Powered by CoCalc
\\ serrepqdata.gp defines two matrices:
\\ 1. E = a matrix
\\    E[N,i] = [v,f] = ith newform at level N 
\\         v = vector of expressions in x. 
\\             think of x as a root of f.
\\    This should be defined for all 11 <= N < 100 prime
\\    and all N<1000 the product of exactly two primes
\\    both >= 11.
\\ 2. reducible = a matrix
\\    reducible[N,i]= integer divisibile by exactly the primes for which 
\\            the representation associated to the N,i newform is reducible.
\\            This should be defined for the primes p with 11<=p< 100. 
\\            It is 1 (not 0!) if there are no such reducible primes.

E=matrix(1000,30,i,j,0);
reducible=matrix(100,30,i,j,0);
\\ This is probably NOT complete, there may be other primes for
\\ which rho is reducible.
\\   The numbers there now are just got from looking at torsion points
\\   on elliptic curves. 
reducible[11,1]=5;
reducible[17,1]=2;
reducible[19,1]=3;
reducible[23,1]=1;  
reducible[29,1]=1;
reducible[31,1]=1;
reducible[37,1]=1;
reducible[37,2]=3;
reducible[41,1]=1;
reducible[43,1]=1;
reducible[43,2]=1;
reducible[47,1]=1;
reducible[53,1]=1;
reducible[53,2]=1;
reducible[59,1]=1;
reducible[61,1]=1;
reducible[61,2]=1;
reducible[67,1]=1;
reducible[67,2]=1;
reducible[67,3]=1;
reducible[71,1]=1;
reducible[71,2]=1;
reducible[73,1]=2;
reducible[73,2]=1;
reducible[73,3]=1;
reducible[79,1]=1;
reducible[79,2]=1;
reducible[83,1]=1;
reducible[83,2]=1;
reducible[89,1]=1;
reducible[89,2]=2;
reducible[89,3]=1;
reducible[97,1]=1;
reducible[97,2]=1;


\\ the prime levels < 100
E[11,1]=[[-2,-1,1,-2,1,4,-2,0,-1,0,7,3,-8,-6,8,-6,5,12,-7,-3,4,-10,-6,15,-7], x-1];
E[17,1]=[[-1,0,-2,4,0,-2,1,-4,4,6,4,-2,-6,4,0,6,-12,-10,4,-4,-6,12,-4,10,2], x-1];
E[19,1]=[[0,-2,3,-1,3,-4,-3,1,0,6,-4,2,-6,-1,-3,12,-6,-1,-4,6,-7,8,12,12,8], x-1];
E[23,1]=[[x,-2*x-1,2*x,2*x+2,-2*x-4,3,-2*x+2,-2,1,-3,6*x+3,-2*x,-4*x-1,0,-2*x-1,4*x-2,4*x+4,-8*x-2,2*x-4,2*x+11,-4*x+9,-8*x-6,2*x-10,-4*x-8,6*x+14], x^2+x-1];
E[27,1]=[[0,0,0,-1,0,5,0,-7,0,0,-4,11,0,8,0,0,0,-1,5,0,-7,17,0,0,-19], x-1];
E[29,1]=[[x,-x,-1,2*x+2,x+2,2*x+1,-2*x-4,6,-4*x-6,1,-5*x-2,-4,6*x+10,x+6,3*x+4,-6*x-5,4*x+6,2*x,-4*x-4,2*x-4,4,x,-4*x-2,6*x+2,-6*x-10], x^2+2*x-1];
E[31,1]=[[x,-2*x,1,2*x-3,2,-2*x,-2*x+4,-2*x+1,6*x-4,-2*x+6,1,-2,7,2*x-2,4*x-4,-4*x-4,2*x-1,10*x-8,8,-10*x+7,4*x+2,-6*x-2,-8*x-2,6*x+2,-8*x-3], x^2-x-1];
E[32,1]=[[0,0,-2,0,0,6,2,0,0,-10,0,-2,10,0,0,14,0,-10,0,0,-6,0,0,10,18], x-1];
E[37,1]=[[-2,-3,-2,-1,-5,-2,0,0,2,6,-4,-1,-9,2,-9,1,8,-8,8,9,-1,4,-15,4,4], x-1];
E[37,2]=[[0,1,0,-1,3,-4,6,2,6,-6,-4,1,-9,8,3,-3,12,8,-4,-15,11,-10,9,6,8], x-1];
E[41,1]=[[x,-1/2*x^2-x+3/2,-x-1,1/2*x^2+x+1/2,3/2*x^2+x-9/2,-x^2+3,-2,-3/2*x^2-x+13/2,-2*x^2-2*x+8,x^2+2*x-5,2*x+6,-3*x-3,1,x^2-5,3/2*x^2-3*x-13/2,x^2+2*x-1,-2*x^2-2*x+4,-x^2+2*x+5,-3/2*x^2-x+9/2,-3/2*x^2+x+25/2,4*x^2+x-15,1/2*x^2-x+17/2,2*x^2+4*x-6,-4*x^2-2*x+12,-2*x^2-4*x+8], x^3+x^2-5*x-1];
E[43,1]=[[-2,-2,-4,0,3,-5,-3,-2,-1,-6,-1,0,5,-1,4,-5,-12,2,-3,2,2,-8,15,-4,7], x-1];
E[43,2]=[[x,-x,-x+2,x-2,2*x-1,2*x+1,2*x+5,-2*x-2,-4*x+1,3*x,-3,-6*x,-2*x-1,1,6,-2*x+11,2*x-2,3*x+4,6*x+1,-2*x-6,3*x-12,-2*x+2,4*x+9,-3*x-6,-2*x-1], x^2-2];
E[47,1]=[[x,x^3-x^2-6*x+4,-4*x^3+2*x^2+20*x-10,3*x^3-x^2-16*x+7,2*x^3-2*x^2-10*x+6,-4*x^3+2*x^2+22*x-8,x^3+x^2-6*x,-2*x^3+10*x-2,-2*x^3+12*x-4,-2*x^3+2*x^2+10*x-10,4*x^3-2*x^2-22*x+8,3*x^3-x^2-14*x+8,-2*x+2,-2*x^3+2*x^2+14*x-8,1,5*x^3-3*x^2-30*x+13,7*x^3-x^2-36*x+11,-7*x^3+5*x^2+38*x-23,-12*x^3+6*x^2+60*x-26,7*x^3-3*x^2-34*x+12,-2*x^2-4*x+12,7*x^3-3*x^2-34*x+20,8*x^3-4*x^2-40*x+24,5*x^3+x^2-26*x+1,-9*x^3+7*x^2+46*x-21], x^4-x^3-5*x^2+5*x-1];
