Sharedwww / tables / an_s2g0new_1-100_hiprec.gpOpen in CoCalc
Author: William A. Stein
1
\\ an_s2g0new_1-100_hiprec.gp
2
\\ This is a PARI readable nonnormalized basis for S_2(Gamma_0(N)) for N
3
\\ in the range: 1 <= N <= 100.
4
\\ The number of a_n computed is always at least 500.
5
\\ William Stein ([email protected])
6
7
E[11,1] = [x, [1,-2,-1,2,1,2,-2,0,-2,-2,1,-2,4,4,-1,-4,-2,4,0,2,2,-2,-1,0,-4,-8,5,-4,0,2,7,8,-1,4,-2,-4,3,0,-4,0,-8,-4,-6,2,-2,2,8,4,-3,8,2,8,-6,-10,1,0,0,0,5,-2,12,-14,4,-8,4,2,-7,-4,1,4,-3,0,4,-6,4,0,-2,8,-10,-4,1,16,-6,4,-2,12,0,0,15,4,-8,-2,-7,-16,0,-8,-7,6,-2,-8,2,-4,-16,0,2,12,18,10,10,-2,-3,8,9,0,-1,0,-8,-10,4,0,1,-24,8,14,-9,-8,8,0,6,-8,-18,-2,0,14,5,0,-7,-2,10,-4,-8,6,4,8,0,-8,3,6,-10,-8,2,0,4,4,7,-8,-7,20,6,8,2,-2,4,-16,-1,12,-12,0,3,4,0,-12,-6,0,8,-4,-5,-30,-15,-4,7,16,-12,0,3,14,-2,16,-10,0,17,8,4,14,-4,-6,-2,4,0,0,7,-4,0,4,-8,32,2,-16,0,-4,12,-12,3,-36,-6,0,-14,-20,-4,2,-8,6,19,-16,8,-18,18,0,15,2,2,0,24,16,8,10,10,-8,-30,4,-8,-2,-16,24,-3,-16,0,0,6,18,-23,8,-1,-16,2,16,-2,-12,-6,8,0,36,14,0,-6,0,-15,-14,10,-10,-28,8,8,14,-4,2,-2,-20,-14,0,-18,16,4,-6,0,-8,16,-16,-13,0,7,8,24,-6,5,0,5,20,-4,8,12,-4,-2,0,12,-8,8,-4,16,-14,12,0,-1,14,4,-20,13,-12,0,-8,-18,-4,0,2,-16,-8,-10,0,-16,2,7,-12,-6,24,-7,-8,-22,-6,-9,-4,7,0,20,0,1,12,28,0,30,-16,20,8,-21,10,-3,30,-4,30,-20,0,-19,-14,-1,-16,4,24,-17,4,16,-6,12,-14,-26,4,9,0,0,20,-5,0,-8,-34,-1,0,-2,-8,12,-14,-15,8,2,0,18,4,-10,-4,-2,0,0,16,2,-14,28,4,1,0,3,0,-30,16,7,-32,-10,-4,-6,32,-10,0,20,4,22,-24,-16,0,8,-6,-24,36,-4,12,-18,-20,-11,28,0,20,0,8,40,0,6,16,-11,-6,15,-38,10,16,35,-16,-8,18,-2,-36,-8,0,-12,-30,-10,-2,12,-4,-11,0,-7,-48,-27,-16,14,-16,7,0,-6,-20,0,8,12,60,20,-8,12,16,-2,2,-7,32,23,0,-4,6,-8,16,0,0,-2,-28,6,-12,20,-18]];
8
9
E[14,1] = [x, [1,-1,-2,1,0,2,1,-1,1,0,0,-2,-4,-1,0,1,6,-1,2,0,-2,0,0,2,-5,4,4,1,-6,0,-4,-1,0,-6,0,1,2,-2,8,0,6,2,8,0,0,0,-12,-2,1,5,-12,-4,6,-4,0,-1,-4,6,-6,0,8,4,1,1,0,0,-4,6,0,0,0,-1,2,-2,10,2,0,-8,8,0,-11,-6,-6,-2,0,-8,12,0,-6,0,-4,0,8,12,0,2,-10,-1,0,-5,0,12,-4,4,0,-6,12,4,2,0,-4,1,6,4,0,-6,-4,6,6,0,-11,-8,-12,-4,0,-1,-16,-1,-16,0,18,0,2,4,0,-6,18,0,14,0,24,0,0,1,0,-2,-2,2,-18,-10,8,-2,6,0,0,8,-4,-8,-12,0,0,11,-16,6,0,6,-12,2,3,0,2,8,-12,-12,-5,0,12,6,-12,0,20,4,-16,0,0,-8,0,-12,4,0,24,-2,14,10,0,1,-18,0,20,5,8,0,-6,-12,0,4,0,-4,0,0,-4,6,0,-12,0,-4,-4,-2,-4,0,-24,4,8,-1,-5,-6,18,-4,-4,0,0,6,-6,4,0,-6,-16,-6,24,0,-10,11,10,8,0,12,-8,4,12,0,-18,1,0,16,0,1,18,16,2,0,-6,-18,0,0,0,-2,12,-4,-12,0,-16,6,8,-18,0,0,-10,-14,-4,0,-6,-24,-22,0,0,0,6,-1,19,0,20,2,24,2,0,-2,0,18,0,10,8,-8,0,2,0,-6,2,0,8,0,-24,-8,-10,4,0,8,6,12,0,0,-24,0,12,-11,20,16,-4,-6,-12,0,8,-6,2,12,0,-2,14,-3,-12,0,0,-2,1,-8,0,12,-24,12,-28,5,-16,0,18,-12,0,-6,-12,12,-24,0,-15,-20,22,-4,0,16,8,0,6,0,6,8,14,0,0,12,24,-4,-16,0,32,-24,36,2,0,-14,8,-10,18,0,0,-1,-36,18,0,0,20,-20,-4,-5,-18,-8,16,0,0,6,0,12,14,0,-36,-4,-6,0,0,4,-28,0,6,0,-10,4,-12,-6,-30,0,8,12,0,0,24,4,-34,4,0,2,0,4,8,0,1,24,-12,-4,0,-8,36,1,18,5,0,6,-16,-18,0,4,-10,4,24,0,12,0,32,-6,0,6,-6,-4,-4,0,8,6,0,16,-10,6,6,-24,-36,0,-8,10,0,-11,0,-10,-16,-8,32,0,-12,-12,-36,8,0,-4,0,-12,-4,0]];
10
11
E[15,1] = [x, [1,-1,-1,-1,1,1,0,3,1,-1,-4,1,-2,0,-1,-1,2,-1,4,-1,0,4,0,-3,1,2,-1,0,-2,1,0,-5,4,-2,0,-1,-10,-4,2,3,10,0,4,4,1,0,8,1,-7,-1,-2,2,-10,1,-4,0,-4,2,-4,1,-2,0,0,7,-2,-4,12,-2,0,0,-8,3,10,10,-1,-4,0,-2,0,-1,1,-10,12,0,2,-4,2,-12,-6,-1,0,0,0,-8,4,5,2,7,-4,-1,6,2,-16,-6,0,10,-12,1,14,4,10,0,2,4,0,2,-2,4,0,-3,5,2,-10,0,1,0,-8,3,-4,2,-12,-4,0,-12,-1,6,-6,0,-4,0,-8,8,8,-1,-2,-10,7,10,22,1,-8,12,2,0,0,-2,14,0,10,-5,0,-1,-4,-10,4,-12,0,0,-9,-2,4,-4,-18,-2,0,4,4,6,20,-1,-10,0,2,0,-10,0,-8,-8,0,-4,16,-7,2,-2,2,7,6,4,-8,3,-12,-6,0,2,10,16,0,2,-16,0,20,10,8,12,4,-3,0,-14,-10,4,-4,-10,8,0,1,-2,-20,4,6,0,0,-6,-6,2,8,4,0,0,-16,1,-14,-5,-1,2,-7,10,-8,0,-12,-1,12,0,0,8,-2,-17,18,4,0,2,-2,12,16,12,-10,0,6,-12,14,1,16,-2,0,6,-4,0,6,4,0,0,-6,8,-12,8,-4,-8,0,-5,-13,2,-2,-10,6,-7,-4,-30,4,-22,0,1,0,8,-6,-4,-2,-2,28,0,16,0,-24,6,26,-14,0,0,-2,-10,8,7,12,0,8,-1,-2,4,-14,30,0,-4,12,-12,-10,0,12,0,-14,9,-2,-2,0,-4,0,12,0,18,-28,-2,-2,0,2,20,18,-4,-8,6,0,-20,-24,3,-3,10,-5,0,10,-2,-24,0,10,10,0,0,-26,8,-1,24,4,0,-20,-4,8,-16,-24,-3,0,-2,4,-2,6,-2,0,-21,12,-6,0,4,-2,8,0,-1,18,12,0,-6,1,0,40,-6,26,-10,6,16,0,0,12,10,4,16,4,0,-26,-20,8,-30,2,-8,0,12,-8,-4,0,1,-14,0,2,-14,0,10,40,-12,-7,4,-12,-10,-6,-8,-22,0,2,-1,-40,-2,8,20,0,-12,10,-6,-2,0,-18,0,24,2,0,6,28,2,0,-8,-14,-12,-16,0,4,0,-10,16,0,5,20,14,0,-5,2,1,32,-6,4,7,28,10,-4,8,-4,0,0,12,4,-1]];
12
13
E[17,1] = [x, [1,-1,0,-1,-2,0,4,3,-3,2,0,0,-2,-4,0,-1,1,3,-4,2,0,0,4,0,-1,2,0,-4,6,0,4,-5,0,-1,-8,3,-2,4,0,-6,-6,0,4,0,6,-4,0,0,9,1,0,2,6,0,0,12,0,-6,-12,0,-10,-4,-12,7,4,0,4,-1,0,8,-4,-9,-6,2,0,4,0,0,12,2,9,6,-4,0,-2,-4,0,0,10,-6,-8,-4,0,0,8,0,2,-9,0,1,-10,0,8,-6,0,-6,8,0,6,0,0,-4,-14,0,-8,-6,6,12,4,0,-11,10,0,-4,12,12,8,3,0,-4,16,0,-16,-4,0,3,-6,0,-8,8,0,4,0,3,-12,6,0,2,-10,0,-16,-12,-3,0,-8,0,-2,-12,0,10,16,-9,24,6,0,4,-4,0,-9,2,12,-4,22,0,-4,0,0,-10,12,-6,-2,8,0,12,4,0,0,0,0,-8,-16,0,2,-2,0,-9,-18,0,-20,-3,0,10,24,0,12,-8,-12,2,0,0,8,-6,0,-8,-8,0,16,-6,0,0,-2,0,24,-20,3,14,-24,0,6,8,0,18,-6,-6,0,12,0,-4,-16,0,18,11,0,10,-18,0,8,12,0,-12,12,12,0,-8,0,-17,18,0,-8,-4,-18,-16,-16,0,-12,16,0,-4,22,0,-16,-1,0,6,0,0,14,8,-12,-24,-6,0,-16,4,0,0,-24,15,1,12,0,6,6,0,24,-6,0,10,-8,0,16,16,0,4,20,3,-12,0,0,8,28,0,-22,2,24,-12,-10,0,0,-14,0,-16,-4,-9,2,-24,0,-18,0,0,4,4,6,4,-8,0,-14,9,0,2,0,-12,8,12,0,-22,32,0,-18,4,0,0,-30,0,8,-10,0,-12,0,18,-3,2,0,8,12,0,28,-4,18,-4,24,0,6,0,0,0,-12,0,-8,-8,0,16,-24,0,0,-2,-12,-2,6,0,4,27,0,18,-24,0,6,20,0,1,-14,0,-8,10,-18,-24,0,0,26,-12,0,-8,-48,12,8,10,0,0,8,0,22,-8,0,18,-1,0,-40,-8,0,8,12,0,2,-16,0,-6,-16,0,-20,0,-27,2,28,0,-20,-24,0,28,34,-3,0,14,0,24,16,0,-6,-6,0,8,-2,0,32,-6,0,6,12,-6,16,0,0,-36,0,0,4,-4,-18,16,36,0,4,-18,0,11,-4,0,20,-30,0,18,20,0,6,-8,0,-4,-16,0,-40,-12]];
