Open in CoCalc
1
\\ an_s2g0new_201-300.gp
2
\\ This is a PARI readable nonnormalized basis for S_k(Gamma_0(N)) for N
3
\\ in the range: 201 <= N <= 300.
4
\\ The number of a_n computed is sufficient to satisfy Sturm's bound.
5
\\ William Stein ([email protected])
6
7
E[201,1] = [x, [1,-1,1,-1,-1,-1,-5,3,1,1,-4,-1,-4,5,-1,-1,6,-1,-2,1,-5,4,-3,3,-4,4,1,5,4,1,-7,-5,-4,-6,5,-1,5,2,-4,-3,-3,5,7,4,-1]];
8
E[201,2] = [x, [1,-2,-1,2,0,2,0,0,1,0,-6,-2,4,0,0,-4,-7,-2,-5,0,0,12,-1,0,-5,-8,-1,0,1,0,-4,8,6,14,0,2,3,10,-4,0,0,0,-6,-12,0]];
9
E[201,3] = [x, [1,1,-1,-1,-3,-1,-3,-3,1,-3,0,1,4,-3,3,-1,2,1,-2,3,3,0,-7,3,4,4,-1,3,-8,3,-1,5,0,2,9,-1,-3,-2,-4,9,-9,3,9,0,-3]];
10
E[201,4] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+x+3,-x,-x^2+2*x+2,3*x^2-3*x-5,1,-2*x^2+2*x+5,-x^2+7,-x^2+2,-x^2+1,-x^2+x+5,x^2-x-3,4*x^2-2*x-11,3*x^2-4*x-7,x,-x^2-2*x+5,-2*x^2+x+4,x^2-2*x-2,-3*x^2+6*x+5,3*x^2-5*x-5,-3*x^2+3*x+5,-x^2+2*x-1,-3*x^2+5,-1,1,-4*x^2+4*x+12,2*x^2-2*x-5,4*x^2-6*x-5,4*x^2-x-10,x^2-7,5*x^2-4*x-15,-2*x^2+3*x+6,x^2-2,3*x^2-2*x-12,-5*x^2+4*x+5,x^2-1,-x^2-2*x,2*x^2+x-8,x^2-x-5,-1,-x^2+2*x+1,-x^2+x+3]];
11
E[201,5] = [x^5-8*x^3+13*x+2, [2,2*x,2,2*x^2-4,x^4-x^3-7*x^2+5*x+6,2*x,-x^4-x^3+5*x^2+3*x+2,2*x^3-8*x,2,-x^4+x^3+5*x^2-7*x-2,2*x^3-10*x,2*x^2-4,2*x^3-10*x+4,-x^4-3*x^3+3*x^2+15*x+2,x^4-x^3-7*x^2+5*x+6,2*x^4-12*x^2+8,-2*x^4-2*x^3+12*x^2+6*x-10,2*x,2*x^4-2*x^3-12*x^2+10*x+10,-x^4-x^3+7*x^2+x-10,-x^4-x^3+5*x^2+3*x+2,2*x^4-10*x^2,x^4+x^3-5*x^2-5*x,2*x^3-8*x,-x^4+3*x^3+5*x^2-17*x,2*x^4-10*x^2+4*x,2,-x^4-3*x^3+5*x^2+9*x-2,2*x^3+6*x^2-10*x-18,-x^4+x^3+5*x^2-7*x-2,-x^4+x^3+9*x^2-7*x-10,-2*x-4,2*x^3-10*x,-2*x^4-4*x^3+6*x^2+16*x+4,3*x^4-x^3-17*x^2+9*x+6,2*x^2-4,-x^4+x^3+7*x^2+x-4,-2*x^4+4*x^3+10*x^2-16*x-4,2*x^3-10*x+4,x^4-3*x^3-9*x^2+17*x+6,-x^4-x^3+7*x^2+x-10,-x^4-3*x^3+3*x^2+15*x+2,x^4-x^3-9*x^2+11*x+14,2*x^3-6*x-4,x^4-x^3-7*x^2+5*x+6]];
12
13
E[202,1] = [x^4+x^3-8*x^2+x+8, [1,1,x,1,x^3+2*x^2-5*x-2,x,-x^3-2*x^2+4*x+3,1,x^2-3,x^3+2*x^2-5*x-2,-3*x^3-8*x^2+11*x+16,x,-x^2-2*x+4,-x^3-2*x^2+4*x+3,x^3+3*x^2-3*x-8,1,3*x^3+9*x^2-11*x-19,x^2-3,3*x^3+7*x^2-12*x-15,x^3+2*x^2-5*x-2,-x^3-4*x^2+4*x+8,-3*x^3-8*x^2+11*x+16,-2*x^3-4*x^2+10*x+6,x,-2*x^2-3*x+7,-x^2-2*x+4,x^3-6*x,-x^3-2*x^2+4*x+3,-x^3-x^2+6*x+1,x^3+3*x^2-3*x-8,4*x^3+12*x^2-12*x-28,1,-5*x^3-13*x^2+19*x+24,3*x^3+9*x^2-11*x-19,x^2+x-6,x^2-3,x,3*x^3+7*x^2-12*x-15,-x^3-2*x^2+4*x,x^3+2*x^2-5*x-2,2*x,-x^3-4*x^2+4*x+8,-3*x^3-7*x^2+12*x+11,-3*x^3-8*x^2+11*x+16,-x^3-x^2+6*x-2,-2*x^3-4*x^2+10*x+6,-4*x^3-10*x^2+18*x+18,x,x^2-x-6,-2*x^2-3*x+7,6*x^3+13*x^2-22*x-24]];
14
E[202,2] = [x^3+3*x^2-1, [1,-1,x,1,x^2+x-3,-x,-3*x^2-8*x,-1,x^2-3,-x^2-x+3,x^2+3*x-3,x,3*x^2+10*x,3*x^2+8*x,-2*x^2-3*x+1,1,-2*x^2-5*x-2,-x^2+3,-2,x^2+x-3,x^2-3,-x^2-3*x+3,2*x^2+6*x-4,-x,-2*x^2-5*x+3,-3*x^2-10*x,-3*x^2-6*x+1,-3*x^2-8*x,-4*x^2-6*x+6,2*x^2+3*x-1,4*x^2+8*x,-1,-3*x+1,2*x^2+5*x+2,7*x^2+21*x-2,x^2-3,4*x^2+7*x-4,2,x^2+3,-x^2-x+3,-4*x^2-10*x+4,-x^2+3,-2,x^2+3*x-3,-2*x+7,-2*x^2-6*x+4,-6*x^2-18*x-2,x,x^2+9*x+14,2*x^2+5*x-3,x^2-2*x-2]];
15
E[202,3] = [x, [1,-1,0,1,2,0,1,-1,-3,-2,4,0,0,-1,0,1,5,3,1,2,0,-4,6,0,-1,0,0,1,-5,0,0,-1,0,-5,2,-3,-8,-1,0,-2,-4,0,-5,4,-6,-6,6,0,-6,1,0]];
16
17
E[203,1] = [x, [1,-2,-1,2,-4,2,1,0,-2,8,2,-2,4,-2,4,-4,-2,4,5,-8,-1,-4,9,0,11,-8,5,2,-1,-8,-8,8,-2,4,-4,-4,8,-10,-4,0]];
18
E[203,2] = [x, [1,1,2,-1,2,2,1,-3,1,2,-4,-2,-2,1,4,-1,4,1,2,-2,2,-4,0,-6,-1,-2,-4,-1,-1,4,-2,5,-8,4,2,-1,2,2,-4,-6]];
19
E[203,3] = [x^5-2*x^4-8*x^3+14*x^2+9*x-6, [2,2*x,-x^4+x^3+7*x^2-7*x-4,2*x^2-4,x^4-x^3-7*x^2+5*x+6,-x^4-x^3+7*x^2+5*x-6,2,2*x^3-8*x,x^4+x^3-9*x^2-5*x+14,x^4+x^3-9*x^2-3*x+6,-x^4-x^3+5*x^2+7*x+6,-x^4-3*x^3+5*x^2+17*x+2,x^4+x^3-7*x^2-9*x+10,2*x,-x^4+x^3+9*x^2-7*x-18,2*x^4-12*x^2+8,-2*x^3+10*x,3*x^4-x^3-19*x^2+5*x+6,2*x^2-14,x^4+x^3-3*x^2-13*x-6,-x^4+x^3+7*x^2-7*x-4,-3*x^4-3*x^3+21*x^2+15*x-6,-2*x^3-2*x^2+14*x+6,-3*x^4-x^3+17*x^2+x+6,x^4-3*x^3-7*x^2+15*x+8,3*x^4+x^3-23*x^2+x+6,-x^4+3*x^3+7*x^2-21*x-4,2*x^2-4,-2,-x^4+x^3+7*x^2-9*x-6,-3*x^4+3*x^3+23*x^2-21*x-14,4*x^4-28*x^2+6*x+12,-x^4+5*x^3+11*x^2-29*x-18,-2*x^4+10*x^2,x^4-x^3-7*x^2+5*x+6,3*x^4+3*x^3-19*x^2-11*x-10,-2*x^3+18*x+4,2*x^3-14*x,-3*x^4+5*x^3+19*x^2-35*x-2,x^4+3*x^3-9*x^2-9*x-6]];
20
E[203,4] = [x^3+x^2-3*x-1, [1,x,-x^2-x+1,x^2-2,x^2-4,-2*x-1,-1,-x^2-x+1,x^2+2*x-1,-x^2-x+1,x^2-x-1,x-2,-5,-x,2*x^2+3*x-4,-2*x^2-2*x+3,-3*x^2-2*x+7,x^2+2*x+1,x^2+4*x-3,-2*x^2-2*x+7,x^2+x-1,-2*x^2+2*x+1,4*x+2,x^2+2*x+2,-4*x^2-2*x+10,-5*x,2*x^2-x-6,-x^2+2,-1,x^2+2*x+2,2*x^2+x-6,2*x^2-x-4,-x^2+2*x,x^2-2*x-3,-x^2+4,-x^2+3,x^2-2*x-7,3*x^2+1,5*x^2+5*x-5,2*x^2+3*x-4]];
21
E[203,5] = [x^2-2*x-1, [1,2,x,2,-2*x+2,2*x,-1,0,2*x-2,-4*x+4,-2*x,2*x,2*x+2,-2,-2*x-2,-4,-2*x+2,4*x-4,3*x-2,-4*x+4,-x,-4*x,2*x-3,0,3,4*x+4,-x+2,-2,1,-4*x-4,2,-8,-4*x-2,-4*x+4,2*x-2,4*x-4,6*x-6,6*x-4,6*x+2,0]];
22
E[203,6] = [x, [1,-1,-1,-1,1,1,1,3,-2,-1,-5,1,-5,-1,-1,-1,-4,2,-4,-1,-1,5,6,-3,-4,5,5,-1,1,1,7,-5,5,4,1,2,-10,4,5,3]];
23
E[203,7] = [x^2+x-4, [1,-1,x,-1,x+2,-x,-1,3,-x+1,-x-2,x,-x,-x+2,1,x+4,-1,-2*x+2,x-1,4,-x-2,-x,-x,2*x,3*x,3*x+3,x-2,-x-4,1,1,-x-4,-3*x-4,-5,-x+4,2*x-2,-x-2,x-1,6,-4,3*x-4,3*x+6]];
24
25
E[204,1] = [x, [1,0,1,0,1,0,0,0,1,0,5,0,-5,0,1,0,1,0,1,0,0,0,-3,0,-4,0,1,0,2,0,2,0,5,0,0,0,-8,0,-5,0,-5,0,-9,0,1,0,6,0,-7,0,1,0,-6,0,5,0,1,0,6,0,-4,0,0,0,-5,0,12,0,-3,0,-12,0]];