E[49,1]=[[1,0,0,0,4,0,0,0,8,2,0,-6,0,-12,0,-10,0,0,4,16,0,8,0,0,0], x-1];
E[53,1]=[[-1,-3,0,-4,0,-3,-3,-5,7,-7,4,5,6,-2,-2,-1,-2,-8,-12,1,-4,-1,-1,-14,1], x-1];
E[53,2]=[[x,-x^2-x+3,x^2-3,x^2-1,x^2+2*x-3,1,2*x-1,x+4,2*x^2-x-4,-3*x^2-4*x+4,-x^2+4*x+3,x^2+6*x-2,-2*x-4,-3*x^2-6*x+11,-2*x^2-4*x,1,4*x^2+2*x-8,3*x^2-2*x-11,3*x^2+6*x-3,-3*x^2-7*x+3,x^2+4*x+1,5*x^2+3*x-13,3*x+10,-4*x^2+4*x+10,5*x^2-12], x^3+x^2-3*x-1];
E[59,1]=[[x,-1/4*x^4+5/4*x^2-1/2*x,3/4*x^4+1/2*x^3-23/4*x^2-3*x+7,-1/2*x^4-1/2*x^3+7/2*x^2+3/2*x-3,-1/2*x^4-x^3+9/2*x^2+6*x-8,-1/2*x^4-x^3+9/2*x^2+6*x-6,x^4-8*x^2+9,3/4*x^4+3/2*x^3-23/4*x^2-8*x+9,-1/2*x^4+9/2*x^2+x-8,-x^4-1/2*x^3+8*x^2+1/2*x-7,x^4+x^3-9*x^2-3*x+14,-x^4+7*x^2-2,1/4*x^4+x^3-13/4*x^2-17/2*x+6,-x^3+5*x-2,-2*x-4,1/4*x^4+x^3-13/4*x^2-9/2*x+6,1,1/2*x^4+x^3-9/2*x^2-2*x+12,-1/2*x^4-2*x^3+13/2*x^2+11*x-16,-x^4-2*x^3+8*x^2+10*x-11,1/2*x^4+2*x^3-5/2*x^2-9*x,7/4*x^4+2*x^3-51/4*x^2-21/2*x+16,1/2*x^4+3*x^3-5/2*x^2-16*x+4,-3/2*x^4-x^3+19/2*x^2+4*x-4,-3/2*x^4-2*x^3+27/2*x^2+11*x-26], x^5-9*x^3+2*x^2+16*x-8];
E[61,1]=[[-1,-2,-3,1,-5,1,4,-4,-9,-6,0,8,5,-8,4,6,9,-1,-7,-8,-11,3,4,-4,-14], x-1];
E[61,2]=[[x,-x^2+3,x^2-2*x-2,x^2-x-3,x+4,-2*x^2+2*x+1,-x^2+2*x+1,3*x^2-7,-x+2,-x^2+2*x+3,-x^2-4*x+3,3*x^2-9,4*x^2-4*x-7,-x^2+2*x-3,-4*x^2+6*x+6,-2*x,-x^2-3*x+13,1,-x^2-5*x+7,x^2+4*x+1,3*x^2-4*x-6,-4*x^2-x+14,4*x^2-12,4*x^2-2*x-10,-4*x^2+8*x+10], x^3-x^2-3*x+1];
E[67,1]=[[2,-2,2,-2,-4,2,3,7,9,-5,-10,-1,0,-2,-1,10,9,-2,1,0,-7,-8,4,7,0], x-1];
E[67,2]=[[x,x+1,-2*x+1,-x,1,x,-2*x+2,x-5,4*x+1,4*x+7,6*x+3,x+2,5*x+5,-5*x-7,-x-4,6*x+3,-6,-3*x-6,1,-14*x-7,8,-7*x-9,-3*x+5,6*x-5,6*x+3], x^2+x-1];
E[67,3]=[[x,-x-3,-3,3*x+4,-2*x-3,-3*x-8,-2*x-6,3*x+5,-4*x-3,4*x+3,-1,3*x+4,-x-3,-3*x-3,x-6,-9,6,9*x+10,-1,2*x+9,-4,-9*x-17,7*x+3,2*x+3,-12*x-17], x^2+3*x+1];
E[71,1]=[[x,-x^2+3,-x-1,2*x^2+2*x-6,-2*x^2-2*x+6,4,2*x^2+2*x-6,-x^2-x+7,2*x^2-4,x^2+2*x-5,-2*x-2,-3*x^2-x+13,2*x^2+2*x-2,-2*x^2-3*x+1,2*x^2-10,-2*x,2*x^2+2*x-14,-4*x^2-6*x+16,4*x-4,1,x+1,-2*x^2-7*x+9,-x^2-x+11,-5*x^2-2*x+21,-2*x^2-4*x+8], x^3-5*x+3];
E[71,2]=[[x,-x,-x^2+x+5,-2*x,2*x^2-6,-2*x^2+4,2*x^2+2*x-6,x^2+2*x-2,-4,-2*x^2+x+10,4,-x^2-2,-4*x-2,-x^2-x+7,2*x^2+2*x-4,-4*x^2+6,2*x^2-2*x-8,-4*x+4,-2*x^2+2,1,x^2+3*x+7,-x^2+3*x+3,x^2-2*x-10,-2*x^2-x+6,2*x+8], x^3+x^2-4*x-3];
E[73,1]=[[1,0,2,2,-2,-6,2,8,4,2,-2,-6,6,-2,6,10,-6,-14,8,0,1,-4,-14,-6,-10], x-1];
E[73,2]=[[x,-x+1,-x,-1,x+3,x-1,2*x-3,-7,x+6,-4*x+3,2*x+2,-2*x+5,-6,-4*x+5,9,4*x-3,0,-x-4,-6*x+5,-3*x+3,1,3*x-1,-5*x+6,6*x+3,-3*x-1], x^2-x-3];
E[73,3]=[[x,-x-3,x,-3,-x-3,3*x+5,-6*x-9,1,x-6,-4*x-3,6*x+10,-6*x-11,4*x+6,-1,-4*x-9,8*x+15,4*x,3*x+8,6*x+17,x-9,-1,3*x-5,-3*x-6,-2*x+3,-3*x-9], x^2+3*x+1];
E[79,1]=[[-1,-1,-3,-1,-2,3,-6,4,2,-6,-10,-2,-10,4,7,8,-3,-4,8,15,2,-1,-6,-7,-19], x-1];
E[79,2]=[[x,-x^4+x^3+3*x^2-3*x+1,x^4-4*x^2-x+3,x^4-x^3-5*x^2+3*x+3,-x^4-2*x^3+6*x^2+7*x-6,x^3+x^2-2*x-3,-2*x^3+6*x+2,-3*x^3+3*x^2+10*x-8,2*x^4+x^3-9*x^2-4*x+6,2*x^3-2*x^2-4*x+6,-x^4+2*x^3+6*x^2-5*x-6,2*x^4-2*x^3-10*x^2+4*x+8,2*x^3-6*x+6,-2*x^4+2*x^3+8*x^2-6*x-6,x^4-5*x^3-5*x^2+17*x+5,-4*x^4+16*x^2+2*x-6,x^4+x^3-5*x^2-7*x+5,-2*x^4+4*x^3+2*x^2-14*x+10,3*x^3-3*x^2-14*x+4,x^4+x^3-x^2-3*x-5,-x^3-x^2+2*x,1,2*x^4+2*x^3-10*x^2-6*x+2,-2*x^4-x^3+11*x^2+4*x-1,x^4-6*x^3+2*x^2+19*x-13], x^5-6*x^3+8*x-1];
E[83,1]=[[-1,-1,-2,-3,3,-6,5,2,-4,-7,5,-11,-2,-8,0,6,5,5,-2,2,0,14,-1,0,-8], x-1];
