Sharedwww / tables / Notes / manin-distrib.texOpen in CoCalc
Author: William A. Stein
1
% compgroup.tex
2
\documentclass[10pt]{article}
3
\textheight=1.1\textheight
4
\textwidth=1.1\textwidth
5
\hoffset=-.2in
6
\voffset=-.2in
7
\usepackage[all]{xy}
8
\usepackage{epic} % for deligne-rapaport model
9
\include{macros}
10
\title{\bf\Huge \mbox{The Manin index of optimal new quotients}\vspace{5ex}}
11
\author{\LARGE William A. Stein}
12
\date{\Large October 1, 1999\vspace{2ex}\\}
13
\pagestyle{myheadings}
14
\newcounter{Pagecount}
15
\markboth{}{W.\thinspace{}A. Stein, The Manin index of optimal new quotients}
16
\newcommand{\Page}[1]{\par\noindent
17
\addcontentsline{toc}{section}{#1}
18
\centerline{\LARGE \bf \stepcounter{Pagecount}
19
\S\thePagecount. #1}\vspace{1ex}
20
\addtocontents{toc}{\large\bf {\thePagecount. #1}\\}}
21
\theoremstyle{plain}
22
\newtheorem{thm}{Theorem}
23
\newtheorem{prp}[thm]{Proposition}
24
\newtheorem{cor}[thm]{Corollary}
25
\newtheorem{lem}[thm]{Lemma}
26
\newtheorem{conj}[thm]{Conjecture}
27
\theoremstyle{remark}
28
\newtheorem{ex}[thm]{Example}
29
30
\DeclareMathOperator{\numer}{numer}
31
\DeclareMathOperator{\order}{order}
32
\renewcommand{\Adual}{A^{\vee}}
33
\newcommand{\Edual}{E^{\vee}}
34
\renewcommand{\ss}{\text{ss}}
35
\newcommand{\qexp}{\text{q-exp}}
36
\newcommand{\cPic}{\mathcal{P}\text{ic}}
37
\newcommand{\bifR}{\pmb{\infty}_{/R}}
38
\font\cyrbig=wncyr10 scaled \magstep 3
39
\renewcommand{\Sha}{\mbox{\cyrbig X}}
40
41
\parindent=0em
42
\parskip=2ex
43
\baselineskip=15ex
44
45
% bulleted list environment
46
\newenvironment{bulletlist}
47
{
48
\begin{list}
49
{$\bullet$}
50
{
51
\setlength{\itemsep}{0ex}
52
\setlength{\parsep}{0ex}
53
\setlength{\parskip}{0ex}
54
\setlength{\topsep}{0ex}
55
}
56
}
57
{
58
\end{list}
59
}
60
%end newenvironment
61
62
% bulleted list environment
63
\newenvironment{emlist}
64
{
65
\begin{list}
66
{---}
67
{
68
\setlength{\itemsep}{3ex}
69
\setlength{\parsep}{0ex}
70
\setlength{\parskip}{0ex}
71
\setlength{\topsep}{0ex}
72
}
73
}
74
{
75
\end{list}
76
}
77
%end newenvironment
78
79
% numbered list environment
80
\newcounter{listnum}
81
\newenvironment{numlist}
82
{
83
\begin{list}
84
{{\em \thelistnum.}}{
85
\usecounter{listnum}
86
\setlength{\itemsep}{0ex}
87
\setlength{\parsep}{0ex}
88
\setlength{\parskip}{0ex}
89
\setlength{\topsep}{0ex}
90
}
91
}
92
{
93
\end{list}
94
}
95
%end newenvironment
96
97
\begin{document}
98
99
%\maketitle
100
\pagenumbering{Roman}
101
%\setcounter{page}{0}
102
\Page{The Birch and Swinnerton-Dyer conjecture}
103
Consider the optimal quotient $A=A_f$ associated to a newform $f$:
104
$$\xymatrix{
105
& *+++{IJ_0(N)}\[email protected]{^(->}[d]\\
106
& J_0(N)\[email protected]{->>}[d]^{\pi}\\
107
f = \sum a_n q^n \[email protected]{|~>}[r] & *+++{A}\[email protected]{^(->}[r]^{\iota}&{\cA}}$$
108
Here $I := \ker (\T \onto \Z[\ldots a_n \ldots])$ is a prime ideal.