26
E[204,2] = [x, [1,0,-1,0,-1,0,4,0,1,0,3,0,3,0,1,0,-1,0,1,0,-4,0,3,0,-4,0,-1,0,-10,0,6,0,-3,0,-4,0,-4,0,-3,0,5,0,-1,0,-1,0,-2,0,9,0,1,0,-14,0,-3,0,-1,0,-6,0,8,0,4,0,-3,0,-12,0,-3,0,12,0]];
27
28
E[205,1] = [x, [1,1,2,-1,1,2,2,-3,1,1,0,-2,-4,2,2,-1,4,1,0,-1,4,0,-8,-6,1,-4,-4,-2,2,2,0,5,0,4,2,-1,-6,0,-8,-3,-1,4]];
29
E[205,2] = [x^2+x-1, [1,x,-1,-x-1,-1,-x,-3*x,-2*x-1,-2,-x,2*x-3,x+1,3*x,3*x-3,1,3*x,2*x+1,-2*x,-3*x-4,x+1,3*x,-5*x+2,-3,2*x+1,1,-3*x+3,5,3,-x-2,x,5*x-1,x+5,-2*x+3,-x+2,3*x,2*x+2,-x,-x-3,-3*x,2*x+1,-1,-3*x+3]];
30
E[205,3] = [x^3-2*x^2-4*x+7, [1,x,-x^2+x+4,x^2-2,-1,-x^2+7,x^2-7,2*x^2-7,-3*x^2+x+13,-x,-x^2-x+6,x-1,-x^2+3,2*x^2-3*x-7,x^2-x-4,2*x^2+x-10,3*x^2-x-10,-5*x^2+x+21,x^2+1,-x^2+2,5*x^2-4*x-21,-3*x^2+2*x+7,x^2-3*x,3*x^2-x-14,1,-2*x^2-x+7,-5*x^2+x+26,-x^2+x,x^2+2*x-5,x^2-7,-2*x^2-x+9,x^2-2*x,-3*x^2+3*x+10,5*x^2+2*x-21,-x^2+7,-3*x^2-x+9,-x^2+2*x-3,2*x^2+5*x-7,-x^2+5,-2*x^2+7,1,6*x^2-x-35]];
31
E[205,4] = [x^3-4*x-1, [1,x,x^2-x-2,x^2-2,1,-x^2+2*x+1,-x^2+3,1,x^2-3*x-1,x,-x^2+x+4,-x+3,-x^2+2*x+3,-x-1,x^2-x-2,-2*x^2+x+4,-x^2-x+2,-3*x^2+3*x+1,-x^2+1,x^2-2,x^2-5,x^2-1,x^2-x+4,x^2-x-2,1,2*x^2-x-1,x^2-5*x+4,x^2-x-6,x^2-7,-x^2+2*x+1,2*x^2+3*x-9,x^2-4*x-4,x^2+x-6,-x^2-2*x-1,-x^2+3,x^2-5*x-1,x^2+1,-3*x-1,-x^2+4*x-3,1,-1,-x+1]];
32
E[205,5] = [x^2+x-3, [1,x,-3,-x+1,1,-3*x,-x-2,-3,6,x,-3,3*x-3,-3*x-2,-x-3,-3,-x-2,2*x-1,6*x,3*x,-x+1,3*x+6,-3*x,2*x+3,9,1,x-9,-9,1,x-2,-3*x,-3*x-3,-x+3,9,-3*x+6,-x-2,-6*x+6,3*x,-3*x+9,9*x+6,-3,1,3*x+9]];
33
E[205,6] = [x, [1,-1,2,-1,-1,-2,2,3,1,1,6,-2,2,-2,-2,-1,2,-1,-6,1,4,-6,-4,6,1,-2,-4,-2,10,2,0,-5,12,-2,-2,-1,-6,6,4,-3,1,-4]];
34
E[205,7] = [x, [1,-1,0,-1,1,0,-4,3,-3,-1,0,0,-2,4,0,-1,-6,3,0,-1,0,0,-8,0,1,2,0,4,6,0,0,-5,0,6,-4,3,6,0,0,3,1,0]];
35
36
E[206,1] = [x^4-2*x^3-5*x^2+12*x-5, [1,1,x,1,-x^3+5*x-2,x,2*x^3-x^2-12*x+9,1,x^2-3,-x^3+5*x-2,-2*x^3+2*x^2+10*x-10,x,2*x^3-10*x+4,2*x^3-x^2-12*x+9,-2*x^3+10*x-5,1,2*x^3-3*x^2-12*x+12,x^2-3,-2*x^2-2*x+8,-x^3+5*x-2,3*x^3-2*x^2-15*x+10,-2*x^3+2*x^2+10*x-10,-4*x^3+3*x^2+24*x-20,x,x^2+2*x-6,2*x^3-10*x+4,x^3-6*x,2*x^3-x^2-12*x+9,-4*x^3+2*x^2+22*x-16,-2*x^3+10*x-5,-4*x^3+2*x^2+22*x-14,1,-2*x^3+14*x-10,2*x^3-3*x^2-12*x+12,3*x^3-2*x^2-18*x+12,x^2-3,2*x^3+2*x^2-11*x,-2*x^2-2*x+8,4*x^3-20*x+10,-x^3+5*x-2,2*x^3+x^2-8*x-5,3*x^3-2*x^2-15*x+10,5*x^3-4*x^2-27*x+26,-2*x^3+2*x^2+10*x-10,-x^3+4*x-4,-4*x^3+3*x^2+24*x-20,2*x^3-2*x^2-8*x+10,x,-6*x^3+3*x^2+32*x-21,x^2+2*x-6,x^3-2*x^2-12*x+10,2*x^3-10*x+4]];
37
E[206,2] = [x, [1,-1,2,1,4,-2,0,-1,1,-4,-6,2,-2,0,8,1,2,-1,-4,4,0,6,0,-2,11,2,-4,0,-6,-8,8,-1,-12,-2,0,1,8,4,-4,-4,2,0,2,-6,4,0,-8,2,-7,-11,4,-2]];
38
E[206,3] = [x^2+3*x-1, [1,-1,x,1,x-1,-x,x+4,-1,-3*x-2,-x+1,0,x,2*x+6,-x-4,-4*x+1,1,-x+1,3*x+2,2,x-1,x+1,0,3*x+3,-x,-5*x-3,-2*x-6,4*x-3,x+4,6,4*x-1,-4,-1,0,x-1,-3,-3*x-2,-3*x-4,-2,2,-x+1,-x+4,-x-1,-3*x-7,0,10*x-1,-3*x-3,-2*x-10,x,5*x+10,5*x+3,4*x-1,2*x+6]];
39
E[206,4] = [x^2-x-7, [1,-1,x,1,-x+1,-x,x-2,-1,x+4,x-1,4,x,-2*x+2,-x+2,-7,1,-x-1,-x-4,6,-x+1,-x+7,-4,-x-3,-x,-x+3,2*x-2,2*x+7,x-2,-6,7,8,-1,4*x,x+1,2*x-9,x+4,x-4,-6,-14,x-1,-x-6,x-7,-x-1,4,-4*x-3,x+3,2*x-2,x,-3*x+4,x-3,-2*x-7,-2*x+2]];
40
41
E[207,1] = [x, [1,-1,0,-1,0,0,-2,3,0,0,-4,0,-6,2,0,-1,-4,0,2,0,0,4,1,0,-5,6,0,2,-2,0,4,-5,0,4,0,0,2,-2,0,0,-2,0,10,4,0,-1,0,0]];
42
E[207,2] = [x^2-5, [1,x,0,3,-x+1,0,x+1,x,0,x-5,-4,0,-2*x,x+5,0,-1,-x+5,0,x+5,-3*x+3,0,-4*x,-1,0,-2*x+1,-10,0,3*x+3,-2*x,0,-2*x-2,-3*x,0,5*x-5,-4,0,2*x,5*x+5,0,x-5,4*x+2,0,-3*x+1,-12,0,-x,4,0]];
43
E[207,3] = [x^2-x-1, [1,x,0,x-1,2*x,0,-2*x+2,-2*x+1,0,2*x+2,-2*x+4,0,3,-2,0,-3*x,-2*x-2,0,-2,2,0,2*x-2,-1,0,4*x-1,3*x,0,2*x-4,3,0,-6*x+3,x-5,0,-4*x-2,-4,0,2*x,-2*x,0,-2*x-4,-4*x+1,0,0,4*x-6,0,-x,-2*x+1,0]];
44
E[207,4] = [x^2+2*x-1, [1,x,0,-2*x-1,-x-3,0,x-1,x-2,0,-x-1,-2*x-2,0,0,-3*x+1,0,3,x-5,0,3*x+1,3*x+5,0,2*x-2,-1,0,4*x+5,0,0,5*x-1,6*x+6,0,-6*x-6,x+4,0,-7*x+1,2,0,2*x,-5*x+3,0,x+5,-4*x-8,0,-3*x-9,-2*x+6,0,-x,4*x+10,0]];
45
E[207,5] = [x^2-2*x-1, [1,x,0,2*x-1,-x+3,0,-x-1,x+2,0,x-1,-2*x+2,0,0,-3*x-1,0,3,x+5,0,-3*x+1,3*x-5,0,-2*x-2,1,0,-4*x+5,0,0,-5*x-1,6*x-6,0,6*x-6,x-4,0,7*x+1,-2,0,-2*x,-5*x-3,0,-x+5,-4*x+8,0,3*x-9,-2*x-6,0,x,4*x-10,0]];
46
47
E[208,1] = [x, [1,0,3,0,-1,0,-1,0,6,0,2,0,-1,0,-3,0,-3,0,-6,0,-3,0,4,0,-4,0,9,0,2,0,-4,0,6,0,1,0,3,0,-3,0,0,0,5,0,-6,0,-13,0,-6,0,-9,0,12,0,-2,0]];
48
E[208,2] = [x^2+x-4, [1,0,x,0,x+2,0,-x,0,-x+1,0,-2*x,0,1,0,x+4,0,-3*x-2,0,2*x,0,x-4,0,8,0,3*x+3,0,-x-4,0,-2,0,-4,0,2*x-8,0,-x-4,0,-3*x+2,0,x,0,2*x+2,0,-x-8,0,-2,0,3*x+8,0,-x-3,0,x-12,0,-2*x-2,0,-2*x-8,0]];
49
E[208,3] = [x, [1,0,0,0,2,0,2,0,-3,0,2,0,-1,0,0,0,6,0,6,0,0,0,-8,0,-1,0,0,0,2,0,-10,0,0,0,4,0,-6,0,0,0,-6,0,-4,0,-6,0,2,0,-3,0,0,0,6,0,4,0]];
50
E[208,4] = [x, [1,0,-1,0,-3,0,1,0,-2,0,-6,0,1,0,3,0,-3,0,-2,0,-1,0,0,0,4,0,5,0,6,0,4,0,6,0,-3,0,-7,0,-1,0,0,0,1,0,6,0,-3,0,-6,0,3,0,0,0,18,0]];
51
E[208,5] = [x, [1,0,-1,0,-1,0,-5,0,-2,0,2,0,-1,0,1,0,-3,0,2,0,5,0,-4,0,-4,0,5,0,-6,0,4,0,-2,0,5,0,11,0,1,0,8,0,1,0,2,0,-9,0,18,0,3,0,-12,0,-2,0]];
52
53
E[209,1] = [x^2-2, [1,x,-x-1,0,-1,-x-2,-x-2,-2*x,2*x,-x,-1,0,3*x-2,-2*x-2,x+1,-4,x+2,4,-1,0,3*x+4,-x,-3,2*x+4,-4,-2*x+6,x-1,0,-3*x-2,x+2,-x-5,0,x+1,2*x+2,x+2,0,5*x+3,-x,-x-4,2*x]];
54