E[83,2]=[[x,1/2*x^4-1/2*x^3-7/2*x^2+3/2*x+4,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-8*x-2,3/4*x^5-1/4*x^4-25/4*x^3+3/4*x^2+19/2*x,-1/4*x^5+1/4*x^4+5/4*x^3+1/4*x^2-4,x^3-5*x+2,1/4*x^5-3/4*x^4-7/4*x^3+17/4*x^2+7/2*x-4,3/2*x^5-1/2*x^4-23/2*x^3-1/2*x^2+16*x+4,-x^5+7*x^3+3*x^2-8*x-7,3/2*x^5-12*x^3-4*x^2+39/2*x+8,-3/4*x^5+3/4*x^4+23/4*x^3-21/4*x^2-8*x+8,-3/4*x^5+3/4*x^4+19/4*x^3-13/4*x^2-3*x+8,-x^5+9*x^3+x^2-16*x-1,1/2*x^5-1/2*x^4-9/2*x^3+3/2*x^2+10*x,-1/2*x^5+3/2*x^4+9/2*x^3-21/2*x^2-10*x+10,x^5-8*x^3+9*x,-5/4*x^5-1/4*x^4+39/4*x^3+11/4*x^2-29/2*x-4,3/2*x^5+2*x^4-14*x^3-16*x^2+55/2*x+16,-2*x^5-x^4+17*x^3+13*x^2-29*x-18,1/2*x^5+1/2*x^4-11/2*x^3-3/2*x^2+13*x-8,-1/2*x^5+5/2*x^4+7/2*x^3-31/2*x^2-5*x+12,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-10*x-4,1,-x^5-x^4+9*x^3+9*x^2-20*x-14,2*x^4-2*x^3-16*x^2+10*x+22], x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8];
E[89,1]=[[-1,-1,-1,-4,-2,2,3,-5,7,0,-9,-2,0,-7,-12,-3,4,6,12,-10,7,-6,12,-1,9], x-1];
E[89,2]=[[1,2,-2,2,-4,2,6,-2,2,-6,6,10,-6,2,12,-6,-10,-6,12,4,10,-12,-6,1,-18], x-1];
E[89,3]=[[x,-1/2*x^4+1/2*x^3+7/2*x^2-5/2*x-4,-x^2+4,1/2*x^4-4*x^2-x+13/2,-x^3+5*x+2,-x^4+x^3+8*x^2-5*x-11,x^4-x^3-7*x^2+4*x+4,1/2*x^3-1/2*x^2-3/2*x+9/2,x^4-3/2*x^3-13/2*x^2+17/2*x+11/2,-x^4+9*x^2-14,1/2*x^4-3/2*x^3-7/2*x^2+15/2*x+8,x^4-2*x^3-8*x^2+10*x+9,-x^4+x^3+8*x^2-3*x-11,-3/2*x^3+1/2*x^2+17/2*x-1/2,x^3-7*x-2,-x^4+7*x^2+x-8,1/2*x^4+x^3-3*x^2-8*x-1/2,-x^2+5,-x^4+9*x^2-2*x-14,-2*x^4+4*x^3+16*x^2-20*x-24,x^4-7*x^2+1,-x^4+2*x^3+8*x^2-10*x-1,1/2*x^4-4*x^2-3*x+1/2,1,-x^3-x^2+2*x+7], x^5+x^4-10*x^3-10*x^2+21*x+17];
E[97,1]=[[x,-x^2-3*x-2,2*x^2+5*x-1,-x^2-3*x-3,x-1,-x-2,x^2+4*x+1,-4*x^2-6*x+7,-3*x-8,-4*x^2-14*x-5,x^2-6,6*x^2+17*x+2,x^2+x-1,3*x^2+8*x+1,4*x^2+12*x-3,-2*x^2-13*x-10,2*x^2+7*x+9,-5*x^2-8*x+7,3*x^2+13*x+7,3*x^2+11*x-3,-x^2-3*x-1,4*x^2+7*x-8,-8*x-10,-5*x^2-14*x+2,-1], x^3+4*x^2+3*x-1];
E[97,2]=[[x,-x^2+x+2,-x+1,x^3-x^2-4*x+2,-2*x^3+4*x^2+3*x-3,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+3,-x^3+2*x^2+3*x-4,-x^3+4*x^2-1,x^3-2*x^2+x+2,3*x^3-7*x^2-3*x+7,-3*x^3+6*x^2+6*x-9,3*x^3-7*x^2-10*x+14,-x^2+5,x^3-4*x^2-x+12,-x^3-2*x^2+8*x+3,-2*x^3+11*x+1,4*x^3-9*x^2-8*x+11,3*x^3-x^2-10*x-6,-x^3-x^2+8*x+4,3*x^3-x^2-10*x-8,-3*x^3+14*x-1,2*x^3-4*x^2+2*x+4,x^3+3*x^2-11*x-11,1], x^4-3*x^3-x^2+6*x-1];





\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


\\ this part is:
\\ 11<=N<=700, N a product of exactly two primes both >=11.
\\ E[N,ith eigenform]=[[a_2,...,a_97],  f(x)]
\\ where the a_i are defined over Q[x]/f(x).
\\ Next 
\\ E[N,ith eigenform]=[[a_2,...,a_29],  f(x)]
\\ where 700<=N<=1000, N a product of exactly two primes both >=11.

E[143,1]=[[x,-x^3+3*x^2-3,-2*x^2+2*x+4,x^3-x^2-4*x+2,1,-1,-4*x^2+6*x+8,-3*x^3+7*x^2+2*x-3,x^3-x^2-2*x-2,-2*x^3+4*x^2+4*x-6,4*x^3-6*x^2-8*x+2,-4*x^2+8*x+8,x^3-3*x^2+4*x+2,-2*x+8,-2*x^3+2*x^2+6*x-4,-x^3+3*x^2-2*x-3,2*x^3-2*x^2-4*x-6,-2*x^3+4*x^2+6*x-8,-4*x^3+4*x^2+14*x,-4*x^3+14*x^2-4*x-18,3*x^3-3*x^2-12*x+7,2*x^3-8*x^2-4*x+12,-x^3+5*x^2-4*x-6,-2*x^3+6*x^2-2*x-2,-6*x^3+20*x^2-18], x^4-3*x^3-x^2+5*x+1];
E[143,2]=[[x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^5+2*x^4-8*x^3-14*x^2+12*x+15,2*x^5+2*x^4-17*x^3-13*x^2+26*x+14,-1,1,-2*x,-2*x^5-3*x^4+16*x^3+20*x^2-23*x-22,-3*x^5-4*x^4+25*x^3+29*x^2-38*x-33,2*x^5+2*x^4-16*x^3-14*x^2+22*x+18,3*x^5+4*x^4-26*x^3-28*x^2+44*x+29,-x^5-2*x^4+8*x^3+16*x^2-10*x-19,2*x^5+2*x^4-17*x^3-11*x^2+26*x+6,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-16,2*x^5+2*x^4-16*x^3-12*x^2+24*x+12,6*x^5+7*x^4-50*x^3-48*x^2+75*x+54,-5*x^5-6*x^4+42*x^3+38*x^2-66*x-33,4*x^5+6*x^4-32*x^3-42*x^2+44*x+50,x^5+2*x^4-8*x^3-16*x^2+12*x+23,-3*x^5-4*x^4+26*x^3+28*x^2-40*x-33,-x^4+8*x^2+x-4,2*x^5+2*x^4-16*x^3-14*x^2+22*x+20,2*x^4+x^3-15*x^2-6*x+12,x^5+2*x^4-10*x^3-14*x^2+20*x+9,-5*x^5-6*x^4+42*x^3+40*x^2-66*x-37], x^6-10*x^4+2*x^3+24*x^2-7*x-12];
E[143,3]=[[0,-1,-1,-2,-1,-1,-4,2,7,-2,-3,-11,10,-4,-4,2,-1,-2,-1,-9,-16,8,0,-7,-13], x-1];
E[187,1]=[[0,1,3,2,1,2,-1,2,-3,-6,-7,-7,12,-10,0,6,-3,8,-7,-9,2,8,6,15,11], x-1];
