2+3*x-1,x^2-4*x-2,x^2-9*x-4,3*x^2+5*x-12,x^2-8*x-2,4*x^2-3*x-1,4*x^2-12*x+4,x^2-2,-4*x^2+x+13,-3*x^2-2*x-2,-7*x^2+9*x+14,-5*x^2+5*x+3,1,-8*x^2+x+4,-2*x^2+6*x+1,-6*x^2+x+16,-4*x^2+11*x-7,2*x^2-2*x-5,6*x^2-x-15,-6*x^2+8*x+13,-x^2+2*x+5,-7*x^2+6*x+5,-3*x^2+x+8,-x-1,-10*x^2+9*x+22,4*x^2+6*x+1,5*x^2-13*x-8,-2*x^2+6*x-1,5*x^2-12,4*x^2-8*x-4,5*x^2+6*x-19,-4*x^2+5*x+13,-x^2+3*x+2,-3*x^2+7*x-1,x^2+x-4,4*x^2-3*x-11,-2*x^2+x+2,5*x^2-5*x-2,2*x+4,x^2+3*x+5,3*x^2-x-18,-10*x^2+7*x+4,-x^2-3*x-15,-x^2+5*x-4,-2*x^2-x+7,-2*x^2+x+2,4*x^2+2*x-11,-2*x^2+3,5*x^2-4*x+1,7*x^2-5,5*x^2+3*x+1,3*x^2+8*x-3,4*x^2+4*x-24,x^2-9*x-6,8*x^2-7*x-18,-4*x^2+x+8,-x^2+4*x+2,-x^2+3*x+7,-x^2+5*x+5,3*x^2-5*x-4,-4*x^2-x+5,-7*x^2+20*x+9,-4*x^2+13,8*x^2-4*x-25,3*x^2-5*x-1,-x^2,3*x^2-14*x+7,-3*x^2+x+4,3*x^2+2*x+2,x^2-11*x+1,12*x^2-5*x-28,-3*x^2+8,9*x^2+x-15,5*x^2-7*x-9,8*x^2-x-4,-8*x^2+8*x+12,-11*x^2+5*x,3*x+2,-x^2+x-2,x^2-x-5,-8*x^2+5*x+11,-8*x^2+17*x+9,-12*x^2+2*x+18,4*x^2-2*x-3,6*x^2-12*x-17,x^2-8*x-6,7*x^2-6*x-5,6*x^2-4*x-20,6*x^2+3*x+1,1,2*x^2+7*x-9,9*x^2-14*x-10,-4*x^2-6*x-1,-9*x^2+2*x+3,2*x^2-2*x-5,4*x+3,12*x^2-12*x-11,-4*x^2-x-2,8*x^2-4*x-20,8*x^2-9*x-18,x-4,4*x^2-15*x-5,-2*x^2+5*x+3,-x^2-6*x-5,3*x^2-7*x+1,3*x^2+7*x+2,-5*x^2+4*x+19,-3*x^2+4*x-1,-11*x^2+4*x+35,3*x^2-4*x-1,-5*x^2+5*x+2,-x-3,-7*x+8,-9*x^2-x+1,-11*x^2+14*x+31,-3*x^2+3*x+17,-5*x^2+5*x+11,-8*x^2+x+1,-8*x^2-3*x+11,-x^2+3*x+4,-8*x^2+19*x+22,-12*x^2+16*x+4,2*x^2-x-2,-x+1,-2*x^2-8*x-5,x^2+x-4,3*x^2-3*x+2,2*x^2-5*x-11,-7*x^2+5,9*x^2-7*x-7,-9*x^2+4*x+23,3*x^2-18*x-5,x^2+8*x-14,x,-x^2+9,-7*x^2-4*x+14,-4*x^2+6*x+16,6*x^2-5*x-2,-3*x^2-5*x+17,5*x^2-2*x-12,x^2-3*x-7,11*x^2-19*x-4,13*x^2-11*x-25,8*x^2-3*x-24,-4*x^2+4*x+8,-x^2+3*x+6,7*x^2-20*x-9,2*x^2+3*x+8,-17*x^2+6*x+33,2*x^2+2*x-1,-11*x+5,-4*x^2-2*x+11,x^2-3,x^2-x-3,-6*x^2+9*x+23,x^2-x,-x^2+19*x+9,9*x^2-8*x-10,-x^2+11*x-1,4*x^2+5*x-2,-7*x^2-3*x+11,-13*x^2+7*x+5,-4*x^2+8*x+13,12*x^2-7*x-12,-5*x^2+7*x+9,3*x+5,5*x^2-4*x-5,-4,3*x^2-14,6*x^2-4*x+5,-9*x^2+3*x+25,-5*x^2+9*x-4,5*x^2-8*x-27,3*x^2-x-1,-5*x^2-5*x+2,9*x^2-4*x-23,8*x^2-17*x-9,x^2-x+1,-11*x^2+12*x+21,-5*x^2+x+12,8*x^2-9*x-15,x^2-4*x-2,-x^2+8*x+6,-x^2+3*x+3,-2*x^2+5*x+6,2*x^2+4*x,-3*x^2+14*x+12,5*x^2-10*x-7,3*x-1,-x^2-9*x+3,16*x^2-12*x-32,-x^2-6*x,19*x^2-5*x-53,-3*x^2-18*x-1,9*x^2-2*x-3,13*x^2-9*x-19,-2*x^2+25*x-2,-x^2+x-2,14*x^2-x-29,-3*x^2+8,4*x^2+x+2,2*x^2+x+4,12*x^2-27,-2*x^2+5*x,-4*x^2+2*x+25,-4*x^2+16*x+5,-4*x^2+17,10*x^2+2*x-23,-15*x^2+11*x+35,3*x^2+16*x+5,1,-2*x^2+12*x-3,-3*x^2-7*x-2,4*x^2-12*x+4,5*x^2-9*x+7,3*x^2-5*x-17,-14*x^2+19*x+21,-7*x^2+6*x+8,-3*x^2+4*x+1,-3*x^2+8*x-2,2*x^2+3*x-9,4*x^2-x-1,-6*x^2+12*x+31,-11*x^2+6*x+35,-3*x^2+4*x+8,5*x^2+2*x-1,-6*x^2-12*x-1,-5*x^2+3*x-3,7*x^2+x-12,-x^2-7*x-4,8*x^2-x-1,2*x^2+2*x+7,3*x^2-2*x-9,x-4,2*x^2+10*x-7,-6*x^2+3*x+18,12*x^2-16*x-4,-5*x^2+8*x+3,-22*x^2+13*x+43,-x-1,-14*x^2+5*x+24,-14*x^2+16*x+3,2*x^2-4*x+7,x^2-3*x-5,7*x^2+2*x-9,2*x^2+11*x+3,-19*x^2+21*x+25,-13*x^2+2*x+29,-9*x^2+7*x+7,-5*x^2+8*x+12,5*x^2-14*x-5,4*x^2-3*x-7,x^2-8*x-3,x^2+12*x+9,-x,11*x^2-4*x-35,11*x^2-21*x-10,-x^2+20*x+8,18*x^2-9*x-26,-12*x+16,-3*x^2-x+11,5*x^2-33*x-11,9*x^2-x-8,-x^2+2*x+6,5*x^2-x-9,x^2-5*x-1,-11*x^2+19*x+4,-3*x^2+4*x+5,x^2+x-4,5*x^2-13*x-8,-11*x^2+5*x+19,-x^2+x+12,x^2-3*x-6,2*x^2-18*x-12,5*x^2-13*x-23,-8*x^2+5*x+6,5*x-4,-12*x^2+x+6,13*x^2-5*x-38,4*x^2-5*x-19,12*x^2-2*x-25,-6*x^2+16*x+7,16*x^2-20*x-24,-4*x^2+2*x+14,-x^2+x+3,3*x^2+19*x+6,-3*x^2-18*x+11,-2*x^2+x+6,3*x^2-19*x-7,7*x^2-3*x+2,-9*x^2+8*x+10,-14*x^2+15*x-3,4*x^2-16*x-22,-6*x^2-13*x-4,-14*x^2+5*x+37,-4*x^2-6*x+5,7*x^2-x+10,-2*x^2+x+2,4*x^2-x-3,-6*x^2+7*x+2,-5*x^2-12*x+2,-12*x^2+25*x+12,-3*x-5,3*x^2-6*x-14,12*x^2-3*x-22,-4*x^2+4*x+8,7*x^2-7*x-27,-9*x^2+2*x+18,-6*x^2+4*x-5,x^2-4*x,18*x^2-11*x-23,-5*x^2-x+4,-2*x^2+16*x+8,5*x^2-3*x-2,3*x^2-2*x-8,4*x^2-2*x+1,-24*x^2+25*x+19,-7*x^2+10*x+3,-2*x^2-2*x+31,3*x^2+5*x+1,-x^2+x-1,4*x^2+4*x-5,-15*x^2+8*x+13,6*x^2-16*x-13,9*x^2+6*x-23,4*x^2+2*x-11,-x^2+4*x+2,-2*x^2+2*x+5,20*x^2-20*x-36,5*x^2-13*x-5,-7*x^2+3*x+8,-3*x^2+5*x+4,10*x^2-4*x-30,-7*x^2+8*x,-12*x^2+8*x+26,-3*x^2-8*x-1,25*x^2-17*x-29,14*x^2-2*x-11,x^2+9*x-3,-3*x^2-2*x+21,9*x^2+3*x-34,5*x^2-4*x-5,-x^2+2*x-3,-x^2-7*x-4,3*x^2+18*x+1,-3*x^2-13*x-8,x^2-9*x+21,-5*x^2+7*x+1,-4*x^2-2*x+9,19*x^2-2*x-8,4*x^2-16*x-1,8*x^2-8*x-20,-4*x^2-8*x+18,-x^2+4*x+2,-7*x^2-10*x+9,-3*x^2+x+4,-2*x^2-x-4,-8*x^2-11*x-2,-22*x^2+17*x+41,9*x^2-3*x-25,-x^2-6*x-9,-3*x^2+11*x+3,4*x^2-16*x-5,x^2-x+6,-5*x^2+x+13,-16*x-7,-24*x^2+26*x+25,7*x^2+2*x-19,-x-5,4*x^2-4*x-9,10*x^2-11*x-18,-8*x^2-6*x-3,-8*x^2+14*x+15,8*x^2-11*x+1,-4*x^2+12*x-4,x^2-2,5*x^2+12,6*x-1,-4*x^2-12*x+9,12*x^2-9*x-15,7*x^2-6*x-8,6*x^2+4*x-4,-16*x^2-10*x+33,-x^2+4*x+4,-x^2+x-2,-5*x^2+8*x-3,2*x^2-2*x-5,10*x^2+x-27,25*x^2-19*x-54,-3*x^2-4*x+1,-3*x^2+4*x-23,-11*x^2+7*x+25]];
E[319,3] = [x^4+2*x^3-3*x^2-3*x+2, [1,x,-x^3-2*x^2+2*x+1,x^2-2,x^3+2*x^2-2*x-3,-x^2-2*x+2,x^3+2*x^2-3*x-2,x^3-4*x,x^3+x^2-3*x,x^2-2,-1,x^3+2*x^2-2*x-2,-2*x^3-5*x^2+x+4,x-2,x^3+3*x^2-x-5,-2*x^3-3*x^2+3*x+2,3*x^2+5*x-6,-x^3+3*x-2,x,-x^3-4*x^2+2*x+6,2*x^2+3*x-6,-x,-x^3-4*x^2-x+5,3*x^2+5*x-6,-3*x^3-7*x^2+5*x+6,-x^3-5*x^2-2*x+4,2*x^3+6*x^2-x-7,-2*x^3-3*x^2+4*x+4,-1,x^3+2*x^2-2*x-2,-x^2+2*x+1,-x^3-3*x^2+4*x+4,x^3+2*x^2-2*x-1,3*x^3+5*x^2-6*x,-2*x^3-6*x^2+3*x+10,-2*x^2+x+2,2*x^3+2*x^2-5*x-1,x^2,x^3+3*x^2+2*x+2,-2*x^3-3*x^2+3*x+6,-x^3-x^2+x-10,2*x^3+3*x^2-6*x,5*x^3+11*x^2-6*x-8,-x^2+2,-x^3-2*x^2+x+4,-2*x^3-4*x^2+2*x+2,-x^3+6*x-4,x^3+x^2-2*x+4,-x^3-4*x^2-x+3,-x^3-4*x^2-3*x+6,3*x^3+x^2-16*x+4,x^3+5*x^2-x-6,3*x^2+7*x,2*x^3+5*x^2-x-4,-x^3-2*x^2+2*x+3,x^3-2*x^2-4*x+8,-x^2-2*x+2,-x,3*x^3+6*x^2-8*x-11,-2*x^3-5*x^2+3*x+8,-3*x^3-4*x^2+13*x+4,-x^3+2*x^2+x,x^3-x^2-5*x+6,3*x^3+7*x^2-5*x-2,3*x^3+7*x^2-4*x-10,x^2+2*x-2,2*x^3+9*x^2-2*x-15,-x^3-3*x^2-x+6,-x^3+7*x+1,-2*x^3-3*x^2+4*x+4,x^3+7*x^2+6*x-15,x^2-4*x+4,-x^3-2*x^2-4*x-2,-2*x^3+x^2+5*x-4,x^3-3*x+10,x^3-2*x,-x^3-2*x^2+3*x+2,x^3+5*x^2+5*x-2,-3*x^3-9*x^2+10,3*x^3+5*x^2-4*x-8,-2*x^3-2*x^2+3*x-5,x^3-2*x^2-13*x+2,-7*x^2-11*x+12,-x^3-4*x^2+8,-3*x^3-7*x^2+6*x+8,x^3+9*x^2+7*x-10,x^3+2*x^2-2*x-1,-x^3+4*x,-5*x^3-13*x^2+10*x+9,-2*x^2+x+2,2*x^3+7*x^2-x-10,2*x^3+4*x^2-2*x-6,-2*x^2-4*x+5,2*x^3+3*x^2-7*x+2,x^2-2,-x^3-5*x^2-3*x+10,-x^3-8*x^2-8*x+15,-2*x^3-4*x^2+2,-x^3-x^2+3*x,4*x^3+8*x^2-7*x-10,-x^3-x^2-2*x-6,-5*x^3-7*x^2+13*x-6,-5*x^3-14*x^2+3*x+22,5*x^3+12*x^2+x-10,-4*x^3-9*x^2+8*x+12,3*x^3+7*x^2,-5*x^3-8*x^2+12*x+10,-3*x^3-7*x^2+4*x+10,-3*x^3-15*x^2-4*x+24,-x^2+2,-x^3+x^2+6*x-7,5*x^2+3*x-10,3*x^3+9*x^2-3*x-19,-x^3-2*x^2+2*x,3*x^3+8*x^2-5*x-11,-x^2+2,x^3+2*x^2-4,x^2-2*x-6,-6*x^3-9*x^2+17*x+2,-3*x^3-7*x^2+6*x+8,1,2*x^3+4*x^2-5*x+6,11*x^3+22*x^2-21*x-10,4*x^3-7*x,4*x^2+3*x-7,-3*x^3-2*x^2+9*x-2,x^3+2*x^2+4*x+4,3*x^3+10*x^2-x-14,-3*x^3-5*x^2+3*x-10,x^3+5*x^2-x-6,-6*x^3-15*x^2+3*x+14,-x^3-2*x^2+2*x+2,x-2,5*x^3+4*x^2-9*x-4,-5*x^3-13*x^2+8*x+19,-7*x^3-14*x^2+15*x+2,x^3-3*x^2-9*x-7,2*x^3+4*x^2-2*x+2,5*x^3+13*x^2-x-10,5*x^3+10*x^2-8*x-16,4*x^3+3*x^2-17*x+6,5*x^3+9*x^2-12*x-2,2*x^3+5*x^2-x-4,x^3+2*x-4,-x^3-2*x^2+2*x+3,-7*x^2-5*x+2,x^3+4*x^2+3*x-1,x^3-5*x^2+6,8*x^3+13*x^2-19*x-8,-2*x^3+13*x-2,-x^3+x^2+8*x,-2*x^3-x^2+3*x-2,-5*x^3-6*x^2+18*x-4,-x+2,4*x^2-7,x^3+2*x^2-3*x-6,4*x^3+13*x^2-8*x-21,-3*x^3-9*x^2+x+6,-3*x^3-13*x^2-8*x+14,3*x^3+11*x^2-5*x-18,4*x^3+8*x^2-8*x-8,2*x^3-3*x^2-11*x+4,4*x^3+10*x^2-3*x-6,-2*x^3-8*x^2+3*x+18,-x^3-3*x^2+x+5,-7*x^3-11*x^2+12*x,3*x^3+17*x^2+4*x-28,-6*x^3-9*x^2+17*x+2,4*x^3+16*x^2+11*x-15,-x^3-3*x^2-x+6,-x^3+3*x-2,-3*x^3-12*x^2+5*x+14,5*x^3+9*x^2-8*x-8,x^2+2*x-2,3*x^3+11*x^2+x-22,2*x^3+3*x^2-3*x-2,5*x^3+15*x^2-3*x-21,-3*x^3-5*x^2-6*x+10,-x^3-2*x+1,5*x^2-8,4*x^3+17*x^2+x-27,3*x^3+5*x^2-4*x-4,-10*x^2-17*x+24,4*x^3+12*x^2-4*x-8,-3*x^3-5*x^2+4*x+9,-2*x^3-4*x^2+5*x,-3*x^2-5*x+6,x^3-x^2-4*x+4,-5*x^3-12*x^2+8*x+16,x^3-2*x,-3*x^3-8*x^2-5*x+5,-5*x^3-8*x^2+11*x-6,x^3-2*x^2-3*x+18,-6*x^3-11*x^2+12*x+2,3*x^3+7*x^2-7*x-12,2*x^3+2*x^2-2*x-2,-7*x^3-12*x^2+18*x,x^3-3*x+2,-5*x^3-10*x^2+6*x+8,2*x^3+13*x^2+8*x-20,6*x^3+12*x^2-14*x-15,x^3-5*x^2-9*x+2,-x^3-2*x^2+3*x+2,-3*x^3-4*x^2+11*x+2,-9*x^3-20*x^2+19*x+30,-4*x^3-12*x^2+7*x+10,2*x^3+4*x^2-6*x-2,6*x^2+7*x+2,-x,-x^3-4*x^2+8,-7*x^3-10*x^2+18*x+18,x^3+3*x^2-5*x-6,8*x^3+9*x^2-31*x-1,2*x^3-3*x^2-5*x+10,-7*x^3-17*x^2+9*x+26,-5*x^3-15*x^2+3*x+14,x^3+x^2+x-6,-9*x^3-13*x^2+15*x+6,4*x^3+13*x^2+3*x-12,x^3+4*x^2-2*x-6,-2*x^3-10*x^2-13*x+2,3*x^3+3*x^2-10*x+2,4*x^3+9*x^2-6*x-9,3*x^3+7*x^2-2*x-16,-x^3+3*x^2+8*x-12,3*x^3+6*x^2-10*x-6,-x^3-14*x^2-14*x+28,x^2+x-2,-3*x^3-2*x^2+12*x-11,2*x^3+4*x^2-2*x-6,-2*x^2-3*x+6,-x^3+4*x,5*x^3+10*x^2-9*x-10,3*x^2-x-2,-2*x^3-3*x^2+5*x+2,-5*x^3-14*x^2+10*x+22,-x^3+x^2+11*x+4,3*x^3-x^2-16*x+12,-x^3-17*x^2-17*x+26,3*x^3+7*x^2-7*x-10,-6*x^3-19*x^2+22,x,x^3-5*x^2-11*x+18,6*x^3+9*x^2-14*x-12,x^3+4*x^2-x-5,12*x^2+23*x-22,-x^3-5*x^2-2*x+4,-6*x^3+x^2+10*x-8,-5*x^3+x^2+32*x-10,4*x^3+3*x^2-7*x,4*x^3+11*x^2+x-15,2*x^3+2*x^2-x-6,x^3+4*x^2+x-5,7*x^2+7*x-2,-x^3-5*x^2-x+14,-2*x^3-6*x^2+5*x-2,9*x^3+19*x^2-13*x-28,x^3-6*x^2-19*x+6,x^3-4*x^2-6*x+12,-3*x^3-12*x^2+5*x+18,-x^3-x^2+3*x,-3*x^3-15*x^2-4*x+12,3*x^3+10*x^2+8*x-4,-3*x^2-5*x+6,3*x^3+7*x^2-6*x-14,x^2-2*x,4*x^3+3*x^2-13*x+19,-10*x^3-12*x^2+15*x+20,3*x^3+11*x^2+4*x-22,-3*x^3-7*x^2+4*x+10,9*x^3+24*x^2-3*x-24,2*x^3-17*x+2,3*x^3+5*x^2-10*x-8,-5*x^3-6*x^2-4*x-2,3*x^3+7*x^2-5*x-6,2*x^3+4*x^2-6*x-6,2*x^3-x^2-4*x+14,3*x^3+14*x^2+5*x-10,-3*x^3+x^2+8*x-6,4*x^3+13*x^2-9*x-18,11*x^3+21*x^2-25*x-12,-5*x^3-5*x^2+18*x-8,-12*x^3-19*x^2+29*x+16,-3*x^3-11*x^2+x+20,x^3+2*x^2-2*x-2,x^3+5*x^2+2*x-4,-11*x^3-19*x^2+33*x+18,-2*x^3+3*x^2+7*x-10,12*x^3+16*x^2-33*x+1,-x^2+2,-7*x^3-5*x^2+33*x-3,-5*x^3-x^2+10*x+4,6*x^3+14*x^2-21*x-12,2*x^3+6*x^2+2*x-2,-11*x^3-27*x^2+19*x+43,-3*x^3+x^2-x+6,-2*x^3-6*x^2+x+7,-3*x^3+5*x^2+16*x-16,2*x^3+8*x^2+10*x+2,2*x^3+7*x^2-2*x-16,-3*x^3-15*x^2-4*x+28,3*x^3+5*x^2-3*x+2,7*x^3+17*x^2-7*x-12,x^3-3*x^2-4*x+4,6*x^3+18*x^2-9*x-32,4*x^3+3*x^2-19*x+10,3*x^3-6*x^2-18*x+24,2*x^3+3*x^2-4*x-4,-8*x^3-14*x^2+25*x+18,4*x^3-7*x,7*x^3+8*x^2-35*x-10,-2*x^3-10*x^2-13*x+2,-2*x^3-8*x^2+8*x+11,5*x^3+4*x^2-9*x-8,3*x^3+8*x^2-7*x-10,3*x^3+10*x^2-3*x-14,-4*x^3-13*x^2+3*x+33,-7*x^3-17*x^2+5*x+6,1,-x^3-6*x^2-x+10,-2*x^3-11*x^2-5*x+24,4*x^2+4*x-8,3*x^3+5*x^2-6*x,-3*x^3-x^2+4*x+6,x^3+4*x^2+10*x+12,2*x^3+9*x^2+6*x-8,-9*x^3-11*x^2+35*x+10,-6*x^3+x^2+38*x,-5*x^3-6*x^2+18*x-4,-x^3-2*x^2+2*x+2,-2*x^3-14*x^2-16*x+21,3*x^3+5*x^2+x-10,x^2-6*x+6,11*x^3+13*x^2-19*x-6,-10*x^3-30*x^2+18*x+45,5*x^3+7*x^2-16*x-4,4*x^3+15*x^2+x-12,8*x^3+23*x^2-3*x-8,10*x^3+20*x^2-23*x-19,5*x^3+10*x^2-9*x-14,x^2-2*x-1,2*x^3-5*x+2,-5*x^3-10*x^2+19*x+10,-8*x^3-22*x^2-9*x+26,3*x^3+8*x^2-5*x-15,-x^3+7*x^2+7*x-10,3*x^3+8*x^2-6*x-20,-x^3-2*x^2+2*x+2,-4*x^3+4*x^2+25*x-16,5*x^3+10*x^2-13*x-6,-x^3-6*x^2-13*x-8,x^3+3*x^2-4*x-4,4*x^3-5*x^2-26*x+7,5*x^3+12*x^2-6*x-10,-10*x^3-23*x^2+19*x+31,11*x^3+11*x^2-19*x-12,7*x^3+3*x^2-30*x+24,2*x^3-5*x^2-2*x+2,-3*x^3+9*x^2+23*x-18,5*x^3+4*x^2-10*x-4,x^2-19,9*x^3+13*x^2-15*x-8,-x^3-2*x^2+2*x+1,-5*x^3-9*x^2+7*x+14,-2*x^3-9*x^2+5*x+16,-10*x^3-17*x^2+24*x,x^3+8*x^2+20*x-7,8*x+4,-9*x^3-11*x^2+30*x,x^3-5*x^2+6,3*x^2+x-14,3*x^2+2*x-6,-x^3+7*x^2+10*x-6,-3*x^3-5*x^2+6*x,3*x^3+3*x^2-12*x-1,-7*x^3-7*x^2+21*x-6,2*x^3+5*x^2-x-4,-2*x^3-7*x^2+x+10,-2*x^3-5*x^2+7*x-9,-2*x^3-x^2+3*x+2,-6*x^3-17*x^2+x+14,-2*x^3-14*x^2-4*x+6,-8*x^3-11*x^2+19*x+1,4*x^3+6*x^2-15*x-10,2*x^3+6*x^2-3*x-10,-4*x^3+21*x-2,-3*x^2-9*x+14,3*x^3+10*x^2-18,-16*x^3-32*x^2+28*x+27,x^3+2*x^2-3*x-6,-4*x^3-8*x^2+4*x-8,2*x^3+12*x^2+4*x-8,x^3+5*x^2+10*x+8,2*x^3-3*x^2-21*x+14,7*x^3+17*x^2-11*x-24,2*x^2-x-2,-x^3+7*x^2+4*x-30,-9*x^2-7*x+10,2*x^3+3*x^2-6*x,x^3-2*x^2+16,-4*x^3-12*x^2+26,4*x^2+3*x-12,-x^3-10*x^2-4*x+10,-5*x^3-4*x^2+9*x+10,-3*x^3-9*x^2+8*x+13,-x+2,-2*x^3-2*x^2+5*x+1,12*x^3+16*x^2-33*x+18,12*x^3+31*x^2-12*x-42,-2*x^3-8*x^2+3*x+18,10*x^3+28*x^2-5*x-23,6*x^3+23*x^2-8*x-36,-8*x^3-22*x^2+13*x+38,4*x-4,5*x^3+13*x^2-10*x-14,-4*x^3-17*x^2+20,-3*x^3-10*x^2-7*x-2,-x^2,-7*x^3-14*x^2+26*x+8,6*x^3+15*x^2-11*x-22,-2*x^3-10*x^2-6*x+22,4*x^3-3*x^2-3*x+14,-6*x^3-5*x^2+22*x-8,-5*x^3-16*x^2-3*x-2,7*x^3+4*x^2-36*x,-7*x^3-7*x^2+23*x-16,x^3+10*x^2+9*x-34,3*x^3+17*x^2-8*x-24,-x^3-3*x^2-2*x-2,-3*x^3-12*x^2+5*x+14,-x^3-3*x^2+3*x+8,x^3+2*x^2-9*x-10,4*x^3+5*x^2-6*x+3,-x^3+4*x^2-3*x-2,-x^3-3*x^2+x+5,11*x^3+18*x^2-13*x-30,-2*x^3-4*x^2+2*x+2,5*x^3+15*x^2-8,12*x^3+23*x^2-31*x-18,2*x^3+3*x^2-3*x-6,2*x^2-2,-6*x^3-19*x^2-4*x+4,-19*x^3-36*x^2+37*x+25,-x^3-3*x^2-x+8,6*x^3+23*x^2-7*x-37,x^3+6*x^2+3*x-8,-5*x^3+x^2+24*x-30,x^3-3*x^2-13*x+14,3*x^3+7*x^2-8*x-19,5*x^3+5*x^2-15*x+2,x^3+x^2-x+10,-6*x^3-19*x^2+9*x+32,-x^3-9*x^2-11*x+14,-12*x^3-17*x^2+25*x+2,-7*x^3-19*x^2+12*x+28,3*x^3+5*x^2-6*x,-11*x^3-24*x^2+21*x+12,4*x^3+3*x^2-20*x+6,x^3+4*x^2+7*x+10,-6*x^3-12*x^2+10*x+18,2*x^3-4*x^2-14*x-8,-2*x^3-3*x^2+6*x,8*x^3+25*x^2-14*x-35,2*x^3+3*x^2-3*x-2,3*x^3+6*x^2-6*x-7,6*x^2+5*x-10,-4*x^3-12*x^2+11*x+17,x^3-5*x^2-2*x+8,-13*x^3-25*x^2+25*x+34,x^3-x^2-4*x+4,8*x^3+20*x^2-12*x-29,-4*x^3-7*x^2+11*x+22,-5*x^3-11*x^2+6*x+8,3*x^3+8*x^2+x+2,-x^3-4*x^2-3*x+6,5*x^3+11*x^2-13*x-10,-x^3+6*x-8,-15*x^3-20*x^2+23*x+2,10*x^3+18*x^2-25*x-16,7*x^3+16*x^2-13*x-22,3*x^3+4*x^2-3*x-8,-7*x^3-18*x^2+4*x+12,4*x^2+4*x-16,x^2-2,9*x^3+21*x^2-17*x-27,-7*x^3-8*x^2+21*x-2,-6*x^3-4*x^2+18*x-9,-7*x^3-4*x^2+16*x-24,-4*x^3-9*x^2+2*x-4,2*x^3+2*x^2-2*x-2,3*x^3+8*x^2-11*x-2,-10*x^3-21*x^2+20*x+20,-3*x^2-5*x+6,-3*x^3-5*x^2+x+2,x^3+2*x^2-x-4,5*x^3-8*x^2-12*x+12,-14*x^3-25*x^2+37*x+18,11*x^3+17*x^2-25*x+10,3*x^3-7*x^2-33*x+10,-5*x^3-3*x^2+6*x+6]];