E[209,2] = [x^5-2*x^4-6*x^3+10*x^2+5*x-4, [2,2*x,x^4-2*x^3-5*x^2+8*x+2,2*x^2-4,-x^3+7*x-2,x^3-2*x^2-3*x+4,-x^3+3*x+4,2*x^3-8*x,x^3-2*x^2-7*x+8,-x^4+7*x^2-2*x,2,-x^4+2*x^3+7*x^2-12*x-4,-x^4+7*x^2-4,-x^4+3*x^2+4*x,-x^4+4*x^3+x^2-16*x+10,2*x^4-12*x^2+8,2*x^4-2*x^3-10*x^2+6*x,x^4-2*x^3-7*x^2+8*x,-2,-2*x^4+3*x^3+8*x^2-9*x,2*x^4-4*x^3-10*x^2+14*x+8,2*x,-2*x^4+2*x^3+16*x^2-10*x-18,-x^3+2*x^2+7*x-12,-2*x^4+3*x^3+12*x^2-17*x-4,-2*x^4+x^3+10*x^2+x-4,-2*x^3+2*x^2+12*x-10,-2*x^4-x^3+14*x^2-x-12,3*x^4-2*x^3-17*x^2+4*x+12,2*x^4-5*x^3-6*x^2+15*x-4,-x^4+4*x^3+5*x^2-20*x+2,4*x^4-4*x^3-20*x^2+14*x+8,x^4-2*x^3-5*x^2+8*x+2,2*x^4+2*x^3-14*x^2-10*x+8,-2*x^2+8*x,-3*x^3+2*x^2+9*x-12,2*x^4-16*x^2+18,-2*x,2*x^2-4*x-4,x^4-4*x^3-3*x^2+14*x-8]];
55
E[209,3] = [x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30, [4,4*x,-2*x^4+14*x^2-4*x-8,4*x^2-8,2*x^5-18*x^3+28*x+12,-2*x^5+14*x^3-4*x^2-8*x,-x^6+12*x^4-37*x^2+26,4*x^3-16*x,x^6-12*x^4+4*x^3+41*x^2-20*x-26,2*x^6-18*x^4+28*x^2+12*x,-4,-2*x^6+18*x^4-4*x^3-36*x^2+8*x+16,-x^6-2*x^5+10*x^4+18*x^3-27*x^2-36*x+14,x^6-2*x^5-10*x^4+22*x^3+27*x^2-40*x-30,x^6+2*x^5-10*x^4-18*x^3+23*x^2+28*x+6,4*x^4-24*x^2+16,4*x^4-4*x^3-36*x^2+28*x+48,-x^6+2*x^5+14*x^4-18*x^3-47*x^2+40*x+30,4,-2*x^6+6*x^5+20*x^4-54*x^3-42*x^2+76*x+36,-x^6-2*x^5+8*x^4+14*x^3-9*x^2-20*x-22,-4*x,2*x^6-20*x^4+42*x^2+8*x,2*x^6-6*x^5-24*x^4+54*x^3+70*x^2-100*x-60,-x^6+8*x^4-4*x^3-5*x^2+12*x-14,-x^6-4*x^5+8*x^4+32*x^3-9*x^2-52*x-30,x^6-2*x^5-12*x^4+22*x^3+33*x^2-60*x-14,-x^6+4*x^5+8*x^4-32*x^3+7*x^2+36*x-22,-2*x^4+18*x^2-4*x-36,x^6+4*x^5-8*x^4-36*x^3+x^2+72*x+30,x^6+2*x^5-10*x^4-18*x^3+23*x^2+36*x+14,4*x^5-32*x^3+48*x,2*x^4-14*x^2+4*x+8,4*x^5-4*x^4-36*x^3+28*x^2+48*x,-x^6+2*x^5+12*x^4-18*x^3-33*x^2+20*x+18,x^6-4*x^4+4*x^3-15*x^2+4*x+22,-4*x^5-4*x^4+40*x^3+32*x^2-84*x-52,4*x,x^6-2*x^5-12*x^4+26*x^3+49*x^2-68*x-58,4*x^6-8*x^5-38*x^4+76*x^3+74*x^2-120*x-60]];
56
E[209,4] = [x, [1,0,1,-2,-3,0,-4,0,-2,0,1,-2,2,0,-3,4,0,0,1,6,-4,0,3,0,4,0,-5,8,-6,0,-7,0,1,0,12,4,-7,0,2,0]];
57
58
E[210,1] = [x, [1,-1,1,1,1,-1,1,-1,1,-1,0,1,2,-1,1,1,-6,-1,8,1,1,0,0,-1,1,-2,1,1,6,-1,-4,-1,0,6,1,1,-10,-8,2,-1,-6,-1,-4,0,1,0,0,1,1,-1,-6,2,-6,-1,0,-1,8,-6,-12,1,-10,4,1,1,2,0,-4,-6,0,-1,12,-1,-10,10,1,8,0,-2,8,1,1,6,12,1,-6,4,6,0,-6,-1,2,0,-4,0,8,-1]];
59
E[210,2] = [x, [1,-1,-1,1,-1,1,-1,-1,1,1,-4,-1,-2,1,1,1,-6,-1,0,-1,1,4,-8,1,1,2,-1,-1,10,-1,-8,-1,4,6,1,1,2,0,2,1,-2,-1,8,-4,-1,8,4,-1,1,-1,6,-2,10,1,4,1,0,-10,4,1,-6,8,-1,1,2,-4,0,-6,8,-1,-12,-1,-6,-2,-1,0,4,-2,-8,-1,1,2,-4,1,6,-8,-10,4,14,1,2,-8,8,-4,0,1]];
60
E[210,3] = [x, [1,1,-1,1,1,-1,1,1,1,1,4,-1,-2,1,-1,1,2,1,-4,1,-1,4,-8,-1,1,-2,-1,1,6,-1,-8,1,-4,2,1,1,-2,-4,2,1,2,-1,-12,4,1,-8,-8,-1,1,1,-2,-2,6,-1,4,1,4,6,4,-1,-2,-8,1,1,-2,-4,12,2,8,1,8,1,-14,-2,-1,-4,4,2,0,1,1,2,12,-1,2,-12,-6,4,2,1,-2,-8,8,-8,-4,-1]];
61
E[210,4] = [x, [1,1,1,1,-1,1,1,1,1,-1,0,1,2,1,-1,1,-6,1,-4,-1,1,0,0,1,1,2,1,1,-6,-1,-4,1,0,-6,-1,1,2,-4,2,-1,6,1,8,0,-1,0,-12,1,1,1,-6,2,6,1,0,1,-4,-6,-12,-1,2,-4,1,1,-2,0,8,-6,0,-1,0,1,14,2,1,-4,0,2,-16,-1,1,6,12,1,6,8,-6,0,6,-1,2,0,-4,-12,4,1]];
62
E[210,5] = [x, [1,1,1,1,1,1,-1,1,1,1,-4,1,-2,-1,1,1,2,1,4,1,-1,-4,-8,1,1,-2,1,-1,-2,1,0,1,-4,2,-1,1,6,4,-2,1,-6,-1,-4,-4,1,-8,0,1,1,1,2,-2,-10,1,-4,-1,4,-2,12,1,14,0,-1,1,-2,-4,-12,2,-8,-1,-8,1,10,6,1,4,4,-2,16,1,1,-6,-12,-1,2,-4,-2,-4,10,1,2,-8,0,0,4,1]];
63
64
E[211,1] = [x^2-x-1, [1,x,x+1,x-1,-2*x+2,2*x+1,-x+1,-2*x+1,3*x-1,-2,-3,x,-2*x+5,-1,-2*x,-3*x,-x+6,2*x+3,-3*x-1,2*x-4,-x,-3*x,2*x+3,-3*x-1,-4*x+3,3*x-2,2*x-1,x-2,2*x-1,-2*x-2,5*x-8,x-5,-3*x-3,5*x-1,-2*x+4]];
65
E[211,2] = [x^3-4*x+1, [1,x,-x-1,x^2-2,-x^2-x+1,-x^2-x,x-1,-1,x^2+2*x-2,-x^2-3*x+1,-3,-x^2-2*x+3,2*x^2-5,x^2-x,2*x^2+4*x-2,-2*x^2-x+4,-x^2-3,2*x^2+2*x-1,x^2-2,-x^2-x-1,-x^2+1,-3*x,-x^2+x+8,x+1,3*x^2+5*x-6,3*x-2,-3*x^2-x+6,-x^2+2*x+1,-x^2+x-4,4*x^2+6*x-2,-3*x^2+9,-x^2-4*x+4,3*x+3,-7*x+1,-2*x]];
66
E[211,3] = [x^3+2*x^2-x-1, [1,x,-x^2-x+1,x^2-2,x^2+x-4,x^2-1,-x^2-4*x,-2*x^2-3*x+1,-x-2,-x^2-3*x+1,3*x^2+7*x-2,2*x-1,2*x^2+3*x-3,-2*x^2-x-1,3*x^2+4*x-4,-x^2-x+2,x^2+3*x+2,-x^2-2*x,-2*x^2-x+1,-3*x^2-2*x+7,-2*x^2+3,x^2+x+3,-x-7,-x+2,-6*x^2-7*x+11,-x^2-x+2,4*x^2+5*x-4,5*x^2+5*x-2,-7*x^2-12*x+4,-2*x^2-x+3,-x^2-5*x-3,5*x^2+7*x-3,3*x^2+2*x-6,x^2+3*x+1,5*x^2+12*x-3]];
67
E[211,4] = [x^9+x^8-14*x^7-11*x^6+66*x^5+36*x^4-123*x^3-38*x^2+72*x+8, [116,116*x,18*x^8+30*x^7-232*x^6-314*x^5+940*x^4+888*x^3-1274*x^2-644*x+248,116*x^2-232,7*x^8+31*x^7-58*x^6-309*x^5+82*x^4+732*x^3+91*x^2-186*x+32,12*x^8+20*x^7-116*x^6-248*x^5+240*x^4+940*x^3+40*x^2-1048*x-144,-26*x^8-82*x^7+232*x^6+866*x^5-404*x^4-2520*x^3-222*x^2+2000*x+312,116*x^3-464*x,-28*x^8-8*x^7+348*x^6+76*x^5-1256*x^4-260*x^3+1144*x^2+280*x+452,24*x^8+40*x^7-232*x^6-380*x^5+480*x^4+952*x^3+80*x^2-472*x-56,12*x^8-38*x^7-174*x^6+448*x^5+762*x^4-1496*x^3-1120*x^2+1330*x+668,-28*x^8-8*x^7+348*x^6+76*x^5-1372*x^4-260*x^3+1956*x^2+280*x-592,3*x^8+5*x^7-33*x^5-172*x^4+32*x^3+271*x^2+28*x+196,-56*x^8-132*x^7+580*x^6+1312*x^5-1584*x^4-3420*x^3+1012*x^2+2184*x+208,22*x^8+114*x^7-232*x^6-1286*x^5+672*x^4+4140*x^3-410*x^2-3816*x-264,116*x^4-696*x^2+464,-20*x^8-72*x^7+232*x^6+800*x^5-864*x^4-2456*x^3+1364*x^2+1824*x-688,20*x^8-44*x^7-232*x^6+592*x^5+748*x^4-2300*x^3-784*x^2+2468*x+224,33*x^8+55*x^7-348*x^6-595*x^5+892*x^4+1860*x^3-151*x^2-1664*x-396,2*x^8+42*x^7-486*x^5-76*x^4+1568*x^3+258*x^2-1412*x-256,-12*x^8-20*x^7+116