E[187,2]=[[2,x,-x,-x+1,1,0,-1,2*x-2,3*x+2,-x+7,x,-x+2,3*x-1,2,3*x-1,-x+5,-3,-2*x-6,-2*x-1,-3*x+2,3*x+7,6*x,-4*x-2,-6*x+1,-3*x-10], x^2+x-4];
E[187,3]=[[-x-1,x,-x-2,-2,1,x-5,1,-3*x-1,-x-2,x-3,-x+4,-x-2,2*x+6,-2,4*x-6,2*x-6,3,4*x-4,1,-x+2,-3*x+9,3*x-3,8*x+2,-4*x-5,x+14], x^2-3];
E[187,4]=[[-x^2-x+2,x,x^2+x-5,-2*x-2,-1,-3*x^2-3*x+8,-1,3*x^2+5*x-4,x-4,2*x^2+3*x-9,-3*x^2-5*x+3,2*x^2+7*x-4,-2*x-2,4*x^2+8*x-4,-x^2-4*x+5,-3*x^2-4*x-3,-5*x^2-4*x+14,2*x,-2*x^2-6*x-3,-3*x^2-3*x+7,x-3,-2*x^2-x+11,4*x^2+4*x-8,2*x^2-2*x-9,2*x^2+x-12], x^3+3*x^2-x-5];
E[187,5]=[[1/3*x^3-8/3*x+1/3,x,-1/3*x^3+8/3*x+2/3,0,-1,x^2-x-6,1,-2/3*x^3-x^2+13/3*x+16/3,-2/3*x^3+13/3*x+4/3,-1/3*x^3-x^2+8/3*x+26/3,x^3+2*x^2-6*x-16,2/3*x^3-13/3*x+14/3,-2*x+2,2*x^2-2*x-12,1/3*x^3-11/3*x+4/3,1/3*x^3-11/3*x+22/3,2/3*x^3+x^2-22/3*x-4/3,4/3*x^3-32/3*x+10/3,-5/3*x^3-x^2+37/3*x+16/3,-x^3+2*x^2+10*x-8,-5/3*x^3-3*x^2+40/3*x+46/3,x^3-x^2-6*x,8/3*x^3+2*x^2-58/3*x-28/3,7/3*x^3+3*x^2-47/3*x-62/3,-2/3*x^3+25/3*x+10/3], x^4-x^3-11*x^2+9*x+20];
E[187,6]=[[2,0,4,-5,-1,4,1,2,-2,-3,4,-2,-3,-2,3,9,-3,-10,7,2,-3,0,14,1,-10], x-1];
E[209,1]=[[x,-x-1,-1,-x-2,-1,3*x-2,x+2,-1,-3,-3*x-2,-x-5,5*x+3,-4*x+4,-4*x+6,2*x+6,-6*x+4,x-3,-5*x-4,-x-9,-x-11,-6*x+4,x-16,x+2,7*x-5,x+1], x^2-2];
E[209,2]=[[x,1/2*x^4-x^3-5/2*x^2+4*x+1,-1/2*x^3+7/2*x-1,-1/2*x^3+3/2*x+2,1,-1/2*x^4+7/2*x^2-2,x^4-x^3-5*x^2+3*x,-1,-x^4+x^3+8*x^2-5*x-9,3/2*x^4-x^3-17/2*x^2+2*x+6,-1/2*x^4+2*x^3+5/2*x^2-10*x+1,x^4-8*x^2+9,-5/2*x^4+3*x^3+27/2*x^2-13*x-4,-x^4+5/2*x^3+4*x^2-15/2*x+4,x^4-9*x^2+8,-x^4-x^3+9*x^2+5*x-14,-x^4-x^3+6*x^2+5*x-1,x^4-x^3-5*x^2+5*x-2,-5/2*x^4+3*x^3+25/2*x^2-9*x-1,-1/2*x^4+3*x^3+1/2*x^2-10*x+7,x^4-4*x^3-7*x^2+22*x+8,x^3-5*x+8,x^4-3/2*x^3-4*x^2+17/2*x-6,x^3-x^2-5*x-3,2*x^4-2*x^3-13*x^2+4*x+15], x^5-2*x^4-6*x^3+10*x^2+5*x-4];
E[209,3]=[[x,-1/2*x^4+7/2*x^2-x-2,1/2*x^5-9/2*x^3+7*x+3,-1/4*x^6+3*x^4-37/4*x^2+13/2,-1,-1/4*x^6-1/2*x^5+5/2*x^4+9/2*x^3-27/4*x^2-9*x+7/2,x^4-x^3-9*x^2+7*x+12,1,1/2*x^6-5*x^4+21/2*x^2+2*x,-1/2*x^4+9/2*x^2-x-9,1/4*x^6+1/2*x^5-5/2*x^4-9/2*x^3+23/4*x^2+9*x+7/2,-x^5-x^4+10*x^3+8*x^2-21*x-13,-1/4*x^6-1/2*x^5+5/2*x^4+7/2*x^3-27/4*x^2-2*x+3/2,-1/2*x^6-1/2*x^5+5*x^4+9/2*x^3-21/2*x^2-9*x-1,x^4-2*x^3-9*x^2+14*x+12,-x^5-x^4+9*x^3+9*x^2-16*x-18,2*x^5+x^4-19*x^3-6*x^2+37*x+9,x^4-x^3-9*x^2+9*x+14,1/4*x^6-1/2*x^5-5/2*x^4+9/2*x^3+15/4*x^2-9*x+7/2,-1/2*x^6-x^5+9/2*x^4+9*x^3-6*x^2-17*x-9,1/2*x^6+x^5-5*x^4-7*x^3+27/2*x^2+6*x-7,x^3-9*x+8,-1/2*x^6+1/2*x^5+7*x^4-11/2*x^3-57/2*x^2+12*x+27,-1/2*x^6-x^5+4*x^4+8*x^3-3/2*x^2-13*x-18,x^5+2*x^4-10*x^3-17*x^2+27*x+23], x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30];
E[209,4]=[[0,1,-3,-4,1,2,0,1,3,-6,-7,-7,0,-10,0,6,3,-10,11,15,8,-16,0,9,-1], x-1];
E[221,1]=[[1,2,2,2,-6,-1,1,4,6,-6,-2,2,-6,0,-4,14,4,2,0,-10,10,14,12,-18,2], x-1];
E[221,2]=[[-1,0,4,-2,6,-1,1,8,4,-6,-2,-8,0,4,0,-6,0,-10,-8,2,0,0,-4,-2,-4], x-1];
E[221,3]=[[x,-x+1,x-1,2,2,-1,1,-2*x+2,-x-3,-6,2*x,-x+5,-x+5,2*x-6,2*x-2,-2*x,2*x-2,2*x+4,4*x,4*x+2,3*x-7,x+7,4*x+4,-2,x-9], x^2-5];
E[221,4]=[[x,x-1,-2*x-1,-x-1,3*x,-1,-1,3*x-2,-2*x+2,2*x-3,-7,4*x+7,-4*x,-11,2*x+2,x-1,-2*x-5,3*x+3,-10*x-6,4*x+10,8*x-1,-4*x-3,-2*x-5,-3*x+6,-9*x-1], x^2+x-1];
E[221,5]=[[x,-x-1,-x^2-x+2,x-3,x^2-5,1,1,-x^2-3,4*x^2+2*x-10,-x^2+x+4,-3*x^2-x+6,x^2-5*x-4,-2*x^2+2*x+6,-3*x^2-x+10,-4*x^2-2*x+10,4*x^2+3*x-7,3*x^2-3*x-6,x-5,-2*x-6,2*x^2-2*x-12,5*x^2+3*x-12,3*x^2-x-16,-x^2+x+10,-x^2+2*x-3,2*x^2+7*x-5], x^3-4*x+1];