E[319,4] = [x^7-3*x^6-4*x^5+15*x^4+x^3-14*x^2+1, [1,x,-x^4+x^3+5*x^2-3*x-3,x^2-2,x^5-x^4-6*x^3+4*x^2+7*x-1,-x^5+x^4+5*x^3-3*x^2-3*x,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,x^3-4*x,-2*x^6+5*x^5+9*x^4-23*x^3-7*x^2+17*x+5,x^6-x^5-6*x^4+4*x^3+7*x^2-x,1,-x^6+x^5+7*x^4-5*x^3-13*x^2+6*x+6,x^5-2*x^4-4*x^3+6*x^2+2*x+1,-x^4+x^3+3*x^2-x-1,2*x^6-5*x^5-9*x^4+23*x^3+5*x^2-17*x,x^4-6*x^2+4,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3,-x^6+x^5+7*x^4-5*x^3-11*x^2+5*x+2,-3*x^6+8*x^5+13*x^4-38*x^3-6*x^2+28*x+1,2*x^6-4*x^5-9*x^4+18*x^3+5*x^2-14*x+1,-2*x^6+6*x^5+9*x^4-31*x^3-7*x^2+31*x+5,x,x^6-4*x^5-2*x^4+19*x^3-7*x^2-15*x+4,-2*x^6+5*x^5+8*x^4-22*x^3-2*x^2+12*x+1,x^6-3*x^5-3*x^4+14*x^3-2*x^2-10*x-1,x^6-2*x^5-4*x^4+6*x^3+2*x^2+x,3*x^6-9*x^5-13*x^4+47*x^3+9*x^2-48*x-8,-2*x^6+5*x^5+9*x^4-25*x^3-5*x^2+21*x+2,-1,x^6-x^5-7*x^4+3*x^3+11*x^2-2,x^6-4*x^5-x^4+17*x^3-13*x^2-6*x+7,x^5-8*x^3+12*x,-x^4+x^3+5*x^2-3*x-3,-x^2+3*x-1,-x^4-x^3+7*x^2+x-5,2*x^6-7*x^5-8*x^4+36*x^3+5*x^2-32*x-9,-x^6+5*x^5+x^4-25*x^3+9*x^2+20*x,-x^6+x^5+7*x^4-3*x^3-14*x^2+x+3,x^6-10*x^4+2*x^3+24*x^2-9*x-6,x^5-5*x^3+3*x-2,-x^6+x^5+7*x^4-4*x^3-12*x^2+7,x^5-x^4-5*x^3+3*x^2+5*x+2,-x^6+3*x^5+4*x^4-15*x^3+x^2+15*x-4,x^2-2,-x^6+4*x^5+4*x^4-21*x^3-5*x^2+21*x+5,-x^6+2*x^5+4*x^4-8*x^3-x^2+4*x-1,-3*x^6+7*x^5+13*x^4-33*x^3-5*x^2+28*x-2,x^6-2*x^5-6*x^4+10*x^3+10*x^2-11*x-10,-x^6+3*x^5+6*x^4-18*x^3-8*x^2+19*x+2,x^5-x^4-3*x^3+4*x^2-x-1,-3*x^6+10*x^5+8*x^4-46*x^3+14*x^2+31*x-6,x^6-2*x^5-5*x^4+9*x^3+3*x^2-4*x-3,x^6-3*x^5-4*x^4+15*x^3-x^2-15*x+7,-x^5+2*x^4+6*x^3-6*x^2-8*x-3,x^5-x^4-6*x^3+4*x^2+7*x-1,-x^6+x^5+7*x^4-5*x^3-13*x^2+4*x+4,4*x^6-13*x^5-17*x^4+69*x^3+11*x^2-73*x-8,-x,x^6-6*x^5-x^4+36*x^3-10*x^2-46*x+1,-2*x^6+7*x^5+6*x^4-36*x^3+4*x^2+32*x-1,3*x^6-10*x^5-8*x^4+47*x^3-13*x^2-33*x+5,-x^6+3*x^5+2*x^4-14*x^3+8*x^2+7*x-1,5*x^6-14*x^5-23*x^4+71*x^3+19*x^2-64*x-17,x^6-10*x^4+24*x^2-8,-x^6+2*x^5+4*x^4-8*x^3-2*x^2+9*x,-x^5+x^4+5*x^3-3*x^2-3*x,x^6-3*x^5-5*x^4+16*x^3+4*x^2-14*x-3,-2*x^6+6*x^5+8*x^4-31*x^3+x^2+29*x-6,-2*x^6+6*x^5+8*x^4-30*x^3+28*x-6,-x^5-x^4+7*x^3+x^2-5*x,-2*x^6+2*x^5+14*x^4-11*x^3-25*x^2+16*x+9,x^6-2*x^5-8*x^4+13*x^3+18*x^2-19*x-6,x^6-3*x^5-x^4+11*x^3-15*x^2+2*x+12,2*x^6-3*x^5-10*x^4+10*x^3+6*x^2+1,-3*x^6+5*x^5+18*x^4-26*x^3-26*x^2+29*x+7,4*x^6-13*x^5-14*x^4+63*x^3-x^2-53*x-1,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,3*x^6-6*x^5-13*x^4+23*x^3+5*x^2-6*x-1,2*x^6-6*x^5-8*x^4+29*x^3+3*x^2-24*x,-3*x^6+8*x^5+13*x^4-36*x^3-7*x^2+26*x-2,-8*x^6+22*x^5+37*x^4-111*x^3-31*x^2+101*x+18,-2*x^6+3*x^5+11*x^4-11*x^3-14*x^2+7*x+1,-2*x^6+9*x^5+4*x^4-46*x^3+12*x^2+44*x+3,5*x^6-13*x^5-23*x^4+65*x^3+19*x^2-60*x-10,-2*x^6+7*x^5+6*x^4-36*x^3+10*x^2+32*x-10,2*x^3+x^2-4*x+1,x^4-x^3-5*x^2+3*x+3,x^3-4*x,-x^5+4*x^4+4*x^3-16*x^2-4*x+7,x^6-6*x^4-4*x^3+7*x^2+5*x+1,2*x^6-5*x^5-10*x^4+26*x^3+6*x^2-18*x-3,-3*x^6+8*x^5+11*x^4-38*x^3+4*x^2+29*x-7,3*x^6-7*x^5-12*x^4+28*x^3+6*x^2-7*x-15,-2*x^6+x^5+12*x^4-2*x^3-14*x^2-2*x+3,x^6-4*x^5+x^4+17*x^3-21*x^2-14*x+14,5*x^6-12*x^5-21*x^4+53*x^3+7*x^2-34*x-3,-x^4+x^3+3*x^2-x+3,2*x^5-3*x^4-7*x^3+5*x^2+2*x+1,-2*x^6+5*x^5+9*x^4-23*x^3-7*x^2+17*x+5,-x^6+5*x^5+3*x^4-24*x^3+3*x^2+19*x+2,2*x^5-2*x^4-13*x^3+7*x^2+20*x+6,x^6-4*x^5-x^4+17*x^3-11*x^2-6*x+3,-3*x^6+8*x^5+16*x^4-39*x^3-23*x^2+33*x+7,-x^6+3*x^5+2*x^4-10*x^3+6*x^2-5*x-1,x^5+x^4-7*x^3-7*x^2+11*x+12,-2*x^3-x^2+7*x-1,-3*x^6+11*x^5+7*x^4-51*x^3+15*x^2+36*x-6,-7*x^6+20*x^5+32*x^4-100*x^3-26*x^2+93*x+16,5*x^6-12*x^5-22*x^4+54*x^3+14*x^2-35*x-6,x^6-x^5-6*x^4+4*x^3+7*x^2-x,6*x^6-11*x^5-34*x^4+54*x^3+42*x^2-54*x-9,2*x^6-7*x^5-8*x^4+38*x^3-38*x-3,2*x^6-x^5-15*x^4+3*x^3+25*x^2+x,-x^6-x^5+9*x^4+7*x^3-17*x^2-8*x-4,-3*x^6+9*x^5+10*x^4-44*x^3+8*x^2+35*x-10,-x^2+2,-3*x^6+11*x^5+9*x^4-53*x^3+7*x^2+34*x+8,-3*x^6+3*x^5+21*x^4-11*x^3-32*x^2+x-1,2*x^6-7*x^5-4*x^4+30*x^3-12*x^2-20*x+9,-x^6+8*x^4-18*x^2-x+6,1,-x^6+4*x^5+2*x^4-16*x^3+9*x^2+5*x-3,-x^6+x^5+2*x^4+2*x^3+14*x^2-17*x-17,-2*x^6+6*x^5+3*x^4-25*x^3+19*x^2+11*x-13,2*x^6-6*x^5-7*x^4+33*x^3-3*x^2-37*x,x^6-3*x^5-4*x^4+14*x^3+6*x^2-17*x-5,-5*x^6+11*x^5+25*x^4-55*x^3-21*x^2+54*x+2,3*x^6-8*x^5-15*x^4+39*x^3+14*x^2-32*x-1,x^6-8*x^5+3*x^4+39*x^3-25*x^2-28*x+9,-x^6+7*x^4-x^3-5*x^2+1,-2*x^5+6*x^4+7*x^3-27*x^2+8*x+17,-x^6+x^5+7*x^4-5*x^3-13*x^2+6*x+6,2*x^6-6*x^5-9*x^4+29*x^3+15*x^2-31*x-21,-x^5+x^4+3*x^3-3*x-1,2*x^6-3*x^5-12*x^4+16*x^3+20*x^2-20*x-19,-x^4+3*x^3+3*x^2-12*x+4,6*x^6-15*x^5-25*x^4+67*x^3+5*x^2-39*x+12,2*x^3-6*x+2,x^6-7*x^4+x^3+7*x^2-8*x+7,-x^6-x^5+9*x^4+3*x^3-19*x^2-2*x+10,4*x^6-15*x^5-12*x^4+76*x^3-8*x^2-66*x+1,-4*x^6+6*x^5+19*x^4-23*x^3-12*x^2+9*x+2,x^5-2*x^4-4*x^3+6*x^2+2*x+1,-3*x^6+10*x^5+14*x^4-55*x^3-15*x^2+58*x+17,-x^5+x^4+6*x^3-4*x^2-7*x+1,3*x^5-4*x^4-16*x^3+16*x^2+12*x-1,6*x^6-16*x^5-24*x^4+74*x^3+6*x^2-56*x-8,5*x^6-12*x^5-22*x^4+54*x^3+10*x^2-39*x-2,6*x^6-15*x^5-28*x^4+70*x^3+20*x^2-48*x+3,-4*x^6+6*x^5+19*x^4-23*x^3-13*x^2+7*x+3,-5*x^6+12*x^5+22*x^4-52*x^3-12*x^2+33*x-8,x^6-11*x^4+x^3+31*x^2-3*x-10,x^5-5*x^4+2*x^3+18*x^2-17*x-4,-x^4+x^3+3*x^2-x-1,-5*x^6+13*x^5+18*x^4-60*x^3+4*x^2+47*x-7,x^6-x^5-2*x^4-2*x^3-12*x^2+17*x+9,5*x^6-14*x^5-17*x^4+59*x^3-9*x^2-28*x+9,-x^4+x^3+4*x^2-2,-x^6+8*x^5-6*x^4-36*x^3+40*x^2+19*x-18,-x^6-x^5+9*x^4+6*x^3-16*x^2-8*x+7,2*x^6-6*x^5-6*x^4+28*x^3-6*x^2-24*x+8,-2*x^6+5*x^5+9*x^4-23*x^3-11*x^2+18*x+8,4*x^6-4*x^5-29*x^4+21*x^3+53*x^2-21*x-17,-x^6+x^5+5*x^4-4*x^3+3*x^2+x-12,2*x^6-5*x^5-9*x^4+23*x^3+5*x^2-17*x,3*x^6-4*x^5-16*x^4+14*x^3+16*x^2+3*x+2,x^6-2*x^5-6*x^4+8*x^3+12*x^2-x,2*x^6-5*x^5-8*x^4+24*x^3+4*x^2-20*x-9,-2*x^6+6*x^5+5*x^4-27*x^3+17*x^2+7*x-12,x^6-2*x^5-6*x^4+12*x^3+4*x^2-10*x+2,-12*x^6+33*x^5+52*x^4-159*x^3-37*x^2+136*x+35,2*x^6-6*x^5-6*x^4+31*x^3-6*x^2-29*x+8,3*x^6-4*x^5-24*x^4+22*x^3+50*x^2-25*x-16,x^5-x^4-5*x^3+3*x^2+3*x,-3*x^6+6*x^5+15*x^4-29*x^3-15*x^2+22*x+9,x^4-6*x^2+4,-16*x^6+39*x^5+71*x^4-179*x^3-41*x^2+127*x+12,-x^6+4*x^5+4*x^4-16*x^3-4*x^2+7*x,-2*x^6+5*x^5+13*x^4-28*x^3-22*x^2+25*x+9,5*x^6-10*x^5-27*x^4+48*x^3+29*x^2-41*x-11,-2*x^6+6*x^5+6*x^4-25*x^3+5*x^2+14*x-6,x^6-2*x^5-4*x^4+4*x^3+10*x^2-3*x-2,-6*x^6+12*x^5+33*x^4-63*x^3-37*x^2+71*x-1,x^6-5*x^5-x^4+23*x^3-11*x^2-15*x+5,-2*x^6-x^5+16*x^4+8*x^3-30*x^2-8*x+11,2*x^6-17*x^4+3*x^3+35*x^2-15*x-3,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3,x^6-10*x^5+2*x^4+54*x^3-20*x^2-53*x+6,-11*x^6+27*x^5+57*x^4-135*x^3-73*x^2+124*x+46,-x^6+5*x^5+2*x^4-22*x^3+14*x-1,4*x^6-6*x^5-24*x^4+26*x^3+34*x^2-14*x-18,x^6+3*x^5-10*x^4-18*x^3+16*x^2+19*x+15,x^6-4*x^5-6*x^4+27*x^3+7*x^2-41*x-1,-x^5+x^4+3*x^3-x^2+3*x,x^6-6*x^5-x^4+31*x^3-7*x^2-24*x-1,4*x^6-9*x^5-19*x^4+41*x^3+18*x^2-37*x-4,x^6-7*x^5-3*x^4+43*x^3-x^2-54*x-2,-x^6+x^5+7*x^4-5*x^3-11*x^2+5*x+2,-x^6+4*x^5+x^4-24*x^3+16*x^2+32*x-16,2*x^6-3*x^5-7*x^4+10*x^3-3*x^2+4*x+3,-3*x^6+9*x^5+14*x^4-46*x^3-14*x^2+45*x+11,2*x^6-2*x^5-13*x^4+7*x^3+20*x^2+6*x,-x^6+3*x^5+4*x^4-14*x^3-2*x^2+11*x+1,5*x^6-17*x^5-14*x^4+80*x^3-20*x^2-59*x+11,-2*x^6+9*x^5+6*x^4-49*x^3+7*x^2+44*x-5,-x^6+4*x^5+6*x^4-20*x^3-9*x^2+7*x+3,x^6-4*x^5-2*x^4+19*x^3-7*x^2-11*x,-2*x^6+2*x^5+15*x^4-11*x^3-25*x^2+7*x+7,-3*x^6+8*x^5+13*x^4-38*x^3-6*x^2+28*x+1,x^6+x^5-7*x^4-7*x^3+11*x^2+12*x,x^6-8*x^5+5*x^4+40*x^3-32*x^2-40*x+10,-2*x^6+6*x^5+6*x^4-31*x^3+9*x^2+29*x-14,5*x^6-18*x^5-16*x^4+88*x^3-67*x-22,2*x^6-5*x^5-6*x^4+18*x^3-6*x^2-6*x+3,6*x^6-12*x^5-27*x^4+54*x^3+12*x^2-39*x+9,-x^6+6*x^5+x^4-31*x^3+7*x^2+32*x+13,5*x^6-12*x^5-25*x^4+63*x^3+21*x^2-60*x-3,3*x^6-2*x^5-21*x^4+9*x^3+35*x^2-6*x-5,6*x^6-15*x^5-28*x^4+68*x^3+28*x^2-44*x-31,2*x^6-4*x^5-9*x^4+18*x^3+5*x^2-14*x+1,2*x^5-7*x^4-x^3+21*x^2-15*x+1,7*x^6-10*x^5-36*x^4+36*x^3+30*x^2-9*x-6,-2*x^6-2*x^5+23*x^4+10*x^3-58*x^2-9*x+9,x^6-2*x^5-6*x^4+8*x^3+16*x^2-11*x-10,5*x^6-17*x^5-18*x^4+83*x^3+3*x^2-65*x-16,5*x^6-7*x^5-27*x^4+23*x^3+29*x^2-2,3*x^6-11*x^5-9*x^4+51*x^3-7*x^2-30*x-6,-12*x^6+31*x^5+56*x^4-154*x^3-44*x^2+142*x+17,-3*x^4+9*x^3+11*x^2-33*x-5,-2*x^5+x^4+11*x^3-7*x^2-10*x+3,-2*x^6+6*x^5+9*x^4-31*x^3-7*x^2+31*x+5,-x^3+4*x,-3*x^6+7*x^5+14*x^4-38*x^3-10*x^2+51*x+9,2*x^6-3*x^5-8*x^4+10*x^3-8*x^2+8*x+3,4*x^6-11*x^5-16*x^4+50*x^3-4*x^2-36*x+15,-8*x^6+21*x^5+36*x^4-101*x^3-21*x^2+91*x+1,-5*x^6+14*x^5+21*x^4-69*x^3-9*x^2+62*x+5,-x^6+4*x^5-14*x^3+8*x^2+9*x-2,-3*x^6+8*x^5+13*x^4-35*x^3-7*x^2+14*x+1,x^6-10*x^5+3*x^4+55*x^3-23*x^2-58*x+3,-2*x^6+7*x^5+x^4-31*x^3+29*x^2+25*x-16,x,17*x^6-44*x^5-79*x^4+211*x^3+69*x^2-172*x-45,-5*x^6+18*x^5+15*x^4-84*x^3+17*x^2+63*x-9,-2*x^6+x^5+16*x^4-5*x^3-27*x^2-2*x+10,-2*x^6-2*x^5+17*x^4+15*x^3-31*x^2-17*x+1,-5*x^6+16*x^5+16*x^4-70*x^3+2*x^2+43*x+4,2*x^6-11*x^5+x^4+49*x^3-33*x^2-27*x+4,11*x^6-28*x^5-56*x^4+140*x^3+62*x^2-129*x-24,x^5+3*x^4-5*x^3-9*x^2-2,-7*x^6+22*x^5+26*x^4-108*x^3+4*x^2+87*x-8,-10*x^6+28*x^5+45*x^4-137*x^3-41*x^2+123*x+33,x^6-4*x^5-2*x^4+19*x^3-7*x^2-15*x+4,-4*x^6+5*x^5+20*x^4-16*x^3-16*x^2+2*x+5,5*x^6-16*x^5-15*x^4+75*x^3-19*x^2-56*x+19,-x^6-3*x^5+14*x^4+11*x^3-38*x^2-x+13,-x^6+x^5+9*x^4-10*x^3-22*x^2+32*x+7,-5*x^6+7*x^5+24*x^4-26*x^3-14*x^2+9*x-1,3*x^6-7*x^5-15*x^4+33*x^3+19*x^2-26*x-16,-x^6-x^5+6*x^4+12*x^3-10*x^2-17*x+1,2*x^6-5*x^5-9*x^4+23*x^3+7*x^2-17*x-5,-2*x^6+6*x^5+7*x^4-27*x^3+8*x^2+17*x,-2*x^6+7*x^5+11*x^4-40*x^3-18*x^2+45*x+2,-2*x^6+5*x^5+8*x^4-22*x^3-2*x^2+12*x+1,-6*x^6+15*x^5+24*x^4-72*x^3+60*x-12,-x^5-x^4+13*x^3-3*x^2-21*x-2,-x^6+6*x^4+2*x^3-4*x^2-7*x-14,-3*x^6+7*x^5+13*x^4-32*x^3-11*x^2+27*x+6,3*x^6-6*x^5-14*x^4+30*x^3+6*x^2-31*x+4,3*x^6-4*x^5-14*x^4+18*x^3+8*x^2-19*x-2,-x^6+6*x^5+2*x^4-27*x^3-7*x^2+15*x+23,4*x^6-13*x^5-13*x^4+65*x^3-14*x^2-54*x+12,-3*x^6+8*x^5+16*x^4-44*x^3-22*x^2+53*x+12,3*x^6-x^5-23*x^4-x^3+45*x^2+12*x-6,x^6-3*x^5-3*x^4+14*x^3-2*x^2-10*x-1,4*x^6-12*x^5-14*x^4+60*x^3-6*x^2-54*x+12,-4*x^6+13*x^5+13*x^4-65*x^3+11*x^2+57*x-18,3*x^6-3*x^5-14*x^4+6*x^3+6*x^2+7*x-1,-3*x^6+6*x^5+26*x^4-44*x^3-62*x^2+73*x+26,-4*x^6+7*x^5+20*x^4-32*x^3-18*x^2+20*x+1,-5*x^6+8*x^5+29*x^4-31*x^3-39*x^2+2*x+21,-3*x^6+4*x^5+16*x^4-12*x^3-10*x^2+x-4,2*x^6-3*x^5-14*x^4+12*x^3+26*x^2+4*x-11,-2*x^6-x^5+9*x^4+14*x^3+3*x^2-30*x-14,x^6+x^5-11*x^4-5*x^3+33*x^2-2*x-32,x^6-2*x^5-4*x^4+6*x^3+2*x^2+x,5*x^6-16*x^5-17*x^4+75*x^3+x^2-66*x-5,-x^6+6*x^5+6*x^4-38*x^3-20*x^2+55*x+15,6*x^6-19*x^5-21*x^4+94*x^3-8*x^2-91*x+8,-x^6+x^5+6*x^4-4*x^3-7*x^2+x,x^5-5*x^4-x^3+23*x^2-7*x-10,x^6+2*x^5-14*x^4-6*x^3+42*x^2-5*x-24,-10*x^6+23*x^5+47*x^4-108*x^3-38*x^2+91*x+13,2*x^6-16*x^4+28*x^2-8*x-6,-x^6+10*x^5-3*x^4-49*x^3+23*x^2+34*x-24,-x^6+4*x^5-x^4-15*x^3+19*x^2-2*x-7,3*x^6-9*x^5-13*x^4+47*x^3+9*x^2-48*x-8,3*x^6-4*x^5-20*x^4+14*x^3+36*x^2+3*x-6,2*x^6-6*x^5-6*x^4+28*x^3-10*x^2-16*x+4,-7*x^5+x^4+43*x^3+3*x^2-55*x-10,-3*x^6+8*x^5+10*x^4-38*x^3+8*x^2+29*x-8,-3*x^6+2*x^5+23*x^4-7*x^3-37*x^2-8*x+5,7*x^6-18*x^5-37*x^4+89*x^3+49*x^2-76*x-25,-5*x^6+19*x^5+14*x^4-96*x^3+13*x^2+96*x+1,-x^6+12*x^5-7*x^4-60*x^3+42*x^2+50*x-21,x^6-5*x^5+2*x^4+18*x^3-17*x^2-4*x,-x^5+5*x^4+4*x^3-22*x^2-15*x+16,-2*x^6+5*x^5+9*x^4-25*x^3-5*x^2+21*x+2,8*x^6-24*x^5-31*x^4+117*x^3+7*x^2-103*x-21,-2*x^6-2*x^5+15*x^4+9*x^3-23*x^2-7*x+5,5*x^6-15*x^5-20*x^4+74*x^3+4*x^2-59*x+5,-4*x^6+14*x^5+9*x^4-59*x^3+21*x^2+21*x+1,-7*x^6+18*x^5+34*x^4-89*x^3-29*x^2+73*x-1,x^6+3*x^5-16*x^4-14*x^3+42*x^2+9*x-5,5*x^6-13*x^5-26*x^4+70*x^3+28*x^2-69*x-21,-4*x^6+11*x^5+17*x^4-54*x^3-6*x^2+46*x,-3*x^6+16*x^5-2*x^4-74*x^3+50*x^2+49*x-20,5*x^6-10*x^5-21*x^4+41*x^3+5*x^2-18*x+1,-1,2*x^6-11*x^5-5*x^4+57*x^3-8*x^2-45*x+5,6*x^6-13*x^5-32*x^4+68*x^3+32*x^2-76*x+3,2*x^5-2*x^4-8*x^3+4*x^2+8*x-2,-7*x^6+23*x^5+20*x^4-109*x^3+35*x^2+75*x-28,15*x^6-43*x^5-67*x^4+213*x^3+52*x^2-194*x-34,3*x^6-9*x^5-9*x^4+39*x^3-11*x^2-18*x-2,8*x^6-13*x^5-39*x^4+49*x^3+35*x^2-17*x-4,-5*x^6+14*x^5+27*x^4-81*x^3-39*x^2+102*x+23,2*x^6-5*x^5-11*x^4+26*x^3+15*x^2-26*x-1,x^6+x^5-11*x^4-3*x^3+31*x^2-20,x^6-x^5-7*x^4+3*x^3+11*x^2-2,-x^6-x^5+6*x^4+12*x^3-29*x-19,9*x^6-22*x^5-39*x^4+105*x^3+21*x^2-86*x-9,-6*x^6+25*x^5+17*x^4-125*x^3+7*x^2+103*x+24,x^6-2*x^5-7*x^4+11*x^3+13*x^2-1,-x^5-2*x^4+9*x^3+5*x^2-10*x-5,-9*x^6+26*x^5+40*x^4-128*x^3-30*x^2+111*x+18,-x^6+3*x^5+4*x^4-17*x^3+x^2+15*x+9,-3*x^5+3*x^4+19*x^3-21*x^2-12*x+2,5*x^6-3*x^5-37*x^4+11*x^3+65*x^2-10*x-10,5*x^6-16*x^5-15*x^4+75*x^3-16*x^2-62*x+19,x^6-4*x^5-x^4+17*x^3-13*x^2-6*x+7,-3*x^6+4*x^5+21*x^4-25*x^3-32*x^2+35*x+12,-5*x^6+15*x^5+20*x^4-72*x^3+2*x^2+45*x-9,2*x^5+x^4-12*x^3-3*x^2+16*x-4,6*x^6-16*x^5-22*x^4+76*x^3-8*x^2-62*x+18,5*x^6-12*x^5-23*x^4+47*x^3+17*x^2-16*x-3,-x^6+x^5+5*x^4-x^3+x^2-8*x-14,x^6-x^5-7*x^4+5*x^3+13*x^2-6*x-6,8*x^6-20*x^5-37*x^4+89*x^3+29*x^2-57*x-3,-3*x^6+3*x^5+16*x^4-12*x^3-20*x^2+9*x+3,5*x^6-13*x^5-26*x^4+70*x^3+32*x^2-83*x-19,x^5-8*x^3+12*x,-4*x^6+10*x^5+19*x^4-44*x^3-18*x^2+21*x+13,-9*x^6+7*x^5+61*x^4-25*x^3-97*x^2+12*x+16,-2*x^6+8*x^5+4*x^4-43*x^3+9*x^2+40*x+2,x^6+2*x^5-9*x^4-11*x^3+25*x^2+8*x-13,-x^6+4*x^5+2*x^4-22*x^3+12*x^2+25*x-18,-x^6+5*x^5+2*x^4-20*x^3-3*x^2+9*x+2,-3*x^6+13*x^5+11*x^4-68*x^3+56*x-5,3*x^6-7*x^5-15*x^4+32*x^3+15*x^2-21*x-7,-2*x^6+4*x^5+15*x^4-26*x^3-36*x^2+35*x+33,-2*x^5+5*x^4+7*x^3-14*x^2-6*x+2,-x^4+x^3+5*x^2-3*x-3,-3*x^6+10*x^5+9*x^4-43*x^3-x^2+34*x+5,-6*x^6+19*x^5+20*x^4-90*x^3+10*x^2+76*x-7,-6*x^6+9*x^5+27*x^4-31*x^3-13*x^2-x+6,-8*x^5+15*x^4+41*x^3-65*x^2-39*x+27,4*x^6-13*x^5-14*x^4+64*x^3-9*x^2-53*x+13,-11*x^6+27*x^5+50*x^4-125*x^3-41*x^2+101*x+30,-7*x^6+8*x^5+38*x^4-28*x^3-36*x^2+11*x+2,6*x^6-17*x^5-22*x^4+80*x^3-2*x^2-62*x+5,5*x^5-3*x^4-23*x^3+x^2+11*x+28,-5*x^6+12*x^5+24*x^4-56*x^3-12*x^2+33*x-10,-x^2+3*x-1,-12*x^6+29*x^5+54*x^4-136*x^3-36*x^2+102*x+11,-3*x^6+4*x^5+15*x^4-17*x^3-11*x^2+10*x-7,-x^5+2*x^4+4*x^3-6*x^2-2*x-1,-6*x^6+13*x^5+30*x^4-62*x^3-30*x^2+46*x+11,3*x^6-12*x^5-6*x^4+64*x^3-28*x^2-71*x+12,6*x^5-9*x^4-33*x^3+42*x^2+27*x-27,10*x^6-37*x^5-30*x^4+182*x^3-18*x^2-146*x-11,6*x^6-8*x^5-34*x^4+30*x^3+42*x^2-18*x-4,5*x^6-16*x^5-16*x^4+80*x^3-10*x^2-67*x-16,-4*x^6+18*x^5+9*x^4-91*x^3+19*x^2+83*x+5,-x^4-x^3+7*x^2+x-5,-x^6-2*x^5+12*x^4+6*x^3-27*x^2-x-1,-2*x^6+16*x^4+x^3-29*x^2+4*x+1,-x^6+x^5+5*x^4-3*x^3-3*x^2+2*x-6,-5*x^6+13*x^5+22*x^4-58*x^3-16*x^2+41*x+21,-3*x^6+3*x^5+16*x^4-8*x^3-10*x^2-x-1,8*x^6-27*x^5-22*x^4+127*x^3-35*x^2-98*x+28,3*x^6-7*x^5-13*x^4+28*x^3+9*x^2-8*x-6,5*x^6-20*x^5-18*x^4+98*x^3+14*x^2-73*x-42,-4*x^6+x^5+28*x^4-2*x^3-40*x^2-2*x-1,3*x^5-5*x^4-17*x^3+23*x^2+17*x-13,2*x^6-7*x^5-8*x^4+36*x^3+5*x^2-32*x-9,4*x^6-16*x^5-8*x^4+75*x^3-23*x^2-58*x-6,x^6-3*x^5-9*x^4+17*x^3+18*x^2-16*x+1,-12*x^6+29*x^5+67*x^4-149*x^3-101*x^2+145*x+66,5*x^6-9*x^5-26*x^4+43*x^3+26*x^2-35*x-6,x^5-2*x^4-9*x^3+13*x^2+26*x-6,2*x^5-x^4-11*x^3+3*x^2+11*x+3,3*x^6-13*x^5+3*x^4+47*x^3-51*x^2+12,4*x^6-9*x^5-19*x^4+44*x^3+20*x^2-40*x-14,-6*x^6+10*x^5+38*x^4-51*x^3-65*x^2+46*x+41,x^4-x^3-3*x^2+x+1,-x^6+5*x^5+x^4-25*x^3+9*x^2+20*x,-4*x^6+14*x^5+7*x^4-59*x^3+33*x^2+23*x-11,3*x^6-5*x^5-17*x^4+28*x^3+10*x^2-26*x+22,3*x^6-2*x^5-19*x^4+9*x^3+16*x^2-5*x+2,x^6+5*x^5-15*x^4-35*x^3+47*x^2+56*x-28,7*x^6-14*x^5-37*x^4+70*x^3+39*x^2-63*x-13,-6*x^6+10*x^5+39*x^4-47*x^3-77*x^2+41*x+39,-x^6+2*x^5+4*x^4-8*x^3+3*x^2-1,3*x^6-6*x^5-12*x^4+24*x^3-3*x+18,-2*x^6+x^5+15*x^4-3*x^3-33*x^2+17*x+4,x^6+7*x^5-22*x^4-30*x^3+68*x^2+x-23,-x^6+x^5+7*x^4-3*x^3-14*x^2+x+3,3*x^6-3*x^5-21*x^4+15*x^3+29*x^2-16*x+10,4*x^6-5*x^5-24*x^4+24*x^3+40*x^2-22*x-25,2*x^6+2*x^5-24*x^4-6*x^3+74*x^2-16*x-34,-5*x^6+9*x^5+25*x^4-33*x^3-26*x^2+10*x-1,-10*x^6+21*x^5+53*x^4-101*x^3-59*x^2+89*x+24,-2*x^5-x^4+15*x^3+3*x^2-28*x+4,2*x^6-8*x^5-x^4+33*x^3-25*x^2-13*x+8,-3*x^6+4*x^5+13*x^4-5*x^3+3*x^2-22*x-5,-x^6-x^5+8*x^4+8*x^3-22*x^2-13*x+21,7*x^6-20*x^5-26*x^4+94*x^3-8*x^2-69*x+10,x^6-10*x^4+2*x^3+24*x^2-9*x-6,6*x^6-3*x^5-36*x^4+6*x^3+45*x^2+9*x-6,5*x^6-6*x^5-31*x^4+21*x^3+41*x^2+8*x+1,17*x^6-43*x^5-80*x^4+208*x^3+70*x^2-173*x-31,9*x^6-20*x^5-47*x^4+97*x^3+51*x^2-80*x-3,3*x^6-5*x^5-12*x^4+16*x^3+10*x^2-3*x-5,-2*x^6+5*x^5+9*x^4-23*x^3-5*x^2+17*x,-3*x^6+15*x^5+8*x^4-76*x^3+8*x^2+65*x+9,-6*x^6+19*x^5+20*x^4-95*x^3+19*x^2+84*x-26,3*x^6-4*x^5-22*x^4+22*x^3+40*x^2-31*x-6,-6*x^6+9*x^5+40*x^4-42*x^3-74*x^2+36*x+29,x^5-5*x^3+3*x-2,-5*x^6+17*x^5+24*x^4-92*x^3-38*x^2+109*x+30,2*x^6-7*x^5-x^4+21*x^3-15*x^2+x,-2*x^6+4*x^5+10*x^4-10*x^3-16*x^2-20*x+14,-x^6+14*x^5-x^4-85*x^3+5*x^2+102*x+11,-3*x^6+12*x^5+12*x^4-60*x^3+45*x-6,-8*x^6+15*x^5+40*x^4-56*x^3-37*x^2+9*x+2,-5*x^6+20*x^5+12*x^4-104*x^3+26*x^2+107*x-4,-3*x^6+12*x^5+9*x^4-61*x^3+3*x^2+66*x+5,6*x^6-17*x^5-24*x^4+76*x^3+6*x^2-50*x+5,-2*x^6+2*x^5+8*x^4-2*x^3+5*x^2-16*x-5,-x^6+x^5+7*x^4-4*x^3-12*x^2+7,4*x^6-5*x^5-22*x^4+18*x^3+20*x^2-4*x-5,-x^6-8*x^5+19*x^4+47*x^3-59*x^2-54*x+21,-2*x^6+3*x^5+6*x^4-10*x^3+12*x^2-6*x-3,x^6-12*x^4+8*x^3+22*x^2-7*x-8,-3*x^6+10*x^5+8*x^4-46*x^3+8*x^2+33*x+20,11*x^6-29*x^5-44*x^4+126*x^3+16*x^2-73*x-7,-3*x^5+9*x^4+11*x^3-33*x^2-5*x,x^6-5*x^5+28*x^3-22*x^2-33*x+27,4*x^6-17*x^5-9*x^4+81*x^3-26*x^2-67*x+20,-5*x^6+6*x^5+30*x^4-29*x^3-39*x^2+27*x+22,x^5-x^4-5*x^3+3*x^2+5*x+2,x^6-4*x^5-3*x^4+25*x^3-x^2-42*x-5,-x^4+6*x^2-4,8*x^6-22*x^5-33*x^4+111*x^3+11*x^2-101*x+7,-2*x^6+2*x^5+7*x^4-7*x^3+9*x^2+9*x+3,3*x^6-9*x^5-7*x^4+35*x^3-19*x^2+4*x+14,9*x^6-22*x^5-38*x^4+96*x^3+22*x^2-65*x-18,-3*x^6+10*x^5+11*x^4-45*x^3-11*x^2+42*x+13,x^6-10*x^4-8*x^3+20*x^2+15*x-4,5*x^6-7*x^5-22*x^4+14*x^3+12*x^2+37*x-17,3*x^6-2*x^5-23*x^4+9*x^3+43*x^2-x+10,-x^6+3*x^5+4*x^4-15*x^3+x^2+15*x-4,-x^6+x^5+6*x^4-4*x^3-8*x^2+5*x+5,4*x^6-12*x^5-16*x^4+56*x^3+12*x^2-40*x-19,-3*x^6+10*x^5+9*x^4-51*x^3+19*x^2+38*x-17,-4*x^6+15*x^5+11*x^4-70*x^3+8*x^2+47*x+14,-x^6+x^5+10*x^4-4*x^3-28*x^2+x+3,2*x^6-9*x^5-7*x^4+38*x^3+12*x^2-17*x-17,-5*x^6+7*x^5+24*x^4-24*x^3-8*x^2+5*x-13,-7*x^6+17*x^5+26*x^4-70*x^3+4*x^2+33*x+3,x^6-7*x^5-x^4+31*x^3-3*x^2-16*x+2,-4*x^6+12*x^5+12*x^4-56*x^3+16*x^2+40*x-16,x^2-2,3*x^5-5*x^4-17*x^3+17*x^2+23*x-4,7*x^6-11*x^5-44*x^4+52*x^3+66*x^2-45*x-17,-7*x^6+22*x^5+18*x^4-101*x^3+39*x^2+75*x-17,5*x^6-13*x^5-13*x^4+54*x^3-25*x^2-19*x+11,-6*x^6+23*x^5+17*x^4-115*x^3+5*x^2+97*x+38,-5*x^6+8*x^5+25*x^4-25*x^3-30*x^2+10*x+2,-12*x^6+33*x^5+50*x^4-157*x^3-23*x^2+118*x+13,-6*x^6+7*x^5+41*x^4-33*x^3-73*x^2+35*x+36,-x^6+3*x^5+4*x^4-15*x^3-x^2+15*x-3,x^6-4*x^5+5*x^4+7*x^3-27*x^2+4*x+5,-x^6+4*x^5+4*x^4-21*x^3-5*x^2+21*x+5,-x^6-3*x^5+13*x^4+15*x^3-37*x^2-18*x+24,8*x^6-19*x^5-40*x^4+96*x^3+44*x^2-92*x-21,5*x^6-12*x^5-25*x^4+51*x^3+25*x^2-24*x-11,-6*x^6+12*x^5+33*x^4-58*x^3-42*x^2+49*x+17,-3*x^6+15*x^5+9*x^4-75*x^3+6*x^2+72*x]];