109
110
\begin{thm}[Agash\'e,---]
111
$$\frac{L(A,1)}{\Omega_{A}}\cdot c_A =
112
[\pi_*(H_1(X_0(N),\Z)^+) : \pi_*(\T \e)]/c_{\infty}$$
113
\end{thm}
114
Here
115
\begin{bulletlist}
116
\item $\cA := $ N\'{e}ron model of $A$ over $\Z$.
117
\item $\Omega_{A} := $ volume of $A(\R)$ wrt basis for
118
$H^0(\cA,\Omega_{A})$.
119
\item $c_\infty := $ number of connected components of $A(\R)$, a power of $2$.
120
\item {\bf Manin index}
121
$$c_A := [S_2(N;\Z)[I] : \qexp(\pi^* \iota^* H^0(\cA,\Omega_{\cA}))]
122
\in\Z_{>0}$$
123
\end{bulletlist}
124
125
\begin{conj}[Birch, Swinnerton-Dyer]
126
$$\displaystyle \frac{L(A,1)}{\Omega_{A}}
127
= \frac{\#\Sha(A/\Q)\cdot \prod c_p}
128
{\#A(\Q) \cdot \#\Adual(\Q)}.$$
129
\end{conj}
130
131
\Page{Motivation}
132
{\bf Problem.}
133
Verify the BSD conjecture, up to a power of~$2$,
134
for specific~$A_f$ at square-free level.
135
136
\begin{ex}
137
$p=2333$
138
$$J_0(2333) \isog A \cross B \cross C$$
139
$\dim A = 4$, $\dim B = 89$, $\dim C=101$.
140
$$L(A,1)=L(B,1)=0.$$
141
$$\frac{L(C,1)}{\Omega_C} \cdot c_C
142
= \frac{83341^2}{11\cdot 53}\cdot 2^?$$
143
$$c_p = 11\cdot 53 = \#C(\Q) = \#C^{\vee}(\Q)= \numer((p-1)/12).$$
144
If we know that $c_C$ is a power of two then,\\
145
to verify BSD up to $2$-powers, must show
146
that $\#\Sha=83341^2\cdot 2^?$.\\
147
In this case we are lucky: $83341\mid \#(A\intersect C)$,
148
which can (probably) be used to show that
149
$83341\mid \#\Sha$.
150
\end{ex}
151
152
\begin{ex}
153
$p=2111$ is prime.
154
$$J_0(2111) \isog A \cross B$$
155
with $\dim A = 64$, $\dim B = 112$.\\
156
$L(A,1)=0$
157
$$\frac{L(B,1)}
158
{\Omega_B}\cdot c_B = \frac{211}{5}\cdot 2^?.$$
159
$$c_p = 5\cdot 211 = \#B(\Q) = \#B^{\vee}(\Q) = \numer((p-1)/12).$$
160
If we know that $c_B$ is a power of $2$, then
161
to verify BSD, must show that $\#\Sha=211^2\cdot 2^?/c_B$.\\
162
\end{ex}
163
164
165
166
\Page{The Manin index}
167
168
\begin{conj}[Agashe, ---, Manin when $\dim A=1$]\label{myconj}
169
$c_A = 1.$
170
\end{conj}
171
\vspace{-2ex}
172
173
{\bf Caution:} Without the condition that~$A$ is new, the conjecture
174
is false. The Manin index of $J_0(33)$ is~$3$, because
175
of a mod~$3$ congruence.
176
177
A.~Logan is skeptical of Conjecture~\ref{myconj}.
178
179
{\bf Evidence:} See Amod's talk from Wednesday.