E[221,6]=[[x,-1/2*x^5+1/2*x^4+4*x^3-5/2*x^2-13/2*x+1,1/2*x^4-1/2*x^3-3*x^2+3/2*x+3/2,-x^3+5*x+2,-x^2+3,1,-1,x^5-x^4-8*x^3+6*x^2+13*x-1,1/2*x^5+1/2*x^4-4*x^3-7/2*x^2+13/2*x,-x^3+x^2+5*x-3,x^3+x^2-7*x-1,-x^5+1/2*x^4+17/2*x^3-2*x^2-29/2*x+1/2,-x^5+1/2*x^4+19/2*x^3-3*x^2-39/2*x+3/2,-x^4+5*x^2+2*x+2,-2*x^3+2*x^2+12*x-6,x^5-2*x^4-8*x^3+11*x^2+15*x-9,x^5-2*x^4-8*x^3+10*x^2+17*x,x^5-10*x^3-x^2+19*x+5,x^4+x^3-8*x^2-5*x+11,-x^4+x^3+8*x^2-9*x-9,-x^5+3/2*x^4+19/2*x^3-10*x^2-35/2*x+19/2,1/2*x^5+1/2*x^4-5*x^3-5/2*x^2+15/2*x-1,-x^5-x^4+9*x^3+10*x^2-20*x-9,x^5-x^4-6*x^3+4*x^2+5*x+3,-x^5+1/2*x^4+17/2*x^3-5*x^2-25/2*x+19/2], x^6-x^5-9*x^4+6*x^3+19*x^2-5*x-3];
E[221,7]=[[x,x+1,-1,-x-3,x+2,-1,1,-x+2,-2*x+2,9,2*x+5,-2*x-5,0,9,-2*x-2,x-5,-2*x+3,-x+9,-2*x-10,2,-2*x+3,2*x-3,-2*x-1,5*x-2,-5*x+1], x^2+x-5];
E[247,1]=[[x,2*x-2,2*x,-2,2*x-4,1,-4*x+5,-1,-2*x+5,4*x-2,2*x+1,4*x+1,-3,-2*x+5,-8*x+2,-4*x+6,-6*x+3,7,2*x-3,-4*x+4,2*x+8,-6*x-2,14,10,-17], x^2-x-1];
E[247,2]=[[x,-x^2-x+1,-x^2-2*x,2*x^2+3*x-4,x^2-3,1,x^2+4*x-3,1,-x^2-4*x-3,2*x^2+5*x-6,-4*x^2-3*x+8,5*x^2+6*x-7,-3*x^2-5*x+3,-3*x^2-6*x+8,-2*x^2-4*x+3,x^2+5*x-3,4*x^2+x-9,-6*x^2-12*x+2,-6*x^2-6*x+11,-2*x^2-2*x+9,3*x-4,3*x+5,3*x^2+6*x-9,-7*x^2-13*x+3,-8*x^2-12*x+14], x^3+3*x^2-3];
E[247,3]=[[x,-x^2+x+3,x^3-2*x^2-2*x+3,-x^4+2*x^3+3*x^2-4*x-1,x^4-4*x^3+9*x-2,-1,x^3-6*x+2,1,-2*x^4+3*x^3+10*x^2-8*x-10,-3*x^4+6*x^3+11*x^2-14*x-9,x^3-x^2-5*x+1,2*x^4-5*x^3-4*x^2+8*x+2,x^4-3*x^3-3*x^2+6*x+9,3*x^4-8*x^3-8*x^2+23*x-1,-x^4+3*x^3-5*x+7,-2*x^3+3*x^2+7*x-3,x^4-4*x^3+x^2+14*x-6,-x^4+x^3+4*x^2+3*x-6,4*x^4-12*x^3-6*x^2+24*x+1,-x^4+5*x^3-4*x^2-9*x+11,-x^4+2*x^3+5*x^2-8*x+3,-2*x^4+5*x^3+5*x^2-9*x-2,x^4-2*x^3-4*x^2+7*x+2,-6*x^4+14*x^3+21*x^2-37*x-13,-3*x^4+5*x^3+16*x^2-15*x-12], x^5-4*x^4+12*x^2-5*x-5];
E[247,4]=[[x,x^3-5*x,-x^3+4*x+1,-x^3-x^2+5*x+5,-x^2+5,1,x^2+1,-1,x^4-6*x^2-x+4,-x^4+x^3+6*x^2-6*x-4,x^4+x^3-6*x^2-4*x+2,-x^4+6*x^2-x-8,-x^3+2*x^2+7*x-2,x^3-6*x-1,x^4-x^3-4*x^2+5*x-1,2*x^4-x^3-10*x^2+3*x,x^4-7*x^2-2*x+8,x^4-2*x^3-5*x^2+7*x-1,-x^3+x^2+8*x-6,-2*x^4+x^3+9*x^2-2*x,-2*x^4-x^3+11*x^2+7*x-9,x^4-2*x^3-3*x^2+6*x-10,-3*x^4+2*x^3+18*x^2-7*x-16,3*x^3-2*x^2-13*x+2,-2*x^4+14*x^2-2*x-12], x^5-9*x^3-x^2+19*x+4];
E[247,5]=[[x,-x^3-2*x^2+3*x+4,x^3+2*x^2-4*x-7,x^3+x^2-5*x-3,x^2+2*x-3,-1,x^2-7,-1,-3*x^3-6*x^2+14*x+16,2*x^3+2*x^2-9*x-4,2*x^3+6*x^2-7*x-14,-5*x^3-10*x^2+18*x+24,-x^3-2*x^2+3*x-2,x^3-4*x-1,-2*x^3-4*x^2+6*x+3,-5*x^3-8*x^2+17*x+16,3*x^3+7*x^2-13*x-16,-x^3-x^2+6*x+11,5*x^3+7*x^2-16*x-10,-3*x^3-x^2+16*x+4,3*x^3+5*x^2-13*x-17,5*x^3+7*x^2-23*x-18,-x^3-4*x^2-2*x+4,-x^3-2*x^2+3*x-2,-6*x^3-10*x^2+24*x+20], x^4+3*x^3-2*x^2-9*x-4];
E[253,1]=[[x,-x^2+x+3,x^2-2*x,-x^2+x+3,-1,x^2-3*x-1,-x^2+2*x+2,2*x^2-4*x+1,1,-x^2-3*x+6,3*x^2-4*x-5,-3*x^2+6*x-3,-3*x^2+6*x+7,x^2+2*x-5,2*x^2-6*x+2,-2*x^2+5*x+7,-4*x^2+6*x+3,x^2+4*x-9,-6*x^2+14*x+6,6*x^2-5*x-19,5*x-8,-x+4,6*x^2-10*x-1,-2*x^2+11*x+2,-x^2-x+1], x^3-3*x^2+3];
E[253,2]=[[x,-x^2-x+1,x^2+2*x-4,-x^2-3*x+1,1,x^2+x-3,x^2-6,2*x-1,1,x^2+3*x+2,-5*x^2-8*x+11,x^2+2*x-7,5*x^2+6*x-11,-3*x^2-6*x+9,-2*x^2-2*x+2,2*x^2+3*x-3,-2*x-9,x^2-7,-2*x^2-2*x+2,-2*x^2-3*x-1,-4*x^2-7*x+16,7*x+4,-11,-2*x^2+x,-x^2-3*x-9], x^3+x^2-4*x+1];
E[253,3]=[[x,-x^4-3*x^3+3*x^2+10*x+1,2*x^4+5*x^3-8*x^2-18*x-1,-2*x^4-4*x^3+9*x^2+13*x-3,-1,-x^4-3*x^3+3*x^2+10*x-1,-x^3-2*x^2+6*x+5,x^4+3*x^3-2*x^2-11*x-7,-1,2*x^4+4*x^3-7*x^2-11*x-4,-2*x^4-5*x^3+6*x^2+18*x+6,-x^4-4*x^3+2*x^2+17*x+8,-6*x^4-15*x^3+20*x^2+48*x+8,5*x^4+12*x^3-18*x^2-41*x-8,3*x^4+7*x^3-12*x^2-25*x-8,-x^3-x^2+x,-7*x^4-19*x^3+22*x^2+65*x+13,x^4+2*x^3-4*x^2-3*x+6,-4*x^4-10*x^3+12*x^2+30*x+8,3*x^4+10*x^3-7*x^2-40*x-14,2*x^4+7*x^3-5*x^2-25*x-13,-3*x^4-8*x^3+13*x^2+30*x-3,-7*x^4-17*x^3+26*x^2+55*x-5,3*x^4+8*x^3-7*x^2-24*x-9,-2*x^3-x^2+9*x+5], x^5+4*x^4-14*x^2-13*x-1];