E[319,5] = [x^8-13*x^6-x^5+50*x^4+7*x^3-54*x^2-5*x+1, [9,9*x,-x^7-x^6+16*x^5+10*x^4-78*x^3-25*x^2+113*x+14,9*x^2-18,4*x^7-2*x^6-49*x^5+17*x^4+168*x^3-26*x^2-143*x+13,-x^7+3*x^6+9*x^5-28*x^4-18*x^3+59*x^2+9*x+1,-2*x^7-3*x^6+27*x^5+34*x^4-108*x^3-98*x^2+117*x+29,9*x^3-36*x,-3*x^7+x^6+41*x^5-8*x^4-174*x^3+9*x^2+217*x+20,-2*x^7+3*x^6+21*x^5-32*x^4-54*x^3+73*x^2+33*x-4,-9,5*x^7-2*x^6-61*x^5+12*x^4+222*x^3+5*x^2-230*x-27,6*x^7-2*x^6-73*x^5+16*x^4+258*x^3-18*x^2-254*x-13,-3*x^7+x^6+32*x^5-8*x^4-84*x^3+9*x^2+19*x+2,-x^7+x^6+17*x^5-18*x^4-84*x^3+71*x^2+115*x-15,9*x^4-54*x^2+36,3*x^6-3*x^5-24*x^4+27*x^3+27*x^2-51*x+33,x^7+2*x^6-11*x^5-24*x^4+30*x^3+55*x^2+5*x+3,x^7+2*x^6-20*x^5-24*x^4+111*x^3+64*x^2-148*x-6,-5*x^7-x^6+64*x^5+12*x^4-249*x^3-23*x^2+272*x-24,-11*x^7-x^6+136*x^5+24*x^4-474*x^3-119*x^2+389*x+72,-9*x,-4*x^7-5*x^6+50*x^5+54*x^4-183*x^3-139*x^2+181*x+30,-2*x^6-x^5+28*x^4+6*x^3-78*x^2-20*x-7,11*x^7-141*x^5-10*x^4+531*x^3+62*x^2-570*x+10,-2*x^7+5*x^6+22*x^5-42*x^4-60*x^3+70*x^2+17*x-6,x^7+2*x^6-11*x^5-24*x^4+30*x^3+55*x^2-4*x+39,5*x^7-x^6-65*x^5-2*x^4+246*x^3+53*x^2-247*x-55,9,x^7+4*x^6-19*x^5-34*x^4+78*x^3+61*x^2-20*x+1,x^7-12*x^5+4*x^4+36*x^3-23*x^2-6*x+14,9*x^5-72*x^3+108*x,x^7+x^6-16*x^5-10*x^4+78*x^3+25*x^2-113*x-14,3*x^7-3*x^6-24*x^5+27*x^4+27*x^3-51*x^2+33*x,-3*x^7+x^6+32*x^5-8*x^4-66*x^3+9*x^2-71*x+2,8*x^7-105*x^5-4*x^4+396*x^3+41*x^2-426*x-41,7*x^7-93*x^5-8*x^4+360*x^3+55*x^2-348*x-19,2*x^7-7*x^6-23*x^5+61*x^4+57*x^3-94*x^2-x-1,4*x^7+x^6-52*x^5-16*x^4+204*x^3+82*x^2-257*x-80,3*x^7-7*x^6-35*x^5+65*x^4+120*x^3-144*x^2-115*x+13,2*x^7+3*x^6-27*x^5-43*x^4+108*x^3+170*x^2-126*x-83,-x^7-7*x^6+13*x^5+76*x^4-42*x^3-205*x^2+17*x+11,-x^7+21*x^5+5*x^4-126*x^3-13*x^2+195*x-59,-9*x^2+18,-x^7+2*x^6+22*x^5-23*x^4-150*x^3+83*x^2+287*x-34,-5*x^7-2*x^6+50*x^5+17*x^4-111*x^3-35*x^2+10*x+4,-3*x^7+45*x^5+6*x^4-198*x^3-39*x^2+216*x+21,-12*x^7+3*x^6+150*x^5-18*x^4-522*x^3-30*x^2+453*x+54,-12*x^7+9*x^6+153*x^5-84*x^4-576*x^3+150*x^2+621*x+48,2*x^6+x^5-19*x^4-15*x^3+24*x^2+65*x-11,-8*x^7+3*x^6+102*x^5-20*x^4-378*x^3-14*x^2+411*x+38,-7*x^7+102*x^5+8*x^4-432*x^3-55*x^2+492*x+28,10*x^7-5*x^6-127*x^5+38*x^4+483*x^3-29*x^2-533*x-53,2*x^7+2*x^6-23*x^5-20*x^4+48*x^3+50*x^2+44*x-1,-4*x^7+2*x^6+49*x^5-17*x^4-168*x^3+26*x^2+143*x-13,5*x^7-2*x^6-61*x^5+12*x^4+186*x^3+5*x^2-68*x-9,x^7+5*x^6-23*x^5-48*x^4+120*x^3+109*x^2-109*x-45,9*x,-7*x^7+4*x^6+86*x^5-30*x^4-309*x^3+38*x^2+316*x+6,6*x^7-8*x^6-67*x^5+64*x^4+222*x^3-108*x^2-224*x+29,5*x^7-4*x^6-62*x^5+31*x^4+210*x^3-19*x^2-151*x-88,x^6+5*x^5-14*x^4-30*x^3+48*x^2+19*x-1,-15*x^7-8*x^6+194*x^5+106*x^4-714*x^3-363*x^2+640*x+122,9*x^6-90*x^4+216*x^2-72,8*x^7-3*x^6-102*x^5+20*x^4+396*x^3-22*x^2-483*x+52,x^7-3*x^6-9*x^5+28*x^4+18*x^3-59*x^2-9*x-1,-x^6-5*x^5+23*x^4+48*x^3-120*x^2-100*x+109,-3*x^7+9*x^6+36*x^5-75*x^4-126*x^3+141*x^2+117*x-69,-12*x^7-6*x^6+150*x^5+72*x^4-522*x^3-228*x^2+408*x+90,x^7-7*x^6-11*x^5+84*x^4+30*x^3-233*x^2-13*x+3,3*x^7+x^6-40*x^5-11*x^4+150*x^3+33*x^2-134*x-4,-2*x^7-5*x^6+26*x^5+44*x^4-75*x^3-104*x^2-11*x-14,-7*x^7+93*x^5+8*x^4-378*x^3-37*x^2+474*x-35,-2*x^6-x^5+10*x^4+6*x^3+30*x^2+16*x-7,8*x^7-5*x^6-85*x^5+30*x^4+222*x^3+26*x^2-71*x-117,-9*x^7-x^6+103*x^5+5*x^4-330*x^3-21*x^2+305*x+10,2*x^7+3*x^6-27*x^5-34*x^4+108*x^3+98*x^2-117*x-29,x^7-12*x^5+4*x^4+54*x^3-41*x^2-60*x-4,6*x^7-72*x^5-12*x^4+225*x^3+87*x^2-126*x-114,3*x^7+6*x^6-60*x^5-54*x^4+333*x^3+93*x^2-516*x+45,5*x^7+x^6-64*x^5-12*x^4+222*x^3+41*x^2-137*x-3,3*x^7-x^6-41*x^5+8*x^4+156*x^3-18*x^2-73*x-2,-2*x^6-x^5+28*x^4+6*x^3-96*x^2-20*x+11,15*x^7+2*x^6-197*x^5-40*x^4+750*x^3+201*x^2-772*x-143,11*x^7+3*x^6-153*x^5-25*x^4+621*x^3+26*x^2-666*x+61,8*x^6+4*x^5-76*x^4-6*x^3+141*x^2-64*x+1,-x^7-x^6+16*x^5+10*x^4-78*x^3-25*x^2+113*x+14,-9*x^3+36*x,-8*x^7+105*x^5+4*x^4-396*x^3-32*x^2+372*x+95,2*x^7+9*x^6-24*x^5-100*x^4+90*x^3+233*x^2-39*x+1,10*x^7+6*x^6-135*x^5-80*x^4+540*x^3+274*x^2-612*x-109,6*x^7-5*x^6-88*x^5+31*x^4+366*x^3+18*x^2-383*x-55,-6*x^7+7*x^6+71*x^5-68*x^4-228*x^3+132*x^2+187*x+17,6*x^6+3*x^5-48*x^4-18*x^3+54*x^2+6*x+3,6*x^7+3*x^6-84*x^5-27*x^4+351*x^3+33*x^2-348*x+36,3*x^7-2*x^6-28*x^5+22*x^4+42*x^3-39*x^2+34*x+26,-5*x^7+3*x^6+48*x^5-26*x^4-90*x^3+61*x^2-57*x-28,9*x^7-3*x^6-96*x^5+24*x^4+234*x^3-27*x^2-12*x+12,3*x^7-x^6-41*x^5+8*x^4+174*x^3-9*x^2-217*x-20,-20*x^7+x^6+263*x^5+5*x^4-1038*x^3-59*x^2+1129*x-20,4*x^7+4*x^6-64*x^5-40*x^4+321*x^3+91*x^2-470*x-2,3*x^7-2*x^6-28*x^5+22*x^4+42*x^3-21*x^2-2*x+8,-11*x^7-6*x^6+138*x^5+67*x^4-486*x^3-179*x^2+411*x+50,4*x^7+x^6-43*x^5+2*x^4+114*x^3-26*x^2-41*x+19,x^7-17*x^6-7*x^5+188*x^4+6*x^3-479*x^2-41*x-5,-5*x^7+3*x^6+48*x^5-17*x^4-99*x^3+7*x^2-3*x-10,-7*x^7+93*x^5+8*x^4-396*x^3-55*x^2+564*x+73,-x^6+4*x^5-4*x^4-24*x^3+42*x^2+17*x-80,16*x^7+3*x^6-204*x^5-50*x^4+774*x^3+190*x^2-867*x-58,2*x^7-3*x^6-21*x^5+32*x^4+54*x^3-73*x^2-33*x+4,6*x^7+10*x^6-85*x^5-116*x^4+348*x^3+342*x^2-332*x-115,-12*x^7+6*x^6+147*x^5-60*x^4-522*x^3+96*x^2+510*x+105,-23*x^7-x^6+289*x^5+30*x^4-1050*x^3-149*x^2+1037*x+39,5*x^7-10*x^6-47*x^5+70*x^4+102*x^3-55*x^2-40*x-1,-7*x^7-2*x^6+83*x^5+27*x^4-255*x^3-70*x^2+103*x-15,9*x^2-18,7*x^7-6*x^6-87*x^5+40*x^4+324*x^3+x^2-354*x-139,4*x^7-5*x^6-37*x^5+41*x^4+87*x^3-62*x^2-29*x+7,-6*x^7-4*x^6+79*x^5+50*x^4-312*x^3-180*x^2+356*x+91,-10*x^7+3*x^6+108*x^5-10*x^4-306*x^3-22*x^2+99*x-8,9,-4*x^7+3*x^6+36*x^5-40*x^4-54*x^3+119*x^2-63*x-5,32*x^7-11*x^6-385*x^5+66*x^4+1302*x^3+50*x^2-1085*x-153,-x^7+5*x^6+10*x^5-38*x^4-24*x^3+65*x^2+11*x-28,22*x^7-6*x^6-276*x^5+55*x^4+1017*x^3-119*x^2-1065*x+116,-8*x^7-x^6+91*x^5+36*x^4-258*x^3-170*x^2+47*x+15,-21*x^7+12*x^6+267*x^5-108*x^4-990*x^3+177*x^2+1002*x+9,9*x^7-108*x^5+360*x^3-288*x,11*x^7+2*x^6-140*x^5-38*x^4+552*x^3+149*x^2-676*x-46,-3*x^7+2*x^6+28*x^5-4*x^4-78*x^3-51*x^2+92*x-8,11*x^7-5*x^6-130*x^5+33*x^4+438*x^3-7*x^2-386*x-12,-5*x^7+2*x^6+61*x^5-12*x^4-222*x^3-5*x^2+230*x+27,7*x^7-3*x^6-90*x^5+34*x^4+342*x^3-71*x^2-351*x-52,-x^7-5*x^6+23*x^5+48*x^4-120*x^3-100*x^2+109*x,20*x^7-2*x^6-241*x^5+816*x^3+56*x^2-644*x+57,3*x^7+3*x^6-30*x^5-30*x^4+108*x^3+57*x^2-150*x+3,-7*x^7+3*x^6+99*x^5-16*x^4-414*x^3-37*x^2+441*x+115,-6*x^7-6*x^6+60*x^5+78*x^4-144*x^3-240*x^2+30*x+12,-15*x^7-4*x^6+196*x^5+50*x^4-744*x^3-135*x^2+752*x-62,-x^7+21*x^5-4*x^4-108*x^3+23*x^2+150*x-5,-4*x^7-6*x^6+63*x^5+68*x^4-288*x^3-196*x^2+324*x+85,x^7-x^6-8*x^5+12*x^3+28*x^2+11*x-3,-6*x^7+2*x^6+73*x^5-16*x^4-258*x^3+18*x^2+254*x+13,-21*x^7+252*x^5+33*x^4-882*x^3-201*x^2+828*x+84,4*x^7-2*x^6-49*x^5+17*x^4+168*x^3-26*x^2-143*x+13,2*x^6+x^5-28*x^4+12*x^3+96*x^2-70*x+7,-6*x^7+4*x^6+92*x^5-26*x^4-480*x^3-30*x^2+868*x+218,-16*x^7-x^6+196*x^5+22*x^4-690*x^3-94*x^2+689*x+38,-2*x^7-4*x^6+31*x^5+30*x^4-168*x^3-20*x^2+296*x-51,-5*x^7+19*x^6+38*x^5-178*x^4-30*x^3+361*x^2-77*x-8,14*x^7-5*x^6-184*x^5+36*x^4+726*x^3-40*x^2-863*x+30,-5*x^7+42*x^5-2*x^4-72*x^3+7*x^2-33*x+11,-19*x^7+7*x^6+227*x^5-48*x^4-795*x^3+26*x^2+805*x+51,3*x^7-x^6-32*x^5+8*x^4+84*x^3-9*x^2-19*x-2,-2*x^7+11*x^6+7*x^5-108*x^4+66*x^3+232*x^2-193*x+15,-8*x^7-x^6+109*x^5+36*x^4-456*x^3-170*x^2+515*x+159,-9*x^7+2*x^6+118*x^5-10*x^4-456*x^3-39*x^2+488*x+106,6*x^6-6*x^5-75*x^4+45*x^3+198*x^2-84*x-6,14*x^7-5*x^6-184*x^5+36*x^4+726*x^3+32*x^2-881*x-204,-7*x^6+19*x^5+53*x^4-168*x^3-66*x^2+290*x-29,-12*x^7+10*x^6+158*x^5-98*x^4-624*x^3+198*x^2+748*x+128,x^7+x^6-7*x^5-28*x^4+6*x^3+133*x^2+22*x-5,-5*x^7+7*x^6+68*x^5-82*x^4-282*x^3+235*x^2+343*x-104,-5*x^7-8*x^6+65*x^5+92*x^4-255*x^3-251*x^2+265*x+163,x^7-x^6-17*x^5+18*x^4+84*x^3-71*x^2-115*x+15,-2*x^7-x^6+28*x^5+6*x^4-96*x^3-20*x^2+11*x,-24*x^7-x^6+310*x^5+26*x^4-1176*x^3-144*x^2+1187*x+88,4*x^7+12*x^6-51*x^5-152*x^4+180*x^3+448*x^2-102*x-37,-3*x^7-x^6+40*x^5+20*x^4-150*x^3-87*x^2+125*x+31,3*x^7-10*x^6-14*x^5+71*x^4-51*x^3-72*x^2+116*x-11,2*x^7+12*x^6-27*x^5-124*x^4+117*x^3+287*x^2-108*x-83,10*x^7+4*x^6-118*x^5-16*x^4+393*x^3-38*x^2-389*x+118,16*x^7+5*x^6-212*x^5-60*x^4+822*x^3+178*x^2-829*x-24,-x^7+3*x^6+9*x^5-28*x^4-18*x^3+59*x^2+9*x+1,21*x^7-12*x^6-258*x^5+108*x^4+918*x^3-177*x^2-894*x-108,-9*x^4+54*x^2-36,-3*x^7+x^6+41*x^5-8*x^4-156*x^3-27*x^2+199*x+83,x^6-4*x^5+4*x^4+24*x^3-60*x^2+55*x+8,-2*x^7-2*x^6+23*x^5+29*x^4-84*x^3-140*x^2+127*x+181,11*x^7-2*x^6-142*x^5+36*x^4+519*x^3-97*x^2-563*x+66,-10*x^7+2*x^6+112*x^5-14*x^4-339*x^3+11*x^2+242*x+92,6*x^7-5*x^6-70*x^5+40*x^4+204*x^3-72*x^2-59*x-10,17*x^7+7*x^6-232*x^5-102*x^4+960*x^3+377*x^2-1157*x-174,5*x^7-6*x^6-63*x^5+32*x^4+198*x^3+11*x^2-45*x-14,10*x^7+8*x^6-143*x^5-90*x^4+606*x^3+226*x^2-664*x+69,7*x^7-7*x^6-74*x^5+72*x^4+174*x^3-137*x^2-13*x+6,-3*x^6+3*x^5+24*x^4-27*x^3-27*x^2+51*x-33,12*x^7+3*x^6-138*x^5-30*x^4+450*x^3+84*x^2-429*x-42,-13*x^7-14*x^6+167*x^5+180*x^4-606*x^3-571*x^2+496*x+129,3*x^7-6*x^6-21*x^5+51*x^4-9*x^3-24*x^2+66*x-6,10*x^7-2*x^6-130*x^5+14*x^4+492*x^3-38*x^2-458*x+124,22*x^7+5*x^6-275*x^5-72*x^4+984*x^3+256*x^2-865*x-111,-11*x^7+6*x^6+144*x^5-47*x^4-558*x^3+37*x^2+621*x+74,3*x^7-17*x^6-31*x^5+160*x^4+96*x^3-327*x^2-53*x+5,-3*x^7-14*x^6+56*x^5+148*x^4-318*x^3-333*x^2+454*x-28,21*x^7+3*x^6-273*x^5-48*x^4+1062*x^3+174*x^2-1185*x-105,15*x^7-10*x^6-185*x^5+92*x^4+660*x^3-159*x^2-658*x-5,-x^7-2*x^6+11*x^5+24*x^4-30*x^3-55*x^2-5*x-3,24*x^7+7*x^6-316*x^5-83*x^4+1212*x^3+252*x^2-1244*x-76,x^7-x^6-17*x^5+111*x^3+x^2-250*x+42,-32*x^7+3*x^6+399*x^5+10*x^4-1422*x^3-218*x^2+1329*x+143,4*x^7-12*x^6-36*x^5+121*x^4+63*x^3-254*x^2+18*x-4,-2*x^7-3*x^6+27*x^5+34*x^4-108*x^3-98*x^2+117*x+29,14*x^7+5*x^6-179*x^5-68*x^4+714*x^3+188*x^2-799*x-79,-16*x^6+37*x^5+152*x^4-375*x^3-273*x^2+812*x-65,-6*x^7-5*x^6+56*x^5+64*x^4-102*x^3-183*x^2-5*x+11,-16*x^7-9*x^6+210*x^5+134*x^4-783*x^3-487*x^2+645*x+154,15*x^7+9*x^6-198*x^5-102*x^4+810*x^3+285*x^2-945*x-60,-x^7-2*x^6+20*x^5+24*x^4-111*x^3-64*x^2+148*x+6,-17*x^7+6*x^6+189*x^5-44*x^4-486*x^3+13*x^2-1,-2*x^7-x^6+46*x^5+15*x^4-276*x^3-38*x^2+416*x-36,-17*x^7-7*x^6+232*x^5+75*x^4-924*x^3-215*x^2+1031*x+111,2*x^7+5*x^6-26*x^5-62*x^4+102*x^3+176*x^2-79*x-40,2*x^6+x^5-46*x^4-6*x^3+186*x^2+38*x+7,-33*x^7+13*x^6+416*x^5-116*x^4-1533*x^3+240*x^2+1489*x-142,-5*x^7+42*x^5+16*x^4-54*x^3-83*x^2-168*x+2,-11*x^7+6*x^6+126*x^5-56*x^4-378*x^3+91*x^2+198*x+38,3*x^7+4*x^6-34*x^5-26*x^4+78*x^3-3*x^2+22*x-16,10*x^6-13*x^5-104*x^4+132*x^3+228*x^2-260*x+53,5*x^7+x^6-64*x^5-12*x^4+249*x^3+23*x^2-272*x+24,17*x^7+x^6-226*x^5-18*x^4+906*x^3+71*x^2-983*x-24,10*x^7-7*x^6-110*x^5+48*x^4+300*x^3-8*x^2-85*x-6,15*x^7+3*x^6-210*x^5-54*x^4+873*x^3+240*x^2-987*x-162,-4*x^7-5*x^6+50*x^5+54*x^4-192*x^3-148*x^2+181*x+30,5*x^6+7*x^5-70*x^4-87*x^3+303*x^2+221*x-230,-x^7-10*x^6+7*x^5+100*x^4+12*x^3-205*x^2-76*x+23,-17*x^7+4*x^6+215*x^5-34*x^4-804*x^3+79*x^2+898*x-89,-12*x^7+8*x^6+121*x^5-52*x^4-330*x^3+12*x^2+242*x+85,-3*x^7-3*x^6+48*x^5+30*x^4-252*x^3-75*x^2+411*x-30,-2*x^7-8*x^6+20*x^5+95*x^4-21*x^3-275*x^2-50*x+7,11*x^7+x^6-136*x^5-24*x^4+474*x^3+119*x^2-389*x-72,9*x^3-36*x,4*x^7-5*x^6-55*x^5+50*x^4+222*x^3-98*x^2-209*x-119,-6*x^7+4*x^6+47*x^5-26*x^4-48*x^3+24*x^2-104*x-7,-2*x^7-6*x^6+39*x^5+58*x^4-216*x^3-116*x^2+276*x-31,9*x^7+7*x^6-127*x^5-53*x^4+528*x^3+111*x^2-605*x-16,27*x^7+12*x^6-354*x^5-168*x^4+1368*x^3+585*x^2-1446*x-210,-4*x^7+x^6+44*x^5-12*x^4-138*x^3+32*x^2+61*x+6,-9*x^7+10*x^6+104*x^5-68*x^4-318*x^3+3*x^2+190*x+134,-9*x^7-6*x^6+114*x^5+66*x^4-396*x^3-225*x^2+390*x-48,-25*x^7-3*x^6+321*x^5+32*x^4-1206*x^3-73*x^2+1209*x-23,9*x,-3*x^7+12*x^6+24*x^5-126*x^4-18*x^3+339*x^2-24*x-162,-7*x^7-8*x^6+80*x^5+84*x^4-273*x^3-241*x^2+277*x+180,-3*x^7+5*x^6+61*x^5-55*x^4-402*x^3+147*x^2+878*x-101,-11*x^7+31*x^6+98*x^5-298*x^4-174*x^3+643*x^2+7*x-32,-2*x^7+3*x^6+12*x^5-14*x^4-62*x^2-21*x+86,5*x^7-5*x^6-49*x^5+54*x^4+132*x^3-139*x^2-71*x+3,-10*x^7+x^6+116*x^5-336*x^3-64*x^2+115*x+12,-6*x^7+10*x^6+77*x^5-83*x^4-273*x^3+123*x^2+226*x-22,20*x^7-13*x^6-242*x^5+118*x^4+840*x^3-220*x^2-781*x+68,29*x^7+3*x^6-360*x^5-70*x^4+1314*x^3+341*x^2-1305*x-236,4*x^7+5*x^6-50*x^5-54*x^4+183*x^3+139*x^2-181*x-30,12*x^7-6*x^6-129*x^5+60*x^4+324*x^3-132*x^2-96*x+21,-19*x^7+20*x^6+220*x^5-194*x^4-690*x^3+371*x^2+584*x-70,-9*x^6+9*x^5+90*x^4-63*x^3-234*x^2+45*x+135,-22*x^7+3*x^6+279*x^5-13*x^4-1008*x^3-34*x^2+882*x+49,2*x^7+3*x^6-27*x^5+2*x^4+72*x^3-82*x^2+9*x-11,7*x^7-111*x^5-8*x^4+558*x^3+73*x^2-870*x-145,-14*x^7-5*x^6+197*x^5+32*x^4-822*x^3-26*x^2+943*x-101,-3*x^7+x^6+41*x^5-8*x^4-174*x^3+9*x^2+217*x+20,-5*x^7+13*x^6+44*x^5-112*x^4-84*x^3+208*x^2+43*x-11,-15*x^7+5*x^6+169*x^5-40*x^4-501*x^3+18*x^2+311*x+109,2*x^6+x^5-28*x^4-6*x^3+78*x^2+20*x+7,11*x^7-15*x^6-135*x^5+137*x^4+513*x^3-280*x^2-648*x+79,-3*x^7+x^6+41*x^5-8*x^4-120*x^3+27*x^2-17*x-7,-12*x^7-21*x^6+192*x^5+228*x^4-936*x^3-606*x^2+1293*x+240,-5*x^7+12*x^6+57*x^5-116*x^4-189*x^3+295*x^2+195*x-217,-6*x^7+3*x^6+78*x^5-48*x^4-288*x^3+174*x^2+273*x-42,-2*x^7+19*x^6+20*x^5-184*x^4-84*x^3+436*x^2+157*x-20,15*x^7-6*x^6-174*x^5+63*x^4+594*x^3-165*x^2-627*x+36,9*x^7-9*x^6-99*x^5+108*x^4+288*x^3-270*x^2-216*x+135,40*x^7-5*x^6-496*x^5-4*x^4+1752*x^3+262*x^2-1559*x-308,3*x^7+8*x^6-23*x^5-64*x^4+12*x^3+63*x^2+80*x+7,-11*x^7+141*x^5+10*x^4-531*x^3-62*x^2+570*x-10,18*x^7-6*x^6-228*x^5+12*x^4+846*x^3+162*x^2-834*x-174,13*x^7-15*x^6-141*x^5+154*x^4+378*x^3-407*x^2-183*x+197,-4*x^7+x^6+35*x^5+6*x^4-30*x^3-58*x^2-137*x+15,-6*x^7+5*x^6+70*x^5-40*x^4-258*x^3+54*x^2+329*x+28,-2*x^7+22*x^6+17*x^5-226*x^4-30*x^3+562*x^2+16*x-5,-21*x^7-8*x^6+284*x^5+100*x^4-1146*x^3-297*x^2+1270*x+74,-6*x^7+11*x^6+64*x^5-88*x^4-168*x^3+108*x^2+65*x+4,-6*x^6+15*x^5+66*x^4-144*x^3-198*x^2+264*x-3,-7*x^7+3*x^6+81*x^5-16*x^4-279*x^3-x^2+270*x+7,-19*x^7+32*x^6+199*x^5-290*x^4-546*x^3+551*x^2+398*x-37,2*x^7-5*x^6-22*x^5+42*x^4+60*x^3-70*x^2-17*x+6,33*x^7-24*x^6-408*x^5+216*x^4+1458*x^3-345*x^2-1410*x-270,4*x^7-11*x^6-40*x^5+80*x^4+96*x^3-98*x^2+x+49,12*x^7-12*x^6-141*x^5+117*x^4+468*x^3-222*x^2-453*x-18,-2*x^7+3*x^6+21*x^5-32*x^4-54*x^3+73*x^2+33*x-4,7*x^7-15*x^6-87*x^5+148*x^4+342*x^3-341*x^2-399*x-49,16*x^7+x^6-214*x^5-4*