*x^6+132*x^5-240*x^4+104*x^3-40*x^2-1040*x+144,-50*x^8-6*x^7+580*x^6-30*x^5-1928*x^4+356*x^3+1786*x^2-196*x-96,28*x^8+8*x^7-348*x^6-76*x^5+1256*x^4+260*x^3-1144*x^2-512*x-336,-4*x^8-84*x^7+972*x^5+268*x^4-3368*x^3-864*x^2+3520*x+512,26*x^8+140*x^7-174*x^6-1446*x^5-118*x^4+3796*x^3+1382*x^2-1942*x-776,2*x^8+42*x^7-370*x^5-76*x^4+640*x^3+142*x^2-20*x-24,-4*x^8+32*x^7-420*x^5+384*x^4+1620*x^3-1212*x^2-1816*x+48,-24*x^8-40*x^7+232*x^6+380*x^5-596*x^4-836*x^3+500*x^2+240*x-176,-16*x^8+12*x^7+232*x^6-172*x^5-1132*x^4+680*x^3+1996*x^2-768*x-272,92*x^8+76*x^7-1044*x^6-780*x^5+3348*x^4+2296*x^3-2980*x^2-1848*x-176,34*x^8+18*x^7-348*x^6-26*x^5+912*x^4-720*x^3-602*x^2+1400*x+288,116*x^5-928*x^3+1392*x,74*x^8+46*x^7-928*x^6-466*x^5+3568*x^4+1524*x^3-4606*x^2-1784*x+1200,-52*x^8-48*x^7+580*x^6+456*x^5-1736*x^4-1096*x^3+1064*x^2+752*x+160,-98*x^8-202*x^7+1044*x^6+2122*x^5-3004*x^4-6072*x^3+1974*x^2+4344*x+480]];
68
69
E[212,1] = [x, [1,0,-1,0,-2,0,-2,0,-2,0,2,0,-7,0,2,0,-3,0,5,0,2,0,-3,0,-1,0,5,0,9,0,-8,0,-2,0,4,0,-3,0,7,0,2,0,4,0,4,0,10,0,-3,0,3,0,1,0]];
70
E[212,2] = [x, [1,0,2,0,2,0,0,0,1,0,-4,0,-2,0,4,0,2,0,2,0,0,0,-2,0,-1,0,-4,0,2,0,2,0,-8,0,0,0,10,0,-4,0,2,0,-4,0,2,0,-12,0,-7,0,4,0,-1,0]];
71
E[212,3] = [x^3+3*x^2-3*x-7, [1,0,x,0,-x^2-2*x+3,0,x^2+2*x-1,0,x^2-3,0,-x^2+7,0,5,0,x^2-7,0,-2*x-1,0,x^2-x-7,0,-x^2+2*x+7,0,-x^2-3*x+1,0,-2*x^2-2*x+11,0,-3*x^2-3*x+7,0,x^2+2*x-6,0,x^2+4*x-3,0,3*x^2+4*x-7,0,-2*x-10,0,x^2-8,0,5*x,0,2*x^2+2*x-10,0,-x^2-4*x+1,0,2*x-2,0,2*x^2+4*x,0,2*x^2+6*x+1,0,-2*x^2-x,0,-1,0]];
72
73
E[213,1] = [x, [1,1,1,-1,2,1,2,-3,1,2,0,-1,-2,2,2,-1,0,1,0,-2,2,0,0,-3,-1,-2,1,-2,-2,2,-10,5,0,0,4,-1,-6,0,-2,-6,0,2,-4,0,2,0,12,-1]];
74
E[213,2] = [x^2+x-1, [1,x,-1,-x-1,-x,-x,-3,-2*x-1,1,x-1,-2*x-3,x+1,3*x-1,-3*x,x,3*x,2*x+1,x,-2*x-5,1,3,-x-2,5*x+1,2*x+1,-x-4,-4*x+3,-1,3*x+3,3*x+3,-x+1,-2,x+5,2*x+3,-x+2,3*x,-x-1,-9*x-3,-3*x-2,-3*x+1,-x+2,x+8,3*x,9*x+3,3*x+5,-x,-4*x+5,-7*x-6,-3*x]];
75
E[213,3] = [x^2-x-3, [1,x,1,x+1,-x,x,-1,3,1,-x-3,3,x+1,-x-1,-x,-x,x-2,3,x,-2*x-1,-2*x-3,-1,3*x,-3*x+3,3,x-2,-2*x-3,1,-x-1,x+3,-x-3,2,-x-3,3,3*x,x,x+1,x-1,-3*x-6,-x-1,-3*x,3*x,-x,3*x+5,3*x+3,-x,-9,3*x-6,x-2]];
76
E[213,4] = [x^2+3*x+1, [1,x,1,-3*x-3,-x-4,x,2*x+1,4*x+3,1,-x+1,-2*x-7,-3*x-3,-3*x-5,-5*x-2,-x-4,-3*x+2,2*x+1,x,2*x-1,6*x+9,2*x+1,-x+2,3*x+3,4*x+3,5*x+10,4*x+3,1,9*x+3,-7*x-9,-x+1,4*x+10,3*x-3,-2*x-7,-5*x-2,-3*x-2,-3*x-3,5*x+7,-7*x-2,-3*x-5,-7*x-8,-x-10,-5*x-2,3*x-3,9*x+15,-x-4,-6*x-3,3*x+12,-3*x+2]];
77
E[213,5] = [x^4-3*x^3-2*x^2+7*x+1, [1,x,-1,x^2-2,-x^2+2*x+1,-x,-x^2+x+4,x^3-4*x,1,-x^3+2*x^2+x,-x^3+x^2+3*x+1,-x^2+2,-x^3+2*x^2+x,-x^3+x^2+4*x,x^2-2*x-1,3*x^3-4*x^2-7*x+3,2*x^3-5*x^2-5*x+6,x,3*x^3-5*x^2-9*x+7,-x^3+x^2+3*x-1,x^2-x-4,-2*x^3+x^2+8*x+1,-x^3+4*x^2+x-8,-x^3+4*x,-x^3+4*x^2-3*x-5,-x^3-x^2+7*x+1,-1,-2*x^3+4*x^2+5*x-7,-x^3+4*x^2-3*x-6,x^3-2*x^2-x,-x^3-2*x^2+8*x+7,3*x^3-x^2-10*x-3,x^3-x^2-3*x-1,x^3-x^2-8*x-2,-x^2+2*x+3,x^2-2,-x^3+2*x^2+3*x+2,4*x^3-3*x^2-14*x-3,x^3-2*x^2-x,-3*x^2+4*x+1,-x^3+3*x^2+2*x-10,x^3-x^2-4*x,x^3-5*x+4,-3*x^3+2*x^2+9*x,-x^2+2*x+1,x^3-x^2-x+1,-2*x^3+7*x^2-9,-3*x^3+4*x^2+7*x-3]];
78
79
E[214,1] = [x, [1,-1,1,1,-4,-1,-2,-1,-2,4,-3,1,-1,2,-4,1,6,2,1,-4,-2,3,-7,-1,11,1,-5,-2,-6,4,4,-1,-3,-6,8,-2,-9,-1,-1,4,-5,2,12,-3,8,7,8,1,-3,-11,6,-1,7,5]];
80
E[214,2] = [x, [1,-1,-2,1,-1,2,4,-1,1,1,-6,-2,-4,-4,2,1,-6,-1,-2,-1,-8,6,5,2,-4,4,4,4,0,-2,-2,-1,12,6,-4,1,0,2,8,1,-11,8,-9,-6,-1,-5,11,-2,9,4,12,-4,10,-4]];
81
E[214,3] = [x^2+2*x-2, [1,-1,x,1,x+3,-x,x,-1,-2*x-1,-x-3,-x,x,-x,-x,x+2,1,-x+4,2*x+1,2,x+3,-2*x+2,x,-x-1,-x,4*x+6,x,-4,x,-x+4,-x-2,-4*x-6,-1,2*x-2,x-4,x+2,-2*x-1,-4,-2,2*x-2,-x-3,4*x+7,2*x-2,-9,-x,-3*x-7,x+1,x+1,x,-2*x-5,-4*x-6,6*x-2,-x,-2*x+2,4]];
82
E[214,4] = [x, [1,1,1,1,0,1,2,1,-2,0,-3,1,-1,2,0,1,6,-2,-7,0,2,-3,9,1,-5,-1,-5,2,-6,0,-4,1,-3,6,0,-2,-1,-7,-1,0,3,2,8,-3,0,9,0,1,-3,-5,6,-1,-9,-5]];
83
E[214,5] = [x, [1,1,-2,1,-3,-2,-4,1,1,-3,-2,-2,4,-4,6,1,-2,1,-2,-3,8,-2,1,-2,4,4,4,-4,-4,6,-10,1,4,-2,12,1,12,-2,-8,-3,-11,8,1,-2,-3,1,-1,-2,9,4,4,4,6,4]];
84
E[214,6] = [x^2-2*x-2, [1,1,x,1,-x+1,x,-x,1,2*x-1,-x+1,-x+4,x,-x,-x,-x-2,1,x-4,2*x-1,2,-x+1,-2*x-2,-x+4,-x-5,x,-2,-x,4,-x,3*x,-x-2,2,1,2*x-2,x-4,x+2,2*x-1,4*x-8,2,-2*x-2,-x+1,4*x-1,-2*x-2,-7,-x+4,-x-5,-x-5,x+5,x,2*x-5,-2,-2*x+2,-x,-6*x+6,4]];
85
86
E[215,1] = [x^5-2*x^4-7*x^3+13*x^2+5*x-4, [1,x,-x^3+5*x,x^2-2,1,-x^4+5*x^2,x^4-x^3-6*x^2+6*x+2,x^3-4*x,x^4+x^3-6*x^2-6*x+5,x,x^3-6*x-1,-2*x^4+13*x^2-5*x-4,-x^4+5*x^2+x+3,x^4+x^3-7*x^2-3*x+4,-x^3+5*x,x^4-6*x^2+4,x^4-7*x^2+x+1,3*x^4+x^3-19*x^2+4,-2*x^4+14*x^2-2*x-10,x^2-2,-x^4+5*x^2-4*x+8,x^4-6*x^2-x,-x^4+5*x^2-x+3,-2*x^4-x^3+11*x^2+6*x-8,1,-2*x^4-2*x^3+14*x^2+8*x-4,-x^4-2*x^3+7*x^2+8*x-8,x^4+2*x^3-4*x^2-13*x,-2*x^4+2*x^3+14*x^2-12*x-8,-x^4+5*x^2,2*x^4+x^3-13*x^2-5*x+7,2*x^4-x^3-13*x^2+7*x+4,x^2+x-8,2*x^4-12*x^2-4*x+4,x^4-x^3-6*x^2+6*x+2,5*x^4-27*x^2+x+2,-x^4+x^3+7*x^2-5*x-4,-4*x^4+24*x^2-8,2*x^4-2*x^3-14*x^2+18*x+4,x^3-4*x,x^4-x^3-5*x^2+8*x-3,-2*x^4-2*x^3+9*x^2+13*x-4,-1,2*x^4-x^3-14*x^2+7*x+6]];
87
