Sharedwww / tables / Notes / refinedeisen.bblOpen in CoCalc
Author: William A. Stein
1
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2
\begin{thebibliography}{1}
3
4
\bibitem{magma}
5
J.~Cannon, \emph{The {\sc magma} computational algebra system,\hfill\\ {\tt
6
http://www.maths.usyd.edu.au:8000/u/magma/}}.
7
8
\bibitem{cassels-flynn}
9
J.\thinspace{}W.\thinspace{}S. Cassels and E.\thinspace{}V. Flynn,
10
\emph{Prolegomena to a middlebrow arithmetic of curves of genus
11
\protect{$2$}}, Cambridge University Press, Cambridge, 1996.
12
13
\bibitem{cremona:algs}
14
J.\thinspace{}E. Cremona, \emph{Algorithms for modular elliptic curves}, second
15
ed., Cambridge University Press, Cambridge, 1997.
16
17
\bibitem{manin:parabolic}
18
J.\thinspace{}I. Manin, \emph{Parabolic points and zeta functions of modular
19
curves}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{36} (1972), 19--66.
20
21
\bibitem{mazur:eisenstein}
22
B.~Mazur, \emph{Modular curves and the \protect{Eisenstein} ideal}, Inst.
23
Hautes \'Etudes Sci. Publ. Math. (1977), no.~47, 33--186 (1978).
24
25
\bibitem{mestre-oesterle:crelle}
26
J.-F. Mestre and J.~Oesterl{\'e}, \emph{Courbes de {W}eil semi-stables de
27
discriminant une puissance \protect{$m$}-i\`eme}, J. Reine Angew. Math.
28
\textbf{400} (1989), 173--184.
29
30
\bibitem{ribet:modreps}
31
K.\thinspace{}A. Ribet, \emph{On modular representations of \protect{${\rm
32
{G}al}(\overline{\bf{Q}}/{\bf {Q}})$} arising from modular forms}, Invent.
33
Math. \textbf{100} (1990), no.~2, 431--476.
34
35
\bibitem{stein:compgroup}
36
W.\thinspace{}A. Stein, \emph{Component groups of optimal quotients of
37
{J}acobians}, preprint (1999).
38
39
\end{thebibliography}
40