x^4+852*x^3+4*x^2-941*x+70,-8*x^7+123*x^5+13*x^4-576*x^3-86*x^2+777*x+59,4*x^7+14*x^6-32*x^5-180*x^4+12*x^3+544*x^2+188*x+6,-16*x^7+9*x^6+192*x^5-73*x^4-693*x^3+125*x^2+762*x-80,-x^7-8*x^6+8*x^5+90*x^4+6*x^3-235*x^2-74*x+30,-x^7-2*x^6+11*x^5+24*x^4-30*x^3-55*x^2+4*x-39,-4*x^7+5*x^6+28*x^5-68*x^4-6*x^3+188*x^2-61*x+2,12*x^7+6*x^6-150*x^5-90*x^4+540*x^3+318*x^2-552*x-144,3*x^7-17*x^6-13*x^5+160*x^4-48*x^3-399*x^2+109*x+239,2*x^7+13*x^6-40*x^5-156*x^4+240*x^3+452*x^2-431*x-138,-5*x^7-2*x^6+50*x^5+26*x^4-138*x^3-107*x^2+100*x-14,x^7-2*x^6-22*x^5+32*x^4+132*x^3-101*x^2-188*x-110,18*x^7-21*x^6-213*x^5+168*x^4+702*x^3-261*x^2-624*x-15,-27*x^7+16*x^6+332*x^5-152*x^4-1155*x^3+336*x^2+1006*x-88,7*x^7-20*x^6-67*x^5+155*x^4+159*x^3-221*x^2-44*x+19,-5*x^7+9*x^6+69*x^5-92*x^4-315*x^3+214*x^2+471*x-43,-5*x^7+x^6+65*x^5+2*x^4-246*x^3-53*x^2+247*x+55,-15*x^7-23*x^6+200*x^5+262*x^4-768*x^3-723*x^2+697*x+182,11*x^7-19*x^6-110*x^5+166*x^4+246*x^3-301*x^2+5*x+2,26*x^7-15*x^6-333*x^5+134*x^4+1260*x^3-220*x^2-1323*x-125,-3*x^7+5*x^6+52*x^5-64*x^4-222*x^3+165*x^2+239*x+16,7*x^7-84*x^5+19*x^4+306*x^3-161*x^2-357*x+152,2*x^7+x^6-19*x^5-6*x^4+24*x^3+2*x^2+61*x+9,-14*x^7-15*x^6+165*x^5+172*x^4-468*x^3-488*x^2+15*x-19,-6*x^7-6*x^6+69*x^5+69*x^4-252*x^3-258*x^2+246*x+228,10*x^7+x^6-124*x^5-28*x^4+456*x^3+178*x^2-491*x-158,-5*x^7-2*x^6+50*x^5+26*x^4-66*x^3-125*x^2-134*x-14,-9,-13*x^7+7*x^6+173*x^5-60*x^4-732*x^3+104*x^2+1003*x-90,-20*x^7+16*x^6+257*x^5-160*x^4-984*x^3+292*x^2+1162*x+235,10*x^7+2*x^6-110*x^5-24*x^4+282*x^3+100*x^2+68*x+12,19*x^7-14*x^6-217*x^5+101*x^4+690*x^3-101*x^2-641*x+1,-9*x^7+4*x^6+101*x^5-20*x^4-318*x^3-6*x^2+274*x+5,23*x^7-24*x^6-279*x^5+230*x^4+972*x^3-529*x^2-918*x+283,7*x^7+3*x^6-87*x^5-32*x^4+270*x^3+73*x^2-129*x+5,29*x^7-8*x^6-352*x^5+48*x^4+1194*x^3+83*x^2-1028*x-288,-14*x^7+2*x^6+169*x^5-21*x^4-528*x^3+31*x^2+284*x+9,-9*x^7-2*x^6+125*x^5+28*x^4-534*x^3-123*x^2+664*x+119,-x^7-4*x^6+19*x^5+34*x^4-78*x^3-61*x^2+20*x-1,-28*x^7+17*x^6+349*x^5-134*x^4-1248*x^3+128*x^2+1175*x+113,-x^7+6*x^6+6*x^5-52*x^4-18*x^3+95*x^2+30*x-20,15*x^7+17*x^6-185*x^5-196*x^4+624*x^3+561*x^2-433*x-203,-x^7-2*x^6+2*x^5+24*x^4+24*x^3-109*x^2-32*x+24,26*x^7+2*x^6-365*x^5-14*x^4+1551*x^3-25*x^2-1900*x+173,-18*x^7-3*x^6+246*x^5+60*x^4-1080*x^3-288*x^2+1527*x+282,8*x^7+5*x^6-125*x^5-56*x^4+579*x^3+155*x^2-781*x-37,-x^7+x^6+17*x^5-66*x^3-37*x^2+16*x+3,-23*x^7-8*x^6+281*x^5+128*x^4-966*x^3-521*x^2+814*x+307,-32*x^7+19*x^6+380*x^5-151*x^4-1335*x^3+226*x^2+1336*x-125,-x^7+12*x^5-4*x^4-36*x^3+23*x^2+6*x-14,12*x^7-x^6-122*x^5+17*x^4+273*x^3-73*x-2,-20*x^7-11*x^6+257*x^5+164*x^4-948*x^3-590*x^2+865*x+127,4*x^7-4*x^6-14*x^5+45*x^4-96*x^3-131*x^2+296*x-12,4*x^7-30*x^6-36*x^5+310*x^4+108*x^3-740*x^2-234*x+14,5*x^7-4*x^6-44*x^5+22*x^4+66*x^3+35*x^2+56*x-16,19*x^7+4*x^6-253*x^5-52*x^4+996*x^3+151*x^2-1064*x-89,5*x^7-2*x^6-61*x^5+12*x^4+222*x^3+5*x^2-230*x-27,-33*x^7+3*x^6+420*x^5+6*x^4-1566*x^3-177*x^2+1515*x+102,-12*x^7+15*x^6+129*x^5-132*x^4-324*x^3+240*x^2-3*x-21,20*x^7-9*x^6-267*x^5+80*x^4+1044*x^3-118*x^2-1137*x-53,-9*x^5+72*x^3-108*x,23*x^7-3*x^6-282*x^5-10*x^4+999*x^3+200*x^2-933*x-26,x^7+2*x^6-11*x^5-6*x^4-6*x^3+37*x^2+68*x+3,4*x^7+8*x^6-62*x^5-78*x^4+273*x^3+175*x^2-304*x+30,17*x^7-4*x^6-206*x^5+16*x^4+732*x^3+119*x^2-736*x-190,-32*x^7+7*x^6+392*x^5-28*x^4-1380*x^3-134*x^2+1261*x+220,-2*x^7-3*x^6+27*x^5+16*x^4-126*x^3+19*x^2+171*x+2,46*x^7-11*x^6-571*x^5+77*x^4+2040*x^3-2*x^2-1970*x-119,-6*x^7-17*x^6+95*x^5+169*x^4-354*x^3-435*x^2+199*x-13,8*x^7-14*x^6-76*x^5+129*x^4+168*x^3-190*x^2-89*x-117,2*x^7-18*x^6-24*x^5+161*x^4+81*x^3-298*x^2+42*x+10,-x^7-x^6+16*x^5+10*x^4-78*x^3-25*x^2+113*x+14,-25*x^7-4*x^6+316*x^5+64*x^4-1194*x^3-283*x^2+1244*x+212,-46*x^7+26*x^6+565*x^5-242*x^4-2004*x^3+506*x^2+1922*x-193,7*x^7-11*x^6-85*x^5+110*x^4+258*x^3-239*x^2-89*x-17,-9*x^7+15*x^6+84*x^5-174*x^4-162*x^3+549*x^2-3*x-312,-18*x^7+12*x^6+213*x^5-114*x^4-756*x^3+189*x^2+777*x+105,45*x^7+8*x^6-563*x^5-139*x^4+2010*x^3+609*x^2-1891*x-251,8*x^7-13*x^6-80*x^5+106*x^4+156*x^3-124*x^2+119*x-10,36*x^7+10*x^6-463*x^5-158*x^4+1716*x^3+642*x^2-1646*x-307,5*x^7+3*x^6-63*x^5-40*x^4+270*x^3+101*x^2-333*x-41,-20*x^7+x^6+272*x^5-4*x^4-1092*x^3-32*x^2+1201*x+34,-3*x^7+3*x^6+24*x^5-27*x^4-27*x^3+51*x^2-33*x,-20*x^7+267*x^5+10*x^4-1044*x^3-44*x^2+1074*x-73,3*x^7+6*x^6-24*x^5-54*x^4+36*x^3+111*x^2+6*x-18,6*x^7-2*x^6-73*x^5+16*x^4+258*x^3-18*x^2-254*x-13,-14*x^7-2*x^6+167*x^5+44*x^4-480*x^3-206*x^2+64*x+13,22*x^7-13*x^6-248*x^5+108*x^4+750*x^3-176*x^2-523*x+6,-18*x^7+12*x^6+222*x^5-105*x^4-747*x^3+162*x^2+705*x-75,-2*x^7+33*x^5+28*x^4-216*x^3-206*x^2+498*x+251,-2*x^7+24*x^5-8*x^4-108*x^3+82*x^2+174*x-10,-10*x^7+11*x^6+112*x^5-104*x^4-348*x^3+200*x^2+341*x+20,-x^7+15*x^6+6*x^5-160*x^4+18*x^3+401*x^2-69*x-74,3*x^7-x^6-32*x^5+8*x^4+66*x^3-9*x^2+71*x-2,6*x^7+x^6-58*x^5-8*x^4+114*x^3+27*x^2+19*x+11,25*x^7-9*x^6-336*x^5+73*x^4+1314*x^3-53*x^2-1410*x-46,-7*x^7+2*x^6+67*x^5-2*x^4-168*x^3-13*x^2+134*x+53,-40*x^7+21*x^6+495*x^5-166*x^4-1782*x^3+200*x^2+1737*x-23,-14*x^7+17*x^6+145*x^5-168*x^4-312*x^3+292*x^2-43*x+3,-13*x^7+5*x^6+163*x^5-23*x^4-618*x^3-91*x^2+650*x+83,-15*x^7+6*x^6+165*x^5-36*x^4-441*x^3+3*x^2+24*x-45,12*x^7-x^6-140*x^5-10*x^4+426*x^3+162*x^2-289*x-110,-10*x^7+10*x^6+107*x^5-90*x^4-264*x^3+152*x^2+70*x-15,-30*x^7+24*x^6+381*x^5-231*x^4-1413*x^3+519*x^2+1437*x-129,-8*x^7+105*x^5+4*x^4-396*x^3-41*x^2+426*x+41,12*x^7+6*x^6-186*x^5-90*x^4+891*x^3+327*x^2-1254*x-126,7*x^7-4*x^6-59*x^5+12*x^4+84*x^3+52*x^2+44*x-24,3*x^7+9*x^6-63*x^5-96*x^4+414*x^3+255*x^2-783*x-165,39*x^7-6*x^6-525*x^5+51*x^4+2070*x^3-78*x^2-2211*x+39,29*x^7+7*x^6-367*x^5-117*x^4+1374*x^3+479*x^2-1418*x-141,3*x^7-17*x^6-22*x^5+178*x^4+6*x^3-399*x^2-17*x+32,x^7+10*x^6-25*x^5-100*x^4+186*x^3+223*x^2-356*x-23,-20*x^7+8*x^6+253*x^5-57*x^4-924*x^3+52*x^2+956*x,-x^7+25*x^6-16*x^5-255*x^4+186*x^3+593*x^2-284*x+24,-3*x^7+x^6+32*x^5-8*x^4-84*x^3+9*x^2+19*x+2,-7*x^7+93*x^5+8*x^4-360*x^3-55*x^2+348*x+19,-x^7+7*x^6+2*x^5-30*x^4+6*x^3-x^2-5*x-30,31*x^7-8*x^6-403*x^5+56*x^4+1527*x^3-8*x^2-1580*x-71,-16*x^7+37*x^6+152*x^5-375*x^4-273*x^3+812*x^2-65*x,-21*x^7-10*x^6+301*x^5+128*x^4-1302*x^3-447*x^2+1592*x+283,17*x^7-10*x^6-218*x^5+64*x^4+831*x^3+29*x^2-841*x-94,-13*x^7-7*x^6+166*x^5+82*x^4-618*x^3-271*x^2+629*x+104,-9*x^7+2*x^6+118*x^5+17*x^4-375*x^3-219*x^2+74*x+16,-8*x^7+9*x^6+78*x^5-68*x^4-144*x^3+76*x^2-159*x+14,x^7-5*x^6-x^5+56*x^4-48*x^3-83*x^2+97*x-53,4*x^7-13*x^6-59*x^5+144*x^4+300*x^3-374*x^2-577*x+87,-2*x^7+7*x^6+23*x^5-61*x^4-57*x^3+94*x^2+x+1,-19*x^7-6*x^6+225*x^5+80*x^4-738*x^3-265*x^2+576*x+127,4*x^7+2*x^6-47*x^5-12*x^4+120*x^3+40*x^2-4*x+27,-10*x^6+22*x^5+104*x^4-186*x^3-246*x^2+332*x-26,-x^7+20*x^6+13*x^5-176*x^4-24*x^3+308*x^2-46*x+2,-11*x^7-13*x^6+139*x^5+138*x^4-510*x^3-353*x^2+485*x+147,3*x^7+5*x^6-38*x^5-40*x^4+102*x^3+99*x^2+32*x+37,36*x^7+10*x^6-508*x^5-113*x^4+2139*x^3+291*x^2-2483*x+98,5*x^7-60*x^5+2*x^4+162*x^3+29*x^2-30*x-2,16*x^7+21*x^6-231*x^5-248*x^4+1044*x^3+766*x^2-1425*x-319,16*x^7+x^6-232*x^5-22*x^4+978*x^3+148*x^2-1121*x-146,-4*x^7-x^6+52*x^5+16*x^4-204*x^3-82*x^2+257*x+80,13*x^7-13*x^6-149*x^5+117*x^4+471*x^3-293*x^2-307*x+33,-9*x^7+18*x^6+90*x^5-180*x^4-198*x^3+459*x^2-36*x-306,-21*x^6+3*x^5+204*x^4-522*x^2-57*x+165,-3*x^7+8*x^6+40*x^5-70*x^4-168*x^3+129*x^2+296*x-140,6*x^7-17*x^6-67*x^5+172*x^4+168*x^3-396*x^2-17*x+11,-x^7+x^6+17*x^5-18*x^4-84*x^3+71*x^2+115*x-15,-28*x^7-x^6+385*x^5+28*x^4-1572*x^3-196*x^2+1733*x+113,x^7-3*x^6-27*x^5+37*x^4+198*x^3-77*x^2-288*x-73,10*x^7-13*x^6-104*x^5+132*x^4+228*x^3-260*x^2+53*x,-2*x^6-x^5+28*x^4+42*x^3-114*x^2-236*x+29,-3*x^7+7*x^6+35*x^5-65*x^4-120*x^3+144*x^2+115*x-13,-14*x^7+19*x^6+191*x^5-196*x^4-840*x^3+388*x^2+1327*x+370,x^7-5*x^6-x^5+56*x^4-48*x^3-65*x^2+61*x-17,-10*x^6+4*x^5+86*x^4-6*x^3-120*x^2-64*x-98,-19*x^7+228*x^5+32*x^4-774*x^3-229*x^2+708*x+220,28*x^7-33*x^6-312*x^5+304*x^4+900*x^3-572*x^2-507*x+38,3*x^7-15*x^6-39*x^5+123*x^4+135*x^3-177*x^2-87*x-15,14*x^7+x^6-172*x^5-48*x^4+600*x^3+248*x^2-533*x-12,19*x^7-14*x^6-244*x^5+128*x^4+924*x^3-227*x^2-1010*x-206,20*x^7-6*x^6-243*x^5+56*x^4+828*x^3-118*x^2-666*x+169,5*x^7+7*x^6-70*x^5-87*x^4+303*x^3+221*x^2-230*x,-2*x^7-3*x^6+27*x^5+43*x^4-108*x^3-170*x^2+126*x+83,36*x^7-4*x^6-479*x^5+2*x^4+1902*x^3+168*x^2-2056*x-77,x^7-16*x^6-2*x^5+156*x^4-42*x^3-305*x^2+32*x-150,4*x^7-6*x^6-51*x^5+46*x^4+198*x^3-20*x^2-174*x+17,18*x^7-13*x^6-200*x^5+128*x^4+552*x^3-264*x^2-175*x+40,-2*x^7-15*x^6+30*x^5+130*x^4-108*x^3-296*x^2+105*x+14,-18*x^7-x^6+229*x^5+50*x^4-816*x^3-300*x^2+683*x+163,-3*x^7+9*x^6+27*x^5-102*x^4-54*x^3+249*x^2-45*x+3,4*x^7-5*x^6-55*x^5+32*x^4+240*x^3-62*x^2-281*x+151,6*x^7-2*x^6-73*x^5+25*x^4+249*x^3-18*x^2-209*x+32,-10*x^7+x^6+152*x^5-723*x^3-37*x^2+1033*x+102,x^7+7*x^6-13*x^5-76*x^4+42*x^3+205*x^2-17*x-11,7*x^7+12*x^6-78*x^5-140*x^4+234*x^3+397*x^2-156*x-22,9*x^4-54*x^2+36,3*x^7-x^6-32*x^5+8*x^4+66*x^3-45*x^2+161*x-20,-5*x^7-3*x^6+54*x^5+22*x^4-126*x^3+7*x^2-99*x-4,21*x^7-6*x^6-255*x^5+42*x^4+882*x^3-33*x^2-852*x-51,-10*x^7-19*x^6+142*x^5+172*x^4-582*x^3-430*x^2+671*x+284,-23*x^7+8*x^6+298*x^5-60*x^4-1158*x^3-5*x^2+1334*x+300,-6*x^7+13*x^6+56*x^5-116*x^4-102*x^3+168*x^2-41*x+2,-24*x^7-x^6+319*x^5+44*x^4-1284*x^3-270*x^2+1511*x+277,-x^7+30*x^5-4*x^4-126*x^3+5*x^2+87*x-23,x^7-21*x^5-5*x^4+126*x^3+13*x^2-195*x+59,12*x^7-3*x^6-141*x^5+18*x^4+396*x^3+12*x^2-75*x-27,5*x^7+21*x^6-90*x^5-193*x^4+495*x^3+308*x^2-720*x+166,13*x^7-174*x^5-38*x^4+684*x^3+205*x^2-726*x-178,23*x^7-13*x^6-287*x^5+94*x^4+1101*x^3-46*x^2-1357*x-349,10*x^7-13*x^6-77*x^5+132*x^4+66*x^3-296*x^2+89*x+9,6*x^7+2*x^6-89*x^5-31*x^4+408*x^3+156*x^2-583*x-89,14*x^7-9*x^6-159*x^5+74*x^4+450*x^3-52*x^2-291*x+25,-8*x^7+7*x^6+95*x^5-40*x^4-300*x^3-74*x^2+163*x+205,-3*x^7-4*x^6+7*x^5+44*x^4+102*x^3-141*x^2-148*x+25,-12*x^7+4*x^6+200*x^5-32*x^4-1092*x^3+1948*x+368,9*x^2-18,-3*x^7-15*x^6+33*x^5+180*x^4-126*x^3-489*x^2+183*x-9,12*x^7-15*x^6-129*x^5+132*x^4+360*x^3-186*x^2-177*x+3,-37*x^7+12*x^6+468*x^5-109*x^4-1746*x^3+167*x^2+1917*x+28,-17*x^6+5*x^5+157*x^4-84*x^3-339*x^2+271*x+17,33*x^7+x^6-409*x^5-44*x^4+1410*x^3+261*x^2-1151*x-79,5*x^7+22*x^6-58*x^5-252*x^4+168*x^3+716*x^2-116*x+3,-32*x^7+10*x^6+389*x^5-88*x^4-1407*x^3+145*x^2+1570*x+73,-33*x^7-23*x^6+461*x^5+244*x^4-1884*x^3-687*x^2+2083*x+317,3*x^6-3*x^5-24*x^4+27*x^3+27*x^2-51*x+33,3*x^7-14*x^6-16*x^5+100*x^4-48*x^3-129*x^2+76*x+2,x^7-2*x^6-22*x^5+23*x^4+150*x^3-83*x^2-287*x+34,-3*x^7+6*x^6+39*x^5-42*x^4-126*x^3+69*x^2+6*x+51,-9*x^5+108*x^3-288*x-45,x^7-14*x^6-10*x^5+164*x^4+6*x^3-425*x^2-38*x+10,13*x^7-11*x^6-148*x^5+98*x^4+483*x^3-188*x^2-449*x+148,-34*x^7+11*x^6+463*x^5-83*x^4-1869*x^3+140*x^2+2078*x-226]];

E[320,1] = [x^2-8, [1,0,x,0,-1,0,x,0,5,0,-2*x,0,2,0,-x,0,2,0,0,0,8,0,-x,0,1,0,2*x,0,-6,0,-2*x,0,-16,0,-x,0,10,0,2*x,0,2,0,-3*x,0,-5,0,x,0,1,0,2*x,0,-6,0,2*x,0,0,0,4*x,0,2,0,5*x,0,-2,0,-x,0,-8,0,-2*x,0,-6,0,x,0,-16,0,-4*x,0,1,0,x,0,-2,0,-6*x,0,10,0,2*x,0,-16,0,0,0,2,0,-10*x,0,2,0,-5*x,0,-8,0,-5*x,0,18,0,10*x,0,2,0,x,0,10,0,2*x,0,21,0,2*x,0,-1,0,x,0,-24,0,2*x,0,0,0,-2*x,0,-6,0,4*x,0,8,0,-4*x,0,6,0,x,0,10,0,6*x,0,10,0,2*x,0,18,0,-6*x,0,-8,0,5*x,0,16,0,5*x,0,-9,0,0,0,2,0,x,0,32,0,4*x,0,-14,0,2*x,0,-10,0,-4*x,0,16,0,-6*x,0,18,0,-2*x,0,-6,0,8*x,0,-8,0,-6*x,0,-2,0,-5*x,0,0,0,-6*x,0,-16,0,3*x,0,-16,0,-6*x,0,4,0,3*x,0,5,0,7*x,0,-14,0,-16*x,0,10,0,-x,0,-32,0,4*x,0,26,0,-5*x,0,-1,0,0,0,8,0,-2*x,0,16,0,-2*x,0,-14,0,10*x,0,-30,0,7*x,0,6,0,10*x,0,18,0,-6*x,0,16,0,-2*x,0,10,0,-10*x,0,-30,0,-3*x,0,0,0,2*x,0,-13,0,2*x,0,10,0,-4*x,0,-32,0,-2*x,0,-24,0,2*x,0,-2,0,-x,0,-40,0,10*x,0,-6,0,-5*x,0,-30,0,12*x,0,-40,0,0,0,2,0,18*x,0,8,0,2*x,0,50,0,x,0,18,0,2*x,0,32,0,-6*x,0,8,0,3*x,0,-6,0,4*x,0,-30,0,2*x,0,16,0,-8*x,0,-19,0,21*x,0,6,0,-3*x,0,10,0,-6*x,0,-22,0,-x,0,-12,0,-8*x,0,8,0,-13*x,0,16,0,-15*x,0,-6,0,-2*x,0,16,0,4*x,0,34,0,0,0,2,0,-4*x,0,-1,0,-20*x,0,2,0,-6*x,0,32,0,-x,0,32,0,-4*x,0,-38,0,5*x,0,2,0,2*x,0,-32,0,2*x,0,-14,0,6*x,0,0,0,-8*x,0,5,0,x,0,-10,0,10*x,0,26,0,-4*x,0,48,0,-2*x,0,-22,0,4*x,0,-6,0,3*x,0,16,0,-5*x,0,-8,0,18*x,0,48,0,0,0,-30,0,12*x,0,20,0,-8*x,0,-2,0,-11*x,0,40,0,14*x,0,-12,0,10*x,0,-16,0,0,0]];
E[320,2] = [x, [1,0,-2,0,1,0,2,0,1,0,-4,0,6,0,-2,0,2,0,8,0,-4,0,6,0,1,0,4,0,2,0,-4,0,8,0,2,0,-2,0,-12,0,-10,0,-2,0,1,0,2,0,-3,0,-4,0,-2,0,-4,0,-16,0,0,0,-2,0,2,0,6,0,-6,0,-12,0,12,0,10,0,-2,0,-8,0,8,0,-11,0,-10,0,2,0,-4,0,-6,0,12,0,8,0,8,0,10,0,-4,0,-14,0,-2,0,-4,0,-6,0,14,0,4,0,-6,0,6,0,6,0,4,0,5,0,20,0,1,0,-6,0,4,0,4,0,16,0,4,0,2,0,-16,0,-4,0,-24,0,2,0,6,0,-10,0,-20,0,2,0,-4,0,-10,0,4,0,12,0,6,0,8,0,-14,0,23,0,8,0,6,0,2,0,0,0,0,0,18,0,4,0,-2,0,-8,0,8,0,4,0,2,0,-12,0,22,0,16,0,12,0,4,0,-10,0,6,0,-32,0,4,0,-24,0,-2,0,-8,0,-20,0,12,0,-2,0,1,0,18,0,10,0,16,0,2,0,2,0,-16,0,8,0,-18,0,10,0,-3,0,48,0,20,0,-20,0,-24,0,-4,0,26,0,-4,0,2,0,-2,0,-2,0,12,0,-18,0,-28,0,-24,0,-4,0,22,0,-4,0,-10,0,-26,0,-16,0,-20,0,-13,0,-20,0,-18,0,0,0,-16,0,36,0,-4,0,28,0,-2,0,-22,0,4,0,-28,0,-6,0,2,0,-2,0,-8,0,12,0,16,0,6,0,-28,0,4,0,4,0,-2,0,-6,0,-14,0,12,0,16,0,-20,0,-12,0,18,0,2,0,24,0,-30,0,12,0,-8,0,-16,0,45,0,-10,0,10,0,18,0,-10,0,-4,0,-10,0,-2,0,12,0,24,0,12,0,14,0,-8,0,-2,0,-26,0,12,0,-8,0,8,0,-26,0,-32,0,18,0,-24,0,-11,0,8,0,14,0,-4,0,0,0,-10,0,32,0,0,0,-10,0,2,0,2,0,-4,0,48,0,20,0,-22,0,-4,0,48,0,16,0,-3,0,-18,0,-6,0,20,0,22,0,40,0,40,0,12,0,-6,0,8,0,-6,0,38,0,8,0,-6,0,-12,0,20,0,8,0,8,0,-2,0,-24,0,-12,0,-24,0,10,0,-38,0,-12,0,-20,0,4,0,-4,0,24,0,-40,0]];
E[320,3] = [x, [1,0,-2,0,1,0,-2,0,1,0,0,0,-2,0,-2,0,-6,0,-4,0,4,0,-6,0,1,0,4,0,-6,0,4,0,0,0,-2,0,-2,0,4,0,6,0,-10,0,1,0,6,0,-3,0,12,0,6,0,0,0,8,0,12,0,-2,0,-2,0,-2,0,2,0,12,0,12,0,2,0,-2,0,0,0,-8,0,-11,0,6,0,-6,0,12,0,-6,0,4,0,-8,0,-4,0,2,0,0,0,-6,0,-14,0,4,0,-6,0,-2,0,4,0,-6,0,-6,0,-2,0,12,0,-11,0,-12,0,1,0,-2,0,20,0,0,0,8,0,4,0,18,0,-4,0,-12,0,0,0,-6,0,6,0,6,0,-20,0,-6,0,4,0,22,0,-12,0,12,0,-10,0,0,0,-18,0,-9,0,-4,0,6,0,-2,0,-24,0,-12,0,10,0,4,0,-2,0,0,0,-8,0,12,0,26,0,4,0,-18,0,-8,0,-4,0,12,0,6,0,-6,0,0,0,-16,0,-24,0,-10,0,-8,0,-4,0,12,0,10,0,1,0,-6,0,-14,0,0,0,-6,0,6,0,16,0,24,0,14,0,10,0,-3,0,8,0,-12,0,0,0,0,0,12,0,-6,0,4,0,-6,0,18,0,6,0,12,0,-18,0,-20,0,-8,0,0,0,-26,0,4,0,6,0,14,0,8,0,-12,0,19,0,-4,0,30,0,12,0,0,0,12,0,20,0,12,0,-2,0,2,0,28,0,-12,0,-22,0,-2,0,6,0,0,0,12,0,24,0,-2,0,4,0,-12,0,8,0,-2,0,2,0,2,0,12,0,0,0,20,0,12,0,-30,0,10,0,-8,0,18,0,12,0,-24,0,-24,0,-3,0,22,0,2,0,22,0,6,0,-12,0,-26,0,-2,0,12,0,-28,0,4,0,-6,0,0,0,-10,0,6,0,36,0,0,0,-8,0,-2,0,-16,0,-30,0,-8,0,-11,0,0,0,-34,0,-36,0,-24,0,6,0,8,0,36,0,-26,0,6,0,-6,0,4,0,0,0,-36,0,2,0,12,0,24,0,-8,0,-3,0,6,0,-6,0,-12,0,6,0,0,0,40,0,4,0,26,0,-24,0,-30,0,-14,0,-8,0,-30,0,-4,0,-44,0,0,0,-4,0,6,0,24,0,4,0,-24,0,2,0,-26,0,20,0,0,0,36,0,0,0,-24,0,-4,0]];