14
15
E[19,1] = [x, [1,0,-2,-2,3,0,-1,0,1,0,3,4,-4,0,-6,4,-3,0,1,-6,2,0,0,0,4,0,4,2,6,0,-4,0,-6,0,-3,-2,2,0,8,0,-6,0,-1,-6,3,0,-3,-8,-6,0,6,8,12,0,9,0,-2,0,-6,12,-1,0,-1,-8,-12,0,-4,6,0,0,6,0,-7,0,-8,-2,-3,0,8,12,-11,0,12,-4,-9,0,-12,0,12,0,4,0,8,0,3,0,8,0,3,-8,6,0,14,0,6,0,-18,-8,-16,0,-4,-4,6,0,0,-12,-4,0,3,0,-2,0,12,8,-3,0,2,0,2,0,-15,12,-1,0,12,0,-3,0,-13,6,6,0,-12,4,18,0,12,-4,21,0,-10,0,-3,0,-12,-16,14,0,-24,0,0,0,20,12,-18,0,-18,0,3,0,1,2,-18,0,-4,12,12,0,-18,-6,2,0,2,0,6,0,-9,6,-4,0,3,16,-4,0,24,12,18,0,11,0,8,0,-6,-12,-18,0,0,-16,3,0,14,-24,-12,0,-3,0,4,0,14,-18,12,0,-10,0,4,0,12,4,5,0,6,0,-21,0,-9,12,-16,0,15,-24,-10,0,10,2,-18,0,-4,0,-24,0,21,2,0,0,18,16,0,0,-2,24,6,0,9,0,36,0,-24,8,24,0,-16,-12,-8,0,12,0,-19,0,-4,0,6,0,-13,-12,-6,0,6,0,-8,0,-16,14,-12,0,-18,0,12,0,0,16,1,0,-12,4,-3,0,20,6,-28,0,-3,0,-10,0,-3,-16,6,0,18,-24,36,0,-3,22,-16,0,32,0,3,0,-28,-24,2,0,-12,8,32,0,-12,18,-12,0,13,0,0,0,21,24,17,0,-16,0,-6,0,18,-24,-6,0,15,0,1,0,4,-8,-21,0,8,0,-6,0,-12,-16,-4,0,6,0,-24,0,-34,-6,-4,0,12,0,-9,0,-1,-16,15,0,0,0,30,0,24,-6,-7,0,2,16,12,0,16,-12,-33,0,6,0,-4,0,6,-28,6,0,36,0,26,0,-12,-12,8,0,-3,0,-12,0,1,36,24,0,-24,16,2,0,-36,32,0,0,-10,0,-6,0,-3,8,36,0,-42,8,0,0,-18,-12,20,0,12,0,-37,0,-12,0,9,0,-31,24,24,0,-27,8,4,0,-28,0,-3,0,4,-6,12,0,-12,0,-8,0,0,4,24,0,2,0,-40,0,12,-24,-18,0,9,-16,-6,0,5,6]];
16
17
E[20,1] = [x, [1,0,-2,0,-1,0,2,0,1,0,0,0,2,0,2,0,-6,0,-4,0,-4,0,6,0,1,0,4,0,6,0,-4,0,0,0,-2,0,2,0,-4,0,6,0,-10,0,-1,0,-6,0,-3,0,12,0,-6,0,0,0,8,0,12,0,2,0,2,0,-2,0,2,0,-12,0,-12,0,2,0,-2,0,0,0,8,0,-11,0,6,0,6,0,-12,0,-6,0,4,0,8,0,4,0,2,0,0,0,6,0,14,0,4,0,-6,0,2,0,-4,0,-6,0,-6,0,2,0,-12,0,-11,0,-12,0,-1,0,2,0,20,0,0,0,-8,0,-4,0,18,0,-4,0,12,0,0,0,-6,0,6,0,-6,0,20,0,-6,0,4,0,-22,0,12,0,12,0,-10,0,0,0,18,0,-9,0,-4,0,-6,0,2,0,-24,0,-12,0,-10,0,-4,0,-2,0,0,0,8,0,-12,0,26,0,4,0,18,0,8,0,-4,0,12,0,-6,0,6,0,0,0,-16,0,24,0,10,0,-8,0,-4,0,-12,0,-10,0,1,0,-6,0,14,0,0,0,-6,0,6,0,-16,0,-24,0,14,0,10,0,3,0,-8,0,-12,0,0,0,0,0,-12,0,-6,0,4,0,6,0,-18,0,6,0,12,0,18,0,20,0,-8,0,0,0,26,0,-4,0,6,0,14,0,-8,0,12,0,19,0,-4,0,-30,0,-12,0,0,0,12,0,-20,0,-12,0,-2,0,2,0,-28,0,12,0,-22,0,-2,0,-6,0,0,0,12,0,24,0,2,0,-4,0,-12,0,8,0,2,0,-2,0,2,0,12,0,0,0,-20,0,12,0,-30,0,-10,0,8,0,18,0,12,0,24,0,24,0,-3,0,22,0,-2,0,-22,0,6,0,-12,0,26,0,2,0,12,0,-28,0,-4,0,6,0,0,0,-10,0,-6,0,-36,0,0,0,-8,0,2,0,16,0,-30,0,-8,0,11,0,0,0,-34,0,-36,0,24,0,-6,0,8,0,36,0,26,0,-6,0,-6,0,4,0,0,0,36,0,2,0,12,0,-24,0,8,0,-3,0,6,0,6,0,12,0,6,0,0,0,-40,0,-4,0,26,0,-24,0,30,0,14,0,-8,0,-30,0,4,0,44,0,0,0,-4,0,-6,0,-24,0,4,0,-24,0,-2,0,26,0,20,0,0,0,-36,0,0,0,-24,0,-4,0]];
18
19
E[21,1] = [x, [1,-1,1,-1,-2,-1,-1,3,1,2,4,-1,-2,1,-2,-1,-6,-1,4,2,-1,-4,0,3,-1,2,1,1,-2,2,0,-5,4,6,2,-1,6,-4,-2,-6,2,1,-4,-4,-2,0,0,-1,1,1,-6,2,6,-1,-8,-3,4,2,12,2,-2,0,-1,7,4,-4,4,6,0,-2,0,3,-6,-6,-1,-4,-4,2,-16,2,1,-2,-12,1,12,4,-2,12,-14,2,2,0,0,0,-8,-5,18,-1,4,1,14,6,8,-6,2,-6,4,-1,-18,8,6,1,-14,-4,0,2,-2,-12,6,-6,5,2,2,0,12,1,0,3,-4,-4,4,-4,-4,-4,-2,-18,-6,0,12,-2,0,0,-8,-1,4,6,1,-6,6,1,8,12,-6,4,0,2,-2,16,6,10,0,-1,4,-2,-8,12,-8,-3,-9,-12,4,4,-10,2,1,-4,12,14,-4,2,-26,-2,-2,0,-12,0,-24,0,-1,8,-8,7,2,-18,4,-1,22,-4,24,-3,4,-14,2,6,-4,-8,0,2,16,-2,4,-6,0,-4,8,3,0,18,-6,8,12,-6,16,5,-1,14,-12,-4,-10,0,-4,-6,-6,2,0,-12,-16,-6,24,2,2,-5,1,2,-2,-2,-8,0,-12,-12,-20,1,0,0,12,-17,26,4,-6,-4,-2,-4,16,12,-12,4,-14,-4,6,2,16,6,2,6,-4,0,22,-12,0,6,-22,0,-20,0,-8,8,-2,-5,19,-4,18,6,14,-1,-24,18,4,-6,0,1,4,-8,14,-4,4,6,4,4,8,0,-24,-6,26,2,2,16,-18,-6,-8,-14,4,0,-24,-1,2,-4,-18,6,0,8,-4,12,6,8,-8,1,-14,9,-14,-12,0,-4,-1,-12,0,10,-28,2,-2,-1,-2,-20,10,-12,0,14,6,4,32,-6,-3,26,5,-2,12,2,0,0,2,12,-6,0,-10,24,12,0,4,1,12,8,0,8,0,3,8,-2,-4,-18,6,-4,0,3,4,-22,32,-4,-18,-24,-4,1,-30,-4,0,-14,-2,-2,24,-18,-22,4,-6,-8,-12,0,24,10,12,-16,-12,-2,38,-4,0,18,6,0,2,-4,-8,-8,-24,-1,-14,0,4,18,0,6,-24,-24,1,-12,36,-6,28,-16,6,-7,-30,1,8,14,8,12,-4,12,10,10,-6,0,-10,4,16,2,0,6,36,2,-4,0,-2,36,-16,16,-4,-6,6,-24,-16,10,-12,-2,0,-5,-36,-1,-8,-6,4,2,20,-2,12,8,-8,0,0,12,4,-12]];
20
21
E[23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,2*x,x-2,2*x+2,-2*x-1,2,-2*x+2,-2*x-4,x+3,3,2,2*x-4,3*x,-2*x+2,2*x,-2,-2,-2*x-6,-2*x-2,1,5,-4*x-1,3*x,2*x+1,-2*x-4,-3,-6*x+2,6*x+3,x+5,6*x+8,4*x-2,4,-2*x-2,-2*x,-2*x,-6*x-3,2*x-4,-4*x-1,-4*x-2,0,4*x+6,4*x,x,-2*x-1,3*x-6,4*x+1,3*x-4,-6*x+2,-3*x-3,4*x-2,-x+2,-4*x-4,-2*x-6,4*x+2,-3*x,4*x+4,4*x+2,-8*x-2,-3*x+6,4*x+4,-2*x+1,6*x,2*x+6,2*x-4,-2*x,-2*x-1,4*x,2*x+11,-4*x-2,-4*x+9,2*x-2,-2*x+9,2*x+2,-8*x-12,3*x-6,-8*x-6,-6*x+6,-11,3*x-4,2*x-10,6*x+8,8*x-4,0,6*x+3,6*x+8,-4*x-8,-4*x+4,6*x+6,-x-1,-15,x-2,-4*x,-9*x-7,6*x+14,-3*x+4,-4*x-8,x+5,4*x+2,8*x-6,-10*x+2,-6*x-3,-8*x-4,-6*x+4,12*x+6,-x-3,0,-4,-2*x+4,6,-2*x+10,-2*x+4,2*x,3*x+3,6,4,4*x,10*x,12*x+9,6*x-8,-2*x+9,-3*x-9,-4*x-8,4,6*x-11,x-12,0,-6*x+6,6*x+15,-8*x-14,-4*x-4,-6*x+2,-2*x+4,-6*x+2,-16*x-12,x-2,-6*x-7,-4*x-4,5,9*x+2,-6*x-12,6*x,-6*x,13*x-4,2*x-9,2,16*x+14,11*x-2,2*x+3,4*x+2,-4*x+4,-4*x-8,-6*x+12,3*x+9,-12*x-4,2*x-8,8*x-6,8*x+2,2*x+2,-11*x,2*x-7,x+5,4*x+12,-12*x+2,-4*x+4,10*x+10,-4,-12*x+8,-4,0,8*x+18,-3*x+6,-2*x-10,-6*x-6,-4*x-12,-4*x-4,6*x-3,-4,14*x+8,6,-4*x+18,-2*x-1,4*x-4,-15*x,-4,x+3,2*x+6,4*x-4,-10*x-20,-4*x+3,8*x+5,8*x+6,6*x-12,-x-5,-4*x+1,-4*x-4,6*x-16,-2*x+9,10*x,-2*x+4,-6*x-6,-2*x+4,6*x-8,12*x-10,2,9*x,4*x+8,4*x-8,-12*x-16,2*x-2,-20*x-15,-6*x+12,0,-5,6*