E[253,4]=[[x,x^4-x^3-5*x^2+4*x+3,-x^3+4*x+1,-x^5+6*x^3+x^2-6*x-2,1,-2*x^5+3*x^4+11*x^3-15*x^2-6*x+5,2*x^5-4*x^4-9*x^3+20*x^2-2*x-7,4*x^5-5*x^4-21*x^3+22*x^2+11*x-3,-1,-2*x^5+14*x^3+3*x^2-21*x-6,x^5-7*x^3+2*x^2+9*x-7,4*x^5-5*x^4-22*x^3+24*x^2+15*x-8,-5*x^5+6*x^4+29*x^3-28*x^2-25*x+7,-2*x^5+3*x^4+12*x^3-16*x^2-15*x+12,-x^5+x^4+7*x^3-6*x^2-6*x+5,3*x^5-2*x^4-17*x^3+9*x^2+12*x-3,-x^4+x^3+4*x^2-3*x+7,-4*x^5+3*x^4+22*x^3-14*x^2-11*x,-4*x^4+2*x^3+20*x^2-10*x-4,-4*x^5+3*x^4+22*x^3-15*x^2-12*x+10,4*x^5-4*x^4-23*x^3+19*x^2+17*x-7,-x^5-3*x^4+6*x^3+15*x^2-x-8,-x^4+3*x^3+6*x^2-15*x+3,5*x^5-5*x^4-28*x^3+21*x^2+17*x+4,-3*x^5+8*x^4+16*x^3-39*x^2-8*x+14], x^6-3*x^5-4*x^4+16*x^3-3*x^2-10*x+1];
E[299,1]=[[-x-1,x+1,x,-1,-x-3,-1,-3*x-5,-2*x-5,-1,3*x+5,3*x+5,2*x,-2*x+3,3*x+1,-3*x,4*x+3,5,4*x+1,-4*x-5,6*x+9,-x+4,x,9*x+18,6*x+8,6*x-3], x^2+3*x+1];
E[299,2]=[[-x+1,-x+1,x,1,-x+3,1,-x+3,2*x-7,-1,x-7,-x+7,2*x+4,2*x-7,-3*x+9,x,7,-4*x+11,5,5,2*x+3,-x+12,-x,5*x-6,2*x+4,-2*x+3], x^2-3*x-3];
E[299,3]=[[x-1,0,x,-x+2,-x-2,1,2,-x+6,-1,-2*x+6,-2*x+8,x,10,-2*x+8,-4,4*x-2,-2*x+4,-10,x-6,-2*x-8,-2*x-2,4*x,5*x-6,-3*x+4,3*x+8], x^2-2*x-4];
E[299,4]=[[-x-1,-x-1,x,2*x-1,x+1,1,-3*x-3,-4*x-1,1,-3*x-5,-x-7,-2*x-8,6*x-3,-x+3,9*x+2,2*x+9,-1,2*x-9,-6*x-5,-6*x-1,3*x-6,11*x+4,-3*x+2,-6*x+4,1], x^2+x-1];
E[299,5]=[[7325538/647051513*x^9-26382263/1294103026*x^8-529610753/1294103026*x^7+854214131/1294103026*x^6+3111048928/647051513*x^5-8760561717/1294103026*x^4-26566626335/1294103026*x^3+28789537995/1294103026*x^2+13298939618/647051513*x+285982256/647051513,11105665/647051513*x^9-8975947/647051513*x^8-408454909/647051513*x^7+261031726/647051513*x^6+4952890973/647051513*x^5-2339136221/647051513*x^4-23039305101/647051513*x^3+4878757863/647051513*x^2+31977328284/647051513*x+13571719580/647051513,x,8138414/647051513*x^9-381664/647051513*x^8-338063888/647051513*x^7+14284585/647051513*x^6+4791240438/647051513*x^5-289272366/647051513*x^4-26563820741/647051513*x^3-35565023/647051513*x^2+43050679639/647051513*x+19161391516/647051513,4484362/647051513*x^9+7801185/647051513*x^8-239545786/647051513*x^7-150080751/647051513*x^6+4092126821/647051513*x^5-299353465/647051513*x^4-24398516457/647051513*x^3+9009731123/647051513*x^2+30359650107/647051513*x+11549732256/647051513,-1,-21122508/647051513*x^9+17765672/647051513*x^8+813303675/647051513*x^7-567740890/647051513*x^6-10485794070/647051513*x^5+5806555898/647051513*x^4+52141081291/647051513*x^3-15933816984/647051513*x^2-74492005626/647051513*x-29936657158/647051513,-16679710/647051513*x^9+5379568/647051513*x^8+642761641/647051513*x^7-185798839/647051513*x^6-8178006687/647051513*x^5+2444187110/647051513*x^4+38709257322/647051513*x^3-9240749183/647051513*x^2-46079550705/647051513*x-18739707548/647051513,1,1276536/647051513*x^9-17334419/647051513*x^8+37765472/647051513*x^7+433938419/647051513*x^6-1838295928/647051513*x^5-2210788701/647051513*x^4+15344068534/647051513*x^3-3014715375/647051513*x^2-20841564504/647051513*x-6316030514/647051513,-21350925/647051513*x^9+10707996/647051513*x^8+849781009/647051513*x^7-394808643/647051513*x^6-11298848687/647051513*x^5+5148631852/647051513*x^4+56492269481/647051513*x^3-20530556247/647051513*x^2-73149167020/647051513*x-22590535422/647051513,3218540/647051513*x^9+20220368/647051513*x^8-169499079/647051513*x^7-534659512/647051513*x^6+2734106374/647051513*x^5+2946244102/647051513*x^4-14322952806/647051513*x^3+3738434480/647051513*x^2+6621445541/647051513*x-2299916752/647051513,14861662/647051513*x^9-21773485/647051513*x^8-550869862/647051513*x^7+725355582/647051513*x^6+6723215274/647051513*x^5-7761449963/647051513*x^4-30781309146/647051513*x^3+25531444696/647051513*x^2+37919505344/647051513*x+8979131942/647051513,-5283822/647051513*x^9+1317306/647051513*x^8+203757539/647051513*x^7-116855622/647051