E[320,4] = [x, [1,0,2,0,1,0,2,0,1,0,0,0,-2,0,2,0,-6,0,4,0,4,0,6,0,1,0,-4,0,-6,0,-4,0,0,0,2,0,-2,0,-4,0,6,0,10,0,1,0,-6,0,-3,0,-12,0,6,0,0,0,8,0,-12,0,-2,0,2,0,-2,0,-2,0,12,0,-12,0,2,0,2,0,0,0,8,0,-11,0,-6,0,-6,0,-12,0,-6,0,-4,0,-8,0,4,0,2,0,0,0,-6,0,14,0,4,0,6,0,-2,0,-4,0,-6,0,6,0,-2,0,-12,0,-11,0,12,0,1,0,2,0,20,0,0,0,8,0,-4,0,18,0,4,0,-12,0,0,0,-6,0,-6,0,6,0,20,0,-6,0,-4,0,22,0,12,0,12,0,10,0,0,0,18,0,-9,0,4,0,6,0,2,0,-24,0,12,0,10,0,-4,0,-2,0,0,0,-8,0,-12,0,26,0,-4,0,-18,0,8,0,-4,0,-12,0,6,0,6,0,0,0,16,0,-24,0,10,0,-8,0,4,0,12,0,-10,0,1,0,6,0,-14,0,0,0,-6,0,-6,0,16,0,-24,0,14,0,-10,0,-3,0,-8,0,-12,0,0,0,0,0,-12,0,-6,0,-4,0,-6,0,-18,0,6,0,-12,0,-18,0,20,0,-8,0,0,0,-26,0,-4,0,6,0,-14,0,8,0,12,0,19,0,4,0,30,0,-12,0,0,0,-12,0,20,0,-12,0,-2,0,-2,0,28,0,12,0,-22,0,2,0,6,0,0,0,12,0,-24,0,-2,0,-4,0,-12,0,-8,0,-2,0,-2,0,2,0,-12,0,0,0,-20,0,12,0,30,0,10,0,8,0,18,0,-12,0,-24,0,24,0,-3,0,-22,0,2,0,-22,0,6,0,12,0,-26,0,2,0,12,0,28,0,4,0,6,0,0,0,10,0,6,0,-36,0,0,0,8,0,-2,0,16,0,-30,0,8,0,-11,0,0,0,-34,0,36,0,-24,0,-6,0,8,0,-36,0,-26,0,-6,0,-6,0,-4,0,0,0,36,0,2,0,-12,0,24,0,8,0,-3,0,-6,0,-6,0,12,0,6,0,0,0,40,0,-4,0,26,0,24,0,-30,0,14,0,-8,0,30,0,-4,0,44,0,0,0,4,0,6,0,-24,0,4,0,24,0,2,0,26,0,20,0,0,0,36,0,0,0,-24,0,4,0]];
E[320,5] = [x, [1,0,2,0,1,0,-2,0,1,0,4,0,6,0,2,0,2,0,-8,0,-4,0,-6,0,1,0,-4,0,2,0,4,0,8,0,-2,0,-2,0,12,0,-10,0,2,0,1,0,-2,0,-3,0,4,0,-2,0,4,0,-16,0,0,0,-2,0,-2,0,6,0,6,0,-12,0,-12,0,10,0,2,0,-8,0,-8,0,-11,0,10,0,2,0,4,0,-6,0,-12,0,8,0,-8,0,10,0,4,0,-14,0,2,0,-4,0,6,0,14,0,-4,0,-6,0,-6,0,6,0,-4,0,5,0,-20,0,1,0,6,0,4,0,-4,0,16,0,-4,0,2,0,16,0,-4,0,24,0,2,0,-6,0,-10,0,20,0,2,0,4,0,-10,0,-4,0,12,0,-6,0,8,0,14,0,23,0,-8,0,6,0,-2,0,0,0,0,0,18,0,-4,0,-2,0,8,0,8,0,-4,0,2,0,12,0,22,0,-16,0,12,0,-4,0,-10,0,-6,0,-32,0,-4,0,-24,0,2,0,-8,0,20,0,12,0,2,0,1,0,-18,0,10,0,-16,0,2,0,-2,0,-16,0,-8,0,-18,0,-10,0,-3,0,-48,0,20,0,20,0,-24,0,4,0,26,0,4,0,2,0,2,0,-2,0,-12,0,-18,0,28,0,-24,0,4,0,22,0,4,0,-10,0,26,0,-16,0,20,0,-13,0,20,0,-18,0,0,0,-16,0,-36,0,-4,0,-28,0,-2,0,22,0,4,0,28,0,-6,0,-2,0,-2,0,8,0,12,0,-16,0,6,0,28,0,4,0,-4,0,-2,0,6,0,-14,0,-12,0,16,0,20,0,-12,0,-18,0,2,0,-24,0,-30,0,-12,0,-8,0,16,0,45,0,10,0,10,0,-18,0,-10,0,4,0,-10,0,2,0,12,0,-24,0,12,0,-14,0,-8,0,2,0,-26,0,-12,0,-8,0,-8,0,-26,0,32,0,18,0,24,0,-11,0,-8,0,14,0,4,0,0,0,10,0,32,0,0,0,-10,0,-2,0,2,0,4,0,48,0,-20,0,-22,0,4,0,48,0,-16,0,-3,0,18,0,-6,0,-20,0,22,0,-40,0,40,0,-12,0,-6,0,-8,0,-6,0,-38,0,8,0,6,0,-12,0,-20,0,8,0,-8,0,-2,0,24,0,-12,0,24,0,10,0,38,0,-12,0,20,0,4,0,4,0,24,0,40,0]];
E[320,6] = [x, [1,0,0,0,-1,0,4,0,-3,0,4,0,2,0,0,0,2,0,4,0,0,0,-4,0,1,0,0,0,2,0,8,0,0,0,-4,0,-6,0,0,0,-6,0,-8,0,3,0,-4,0,9,0,0,0,-6,0,-4,0,0,0,-4,0,2,0,-12,0,-2,0,8,0,0,0,0,0,-6,0,0,0,16,0,0,0,9,0,-16,0,-2,0,0,0,-6,0,8,0,0,0,-4,0,-14,0,-12,0,-6,0,-4,0,0,0,0,0,-14,0,0,0,18,0,4,0,-6,0,8,0,5,0,0,0,-1,0,12,0,0,0,12,0,16,0,0,0,10,0,12,0,0,0,8,0,-2,0,0,0,10,0,16,0,-6,0,-8,0,2,0,0,0,-16,0,16,0,0,0,-12,0,-9,0,-12,0,-14,0,4,0,0,0,20,0,10,0,0,0,6,0,8,0,0,0,-8,0,-14,0,0,0,-22,0,-8,0,0,0,8,0,6,0,12,0,16,0,-4,0,0,0,8,0,32,0,0,0,4,0,4,0,-3,0,-24,0,26,0,0,0,-6,0,4,0,0,0,0,0,2,0,0,0,-9,0,8,0,0,0,-12,0,-16,0,0,0,-30,0,-24,0,-6,0,12,0,6,0,0,0,-14,0,-24,0,0,0,4,0,10,0,-24,0,10,0,8,0,0,0,-24,0,-13,0,0,0,26,0,4,0,0,0,-8,0,-32,0,0,0,-2,0,-8,0,0,0,-32,0,26,0,12,0,18,0,8,0,0,0,8,0,2,0,0,0,-16,0,-12,0,18,0,-8,0,-14,0,0,0,32,0,8,0,0,0,-16,0,-30,0,0,0,2,0,0,0,0,0,24,0,-3,0,0,0,6,0,-20,0,18,0,-24,0,-22,0,0,0,4,0,-20,0,0,0,36,0,-16,0,24,0,-6,0,-8,0,0,0,0,0,2,0,0,0,18,0,16,0,-9,0,-24,0,10,0,0,0,-16,0,16,0,0,0,36,0,-6,0,12,0,2,0,8,0,0,0,40,0,2,0,0,0,-16,0,8,0,-27,0,24,0,6,0,0,0,18,0,-24,0,0,0,-8,0,10,0,0,0,18,0,-12,0,0,0,8,0,32,0,0,0,-32,0,4,0,18,0,-16,0,-12,0,0,0,14,0,20,0,0,0,36,0,4,0,12,0,0,0,-28,0]];
E[320,7] = [x, [1,0,0,0,-1,0,-4,0,-3,0,-4,0,2,0,0,0,2,0,-4,0,0,0,4,0,1,0,0,0,2,0,-8,0,0,0,4,0,-6,0,0,0,-6,0,8,0,3,0,4,0,9,0,0,0,-6,0,4,0,0,0,4,0,2,0,12,0,-2,0,-8,0,0,0,0,0,-6,0,0,0,16,0,0,0,9,0,16,0,-2,0,0,0,-6,0,-8,0,0,0,4,0,-14,0,12,0,-6,0,4,0,0,0,0,0,-14,0,0,0,18,0,-4,0,-6,0,-8,0,5,0,0,0,-1,0,-12,0,0,0,-12,0,16,0,0,0,10,0,-12,0,0,0,-8,0,-2,0,0,0,10,0,-16,0,-6,0,8,0,2,0,0,0,-16,0,-16,0,0,0,12,0,-9,0,12,0,-14,0,-4,0,0,0,-20,0,10,0,0,0,6,0,-8,0,0,0,8,0,-14,0,0,0,-22,0,8,0,0,0,-8,0,6,0,-12,0,16,0,4,0,0,0,-8,0,32,0,0,0,4,0,-4,0,-3,0,24,0,26,0,0,0,-6,0,-4,0,0,0,0,0,2,0,0,0,-9,0,-8,0,0,0,12,0,-16,0,0,0,-30,0,24,0,-6,0,-12,0,6,0,0,0,-14,0,24,0,0,0,-4,0,10,0,24,0,10,0,-8,0,0,0,24,0,-13,0,0,0,26,0,-4,0,0,0,8,0,-32,0,0,0,-2,0,8,0,0,0,32,0,26,0,-12,0,18,0,-8,0,0,0,-8,0,2,0,0,0,-16,0,12,0,18,0,8,0,-14,0,0,0,32,0,-8,0,0,0,16,0,-30,0,0,0,2,0,0,0,0,0,-24,0,-3,0,0,0,6,0,20,0,18,0,24,0,-22,0,0,0,4,0,20,0,0,0,-36,0,-16,0,-24,0,-6,0,8,0,0,0,0,0,2,0,0,0,18,0,-16,0,-9,0,24,0,10,0,0,0,-16,0,-16,0,0,0,-36,0,-6,0,-12,0,2,0,-8,0,0,0,-40,0,2,0,0,0,-16,0,-8,0,-27,0,-24,0,6,0,0,0,18,0,24,0,0,0,8,0,10,0,0,0,18,0,12,0,0,0,-8,0,32,0,0,0,-32,0,-4,0,18,0,16,0,-12,0,0,0,14,0,-20,0,0,0,-36,0,4,0,-12,0,0,0,28,0]];

E[321,1] = [x^6-3*x^5-5*x^4+18*x^3+x^2-19*x+3, [2,2*x,2,2*x^2-4,x^5-x^4-8*x^3+5*x^2+13*x,2*x,-x^5+x^4+6*x^3-5*x^2-5*x+4,2*x^3-8*x,2,2*x^5-3*x^4-13*x^3+12*x^2+19*x-3,-2*x^5+3*x^4+13*x^3-14*x^2-19*x+9,2*x^2-4,x^4+x^3-8*x^2-5*x+7,-2*x^5+x^4+13*x^3-4*x^2-15*x+3,x^5-x^4-8*x^3+5*x^2+13*x,2*x^4-12*x^2+8,-x^5-x^4+10*x^3+5*x^2-21*x,2*x,2*x^5-2*x^4-14*x^3+8*x^2+20*x-2,x^5-x^4-8*x^3+7*x^2+9*x-6,-x^5+x^4+6*x^3-5*x^2-5*x+4,-3*x^5+3*x^4+22*x^3-17*x^2-29*x+6,2*x^5-3*x^4-11*x^3+12*x^2+9*x+3,2*x^3-8*x,2*x^5-3*x^4-17*x^3+18*x^2+31*x-13,x^5+x^4-8*x^3-5*x^2+7*x,2,-3*x^5+x^4+20*x^3-3*x^2-25*x-2,-4*x^5+8*x^4+24*x^3-40*x^2-24*x+24,2*x^5-3*x^4-13*x^3+12*x^2+19*x-3,5*x^5-9*x^4-30*x^3+47*x^2+27*x-26,2*x^5-16*x^3+24*x,-2*x^5+3*x^4+13*x^3-14*x^2-19*x+9,-4*x^5+5*x^4+23*x^3-20*x^2-19*x+3,2*x^5-2*x^4-14*x^3+8*x^2+20*x,2*x^2-4,-2*x^5+x^4+13*x^3-19*x-11,4*x^5-4*x^4-28*x^3+18*x^2+36*x-6,x^4+x^3-8*x^2-5*x+7,-2*x^5+3*x^4+15*x^3-16*x^2-25*x+3,2*x^5-4*x^4-10*x^3+18*x^2-6,-2*x^5+x^4+13*x^3-4*x^2-15*x+3,-x^5+5*x^4+6*x^3-27*x^2-7*x+10,-2*x^5+x^4+11*x^3+2*x^2-13*x-9,x^5-x^4-8*x^3+5*x^2+13*x,3*x^5-x^4-24*x^3+7*x^2+41*x-6,2*x^5-7*x^4-9*x^3+38*x^2+3*x-21,2*x^4-12*x^2+8,x^4+x^3-4*x^2-x-9,3*x^5-7*x^4-18*x^3+29*x^2+25*x-6,-x^5-x^4+10*x^3+5*x^2-21*x,4*x^5-5*x^4-25*x^3+22*x^2+29*x-17,-2*x^5+4*x^4+14*x^3-18*x^2-20*x+6,2*x,-3*x^5+7*x^4+18*x^3-31*x^2-31*x+12,-4*x^5+3*x^4+25*x^3-14*x^2-29*x+3,2*x^5-2*x^4-14*x^3+8*x^2+20*x-2,-4*x^5+4*x^4+32*x^3-20*x^2-52*x+12,2*x^5-18*x^3-6*x^2+40*x+18,x^5-x^4-8*x^3+7*x^2+9*x-6,-6*x^5+3*x^4+47*x^3-12*x^2-77*x-5,6*x^5-5*x^4-43*x^3+22*x^2+69*x-15,-x^5+x^4+6*x^3-5*x^2-5*x+4,6*x^5-10*x^4-36*x^3+46*x^2+38*x-22,-6*x^5+8*x^4+44*x^3-42*x^2-64*x+18,-3*x^5+3*x^4+22*x^3-17*x^2-29*x+6,2*x^4-2*x^3-4*x^2+2*x-14,-5*x^5+5*x^4+32*x^3-25*x^2-31*x+12,2*x^5-3*x^4-11*x^3+12*x^2+9*x+3,4*x^5-4*x^4-28*x^3+18*x^2+38*x-6,-2*x^5+4*x^4+8*x^3-12*x^2+6*x,2*x^3-8*x,-4*x^3-4*x^2+24*x+4,-5*x^5+3*x^4+36*x^3-17*x^2-49*x+6,2*x^5-3*x^4-17*x^3+18*x^2+31*x-13,4*x^5-4*x^4-26*x^3+16*x^2+30*x-8,-2*x^5+4*x^4+14*x^3-20*x^2-18*x+12,x^5+x^4-8*x^3-5*x^2+7*x,-2*x^5+14*x^3+2*x^2-12*x-2,-5*x^5+7*x^4+36*x^3-37*x^2-53*x+18,2,2*x^5-18*x^3-2*x^2+32*x-6,2*x^5-3*x^4-19*x^3+16*x^2+41*x-9,-3*x^5+x^4+20*x^3-3*x^2-25*x-2,2*x^5-2*x^4-12*x^3+6*x^2+14*x-6,2*x^5+x^4-9*x^3-6*x^2-9*x+3,-4*x^5+8*x^4+24*x^3-40*x^2-24*x+24,x^5-5*x^4-6*x^3+23*x^2+11*x-6,4*x^5-8*x^4-28*x^3+44*x^2+48*x-36,2*x^5-3*x^4-13*x^3+12*x^2+19*x-3,x^5+x^4-8*x^3-9*x^2+9*x+8,4*x^5-3*x^4-25*x^3+14*x^2+33*x-15,5*x^5-9*x^4-30*x^3+47*x^2+27*x-26,-x^5+x^4+2*x^3+x^2+17*x-6,-2*x^4+10*x^2+8*x,2*x^5-16*x^3+24*x,2*x^5-4*x^4-14*x^3+18*x^2+28*x-14,x^5+x^4-4*x^3-x^2-9*x,-2*x^5+3*x^4+13*x^3-14*x^2-19*x+9,-2*x^5+3*x^4+9*x^3-14*x^2-11*x+17,4*x^5-2*x^4-30*x^3+8*x^2+46*x-6,-4*x^5+5*x^4+23*x^3-20*x^2-19*x+3,-3*x^5+x^4+24*x^3-11*x^2-37*x+22,5*x^5-7*x^4-34*x^3+35*x^2+45*x-12,2*x^5-2*x^4-14*x^3+8*x^2+20*x,-2*x^5+4*x^4+18*x^3-18*x^2-32*x+6,-2,2*x^2-4,2*x^5-4*x^4-10*x^3+26*x^2-8*x-26,-2*x^5+3*x^4+23*x^3-28*x^2-45*x+9,-2*x^5+x^4+13*x^3-19*x-11,-3*x^5+3*x^4+18*x^3-19*x^2-23*x+16,-x^5+x^4+12*x^3-11*x^2-23*x+18,4*x^5-4*x^4-28*x^3+18*x^2+36*x-6,2*x^5-4*x^4-14*x^3+16*x^2+30*x,-4*x^4+4*x^3+32*x^2-16*x-36,x^4+x^3-8*x^2-5*x+7,6*x^5-8*x^4-42*x^3+38*x^2+56*x-6,-2*x^5+3*x^4+13*x^3-10*x^2-11*x-3,-2*x^5+3*x^4+15*x^3-16*x^2-25*x+3,2*x^5-x^4-21*x^3+12*x^2+39*x-13,-15*x^5+17*x^4+96*x^3-71*x^2-119*x+18,2*x^5-4*x^4-10*x^3+18*x^2-6,3*x^5+5*x^4-26*x^3-31*x^2+45*x+34,2*x^5-6*x^4-14*x^3+38*x^2+22*x-24,-2*x^5+x^4+13*x^3-4*x^2-15*x+3,-4*x^5+6*x^4+26*x^3-24*x^2-38*x+10,4*x^5-6*x^4-30*x^3+32*x^2+44*x-18,-x^5+5*x^4+6*x^3-27*x^2-7*x+10,-10*x^5+14*x^4+66*x^3-58*x^2-96*x+18,-6*x^5+10*x^4+42*x^3-44*x^2-68*x+18,-2*x^5+x^4+11*x^3+2*x^2-13*x-9,4*x^5-4*x^4-28*x^3+16*x^2+36*x-4,2*x^5-2*x^4-4*x^3+2*x^2-14*x,x^5-x^4-8*x^3+5*x^2+13*x,-2*x^5-3*x^4+19*x^3+14*x^2-45*x+9,-2*x^5+4*x^4+14*x^3-22*x^2-12*x+6,3*x^5-x^4-24*x^3+7*x^2+41*x-6,3*x^5-7*x^4-10*x^3+29*x^2-11*x-2,4*x^5-4*x^4-26*x^3+18*x^2+30*x-12,2*x^5-7*x^4-9*x^3+38*x^2+3*x-21,-2*x^5-2*x^4+24*x^3+8*x^2-38*x+6,6*x^5-8*x^4-40*x^3+28*x^2+62*x+6,2*x^4-12*x^2+8,-4*x^5+10*x^4+26*x^3-52*x^2-46*x+30,-4*x^4-4*x^3+24*x^2+4*x,x^4+x^3-4*x^2-x-9,-8*x^5+9*x^4+47*x^3-44*x^2-51*x+37,2*x^5-14*x^3-14*x^2+20*x+42,3*x^5-7*x^4-18*x^3+29*x^2+25*x-6,-6*x^5+8*x^4+40*x^3-40*x^2-46*x+28,2*x^4-10*x^2-4*x,-x^5-x^4+10*x^3+5*x^2-21*x,-2*x^5+4*x^4+16*x^3-16*x^2-26*x+6,4*x^5-9*x^4-31*x^3+54*x^2+55*x-33,4*x^5-5*x^4-25*x^3+22*x^2+29*x-17,6*x^4-10*x^3-40*x^2+46*x+34,-6*x^5+4*x^4+38*x^3-10*x^2-40*x+6,-2*x^5+4*x^4+14*x^3-18*x^2-20*x+6,-4*x^5+5*x^4+23*x^3-16*x^2-27*x+9,-x^5+x^4+2*x^3-7*x^2+9*x+6,2*x,2*x^5-2*x^4-16*x^3+6*x^2+14*x+16,2*x^5-18*x^3-6*x^2+32*x+6,-3*x^5+7*x^4+18*x^3-31*x^2-31*x+12,3*x^5-9*x^4-20*x^3+39*x^2+29*x-6,2*x^4-26*x^2+48,-4*x^5+3*x^4+25*x^3-14*x^2-29*x+3,-2*x^5+x^4+9*x^3+5*x-9,4*x^5-2*x^4-30*x^3+12*x^2+32*x-6,2*x^5-2*x^4-14*x^3+8*x^2+20*x-2,9*x^5-9*x^4-54*x^3+43*x^2+55*x-26,6*x^5-10*x^4-42*x^3+60*x^2+64*x-42,-4*x^5+4*x^4+32*x^3-20*x^2-52*x+12,6*x^5-8*x^4-38*x^3+40*x^2+46*x-20,2*x^5-3*x^4-17*x^3+6*x^2+39*x+15,2*x^5-18*x^3-6*x^2+40*x+18,4*x^5-8*x^4-28*x^3+44*x^2+40*x-12,6*x^5-8*x^4-40*x^3+40*x^2+46*x-12,x^5-x^4-8*x^3+7*x^2+9*x-6,2*x^5-6*x^3-14*x^2-16*x+34,4*x^5-3*x^4-27*x^3+8*x^2+27*x-3,-6*x^5+3*x^4+47*x^3-12*x^2-77*x-5,3*x^5-3*x^4-10*x^3+15*x^2-21*x,-x^5+3*x^4+6*x^3-7*x^2-21*x-12,6*x^5-5*x^4-43*x^3+22*x^2+69*x-15,-4*x^4+8*x^3+18*x^2-22*x-6,-6*x^5+11*x^4+37*x^3-58*x^2-31*x+45,-x^5+x^4+6*x^3-5*x^2-5*x+4,-2*x^5+10*x^3+8*x^2,4*x^5-26*x^3-2*x^2+14*x+18,6*x^5-10*x^4-36*x^3+46*x^2+38*x-22,-2*x^5+x^4+13*x^3-4*x^2-7*x-5,2*x^5-4*x^4-18*x^3+26*x^2+24*x-6,-6*x^5+8*x^4+44*x^3-42*x^2-64*x+18,4*x^5-x^4-21*x^3-2*x^2+21*x+15,-6*x^5+4*x^4+42*x^3-6*x^2-56*x-30,-3*x^5+3*x^4+22*x^3-17*x^2-29*x+6,-4*x^5+2*x^4+32*x^3-6*x^2-48*x+4,-9*x^5+13*x^4+58*x^3-67*x^2-71*x+18,2*x^4-2*x^3-4*x^2+2*x-14,10*x^5-10*x^4-64*x^3+42*x^2+70*x-12,-8*x^5+10*x^4+54*x^3-52*x^2-70*x+42,-5*x^5+5*x^4+32*x^3-25*x^2-31*x+12,-4*x^5+4*x^4+28*x^3-16*x^2-36*x,-8*x^5+9*x^4+43*x^3-34*x^2-35*x+9,2*x^5-3*x^4-11*x^3+12*x^2+9*x+3,x^4-5*x^3-4*x^2+25*x+19,2*x^4+2*x^3-16*x^2-10*x+6,4*x^5-4*x^4-28*x^3+18*x^2+38*x-6,-5*x^5+3*x^4+28*x^3-9*x^2-15*x+10,2*x^5-10*x^3+6*x^2+8*x-6,-2*x^5+4*x^4+8*x^3-12*x^2+6*x,-2*x,-12*x^5+17*x^4+87*x^3-86*x^2-135*x+33,2*x^3-8*x,4*x^5-8*x^4-30*x^3+42*x^2+46*x-40,2*x^5-10*x^3-10*x^2+12*x-6,-4*x^3-4*x^2+24*x+4,3*x^5-x^4-28*x^3+19*x^2+33*x-18,7*x^5-9*x^4-46*x^3+43*x^2+45*x-18,-5*x^5+3*x^4+36*x^3-17*x^2-49*x+6,-4*x^5+10*x^4+28*x^3-54*x^2-40*x+28,2*x^5-3*x^4-15*x^3+8*x^2+17*x+3,2*x^5-3*x^4-17*x^3+18*x^2+31*x-13,-2*x^5+7*x^4+7*x^3-22*x^2-x+3,8*x^5-15*x^4-53*x^3+82*x^2+65*x-63,4*x^5-4*x^4-26*x^3+16*x^2+30*x-8,8*x^5-8*x^4-60*x^3+44*x^2+108*x-44,2*x^5-4*x^4-20*x^3+28*x^2+38*x-6,-2*x^5+4*x^4+14*x^3-20*x^2-18*x+12,4*x^5-4*x^4-32*x^3+24*x^2+68*x-24,-2*x^5+10*x^3+2*x^2+8*x-6,x^5+x^4-8*x^3-5*x^2+7*x,11*x^5-17*x^4-76*x^3+83*x^2+113*x-42,6*x^5-12*x^4-34*x^3+62*x^2+28*x-54,-2*x^5+14*x^3+2*x^2-12*x-2,-3*x^5+3*x^4+26*x^3-9*x^2-41*x+6,6*x^5-5*x^4-41*x^3+16*x^2+67*x+9,-5*x^5+7*x^4+36*x^3-37*x^2-53*x+18,4*x^5-7*x^4-31*x^3+40*x^2+55*x-41,5*x^5-11*x^4-24*x^3+37*x^2+25*x-6,2,-16*x^5+15*x^4+105*x^3-80*x^2-113*x+55,-4*x^5+4*x^4+34*x^3-24*x^2-60*x,2*x^5-18*x^3-2*x^2+32*x-6,-10*x^5+12*x^4+68*x^3-52*x^2-90*x+20,2*x^5-x^4+x^3-2*x^2-47*x+21,2*x^5-3*x^4-19*x^3+16*x^2+41*x-9,-4*x^4+2*x^3+20*x^2+14*x-6,-14*x^5+19*x^4+91*x^3-96*x^2-101*x+33,-3*x^5+x^4+20*x^3-3*x^2-25*x-2,-4*x^5+4*x^4+34*x^3-30*x^2-62*x+24,-6*x^5+6*x^4+48*x^3-34*x^2-66*x+12,2*x^5-2*x^4-12*x^3+6*x^2+14*x-6,-6*x^5+10*x^4+32*x^3-52*x^2-18*x+32,x^5-7*x^4-4*x^3+47*x^2-3*x-60,2*x^5+x^4-9*x^3-6*x^2-9*x+3,2*x^5-2*x^4-8*x^3+16*x^2-22,-4*x^5+34*x^3-2*x^2-44*x-6,-4*x^5+8*x^4+24*x^3-40*x^2-24*x+24,-8*x^5+12*x^4+64*x^3-62*x^2-96*x+18,6*x^5-9*x^4-43*x^3+50*x^2+73*x-51,x^5-5*x^4-6*x^3+23*x^2+11*x-6,-4*x^5+8*x^4+28*x^3-40*x^2-52*x+12,8*x^5-8*x^4-56*x^3+32*x^2+72*x-12,4*x^5-8*x^4-28*x^3+44*x^2+48*x-36,4*x^5+2*x^4-30*x^3-8*x^2+34*x+22,x^5-5*x^4-8*x^3+25*x^2+5*x+12,2*x^5-3*x^4-13*x^3+12*x^2+19*x-3,4*x^4-2*x^3-30*x^2+2*x+34,x^5-x^4-14*x^3+7*x^2+33*x-18,x^5+x^4-8*x^3-9*x^2+9*x+8,-2*x^5+4*x^4+14*x^3-10*x^2-32*x+6,-6*x^5+13*x^4+37*x^3-48*x^2-67*x-9,4*x^5-3*x^4-25*x^3+14*x^2+33*x-15,6*x^5-8*x^4-34*x^3+42*x^2+32*x-62,2*x^5+5*x^4-25*x^3-14*x^2+55*x-9,5*x^5-9*x^4-30*x^3+47*x^2+27*x-26,2*x^4+2*x^3-10*x^2-12*x,-x^5-x^4+20*x^3+x^2-69*x-12,-x^5+x^4+2*x^3+x^2+17*x-6,8*x^5-6*x^4-60*x^3+22*x^2+96*x-8,-4*x^5+6*x^4+28*x^3-12*x^2-44*x+6,-2*x^4+10*x^2+8*x,10*x^5-10*x^4-80*x^3+56*x^2+120*x-18,6*x^5-4*x^4-42*x^3+18*x^2+56*x-18,2*x^5-16*x^3+24*x,-2*x^5-7*x^4+33*x^3+36*x^2-103*x-13,-2*x^5+6*x^4+20*x^3-42*x^2-46*x+12,2*x^5-4*x^4-14*x^3+18*x^2+28*x-14,-4*x^5-4*x^4+32*x^3+12*x^2-48*x-8,8*x^5-4*x^4-72*x^3+16*x^2+148*x,x^5+x^4-4*x^3-x^2-9*x,6*x^5-10*x^4-44*x^3+42*x^2+86*x+12,-5*x^5+x^4+28*x^3-9*x^2-17*x+12,-2*x^5+3*x^4+13*x^3-14*x^2-19*x+9,6*x^5-4*x^4-50*x^3+18*x^2+80*x-6,-6*x^5+9*x^4+43*x^3-42*x^2-73*x+27,-2*x^5+3*x^4+9*x^3-14*x^2-11*x+17,-4*x^5+4*x^4+26*x^3-26*x^2-42*x+20,-10*x^5+10*x^4+68*x^3-40*x^2-86*x+18,4*x^5-2*x^4-30*x^3+8*x^2+46*x-6,-6*x^5+8*x^4+42*x^3-36*x^2-60*x+16,-3*x^5+7*x^4+32*x^3-45*x^2-77*x-6,-4*x^5+5*x^4+23*x^3-20*x^2-19*x+3,-8*x^5+14*x^4+46*x^3-56*x^2-54*x-14,2*x^5-2*x^4-8*x^3+16*x^2+4*x-18,-3*x^5+x^4+24*x^3-11*x^2-37*x+22,3*x^5-11*x^4-18*x^3+51*x^2+43*x-12,6*x^5-6*x^4-38*x^3+16*x^2+36*x+30,5*x^5-7*x^4-34*x^3+35*x^2+45*x-12,-2*x^5+3*x^4+15*x^3-16*x^2-45*x+7,6*x^5-10*x^4-40*x^3+46*x^2+34*x,2*x^5-2*x^4-14*x^3+8*x^2+20*x,-10*x^5+8*x^4+70*x^3-38*x^2-84*x+22,-x^5+7*x^4-41*x^2-3*x+42,-2*x^5+4*x^4+18*x^3-18*x^2-32*x+6,-2*x^5+6*x^4-30*x^2+38*x+48,3*x^5-11*x^4-16*x^3+51*x^2+39*x-24,-2,-2*x^5-3*x^4+11*x^3+10*x^2-13*x+3,6*x^5-4*x^4-44*x^3+16*x^2+58*x-12,2*x^2-4,-10*x^5+12*x^4+76*x^3-60*x^2-118*x-2,4*x^5-6*x^4-30*x^3+12*x^2+54*x-6,2*x^5-4*x^4-10*x^3+26*x^2-8*x-26,2*x^5-8*x^4-6*x^3+34*x^2-20*x+6,-2*x^5-2*x^4+12*x^3+20*x^2-4*x-30,-2*x^5+3*x^4+23*x^3-28*x^2-45*x+9,8*x^5-6*x^4-56*x^3+14*x^2+80*x+28,-4*x^5+x^4+23*x^3-6*x^2-31*x+9,-2*x^5+x^4+13*x^3-19*x-11,2*x^5-26*x^3+48*x,-8*x^5+12*x^4+52*x^3-44*x^2-88*x,-3*x^5+3*x^4+18*x^3-19*x^2-23*x+16,10*x^5-8*x^4-76*x^3+28*x^2+138*x-8,-5*x^5-x^4+36*x^3+7*x^2-47*x+6,-x^5+x^4+12*x^3-11*x^2-23*x+18,6*x^5-6*x^4-36*x^3+16*x^2+42*x,-x^5-3*x^4+14*x^3+27*x^2-61*x-48,4*x^5-4*x^4-28*x^3+18*x^2+36*x-6,2*x^5-6*x^4-8*x^3+32*x^2-16*x-34,14*x^5-11*x^4-101*x^3+58*x^2+163*x-33,2*x^5-4*x^4-14*x^3+16*x^2+30*x,8*x^5-12*x^4-48*x^3+58*x^2+72*x-18,-8*x^5+6*x^4+60*x^3-30*x^2-96*x+12,-4*x^4+4*x^3+32*x^2-16*x-36,-6*x^5+18*x^4+32*x^3-86*x^2-30*x+16,10*x^5-8*x^4-68*x^3+40*x^2+94*x-18,x^4+x^3-8*x^2-5*x+7,x^5+3*x^4-18*x^3-9*x^2+31*x+6,-15