x+18,0,-22*x-1,4*x+8,-6*x+6,6*x-2,4,10*x+12,-8*x-2,12*x-2,-10*x-6,-2*x-6,-12,-2*x+2,16*x+28,6*x+3,4*x-9,6*x,2*x-4,-4*x-8,4*x+22,-4*x+4,-2*x+15,-18*x+6,-18*x-12,-3*x+12,16*x+8,2*x+10,-6*x+8,11*x-2,-6,-15,22*x+6,-4*x-4,-6*x+6,-4*x-8,-2*x-4,-17*x+6,16*x-12,-9*x-1,-4*x-5,0,-4,-6,-6,9*x+6,8*x-2,-10*x-20,-12*x+8,-4,12*x+16,4*x+2,-8*x-3,6*x-2,8,12*x-6,-6*x-18,4*x-16,10*x+12,x+3,4*x+13,-x-6,12*x+6,-8*x-4,2*x-10,5*x,6*x+24,-11*x-13,-4*x+8,-6*x-6,-2*x-10,2*x+10,-12*x-9,6*x-6,-22*x-26,-9*x-5,4*x-4,-11*x+2,8,-2*x+4,-6*x-8,-2*x+16,3,-9*x-7,0,x+2,-10,-6*x,12*x-16,8*x-4,-4*x+12,12*x+20,-14*x+18,18*x-6,10*x+7,15,20*x+12,8*x-12,8,6*x+14,12*x+18,-14*x+8,6*x+12,6*x-4,-30,2,4*x-4,11*x+11,-12*x-3,-9*x+2,0,-2*x+9,-2*x-6,8*x+4,-14*x-11,10*x+8,-4*x,8*x-4,-12*x+4,-12*x-6,12*x+16,-4*x,-22*x-6,4*x-4,-18*x-24,-4*x,-12*x-4,0,2*x-4,10*x+8,-16*x,-3*x-9,12*x+17,-8*x-2,6*x+3,-12*x-22,20*x-3,-8*x-4,18*x+4,8*x+12,4*x-8,-9*x+6,-16*x-10,4*x-8,-15,-6*x+14,-6*x-33,-6*x-12,26*x-8,22*x-4,-10*x+2,3*x,-8*x-2,-8*x+4,-4*x+4,15*x+15,6*x+4,-4*x,12*x+16,5,-9,4*x+2,20*x+12,4,28*x-1,-10*x-10,-8*x+12,25*x+10,-8*x-16,-3*x+8,0,-14*x-20,-4*x+28,-18*x+6,-2*x+2,2*x-9,-24*x-27,5*x-4,4*x-16,8*x+12,-12*x-17,-22*x+6,4*x+12,9*x-12,-10*x-8,-10*x+10,18*x+9,-2*x-6,-22*x,-6,4*x+4,-10*x+10,20*x+9,-14*x+6,8*x+44,-2*x+8,8*x+16,2*x,-24*x+4,3*x+15,8*x+19,4*x+4,12*x-12,4*x+12,6*x-14,-4*x-12,-4*x-2,8*x-6,-14*x+6,5*x-20,-4*x-20,-6*x-18,18*x+24,0,4*x-20,-3*x+6,-10*x+24,12*x+6,-6*x+12,0,-2,21*x-22,-6*x-15,4*x+12,8*x+2,12*x-6,18*x+27,-4*x-2,-8*x-8,4*x,-12*x-46,2*x-2,-8*x-10,6*x-8,10*x+12,-10*x-8,-4*x-7,4*x-10,12,-10,-18*x+6,-12*x,6*x-2,-2,-4*x+1,12*x+16,-20,-9*x,-30*x,-13*x+4,8*x-18,-6*x-6,-8*x-4,-6*x+2,-4*x+28,-4*x-12,0,18*x+4,8*x+2,-4,8*x-4,17*x-2,22*x+18,4*x-18,-6*x,6*x-18,-2*x-6,-9*x-21,16*x+12,-8*x+16,-6*x-11,-4*x+18,16*x+3,14*x-6,-14*x+17,-9*x-7,6*x-6,-6*x,-8*x-8,-9*x+18,22*x+26,-16*x+22,-6*x+23,8*x+12]];
22
23
E[24,1] = [x, [1,0,-1,0,-2,0,0,0,1,0,4,0,-2,0,2,0,2,0,-4,0,0,0,-8,0,-1,0,-1,0,6,0,8,0,-4,0,0,0,6,0,2,0,-6,0,4,0,-2,0,0,0,-7,0,-2,0,-2,0,-8,0,4,0,4,0,-2,0,0,0,4,0,-4,0,8,0,8,0,10,0,1,0,0,0,-8,0,1,0,-4,0,-4,0,-6,0,-6,0,0,0,-8,0,8,0,2,0,4,0,-18,0,16,0,0,0,-12,0,-2,0,-6,0,18,0,16,0,-2,0,0,0,5,0,6,0,12,0,-8,0,-4,0,-4,0,0,0,2,0,-6,0,-12,0,0,0,-8,0,-12,0,7,0,14,0,-16,0,2,0,-16,0,-2,0,2,0,0,0,12,0,8,0,24,0,-9,0,-4,0,6,0,0,0,-4,0,12,0,6,0,2,0,-12,0,8,0,0,0,0,0,2,0,-4,0,-18,0,16,0,4,0,0,0,12,0,-8,0,-16,0,-20,0,-8,0,-8,0,0,0,-10,0,-4,0,-8,0,-1,0,12,0,22,0,0,0,10,0,0,0,8,0,-16,0,18,0,-1,0,14,0,8,0,4,0,20,0,-32,0,4,0,2,0,0,0,6,0,-8,0,4,0,6,0,-10,0,8,0,0,0,-4,0,-26,0,8,0,26,0,-28,0,-8,0,0,0,-13,0,-2,0,-18,0,-8,0,-4,0,16,0,0,0,18,0,4,0,12,0,-16,0,-24,0,-6,0,0,0,6,0,24,0,12,0,-8,0,2,0,2,0,0,0,20,0,6,0,8,0,18,0,-18,0,32,0,0,0,-16,0,-12,0,30,0,2,0,2,0,-16,0,0,0,-24,0,-3,0,-5,0,-20,0,-8,0,-6,0,0,0,-10,0,-12,0,-12,0,20,0,8,0,0,0,0,0,4,0,-2,0,-16,0,4,0,16,0,14,0,0,0,-30,0,-16,0,-2,0,24,0,-6,0,6,0,0,0,8,0,12,0,12,0,-10,0,0,0,-2,0,0,0,8,0,32,0,-14,0,12,0,32,0,0,0,-7,0,20,0,12,0,-14,0,-14,0,-24,0,16,0,0,0,-22,0,-2,0,-26,0,8,0,16,0,-36,0,0,0,2,0,16,0,4,0,-2,0,-16,0,-12,0,0,0,-4,0,-32,0,-12,0,-12,0,12,0,-8,0,0,0,12,0]];
24
25
E[26,1] = [x, [1,-1,1,1,-3,-1,-1,-1,-2,3,6,1,1,1,-3,1,-3,2,2,-3,-1,-6,0,-1,4,-1,-5,-1,6,3,-4,-1,6,3,3,-2,-7,-2,1,3,0,1,-1,6,6,0,3,1,-6,-4,-3,1,0,5,-18,1,2,-6,-6,-3,8,4,2,1,-3,-6,14,-3,0,-3,-3,2,2,7,4,2,-6,-1,8,-3,1,0,12,-1,9,1,6,-6,-6,-6,-1,0,-4,-3,-6,-1,-10,6,-12,4,-12,3,-4,-1,3,0,12,-5,-7,18,-7,-1,-6,-2,0,6,-2,6,3,3,25,-8,0,-4,3,-2,20,-1,-1,3,-21,6,-2,-14,15,3,0,0,-13,3,3,3,6,-2,-18,-2,-6,-7,-6,-4,17,-2,6,6,12,1,14,-8,0,3,0,-1,-16,0,-18,-12,0,1,1,-9,-4,-1,0,-6,-4,6,-6,6,3,6,20,1,8,0,21,4,-18,3,5,6,-18,1,-4,10,-3,-6,3,12,2,-4,14,12,-6,-3,0,4,0,1,12,-3,-13,0,-3,-12,3,5,4,7,2,-18,-3,7,-19,1,-8,6,0,2,-13,0,-6,-6,-27,2,-9,-6,8,-3,15,-3,-10,-25,16,8,18,0,2,4,12,-3,24,2,0,-20,9,1,9,1,7,-3,-12,21,-12,-6,0,2,-6,14,24,-15,11,-3,-1,0,24,0,-28,13,8,-3,-6,-3,-4,-3,-6,-6,0,2,-8,18,-10,2,21,6,18,7,-30,6,0,4,1,-17,-12,2,-24,-6,2,-6,-4,-12,-30,-1,-1,-14,-6,8,-6,0,36,-3,12,0,-6,1,4,16,-7,0,-3,18,8,12,14,0,-42,-1,23,-1,-6,9,-24,4,13,1,0,0,3,6,-19,4,-5,-6,24,6,9,-6,3,-3,0,-6,-15,-20,25,-1,-6,-8,26,0,0,-21,0,-4,-4,18,3,-3,6,-5,20,-6,20,18,21,-1,18,4,2,-10,-6,3,0,6,-21,-3,-24,-12,-34,-2,-2,4,36,-14,-4,-12,-3,6,-42,3,32,0,0,-4,6,0,-36,-1,-13,-12,9,3,17,13,-6,0,-12,3,-8,12,6,-3,-33,-5,-25,-4,-18,-7,0,-2,26,18,12,3,21,-7,18,19,-6,-1,6,8,0,-6,17,0,3,-2,-10,13,15,0,9,6,-40,6,12,27,36,-2,-14,9,14,6,-6,-8,8,3,0,-15,-21,3,-7,10,0,25,30,-16,-16,-8,-16,-18,-9,0,-18,-2,36,-4,3,-12,-40,3]];
26
E[26,2] = [x, [1,1,-3,1,-1,-3,1,1,6,-1,-2,-3,-1,1,3,1,-3,6,6,-1,-3,-2,-4,-3,-4,-1,-9,1,2,3,4,1,6,-3,-1,6,3,6,3,-1,0,-3,-5,-2,-6,-4,13,-3,-6,-4,9,-1,12,-9,2,1,-18,2,-10,3,-8,4,6,1,1,6,-2,-3,12,-1,-5,6,-10,3,12,6,-2,3,-4,-1,9,0,0,-3,3,-5,-6,-2,6,-6,-1,-4,-12,13,-6,-3,14,-6,-12,-4,4,9,-8,-1,3,12,-4,-9,19,2,-9,1,2,-18,4,2,-6,-10,-3,3,-7,-8,0,4,9,6,16,1,15,1,-1,6,6,-2,9,-3,12,12,7,-1,-39,-5,2,6,-2,-10,18,3,-18,12,-9,6,-18,-2,-4,3,-10,-4,-36,-1,-4,9,-4,0,-6,0,0,-3,1,3,36,-5,20,-6,-4,-2,30,6,-9,-6,0,-1,24,-4,-3,-12,6,13,-9,-6,10,-3,-16,14,-3,-6,9,-12,-10,-4,6,4,2,9,0,-8,-24,-1,-12,3,23,12,15,-4,5,-9,4,19,30,2,3,-9,-21,1,-24,2,-24,-18,-15,4,6,2,-11,-6,-13,-10,12,-3,9,3,18,-7,0,-8,6,0,-6,4,0,9,0,6,8,16,-9,1,-15,15,3,1,12,-1,12,6,-12,6,-18,-2,-24,9,13,-3,3,12,8,12,12,7,24,-1,-26,-39,4,-5,18,2,0,6,-8,-2,-42,-10,7,18,10,3,18,-18,4,12,-5,-9,-12,6,8,-18,14,-2,24,-4,18,3,-1,-10,-6,-4,-18,-36,-4,-1,12,-4,-18,9,4,-4,-57,0,13,-6,-4,0,18,0,2,-3,23,1,-6,3,-8,36,-13,-5,-12,20,-9,-6,7,-4,9,-2,4,30,5,6,9,-9,24,-6,17,0,21,-1,10,24,-10,-4,0,-3,12,-12,-4,6,-27,13,-2,-9,16,-6,-48,10,27,-3,2,-16,-30,14,-30,-3,12,-6,3,9,4,-12,-22,-10,-18,-4,24,6,-4,4,-9,2,-6,9,4,0,-36,-8,-10,-24,0,-1,-21,-12,21,3,-5,23,78,12,12,15,-8,-4,-6,5,33,-9,7,4,6,19,-24,30,-22,2,-36,3,-39,-9,-6,-21,54,1,-26,-24,0,2,27,-24,1,-18,10,-15,27,4,-21,6,16,2,12,-11,20,-6,-2,-13,30,-10,10,12,-24,-3,72,9,-3,3,-3,18,12,-7,-14,0,-16,-8,12,6,-5,0,-6,-6,12,4,-5,0,-32,9]];