513*x^6-2504484212/647051513*x^5+2636994486/647051513*x^4+10245403957/647051513*x^3-16462083052/647051513*x^2-2795409452/647051513*x+7618862968/647051513,901969/647051513*x^9+12943391/647051513*x^8-36132561/647051513*x^7-404767993/647051513*x^6+391272697/647051513*x^5+3533374733/647051513*x^4-553033209/647051513*x^3-8456377199/647051513*x^2-7247315266/647051513*x+3611583358/647051513,3358558/647051513*x^9-4276703/647051513*x^8-153682262/647051513*x^7+234091850/647051513*x^6+2240491704/647051513*x^5-4016334219/647051513*x^4-10142825532/647051513*x^3+22277755704/647051513*x^2-2089415256/647051513*x-10477262790/647051513,-17552800/647051513*x^9+44774318/647051513*x^8+610338347/647051513*x^7-1434170475/647051513*x^6-6836480326/647051513*x^5+14092744028/647051513*x^4+28007075487/647051513*x^3-41873815173/647051513*x^2-29782347244/647051513*x-2198739142/647051513,-11106526/647051513*x^9+12994531/647051513*x^8+399609712/647051513*x^7-381557028/647051513*x^6-4665891990/647051513*x^5+3273117101/647051513*x^4+20373211954/647051513*x^3-6407319318/647051513*x^2-26257249656/647051513*x-7394987238/647051513,-10245260/647051513*x^9+1732049/647051513*x^8+441326100/647051513*x^7-133776917/647051513*x^6-6345957714/647051513*x^5+2809495631/647051513*x^4+33452964380/647051513*x^3-15004746871/647051513*x^2-40524787223/647051513*x-15489330972/647051513,16879812/647051513*x^9-23983462/647051513*x^8-638707077/647051513*x^7+694343335/647051513*x^6+8165966868/647051513*x^5-5664784120/647051513*x^4-41581727929/647051513*x^3+8673168015/647051513*x^2+69870168408/647051513*x+32695974658/647051513,24878505/647051513*x^9-30563210/647051513*x^8-955718628/647051513*x^7+1032064746/647051513*x^6+12256118371/647051513*x^5-11228869640/647051513*x^4-59883085336/647051513*x^3+37233555330/647051513*x^2+80434182686/647051513*x+18873554390/647051513,-54878506/647051513*x^9+33027059/647051513*x^8+2096404845/647051513*x^7-1049045272/647051513*x^6-26658639024/647051513*x^5+11166928761/647051513*x^4+129824867595/647051513*x^3-32555788050/647051513*x^2-179108674954/647051513*x-66536449488/647051513,13585690/647051513*x^9+22237505/647051513*x^8-616659291/647051513*x^7-680245723/647051513*x^6+9469215824/647051513*x^5+5752749333/647051513*x^4-55901875141/647051513*x^3-16413500523/647051513*x^2+93591465865/647051513*x+45103175832/647051513,-3194807/647051513*x^9-2481977/647051513*x^8+115713552/647051513*x^7+46710408/647051513*x^6-1261704135/647051513*x^5+457958929/647051513*x^4+3492765697/647051513*x^3-7982500694/647051513*x^2+9284317385/647051513*x+8053164356/647051513,39780870/647051513*x^9-28130822/647051513*x^8-1584437439/647051513*x^7+1104872224/647051513*x^6+21050672066/647051513*x^5-14993323400/647051513*x^4-104297180117/647051513*x^3+64200153406/647051513*x^2+125373910331/647051513*x+26617583164/647051513], x^10-3*x^9-37*x^8+112*x^7+443*x^6-1401*x^5-1817*x^4+6424*x^3+1108*x^2-6140*x-2372];
E[299,6]=[[-x+1,x,x,-2*x+2,x+2,1,-6,x+2,-1,2,4*x-4,2*x+4,-6,-2*x,-8,2*x+6,-8,-2*x+6,-3*x-2,4,-6*x+6,-2*x-8,-3*x-2,-6*x+8,3*x-8], x^2-x-4];
E[299,7]=[[0,-x^2+2*x+4,x,-x^2+2*x+5,x^2-x-3,1,2*x,-x^2+x+5,-1,2*x^2-2*x-6,-4,x^2-4*x-1,2*x^2-6*x-6,2*x^2-6*x-10,-2*x^2+6*x+12,-2*x-6,-2*x-6,4*x^2-8*x-16,-2*x^2+3*x+14,2*x^2-4*x-18,2*x^2-2*x-4,-2*x^2+2*x+14,-4*x^2+5*x+18,x^2+4*x-9,2*x^2-7*x-4], x^3-x^2-7*x-3];
E[319,1]=[[2,-3,1,4,-1,6,4,-2,3,1,-7,-11,4,-4,8,2,-3,2,-15,-7,2,6,-6,9,-17], x-1];
E[319,2]=[[x,-x,-2*x^2+x+2,2*x^2-2*x-5,1,x^2+x-4,-x^2+x-2,x-4,-4*x^2+4*x+8,1,3*x^2-2*x-9,4*x^2-x-3,-x^2+2*x-3,-5*x^2+x+13,-2*x^2+x+3,-x^2-5*x,-2*x^2-3*x+4,4*x^2-8*x-11,x^2+4*x+3,-x^2-3*x+10,-2*x^2+5*x+1,-5*x^2+7*x+15,7*x^2-x-18,x^2+x-14,-6*x^2+x+10], x^3-3*x-1];