180
181
{\em Empirical evidence for the Birch and
182
Swinnerton-Dyer conjectures for
183
modular Jacobians of genus~2 curves},\\
184
Flynn, Lepr\'evost, Schaeffer, ---, Stoll, Wetherell.\\
185
We considered $28$ optimal quotients of dimension~$2$ that
186
happened to be Jacobians.
187
\begin{bulletlist}
188
\item We computed $\Omega_A$ directly from a minimal
189
proper regular models.
190
\item We then computed the volume of $A(\R)$ with respect
191
to $S_2(N;\Z)[I]$, and got the same answer, to several
192
decimal places.
193
\end{bulletlist}
194
The non square-free levels treated:
195
$$N=3^2\cdot 7,\quad 3^2\cdot 13,\quad 5^3,\quad 3^3\cdot 5,\quad 3\cdot 7^2,
196
\quad 5^2\cdot 7,\quad 2^2\cdot 47,\quad 3^3\cdot 7.$$
197
In every case, $c_A = 1$.
198
199
200
\Page{Bounding the Manin index}
201
202
We present a slight generalization of a theorem of Mazur,
203
from his {\em Rational of prime degree} paper.
204
\begin{thm}[Mazur when $\dim A=1$, ---]
205
Let~$m$ be the largest square dividing~$N$.
206
Let $A$ be an optimal quotient of $J_0(N)^{\new}$.
207
Then $c_A$ is a unit in $\Z[\frac{1}{2m}]$.
208
\end{thm}
209
\begin{proof}
210
We give the proof assuming that $A=A_f$.
211
\begin{bulletlist}
212
\item $R:=\Z[\frac{1}{2m}]$.
213
\item $\cJ := $ Neron model of $J_0(N)$ over $R$.
214
\item $\cA := $ ditto for $A$.
215
\item $X := $ smooth locus of the minimal proper regular model of $X_0(N)$.
216
\end{bulletlist}
217
218
Consider
219
$$\xymatrix{
220
*+++{H^0(\cA,\Omega_{\cA/R})}\[email protected]{^(->}[rr]^{\pi^*}_{\text{pullback}}&&
221
{H^0(\cJ,\Omega_{\cJ/R})}\ar[r]^{\isom}&
222
{H^0(X,\Omega_X)}\ar[rr]^{\qexp}&&R[[q]].}$$
223
\begin{bulletlist}
224
\item $\pi^*$ is an inclusion because $H^0(\cA,\Omega_{\cA/R})$
225
is free ($\cA/R$ is smooth) and $\pi^*_\C$ is an inclusion.
226
\item The middle isomorphism uses Mich\'{e}le Raynaud's result:
227
$$\cPic^0(X)\isom \cJ^0,$$
228
induces $H^1(X,\O_X)\xrightarrow{\,\isom\,} H^1(\cJ,\O_{\cJ})$
229
on tangent spaces. Now apply Grothendieck duality.
230
\item $\qexp$ comes from Tate curve:
231
$$\tau:\Spec R[[q]] \ra X.$$
232
Formal completion of $X$ at $\bifR$ is $(\Spec R)[[q]]$.
233
\end{bulletlist}
234
235
236
\Page{Proof (continued)}
237
{\bf To show:} Image of $H^0(\cA,\Omega_{\cA})$ saturated.
238
Then $c_A\in R^*$ since $S_2(N,R)[I]\subset R[[q]]$ is saturated.