27
28
E[27,1] = [x, [1,0,0,-2,0,0,-1,0,0,0,0,0,5,0,0,4,0,0,-7,0,0,0,0,0,-5,0,0,2,0,0,-4,0,0,0,0,0,11,0,0,0,0,0,8,0,0,0,0,0,-6,0,0,-10,0,0,0,0,0,0,0,0,-1,0,0,-8,0,0,5,0,0,0,0,0,-7,0,0,14,0,0,17,0,0,0,0,0,0,0,0,0,0,0,-5,0,0,0,0,0,-19,0,0,10,0,0,-13,0,0,0,0,0,2,0,0,-4,0,0,0,0,0,0,0,0,-11,0,0,8,0,0,20,0,0,0,0,0,7,0,0,0,0,0,23,0,0,0,0,0,0,0,0,-22,0,0,-19,0,0,0,0,0,14,0,0,0,0,0,-25,0,0,0,0,0,12,0,0,-16,0,0,5,0,0,0,0,0,-7,0,0,0,0,0,0,0,0,0,0,0,23,0,0,12,0,0,11,0,0,0,0,0,0,0,0,20,0,0,-13,0,0,0,0,0,4,0,0,0,0,0,-28,0,0,0,0,0,-22,0,0,0,0,0,0,0,0,0,0,0,17,0,0,2,0,0,-35,0,0,0,0,0,0,0,0,16,0,0,-11,0,0,0,0,0,0,0,0,-10,0,0,29,0,0,0,0,0,26,0,0,0,0,0,32,0,0,0,0,0,-17,0,0,14,0,0,0,0,0,0,0,0,-8,0,0,-28,0,0,-16,0,0,0,0,0,35,0,0,-34,0,0,0,0,0,0,0,0,-25,0,0,0,0,0,-1,0,0,0,0,0,5,0,0,0,0,0,13,0,0,0,0,0,-37,0,0,0,0,0,0,0,0,0,0,0,30,0,0,10,0,0,35,0,0,0,0,0,-13,0,0,0,0,0,29,0,0,0,0,0,0,0,0,38,0,0,0,0,0,0,0,0,-34,0,0,-20,0,0,-20,0,0,0,0,0,-31,0,0,26,0,0,0,0,0,0,0,0,-19,0,0,0,0,0,1,0,0,0,0,0,2,0,0,-4,0,0,-28,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,-10,0,0,0,0,0,23,0,0,0,0,0,-5,0,0,0,0,0,35,0,0,0,0,0,55,0,0,22,0,0,-25,0,0,0,0,0,0,0,0,-16,0,0,32,0]];
29
30
E[29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1,2*x-1,2*x+2,x-2,-2*x-2,-x,x+2,-3*x+2,2*x+1,-2*x+2,x,3,-2*x-4,2*x-2,6,2*x+1,2*x-2,1,-4*x-6,4*x-1,-4,-3*x+2,x+2,2*x-6,1,-2*x+1,-5*x-2,x+4,-1,-2,-2*x-2,-2*x+6,-4,6*x,3*x-2,-x+2,6*x+10,-6*x+2,x+6,-x-4,2*x+2,2*x-4,3*x+4,-3*x,1,-4*x,2,4*x-5,-6*x-5,1,-x-2,-6*x-2,-6*x,x,4*x+6,3*x-2,2*x,8*x-5,-8,2*x-5,-2*x-1,-x,-4*x-4,2*x+8,-2*x+4,2*x-2,2*x-4,6*x+2,4,-4*x,4*x,-12*x-6,2*x+6,-8*x+3,x,-3,6*x+5,-2*x+6,-4*x-2,10*x-2,2*x+4,4*x+1,-x,-2*x-3,6*x+2,-2*x+2,-2*x+6,14,-8*x+5,-2*x+3,-6,-2*x-1,-6*x-10,x,-2*x-6,8*x+4,-4*x-12,2*x,2*x,-7*x,-2*x+2,7*x-6,2*x-10,-x-4,-4*x+3,-1,4*x,6*x+6,8*x+6,12*x-6,4*x+6,-2*x-1,2*x-6,-2*x+4,-4*x-12,-4*x+1,2*x-6,-4*x+2,2*x-6,-11*x+12,9,-8*x,-4*x-14,-11*x-6,-4*x-1,3*x-2,-8*x+2,2*x+1,12*x+12,4*x-4,-x-2,4*x+6,12,8*x-2,14,-2*x+6,2*x-3,-8*x+2,x+4,-6*x-6,-1,4*x,-x,8*x+4,2*x-3,-8*x+4,10*x+10,6*x-12,4*x+12,2*x+2,5*x+2,13*x-4,-6*x-6,-2*x+1,-7*x+6,-x-4,-4*x-20,-7*x+6,5*x+16,-2*x-22,1,6*x-4,-2*x-8,-10*x+6,-4*x-8,2,-12*x-12,-9*x-8,4*x+22,2*x-1,-8*x-8,3*x+6,2*x-4,-10*x+6,6*x+8,2*x-6,-8*x-11,10*x-2,4*x-2,10*x+8,4,21*x-8,-4*x-10,x-10,2*x+6,-6*x,-8*x+6,9*x-2,-2*x-10,2*x-6,-3*x+2,-2*x-1,2,-2*x-2,6*x+14,-4*x+8,-4*x+4,-4*x-4,2*x+2,-4*x-2,-6*x-10,-4*x+2,4*x+20,6*x+3,6*x+12,6*x-2,13*x+12,-8*x+17,8*x-2,-14*x+2,-x-6,-2*x-3,6*x-14,11*x-4,-4*x,x+4,-2*x-8,-8*x+4,-2*x-8,6*x+10,8*x+8,-10*x+8,10*x+16,-18*x+12,-6*x-18,-2*x+4,-2*x-2,x-2,-8*x-1,-10*x+2,-3*x-4,-14,2*x-1,-4*x-4,4*x-10,3*x,8*x+1,-10*x+2,4*x-12,6*x-4,-1,-10*x+2,12*x+6,18*x-1,-6*x+4,9*x,-5*x+8,16*x+8,-6*x-16,-6*x-4,-2,12*x-1,-2*x-23,7*x-4,-8*x-8,-4*x+5,-2*x-2,18*x-8,3*x+10,-x+2,6*x+5,-12*x+12,10*x-6,-4*x+12,-18*x-12,-1,-11*x-10,-6*x-12,-10*x+2,12*x,-4*x-8,-14*x,8*x+2,14*x,-6*x+14,6*x+2,-12*x+3,-7*x+2,-4*x+2,14*x,6*x,2*x+1,8*x+32,-6*x-10,8*x+3,-x,-2*x+6,-8*x-4,-4*x-2,2*x-1,-4*x-6,-4*x+8,2*x+5,-7*x+2,-14,12*x-8,10*x+14,-10*x+10,4*x+4,18,-2*x,4*x+4,-7*x-14,-6*x-10,4*x-2,-8*x+5,8*x+22,-14*x+7,-2*x+5,6*x-6,8,3*x-2,18*x+12,20*x-7,x+2,-2*x+5,14*x-2,-12*x-4,-12*x-24,8*x-17,-8*x-4,6*x+5,-11*x+4,-14*x-14,2*x+14,x,x,-8*x+10,8*x+8,-4*x-2,4*x+4,6*x-6,-14*x-12,-4,10*x-8,-2*x-8,-2*x-9,12*x-12,-12*x-12,2*x-11,2*x-4,14*x+4,-6*x-12,-3*x+2,10*x+19,8*x-8,x+4,4*x+9,-12*x-2,-8*x+2,-2*x+4,14*x-14,4*x+4,-4*x+6,5*x+16,-6*x-2,17,5*x-8,10*x-2,-18*x-2,-4,-10*x+4,18,-12*x-18,-8*x-32,4*x,2*x-22,-34*x+11,8*x-7,-2*x-4,-9*x,-8*x-5,2*x+1,2*x+2,12*x+22,12*x+6,6*x+4,22*x-8,-6*x-18,-16*x+11,-2*x-6,-6*x-2,-10*x-14,2*x+22,12*x+32,8*x-3,12*x+32,x-2,-18*x+8,2*x,-x,6*x+10,4*x+29,2*x+6,12*x-12,-12,4*x-9,12*x-4,11*x-12,12*x+20,-6*x-5,-2*x+2,-4*x-8,2*x-4,12*x+10,2*x-6,-12*x,6*x-4,4*x+20,12*x+4,4*x+2,5*x+6,-14*x,6,-6*x-24,-10*x+2,-22*x-16,-14*x+13,-2*x-14,19*x+4,8*x+16,-18*x+8,-4*x+4,26*x+6,-2*x-1,-4*x-1,-4*x+10,3*x+6,-16*x-8,-26*x+6,x,-18*x+5,-24*x-36,8*x-4,-4*x-10,2*x+3,-2*x-2,-4*x-2,-4*x-34,12*x-8,-6*x-2,-4*x-2,7*x-2,-14*x-6,12*x-6,-8*x+8,10*x+26,12*x-22,10*x-10,-4*x+10,2*x-6,24*x-6,12*x+30,-6*x-6,-4*x-10,-14,14,2*x-2,-26,3,8*x-5,15*x-8,25*x+22,18*x+2,-16,2*x-3,-6*x+6,-10*x-8,6*x+13,-5*x+2,-24,12*x+20,-2*x+22,-18*x+4,-7*x-10,2*x+1,-8*x-4,-15*x+8,12*x+4,18*x+2,6*x+10,-20*x+4,-6*x-26,-8*x+2,-6*x-5,-x,3*x-14,18*x+2,-2*x-4,-18*x+12,2*x+6,-15*x-6,-12*x-4,16*x-6,-12*x-10,-18*x-9]];
31
32
E[30,1] = [x, [1,-1,1,1,-1,-1,-4,-1,1,1,0,1,2,4,-1,1,6,-1,-4,-1,-4,0,0,-1,1,-2,1,-4,-6,1,8,-1,0,-6,4,1,2,4,2,1,-6,4,-4,0,-1,0,0,1,9,-1,6,2,-6,-1,0,4,-4,6,0,-1,-10,-8,-4,1,-2,0,-4,6,0,-4,0,-1,2,-2,1,-4,0,-2,8,-1,1,6,12,-4,-6,4,-6,0,18,1,-8,0,8,0,4,-1,2,-9,0,1,18,-6,-4,-2,4,6,-12,1,-10,0,2,-4,-18,4,0,-6,2,0,-24,1,-11,10,-6,8,-1,4,20,-1,-4,2,0,0,16,4,-1,-6,6,0,-4,4,0,0,0,1,6,-2,9,2,-6,-1,8,4,6,0,-8,2,2,-8,-6,1,0,-1,-4,-6,0,-12,0,4,-9,6,-4,-4,18,6,-4,0,0,-18,24,-1,14,8,-10,0,-2,-8,0,0,-4,-4,-24,1,-22,-2,-2,9,-6,0,8,-1,-4,-18,24,6,6,4,0,2,0,-4,20,-6,0,12,4,-1,-32,10,2,0,12,-2,20,4,1,18,-12,-4,-10,0,0,6,-18,-2,0,0,8,24,24,-1,2,11,1,-10,-9,6,-8,-8,12,1,-24,-4,0,-20,-6,1,-18,4,-8,-2,-6,0,0,0,6,-16,18,-4,-6,1,-16,6,-8,-6,0,0,2,4,8,-4,18,0,-28,0,4,0,24,-1,19,-6,2,2,-6,-9,0,-2,0,6,0,1,16,-8,18,-4,10,-6,20,0,-4,8,0,-2,2,-2,4,8,18,6,0,-1,-12,0,-24,1,2,4,-10,6,0,0,-28,12,2,0,4,-4,26,9,-18,-6,0,4,-8,4,0,-18,12,-6,-10,4,2,0,6,0,0,18,-24,-24,-24,1,-3,-14,-11,-8,-2,10,-28,0,-6,2,24,8,26,0,-1,0,-12,4,-4,4,20,24,0,-1,0,22,-4,2,-6,2,0,-9,0,6,-8,0,-22,-8,16,1,-6,4,16,18,-1,-24,0,-6,26,-6,6,-4,0,0,-12,-2,-4,0,0,4,-10,-20,0,6,6,0,40,-12,0,-4,0,1,26,32,6,-10,0,-2,8,0,9,-12,12,2,-18,-20,-6,-4,-6,-1,0,-18,8,12,8,4,26,10,6,0,-30,0,-4,-6,-8,18,-36,2,16,0,2,0,0,-8,-4,-24,-6,-24,-24,1,4,-2,0,-11,-2,-1,-28,10,-4,9,24,-6,-36,8,0,8,0,-12,-4,-1]];