*x^5+17*x^4+104*x^3-77*x^2-151*x+36,6*x^5-8*x^4-42*x^3+38*x^2+56*x-6,10*x^5-10*x^4-78*x^3+56*x^2+108*x-18,-4*x^5+8*x^4+28*x^3-52*x^2-32*x+60,-2*x^5+3*x^4+13*x^3-10*x^2-11*x-3,10*x^5-10*x^4-68*x^3+40*x^2+102*x-18,-2*x^5-4*x^4+20*x^3+16*x^2-46*x+12,-2*x^5+3*x^4+15*x^3-16*x^2-25*x+3,-6*x^5+4*x^4+40*x^3-12*x^2-42*x-30,6*x^5+4*x^4-50*x^3-18*x^2+72*x-6,2*x^5-x^4-21*x^3+12*x^2+39*x-13,7*x^5-9*x^4-48*x^3+41*x^2+55*x-28,8*x^5-14*x^4-50*x^3+56*x^2+82*x-6,-15*x^5+17*x^4+96*x^3-71*x^2-119*x+18,-13*x^5+17*x^4+86*x^3-75*x^2-107*x+22,-2*x^5+11*x^4+11*x^3-52*x^2-9*x+21,2*x^5-4*x^4-10*x^3+18*x^2-6,x^4+11*x^3-20*x^2-31*x+3,-10*x^5+8*x^4+66*x^3-38*x^2-84*x+18,3*x^5+5*x^4-26*x^3-31*x^2+45*x+34,-2*x^5+x^4+13*x^3+12*x^2-23*x-47,-4*x^5+8*x^4+18*x^3-22*x^2-6*x,2*x^5-6*x^4-14*x^3+38*x^2+22*x-24,-5*x^5+5*x^4+46*x^3-27*x^2-103*x+30,10*x^5-6*x^4-76*x^3+10*x^2+130*x+36,-2*x^5+x^4+13*x^3-4*x^2-15*x+3,3*x^5-11*x^4-14*x^3+67*x^2+3*x-32,-6*x^5+4*x^4+44*x^3-18*x^2-54*x+6,-4*x^5+6*x^4+26*x^3-24*x^2-38*x+10,12*x^5-6*x^4-74*x^3+10*x^2+94*x-12,-9*x^4+x^3+66*x^2+3*x-69,4*x^5-6*x^4-30*x^3+32*x^2+44*x-18,-2*x^5+5*x^4+15*x^3-30*x^2-29*x+15,-5*x^5+3*x^4+32*x^3-5*x^2-43*x+6,-x^5+5*x^4+6*x^3-27*x^2-7*x+10,-2*x^5+18*x^3-14*x^2-24*x+22,-3*x^5+7*x^4+10*x^3-27*x^2+5*x,-10*x^5+14*x^4+66*x^3-58*x^2-96*x+18,3*x^5-13*x^4-4*x^3+61*x^2-57*x,9*x^5-3*x^4-66*x^3+19*x^2+109*x-12,-6*x^5+10*x^4+42*x^3-44*x^2-68*x+18,-14*x^5+12*x^4+102*x^3-50*x^2-144*x+18,12*x^5-16*x^4-80*x^3+68*x^2+112*x-24,-2*x^5+x^4+11*x^3+2*x^2-13*x-9,10*x^5-11*x^4-75*x^3+64*x^2+117*x-77,-10*x^5+12*x^4+66*x^3-44*x^2-72*x+12,4*x^5-4*x^4-28*x^3+16*x^2+36*x-4,-10*x^5+7*x^4+77*x^3-34*x^2-131*x-7,7*x^5-11*x^4-42*x^3+55*x^2+39*x-24,2*x^5-2*x^4-4*x^3+2*x^2-14*x,-8*x^5+2*x^4+70*x^3+2*x^2-132*x-40,12*x^5-10*x^4-78*x^3+44*x^2+86*x-18,x^5-x^4-8*x^3+5*x^2+13*x,-14*x^5+14*x^4+92*x^3-62*x^2-110*x+24,6*x^5-9*x^4-45*x^3+64*x^2+63*x-51,-2*x^5-3*x^4+19*x^3+14*x^2-45*x+9,2*x^5+8*x^4-18*x^3-46*x^2+36*x+10,-8*x^5+8*x^4+56*x^3-32*x^2-76*x+12,-2*x^5+4*x^4+14*x^3-22*x^2-12*x+6,-9*x^5+x^4+62*x^3-5*x^2-69*x-20,4*x^5-2*x^4-30*x^3+46*x+30,3*x^5-x^4-24*x^3+7*x^2+41*x-6,10*x^5-16*x^4-74*x^3+84*x^2+122*x-24,-9*x^5+9*x^4+64*x^3-45*x^2-71*x+24,3*x^5-7*x^4-10*x^3+29*x^2-11*x-2,2*x^5+2*x^4-16*x^3-10*x^2+6*x,-8*x^5+6*x^4+60*x^3-38*x^2-88*x+60,4*x^5-4*x^4-26*x^3+18*x^2+30*x-12,2*x^5+4*x^4-16*x^3-44*x^2+22*x+76,-12*x^5+3*x^4+81*x^3-10*x^2-85*x+15,2*x^5-7*x^4-9*x^3+38*x^2+3*x-21,10*x^5-8*x^4-66*x^3+42*x^2+96*x-18,8*x^4-8*x^3-46*x^2+46*x+6,-2*x^5-2*x^4+24*x^3+8*x^2-38*x+6,-6*x^5+8*x^4+46*x^3-24*x^2-66*x-16,-2*x^2+4,6*x^5-8*x^4-40*x^3+28*x^2+62*x+6,-19*x^5+27*x^4+130*x^3-123*x^2-195*x+36,4*x^4-4*x^3-20*x^2+12*x,2*x^4-12*x^2+8,-4*x^5+4*x^4+36*x^3-16*x^2-92*x-8,4*x^5-10*x^4-30*x^3+42*x^2+36*x-12,-4*x^5+10*x^4+26*x^3-52*x^2-46*x+30,2*x^5+8*x^4-26*x^3-42*x^2+48*x+46,-4*x^3+4*x^2+20*x,-4*x^4-4*x^3+24*x^2+4*x,-2*x^5+10*x^4-50*x^2+30*x+52,12*x^5-19*x^4-81*x^3+86*x^2+129*x-27,x^4+x^3-4*x^2-x-9,12*x^5-11*x^4-83*x^3+38*x^2+115*x-21,4*x^5-8*x^4-20*x^3+48*x^2+12*x-48,-8*x^5+9*x^4+47*x^3-44*x^2-51*x+37,16*x^5-28*x^4-108*x^3+136*x^2+164*x-60,-2*x^5+8*x^4+18*x^3-36*x^2-48*x+12,2*x^5-14*x^3-14*x^2+20*x+42,9*x^5-11*x^4-64*x^3+53*x^2+87*x-38,-15*x^5+31*x^4+92*x^3-151*x^2-103*x+84,3*x^5-7*x^4-18*x^3+29*x^2+25*x-6,8*x^5-12*x^4-48*x^3+56*x^2+44*x-24,3*x^5-5*x^4-10*x^3+23*x^2+11*x-30,-6*x^5+8*x^4+40*x^3-40*x^2-46*x+28,9*x^5-13*x^4-62*x^3+57*x^2+89*x-24,-10*x^5+13*x^4+69*x^3-60*x^2-95*x+27,2*x^4-10*x^2-4*x,2*x^5+3*x^4-29*x^3-12*x^2+83*x+19,16*x^5-20*x^4-100*x^3+100*x^2+108*x-24,-x^5-x^4+10*x^3+5*x^2-21*x,-2*x^5-2*x^4+20*x^3+4*x^2-28*x-6,18*x^5-30*x^4-116*x^3+150*x^2+150*x-84,-2*x^5+4*x^4+16*x^3-16*x^2-26*x+6,-10*x^5+16*x^4+74*x^3-90*x^2-104*x+70,8*x^5-4*x^4-56*x^3+84*x+60,4*x^5-9*x^4-31*x^3+54*x^2+55*x-33,-6*x^5+38*x^3+10*x^2-44*x+6,2*x^5+5*x^4-9*x^3-50*x^2-9*x+63,4*x^5-5*x^4-25*x^3+22*x^2+29*x-17,-2*x^5-2*x^4+16*x^3+10*x^2-34*x-16,16*x^5-21*x^4-115*x^3+102*x^2+167*x-33,6*x^4-10*x^3-40*x^2+46*x+34,-6*x^5+12*x^4+38*x^3-54*x^2-52*x-6,9*x^5-13*x^4-70*x^3+53*x^2+133*x,-6*x^5+4*x^4+38*x^3-10*x^2-40*x+6,4*x^5-10*x^4-26*x^3+48*x^2+46*x-14,-2*x^5+5*x^4+19*x^3-18*x^2-29*x+15,-2*x^5+4*x^4+14*x^3-18*x^2-20*x+6,13*x^5-11*x^4-92*x^3+61*x^2+123*x-18,6*x^5-2*x^4-38*x^3-4*x^2+52*x+30,-4*x^5+5*x^4+23*x^3-16*x^2-27*x+9,10*x^5-18*x^4-64*x^3+86*x^2+86*x-58,5*x^5-11*x^4-32*x^3+51*x^2+35*x-12,-x^5+x^4+2*x^3-7*x^2+9*x+6,3*x^4-11*x^3-4*x^2+11*x+11,8*x^5-16*x^4-48*x^3+68*x^2+76*x-24,2*x,6*x^4-10*x^3-44*x^2+58*x+46,-3*x^5-9*x^4+16*x^3+45*x^2-11*x+12,2*x^5-2*x^4-16*x^3+6*x^2+14*x+16,-8*x^5+14*x^4+48*x^3-56*x^2-76*x+12,-6*x^5+12*x^4+24*x^3-56*x^2+22*x+36,2*x^5-18*x^3-6*x^2+32*x+6,-8*x^5+10*x^4+42*x^3-36*x^2-2*x-30,-18*x^5+18*x^4+128*x^3-80*x^2-170*x+30,-3*x^5+7*x^4+18*x^3-31*x^2-31*x+12,-x^5+x^4+14*x^3+13*x^2-31*x-74,-12*x^5+6*x^4+82*x^3-24*x^2-102*x+18,3*x^5-9*x^4-20*x^3+39*x^2+29*x-6,-11*x^5+19*x^4+58*x^3-99*x^2-23*x+88,-8*x^5+14*x^4+48*x^3-62*x^2-50*x+48]];
E[321,2] = [x^7-14*x^5-x^4+55*x^3+8*x^2-46*x-19, [4,4*x,-4,4*x^2-8,-x^6+x^5+11*x^4-10*x^3-31*x^2+25*x+13,-4*x,2*x^6-28*x^4+4*x^3+104*x^2-28*x-54,4*x^3-16*x,4,x^6-3*x^5-11*x^4+24*x^3+33*x^2-33*x-19,-3*x^6+x^5+41*x^4-16*x^3-151*x^2+67*x+93,-4*x^2+8,-2*x^6+2*x^5+28*x^4-22*x^3-110*x^2+60*x+84,6*x^4-6*x^3-44*x^2+38*x+38,x^6-x^5-11*x^4+10*x^3+31*x^2-25*x-13,4*x^4-24*x^2+16,4*x^6-2*x^5-54*x^4+24*x^3+194*x^2-78*x-112,4*x,-2*x^6+2*x^5+22*x^4-16*x^3-66*x^2+22*x+54,-x^6+x^5+3*x^4-2*x^3+21*x^2-23*x-7,-2*x^6+28*x^4-4*x^3-104*x^2+28*x+54,x^6-x^5-19*x^4+14*x^3+91*x^2-45*x-57,4*x^6-4*x^5-54*x^4+42*x^3+200*x^2-110*x-126,-4*x^3+16*x,4*x^6-4*x^5-50*x^4+42*x^3+172*x^2-110*x-106,2*x^6-24*x^4+76*x^2-8*x-38,-4,-4*x^6+6*x^5+50*x^4-52*x^3-170*x^2+94*x+108,-8*x,-x^6+3*x^5+11*x^4-24*x^3-33*x^2+33*x+19,-3*x^6+3*x^5+41*x^4-34*x^3-153*x^2+87*x+107,4*x^5-32*x^3+48*x,3*x^6-x^5-41*x^4+16*x^3+151*x^2-67*x-93,-2*x^6+2*x^5+28*x^4-26*x^3-110*x^2+72*x+76,-5*x^6+3*x^5+69*x^4-42*x^3-257*x^2+139*x+157,4*x^2-8,x^6-3*x^5-11*x^4+28*x^3+33*x^2-53*x-19,2*x^6-6*x^5-18*x^4+44*x^3+38*x^2-38*x-38,2*x^6-2*x^5-28*x^4+22*x^3+110*x^2-60*x-84,-x^6-5*x^5+19*x^4+28*x^3-81*x^2+13*x+19,-2*x^6+2*x^5+26*x^4-16*x^3-86*x^2+22*x+30,-6*x^4+6*x^3+44*x^2-38*x-38,-x^6+x^5+11*x^4-6*x^3-35*x^2-3*x+33,5*x^6-7*x^5-67*x^4+68*x^3+249*x^2-145*x-167,-x^6+x^5+11*x^4-10*x^3-31*x^2+25*x+13,-4*x^6+2*x^5+46*x^4-20*x^3-142*x^2+58*x+76,-7*x^6+5*x^5+97*x^4-60*x^3-363*x^2+179*x+229,-4*x^4+24*x^2-16,x^6+x^5-11*x^4-12*x^3+25*x^2+31*x+17,-4*x^6+6*x^5+46*x^4-48*x^3-142*x^2+78*x+76,-4*x^6+2*x^5+54*x^4-24*x^3-194*x^2+78*x+112,4*x^6-54*x^4+10*x^3+196*x^2-66*x-130,-2*x^6+2*x^5+26*x^4-16*x^3-94*x^2+22*x+54,-4*x,8*x^6-6*x^5-110*x^4+72*x^3+410*x^2-210*x-244,6*x^6-6*x^5-68*x^4+62*x^3+214*x^2-152*x-152,2*x^6-2*x^5-22*x^4+16*x^3+66*x^2-22*x-54,-8*x^2,2*x^6-2*x^5-34*x^4+32*x^3+158*x^2-118*x-118,x^6-x^5-3*x^4+2*x^3-21*x^2+23*x+7,x^6-3*x^5-15*x^4+32*x^3+65*x^2-81*x-55,3*x^6-x^5-37*x^4+12*x^3+111*x^2-31*x-57,2*x^6-28*x^4+4*x^3+104*x^2-28*x-54,4*x^6-40*x^4+96*x^2-32,5*x^6-3*x^5-65*x^4+30*x^3+229*x^2-83*x-145,-x^6+x^5+19*x^4-14*x^3-91*x^2+45*x+57,4*x^4-12*x^3-24*x^2+76*x+20,-6*x^6+4*x^5+80*x^4-48*x^3-300*x^2+140*x+186,-4*x^6+4*x^5+54*x^4-42*x^3-200*x^2+110*x+126,3*x^6-x^5-47*x^4+18*x^3+179*x^2-73*x-95,2*x^6-2*x^5-26*x^4+28*x^3+90*x^2-90*x-34,4*x^3-16*x,8*x^4-8*x^3-64*x^2+48*x+56,-3*x^6+3*x^5+29*x^4-22*x^3-61*x^2+27*x+19,-4*x^6+4*x^5+50*x^4-42*x^3-172*x^2+110*x+106,-2*x^6+6*x^5+2*x^4-40*x^3+78*x^2+10*x-70,x^6+x^5-13*x^4-14*x^3+45*x^2+45*x-49,-2*x^6+24*x^4-76*x^2+8*x+38,-4*x^6+52*x^4-4*x^3-184*x^2+36*x+136,-3*x^6+3*x^5+21*x^4-22*x^3-21*x^2+19*x-5,4,2*x^6-2*x^5-18*x^4+24*x^3+38*x^2-62*x-38,6*x^4+2*x^3-52*x^2-10*x+54,4*x^6-6*x^5-50*x^4+52*x^3+170*x^2-94*x-108,-9*x^6+7*x^5+129*x^4-86*x^3-497*x^2+267*x+301,x^6-3*x^5-7*x^4+20*x^3+5*x^2-13*x-19,8*x,-9*x^6+5*x^5+111*x^4-54*x^3-367*x^2+153*x+209,2*x^6+2*x^5-34*x^4-12*x^3+146*x^2-14*x-82,x^6-3*x^5-11*x^4+24*x^3+33*x^2-33*x-19,7*x^6-3*x^5-93*x^4+30*x^3+337*x^2-75*x-203,-6*x^6-2*x^5+84*x^4-6*x^3-310*x^2+112*x+176,3*x^6-3*x^5-41*x^4+34*x^3+153*x^2-87*x-107,5*x^6-x^5-67*x^4+22*x^3+235*x^2-93*x-133,4*x^4-8*x^3-12*x^2+40*x-24,-4*x^5+32*x^3-48*x,-2*x^6+2*x^5+18*x^4-8*x^3-30*x^2-18*x+14,x^6+3*x^5-11*x^4-30*x^3+23*x^2+63*x+19,-3*x^6+x^5+41*x^4-16*x^3-151*x^2+67*x+93,-2*x^6-2*x^5+48*x^4-6*x^3-234*x^2+112*x+136,8*x^6-8*x^5-108*x^4+84*x^3+400*x^2-212*x-268,2*x^6-2*x^5-28*x^4+26*x^3+110*x^2-72*x-76,8*x^6-6*x^5-114*x^4+76*x^3+450*x^2-246*x-296,-4*x^6+2*x^5+62*x^4-24*x^3-250*x^2+70*x+152,5*x^6-3*x^5-69*x^4+42*x^3+257*x^2-139*x-157,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-38*x-38,4,-4*x^2+8,-8*x^6+4*x^5+104*x^4-52*x^3-372*x^2+192*x+252,-6*x^6+2*x^5+80*x^4-30*x^3-274*x^2+124*x+152,-x^6+3*x^5+11*x^4-28*x^3-33*x^2+53*x+19,2*x^6+4*x^5-32*x^4-12*x^3+140*x^2-64*x-102,6*x^6-84*x^4+8*x^3+308*x^2-72*x-158,-2*x^6+6*x^5+18*x^4-44*x^3-38*x^2+38*x+38,-13*x^6+11*x^5+169*x^4-114*x^3-593*x^2+311*x+341,-8*x^3+16*x,-2*x^6+2*x^5+28*x^4-22*x^3-110*x^2+60*x+84,-2*x^6-6*x^5+34*x^4+48*x^3-134*x^2-26*x+38,x^6-3*x^5-11*x^4+24*x^3+21*x^2-33*x+49,x^6+5*x^5-19*x^4-28*x^3+81*x^2-13*x-19,-2*x^6-2*x^5+24*x^4+22*x^3-78*x^2-44*x+52,-3*x^6-x^5+33*x^4+10*x^3-89*x^2-9*x+19,2*x^6-2*x^5-26*x^4+16*x^3+86*x^2-22*x-30,5*x^6-x^5-67*x^4+14*x^3+251*x^2-93*x-157,-9*x^6+7*x^5+121*x^4-74*x^3-449*x^2+203*x+265,6*x^4-6*x^3-44*x^2+38*x+38,8*x^6-8*x^5-100*x^4+76*x^3+328*x^2-164*x-156,8*x^5+4*x^4-60*x^3-32*x^2+56*x+76,x^6-x^5-11*x^4+6*x^3+35*x^2+3*x-33,-3*x^6+5*x^5+35*x^4-46*x^3-123*x^2+85*x+95,4*x^6-56*x^4+12*x^3+212*x^2-92*x-128,-5*x^6+7*x^5+67*x^4-68*x^3-249*x^2+145*x+167,10*x^6-6*x^5-138*x^4+68*x^3+522*x^2-222*x-330,4*x^5-12*x^4-24*x^3+76*x^2+20*x,x^6-x^5-11*x^4+10*x^3+31*x^2-25*x-13,8*x^6-8*x^5-110*x^4+82*x^3+408*x^2-234*x-266,-4*x^6+52*x^4-4*x^3-160*x^2+36*x+24,4*x^6-2*x^5-46*x^4+20*x^3+142*x^2-58*x-76,7*x^6-7*x^5-85*x^4+58*x^3+277*x^2-91*x-159,9*x^6-11*x^5-117*x^4+98*x^3+417*x^2-235*x-257,7*x^6-5*x^5-97*x^4+60*x^3+363*x^2-179*x-229,-2*x^6+2*x^5+30*x^4-20*x^3-106*x^2+58*x+38,-9*x^6+7*x^5+125*x^4-78*x^3-485*x^2+211*x+357,4*x^4-24*x^2+16,-2*x^6+6*x^5+22*x^4-48*x^3-66*x^2+66*x+38,8*x^5-8*x^4-64*x^3+48*x^2+56*x,-x^6-x^5+11*x^4+12*x^3-25*x^2-31*x-17,x^6-7*x^5-3*x^4+48*x^3-15*x^2-13*x-19,-4*x^5+44*x^3+4*x^2-104*x-12,4*x^6-6*x^5-46*x^4+48*x^3+142*x^2-78*x-76,-12*x^6+8*x^5+164*x^4-96*x^3-604*x^2+288*x+380,2*x^6-14*x^5-6*x^4+100*x^3-50*x^2-86*x+38,4*x^6-2*x^5-54*x^4+24*x^3+194*x^2-78*x-112,x^6+x^5-13*x^4-10*x^3+37*x^2-3*x+19,6*x^6+2*x^5-92*x^4+6*x^3+366*x^2-128*x-208,-4*x^6+54*x^4-10*x^3-196*x^2+66*x+130,-8*x^6+108*x^4-12*x^3-376*x^2+100*x+148,-4*x^5-8*x^4+36*x^3+68*x^2-48*x-76,2*x^6-2*x^5-26*x^4+16*x^3+94*x^2-22*x-54,5*x^6-11*x^5-63*x^4+88*x^3+205*x^2-169*x-95,x^6-x^5-19*x^4+22*x^3+75*x^2-101*x-9,4*x,-6*x^6+6*x^5+74*x^4-52*x^3-242*x^2+102*x+134,2*x^6+6*x^5-26*x^4-40*x^3+94*x^2+10*x-22,-8*x^6+6*x^5+110*x^4-72*x^3-410*x^2+210*x+244,6*x^5+2*x^4-52*x^3-10*x^2+54*x,4*x^6-4*x^5-48*x^4+32*x^3+152*x^2-28*x-76,-6*x^6+6*x^5+68*x^4-62*x^3-214*x^2+152*x+152,-13*x^6+7*x^5+179*x^4-88*x^3-677*x^2+293*x+439,7*x^6+3*x^5-95*x^4-2*x^3+339*x^2-113*x-171,-2*x^6+2*x^5+22*x^4-16*x^3-66*x^2+22*x+54,-x^6+5*x^5-x^4-38*x^3+49*x^2+33*x-47,-4*x^5+12*x^4+28*x^3-88*x^2-32*x+28,8*x^2,5*x^6-3*x^5-73*x^4+58*x^3+281*x^2-231*x-165,-5*x^6-x^5+71*x^4-8*x^3-273*x^2+85*x+163,-2*x^6+2*x^5+34*x^4-32*x^3-158*x^2+118*x+118,2*x^6-6*x^5-10*x^4+36*x^3-30*x^2+10*x+38,4*x^6-8*x^5-44*x^4+72*x^3+124*x^2-136*x-60,-x^6+x^5+3*x^4-2*x^3+21*x^2-23*x-7,-2*x^6+2*x^5+26*x^4-24*x^3-78*x^2+70*x-2,-3*x^6+5*x^5+37*x^4-48*x^3-131*x^2+119*x+133,-x^6+3*x^5+15*x^4-32*x^3-65*x^2+81*x+55,6*x^6-4*x^5-104*x^4+60*x^3+444*x^2-216*x-266,-6*x^6+4*x^5+76*x^4-44*x^3-256*x^2+144*x+114,-3*x^6+x^5+37*x^4-12*x^3-111*x^2+31*x+57,x^6+5*x^5-13*x^4-50*x^3+49*x^2+101*x-77,13*x^6-7*x^5-167*x^4+80*x^3+593*x^2-261*x-363,-2*x^6+28*x^4-4*x^3-104*x^2+28*x+54,4*x^5-8*x^4-12*x^3+40*x^2-24*x,-4*x^6+4*x^5+60*x^4-52*x^3-248*x^2+160*x+240,-4*x^6+40*x^4-96*x^2+32,10*x^6-6*x^5-128*x^4+58*x^3+438*x^2-140*x-240,2*x^6-10*x^5-10*x^4+80*x^3-2*x^2-78*x-38,-5*x^6+3*x^5+65*x^4-30*x^3-229*x^2+83*x+145,x^6+x^5-7*x^4-8*x^3+5*x^2+3*x-15,-8*x^6+4*x^5+112*x^4-52*x^3-420*x^2+184*x+236,x^6-x^5-19*x^4+14*x^3+91*x^2-45*x-57,2*x^6+2*x^5-22*x^4-20*x^3+62*x^2+50*x-42,6*x^6+8*x^5-100*x^4-28*x^3+412*x^2-112*x-190,-4*x^4+12*x^3+24*x^2-76*x-20,-8*x^6+4*x^5+92*x^4-40*x^3-276*x^2+100*x+152,-12*x^4+12*x^3+88*x^2-76*x-76,6*x^6-4*x^5-80*x^4+48*x^3+300*x^2-140*x-186,4*x^6-4*x^5-60*x^4+48*x^3+236*x^2-164*x-140,-6*x^6-2*x^5+84*x^4+10*x^3-310*x^2+72*x+152,4*x^6-4*x^5-54*x^4+42*x^3+200*x^2-110*x-126,-6*x^6+6*x^5+80*x^4-50*x^3-290*x^2+100*x+184,-16*x^6+8*x^5+220*x^4-100*x^3-824*x^2+348*x+524,-3*x^6+x^5+47*x^4-18*x^3-179*x^2+73*x+95,8*x^6-2*x^5-102*x^4+28*x^3+342*x^2-122*x-168,2*x^6+6*x^5-34*x^4-40*x^3+134*x^2+10*x-70,-2*x^6+2*x^5+26*x^4-28*x^3-90*x^2+90*x+34,4*x,-2*x^6+2*x^5+32*x^4-30*x^3-122*x^2+100*x+36,-4*x^3+16*x,x^6+5*x^5-29*x^4-38*x^3+161*x^2+37*x-105,4*x^6-8*x^5-60*x^4+68*x^3+256*x^2-116*x-152,-8*x^4+8*x^3+64*x^2-48*x-56,-14*x^6+8*x^5+184*x^4-88*x^3-648*x^2+296*x+374,11*x^6-7*x^5-153*x^4+74*x^3+585*x^2-195*x-395,3*x^6-3*x^5-29*x^4+22*x^3+61*x^2-27*x-19,-4*x^6+4*x^5+56*x^4-48*x^3-208*x^2+124*x+108,-8*x^6+8*x^5+126*x^4-94*x^3-508*x^2+294*x+342,4*x^6-4*x^5-50*x^4+42*x^3+172*x^2-110*x-106,14*x^4-22*x^3-120*x^2+118*x+114,14*x^6-14*x^5-184*x^4+138*x^3+646*x^2-308*x-356,2*x^6-6*x^5-2*x^4+40*x^3-78*x^2-10*x+70,2*x^6-6*x^5-18*x^4+68*x^3+34*x^2-166*x-18,11*x^6-13*x^5-127*x^4+122*x^3+415*x^2-257*x-247,-x^6-x^5+13*x^4+14*x^3-45*x^2-45*x+49,-8*x^4+32*x^2,-4*x^6+44*x^4-4*x^3-112*x^2+36*x+16,2*x^6-24*x^4+76*x^2-8*x-38,18*x^6-8*x^5-256*x^4+120*x^3+968*x^2-456*x-562,-10*x^6+10*x^5+114*x^4-88*x^3-326*x^2+182*x+198,4*x^6-52*x^4+4*x^3+184*x^2-36*x-136,-3*x^6+3*x^5+25*x^4-34*x^3-41*x^2+95*x+19,4*x^6-4*x^5-42*x^4+46*x^3+104*x^2-130*x-26,3*x^6-3*x^5-21*x^4+22*x^3+21*x^2-19*x+5,6*x^6+2*x^5-76*x^4-22*x^3+250*x^2+28*x-132,-2*x^6-4*x^5+20*x^4+32*x^3-28*x^2-40*x-38,-4,-3*x^6-3*x^5+37*x^4+12*x^3-115*x^2+43*x+53,-x^6+3*x^5+13*x^4-34*x^3-53*x^2+87*x+41,-2*x^6+2*x^5+18*x^4-24*x^3-38*x^2+62*x+38,-14*x^6+6*x^5+198*x^4-84*x^3-766*x^2+294*x+526,-7*x^6+5*x^5+93*x^4-48*x^3-355*x^2+135*x+209,-6*x^4-2*x^3+52*x^2+10*x-54,7*x^6-5*x^5-83*x^4+46*x^3+275*x^2-149*x-171,4*x^6-4*x^5-50*x^4+38*x^3+168*x^2-74*x-82,-4*x^6+6*x^5+50*x^4-52*x^3-170*x^2+94*x+108,-3*x^6+x^5+39*x^4-22*x^3-115*x^2+113*x-13,-8*x^6+12*x^5+84*x^4-112*x^3-228*x^2+212*x+152,9*x^6-7*x^5-129*x^4+86*x^3+497*x^2-267*x-301,4*x^5+20*x^4-32*x^3-136*x^2+76*x+64,x^6+3*x^5-11*x^4-30*x^3+39*x^2+43*x-85,-x^6+3*x^5+7*x^4-20*x^3-5*x^2+13*x+19,9*x^6-7*x^5-121*x^4+86*x^3+437*x^2-263*x-285,-5*x^6-x^5+81*x^4-18*x^3-349*x^2+123*x+233,-8*x,16*x^4-8*x^3-124*x^2+56*x+76,15*x^6-5*x^5-201*x^4+68*x^3+723*x^2-251*x-397,9*x^6-5*x^5-111*x^4+54*x^3+367*x^2-153*x-209,4*x^6-4*x^5-44*x^4+32*x^3+132*x^2-68*x-100,-6*x^6+2*x^5+78*x^4-28*x^3-302*x^2+130*x+190,-2*x^6-2*x^5+34*x^4+12*x^3-146*x^2+14*x+82,4*x^6-12*x^5-32*x^4+100*x^3+68*x^2-152*x-40,x^6+3*x^5-15*x^4-30*x^3+59*x^2+83*x-61,-x^6+3*x^5+11*x^4-24*x^3-33*x^2+33*x+19,4*x^6-4*x^5-60*x^4+60*x^3+256*x^2-216*x-200,4*x^6-6*x^5