239
240
Consider
241
$$\xymatrix{
242
0\ar[r]& H^0(\cA,\Omega_{\cA})\ar[rr]^{\quad\qexp}
243
&&R[[q]]\ar[r]&D\ar[r]&0.}$$
244
Is $D$ torsion free? Let $\ell\nmid 2m$ be a prime; tensor with $\Fl$:
245
$$\xymatrix{
246
&{\Tor^1(D,\Fl)}\[email protected]{=}[d]\\
247
0\ar[r]&D[\ell]\ar[r]&H^0(\cA,\Omega_{\cA})\tensor\Fl\ar[r]&
248
{\Fl[[q]]}\ar[r]&D\tensor\Fl\ar[r]&0}$$
249
Thus
250
$$D[\ell]=0 \iff
251
H^0(\cA,\Omega_{\cA})\tensor\Fl\ra\Fl[[q]]\text{ injective}$$
252
Since $\ell\nmid 2m$, we have $e(\Ql)=1<\ell-1$, so [Mazur, Cor.~1.1]
253
gives an exact sequence
254
$$
255
0\ra H^0(\cA/\Zl,\Omega_{\cA/\Zl})\ra
256
H^0(\cJ/\Zl,\Omega_{\cJ/\Zl})\ra
257
H^0(\cB/\Zl,\Omega_{\cB/\Zl})\ra 0.$$
258
Here $B=\ker(\pi:J\ra A)$.
259
Since $H^0(\cB/\Zl,\Omega_{\cB/\Zl})$ is torsion free,
260
$$\xymatrix{
261
*+++{H^0(\cA/\Zl,\Omega_{\cA/\Zl})\tensor\Fl}
262
\[email protected]{^(->}[r]&
263
{H^0(\cJ/\Zl,\Omega_{\cJ/\Zl})\tensor\Fl}}$$
264
Fact (see e.g., pg 183 of Eisenbud's book):
265
$\Zl/R$ is flat.\\
266
``Cohomology commutes with flat base change'':
267
$$H^0(\cA,\Omega_{\cA})\tensor\Zl \isom H^0(\cA/\Zl,\Omega_{\cA/\Zl})$$
268
269
270
\Page{Proof (continued)}
271
$$\xymatrix{
272
*+++{H^0(\cA,\Omega_{\cA})\tensor\Fl}
273
\[email protected]{^(->}[rrr]\ar[dddrrr]_{\txt{injective?}\quad}&&&
274
H^0(\cJ,\Omega_{\cJ})\tensor\Fl\ar[d]^{\isom}\\
275
&&&
276
H^0(X,\Omega_{X})\tensor\Fl\ar[d]^{\isom}\\
277
&&&
278
H^0(X_{\Fl},\Omega_{X_{\Fl}})\ar[d]^{\qexp}\\
279
&&&
280
{\Fl[[q]].}
281
}$$
282
The isomorphism
283
$H^0(X,\Omega_{X})\tensor\Fl\isom
284
H^0(X_{\Fl},\Omega_{X_{\Fl}})$
285
uses cohomological trickery and that $k=2$, $N\geq 5$.
286
287
If $\ell\nmid N$, then $\qexp$ is injective
288
(see Deligne-Rapoport, Theorem 3.9).
289
Thus $H^0(\cA,\Omega_{\cA})\tensor\Fl \hookrightarrow \Fl[[q]]$,
290
so $D[\ell]=0$, as required.
291
292
293
If $\ell\mid N$ then $\qexp$ is not necessarily injective.