33
34
E[31,1] = [x^2-x-1, [1,x,-2*x,x-1,1,-2*x-2,2*x-3,-2*x+1,4*x+1,x,2,-2,-2*x,-x+2,-2*x,-3*x,-2*x+4,5*x+4,-2*x+1,x-1,2*x-4,2*x,6*x-4,2*x+4,-4,-2*x-2,-4*x-8,-3*x+5,-2*x+6,-2*x-2,1,x-5,-4*x,2*x-2,2*x-3,x+3,-2,-x-2,4*x+4,-2*x+1,7,-2*x+2,2*x-2,2*x-2,4*x+1,2*x+6,4*x-4,6*x+6,-8*x+6,-4*x,-4*x+4,-2,-4*x-4,-12*x-4,2,4*x-7,2*x+4,4*x-2,2*x-1,-2,10*x-8,x,-2*x+5,2*x+1,-2*x,-4*x-4,8,4*x-6,-4*x-12,-x+2,-10*x+7,-6*x-7,4*x+2,-2*x,8*x,x-3,4*x-6,8*x+4,-6*x-2,-3*x,12*x+5,7*x,-8*x-2,-4*x+6,-2*x+4,2,-8*x+4,-4*x+2,6*x+2,5*x+4,2*x-4,-4*x+10,-2*x,4,-2*x+1,8*x-2,-8*x-3,-2*x-8,8*x+2,-4*x+4,-3,-4,2*x+3,2*x+4,2*x-4,-8*x-4,-2*x+9,-8*x+4,-8*x-1,2*x,4*x,3*x-6,4*x-3,6*x+2,6*x-4,6*x-8,-10*x-8,x+2,10*x-16,2*x+4,-7,2*x+10,-14*x,x-1,-9,3*x-2,4*x+6,x+12,-4,-2*x-2,12,-4,4*x-7,8*x,-4*x-8,-6*x+8,-6*x+16,-16*x-4,12*x-6,-3*x+5,-8,-3*x-10,-4*x,-15*x-12,-2*x+6,6*x+4,4*x+16,-2*x+2,10,8*x+8,-10*x+2,5,6*x-4,-2*x+4,1,4*x,16*x-5,-8*x-6,16*x+8,x-5,-14*x+24,17*x+12,6*x+1,7*x-7,-4*x,-10*x-8,-4*x,6*x-8,4*x-9,2*x-2,-6*x-7,-2*x+4,8*x-10,-4*x-8,-8*x+12,-6*x,-2*x-4,8*x+6,6*x-8,x+3,-10*x+12,-2*x+2,-4*x-20,2*x-16,-2,-2*x-2,-4*x+8,-4*x+8,-12*x+16,-x-2,-10*x-3,-6*x-4,4*x-3,-11*x-8,4*x+4,6*x-14,12*x-8,10*x+8,-8*x-6,8*x-4,-16*x,-3*x,14*x-22,4*x-8,7,5*x+2,14*x+20,6*x+6,-4*x+2,-2*x+2,10*x+7,-4*x,6*x+20,7*x-2,2*x-2,20*x,2*x-3,-9*x-8,-12*x-8,2*x-2,-4*x+4,4*x+4,4,-11*x+17,-16*x-4,x+4,-4*x,4*x-2,-12*x+6,2*x+6,4*x-8,-10*x+10,8*x+5,-18*x-10,4*x-4,-x+3,16*x+12,-6*x+10,-6*x-2,6*x+6,20*x-18,-7*x,-22*x,-8*x+18,-8*x+6,-14*x-14,2*x+4,-2*x+1,20*x+16,-9*x,10*x-18,5*x-7,12*x-8,10*x+4,-4*x+4,9*x-1,8*x-11,-4*x,-4*x+6,-2,14*x-2,12*x,-2*x-20,4*x+8,-4*x-4,-3*x+4,-16*x-12,8*x-8,8*x-24,-12*x-4,-10*x+2,-6*x+6,4*x-4,10*x-6,-8,-12*x+8,-14*x+10,6*x+12,4*x+1,4*x-7,17,-8*x,-16*x+12,7*x-17,2*x+4,-4*x-4,14*x-21,-15*x-1,-12*x+3,4*x-2,22*x+16,2*x+2,-4*x+6,20*x+4,2*x-1,4*x-2,-8*x-16,10*x,-4*x-12,8,-6*x+10,-8*x-10,6*x,3*x+6,10*x-8,2*x+6,-6*x-19,-6*x+10,-10*x-4,x,-10*x-13,-12*x-4,-2*x+20,11*x+16,-2*x+5,-2*x-4,-8*x+17,24*x+16,-4*x+12,2*x+1,-14*x+4,10*x-14,-6*x+8,5*x+7,8*x,7*x+6,18*x+16,-14*x+7,-12*x+20,-4*x-4,2,-2*x-6,-8*x-2,-4*x-4,8,6*x-6,2*x-18,-5*x+4,-2*x-8,4*x-6,2,-13*x-6,6*x-13,2*x-6,-4*x-12,-2*x+8,10*x+8,4*x-12,-16*x+18,4*x-8,24*x+8,2*x-10,12*x-12,-6*x-2,-10*x+7,2*x+4,12*x-20,-2*x+6,2*x+19,-6*x-7,-14,2*x-10,14*x,-4*x+6,4*x+2,-24*x-4,18,-6*x-18,28*x+7,-2*x,-4*x+4,-2,19,4*x-4,18*x,4*x-12,-8*x+4,4*x-12,16*x-28,x-3,-20*x-8,-13*x-10,-16*x+2,-26*x-2,4*x-6,x+4,2*x+6,-3*x-5,-16*x+8,8*x+4,20*x-28,-4*x+22,-24*x,4*x+12,-6*x-2,2*x+6,-7,-14*x-8,6*x-8,12*x,10*x+22,-16*x-16,-2*x,-3*x+3,12*x+5,-8*x+14,-4,-4*x+12,10*x-20,7*x,-20*x+12,3*x-1,-4*x+7,34*x+14,-8*x-2,8*x-2,-12*x-24,-2*x-4,-18*x+19,-4*x+6,20*x-3,17*x+10,4*x+12,12*x+4,8*x-16,26*x+6,-26*x+44,9*x-11,8*x+8,2,12,36*x+12,10*x-6,-x+2,-8*x+4,-x-7,2*x-16,-20*x-12,-10*x+15,-4*x+2,-16*x-26,-4,6*x+21,4,6*x+2,4*x,-20*x,1,-28*x+14,-20*x-16,14,-3*x+7,16*x+20,-4*x-4,2*x-4,-10*x,8*x-16,-6*x-12,8*x-24,-4*x+10,20*x+2,-4*x+4,12*x-22,-12*x+6,-2*x,13*x+8,6*x-5,-8*x-2,16*x-24,4,-22*x-32,-5,4*x-4,28*x+16,8*x-4,-16*x+26,-36*x-20,-8*x-6,-6*x+33,8*x-2,4*x,2*x+20,-20*x+28,-7*x+7,-8*x-3,-22*x-22,-2*x-16,6*x-28,-14*x-12,-2*x-8,20*x-28,-14,-16*x+28,6*x+2,8*x+2,-3*x,24*x-41,36*x+20,12*x-26,-9*x+9]];
35
36
E[32,1] = [x, [1,0,0,0,-2,0,0,0,-3,0,0,0,6,0,0,0,2,0,0,0,0,0,0,0,-1,0,0,0,-10,0,0,0,0,0,0,0,-2,0,0,0,10,0,0,0,6,0,0,0,-7,0,0,0,14,0,0,0,0,0,0,0,-10,0,0,0,-12,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,9,0,0,0,-4,0,0,0,10,0,0,0,0,0,0,0,18,0,0,0,-2,0,0,0,0,0,0,0,6,0,0,0,-14,0,0,0,-18,0,0,0,-11,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,-22,0,0,0,0,0,0,0,20,0,0,0,14,0,0,0,-6,0,0,0,22,0,0,0,0,0,0,0,0,0,0,0,23,0,0,0,-26,0,0,0,0,0,0,0,-18,0,0,0,4,0,0,0,0,0,0,0,-14,0,0,0,-2,0,0,0,0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,3,0,0,0,30,0,0,0,26,0,0,0,0,0,0,0,-30,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,30,0,0,0,-28,0,0,0,-26,0,0,0,0,0,0,0,-18,0,0,0,10,0,0,0,0,0,0,0,-13,0,0,0,-34,0,0,0,0,0,0,0,0,0,0,0,20,0,0,0,0,0,0,0,26,0,0,0,22,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,6,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,-10,0,0,0,34,0,0,0,0,0,0,0,-19,0,0,0,12,0,0,0,-30,0,0,0,14,0,0,0,-60,0,0,0,0,0,0,0,0,0,0,0,-34,0,0,0,0,0,0,0,38,0,0,0,2,0,0,0,-18,0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,30,0,0,0,-2,0,0,0,0,0,0,0,34,0,0,0,0,0,0,0,21,0,0,0,-20,0,0,0,-14,0,0,0,0,0,0,0,42,0,0,0,38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-42,0,0,0,-12,0,0,0,-36,0,0,0,0,0,0,0,-20,0,0,0,0,0,0,0]];
37
38