-70*x^4+64*x^3+302*x^2-178*x-220,-7*x^6+3*x^5+93*x^4-30*x^3-337*x^2+75*x+203,-4*x^5-8*x^4+60*x^3+68*x^2-160*x-76,-10*x^6+6*x^5+136*x^4-82*x^3-486*x^2+276*x+224,6*x^6+2*x^5-84*x^4+6*x^3+310*x^2-112*x-176,10*x^6-10*x^5-130*x^4+120*x^3+454*x^2-350*x-294,-7*x^6+13*x^5+65*x^4-108*x^3-147*x^2+163*x+133,-3*x^6+3*x^5+41*x^4-34*x^3-153*x^2+87*x+107,-17*x^6+11*x^5+201*x^4-114*x^3-665*x^2+303*x+361,-x^6-3*x^5+11*x^4+14*x^3-39*x^2+53*x+53,-5*x^6+x^5+67*x^4-22*x^3-235*x^2+93*x+133,-14*x^6+10*x^5+186*x^4-108*x^3-666*x^2+258*x+382,-2*x^6+6*x^5+30*x^4-52*x^3-106*x^2+126*x+30,-4*x^4+8*x^3+12*x^2-40*x+24,7*x^6-x^5-87*x^4+10*x^3+283*x^2-57*x-171,-8*x^6+4*x^5+104*x^4-28*x^3-340*x^2+32*x+108,4*x^5-32*x^3+48*x,x^6-3*x^5-11*x^4+36*x^3+25*x^2-93*x+9,6*x^6-6*x^5-50*x^4+44*x^3+82*x^2-54*x-38,2*x^6-2*x^5-18*x^4+8*x^3+30*x^2+18*x-14,8*x^6-8*x^5-80*x^4+64*x^3+184*x^2-96*x-112,-6*x^6+2*x^5+94*x^4-36*x^3-398*x^2+130*x+270,-x^6-3*x^5+11*x^4+30*x^3-23*x^2-63*x-19,-14*x^6+6*x^5+178*x^4-76*x^3-594*x^2+254*x+310,-x^6+5*x^5-9*x^4-26*x^3+101*x^2-27*x-19,3*x^6-x^5-41*x^4+16*x^3+151*x^2-67*x-93,-4*x^6+44*x^4+4*x^3-104*x^2-12*x,9*x^6-3*x^5-127*x^4+44*x^3+485*x^2-173*x-347,2*x^6+2*x^5-48*x^4+6*x^3+234*x^2-112*x-136,11*x^6-9*x^5-151*x^4+102*x^3+571*x^2-305*x-379,8*x^6-4*x^5-108*x^4+56*x^3+384*x^2-172*x-228,-8*x^6+8*x^5+108*x^4-84*x^3-400*x^2+212*x+268,-10*x^6+10*x^5+98*x^4-80*x^3-258*x^2+110*x+178,-8*x^6+6*x^5+102*x^4-60*x^3-342*x^2+166*x+168,-2*x^6+2*x^5+28*x^4-26*x^3-110*x^2+72*x+76,-12*x^6+4*x^5+176*x^4-84*x^3-700*x^2+384*x+456,-x^6-x^5+17*x^4+10*x^3-101*x^2-25*x+117,-8*x^6+6*x^5+114*x^4-76*x^3-450*x^2+246*x+296,2*x^6-8*x^5+12*x^4+36*x^3-176*x^2+68*x+114,-10*x^6+10*x^5+150*x^4-120*x^3-610*x^2+366*x+406,4*x^6-2*x^5-62*x^4+24*x^3+250*x^2-70*x-152,3*x^6-x^5-49*x^4+20*x^3+227*x^2-87*x-217,-4*x^5-20*x^4+64*x^3+164*x^2-220*x-152,-5*x^6+3*x^5+69*x^4-42*x^3-257*x^2+139*x+157,4*x^6-8*x^5-68*x^4+76*x^3+320*x^2-148*x-272,2*x^6+4*x^5-36*x^4-32*x^3+156*x^2+28*x-130,-2*x^6+2*x^5+18*x^4-16*x^3-38*x^2+38*x+38,-2*x^6+2*x^5+38*x^4-28*x^3-182*x^2+90*x+114,-5*x^6+x^5+51*x^4-26*x^3-167*x^2+97*x+105,-4,-x^6-5*x^5+23*x^4+20*x^3-109*x^2+37*x+19,22*x^6-14*x^5-286*x^4+156*x^3+1014*x^2-446*x-638,4*x^2-8,x^6+x^5-21*x^4+6*x^3+109*x^2-67*x-117,6*x^6-10*x^5-58*x^4+88*x^3+150*x^2-142*x-114,8*x^6-4*x^5-104*x^4+52*x^3+372*x^2-192*x-252,2*x^6+6*x^5-2*x^4-64*x^3-82*x^2+194*x+114,-x^6+7*x^5+x^4-62*x^3+51*x^2+119*x-99,6*x^6-2*x^5-80*x^4+30*x^3+274*x^2-124*x-152,2*x^6-6*x^5-30*x^4+52*x^3+134*x^2-86*x-114,6*x^6+2*x^5-64*x^4-14*x^3+158*x^2+20*x-108,x^6-3*x^5-11*x^4+28*x^3+33*x^2-53*x-19,-4*x^6+8*x^5+36*x^4-68*x^3-60*x^2+108*x+76,6*x^6-2*x^5-102*x^4+52*x^3+422*x^2-226*x-182,-2*x^6-4*x^5+32*x^4+12*x^3-140*x^2+64*x+102,4*x^5-16*x^4-24*x^3+104*x^2+4*x,7*x^6-3*x^5-101*x^4+38*x^3+397*x^2-159*x-247,-6*x^6+84*x^4-8*x^3-308*x^2+72*x+158,21*x^6-11*x^5-253*x^4+126*x^3+825*x^2-383*x-469,-2*x^6+44*x^4-12*x^3-240*x^2+68*x+222,2*x^6-6*x^5-18*x^4+44*x^3+38*x^2-38*x-38,-7*x^6+x^5+103*x^4-42*x^3-411*x^2+241*x+291,3*x^6-9*x^5-25*x^4+64*x^3+31*x^2-67*x+19,13*x^6-11*x^5-169*x^4+114*x^3+593*x^2-311*x-341,-4*x^6+12*x^5+28*x^4-88*x^3-32*x^2+28*x,-12*x^6+12*x^5+152*x^4-104*x^3-528*x^2+164*x+300,8*x^3-16*x,6*x^6+2*x^5-90*x^4-4*x^3+346*x^2-94*x-142,-3*x^6-3*x^5+63*x^4+6*x^3-271*x^2+65*x+95,2*x^6-2*x^5-28*x^4+22*x^3+110*x^2-60*x-84,17*x^6-9*x^5-235*x^4+110*x^3+859*x^2-373*x-513,-13*x^6+5*x^5+163*x^4-58*x^3-543*x^2+173*x+297,2*x^6+6*x^5-34*x^4-48*x^3+134*x^2+26*x-38,-14*x^6+6*x^5+186*x^4-96*x^3-654*x^2+370*x+298,-10*x^6+14*x^5+106*x^4-116*x^3-298*x^2+158*x+202,-x^6+3*x^5+11*x^4-24*x^3-21*x^2+33*x-49,-8*x^6+12*x^5+76*x^4-96*x^3-168*x^2+124*x+76,6*x^6-6*x^5-86*x^4+60*x^3+334*x^2-150*x-158,-x^6-5*x^5+19*x^4+28*x^3-81*x^2+13*x+19,-12*x^6+8*x^5+164*x^4-88*x^3-596*x^2+208*x+368,2*x^6-2*x^5-26*x^4+32*x^3+86*x^2-94*x-38,2*x^6+2*x^5-24*x^4-22*x^3+78*x^2+44*x-52,-9*x^6+x^5+135*x^4-26*x^3-531*x^2+145*x+349,6*x^6-2*x^5-74*x^4+24*x^3+230*x^2-78*x-122,3*x^6+x^5-33*x^4-10*x^3+89*x^2+9*x-19,-9*x^6+9*x^5+115*x^4-86*x^3-395*x^2+165*x+217,8*x^6-16*x^5-102*x^4+126*x^3+356*x^2-214*x-238,-2*x^6+2*x^5+26*x^4-16*x^3-86*x^2+22*x+30,4*x^6-8*x^5-50*x^4+74*x^3+192*x^2-162*x-114,4*x^6-8*x^5-52*x^4+84*x^3+208*x^2-212*x-216,-5*x^6+x^5+67*x^4-14*x^3-251*x^2+93*x+157,11*x^6-x^5-165*x^4+32*x^3+651*x^2-187*x-333,5*x^6+x^5-49*x^4-6*x^3+93*x^2-31*x+19,9*x^6-7*x^5-121*x^4+74*x^3+449*x^2-203*x-265,-17*x^6+17*x^5+227*x^4-166*x^3-835*x^2+421*x+513,-4*x^6+48*x^4-152*x^2+16*x+76,-6*x^4+6*x^3+44*x^2-38*x-38,6*x^6-4*x^5-80*x^4+52*x^3+300*x^2-136*x-250,4*x^6-8*x^5-20*x^4+56*x^3-80*x+48,-8*x^6+8*x^5+100*x^4-76*x^3-328*x^2+164*x+156,4*x^6+4*x^5-56*x^4-28*x^3+192*x^2+56*x-76,6*x^6-14*x^5-84*x^4+150*x^3+326*x^2-368*x-256,-8*x^5-4*x^4+60*x^3+32*x^2-56*x-76,11*x^6-9*x^5-133*x^4+100*x^3+415*x^2-287*x-145,-6*x^6+12*x^5+68*x^4-112*x^3-220*x^2+220*x+190,-x^6+x^5+11*x^4-6*x^3-35*x^2-3*x+33,-6*x^6+14*x^5+46*x^4-96*x^3-34*x^2+90*x+10,8*x^6-2*x^5-90*x^4+16*x^3+246*x^2-38*x-84,3*x^6-5*x^5-35*x^4+46*x^3+123*x^2-85*x-95,5*x^6-x^5-63*x^4+34*x^3+195*x^2-177*x-25,-x^6+x^5+15*x^4+10*x^3-51*x^2-95*x-19,-4*x^6+56*x^4-12*x^3-212*x^2+92*x+128,4*x^6-60*x^4+20*x^3+248*x^2-132*x-152,-8*x^4+80*x^2+24*x-128,5*x^6-7*x^5-67*x^4+68*x^3+249*x^2-145*x-167,6*x^6-2*x^5-84*x^4+18*x^3+330*x^2-56*x-236,2*x^6+6*x^5-18*x^4-48*x^3+34*x^2+50*x+38,-10*x^6+6*x^5+138*x^4-68*x^3-522*x^2+222*x+330,12*x^6-12*x^5-118*x^4+94*x^3+308*x^2-138*x-158,-8*x^6+10*x^5+114*x^4-112*x^3-446*x^2+318*x+292,-4*x^5+12*x^4+24*x^3-76*x^2-20*x,-13*x^6+7*x^5+173*x^4-82*x^3-637*x^2+267*x+461,-12*x^6-4*x^5+168*x^4-4*x^3-636*x^2+208*x+384,-x^6+x^5+11*x^4-10*x^3-31*x^2+25*x+13,-12*x^5+12*x^4+88*x^3-76*x^2-76*x,-16*x^6+8*x^5+210*x^4-98*x^3-732*x^2+322*x+418,-8*x^6+8*x^5+110*x^4-82*x^3-408*x^2+234*x+266,6*x^6-6*x^5-78*x^4+48*x^3+274*x^2-74*x-130,-4*x^6-4*x^5+52*x^4+16*x^3-196*x^2+44*x+76,4*x^6-52*x^4+4*x^3+160*x^2-36*x-24,-18*x^6+12*x^5+232*x^4-132*x^3-780*x^2+368*x+478,-4*x^4+28*x^3+40*x^2-196*x-60,-4*x^6+2*x^5+46*x^4-20*x^3-142*x^2+58*x+76,-x^6-x^5+29*x^4-18*x^3-157*x^2+131*x+33,14*x^6-8*x^5-180*x^4+88*x^3+648*x^2-232*x-418,-7*x^6+7*x^5+85*x^4-58*x^3-277*x^2+91*x+159,8*x^6-4*x^5-116*x^4+56*x^3+476*x^2-212*x-304,-12*x^6+4*x^5+160*x^4-56*x^3-568*x^2+204*x+284,-9*x^6+11*x^5+117*x^4-98*x^3-417*x^2+235*x+257,8*x^6-4*x^5-96*x^4+32*x^3+304*x^2-44*x-112,-2*x^6+10*x^5+36*x^4-98*x^3-186*x^2+200*x+152,-7*x^6+5*x^5+97*x^4-60*x^3-363*x^2+179*x+229,2*x^6-2*x^5-2*x^4-8*x^3-82*x^2+98*x+114,11*x^6-9*x^5-159*x^4+122*x^3+603*x^2-417*x-319,2*x^6-2*x^5-30*x^4+20*x^3+106*x^2-58*x-38,3*x^6-5*x^5-47*x^4+70*x^3+199*x^2-249*x-179,4*x^2-8,9*x^6-7*x^5-125*x^4+78*x^3+485*x^2-211*x-357,2*x^6+4*x^5-32*x^4-12*x^3+116*x^2-56*x-38,4*x^6-4*x^5-60*x^4+48*x^3+252*x^2-140*x-132,-4*x^4+24*x^2-16,-10*x^6-2*x^5+154*x^4-20*x^3-626*x^2+246*x+426,5*x^6-15*x^5-37*x^4+106*x^3+29*x^2-59*x+19,2*x^6-6*x^5-22*x^4+48*x^3+66*x^2-66*x-38,8*x^6-12*x^5-136*x^4+140*x^3+596*x^2-352*x-428,18*x^6-6*x^5-258*x^4+108*x^3+994*x^2-430*x-618,-8*x^5+8*x^4+64*x^3-48*x^2-56*x,-4*x^5+4*x^4+16*x^3-20*x^2+60*x-24,20*x^6-16*x^5-262*x^4+182*x^3+956*x^2-518*x-570,x^6+x^5-11*x^4-12*x^3+25*x^2+31*x+17,-7*x^6+x^5+85*x^4-20*x^3-283*x^2+111*x+209,-22*x^6+26*x^5+286*x^4-268*x^3-1038*x^2+642*x+742,-x^6+7*x^5+3*x^4-48*x^3+15*x^2+13*x+19,-4*x^6+4*x^5+60*x^4-48*x^3-236*x^2+124*x+180,4*x^6-52*x^4+12*x^3+156*x^2-76*x-76,4*x^5-44*x^3-4*x^2+104*x+12,4*x^6+6*x^5-38*x^4-44*x^3+78*x^2+102*x+52,7*x^6-7*x^5-93*x^4+62*x^3+337*x^2-135*x-179,-4*x^6+6*x^5+46*x^4-48*x^3-142*x^2+78*x+76,8*x^6-8*x^5-104*x^4+88*x^3+360*x^2-248*x-224,-12*x^6+14*x^5+146*x^4-136*x^3-498*x^2+258*x+316,12*x^6-8*x^5-164*x^4+96*x^3+604*x^2-288*x-380,-14*x^6+12*x^5+152*x^4-124*x^3-420*x^2+288*x+266,-10*x^6+6*x^5+128*x^4-66*x^3-462*x^2+196*x+352,-2*x^6+14*x^5+6*x^4-100*x^3+50*x^2+86*x-38,-x^6+3*x^5+19*x^4-28*x^3-105*x^2+21*x+115,-6*x^6+10*x^5+70*x^4-76*x^3-182*x^2+74*x+38,-4*x^6+2*x^5+54*x^4-24*x^3-194*x^2+78*x+112,13*x^6+5*x^5-205*x^4+38*x^3+841*x^2-363*x-473,-10*x^6+2*x^5+126*x^4-20*x^3-430*x^2+66*x+290,-x^6-x^5+13*x^4+10*x^3-37*x^2+3*x-19,18*x^6-18*x^5-242*x^4+192*x^3+894*x^2-502*x-566,-8*x^5+48*x^3-32*x,-6*x^6-2*x^5+92*x^4-6*x^3-366*x^2+128*x+208,-12*x^5-8*x^4+108*x^3+68*x^2-168*x-76,7*x^6-5*x^5-101*x^4+48*x^3+411*x^2-95*x-297,4*x^6-54*x^4+10*x^3+196*x^2-66*x-130,-14*x^6+22*x^5+186*x^4-236*x^3-706*x^2+630*x+566,-8*x^6-4*x^5+138*x^4-22*x^3-600*x^2+266*x+342,8*x^6-108*x^4+12*x^3+376*x^2-100*x-148,14*x^6-14*x^5-166*x^4+128*x^3+530*x^2-210*x-266,-18*x^6+12*x^5+248*x^4-140*x^3-932*x^2+424*x+582,4*x^5+8*x^4-36*x^3-68*x^2+48*x+76,12*x^6-4*x^5-184*x^4+84*x^3+724*x^2-352*x-424,x^6-11*x^5-15*x^4+76*x^3+77*x^2-53*x-155,-2*x^6+2*x^5+26*x^4-16*x^3-94*x^2+22*x+54,-4*x^6+14*x^5+50*x^4-116*x^3-162*x^2+158*x+76,14*x^6-6*x^5-178*x^4+56*x^3+614*x^2-114*x-386,-5*x^6+11*x^5+63*x^4-88*x^3-205*x^2+169*x+95,-9*x^6+7*x^5+121*x^4-70*x^3-449*x^2+163*x+285,2*x^6+8*x^5-16*x^4-80*x^3-20*x^2+144*x+114,-x^6+x^5+19*x^4-22*x^3-75*x^2+101*x+9,-4*x^5-18*x^4+38*x^3+132*x^2-42*x-142,-4*x^6-4*x^5+52*x^4+16*x^3-156*x^2+44*x+36,-4*x,-8*x^5+12*x^4+52*x^3-88*x^2-12*x+92,3*x^6-3*x^5-57*x^4+30*x^3+245*x^2-67*x-95,6*x^6-6*x^5-74*x^4+52*x^3+242*x^2-102*x-134,3*x^6-x^5-35*x^4+2*x^3+95*x^2-5*x-19,-4*x^6+8*x^5+68*x^4-104*x^3-316*x^2+320*x+268,-2*x^6-6*x^5+26*x^4+40*x^3-94*x^2-10*x+22,4*x^6-4*x^5-56*x^4+52*x^3+220*x^2-144*x-152,6*x^6+2*x^5-98*x^4+4*x^3+406*x^2-118*x-266,8*x^6-6*x^5-110*x^4+72*x^3+410*x^2-210*x-244,-5*x^6-3*x^5+79*x^4+2*x^3-311*x^2+73*x+181,24*x^6-16*x^5-316*x^4+196*x^3+1136*x^2-612*x-700,-6*x^5-2*x^4+52*x^3+10*x^2-54*x,2*x^6+4*x^5-32*x^4-28*x^3+108*x^2-16*x+10,13*x^6+x^5-189*x^4+38*x^3+693*x^2-255*x-397]];
E[321,3] = [x^2+x-1, [1,-x-1,1,x,-3,-x-1,2*x,2*x+1,1,3*x+3,-2,x,-1,-2,-3,-3*x-3,-4*x-5,-x-1,-2*x-1,-3*x,2*x,2*x+2,-4,2*x+1,4,x+1,1,-2*x+2,2*x,3*x+3,-2,-x+4,-2,5*x+9,-6*x,x,-8*x-3,x+3,-1,-6*x-3,-2*x-6,-2,4*x+2,-2*x,-3,4*x+4,6*x+4,-3*x-3,-4*x-3,-4*x-4,-4*x-5,-x,4*x-6,-x-1,6,-2*x+4,-2*x-1,-2,8*x+4,-3*x,8*x+3,2*x+2,2*x,2*x+3,3,2*x+2,-4*x+4,-x-4,-4,6,-6*x-5,2*x+1,-6*x,3*x+11,4,x-2,-4*x,x+1,-8,9*x+9,1,6*x+8,6*x+10,-2*x+2,12*x+15,-2*x-6,2*x,-4*x-2,12*x+8,3*x+3,-2*x,-4*x,-2,-4*x-10,6*x+3,-x+4,10,3*x+7,-2,4*x,-8*x-10,5*x+9,-12*x-6,-2*x-1,-6*x,6*x+2,1,x,-6*x+8,-6*x-6,-8*x-3,-6,16*x+7,x+3,12,-2*x+2,-1,-4*x-12,-2*x-8,-6*x-3,-7,-3*x-11,-2*x-6,-2*x,3,-2,6*x-8,-x-13,4*x+2,-3*x-3,-10*x+1,-2*x,2*x-4,-4*x,-3,-6*x-13,-6*x+6,4*x+4,2*x,6*x-6,6*x+4,5*x+11,2,-3*x-3,-6*x,6,-4*x-3,5*x-8,-6*x-16,-4*x-4,-2*x-13,-5,-4*x-5,4,6,-x,6*x,8*x+8,4*x-6,3*x-12,-8*x,-x-1,8*x-12,-4*x-2,6,-10*x-16,14*x+9,-2*x+4,-12,-15*x-27,-2*x-1,-2*x+4,12*x+13,-2,8*x,6*x+6,8*x+4,-8*x-20,2*x+7,-3*x,-8*x+6,2,8*x+3,-8*x-4,24*x+9,2*x+2,8*x+10,-2*x+6,2*x,-3*x-9,-10*x-15,2*x+3,-12*x+2,-10*x-10,3,x-4,-6*x+8,2*x+2,-2*x-15,8*x+4,-4*x+4,10*x+18,-4*x+4,-x-4,6*x+18,6*x+18,-4,3*x+3,4*x+2,6,10*x-8,-10*x+4,-6*x-5,-x-1,-12*x-6,2*x+1,-4*x,-8*x-2,-6*x,6*x,4*x+5,3*x+11,10*x-9,10*x-2,4,-7*x-23,6*x+24,x-2,4*x+2,-12*x-12,-4*x,-2*x+4,-14*x-10,x+1,-18*x-12,-4*x+8,-8,8*x+10,-4*x-10,9*x+9,4*x+17,7*x+7,1,-5*x+8,12*x+9,6*x+8,2*x+1,-4*x-2,6*x+10,-3*x-3,-6*x-16,-2*x+2,8,8*x+2,12*x+15,9*x+8,-4*x-26,-2*x-6,10*x-16,3*x,2*x,-x+9,-12*x-24,-4*x-2,-12*x+18,4*x+2,12*x+8,8*x-4,17,3*x+3,-10*x-17,15*x+27,-2*x,-6*x,-8,-4*x,6*x+20,-2,-2,6*x-12,4*x+14,-4*x-10,10*x+17,x-6,6*x+3,-2*x-2,-8*x-4,-x+4,24*x+24,6,10,6*x-6,-12*x-16,3*x+7,-24*x-12,2*x-19,-2,16*x+22,4,4*x,-4*x+8,13*x+15,-8*x-10,3*x+9,-24*x-9,5*x+9,8*x+10,4*x-4,-12*x-6,-6*x-6,-18*x-5,-2*x-1,21,-6,-6*x,-8*x,-12*x-2,6*x+2,-4*x,-6*x-9,1,8,6*x+13,x,-4,12*x+4,-6*x+8,-10*x-10,-4*x+12,-6*x-6,-6*x-23,4*x+6,-8*x-3,-9*x-23,12*x-12,-6,8*x+11,12*x+12,16*x+7,3*x+12,4,x+3,-12*x-8,10,12,-13*x-25,-6*x-21,-2*x+2,-22*x-4,-8,-1,2*x-8,-12*x+14,-4*x-12,18*x+15,-4*x+12,-2*x-8,-7*x-9,30*x+13,-6*x-3,-14,-6*x+2,-7,2*x-2,18*x,-3*x-11,-10*x+8,12*x+12,-2*x-6,-9*x-33,-20*x+8,-2*x,4*x+5,-10*x-18,3,2*x+16,-2*x,-2,2*x+2,-3*x+6,6*x-8,15*x+25,6*x-18,-x-13,12*x,-2*x+10,4*x+2,10*x,-14,-3*x-3,16*x+20,-2*x-11,-10*x+1,-8*x-2,24,-2*x,-2,15*x+17,2*x-4,-12*x-12,-8*x+10,-4*x,2,-2*x-8,-3,-4*x,16*x+6,-6*x-13,10*x+18,-18*x-24,-6*x+6,6*x-12,-8*x+16,4*x+4,-18*x-30,x-4,2*x,-2*x-6,-14*x-17,6*x-6,20*x+3,8*x-2,6*x+4,-16*x+2,-16*x-20,5*x+11,-10*x+16,x,2,6*x+18,22*x+14,-3*x-3,14*x-2,4,-6*x,14*x-6,8*x+4,6,20*x+12,12*x+6,-4*x-3,-5*x-9,-4,5*x-8,-36*x-24,9*x-1,-6*x-16,2*x+4,12*x-13,-4*x-4,4*x+12,-9*x+16,-2*x-13,-24*x-30,6*x,-5,29,-2*x-6,-4*x-5,12*x,6*x-6,4,-12*x+4,-6,6,10*x+24,-2*x+22,-x,16*x-8,12*x+30,6*x,20,-8*x-4,8*x+8,-8*x-4,-6*x-2,4*x-6,10*x+14,10*x-3,3*x-12,8*x+3,-17*x-21,-8*x,-7*x,-30,-x-1,-18*x-24,-2*x+19,8*x-12,-9*x-21,14*x-7,-4*x-2,-2*x-8,-x-3,6,6*x+6,2*x-12,-10*x-16,14,3*x]];
E[321,4] = [x^2+x-1, [1,-x-1,-1,x,1,x+1,-2,2*x+1,1,-x-1,2*x-2,-x,-1,2*x+2,-1,-3*x-3,4*x+3,-x-1,-2*x-5,x,2,2*x,-4*x-4,-2*x-1,-4,x+1,-1,-2*x,-2*x-2,x+1,-6,-x+4,-2*x+2,-3*x-7,-2,x,1,5*x+7,1,2*x+1,-8*x-4,-2*x-2,2*x-2,-4*x+2,1,4*x+8,-2*x+2,3*x+3,-3,4*x+4,-4*x-3,-x,-2*x+6,x+1,2*x-2,-4*x-2,2*x+5,2*x+4,8*x+8,-x,-12*x-5,6*x+6,-2,2*x+3,-1,-2*x,-2*x+4,-x+4,4*x+4,2*x+2,-2*x-5,2*x+1,10*x+6,-x-1,4,-3*x-2,-4*x+4,-x-1,12*x+4,-3*x-3,1,4*x+12,-4*x-8,2*x,4*x+3,2*x,2*x+2,-6*x+2,2*x-4,-x-1,2,-4,6,-2*x,-2*x-5,x-4,6*x+2,3*x+3,2*x-2,-4*x,6*x-2,3*x+7,-2*x-10,-2*x-1,2,-6*x-4,-1,-x,8*x-2,2*x,-1,6*x+6,-4*x-1,-5*x-7,-4*x-4,-2,-1,-8*x-16,-8*x-6,-2*x-1,-12*x-3,5*x+17,8*x+4,-6*x,-9,2*x+2,-6*x-2,-x-13,-2*x+2,x+1,-2*x+9,4*x-2,4*x+10,-4*x-2,-1,2*x+11,10*x+12,-4*x-8,4*x-2,-2*x,2*x-2,5*x+7,-2*x+2,-3*x-3,-2*x-2,-6*x-16,3,x,-4*x+6,-4*x-4,-10*x-9,-8*x-9,4*x+3,-4*x,-6,x,6*x-6,-4*x-16,2*x-6,-x+4,8*x+8,-x-1,8*x,4*x-8,-2*x+2,8*x+12,-6*x+5,4*x+2,-12,-3*x-7,-2*x-5,-4*x+2,5,-2*x-4,8,6*x,-8*x-8,4*x+2,-2*x-25,x,6*x-2,-2*x-2,12*x+5,-4*x-12,1,-6*x-6,-10*x+2,4*x-2,2,5*x+7,2*x-11,-2*x-3,-8*x-10,-2*x-8,1,-3*x,14,2*x,14*x+9,-8*x-4,2*x-4,2*x-4,4*x+4,x-4,-8*x-4,10*x+12,-4*x-4,3*x+3,-2*x+6,-2*x-2,8*x+22,8*x-2,2*x+5,x+1,2*x-2,-2*x-1,12,2*x-6,-10*x-6,-4*x+2,-4*x-3,x+1,-10*x-9,2*x-8,-4,x+5,6*x+22,3*x+2,-10*x+6,4*x+8,4*x-4,-2*x-6,12*x+4,x+1,-2*x+2,8,-12*x-4,6*x+14,18*x+10,3*x+3,-12*x+5,3*x+15,-1,7*x-12,-3,-4*x-12,2*x+5,-12*x-6,4*x+8,9*x+9,2*x-6,-2*x,8*x,2*x+8,-4*x-3,9*x+8,12*x+18,-2*x,-2,-x,-2*x-2,-9*x-7,-4,6*x-2,-2*x+6,-10*x-14,-2*x+4,6*x-2,-12*x-3,x+1,14*x+3,-9*x-21,-2,-12*x-22,-8*x+8,4,6*x-2,2*x-2,-6,-4*x-2,-4*x+2,2*x,-2*x+17,-3*x-2,2*x+5,-2*x,16*x+8,-x+4,8*x+8,2*x+4,-6*x-2,-4*x+10,-6*x+20,-3*x-3,8*x+8,2*x+1,-2*x+2,-6*x-2,4*x+4,4*x,-4*x+4,9*x+19,-6*x+2,15*x+21,-12*x-5,-3*x-7,-16*x-10,8*x-4,2*x+10,6*x+6,10*x+15,2*x+1,-16*x-15,6*x,-2,-8*x+12,20*x+2,6*x+4,4*x,2*x+3,1,-8*x-16,-18*x-23,x,4,-8,-8*x+2,-20,4*x-4,-2*x,-22*x-3,-4*x-4,1,-5*x+1,-2*x+4,-6*x-6,-12*x-9,12*x+12,4*x+1,-x+4,-12*x+12,5*x+7,20,-6*x+2,4*x+4,-5*x-5,6*x+3,2,26*x+10,-8*x-8,1,12*x-10,-20*x-6,8*x+16,-2*x-5,-6*x+2,8*x+6,25*x+27,-10*x-27,2*x+1,16*x+10,2*x-4,12*x+3,2*x,10*x+6,-5*x-17,-18*x-18,12*x+24,-8*x-4,-x-1,4*x-12,6*x,-12*x-27,-2*x+8,9,6*x-2,2*x+2,-2*x-2,-10*x,-3*x-2,6*x+2,11*x+9,-24*x-20,x+13,-4*x+4,10*x+18,2*x-2,-4*x+6,-8*x-2,-x-1,-12*x-28,-6*x-3,2*x-9,-14*x-14,12*x+4,-4*x+2,-24*x-14,-9*x-23,-4*x-10,12*x+12,-18,4*x+2,6,-8*x+6,1,-4*x-8,2*x-2,-2*x-11,2*x+24,4*x+12,-10*x-12,-8*x-2,-16*x-16,4*x+8,-4*x-8,x-4,-4*x+2,-6*x-4,-14*x+3,2*x,-29,-22*x-30,-2*x+2,14*x+2,-16*x-12,-5*x-7,24*x+10,-x,2*x-2,2*x,6*x,3*x+3,18*x+8,-12*x-12,2*x+2,-10*x+8,20*x+28,6*x+16,-4*x-32,-6*x+2,-3,3*x+7,24*x+12,-x,2*x-4,9*x+19,4*x-6,-4*x-6,24*x+3,4*x+4,24*x-8,3*x-4,10*x+9,-22*x-28,2,8*x+9,28*x+5,-6*x+4,-4*x-3,-4,6*x+20,4*x,16*x-8,6*x+12,6,-4*x-16,14*x,-x,4*x-8,-2*x,-6*x+6,8*x+24,-12*x+8,4*x+16,8*x+20,2*x-8,-2*x+6,-10*x-28,18*x+9,x-4,-1,-5*x+7,-8*x-8,9*x-12,6*x+2,x+1,16*x+26,2*x-29,-8*x,3*x+3,2*x-15,-4*x+8,-6*x-14,-5*x-7,2*x-2,18*x+18,4*x+10,-8*x-12,-10*x-18,-9*x]];