294
However, $\ell$ exactly divides $N$. Deligne-Rapoport model
295
of $X_{\Fl}$:
296
297
298
\vspace{2ex}
299
\setlength{\unitlength}{0.00043333in}
300
\begingroup\makeatletter\ifx\SetFigFont\undefined%
301
\gdef\SetFigFont#1#2#3#4#5{%
302
\[email protected]\fontsize{#1}{#2pt}%
303
\fontfamily{#3}\fontseries{#4}\fontshape{#5}%
304
\selectfont}%
305
\fi\endgroup%
306
{\renewcommand{\dashlinestretch}{30}
307
\begin{picture}(15000,1204)(-2800,10)
308
\put(-2000,0){$X_0(N/\ell)$}
309
\put(-2000,1000){$X_0(N/\ell)$}
310
\put(3000,1200){$\pmb{\infty}$}
311
\put(3200,850){$\bullet$}
312
\put(3200,-600){$\pmb{0}$}
313
\put(3200,-100){$\bullet$}
314
\drawline(12,127)(15,128)(20,131)
315
(30,137)(46,145)(66,155)
316
(90,168)(118,183)(148,199)
317
(179,216)(210,234)(241,251)
318
(270,267)(297,283)(323,299)
319
(347,314)(370,328)(392,343)
320
(413,357)(434,372)(454,387)
321
(475,402)(493,417)(512,432)
322
(531,447)(551,464)(571,481)
323
(592,498)(613,516)(635,535)
324
(657,554)(679,574)(702,593)
325
(724,613)(747,632)(770,652)
326
(792,671)(814,689)(836,707)
327
(857,725)(878,742)(898,758)
328
(918,773)(937,787)(956,801)
329
(975,814)(995,828)(1015,841)
330
(1036,854)(1056,866)(1078,878)
331
(1099,889)(1121,900)(1144,910)
332
(1166,919)(1189,928)(1212,936)
333
(1235,944)(1258,951)(1280,956)
334
(1303,962)(1325,966)(1346,969)
335
(1368,972)(1388,974)(1409,976)
336
(1429,977)(1450,977)(1470,977)
337
(1491,976)(1512,974)(1533,972)
338
(1555,970)(1578,967)(1601,963)
339
(1625,958)(1648,953)(1672,948)
340
(1696,942)(1720,935)(1743,928)
341
(1766,920)(1788,913)(1810,905)
342
(1831,896)(1851,888)(1870,879)
343
(1889,870)(1907,861)(1925,852)
344
(1943,841)(1962,831)(1980,819)
345
(1998,807)(2016,794)(2035,781)
346
(2053,767)(2071,752)(2089,737)
347
(2107,722)(2124,706)(2142,690)
348
(2158,674)(2174,658)(2190,642)
349
(2205,626)(2220,611)(2234,595)
350
(2248,580)(2262,564)(2276,549)
351
(2290,533)(2304,517)(2318,500)
352
(2333,483)(2349,465)(2365,447)
353
(2381,429)(2397,411)(2414,393)
354
(2430,375)(2447,357)(2464,340)
355
(2480,324)(2496,308)(2512,293)
356
(2528,278)(2544,265)(2559,252)
357
(2575,239)(2590,228)(2606,216)
358
(2622,205)(2639,194)(2657,184)
359
(2675,173)(2694,163)(2713,153)
360
(2733,143)(2753,134)(2773,125)
361
(2794,117)(2814,109)(2834,101)
362
(2854,94)(2873,87)(2893,81)
363
(2912,75)(2931,70)(2950,64)
364
(2969,59)(2988,54)(3008,50)
365
(3028,45)(3050,40)(3072,36)
366
(3094,32)(3118,28)(3141,25)
367
(3165,21)(3190,19)(3214,16)
368
(3238,14)(3262,13)(3286,12)
369
(3309,12)(3332,12)(3355,12)
370
(3377,13)(3400,14)(3420,16)
371
(3441,18)(3462,21)(3483,24)
372
(3505,28)(3528,32)(3551,36)
373
(3575,41)(3598,47)(3622,53)
374
(3646,59)(3670,65)(3693,72)
375
(3716,79)(3738,87)(3760,94)
376
(3781,101)(3801,109)(3820,116)
377
(3839,124)(3857,132)(3875,139)
378