E[33,1] = [x, [1,1,-1,-1,-2,-1,4,-3,1,-2,1,1,-2,4,2,-1,-2,1,0,2,-4,1,8,3,-1,-2,-1,-4,-6,2,-8,5,-1,-2,-8,-1,6,0,2,6,-2,-4,0,-1,-2,8,8,1,9,-1,2,2,6,-1,-2,-12,0,-6,-4,-2,6,-8,4,7,4,-1,-4,2,-8,-8,0,-3,-14,6,1,0,4,2,-4,2,1,-2,12,4,4,0,6,-3,-6,-2,-8,-8,8,8,0,-5,2,9,1,1,2,2,8,6,8,6,-12,1,-2,-2,-6,-4,-6,0,-16,6,-2,-4,-8,-6,1,6,2,8,12,4,-4,-3,0,4,-12,1,0,-4,2,6,2,-8,-8,8,-8,0,-2,-1,12,-14,-9,-6,-22,1,20,0,-2,4,16,-2,14,-4,-6,-10,32,1,4,2,2,12,0,12,-9,4,0,0,-6,6,-4,-1,4,-6,12,2,22,-8,-6,-24,-12,8,-2,-8,-4,0,8,-7,-14,2,-4,-9,-14,1,0,3,4,2,-24,-2,4,8,8,2,0,8,0,-6,0,-12,0,3,-32,-2,14,2,4,-6,16,20,-1,-6,12,0,6,-16,-4,18,30,-2,-16,4,4,-8,24,-2,10,1,-1,-6,-18,2,0,24,-12,12,4,-4,8,-4,-4,-17,-14,0,24,-4,-6,-12,-16,3,-12,0,6,4,-2,2,20,2,8,2,-1,8,-26,-8,-8,24,-18,-8,16,0,0,-2,-8,5,-13,12,-2,14,-6,-9,8,-18,-1,-22,-16,-1,0,20,-2,0,-12,-2,32,-4,-8,16,-24,-6,-22,14,-8,4,22,-6,-6,-14,12,32,0,-1,2,4,2,6,32,2,-20,-12,6,0,8,4,-22,-9,6,-4,-8,0,8,0,16,-6,4,-6,6,-4,2,5,18,4,0,6,8,12,-8,6,-19,22,-1,8,28,-6,-32,-8,-2,-12,24,-8,-2,-2,-12,-24,12,-4,28,0,4,8,-16,3,-8,-14,0,-2,-18,-4,-16,-27,12,-14,8,-1,-2,0,0,1,26,4,16,-2,-2,-24,6,-6,18,4,-2,-8,-16,8,-24,-10,8,0,-4,-8,-26,0,8,-18,2,0,24,12,2,0,-24,1,34,-32,-12,2,0,14,-20,6,9,4,28,6,12,16,22,28,2,-1,-2,6,-20,12,16,0,18,6,2,16,-30,-4,16,6,-16,30,-12,2,-16,-16,-14,12,0,4,0,8,6,24,8,10,-12,10,-32,-1,-4,-1,-16,-18,-4,-18,4,-2,12,0,-2,8,0,-12,-4,-12]];
39
40
E[34,1] = [x, [1,1,-2,1,0,-2,-4,1,1,0,6,-2,2,-4,0,1,-1,1,-4,0,8,6,0,-2,-5,2,4,-4,0,0,-4,1,-12,-1,0,1,-4,-4,-4,0,6,8,8,6,0,0,0,-2,9,-5,2,2,-6,4,0,-4,8,0,0,0,-4,-4,-4,1,0,-12,8,-1,0,0,0,1,2,-4,10,-4,-24,-4,8,0,-11,6,0,8,0,8,0,6,-6,0,-8,0,8,0,0,-2,14,9,6,-5,18,2,-16,2,0,-6,-6,4,-16,0,8,-4,-6,8,0,0,2,0,4,0,25,-4,-12,-4,0,-4,-16,1,-16,0,-6,-12,16,8,0,-1,6,0,2,0,0,0,12,1,0,2,-18,-4,6,10,-16,-4,-1,-24,0,-4,14,8,12,0,0,-11,2,6,0,0,12,8,-9,0,-4,8,24,0,20,6,0,-6,12,0,-4,-8,8,0,0,8,-6,0,-16,0,-24,-2,-10,14,0,9,-12,6,-16,-5,-16,18,0,2,0,-16,0,2,-24,0,-10,-6,0,-6,0,4,16,-16,-4,0,-2,8,8,-4,-5,-6,-6,8,14,0,48,0,18,2,0,0,-16,4,24,0,-10,25,10,-4,0,-12,-8,-4,0,0,-24,-4,0,-16,0,1,6,-16,16,0,0,-6,24,-12,0,16,12,8,-24,0,8,-1,16,6,-30,0,8,2,-4,0,6,0,14,0,0,12,-24,1,1,0,-28,2,6,-18,0,-4,24,6,0,10,-32,-16,-36,-4,0,-1,20,-24,32,0,12,-4,-34,14,0,8,-12,12,0,0,12,0,4,-11,-10,2,32,6,0,0,-16,0,-4,12,0,8,-22,-9,12,0,-24,-4,-8,8,0,24,18,0,26,20,8,6,6,0,0,-6,-8,12,24,0,-3,-4,-50,-8,0,8,-16,0,6,0,24,8,-22,-6,0,0,0,-16,14,0,32,-24,-24,-2,0,-10,8,14,30,0,0,9,12,-12,0,6,20,-16,-32,-5,30,-16,-8,18,0,0,-24,2,-10,0,-12,-16,0,0,0,2,-4,-24,-30,0,2,-10,0,-6,5,0,16,-6,-24,0,24,4,2,16,0,-16,0,-4,8,0,9,-2,-24,8,0,8,-12,-4,-18,-5,36,-6,32,-6,0,8,26,14,-4,0,-6,48,-16,0,0,18,12,2,-32,0,-28,0,48,-16,20,4,-6,24,24,0,-8,-10,0,25,0,10,8,-4,-4,0,-12,-12,0,-8,0,-4,0,0,14,0]];
41
42
E[35,1] = [x^2+x-4, [1,x,-x-1,-x+2,1,-4,-1,x-4,x+2,x,x+1,-2*x+2,x+3,-x,-x-1,-3*x,-x-3,x+4,2*x-2,-x+2,x+1,4,-2*x-2,4*x,1,2*x+4,x-3,x-2,-3*x-1,-4,0,x-4,-x-5,-2*x-4,-1,x,6,-4*x+8,-3*x-7,x-4,-2*x,4,2*x+6,2*x-2,x+2,-8,3*x-1,12,1,x,3*x+7,2,2*x,-4*x+4,x+1,-x+4,2*x-6,2*x-12,-4,-2*x+2,-6*x,0,-x-2,x+4,x+3,-4*x-4,-4*x,-2,2*x+10,-x,8,-3*x-4,4*x-2,6*x,-x-1,8*x-12,-x-1,-4*x-12,-x-5,-3*x,-7,2*x-8,4,2*x-2,-x-3,4*x+8,x+13,-4*x,2*x+4,x+4,-x-3,-4*x+4,0,-4*x+12,2*x-2,4*x,-5*x-7,x,2*x+6,-x+2,4*x-6,4*x+12,-x+3,-2*x-8,x+1,-2*x+8,-6*x-2,6*x-10,3*x+13,4,-6*x-6,3*x,-14,-8*x+8,-2*x-2,-8*x+10,4*x+10,-4*x,x+3,4*x,x-6,6*x-24,8,0,1,-x-4,4*x+4,x+12,-6*x-14,2*x+4,-2*x-6,2*x-6,-2*x+2,4*x-16,x-3,2*x+8,2*x-12,8*x+8,2*x-10,x-2,x-11,8*x,3*x+7,-3*x-12,-3*x-1,-6*x+16,-x-1,-6*x+12,-4*x+2,-4,7*x+11,-12*x+16,-4*x-10,-4,0,-2*x-2,-4*x+10,-4*x-4,-8,x-4,2*x+2,-7*x,2*x-2,-6*x+8,-x-5,4*x,7*x+11,-4*x,5*x,-2*x-4,4,4,-x-7,12*x+4,-1,-12,4*x+4,2*x+8,20,x,10*x+8,-2*x-4,24,8*x,6,0,-3*x-7,10*x-14,-x+3,-4*x+8,x-11,-4*x-8,-6*x+4,-2*x-20,-3*x-7,-x+2,-2*x-4,4*x+8,-4*x-12,x-4,16,-10*x+16,3*x+1,2*x+2,-2*x,4*x-4,-4*x-12,-6*x-12,-2*x+6,4,-9*x-9,6*x-8,-8*x-8,4*x-24,2*x+6,-8*x+16,0,10*x+12,2*x-14,2*x-2,-5*x-13,-24,-x-5,-x+4,x+2,-14*x,3*x+19,12*x-20,2*x+16,-8,x+5,14*x-8,-2*x,6*x+16,3*x-1,4*x-8,5*x+9,2*x+4,-5*x+7,12,4*x+6,-7*x+4,4*x+16,-18*x+24,1,8*x,2*x+2,0,-4*x-4,x,-2*x-14,-x,-2*x-10,16,3*x+7,9*x-4,8*x+10,-8*x-24,-6,2,-4*x-14,-4*x-8,-2*x-18,16,2*x,4*x-8,-4*x-12,-12*x+16,12*x+10,-4*x+4,-16,6*x+12,3*x+7,-14*x+8,x+1,-4*x+12,4*x+10,-12*x+8,0,-x+4,x+15,-12*x+4,-3*x-19,-8*x+16,2*x-6,4*x+12,2*x,-3*x-4,5*x-4,2*x-12,7*x+27,14*x-20,3*x+5,-4,-4,6*x-24,-3*x+1,6*x-16,-6*x-14,-2*x+2,-2*x-6,4*x+28,6*x-10,12*x-24,-6*x,-6*x-16,-3*x-27,-2*x+2,-3*x+1,0,-10*x+6,8*x+16,13*x+11,14*x-16,-x-2,2*x-6,-8*x-10,-8*x,-x-13,x+4,2*x+26,8,-2*x-2,7*x-14,x+3,-4*x+8,-13*x-25,10*x-8,-3*x+1,-4*x-4,12,-4*x+8,6*x+12,4*x+28,-4*x,-12,-8*x-22,-5*x+20,14*x+14,-2,0,4*x,-1,-4*x-16,2*x+10,-6*x-4,-2*x+2,-10*x+22,-8*x-10,-x,-x-5,-4*x,-5*x-7,16,8,2*x,-3*x-7,20*x,8,-3*x-4,-12*x+1,-2*x+40,6*x+2,-2,4*x-2,24*x,3*x-1,24,-2*x-8,6*x,-2*x,0,6*x+20,-4*x-12,-x-1,-16*x+16,-7*x-15,4*x-4,8*x+4,8*x-12,-4*x-20,-12*x+4,-4*x-4,-12*x-16,-x-1,10*x-24,8*x+20,-8*x+6,7*x-7,-4*x-12,6*x+14,x-4,6*x+14,-2*x-8,-x-5,4,-x+25,-8*x-16,-2*x+6,-3*x,-x+29,16*x,0,18*x-28,-7,-2*x+12,6*x+6,-8*x-16,-8*x-14,2*x-8,12*x+4,-6*x+10,4,-8*x-16,4,-2*x-8,10*x+2,8*x-8,-4*x+16,2*x-2,3*x+5,-36,2*x+10,-10*x+8,-x-3,-32,6*x,-16*x+20,-7*x-19,4*x+8,5*x-7,12*x-12,-4*x-2,0,x+13,-4*x+14,4*x-12,-16*x+8,-6*x-6,-4*x,x+2,-8*x-20,-6*x-18,-12*x+12,2*x+4,-4*x-4,-2*x+14,-x-4,5*x+11,x+4,-8,14*x-28,-11*x-39,16*x+12,-x-3,-16*x+32,2*x-12,14*x+8,x+5,-4*x+4,2*x-8,4*x+4,-8*x-8,-6*x+36,0,2*x-8,x+25,2*x+4,4*x,-4*x+12,-10*x+6,-4*x+16,6*x+14,4*x+20,2*x-2,2,2*x+8,12*x-20,2*x+10,4*x,6*x+18,2*x+16,-2*x-10,9*x-16,-5*x-7,12*x+16,2*x+2,30*x-24,2*x-6,x,11*x-13,-8*x+16,7*x+15,8,2*x+6,0,-8,-16,-11*x+13,-x+2]];
43