E[215,2] = [x^6-3*x^5-5*x^4+17*x^3+3*x^2-17*x-3, [1,x,x^5-2*x^4-6*x^3+9*x^2+6*x-2,x^2-2,-1,x^5-x^4-8*x^3+3*x^2+15*x+3,-2*x^5+3*x^4+13*x^3-12*x^2-16*x+2,x^3-4*x,2*x^5-3*x^4-13*x^3+10*x^2+16*x+7,-x,-3*x^5+3*x^4+23*x^3-9*x^2-38*x-9,x^4-2*x^3-6*x^2+8*x+7,-2*x+2,-3*x^5+3*x^4+22*x^3-10*x^2-32*x-6,-x^5+2*x^4+6*x^3-9*x^2-6*x+2,x^4-6*x^2+4,4*x^5-4*x^4-30*x^3+12*x^2+48*x+12,3*x^5-3*x^4-24*x^3+10*x^2+41*x+6,2*x^5-2*x^4-16*x^3+6*x^2+28*x+8,-x^2+2,-x^4+x^3+8*x^2-4*x-13,-6*x^5+8*x^4+42*x^3-29*x^2-60*x-9,-2*x^5+4*x^4+12*x^3-16*x^2-14*x,-x^5+10*x^3+2*x^2-23*x-6,1,-2*x^2+2*x,2*x^5-5*x^4-9*x^3+22*x^2-5,-2*x^5+x^4+15*x^3+x^2-25*x-13,2*x^5-2*x^4-16*x^3+8*x^2+26*x,-x^5+x^4+8*x^3-3*x^2-15*x-3,2*x^5-3*x^4-15*x^3+14*x^2+24*x-4,x^5-8*x^3+12*x,-5*x^5+6*x^4+38*x^3-23*x^2-64*x-3,8*x^5-10*x^4-56*x^3+36*x^2+80*x+12,2*x^5-3*x^4-13*x^3+12*x^2+16*x-2,2*x^5-3*x^4-15*x^3+12*x^2+25*x-5,-x^5+x^4+9*x^3-5*x^2-16*x+5,4*x^5-6*x^4-28*x^3+22*x^2+42*x+6,-2*x^4+4*x^3+12*x^2-18*x-10,-x^3+4*x,3*x^5-2*x^4-24*x^3+x^2+44*x+18,-x^5+x^4+8*x^3-4*x^2-13*x,1,-4*x^5+6*x^4+27*x^3-24*x^2-35*x]];
88
E[215,3] = [x^3+2*x^2-3*x-3, [1,x,x+1,x^2-2,1,x^2+x,-x^2-2*x+1,-2*x^2-x+3,x^2+2*x-2,x,-x^2+x+7,-x^2+x+1,-2*x-2,-2*x-3,x+1,x^2-3*x-2,-2*x+2,x+3,-2*x^2-4*x+6,x^2-2,-x^2-4*x-2,3*x^2+4*x-3,2*x^2+4*x-6,x^2-4*x-3,1,-2*x^2-2*x,x^2-2,x-2,2*x+2,x^2+x,x^2+1,-x^2+3*x-3,2*x^2+5*x+4,-2*x^2+2*x,-x^2-2*x+1,-x^2-x+4,x^2-x-1,-6,-2*x^2-4*x-2,-2*x^2-x+3,2*x^2+x-1,-2*x^2-5*x-3,-1,4*x-5]];
89
E[215,4] = [x, [1,0,0,-2,-1,0,-2,0,-3,0,-1,0,-1,0,0,4,-3,0,-2,2,0,0,-1,0,1,0,0,4,4,0,3,0,0,0,2,6,-8,0,0,0,5,0,-1,2]];
90
91
E[216,1] = [x, [1,0,0,0,-1,0,3,0,0,0,5,0,4,0,0,0,-8,0,2,0,0,0,2,0,-4,0,0,0,6,0,-7,0,0,0,-3,0,-6,0,0,0,-6,0,-2,0,0,0,6,0,2,0,0,0,5,0,-5,0,0,0,-4,0,-8,0,0,0,-4,0,-10,0,0,0,-8,0]];
92
E[216,2] = [x, [1,0,0,0,1,0,3,0,0,0,-5,0,4,0,0,0,8,0,2,0,0,0,-2,0,-4,0,0,0,-6,0,-7,0,0,0,3,0,-6,0,0,0,6,0,-2,0,0,0,-6,0,2,0,0,0,-5,0,-5,0,0,0,4,0,-8,0,0,0,4,0,-10,0,0,0,8,0]];
93
E[216,3] = [x, [1,0,0,0,4,0,-3,0,0,0,4,0,1,0,0,0,-4,0,-1,0,0,0,4,0,11,0,0,0,0,0,-4,0,0,0,-12,0,-9,0,0,0,0,0,-8,0,0,0,-12,0,2,0,0,0,-8,0,16,0,0,0,4,0,-5,0,0,0,4,0,11,0,0,0,8,0]];
94
E[216,4] = [x, [1,0,0,0,-4,0,-3,0,0,0,-4,0,1,0,0,0,4,0,-1,0,0,0,-4,0,11,0,0,0,0,0,-4,0,0,0,12,0,-9,0,0,0,0,0,-8,0,0,0,12,0,2,0,0,0,8,0,16,0,0,0,-4,0,-5,0,0,0,-4,0,11,0,0,0,-8,0]];
95
96
E[217,1] = [x^4-5*x^2+x+1, [1,x,-x^3+5*x,x^2-2,-x+1,x+1,1,x^3-4*x,-x^3-x^2+5*x+2,-x^2+x,-x^2-2*x+3,2*x^3+x^2-9*x,x^3-x^2-5*x+3,x,-x^3+4*x-1,-x^2-x+3,2*x^2+x-3,-x^3+3*x+1,3*x^3+x^2-13*x+1,-x^3+x^2+2*x-2,-x^3+5*x,-x^3-2*x^2+3*x,2*x^3+x^2-9*x+4,x^3+x^2-4*x-4,x^2-2*x-4,-x^3+2*x-1,-2*x^2-x+5,x^2-2,x^3+2*x^2-3*x-6,-x^2+1,-1,-3*x^3-x^2+11*x,-3*x^3-x^2+12*x-2,2*x^3+x^2-3*x,-x+1,2*x^3-8*x-3,-6*x^3-x^2+25*x-2,x^3+2*x^2-2*x-3,-2*x^3+9*x-5,x^3-x^2-3*x+1,x^3-x+2,x+1]];
97
E[217,2] = [x^5-3*x^4-5*x^3+16*x^2+6*x-19, [1,x,-x^3+2*x^2+3*x-4,x^2-2,x^4-2*x^3-5*x^2+6*x+6,-x^4+2*x^3+3*x^2-4*x,-1,x^3-4*x,-x^3+3*x^2+x-6,x^4-10*x^2+19,-x^4+2*x^3+4*x^2-5*x-2,-x^4+8*x^2-11,-x^4+x^3+6*x^2-2*x-8,-x,x^4-x^3-7*x^2+x+14,x^4-6*x^2+4,2*x^3-4*x^2-7*x+9,-x^4+3*x^3+x^2-6*x,2*x^4-3*x^3-11*x^2+9*x+11,x^4-x^3-6*x^2+x+7,x^3-2*x^2-3*x+4,-x^4-x^3+11*x^2+4*x-19,-x^2-x+8,-x^4-x^3+10*x^2+3*x-19,-3*x^2+2*x+12,-2*x^4+x^3+14*x^2-2*x-19,x^4-2*x^3-x^2-2,-x^2+2,-2*x^4+x^3+16*x^2-3*x-26,2*x^4-2*x^3-15*x^2+8*x+19,1,3*x^4-3*x^3-16*x^2+6*x+19,-x^4+x^3+6*x^2+x-11,2*x^4-4*x^3-7*x^2+9*x,-x^4+2*x^3+5*x^2-6*x-6,-2*x^3+4*x^2+4*x-7,-x^4+4*x^3+2*x^2-12*x-3,3*x^4-x^3-23*x^2-x+38,-x^4+2*x^3+5*x^2-4*x-6,-x^3+5*x^2+x-19,-2*x^4+x^3+16*x^2-3*x-30,x^4-2*x^3-3*x^2+4*x]];
98
E[217,3] = [x^3+3*x^2-3, [1,-x^2-2*x,x,x^2+3*x+1,x^2-3,x^2-3,-1,x^2-x-6,x^2-3,3*x+3,x^2+3*x-2,x+3,-3*x^2-4*x+4,x^2+2*x,-3*x^2-3*x+3,3*x+4,-x^2-2*x-1,3*x+3,x^2+2*x,-2*x^2-6*x-3,-x,2*x^2+x-6,-2*x^2-3*x-3,-4*x^2-6*x+3,3*x^2+3*x-5,x^2+x+3,-3*x^2-6*x+3,-x^2-3*x-1,-2*x^2-5*x-4,3*x^2+3*x,-1,-3*x^2-6*x+3,-2*x+3,2*x^2+5*x+3,-x^2+3,-2*x^2-6*x-3,-2*x^2-5*x+1,-x^2-3*x-3,5*x^2+4*x-9,3*x^2+6*x+6,3*x+8,-x^2+3]];
99
E[217,4] = [x^3+3*x^2-1, [1,-x^2-2*x,x,x^2+x-1,x^2+2*x-3,x^2-1,1,x^2+5*x,x^2-3,2*x^2+5*x-1,-3*x^2-9*x,-2*x^2-x+1,3*x^2+6*x-4,-x^2-2*x,-x^2-3*x+1,-3*x-2,-x^2-2*x-3,5*x+1,-3*x^2-6*x+2,-2*x^2-4*x+3,x,3*x+6,2*x^2+7*x-3,2*x^2+1,-5*x^2-11*x+5,x^2+5*x-3,-3*x^2-6*x+1,x^2+x-1,-3*x,-x^2-x+2,1,-3*x^2-6*x+3,-3,4*x^2+7*x+1,x^2+2*x-3,2*x^2-2*x+1,2*x^2+5*x+1,x^2-x+3,-3*x^2-4*x+3,-5*x^2-14*x+4,2*x^2+7*x-6,x^2-1]];
100
101
E[218,1] = [x^2+4*x+2, [1,-1,x,1,-x-1,-x,-x-4,-1,-4*x-5,x+1,2*x+3,x,2*x,x+4,3*x+2,1,x,4*x+5,-2*x-9,-x-1,2,-2*x-3,-5*x-11,-x,-2*x-6,-2*x,8*x+8,-x-4,3*x+9,-3*x-2,3*x+4,-1,-5*x-4,-x,x+2,-4*x-5,3*x+4,2*x+9,-8*x-4,x+1,5*x+14,-2,-3*x-8,2*x+3,-7*x-3,5*x+11,x+5,x,4*x+7,2*x+6,-4*x-2,2*x,2*x+8,-8*x-8,3*x+1]];
102
E[218,2] = [x^3-3*x^2-3*x+8, [1,-1,x,1,-x^2+x+3,-x,2,-1,x^2-3,x^2-x-3,x^2-x-3,x,x^2-2*x,-2,-2*x^2+8,1,0,-x^2+3,-x^2-x+7,-x^2+x+3,2*x,-x^2+x+3,-3*x+3,-x,x^2+x-4,-x^2+2*x,3*x^2-3*x-8,2,-x^2+x+3,2*x^2-8,-2*x^2+4*x+6,-1,2*x^2-8,0,-2*x^2+2*x+6,x^2-3,-3*x+2,x^2+x-7,x^2+3*x-8,x^2-x-3,-6,-2*x,-x^2+2*x+4,x^2-x-3,-3*x^2-x+7,3*x-3,x^2-4*x-3,x,-3,-x^2-x+4,0,x^2-2*x,2*x^2+x-12,-3*x^2+3*x+8,-x^2-x-1]];
103
E[218,3] = [x, [1,1,-2,1,-3,-2,-4,1,1,-3,3,-2,-4,-4,6,1,-6,1,5,-3,8,3,3,-2,4,-4,4,-4,-3,6,-4,1,-6,-6,12,1,-4,5,8,-3,0,8,-10,3,-3,3,-3,-2,9,4,12,-4,12,4,-9]];
104
E[218,4] = [x^2+2*x-2, [1,1,x,1,-x-1,x,x+4,1,-2*x-1,-x-1,1,x,-2*x,x+4,x-2,1,-x,-2*x-1,2*x+1,-x-1,2*x+2,1,-x-5,x,-2,-2*x,-4,x+4,x-7,x-2,-3*x,1,x,-x,-3*x-6,-2*x-1,3*x+4,2*x+1,4*x-4,-x-1,-x+2,2*x+2,x-4,1,-x+5,-x-5,3*x+3,x,6*x+11,-2,2*x-2,-2*x,-2*x-4,-4,-x-1]];