(3893,148)(3912,157)(3930,167)
379
(3948,176)(3967,187)(3985,197)
380
(4004,208)(4023,220)(4041,232)
381
(4060,245)(4079,257)(4097,270)
382
(4116,284)(4134,297)(4151,310)
383
(4169,323)(4186,337)(4203,350)
384
(4220,363)(4237,377)(4253,390)
385
(4269,403)(4286,416)(4303,430)
386
(4320,445)(4339,459)(4357,475)
387
(4377,491)(4396,507)(4416,523)
388
(4435,540)(4455,556)(4474,572)
389
(4493,588)(4512,604)(4530,620)
390
(4547,634)(4564,649)(4580,663)
391
(4595,676)(4610,689)(4625,702)
392
(4641,717)(4658,732)(4674,747)
393
(4691,762)(4707,776)(4723,791)
394
(4740,806)(4756,820)(4773,834)
395
(4789,848)(4805,862)(4821,874)
396
(4837,887)(4852,898)(4867,909)
397
(4882,920)(4897,930)(4912,939)
398
(4928,949)(4944,958)(4961,968)
399
(4978,977)(4997,986)(5016,995)
400
(5036,1004)(5057,1012)(5078,1020)
401
(5099,1028)(5121,1035)(5142,1041)
402
(5163,1047)(5184,1052)(5204,1056)
403
(5224,1059)(5243,1062)(5262,1064)
404
(5281,1066)(5301,1067)(5320,1067)
405
(5341,1067)(5362,1066)(5384,1064)
406
(5406,1061)(5428,1057)(5451,1052)
407
(5474,1047)(5497,1041)(5520,1034)
408
(5543,1026)(5565,1017)(5586,1008)
409
(5608,998)(5629,988)(5650,977)
410
(5667,967)(5684,957)(5702,946)
411
(5721,934)(5740,922)(5759,909)
412
(5779,895)(5800,880)(5821,865)
413
(5842,849)(5864,833)(5885,816)
414
(5907,799)(5928,782)(5949,765)
415
(5970,749)(5990,732)(6010,716)
416
(6030,699)(6049,683)(6068,668)
417
(6087,652)(6106,636)(6125,621)
418
(6144,605)(6164,588)(6184,572)
419
(6204,555)(6225,538)(6246,521)
420
(6268,504)(6290,487)(6312,470)
421
(6334,453)(6356,436)(6378,420)
422
(6399,405)(6420,390)(6440,376)
423
(6460,362)(6480,350)(6499,337)
424
(6518,326)(6537,314)(6558,303)
425
(6579,291)(6600,280)(6622,270)
426
(6644,259)(6667,249)(6690,240)
427
(6714,231)(6738,222)(6762,214)
428
(6786,207)(6810,200)(6834,195)
429
(6857,190)(6880,186)(6902,183)
430
(6924,180)(6945,178)(6966,177)
431
(6987,177)(7008,177)(7029,178)
432
(7050,180)(7071,183)(7094,186)
433
(7116,190)(7139,195)(7163,200)
434
(7187,207)(7210,214)(7234,222)
435
(7257,231)(7280,240)(7303,249)
436
(7324,259)(7346,270)(7366,280)
437
(7386,291)(7405,303)(7425,314)
438
(7442,326)(7459,337)(7476,350)
439
(7494,363)(7512,376)(7530,391)
440
(7549,406)(7568,422)(7588,438)
441
(7608,456)(7628,473)(7648,491)
442
(7669,510)(7689,528)(7709,547)
443
(7730,566)(7750,584)(7770,603)
444
(7790,621)(7809,640)(7829,658)
445
(7850,677)(7867,693)(7885,709)
446
(7903,726)(7922,743)(7941,760)
447
(7961,778)(7982,796)(8003,814)
448
(8025,832)(8047,851)(8069,869)
449
(8092,888)(8115,906)(8139,924)
450
(8162,941)(8185,958)(8208,975)
451
(8231,991)(8253,1006)(8275,1020)
452
(8297,1034)(8318,1047)(8339,1058)
453
(8359,1070)(8380,1080)(8400,1089)
454
(8423,1100)(8446,1109)(8470,1118)
455
(8495,1126)(8520,1133)(8547,1139)
456
(8575,1144)(8605,1149)(8637,1154)