E[35,2] = [x, [1,0,1,-2,-1,0,1,0,-2,0,-3,-2,5,0,-1,4,3,0,2,2,1,0,-6,0,1,0,-5,-2,3,0,-4,0,-3,0,-1,4,2,0,5,0,-12,0,-10,6,2,0,9,4,1,0,3,-10,12,0,3,0,2,0,0,2,8,0,-2,-8,-5,0,-4,-6,-6,0,0,0,2,0,1,-4,-3,0,-1,-4,1,0,12,-2,-3,0,3,0,-12,0,5,12,-4,0,-2,0,-1,0,6,-2,6,0,5,0,-1,0,6,10,-7,0,2,4,6,0,6,-6,-10,0,3,0,-2,0,-12,8,-1,0,-16,0,-10,0,-6,6,2,0,5,0,-12,0,14,2,9,0,-15,-8,-3,0,1,-4,-6,0,-1,0,-6,0,4,-10,14,0,12,0,-6,0,2,24,3,0,-3,0,12,0,-4,20,-9,0,1,-12,0,0,12,-4,20,0,8,0,-2,0,-9,-18,-5,0,9,-8,-4,0,-5,-2,0,0,-16,0,-4,0,3,-6,12,0,12,20,-6,0,-13,-24,0,0,10,0,-4,0,2,-6,15,0,-19,0,-2,0,-3,-4,-4,0,-3,0,24,0,-9,0,-1,0,-21,-4,-10,0,16,-16,-1,0,10,0,12,0,18,4,18,0,-3,16,30,0,2,10,-6,0,6,0,-12,0,-12,8,-6,0,-16,12,5,0,-3,12,-10,0,8,0,3,0,-13,0,-2,0,-12,0,-8,0,-1,-4,-21,0,0,0,15,0,-30,-2,-10,0,6,8,-8,0,11,6,5,0,18,0,-19,0,2,2,-18,0,-9,8,6,0,6,-2,5,0,-7,0,9,0,-28,-24,-4,0,4,4,14,0,6,6,12,0,1,0,6,0,-18,-6,26,0,-25,0,15,0,0,24,3,0,24,0,-15,0,-2,-10,-2,0,17,-24,24,0,12,8,-4,0,-1,0,15,0,20,4,-16,0,12,0,3,0,20,2,-3,0,-18,0,-6,0,1,-12,-25,0,2,4,-15,0,-20,-12,-1,0,-6,0,14,0,-12,-10,0,0,-12,0,14,0,-12,2,17,0,-18,0,3,0,8,-12,-15,0,21,-20,2,0,-3,14,-12,0,26,0,-2,0,-18,-4,12,0,-6,-8,-9,0,36,-12,-1,0,-5,0,8,0,-15,-12,-24,0,32,12,4,0,15,20,-4,0,14,0,30,0,2,-6,-24,0,-30,0,10,0,-6,4,1,0,38,0,2,0,15,24,9,0,-6,-16,0,0,-31,2]];
44
45
E[36,1] = [x, [1,0,0,0,0,0,-4,0,0,0,0,0,2,0,0,0,0,0,8,0,0,0,0,0,-5,0,0,0,0,0,-4,0,0,0,0,0,-10,0,0,0,0,0,8,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,-16,0,0,0,0,0,-10,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,14,0,0,0,0,0,20,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-11,0,0,0,0,0,20,0,0,0,0,0,-32,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,14,0,0,0,0,0,8,0,0,0,0,0,-9,0,0,0,0,0,20,0,0,0,0,0,26,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,-28,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,16,0,0,0,0,0,-28,0,0,0,0,0,-22,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,-28,0,0,0,0,0,26,0,0,0,0,0,32,0,0,0,0,0,-17,0,0,0,0,0,0,0,0,0,0,0,-32,0,0,0,0,0,-16,0,0,0,0,0,-22,0,0,0,0,0,0,0,0,0,0,0,-10,0,0,0,0,0,32,0,0,0,0,0,-34,0,0,0,0,0,-8,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,45,0,0,0,0,0,-4,0,0,0,0,0,38,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-34,0,0,0,0,0,-8,0,0,0,0,0,38,0,0,0,0,0,0,0,0,0,0,0,-22,0,0,0,0,0,-56,0,0,0,0,0,2,0,0,0,0,0,-28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-10,0,0,0,0,0,20,0,0,0,0,0,64,0,0,0,0,0,-40,0,0,0,0,0,-20,0,0,0,0,0,44,0,0,0,0,0,0,0,0,0,0,0,32,0]];
46
47
E[37,1] = [x, [1,-2,-3,2,-2,6,-1,0,6,4,-5,-6,-2,2,6,-4,0,-12,0,-4,3,10,2,0,-1,4,-9,-2,6,-12,-4,8,15,0,2,12,-1,0,6,0,-9,-6,2,-10,-12,-4,-9,12,-6,2,0,-4,1,18,10,0,0,-12,8,12,-8,8,-6,-8,4,-30,8,0,-6,-4,9,0,-1,2,3,0,5,-12,4,8,9,18,-15,6,0,-4,-18,0,4,24,2,4,12,18,0,-24,4,12,-30,-2,3,0,18,0,-6,-2,-12,-18,-16,-20,3,4,-18,0,-4,12,-12,-16,0,0,14,16,27,-8,12,12,1,0,-6,-8,-12,30,0,-16,18,0,-6,12,4,4,27,-18,10,-24,-12,2,18,-2,-5,-6,16,0,0,-10,8,12,23,-8,-3,-16,-2,-18,-18,-18,-30,30,-12,0,-9,0,0,4,9,36,1,20,-24,-8,18,-24,5,-4,24,0,2,-24,0,-18,9,0,-4,24,-26,-8,-12,-12,3,60,2,0,-24,-6,-6,0,18,-36,12,8,0,12,-13,2,-27,24,-4,0,4,32,3,20,0,-6,-17,-8,-6,36,-16,0,7,8,-15,0,6,24,18,16,-12,0,-6,-24,14,-28,0,-16,12,-54,0,0,45,-24,-2,-12,-10,-2,0,16,0,12,1,8,36,24,19,0,-2,0,-12,16,-6,-36,-31,0,-6,12,5,-12,12,-8,-24,0,12,-54,4,18,0,-20,9,48,-17,24,-12,-2,-2,-36,-16,0,45,10,-4,6,-2,-32,-9,0,16,0,-17,10,-54,-16,0,0,22,-46,12,8,22,6,-30,16,36,4,0,18,2,36,48,0,9,60,-2,-30,-6,24,-16,-12,-25,18,54,0,20,0,13,0,12,-18,-10,-36,6,-2,18,-40,8,48,-18,8,0,-36,-15,0,-19,-10,-42,4,2,-48,8,-8,-54,-4,-1,24,-19,0,-36,0,-12,-18,15,0,-3,8,20,0,-10,52,12,8,4,24,0,0,36,-6,-8,-60,-5,-4,0,4,18,48,8,6,-18,12,5,0,20,-36,18,36,-8,-24,30,-16,-12,0,7,-12,-24,26,-54,0,0,54,8,-24,-30,8,-30,36,9,-8,36,-32,0,-6,28,0,-36,0,1,6,-8,34,15,8,36,12,45,-36,-48,32,-4,0,18,-14,0,-8,30,30,-22,-24,-24,-12,-2,-24,-8,-36,-69,0,-10,24,0,0,6,12,14,48,2,-28,6,28,-8,0,-24,0,54,-24,-28,54,0,0,60,16,-9,-90,12,24]];
48
E[37,2] = [x, [1,0,1,-2,0,0,-1,0,-2,0,3,-2,-4,0,0,4,6,0,2,0,-1,0,6,0,-5,0,-5,2,-6,0,-4,0,3,0,0,4,1,0,-4,0,-9,0,8,-6,0,0,3,4,-6,0,6,8,-3,0,0,0,2,0,12,0,8,0,2,-8,0,0,-4,-12,6,0,-15,0,11,0,-5,-4,-3,0,-10,0,1,0,9,2,0,0,-6,0,6,0,4,-12,-4,0,0,0,8,0,-6,10,3,0,-4,0,0,0,12,10,2,0,1,-4,-6,0,0,12,8,0,-6,0,-2,0,-9,8,0,0,-7,0,8,0,-6,-6,-2,0,0,0,-6,0,-4,0,3,0,-12,-8,0,0,-6,-2,15,0,8,0,-12,0,0,8,-13,0,-3,0,-6,0,-16,18,0,0,18,0,3,0,-4,-16,9,0,5,12,12,0,18,0,-7,0,8,0,0,0,18,-6,5,0,-24,-8,-4,0,0,12,15,0,2,0,-4,0,6,-12,0,0,-12,-16,6,0,-13,6,-15,0,0,0,4,0,11,0,-24,0,-1,0,10,0,24,-4,23,0,-3,0,-18,0,0,-24,-10,0,-6,0,-10,0,16,-16,0,0,-8,0,9,0,0,-4,18,0,0,16,-24,0,-1,0,12,0,15,0,0,0,6,8,-18,0,29,24,4,0,-15,-12,8,0,8,0,0,0,-4,30,0,0,9,0,19,0,8,-22,-18,0,0,0,-15,0,-24,10,-8,0,3,8,0,0,-25,6,-4,0,-6,0,-28,0,0,20,-18,0,-18,0,12,0,12,-2,20,0,2,0,-3,0,-10,-18,-2,0,0,-4,23,0,-6,0,-12,0,13,0,0,0,6,12,-10,0,20,0,-18,0,0,-12,-6,0,-27,0,-15,0,-2,-8,0,0,8,24,18,0,3,8,5,0,0,0,24,0,11,0,-7,0,36,0,0,0,-16,-16,-12,0,36,0,-6,0,0,12,11,0,-2,-20,24,0,16,-6,0,0,3,0,-4,0,-6,8,-12,0,0,0,-4,0,3,0,-10,0,-6,0,-30,0,-8,-24,-12,0,12,-20,29,0,0,-4,12,0,-28,0,12,0,-15,-2,0,0,15,8,-6,0,-27,12,8,0,0,0,-28,0,-30,0,36,0,14,-24,0,0,18,-16,4,0,-13,0,24,0,-10,12,6,0,18,0,-4,0,-6,4,0,0,2,0,-16,0,-12,18,-36,0,0,-16,15,0,32,0]];
49
50