105
E[218,5] = [x^2-3*x+1, [1,1,x,1,-2*x+4,x,-2,1,3*x-4,-2*x+4,-2*x,x,3*x-3,-2,-2*x+2,1,-4*x+4,3*x-4,0,-2*x+4,-2*x,-2*x,3*x-3,x,-4*x+7,3*x-3,2*x-3,-2,-2*x+8,-2*x+2,6*x-12,1,-6*x+2,-4*x+4,4*x-8,3*x-4,-x+2,0,6*x-3,-2*x+4,8*x-10,-2*x,3*x-3,-2*x,2*x-10,3*x-3,-3*x,x,-3,-4*x+7,-8*x+4,3*x-3,5*x-6,2*x-3,4*x-4]];
106
107
E[219,1] = [x, [1,1,-1,-1,-4,-1,2,-3,1,-4,-4,1,-2,2,4,-1,0,1,-4,4,-2,-4,0,3,11,-2,-1,-2,8,4,6,5,4,0,-8,-1,-2,-4,2,12,-10,-2,-6,4,-4,0,-8,1,-3]];
108
E[219,2] = [x, [1,-2,-1,2,-1,2,2,0,1,2,-4,-2,-2,-4,1,-4,-3,-2,-1,-2,-2,8,0,0,-4,4,-1,4,-10,-2,-6,8,4,6,-2,2,1,2,2,0,2,4,6,-8,-1,0,7,4,-3]];
109
E[219,3] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-2,2*x^2-4,-x^3+x^2+4*x+2,-2*x,-2*x^2+2*x+4,2*x^3-8*x,2,-2*x^2+6*x+4,-2*x^2-2*x+8,-2*x^2+4,-2*x^3+10*x+4,-2*x^3+2*x^2+4*x,x^3-x^2-4*x-2,2*x^3-8*x,3*x^3-x^2-14*x+6,2*x,2*x^3+2*x^2-14*x-6,4*x^2-4*x-4,2*x^2-2*x-4,-2*x^3-2*x^2+8*x,-2*x^3+6*x+4,-2*x^3+8*x,-4*x^3+4*x^2+14*x-4,-2*x^3-2*x^2+12*x+8,-2,-4*x^2+4*x,2*x^3-10*x+4,2*x^2-6*x-4,2*x^3+2*x^2-12*x-12,-2*x^3+4*x^2+8*x-8,2*x^2+2*x-8,2*x^3+4*x^2-6*x-12,-6*x^2+10*x+8,2*x^2-4,4*x^3-4*x^2-22*x+6,4*x^3-2*x^2-14*x-8,2*x^3-10*x-4,4*x^3-16*x-8,-2*x^3-4*x^2+10*x+16,2*x^3-2*x^2-4*x,-2*x^3+2*x^2+16*x-12,-4*x^3+12*x-8,-x^3+x^2+4*x+2,-2*x^3-6*x^2+12*x+8,x^3+3*x^2-8*x-6,-2*x^3+8*x,-2*x^3+6*x^2-14]];
110
E[219,4] = [x^6+x^5-9*x^4-5*x^3+20*x^2+4*x-4, [2,2*x,2,2*x^2-4,-x^5-x^4+7*x^3+3*x^2-10*x+2,2*x,x^5+2*x^4-7*x^3-10*x^2+10*x+8,2*x^3-8*x,2,-2*x^4-2*x^3+10*x^2+6*x-4,x^5-11*x^3+26*x,2*x^2-4,2*x^3-10*x+4,x^5+2*x^4-5*x^3-10*x^2+4*x+4,-x^5-x^4+7*x^3+3*x^2-10*x+2,2*x^4-12*x^2+8,-x^5-x^4+9*x^3+3*x^2-20*x+2,2*x,2*x^3+2*x^2-10*x-2,-4*x^3+16*x-4,x^5+2*x^4-7*x^3-10*x^2+10*x+8,-x^5-2*x^4+5*x^3+6*x^2-4*x+4,2*x^3+4*x^2-10*x-12,2*x^3-8*x,-2*x^5-2*x^4+16*x^3+8*x^2-30*x,2*x^4-10*x^2+4*x,2,-x^5+9*x^3+4*x^2-20*x-12,-2*x^4-2*x^3+14*x^2+6*x-16,-2*x^4-2*x^3+10*x^2+6*x-4,x^5-2*x^4-13*x^3+10*x^2+32*x,2*x^5-16*x^3+24*x,x^5-11*x^3+26*x,-2*x^3+6*x-4,2*x^4+2*x^3-10*x^2-10*x,2*x^2-4,-2*x^5-2*x^4+16*x^3+8*x^2-26*x+2,2*x^4+2*x^3-10*x^2-2*x,2*x^3-10*x+4,4*x^3-4*x^2-16*x+8,2*x^3+8*x^2-6*x-24,x^5+2*x^4-5*x^3-10*x^2+4*x+4,3*x^5+6*x^4-19*x^3-30*x^2+28*x+16,-3*x^5-4*x^4+23*x^3+16*x^2-44*x-4,-x^5-x^4+7*x^3+3*x^2-10*x+2,2*x^4+4*x^3-10*x^2-12*x,2*x^5+5*x^4-12*x^3-27*x^2+18*x+14,2*x^4-12*x^2+8,2*x^5+2*x^4-22*x^3-14*x^2+56*x+18]];
111
E[219,5] = [x, [1,0,1,-2,-3,0,-4,0,1,0,0,-2,-4,0,-3,4,3,0,-1,6,-4,0,6,0,4,0,1,8,-6,0,-10,0,0,0,12,-2,-7,0,-4,0,0,0,2,0,-3,0,-3,4,9]];
112
113
E[220,1] = [x, [1,0,2,0,1,0,0,0,1,0,1,0,0,0,2,0,-4,0,-4,0,0,0,6,0,1,0,-4,0,2,0,0,0,2,0,0,0,-6,0,0,0,-10,0,4,0,1,0,10,0,-7,0,-8,0,2,0,1,0,-8,0,-4,0,-14,0,0,0,0,0,2,0,12,0,4,0]];
114
E[220,2] = [x, [1,0,-2,0,1,0,-4,0,1,0,-1,0,-4,0,-2,0,0,0,-4,0,8,0,-6,0,1,0,4,0,-6,0,8,0,2,0,-4,0,2,0,8,0,6,0,8,0,1,0,6,0,9,0,0,0,-6,0,-1,0,8,0,-12,0,2,0,-4,0,-4,0,-10,0,12,0,-12,0]];
115
116
E[221,1] = [x, [1,1,2,-1,2,2,2,-3,1,2,-6,-2,-1,2,4,-1,1,1,4,-2,4,-6,6,-6,-1,-1,-4,-2,-6,4,-2,5,-12,1,4,-1,2,4,-2,-6,-6,4]];
117
E[221,2] = [x, [1,-1,0,-1,4,0,-2,3,-3,-4,6,0,-1,2,0,-1,1,3,8,-4,0,-6,4,0,11,1,0,2,-6,0,-2,-5,0,-1,-8,3,-8,-8,0,12,0,0]];
118
E[221,3] = [x^2+x-1, [1,x,x-1,-x-1,-2*x-1,-2*x+1,-x-1,-2*x-1,-3*x-1,x-2,3*x,x,-1,-1,3*x-1,3*x,-1,2*x-3,3*x-2,x+3,x,-3*x+3,-2*x+2,3*x-1,0,-x,2*x+1,x+2,2*x-3,-4*x+3,-7,x+5,-6*x+3,-x,x+3,x+4,4*x+7,-5*x+3,-x+1,5,-4*x,-x+1]];
119
E[221,4] = [x^2-5, [1,x,-x+1,3,x-1,x-5,2,x,-2*x+3,-x+5,2,-3*x+3,-1,2*x,2*x-6,-1,1,3*x-10,-2*x+2,3*x-3,-2*x+2,2*x,-x-3,x-5,-2*x+1,-x,-2*x+10,6,-6,-6*x+10,2*x,-3*x,-2*x+2,x,2*x-2,-6*x+9,-x+5,2*x-10,x-1,-x+5,-x+5,2*x-10]];
120
E[221,5] = [x^3-4*x+1, [1,x,-x-1,x^2-2,-x^2-x+2,-x^2-x,x-3,-1,x^2+2*x-2,-x^2-2*x+1,x^2-5,-x^2-2*x+3,1,x^2-3*x,2*x^2+3*x-3,-2*x^2-x+4,1,2*x^2+2*x-1,-x^2-3,-x-3,-x^2+2*x+3,-x-1,4*x^2+2*x-10,x+1,x^2+3*x-3,x,-3*x^2-x+6,-3*x^2+2*x+5,-x^2+x+4,3*x^2+5*x-2,-3*x^2-x+6,-x^2-4*x+4,-x^2+x+6,x,2*x^2+x-5,3*x+2,x^2-5*x-4,-7*x+1,-x-1,x^2+x-2,-2*x^2+2*x+6,2*x^2-x+1]];
121
E[221,6] = [x^6-x^5-9*x^4+6*x^3+19*x^2-5*x-3, [2,2*x,-x^5+x^4+8*x^3-5*x^2-13*x+2,2*x^2-4,x^4-x^3-6*x^2+3*x+3,-x^4+x^3+6*x^2-3*x-3,-2*x^3+10*x+4,2*x^3-8*x,-2*x^2+8,x^5-x^4-6*x^3+3*x^2+3*x,-2*x^2+6,x^5-x^4-10*x^3+7*x^2+23*x-4,2,-2*x^4+10*x^2+4*x,2*x^3-14*x,2*x^4-12*x^2+8,-2,-2*x^3+8*x,2*x^5-2*x^4-16*x^3+12*x^2+26*x-2,x^4-x^3-4*x^2-x-3,-2*x^5+18*x^3+4*x^2-36*x-8,-2*x^3+6*x,x^5+x^4-8*x^3-7*x^2+13*x,x^4-x^3-8*x^2+7*x+9,-2*x^4+14*x^2-10,2*x,2*x^3-2*x^2-10*x+2,-2*x^5+14*x^3+4*x^2-20*x-8,-2*x^3+2*x^2+10*x-6,2*x^4-14*x^2,2*x^3+2*x^2-14*x-2,2*x^5-16*x^3+24*x,-2*x^5+2*x^4+18*x^3-12*x^2-36*x+6,-2*x,2*x^5-16*x^3-2*x^2+18*x+6,-2*x^4+12*x^2-16,-2*x^5+x^4+17*x^3-4*x^2-29*x+1,2*x^4-12*x^2+8*x+6,-x^5+x^4+8*x^3-5*x^2-13*x+2,-x^5+x^4+8*x^3-7*x^2-9*x,-2*x^5+x^4+19*x^3-6*x^2-39*x+3,-2*x^5+16*x^3+2*x^2-18*x-6]];
122
E[221,7] = [x^2+x-5, [1,x,x+1,-x+3,-1,5,-x-3,2*x-5,x+3,-x,x+2,3*x-2,-1,-2*x-5,-x-1,-5*x+4,1,2*x+5,-x+2,x-3,-3*x-8,x+5,-2*x+2,-5*x+5,-4,-x,5,-x-4,9,-5,2*x+5,5*x-15,2*x+7,x,x+3,x+4,-2*x-5,3*x-5,-x-1,-2*x+5,0,-5*x-15]];
123
124
E[222,1] = [x, [1,1,-1,1,0,-1,3,1,1,0,1,-1,1,3,0,1,-3,1,3,0,-3,1,-1,-1,-5,1,-1,3,-4,0,-6,1,-1,-3,0,1,-1,3,-1,0,-10,-3,12,1,0,-1,-6,-1,2,-5,3,1,-1,-1,0,3,-3,-4,0,0,2,-6,3,1,0,-1,2,-3,1,0,0,1,-3,-1,5,3]];
125