457
(8671,1158)(8706,1162)(8742,1165)
458
(8778,1168)(8813,1171)(8846,1173)
459
(8874,1174)(8898,1175)(8916,1176)
460
(8927,1177)(8934,1177)(8937,1177)
461
\drawline(12,1027)(15,1026)(21,1023)
462
(32,1018)(48,1011)(68,1002)
463
(93,991)(119,978)(147,965)
464
(175,951)(203,937)(229,923)
465
(253,910)(275,897)(296,884)
466
(316,871)(335,858)(352,844)
467
(370,830)(387,814)(401,801)
468
(416,787)(431,773)(446,758)
469
(461,742)(477,725)(493,707)
470
(510,689)(527,670)(545,651)
471
(563,631)(581,611)(600,591)
472
(619,571)(638,551)(657,531)
473
(676,512)(696,493)(715,474)
474
(734,456)(753,439)(773,422)
475
(792,405)(812,389)(831,375)
476
(850,361)(870,347)(890,333)
477
(912,319)(934,306)(957,292)
478
(980,279)(1005,265)(1030,253)
479
(1055,240)(1082,228)(1108,216)
480
(1135,204)(1162,194)(1189,183)
481
(1216,174)(1243,165)(1270,156)
482
(1296,148)(1323,141)(1348,135)
483
(1374,129)(1399,123)(1424,119)
484
(1450,114)(1475,111)(1500,108)
485
(1526,105)(1552,102)(1579,101)
486
(1606,99)(1634,99)(1662,98)
487
(1691,99)(1719,99)(1749,101)
488
(1778,103)(1807,105)(1836,108)
489
(1864,112)(1893,115)(1920,120)
490
(1947,125)(1974,130)(1999,136)
491
(2024,142)(2048,148)(2071,155)
492
(2094,162)(2116,169)(2137,177)
493
(2162,187)(2186,197)(2210,208)
494
(2235,220)(2259,232)(2283,245)
495
(2307,259)(2331,273)(2355,288)
496
(2378,304)(2402,320)(2424,336)
497
(2446,352)(2468,368)(2488,384)
498
(2508,400)(2527,416)(2546,431)
499
(2563,446)(2580,461)(2596,475)
500
(2612,489)(2629,505)(2646,520)
501
(2663,536)(2680,552)(2698,568)
502
(2715,584)(2733,600)(2752,617)
503
(2770,634)(2789,650)(2808,667)
504
(2826,683)(2845,699)(2864,715)
505
(2882,731)(2901,746)(2919,760)
506
(2937,774)(2956,788)(2975,802)
507
(2992,815)(3010,827)(3029,840)
508
(3048,853)(3069,866)(3090,878)
509
(3112,891)(3135,904)(3159,917)
510
(3183,930)(3208,942)(3234,953)
511
(3259,964)(3285,974)(3311,984)
512
(3336,993)(3362,1001)(3387,1008)
513
(3412,1014)(3437,1019)(3462,1023)
514
(3487,1027)(3510,1030)(3534,1031)
515
(3557,1032)(3582,1033)(3607,1033)
516
(3633,1032)(3659,1030)(3686,1027)
517
(3714,1024)(3742,1020)(3770,1015)
518
(3798,1010)(3826,1003)(3854,997)
519
(3881,989)(3908,981)(3934,973)
520
(3960,964)(3985,954)(4009,945)
521
(4033,935)(4056,924)(4078,913)
522
(4100,902)(4121,890)(4142,878)
523
(4163,865)(4184,852)(4205,838)
524
(4227,823)(4248,808)(4270,792)
525
(4291,775)(4313,758)(4334,741)
526
(4355,724)(4376,706)(4396,688)
527
(4417,671)(4436,653)(4455,636)
528
(4474,619)(4492,603)(4509,587)
529
(4526,571)(4543,556)(4559,541)
530
(4575,527)(4592,511)(4609,496)
531
(4626,481)(4644,466)(4662,450)
532
(4680,435)(4699,419)(4718,404)
533
(4737,389)(4757,374)(4776,359)
534
(4796,344)(4816,330)(4836,317)
535
(4855,304)(4874,291)(4894,279)
536
(4912,268)(4931,257)(4950,246)
537