E[38,1] = [x, [1,-1,1,1,0,-1,-1,-1,-2,0,-6,1,5,1,0,1,3,2,1,0,-1,6,3,-1,-5,-5,-5,-1,9,0,-4,-1,-6,-3,0,-2,2,-1,5,0,0,1,8,-6,0,-3,0,1,-6,5,3,5,-3,5,0,1,1,-9,9,0,-10,4,2,1,0,6,5,3,3,0,-6,2,-7,-2,-5,1,6,-5,-10,0,1,0,-6,-1,0,-8,9,6,-12,0,-5,3,-4,0,0,-1,-10,6,12,-5,18,-3,14,-5,0,3,-9,-5,11,0,2,-1,6,-1,0,9,-10,-9,-3,0,25,10,0,-4,0,-2,2,-1,8,0,0,-6,-1,-5,0,-3,-9,-3,-4,0,0,6,-30,-2,0,7,-6,2,0,5,-10,-1,-6,-6,0,5,-22,10,-3,0,-3,-1,20,0,0,6,12,1,12,0,-2,8,6,-9,5,-6,9,12,0,0,2,5,-10,-3,0,4,-18,0,5,0,3,1,14,10,0,-6,0,-12,11,5,5,-18,-9,3,0,-14,-6,5,-6,0,5,-3,-6,9,0,5,4,-11,-7,0,15,-2,26,1,10,-6,-15,1,-22,0,6,-9,-6,10,0,9,-10,3,-21,0,8,-25,16,-10,0,0,5,4,-6,0,6,2,-18,-2,0,1,12,-8,-2,0,-18,0,24,6,0,1,-12,5,-6,0,11,3,-5,9,30,3,8,4,8,0,0,0,-22,-6,0,30,0,2,-8,0,-10,-7,-21,6,0,-2,30,0,15,-5,-8,10,18,1,0,6,20,6,14,0,-21,-5,-19,22,0,-10,-9,3,-54,0,-9,3,3,1,-25,-20,11,0,0,0,-1,-6,-4,-12,0,-1,-4,-12,6,0,24,2,13,-8,0,-6,18,9,-10,-5,-25,6,-15,-9,0,-12,-3,0,21,0,1,-2,25,-5,0,10,-28,3,0,0,3,-4,23,18,0,0,45,-5,-7,0,2,-3,18,-1,0,-14,-16,-10,18,0,9,6,0,0,0,12,20,-11,-1,-5,0,-5,-20,18,0,9,-12,-3,32,0,-9,14,-9,6,0,-5,-4,6,-12,0,17,-5,0,3,-15,6,10,-9,-30,0,6,-5,2,-4,0,11,3,7,-28,0,12,-15,-18,2,0,-26,0,-1,-18,-10,0,6,-10,15,0,-1,17,22,-15,0,-12,-6,-4,9,0,6,18,-10,-5,0,-22,-9,-48,10,-5,-3,6,21,36,0,10,-8,-3,25,0,-16,2,10,20,0,-36,0,27,-5,0,-4,6,6,-4,0]];
51
E[38,2] = [x, [1,1,-1,1,-4,-1,3,1,-2,-4,2,-1,-1,3,4,1,3,-2,-1,-4,-3,2,-1,-1,11,-1,5,3,-5,4,-8,1,-2,3,-12,-2,-2,-1,1,-4,-8,-3,4,2,8,-1,8,-1,2,11,-3,-1,-1,5,-8,3,1,-5,15,4,2,-8,-6,1,4,-2,3,3,1,-12,2,-2,9,-2,-11,-1,6,1,-10,-4,1,-8,-6,-3,-12,4,5,2,0,8,-3,-1,8,8,4,-1,-2,2,-4,11,2,-3,-6,-1,12,-1,-7,5,-15,-8,2,3,14,1,4,-5,2,15,9,4,-7,2,8,-8,-24,-6,18,1,-4,4,12,-2,-3,3,-20,3,-17,1,0,-12,-8,2,-2,-2,20,9,-2,-2,0,-11,2,-1,-6,6,32,1,-2,-10,1,-4,-3,1,-16,-8,8,-6,-12,-3,-12,-12,2,4,-6,5,33,2,-15,0,0,8,22,-3,-2,-1,8,8,6,8,15,4,7,-1,-6,-2,-4,2,8,-4,-25,11,-3,2,-15,-3,32,-6,2,-1,-2,12,27,-1,-2,-7,-16,5,-24,-15,-9,-8,-3,2,14,3,-22,14,-17,1,-10,4,-6,-5,-6,2,-32,15,10,9,15,4,-8,-7,-16,2,-8,8,1,-8,6,-24,2,-6,-2,18,12,1,8,-4,-6,4,10,12,24,-2,4,-3,0,3,30,-20,7,3,3,-17,22,1,28,0,16,-12,-8,-8,-6,2,-4,-2,-24,-2,-8,20,2,9,9,-2,-60,-2,10,0,1,-11,12,2,-2,-1,-8,-6,-12,6,6,32,7,1,29,-2,24,-10,-27,1,-10,-4,7,-3,-3,1,-11,-16,15,-8,24,8,17,-6,4,-12,-12,-3,-32,-12,-14,-12,-16,2,-15,4,-4,-6,-2,5,10,33,-5,2,9,-15,-8,0,-9,0,-15,8,1,22,7,-3,-36,-2,28,-1,16,8,-3,8,29,6,24,8,5,15,15,4,-18,7,-26,-1,-24,-6,-8,-2,-30,-4,-3,2,-12,8,40,-4,8,-25,3,11,-8,-3,8,2,-4,-15,-4,-3,-20,32,17,-6,45,2,24,-1,0,-2,0,12,-13,27,-16,-1,33,-2,6,-7,2,-16,-18,5,14,-24,-20,-15,1,-9,20,-8,-4,-3,-26,2,0,14,0,3,10,-22,-16,14,-2,-17,12,1,-7,-10,15,4,-28,-6,4,-5,-32,-6,-2,2,9,-32,2,15,8,10,-11,9,2,15,-20,4,2,-8,3,-7,8,-16,-2,2,16,-8,-28,8,-15,1,16,-8,6,6,40,-24]];
52
53
E[39,1] = [x, [1,1,-1,-1,2,-1,-4,-3,1,2,4,1,1,-4,-2,-1,2,1,0,-2,4,4,0,3,-1,1,-1,4,-10,-2,4,5,-4,2,-8,-1,-2,0,-1,-6,6,4,-12,-4,2,0,0,1,9,-1,-2,-1,6,-1,8,12,0,-10,12,2,-2,4,-4,7,2,-4,-8,-2,0,-8,0,-3,2,-2,1,0,-16,-1,8,-2,1,6,4,-4,4,-12,10,-12,-2,2,-4,0,-4,0,0,-5,10,9,4,1,-18,-2,0,-3,8,6,12,1,-2,8,2,4,-6,0,0,10,1,12,-8,6,5,-2,-6,-4,-12,-4,-16,-3,12,2,4,4,0,-8,-2,-6,6,0,12,8,0,0,4,-1,-20,2,-9,2,-6,1,4,0,2,-16,8,1,-18,8,-6,10,0,1,8,-6,-8,4,-8,-12,1,4,0,12,6,10,4,-4,-12,-2,4,-2,-10,-4,2,0,-4,-4,8,0,4,0,8,-7,18,10,-2,-9,18,4,8,3,8,-18,40,2,12,0,0,-1,0,8,-20,-6,0,12,-24,3,-16,-2,-2,-8,2,2,4,-20,-1,-6,-20,0,-10,0,16,30,-14,1,0,-12,-8,-8,-24,2,10,5,-1,2,18,-6,0,-12,-4,-12,-12,4,0,-16,-4,-17,26,12,8,-2,-10,4,24,12,12,0,2,8,22,-2,-12,-2,4,6,-4,0,-10,12,4,24,-10,0,12,0,0,4,-24,5,-13,-20,-10,-2,-6,-9,24,6,-4,-6,0,-1,48,4,18,0,-4,2,-16,16,0,8,0,3,-6,-18,-8,-8,26,-6,-40,14,-12,0,0,-1,-1,8,2,-18,0,-8,-16,-4,-2,-8,-16,-4,18,1,6,-4,16,0,-8,36,0,6,-12,-10,-26,4,-1,20,-2,-12,0,2,8,4,24,-6,-19,-10,-5,4,4,2,16,0,6,-4,-24,4,-26,8,12,0,-10,4,-24,0,16,8,-16,3,-32,18,-12,-10,22,-2,0,-27,-4,18,16,-4,38,8,0,1,22,8,4,18,2,40,-8,6,34,12,-6,0,-48,0,8,5,-12,0,4,-8,-10,-20,0,-18,-2,0,8,-12,-4,-24,0,1,34,-16,20,2,0,-2,32,-24,9,2,-4,-2,-4,4,6,-28,22,-1,24,6,-4,-20,-8,0,2,-10,-2,0,-38,16,4,10,-8,-14,12,-1,32,0,18,-36,-48,-8,0,8,6,-24,-24,-10,-2,10,0,-5,20,-1,12,6,-8,18,-12,6,-20,0,8,-4,0,-4,-24,12]];
54
E[39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2,x,2*x+2,x-2,1,2*x-2,-2,-2*x-1,-1,-2*x+2,-2*x-2,3,4*x+6,x,-2*x-2,-2*x+6,2*x+2,-2*x,-4,x-2,3,-x,1,2*x-6,2,2*x-2,2*x-2,x+4,-2,-2*x+4,-8,-2*x-1,-4*x-6,2*x-2,-1,6*x+2,-2*x+6,-2*x+2,-4*x,4*x+2,-2*x-2,-4*x,-4*x-10,3,1,3*x,4*x+6,2*x+1,-2,x,4*x+4,-6*x-2,-2*x-2,2*x,4*x+6,-2*x+6,8*x+10,-6*x+2,2*x+2,2*x-5,2*x+2,-2*x,2*x+6,-14,-4,-8*x,2,x-2,-4*x+2,2*x-4,3,-2*x+6,-4*x-4,-x,-8*x-8,-6*x-6,1,10*x-2,4*x+2,2*x-6,-4*x-20,8*x-4,2,-2*x+4,2*x+14,2*x-2,-2*x-2,8*x+4,2*x-2,-2*x-4,8,x+4,4*x+2,x,-2,-6*x-3,4*x+6,-2*x+4,-4*x+4,-x+2,-8,-2*x,-8*x-8,-2*x-1,8*x+2,-4*x+4,-4*x-6,6*x+6,-8*x-2,2*x-2,8*x+8,-4*x-2,-1,-2*x+4,4*x+20,6*x+2,-7,-6*x+8,-2*x+6,10*x-2,4*x+4,-2*x+2,4*x+4,-11*x-6,-4*x,-2*x+2,-8,4*x+2,-8,2*x+2,-2*x-2,-10*x-8,-2*x-10,-4*x,-8*x-4,16*x+8,-4*x-10,2*x,2,3,-4*x-4,10*x-4,1,14,2*x-10,3*x,6*x-6,6*x+2,4*x+6,4*x-4,8*x,2*x+1,-10,8*x-8,-2,-6*x-10,-8*x-8,x,2*x+18,-18*x-2,4*x+4,-6*x+4,-4*x-2,-6*x-2,1,-12*x-4,-2*x-2,-12*x+8,-4*x-10,2*x,6*x+6,-6,4*x+6,10*x+2,-8*x-20,-2*x+6,14,2*x-2,8*x+10,-4*x+8,4*x+20,-6*x+2,-8*x-12,8*x+18,2*x+2,8*x,8*x,2*x-5,8*x+2,-6*x+4,2*x+2,-2*x-1,6*x-2,-2*x,4*x+20,3*x-6,2*x+6,-2*x+4,4*x+4,-14,-16*x-8,12*x-4,-4,-3,4*x+4,-8*x,-12,4*x+2,2,8*x-8,-8*x+8,x-2,-8*x,-14*x+8,-4*x+2,4*x-12,-4*x-6,2*x-4,-6*x-10,6*x+10,3,14*x-8,-8*x-14,-2*x+6,-8*x+2,-8*x+8,-4*x-4,2*x-4,12*x+2,-x,12*x+28,-14,-8*x-8,12*x+4,2,-6*x-6,-4*x+2,-7*x,1,4*x-26,-2*x-2,10*x-2,2*x+2,-10*x+6,4*x+2,-4*x+4,0,2*x-6,8,-4*x+4,-4*x-20,12*x-1,4*x-6,8*x-4,-4*x-20,2*x-6,2,-8*x,12,-2*x+4,4*x+4,-8*x,2*x+14,-6*x-10,18,2*x-2,-14*x-22,12*x+18,-2*x-2,-6*x-2,-6,8*x+4,-2,12*x-8,2*x-2,-8*x+16,-2*x+22,-2*x-4,12*x+24,-4*x-2,8,2*x,16*x+8,x+4,16*x+35,4*x-4,4*x+2,-16*x+6,10*x-2,x,-4*x-20,10*x+8,-2,-14*x+2,4,-6*x-3,8*x-8,-18*x+6,4*x+6,-6*x-6,-4*x-36,-2*x+4,-2*x-22,-4*x+12,-4*x+4,-16*x+8,-16*x-4,-x+2,6,-10*x,-8,-8*x+24,6*x+6,-2*x,-4,14*x+6,-8*x-8,8*x-8,-4*x-20,-2*x-1,-3,14*x+2,8*x+2,14*x-14,-12*x-28,-4*x+4,10*x+22,8*x-10,-4*x