E[222,2] = [x, [1,1,1,1,0,1,-1,1,1,0,3,1,-1,-1,0,1,-3,1,-7,0,-1,3,3,1,-5,-1,1,-1,0,0,2,1,3,-3,0,1,1,-7,-1,0,-6,-1,-4,3,0,3,6,1,-6,-5,-3,-1,9,1,0,-1,-7,0,0,0,-10,2,-1,1,0,3,2,-3,3,0,12,1,5,1,-5,-7]];
126
E[222,3] = [x, [1,-1,1,1,4,-1,-1,-1,1,-4,-1,1,-3,1,4,1,3,-1,-5,4,-1,1,5,-1,11,3,1,-1,4,-4,-10,-1,-1,-3,-4,1,-1,5,-3,-4,-6,1,4,-1,4,-5,2,1,-6,-11,3,-3,-11,-1,-4,1,-5,-4,-12,4,10,10,-1,1,-12,1,14,3,5,4,0,-1,-11,1,11,-5]];
127
E[222,4] = [x, [1,-1,-1,1,-4,1,3,-1,1,4,5,-1,3,-3,4,1,3,-1,-7,-4,-3,-5,9,1,11,-3,-1,3,0,-4,-2,-1,-5,-3,-12,1,1,7,-3,4,6,3,4,5,-4,-9,-10,-1,2,-11,-3,3,3,1,-20,-3,7,0,-4,4,-2,2,3,1,-12,5,6,3,-9,12,-12,-1,13,-1,-11,-7]];
128
E[222,5] = [x, [1,-1,-1,1,2,1,0,-1,1,-2,-4,-1,6,0,-2,1,6,-1,8,2,0,4,0,1,-1,-6,-1,0,-6,2,4,-1,4,-6,0,1,1,-8,-6,-2,-6,0,-8,-4,2,0,8,-1,-7,1,-6,6,6,1,-8,0,-8,6,-4,-2,-2,-4,0,1,12,-4,-12,6,0,0,0,-1,10,-1,1,8]];
129
130
E[223,1] = [x^2+2*x-1, [1,x,x,-2*x-1,-x-3,-2*x+1,-x-1,x-2,-2*x-2,-x-1,-x,3*x-2,x+3,x-1,-x-1,3,2*x-1,2*x-2,-x-3,3*x+5,x-1,2*x-1,3*x,-4*x+1,4*x+5,x+1,-x-2,-x+3,-7,x-1,-2*x+2,x+4,2*x-1,-5*x+2,2*x+4,-2*x+6,2*x+3]];
131
E[223,2] = [x^4+4*x^3+2*x^2-5*x-3, [1,x,-x-1,x^2-2,-x^3-3*x^2+x+3,-x^2-x,2*x^3+5*x^2-2*x-6,x^3-4*x,x^2+2*x-2,x^3+3*x^2-2*x-3,-2*x^3-6*x^2+x+4,-x^3-x^2+2*x+2,x^3+4*x^2-8,-3*x^3-6*x^2+4*x+6,x,-4*x^3-8*x^2+5*x+7,x^3+x^2-4*x-5,x^3+2*x^2-2*x,x^3+4*x^2+3*x-1,x^3+2*x^2-3,x^3+x^2-2*x,2*x^3+5*x^2-6*x-6,-2*x^3-2*x^2+8*x+1,3*x^3+6*x^2-x-3,x^3+2*x^2-3*x-5,-2*x^2-3*x+3,-x^3-3*x^2+3*x+5,2*x^3-5*x+3,x^3+4*x^2+x-3,x^2,-4*x^3-12*x^2+3*x+14,6*x^3+13*x^2-5*x-12,x^2+5*x+2,-3*x^3-6*x^2+3,-x^3+4*x-3,-2*x^3-6*x^2+x+7,-2*x^3-7*x^2-2*x+6]];
132
E[223,3] = [x^12-7*x^11+6*x^10+57*x^9-122*x^8-105*x^7+430*x^6-73*x^5-499*x^4+242*x^3+143*x^2-52*x-19, [1,x,2*x^11-11*x^10-2*x^9+98*x^8-103*x^7-245*x^6+397*x^5+123*x^4-412*x^3+129*x^2+41*x-18,x^2-2,4*x^11-21*x^10-10*x^9+196*x^8-152*x^7-550*x^6+654*x^5+468*x^4-731*x^3+20*x^2+114*x+4,3*x^11-14*x^10-16*x^9+141*x^8-35*x^7-463*x^6+269*x^5+586*x^4-355*x^3-245*x^2+86*x+38,-9*x^11+45*x^10+34*x^9-435*x^8+235*x^7+1320*x^6-1172*x^5-1412*x^4+1388*x^3+350*x^2-263*x-61,x^3-4*x,-x^9+3*x^8+9*x^7-29*x^6-23*x^5+87*x^4+13*x^3-88*x^2+10*x+17,7*x^11-34*x^10-32*x^9+336*x^8-130*x^7-1066*x^6+760*x^5+1265*x^4-948*x^3-458*x^2+212*x+76,-12*x^11+60*x^10+45*x^9-578*x^8+315*x^7+1739*x^6-1559*x^5-1813*x^4+1827*x^3+390*x^2-327*x-68,3*x^11-12*x^10-26*x^9+135*x^8+58*x^7-531*x^6+11*x^5+896*x^4-147*x^3-601*x^2+112*x+93,x^11-7*x^10+6*x^9+56*x^8-119*x^7-96*x^6+400*x^5-95*x^4-403*x^3+248*x^2+36*x-31,-18*x^11+88*x^10+78*x^9-863*x^8+375*x^7+2698*x^6-2069*x^5-3103*x^4+2528*x^3+1024*x^2-529*x-171,2*x^11-9*x^10-12*x^9+91*x^8-9*x^7-300*x^6+128*x^5+380*x^4-165*x^3-158*x^2+25*x+23,x^4-6*x^2+4,14*x^11-66*x^10-73*x^9+663*x^8-176*x^7-2169*x^6+1282*x^5+2737*x^4-1683*x^3-1153*x^2+418*x+185,-x^10+3*x^9+9*x^8-29*x^7-23*x^6+87*x^5+13*x^4-88*x^3+10*x^2+17*x,10*x^11-50*x^10-37*x^9+481*x^8-268*x^7-1444*x^6+1319*x^5+1500*x^4-1550*x^3-318*x^2+285*x+56,7*x^11-32*x^10-43*x^9+332*x^8-27*x^7-1150*x^6+468*x^5+1609*x^4-690*x^3-829*x^2+212*x+125,-x^11+3*x^10+15*x^9-46*x^8-78*x^7+250*x^6+158*x^5-573*x^4-79*x^3+503*x^2-60*x-80,-24*x^11+117*x^10+106*x^9-1149*x^8+479*x^7+3601*x^6-2689*x^5-4161*x^4+3294*x^3+1389*x^2-692*x-228,x^11-4*x^10-8*x^9+42*x^8+15*x^7-147*x^6+5*x^5+204*x^4-23*x^3-97*x^2+x+10,3*x^11-16*x^10-4*x^9+142*x^8-146*x^7-353*x^6+577*x^5+178*x^4-617*x^3+173*x^2+77*x-19,13*x^11-64*x^10-54*x^9+625*x^8-294*x^7-1938*x^6+1568*x^5+2191*x^4-1912*x^3-692*x^2+407*x+125,-x^9+3*x^8+9*x^7-30*x^6-22*x^5+96*x^4+6*x^3-107*x^2+21*x+19,-6*x^11+28*x^10+33*x^9-283*x^8+58*x^7+935*x^6-493*x^5-1199*x^4+657*x^3+522*x^2-164*x-81,-20*x^11+96*x^10+95*x^9-951*x^8+338*x^7+3031*x^6-2073*x^5-3630*x^4+2604*x^3+1345*x^2-581*x-220,3*x^11-14*x^10-17*x^9+144*x^8-26*x^7-492*x^6+245*x^5+674*x^4-335*x^3-336*x^2+86*x+53,5*x^11-24*x^10-23*x^9+235*x^8-90*x^7-732*x^6+526*x^5+833*x^4-642*x^3-261*x^2+127*x+38,13*x^11-63*x^10-59*x^9+620*x^8-244*x^7-1951*x^6+1410*x^5+2273*x^4-1739*x^3-773*x^2+371*x+120,x^5-8*x^3+12*x,-x^11+4*x^10+8*x^9-43*x^8-13*x^7+157*x^6-21*x^5-238*x^4+59*x^3+147*x^2-30*x-30,32*x^11-157*x^10-135*x^9+1532*x^8-699*x^7-4738*x^6+3759*x^5+5303*x^4-4541*x^3-1584*x^2+913*x+266,-16*x^11+76*x^10+81*x^9-761*x^8+224*x^7+2476*x^6-1530*x^5-3096*x^4+1978*x^3+1283*x^2-473*x-206,-x^11+3*x^10+11*x^9-35*x^8-41*x^7+145*x^6+59*x^5-262*x^4-16*x^3+193*x^2-20*x-34,-2*x^11+12*x^10-3*x^9-101*x^8+150*x^7+211*x^6-533*x^5+32*x^4+544*x^3-306*x^2-56*x+43]];
133
134
E[224,1] = [x, [1,0,-2,0,0,0,-1,0,1,0,-4,0,-4,0,0,0,-2,0,-6,0,2,0,8,0,-5,0,4,0,2,0,-4,0,8,0,0,0,10,0,8,0,-10,0,4,0,0,0,4,0,1,0,4,0,-2,0,0,0,12,0,10,0,-8,0,-1,0]];
135
E[224,2] = [x, [1,0,2,0,0,0,1,0,1,0,4,0,-4,0,0,0,-2,0,6,0,2,0,-8,0,-5,0,-4,0,2,0,4,0,8,0,0,0,10,0,-8,0,-10,0,-4,0,0,0,-4,0,1,0,-4,0,-2,0,0,0,12,0,-10,0,-8,0,1,0]];
136
E[224,3] = [x^2+2*x-4, [1,0,x,0,x+2,0,1,0,-2*x+1,0,-2*x-4,0,-x+2,0,4,0,2*x+2,0,-x,0,x,0,4,0,2*x+3,0,2*x-8,0,-2*x-2,0,-2*x,0,-8,0,x+2,0,-2*x-2,0,4*x-4,0,-2*x-6,0,2*x+4,0,x-6,0,2*x+8,0,1,0,-2*x+8,0,-10,0,-4*x-16,0,2*x-4,0,-x-8,0,x+10,0,-2*x+1,0]];
137
E[224,4] = [x^2-2*x-4, [1,0,x,0,-x+2,0,-1,0,2*x+1,0,-2*x+4,0,x+2,0,-4,0,-2*x+2,0,-x,0,-x,0,-4,0,-2*x+3,0,2*x+8,0,2*x-2,0,-2*x,0,-8,0,x-2,0,2*x-2,0,4*x+4,0,2*x-6,0,2*x-4,0,-x-6,0,2*x-8,0,1,0,-2*x-8,0,-10,0,-4*x+16,0,-2*x-4,0,-x+8,0,-x+10,0,-2*x-1,0]];