E[322,1] = [x, [1,-1,2,1,0,-2,1,-1,1,0,4,2,0,-1,0,1,6,-1,-6,0,2,-4,-1,-2,-5,0,-4,1,10,0,4,-1,8,-6,0,1,-2,6,0,0,-10,-2,-4,4,0,1,12,2,1,5,12,0,-6,4,0,-1,-12,-10,-2,0,0,-4,1,1,0,-8,0,6,-2,0,-8,-1,-6,2,-10,-6,4,0,-8,0,-11,10,-14,2,0,4,20,-4,-14,0,0,-1,8,-12,0,-2,-2,-1,4,-5,-4,-12,-4,0,0,6,16,-4,-10,0,-4,1,-2,12,0,10,0,2,6,0,5,0,-20,4,0,-1,16,-1,-8,0,6,8,-6,0,0,-6,10,2,10,0,24,8,0,1,0,6,2,-2,18,10,16,6,6,-4,0,0,-12,8,-12,0,-1,11,0,-10,0,14,12,-2,-13,0,-6,-4,-16,-20,-5,4,-4,14,12,0,-12,0,0,1,0,-8,24,12,-4,0,-8,2,14,2,0,1,6,-4,4,5,0,4,10,12,0,4,-1,0,-24,0,12,-6,-16,-16,0,4,4,10,-12,0,0,4,8,-1,-5,2,-14,-12,-20,0,8,-10,26,0,0,-2,-16,-6,0,0,-18,-5,-10,0,0,20,0,-4,-28,0,-2,1,-4,-16,0,1,-22,8,-2,0,10,-6,24,-8,0,6,-28,0,16,0,0,6,0,-10,-20,-2,30,-10,4,0,10,-24,26,-8,0,0,-10,-1,19,0,-4,-6,8,-2,0,2,-16,-18,0,-10,-4,-16,-8,-6,0,-6,-2,4,-8,0,8,0,14,12,0,-8,30,12,40,0,32,1,-36,-11,0,0,-20,10,12,0,-32,-14,-2,-12,0,2,22,13,-4,0,16,6,1,4,0,16,24,20,-16,5,0,-4,-14,4,0,-14,12,-12,-24,0,17,12,10,0,0,0,24,-1,-10,0,-6,8,-14,-24,0,-12,0,4,-20,0,32,8,20,-2,0,-14,-4,-2,-26,0,-6,-1,12,-6,0,4,24,-4,-12,-5,-18,0,0,-4,0,-10,-8,-12,6,0,20,-4,-2,1,0,0,20,24,-26,0,-22,-12,12,6,-30,16,0,16,0,0,24,-4,30,-4,0,-10,6,12,8,0,1,0,-20,-4,0,-8,36,1,-30,5,-40,-2,32,14,0,12,-10,20,-24,0,-24,-8,8,10,0,-26,-30,0,0,0,-24,2,-16,16,30,6,-6,0,12,0,0,18,-2,5,0,10,-32,0,0,0,28,-20,60,0,0,4,-8,28,20,0]];
E[322,2] = [x^2+2*x-4, [1,-1,x,1,-x-2,-x,-1,-1,-2*x+1,x+2,0,x,-2*x-4,1,-4,1,x-4,2*x-1,2*x+2,-x-2,-x,0,-1,-x,2*x+3,2*x+4,2*x-8,-1,-2,4,x+2,-1,0,-x+4,x+2,-2*x+1,6,-2*x-2,-8,x+2,-10,x,2*x,0,-x+6,1,-x-10,x,1,-2*x-3,-6*x+4,-2*x-4,-6,-2*x+8,0,1,-2*x+8,2,-x+8,-4,-3*x+2,-x-2,2*x-1,1,4*x+16,0,4,x-4,-x,-x-2,2*x+4,2*x-1,6*x+6,-6,-x+8,2*x+2,0,8,-4*x-4,-x-2,-6*x+5,10,4*x+6,-x,4*x+4,-2*x,-2*x,0,5*x,x-6,2*x+4,-1,4,x+10,-2*x-12,-x,-5*x-8,-1,0,2*x+3,2*x-8,6*x-4,-4,2*x+4,4,6,2*x-4,2*x-8,2*x+10,0,6*x,-1,2*x+10,2*x-8,x+2,-2,-2*x+12,x-8,-x+4,4,-11,3*x-2,-10*x,x+2,2*x-4,-2*x+1,-6*x-12,-1,-4*x+8,-4*x-16,-x-16,0,-2*x-2,-4,8*x+8,-x+4,-6*x-2,x,-9*x-12,x+2,-8*x-4,-2*x-4,0,-2*x+1,2*x+4,-6*x-6,x,6,6*x+14,x-8,2*x-12,-2*x-2,13*x-12,0,-2*x-8,-8,-7*x-10,4*x+4,-6*x,x+2,1,6*x-5,-2*x-4,-10,0,-4*x-6,-7*x+2,x,8*x+19,-4*x-4,6*x-14,2*x,-4*x+8,2*x,-2*x-3,0,10*x-4,-5*x,4*x+12,-x+6,-x+10,-2*x-4,8*x-12,1,-6*x-12,-4,0,-x-10,-2*x+8,2*x+12,-4*x+8,x,4*x-10,5*x+8,8*x+16,1,-8*x-10,0,-12,-2*x-3,4*x,-2*x+8,2,-6*x+4,10*x+20,4,2*x-1,-2*x-4,0,-4,4*x+12,-6,8,-2*x+4,-8,-2*x+8,-x-2,-2*x-10,-6*x+24,0,8*x+8,-6*x,-7*x-2,1,4*x-13,-2*x-10,-6*x-14,-2*x+8,-x-14,-x-2,0,2,-2*x-14,2*x-12,10*x+24,-x+8,4*x-16,x-4,2*x+4,-4,-3*x+4,11,11*x,-3*x+2,-x-2,10*x,-4*x-24,-x-2,-2*x+16,-2*x+4,-2*x-2,2*x-1,0,6*x+12,-4*x+16,1,-4*x-22,4*x-8,-6,4*x+16,4*x-2,x+16,12,0,6*x+12,2*x+2,-10*x+20,4,-4*x+8,-8*x-8,-x-14,x-4,8,6*x+2,0,-x,8*x+10,9*x+12,x-6,-x-2,6*x-2,8*x+4,2*x+2,2*x+4,-8*x-8,0,10,2*x-1,-10*x+3,-2*x-4,2*x-20,6*x+6,-9*x-18,-x,-8*x-12,-6,0,-6*x-14,2*x+4,-x+8,-2*x,-2*x+12,-12*x+8,2*x+2,-2*x+8,-13*x+12,x+28,0,-4*x,2*x+8,9*x+14,8,5*x+20,7*x+10,x-6,-4*x-4,10,6*x,0,-x-2,-8*x+8,-1,-10*x,-6*x+5,-6*x-28,2*x+4,6*x+8,10,x+10,0,-2*x-28,4*x+6,-12*x+6,7*x-2,-4*x-8,-x,-8*x-26,-8*x-19,6*x+8,4*x+4,0,-6*x+14,-1,-2*x,4,4*x-8,10*x+12,-2*x,4*x-8,2*x+3,16*x+16,0,2*x-2,-10*x+4,-4*x-16,5*x,6*x-4,-4*x-12,12,x-6,1,x-10,-11*x,2*x+4,-6*x-36,-8*x+12,10*x+12,-1,20*x-10,6*x+12,6,4,6*x-18,0,-8*x+8,x+10,4*x+8,2*x-8,-8*x-8,-2*x-12,-24,4*x-8,6*x-8,-x,0,-4*x+10,10*x-16,-5*x-8,6*x+2,-8*x-16,-x+4,-1,-14*x-4,8*x+10,4*x+24,0,2*x+12,12,2*x-8,2*x+3,-16*x-18,-4*x,-4*x-16,2*x-8,-5*x+14,-2,0,6*x-4,2*x+26,-10*x-20,10*x-24,-4,x-8,-2*x+1,-6*x-28,2*x+4,6*x-36,0,10*x+22,4,8*x+26,-4*x-12,15*x-2,6,-9*x-4,-8,3*x-2,2*x-4,0,8,4*x+16,2*x-8,-x+8,x+2,8,2*x+10,-2*x-2,6*x-24,x-10,0,-2*x+1,-8*x-8,4,6*x,-20,7*x+2,2*x+24,-1,6*x+2,-4*x+13,0,2*x+10,-16*x+8,6*x+14,-4*x-16,2*x-8,10*x+10,x+14,-20*x+40,x+2,-4*x+8,0,4*x-16,-2,-4*x-8,2*x+14,2*x-14,-2*x+12,-4,-10*x-24,4*x-28,x-8,0,-4*x+16,2*x+22,-x+4,12*x-6,-2*x-4,-12*x-20,4,-12*x-24,3*x-4,x,-11,8*x+36,-11*x,0,3*x-2,-8,x+2,4*x-12,-10*x,-2*x+8,4*x+24,0,x+2,-2*x-4,2*x-16,-4*x-4,2*x-4]];
E[322,3] = [x, [1,-1,0,1,-2,0,1,-1,-3,2,-4,0,4,-1,0,1,-8,3,-2,-2,0,4,1,0,-1,-4,0,1,2,0,-6,-1,0,8,-2,-3,-10,2,0,2,6,0,-8,-4,6,-1,6,0,1,1,0,4,2,0,8,-1,0,-2,0,0,10,6,-3,1,-8,0,8,-8,0,2,-12,3,6,10,0,-2,-4,0,0,-2,9,-6,2,0,16,8,0,4,12,-6,4,1,0,-6,4,0,12,-1,12,-1,8,0,-20,-4,0,-2,-4,0,18,-8,0,1,-14,0,-2,2,-12,0,-8,0,5,-10,0,-6,12,3,-20,-1,0,8,0,0,-2,-8,0,8,-18,0,-4,-2,0,12,-16,-3,-4,-6,0,-10,-10,0,-20,2,24,4,12,0,-18,0,0,2,1,-9,4,6,0,-2,-14,0,3,-16,6,-8,0,0,-1,-4,0,-12,20,6,-6,-4,0,-1,20,0,32,6,0,-4,-16,0,-10,-12,0,1,6,-12,20,1,0,-8,2,0,-12,20,-3,4,8,0,4,2,0,4,16,0,-6,-18,0,8,-32,0,-10,-1,3,14,6,0,2,2,0,-2,6,12,-12,0,0,8,12,0,-8,-5,0,10,-2,0,-8,6,0,-12,-22,-3,-4,20,0,1,-14,0,-10,-8,-6,0,8,0,-4,2,0,8,16,0,2,-8,0,18,4,0,22,4,18,2,6,0,-2,-12,0,16,6,3,47,4,0,6,22,0,0,10,0,10,4,0,-8,20,0,-2,-20,-24,-28,-4,0,-12,-10,0,-8,18,6,0,-10,0,-8,-2,0,-1,16,9,-4,-4,0,-6,6,0,20,2,30,14,-16,0,-26,-3,0,16,24,-6,1,8,0,0,-28,0,-16,1,0,4,-10,0,24,12,0,-20,-24,-6,-15,6,0,4,-12,0,-12,1,-18,-20,2,0,-10,-32,0,-6,8,0,4,4,0,16,24,0,8,10,24,12,-6,0,-8,-1,0,-6,0,12,20,-20,0,-1,-18,0,-24,8,-18,-2,40,0,10,12,0,-20,0,3,-4,-4,0,-8,-6,0,-14,-4,-18,-2,8,0,10,-4,0,-16,0,0,4,6,0,18,-2,0,-10,-8,-3,32,-4,0,-24,10,0,1,-34,-3,-24,-14,0,-6,-8,0,26,-2,0,-2,-24,0,16,2,0,-6,22,-12,8,12,0,0,32,0,2,-8,-6,-12,4,0,-40,8,0,5,-24,0,16,-10,0,2,36,0,-16,8,-24,-6,-12,0,28,12]];
E[322,4] = [x, [1,1,2,1,-2,2,1,1,1,-2,6,2,-4,1,-4,1,-2,1,4,-2,2,6,1,2,-1,-4,-4,1,-10,-4,-8,1,12,-2,-2,1,-8,4,-8,-2,-2,2,6,6,-2,1,12,2,1,-1,-4,-4,12,-4,-12,1,8,-10,-6,-4,-6,-8,1,1,8,12,-2,-2,2,-2,16,1,2,-8,-2,4,6,-8,0,-2,-11,-2,4,2,4,6,-20,6,-6,-2,-4,1,-16,12,-8,2,2,1,6,-1,8,-4,-8,-4,-4,12,6,-4,4,-12,-16,1,-14,8,-2,-10,-4,-6,-2,-4,25,-6,-4,-8,12,1,8,1,12,8,10,12,4,-2,8,-2,6,2,-10,-2,24,16,-24,1,20,2,2,-8,-4,-2,-8,4,-2,6,16,-8,-6,0,24,-2,1,-11,20,-2,-24,4,-12,2,3,4,4,6,24,-20,-1,6,-12,-6,0,-2,-2,-4,-12,1,16,-16,-12,12,-4,-8,16,2,-2,2,16,1,2,6,-16,-1,-4,8,-10,-4,4,-8,1,-4,24,-4,-12,12,32,6,-12,-4,-8,4,4,-12,8,-16,4,1,-1,-14,24,8,22,-2,12,-10,-6,-4,-24,-6,0,-2,-24,-4,-6,25,-10,-6,-2,-4,-16,-8,8,12,0,1,6,8,8,1,2,12,-8,8,-10,10,28,12,-24,4,-12,-2,-24,8,0,-2,-8,6,-6,2,-14,-10,-8,-2,2,24,24,16,-16,-24,-2,1,-13,20,4,2,-26,2,12,-8,-24,-4,-4,-2,6,-8,16,4,12,-2,-2,6,-16,16,28,-8,2,-6,-2,0,-22,24,-60,-2,12,1,-8,-11,4,20,8,-2,12,-24,-8,4,-8,-12,4,2,-6,3,-28,4,-48,4,1,6,-4,24,-12,-20,-8,-1,16,6,-14,-12,-32,-6,-4,0,-12,-2,-3,-2,50,-4,-4,-12,-8,1,-2,16,12,-16,-4,-12,24,12,40,-4,26,-8,16,16,8,2,-12,-2,6,2,-4,16,-2,1,20,2,0,6,28,-16,8,-1,-26,-4,32,8,22,-10,-48,-4,22,4,12,-8,-6,1,-8,-4,-20,24,0,-4,-12,-12,12,12,2,32,-6,6,-48,-12,12,-4,-34,-8,40,4,4,4,8,-12,1,8,16,-16,12,4,-8,1,-18,-1,-12,-14,-16,24,8,8,-26,22,8,-2,8,12,-32,-10,32,-6,28,-4,-2,-24,-12,-6,36,0,-4,-2,12,-24,-32,-4,32,-6,2,25,-4,-10,-24,-6,40,-2,16,-4,20,-16,-12,-8,16,8,24,12]];
E[322,5] = [x, [1,1,-2,1,-2,-2,-1,1,1,-2,-2,-2,-4,-1,4,1,-6,1,0,-2,2,-2,1,-2,-1,-4,4,-1,-2,4,4,1,4,-6,2,1,0,0,8,-2,6,2,6,-2,-2,1,0,-2,1,-1,12,-4,-12,4,4,-1,0,-2,-10,4,2,4,-1,1,8,4,-2,-6,-2,2,8,1,2,0,2,0,2,8,8,-2,-11,6,-16,2,12,6,4,-2,6,-2,4,1,-8,0,0,-2,-2,1,-2,-1,-8,12,0,-4,-4,-12,-18,4,-20,4,0,-1,-6,0,-2,-2,-4,-10,6,4,-7,2,-12,4,12,-1,16,1,-12,8,22,4,0,-2,-8,-6,-2,-2,-14,2,0,8,8,1,4,2,-2,0,-12,2,0,0,-6,2,-8,8,18,8,24,-2,-1,-11,-4,6,-8,-16,-16,2,3,12,0,6,-24,4,1,-2,20,6,16,-2,-2,4,-4,1,0,-8,12,0,-4,0,-16,-2,-18,-2,-16,1,18,-2,24,-1,4,-8,2,12,-12,0,1,-4,0,-4,4,-12,-16,-18,-12,4,-4,-20,-4,4,24,0,-16,-1,-1,-6,-12,0,6,-2,-4,-2,10,-4,0,-10,-16,6,-16,4,14,-7,10,2,-2,-12,0,4,32,12,-12,-1,-2,16,-24,1,-6,-12,0,8,-2,22,-12,4,24,0,-12,-2,24,-8,20,-6,-8,-2,2,-2,26,-14,4,2,-22,0,-12,8,0,8,-6,1,19,4,4,2,14,-2,20,0,-8,-12,-4,2,-6,0,16,0,-4,-6,10,2,0,-8,24,8,-10,18,2,8,2,24,4,-2,36,-1,0,-11,4,-4,40,6,0,-8,16,-16,0,-16,4,2,26,3,12,12,-8,0,-1,6,4,-24,12,4,24,1,-16,-2,10,20,-16,6,-12,16,-4,-2,-19,-2,14,4,-4,-4,0,1,6,0,12,-8,4,12,-24,0,8,-4,2,0,-32,-16,-24,-2,-4,-18,6,-2,-28,-16,-6,1,-44,18,-16,-2,-20,24,0,-1,6,4,-16,-8,22,2,0,12,-34,-12,4,0,10,1,32,-4,28,0,4,-4,-20,4,0,-12,6,-16,-2,-18,-16,-12,28,4,-14,-4,-8,-20,0,-4,20,4,1,24,-16,0,-12,-16,24,-1,30,-1,-12,-6,0,-12,-8,0,-18,6,-24,-2,8,-4,16,-2,16,10,-40,-4,2,0,-36,-10,-12,-16,0,6,-12,-16,-8,4,0,14,2,-7,4,10,8,2,8,-2,0,-12,12,0,4,4,-8,32,-24,12]];
E[322,6] = [x^2+2*x-2, [1,1,x,1,x+2,x,1,1,-2*x-1,x+2,-2*x-2,x,-2*x,1,2,1,-x,-2*x-1,-2,x+2,x,-2*x-2,1,x,2*x+1,-2*x,-4,1,8,2,3*x-2,1,2*x-4,-x,x+2,-2*x-1,-2*x+2,-2,4*x-4,x+2,-2,x,0,-2*x-2,-x-6,1,-3*x-6,x,1,2*x+1,2*x-2,-2*x,2*x+2,-4,-2*x-8,1,-2*x,8,-5*x-8,2,3*x+6,3*x-2,-2*x-1,1,-4,2*x-4,2*x-6,-x,x,x+2,6*x+4,-2*x-1,-2*x-6,-2*x+2,-3*x+4,-2,-2*x-2,4*x-4,4*x-2,x+2,2*x+3,-2,-6*x-2,x,-2,0,8*x,-2*x-2,3*x+12,-x-6,-2*x,1,-8*x+6,-3*x-6,-2*x-4,x,-x-8,1,-2*x+10,2*x+1,-2*x,2*x-2,16,-2*x,2,2*x+2,4*x+4,-4,-4*x-6,-2*x-8,6*x-4,1,2*x+18,-2*x,x+2,8,-6*x+8,-5*x-8,-x,2,1,3*x+6,-2*x,3*x-2,-4*x-4,-2*x-1,-10*x-8,1,0,-4,x-4,2*x-4,-2,2*x-6,-4*x-8,-x,10*x+10,x,3*x-4,x+2,-6,6*x+4,-4*x+8,-2*x-1,8*x+16,-2*x-6,x,-2*x+2,12*x+14,-3*x+4,-2*x-16,-2,-3*x+4,-2*x-2,-2*x+2,4*x-4,-3*x-6,4*x-2,-2*x+4,x+2,1,2*x+3,6*x+8,-2,-4*x-4,-6*x-2,11*x+14,x,-8*x-5,-2,4*x+2,0,4*x+4,8*x,2*x+1,-2*x-2,2*x-10,3*x+12,-8*x-8,-x-6,11*x+6,-2*x,6,1,2*x,-8*x+6,-2*x+4,-3*x-6,-4,-2*x-4,16,x,4*x+2,-x-8,-4*x,1,4*x+6,-2*x+10,-12*x-16,2*x+1,-10*x+4,-2*x,8,2*x-2,-2*x-4,16,-2*x-1,-2*x,4*x+4,2,16*x+16,2*x+2,-8*x+12,4*x+4,0,-4,3*x-2,-4*x-6,-2*x-4,-2*x-8,-4*x+4,6*x-4,x-22,1,4*x-9,2*x+18,-4*x+2,-2*x,3*x-2,x+2,2*x-4,8,6*x+12,-6*x+8,-6*x-18,-5*x-8,-10*x+8,-x,-6*x,2,7*x+16,1,-x+16,3*x+6,x+2,-2*x,4*x,3*x-2,10*x-12,-4*x-4,-8*x-2,-2*x-1,-2*x-2,-10*x-8,-2*x,1,-8*x-18,0,-2*x+2,-4,-16*x-8,x-4,-4*x-6,2*x-4,2*x+8,-2,6*x+6,2*x-6,8*x-4,-4*x-8,-x-10,-x,4*x-4,10*x+10,2*x-10,x,-8,3*x-4,13*x-10,x+2,-2*x-18,-6,-4*x+14,6*x+4,-4,-4*x+8,-2,-2*x-1,-2*x-15,8*x+16,-6*x-2,-2*x-6,x+26,x,-8*x-26,-2*x+2,8*x+8,12*x+14,-2*x,-3*x+4,0,-2*x-16,4*x-4,-2,6*x+18,-3*x+4,11*x,-2*x-2,16*x,-2*x+2,x-22,4*x-4,7*x,-3*x-6,-x-6,4*x-2,-8*x-24,-2*x+4,-16*x-16,x+2,-4*x+8,1,2*x,2*x+3,6*x-8,6*x+8,2*x-8,-2,-3*x-6,-4*x-4,-6*x+4,-6*x-2,-10*x+6,11*x+14,-6*x-8,x,-8*x-26,-8*x-5,14*x+4,-2,10*x-8,4*x+2,1,0,2,4*x+4,2*x+32,8*x,-12*x-20,2*x+1,8*x,-2*x-2,6*x+22,2*x-10,4*x+20,3*x+12,2*x-2,-8*x-8,-4*x+2,-x-6,-15,11*x+6,x,-2*x,-6*x-16,6,-14*x-16,1,4*x+2,2*x,2*x+2,-8*x+6,4*x+6,-2*x+4,4*x-8,-3*x-6,-16*x,-4,2*x-2,-2*x-4,12*x-20,16,2*x-20,x,-2*x-8,4*x+2,0,-x-8,-4*x+10,-4*x,-x,1,-6*x+2,4*x+6,-2*x+4,-2*x+10,-10*x-24,-12*x-16,-2*x,2*x+1,-16*x-18,-10*x+4,16*x-12,-2*x,3*x+10,8,-8*x+4,2*x-2,2*x+6,-2*x-4,-10*x+20,16,-5*x-8,-2*x-1,-2*x-16,-2*x,-10*x+6,4*x+4,4*x-14,2,-2*x+34,16*x+16,3*x+18,2*x+2,3*x-4,-8*x+12,3*x+6,4*x+4,16*x-8,0,16*x+16,-4,-9*x+8,3*x-2,16,-4*x-6,-2,-2*x-4,x+18,-2*x-8,-2*x-1,-4*x+4,4*x+32,6*x-4,12*x+30,x-22,-10*x+24,1,-10*x-16,4*x-9,4*x+4,2*x+18,-12*x-4,-4*x+2,-4,-2*x,-6*x-2,3*x-2,4*x,x+2,16*x+24,2*x-4,4*x+8,8,6*x-4,6*x+12,8*x+18,-6*x+8,2*x-6,-6*x-18,-6,-5*x-8,0,-10*x+8,-4*x-2,-x,2*x-10,-6*x,-4*x+12,2,-12*x+8,7*x+16,x,1,-8*x-18,-x+16,12*x,3*x+6,-4*x+12,x+2,12*x+4,-2*x,-8*x,4*x,10*x+16,3*x-2,6*x+4,10*x-12,-8*x+4,-4*x-4]];
E[322,7] = [x^3-2*x^2-6*x+8, [1,1,x,1,-x+2,x,-1,1,x^2-3,-x+2,-x^2+4,x,-x^2+6,-1,-x^2+2*x,1,x^2-x-2,x^2-3,x^2-2*x-4,-x+2,-x,-x^2+4,-1,x,x^2-4*x-1,-x^2+6,2*x^2-8,-1,x^2+2*x-10,-x^2+2*x,-x^2+x+4,1,-2*x^2-2*x+8,x^2-x-2,x-2,x^2-3,-2*x^2+2*x+6,x^2-2*x-4,-2*x^2+8,-x+2,-2*x^2+4*x+10,-x,2*x^2-12,-x^2+4,-3*x+2,-1,x^2-x-4,x,1,x^2-4*x-1,x^2+4*x-8,-x^2+6,2*x^2-2*x-10,2*x^2-8,2*x,-1,2*x-8,x^2+2*x-10,3*x,-x^2+2*x,2*x^2+x-14,-x^2+x+4,-x^2+3,1,4,-2*x^2-2*x+8,x^2-4,x^2-x-2,-x,x-2,-2*x^2+2*x,x^2-3,-4*x^2+2*x+18,-2*x^2+2*x+6,-2*x^2+5*x-8,x^2-2*x-4,x^2-4,-2*x^2+8,x^2-6*x-8,-x+2,x^2+4*x-7,-2*x^2+4*x+10,x^2+4,-x,x^2-6*x+4,2*x^2-12,4*x^2-4*x-8,-x^2+4,-x^2-x+6,-3*x+2,x^2-6,-1,-x^2-2*x+8,x^2-x-4,2*x^2-6*x,x,x^2+3*x-2,1,-3*x^2-4*x+4,x^2-4*x-1,-x^2+14,x^2+4*x-8,-8,-x^2+6,x^2-2*x,2*x^2-2*x-10,-4*x^2+20,2*x^2-8,-2*x^2+4*x+6,2*x,-2*x^2-6*x+16,-1,-2*x+10,2*x-8,x-2,x^2+2*x-10,-x^2-4*x-2,3*x,-x^2+x+2,-x^2+2*x,2*x^2+4*x-11,2*x^2+x-14,-2*x+16,-x^2+x+4,4*x^2-8*x-4,-x^2+3,-2*x-8,1,4*x^2-16,4,2*x^2+x,-2*x^2-2*x+8,-x^2+2*x+4,x^2-4,-4*x,x^2-x-2,-4*x^2+6*x+18,-x,-2*x^2-x+16,x-2,x^2+2*x-8,-2*x^2+2*x,4*x+8,x^2-3,-2*x^2+8*x-12,-4*x^2+2*x+18,x,-2*x^2+2*x+6,-2,-2*x^2+5*x-8,6*x,x^2-2*x-4,3*x^2+x-2,x^2-4,-x^2+4*x,-2*x^2+8,-x+10,x^2-6*x-8,2*x^2+2*x-16,-x+2,1,x^2+4*x-7,2*x^2-6*x-20,-2*x^2+4*x+10,2*x^2,x^2+4,-x^2+x-4,-x,-2*x^2+4*x+7,x^2-6*x+4,-x^2-2*x+12,2*x^2-12,x^2-2*x+14,4*x^2-4*x-8,-x^2+4*x+1,-x^2+4,3*x^2,-x^2-x+6,-2*x^2-4*x+20,-3*x+2,-2*x^2+5*x+10,x^2-6,5*x^2-2*x-16,-1,-2*x^2+10*x-4,-x^2-2*x+8,-2*x^2-2*x,x^2-x-4,-2*x^2+8,2*x^2-6*x,4*x^2-8*x-16,x,-4*x+18,x^2+3*x-2,4*x,1,4*x+6,-3*x^2-4*x+4,4*x-8,x^2-4*x-1,2*x^2+2*x-8,-x^2+14,-x^2-2*x+10,x^2+4*x-8,-4*x^2+10*x+4,-8,-x^2+3,-x^2+6,2*x^2-16,x^2-2*x,2*x^2-4*x+4,2*x^2-2*x-10,-2*x^2-12*x+16,-4*x^2+20,-8,2*x^2-8,x^2-x-4,-2*x^2+4*x+6,-6*x^2-6*x+32,2*x,-4*x-4,-2*x^2-6*x+16,-3*x^2-x+12,-1,-2*x^2-8*x+19,-2*x+10,-x^2+6*x-4,2*x-8,2*x^2-3*x-6,x-2,2*x^2+2*x-8,x^2+2*x-10,-3*x^2+26,-x^2-4*x-2,x^2-4*x,3*x,-4*x^2-2*x-8,-x^2+x+2,4*x^2+2*x-24,-x^2+2*x,5*x^2-x-34,2*x^2+4*x-11,-x+16,2*x^2+x-14,-x+2,-2*x+16,4*x^2-4*x-24,-x^2+x+4,2*x^2+10*x-8,4*x^2-8*x-4,x^2+6*x-12,-x^2+3,x^2-4,-2*x-8,-4*x^2+10*x-8,1,-2*x^2-4*x+18,4*x^2-16,2*x^2-2*x-6,4,x^2+10*x-2,2*x^2+x,-x^2+6*x+16,-2*x^2-2*x+8,2*x^2-6*x-4,-x^2+2*x+4,-3*x^2+8,x^2-4,-3*x^2-6*x+30,-4*x,-x^2+x-12,x^2-x-2,2*x^2-8,-4*x^2+6*x+18,3*x^2+4*x-20,-x,x^2-6*x-2,-2*x^2-x+16,-x^2-x-4,x-2,-2*x^2-2*x+18,x^2+2*x-8,5*x^2-6*x-28,-2*x^2+2*x,-2*x^2+12*x-16,4*x+8,2*x^2-4*x-10,x^2-3,3*x^2-4*x-13,-2*x^2+8*x-12,5*x^2+4*x-8,-4*x^2+2*x+18,-x+2,x,-3*x^2+6*x,-2*x^2+2*x+6,-4*x^2-8*x,-2,x^2-6,-2*x^2+5*x-8,-2*x^2+12,6*x,-2*x^2+8*x+8,x^2-2*x-4,-x^2+4*x-12,3*x^2+x-2,-x-8,x^2-4,-8*x,-x^2+4*x,x^2-9*x+4,-2*x^2+8,x^2-x-26,-x+10,3*x-2,x^2-6*x-8,5*x^2+2*x-26,2*x^2+2*x-16,-8*x-8,-x+2,-8*x^2-4*x+32,1,-6*x+16,x^2+4*x-7,5*x^2-4*x-22,2*x^2-6*x-20,-6*x+16,-2*x^2+4*x+10,-x^2+x+4,2*x^2,-8*x^2+2*x+36,x^2+4,-4*x^2-2*x-2,-x^2+x-4,-2*x,-x,-2*x^2+4*x+2,-2*x^2+4*x+7,-2*x^2+10*x,x^2-6*x+4,2*x+8,-x^2-2*x+12,-1,2*x^2-12,x^2-2*x,x^2-2*x+14,2*x^2-10*x-12,4*x^2-4*x-8,5*x^2+6*x-34,-x^2+4*x+1,-8*x-16,-x^2+4,6*x^2-2*x-38,3*x^2,-2*x^2+16*x-16,-x^2-x+6,-x^2-4*x+8,-2*x^2-4*x+20,3*x^2-2*x-16,-3*x+2,-2*x^2-4*x+13,-2*x^2+5*x+10,8*x^2+x-16,x^2-6,-2*x^2+10*x+4,5*x^2-2*x-16,-4*x^2+2*x+8,-1,4*x^2+4*x-30,-2*x^2+10*x-4,-2*x^2+2*x+10,-x^2-2*x+8,-4*x^2+30,-2*x^2-2*x,20*x-32,x^2-x-4,2*x^2-4*x-28,-2*x^2+8,-x^2+4*x-12,2*x^2-6*x,-2*x^2-8*x,4*x^2-8*x-16,-6*x^2-2*x+40,x,-2*x,-4*x+18,2*x^2+8*x+4,