(4968,237)(4987,227)(5006,218)
538
(5025,209)(5045,200)(5066,191)
539
(5087,183)(5109,175)(5132,167)
540
(5156,160)(5180,153)(5205,147)
541
(5230,141)(5255,136)(5280,131)
542
(5306,128)(5331,125)(5356,123)
543
(5381,121)(5405,121)(5429,121)
544
(5453,122)(5476,124)(5500,127)
545
(5521,130)(5543,134)(5565,139)
546
(5588,144)(5611,150)(5634,157)
547
(5658,165)(5682,174)(5707,183)
548
(5731,193)(5756,203)(5780,214)
549
(5804,226)(5828,238)(5851,250)
550
(5874,262)(5895,275)(5916,288)
551
(5937,300)(5956,313)(5974,326)
552
(5992,339)(6008,352)(6025,364)
553
(6043,380)(6061,396)(6078,412)
554
(6096,429)(6112,447)(6129,465)
555
(6145,483)(6161,502)(6177,522)
556
(6193,541)(6208,561)(6222,581)
557
(6236,600)(6250,619)(6263,638)
558
(6276,657)(6288,675)(6301,692)
559
(6313,710)(6325,727)(6337,744)
560
(6349,762)(6362,779)(6375,797)
561
(6389,815)(6404,834)(6419,852)
562
(6435,871)(6451,889)(6467,908)
563
(6484,925)(6501,943)(6518,959)
564
(6535,975)(6552,990)(6569,1004)
565
(6586,1018)(6603,1030)(6620,1041)
566
(6637,1052)(6653,1061)(6669,1070)
567
(6686,1078)(6703,1085)(6721,1092)
568
(6740,1099)(6760,1104)(6780,1109)
569
(6801,1113)(6822,1116)(6844,1119)
570
(6866,1120)(6888,1120)(6911,1120)
571
(6933,1118)(6956,1115)(6978,1111)
572
(7000,1106)(7022,1100)(7044,1094)
573
(7065,1086)(7087,1077)(7106,1069)
574
(7125,1060)(7144,1049)(7164,1039)
575
(7184,1027)(7205,1014)(7227,1000)
576
(7249,986)(7272,971)(7295,955)
577
(7319,938)(7343,921)(7367,903)
578
(7392,885)(7416,866)(7441,848)
579
(7465,829)(7490,810)(7514,792)
580
(7537,773)(7561,755)(7584,737)
581
(7607,720)(7630,703)(7652,685)
582
(7675,669)(7697,652)(7720,635)
583
(7743,619)(7767,602)(7791,585)
584
(7815,568)(7840,551)(7866,534)
585
(7892,517)(7918,500)(7944,483)
586
(7971,466)(7998,449)(8024,433)
587
(8051,417)(8077,402)(8103,387)
588
(8128,373)(8153,359)(8178,346)
589
(8201,334)(8225,322)(8247,311)
590
(8269,301)(8291,291)(8312,281)
591
(8337,271)(8362,260)(8387,251)
592
(8412,242)(8439,233)(8466,224)
593
(8495,215)(8526,207)(8559,198)
594
(8593,189)(8629,180)(8666,171)
595
(8702,162)(8737,154)(8770,147)
596
(8799,141)(8823,135)(8840,132)
597
(8852,129)(8859,128)(8862,127)
598
\end{picture}
599
}
600
\vspace{2ex}
601
602
The intersections are supersingular points; the Atkin-Lehner
603
involution~$w_{\ell}$ swaps~$\pmb{0}$ and$\pmb{\infty}$.
604
605
Consider $g\in H^0(\cA,\Omega_{\cA})\tensor\Fl$ such that
606
$\qexp(g)=0$.
607
Then~$g$ vanishes on the component of~$X_{\Fl}$ containing~$\infty$.
608
Since $\cA$ is new and corresponds to a single eigenform,
609
$w_\ell(g) = \pm g$, so $\qexp(w_\ell(g))=0$; hence~$g$
610
vanishes on the other component of $X_{\Fl}$. This forces $g=0$,
611
and hence $D[\ell]=0$.
612
\end{proof}
613
614
615
616
\end{document}
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631