138
139
E[225,1] = [x, [1,-1,0,-1,0,0,0,3,0,0,4,0,2,0,0,-1,2,0,4,0,0,-4,0,0,0,-2,0,0,2,0,0,-5,0,-2,0,0,10,-4,0,0,-10,0,-4,-4,0,0,8,0,-7,0,0,-2,-10,0,0,0,0,-2,4,0]];
140
E[225,2] = [x, [1,-2,0,2,0,0,-3,0,0,0,-2,0,1,6,0,-4,-2,0,-5,0,0,4,-6,0,0,-2,0,-6,-10,0,-3,8,0,4,0,0,2,10,0,0,8,0,1,-4,0,12,-2,0,2,0,0,2,4,0,0,0,0,20,10,0]];
141
E[225,3] = [x, [1,2,0,2,0,0,3,0,0,0,-2,0,-1,6,0,-4,2,0,-5,0,0,-4,6,0,0,-2,0,6,-10,0,-3,-8,0,4,0,0,-2,-10,0,0,8,0,-1,-4,0,12,2,0,2,0,0,-2,-4,0,0,0,0,-20,10,0]];
142
E[225,4] = [x^2-5, [1,x,0,3,0,0,0,x,0,0,0,0,0,0,0,-1,-2*x,0,4,0,0,0,-4*x,0,0,0,0,0,0,0,8,-3*x,0,-10,0,0,0,4*x,0,0,0,0,0,0,0,-20,4*x,0,-7,0,0,0,2*x,0,0,0,0,0,0,0]];
143
E[225,5] = [x, [1,0,0,-2,0,0,-5,0,0,0,0,0,-5,0,0,4,0,0,-1,0,0,0,0,0,0,0,0,10,0,0,-7,0,0,0,0,0,10,0,0,0,0,0,-5,0,0,0,0,0,18,0,0,10,0,0,0,0,0,0,0,0]];
144
E[225,6] = [x, [1,0,0,-2,0,0,5,0,0,0,0,0,5,0,0,4,0,0,-1,0,0,0,0,0,0,0,0,-10,0,0,-7,0,0,0,0,0,-10,0,0,0,0,0,5,0,0,0,0,0,18,0,0,-10,0,0,0,0,0,0,0,0]];
145
146
E[226,1] = [x^2-2*x-2, [1,-1,x,1,2,-x,0,-1,2*x-1,-2,-2*x+4,x,-2*x,0,2*x,1,-2,-2*x+1,-3*x+4,2,0,2*x-4,-x+8,-x,-1,2*x,4,0,2,-2*x,2*x,-1,-4,2,0,2*x-1,4*x-6,3*x-4,-4*x-4,-2,2*x+4,0,-x-8,-2*x+4,4*x-2,x-8,5*x-8,x,-7,1,-2*x,-2*x,-6*x+4,-4,-4*x+8,0,-2*x-6]];
147
E[226,2] = [x^2-2, [1,-1,x,1,-x-2,-x,-2*x-2,-1,-1,x+2,-4,x,2,2*x+2,-2*x-2,1,2*x-2,1,5*x,-x-2,-2*x-4,4,4*x,-x,4*x+1,-2,-4*x,-2*x-2,-5*x-2,2*x+2,-2*x-6,-1,-4*x,-2*x+2,6*x+8,-1,-3*x+6,-5*x,2*x,x+2,-2,2*x+4,-x,-4,x+2,-4*x,0,x,8*x+5,-4*x-1,-2*x+4,2,-2*x+2,4*x,4*x+8,2*x+2,10]];
148
E[226,3] = [x, [1,1,-2,1,-4,-2,0,1,1,-4,-4,-2,-2,0,8,1,-2,1,-2,-4,0,-4,4,-2,11,-2,4,0,-4,8,8,1,8,-2,0,1,-8,-2,4,-4,-6,0,6,-4,-4,4,-12,-2,-7,11,4,-2,10,4,16,0,4]];
149
E[226,4] = [x^4-2*x^3-6*x^2+12*x-4, [2,2,2*x,2,x^3-2*x^2-8*x+12,2*x,-2*x^3+2*x^2+12*x-12,2,2*x^2-6,x^3-2*x^2-8*x+12,2*x^2-8,2*x,4*x^3-4*x^2-28*x+24,-2*x^3+2*x^2+12*x-12,-2*x^2+4,2,-4*x^3+4*x^2+24*x-20,2*x^2-6,-4*x^3+4*x^2+26*x-24,x^3-2*x^2-8*x+12,-2*x^3+12*x-8,2*x^2-8,3*x^3-6*x^2-18*x+24,2*x,6*x^3-8*x^2-40*x+42,4*x^3-4*x^2-28*x+24,2*x^3-12*x,-2*x^3+2*x^2+12*x-12,-3*x^3+2*x^2+20*x-12,-2*x^2+4,4*x^3-2*x^2-24*x+12,2,2*x^3-8*x,-4*x^3+4*x^2+24*x-20,-4*x^3+8*x^2+28*x-40,2*x^2-6,-x^3-2*x^2+4*x+4,-4*x^3+4*x^2+26*x-24,4*x^3-4*x^2-24*x+16,x^3-2*x^2-8*x+12,-2*x^3+6*x^2+16*x-24,-2*x^3+12*x-8,-2*x^3+18*x-8,2*x^2-8,-5*x^3+6*x^2+28*x-36,3*x^3-6*x^2-18*x+24,3*x^3-2*x^2-18*x+8,2*x,4*x^3-4*x^2-24*x+18,6*x^3-8*x^2-40*x+42,-4*x^3+28*x-16,4*x^3-4*x^2-28*x+24,-6*x^3+8*x^2+44*x-40,2*x^3-12*x,-6*x^3+8*x^2+36*x-48,-2*x^3+2*x^2+12*x-12,-4*x^3+2*x^2+24*x-16]];
150
151
E[227,1] = [x^2-5, [2,2*x,-x+3,6,-4,3*x-5,x+7,2*x,-3*x+1,-4*x,-x+1,-3*x+9,-2*x-2,7*x+5,2*x-6,-2,-8,x-15,x+13,-12,-2*x+8,x-5,-x+11,3*x-5,-2,-2*x-10,-2*x,3*x+21,-3*x-3,-6*x+10,-4*x,-6*x,-2*x+4,-8*x,-2*x-14,-9*x+3,8,13*x+5]];
152
E[227,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x+1,x^2-2,x^2+x-3,-1,x^2+3*x-2,-2*x^2-3*x+1,-x^2-x,-x^2-2*x+1,x^2-x-3,2*x^2+3*x-2,-3,x^2-x+1,3*x^2+5*x-4,-x^2-x+2,x+3,x^2-x-1,-4*x^2-7*x,-2*x^2-2*x+5,2*x^2+3*x-5,-3*x^2-2*x+1,-2*x^2+2*x+6,-x^2+4,-4*x^2-5*x+4,-3*x,3*x^2+7*x-2,-5*x^2-4*x+5,2*x^2+2*x-3,-x^2-x+3,4*x^2+8*x-2,5*x^2+7*x-3,3*x^2+5*x-2,x^2+3*x,-5*x^2-8*x+8,-x^2+2*x+1,x^2+4*x-4,x^2-4*x-4]];
153
E[227,3] = [x^10-17*x^8-3*x^7+98*x^6+40*x^5-218*x^4-148*x^3+136*x^2+144*x+32, [16,16*x,x^9-21*x^7-3*x^6+150*x^5+36*x^4-418*x^3-132*x^2+368*x+160,16*x^2-32,-12*x^9+12*x^8+196*x^7-152*x^6-1076*x^5+496*x^4+2312*x^3-168*x^2-1616*x-480,-4*x^8+52*x^6-4*x^5-200*x^4+16*x^3+232*x^2+16*x-32,13*x^9-8*x^8-213*x^7+97*x^6+1178*x^5-256*x^4-2562*x^3-212*x^2+1816*x+672,16*x^3-64*x,-5*x^9+4*x^8+81*x^7-45*x^6-434*x^5+100*x^4+882*x^3+124*x^2-560*x-224,12*x^9-8*x^8-188*x^7+100*x^6+976*x^5-304*x^4-1944*x^3+16*x^2+1248*x+384,2*x^9-4*x^8-30*x^7+54*x^6+140*x^5-204*x^4-212*x^3+176*x^2+56*x+16,-6*x^9+94*x^7+2*x^6-500*x^5-56*x^4+1068*x^3+280*x^2-768*x-320,-4*x^8+52*x^6-4*x^5-200*x^4+16*x^3+232*x^2+16*x,-8*x^9+8*x^8+136*x^7-96*x^6-776*x^5+272*x^4+1712*x^3+48*x^2-1200*x-416,20*x^9-12*x^8-332*x^7+144*x^6+1860*x^5-384*x^4-4056*x^3-248*x^2+2752*x+928,16*x^4-96*x^2+64,-18*x^9+16*x^8+298*x^7-202*x^6-1660*x^5+648*x^4+3604*x^3-152*x^2-2512*x-736,4*x^9-4*x^8-60*x^7+56*x^6+300*x^5-208*x^4-616*x^3+120*x^2+496*x+160,6*x^9-2*x^8-98*x^7+16*x^6+542*x^5+32*x^4-1188*x^3-340*x^2+848*x+368,16*x^9-8*x^8-256*x^7+104*x^6+1368*x^5-320*x^4-2832*x^3-48*x^2+1888*x+576,-13*x^9+10*x^8+217*x^7-123*x^6-1220*x^5+368*x^4+2658*x^3-1800*x-512,-4*x^9+4*x^8+60*x^7-56*x^6-284*x^5+224*x^4+472*x^3-216*x^2-272*x-64,-15*x^9+6*x^8+247*x^7-73*x^6-1384*x^5+172*x^4+3078*x^3+320*x^2-2240*x-816,-16*x^7-16*x^6+192*x^5+160*x^4-640*x^3-416*x^2+512*x+256,-4*x^9+68*x^7+12*x^6-408*x^5-160*x^4+1032*x^3+576*x^2-928*x-464,-4*x^9+52*x^7-4*x^6-200*x^5+16*x^4+232*x^3+16*x^2,-8*x^9+4*x^8+136*x^7-36*x^6-780*x^5-16*x^4+1736*x^3+536*x^2-1232*x-560,-18*x^9+16*x^8+306*x^7-186*x^6-1764*x^5+480*x^4+3988*x^3+312*x^2-2896*x-1088,12*x^9-6*x^8-200*x^7+66*x^6+1126*x^5-120*x^4-2464*x^3-340*x^2+1680*x+592,-12*x^9+8*x^8+204*x^7-100*x^6-1184*x^5+304*x^4+2712*x^3+32*x^2-1952*x-640,2*x^9-4*x^8-42*x^7+46*x^6+296*x^5-128*x^4-804*x^3-32*x^2+672*x+288,16*x^5-128*x^3+192*x,9*x^9-6*x^8-149*x^7+59*