E[319,3]=[[x,-x^3-2*x^2+2*x+1,x^3+2*x^2-2*x-3,x^3+2*x^2-3*x-2,-1,-2*x^3-5*x^2+x+4,3*x^2+5*x-6,x,-x^3-4*x^2-x+5,-1,-x^2+2*x+1,2*x^3+2*x^2-5*x-1,-x^3-x^2+x-10,5*x^3+11*x^2-6*x-8,-x^3+6*x-4,3*x^2+7*x,3*x^3+6*x^2-8*x-11,-3*x^3-4*x^2+13*x+4,2*x^3+9*x^2-2*x-15,x^3+7*x^2+6*x-15,-x^3-2*x^2-4*x-2,-3*x^3-9*x^2+10,-7*x^2-11*x+12,-5*x^3-13*x^2+10*x+9,-x^3-8*x^2-8*x+15], x^4+2*x^3-3*x^2-3*x+2];
E[319,4]=[[x,-x^4+x^3+5*x^2-3*x-3,x^5-x^4-6*x^3+4*x^2+7*x-1,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,1,x^5-2*x^4-4*x^3+6*x^2+2*x+1,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3,-3*x^6+8*x^5+13*x^4-38*x^3-6*x^2+28*x+1,x^6-4*x^5-2*x^4+19*x^3-7*x^2-15*x+4,-1,x^6-4*x^5-x^4+17*x^3-13*x^2-6*x+7,-x^6+5*x^5+x^4-25*x^3+9*x^2+20*x,-x^6+x^5+7*x^4-4*x^3-12*x^2+7,-x^6+3*x^5+4*x^4-15*x^3+x^2+15*x-4,-3*x^6+7*x^5+13*x^4-33*x^3-5*x^2+28*x-2,x^6-3*x^5-4*x^4+15*x^3-x^2-15*x+7,x^6-6*x^5-x^4+36*x^3-10*x^2-46*x+1,3*x^6-10*x^5-8*x^4+47*x^3-13*x^2-33*x+5,x^6-3*x^5-5*x^4+16*x^3+4*x^2-14*x-3,-2*x^6+2*x^5+14*x^4-11*x^3-25*x^2+16*x+9,x^6-3*x^5-x^4+11*x^3-15*x^2+2*x+12,2*x^6-6*x^5-8*x^4+29*x^3+3*x^2-24*x,-2*x^6+9*x^5+4*x^4-46*x^3+12*x^2+44*x+3,-x^5+4*x^4+4*x^3-16*x^2-4*x+7,-x^4+x^3+3*x^2-x+3], x^7-3*x^6-4*x^5+15*x^4+x^3-14*x^2+1];
E[319,5]=[[x,-1/9*x^7-1/9*x^6+16/9*x^5+10/9*x^4-26/3*x^3-25/9*x^2+113/9*x+14/9,4/9*x^7-2/9*x^6-49/9*x^5+17/9*x^4+56/3*x^3-26/9*x^2-143/9*x+13/9,-2/9*x^7-1/3*x^6+3*x^5+34/9*x^4-12*x^3-98/9*x^2+13*x+29/9,-1,2/3*x^7-2/9*x^6-73/9*x^5+16/9*x^4+86/3*x^3-2*x^2-254/9*x-13/9,1/3*x^6-1/3*x^5-8/3*x^4+3*x^3+3*x^2-17/3*x+11/3,1/9*x^7+2/9*x^6-20/9*x^5-8/3*x^4+37/3*x^3+64/9*x^2-148/9*x-2/3,-4/9*x^7-5/9*x^6+50/9*x^5+6*x^4-61/3*x^3-139/9*x^2+181/9*x+10/3,1,1/9*x^7-4/3*x^5+4/9*x^4+4*x^3-23/9*x^2-2/3*x+14/9,7/9*x^7-31/3*x^5-8/9*x^4+40*x^3+55/9*x^2-116/3*x-19/9,2/9*x^7+1/3*x^6-3*x^5-43/9*x^4+12*x^3+170/9*x^2-14*x-83/9,-1/9*x^7+7/3*x^5+5/9*x^4-14*x^3-13/9*x^2+65/3*x-59/9,-1/3*x^7+5*x^5+2/3*x^4-22*x^3-13/3*x^2+24*x+7/3,10/9*x^7-5/9*x^6-127/9*x^5+38/9*x^4+161/3*x^3-29/9*x^2-533/9*x-53/9,-7/9*x^7+4/9*x^6+86/9*x^5-10/3*x^4-103/3*x^3+38/9*x^2+316/9*x+2/3,5/9*x^7-4/9*x^6-62/9*x^5+31/9*x^4+70/3*x^3-19/9*x^2-151/9*x-88/9,-1/9*x^6-5/9*x^5+23/9*x^4+16/3*x^3-40/3*x^2-100/9*x+109/9,1/3*x^7+1/9*x^6-40/9*x^5-11/9*x^4+50/3*x^3+11/3*x^2-134/9*x-4/9,-7/9*x^7+31/3*x^5+8/9*x^4-42*x^3-37/9*x^2+158/3*x-35/9,2/3*x^7-8*x^5-4/3*x^4+25*x^3+29/3*x^2-14*x-38/3,-2/9*x^6-1/9*x^5+28/9*x^4+2/3*x^3-32/3*x^2-20/9*x+11/9,-8/9*x^7+35/3*x^5+4/9*x^4-44*x^3-32/9*x^2+124/3*x+95/9,-5/9*x^7+1/3*x^6+16/3*x^5-26/9*x^4-10*x^3+61/9*x^2-19/3*x-28/9], x^8-13*x^6-x^5+50*x^4+7*x^3-54*x^2-5*x+1];
E[323,1]=[[x,x+1,2,-2*x,-2,2,-1,1,-2*x,x+5,x-3,-2*x+6,2*x+6,3*x-5,x+1,10,-2*x-6,-4*x-2,-2*x+2,-8,-4*x+2,4*x+8,5*x+9,-2,3*x+3], x^2+x-4];
E[323,2]=[[x,x^3-2*x^2-4*x+5,-x^3+x^2+3*x-4,-x^3+2*x^2+3*x-8,-2*x^3+4*x^2+7*x-11,-2*x^3+x^2+7*x-4,1,1,3*x^3-8*x^2-9*x+21,2*x^3-x^2-7*x-1,3*x^3-4*x^2-7*x+10,x^3+2*x^2-3*x-12,-x^3+5*x^2-x-13,-x^3-3*x^2+6*x+6,3*x^3-2*x^2-10*x+4,x^3-6*x^2-x+12,-6*x^3+7*x^2+18*x-13,-5*x^3+3*x^2+16*x-8,-3*x^3+6*x^2+8*x-18,-x^3+5*x^2-2*x-15,3*x^3-5*x^2-10*x+7,-3*x^3+6*x^2+14*x-13,4*x^3+3*x^2-15*x-9,x^3-5*x^2+19,5*x^3-7*x^2-21*x+8], x^4-6*x^2-x+7];
E[323,3]=[[x,-x^3-2*x^2+2*x+1,x^4+3*x^3-x^2-6*x-1,x^3+2*x^2-x-2,-2*x^4-6*x^3+2*x^2+9*x-1,-x^2-x-2,-1,-1,x^4+5*x^3+4*x^2-8*x-4,-3*x^4-10*x^3+5*x^2+24*x-4,x^3-2*x^2-9*x+4,4*x^4+11*x^3-8*x^2-21*x+2,-x^3-3*x^2+5*x+7,-2*x^4-7*x^3+5*x^2+20*x-6,5*x^4+15*x^3-6*x^2-29*x+3,x^3-2*x^2-9*x+4,2*x^4+6*x^3-5*x^2-14*x+7,-2*x^4-5*x^3+7*x^2+12*x-12,3*x^4+7*x^3-10*x^2-21*x+5,-3*x^4-7*x^3+9*x^2+19*x,x^4+7*x^3+3*x^2-19*x-2,4*x^4+11*x^3-6*x^2-16*x+3,5*x^4+12*x^3-11*x^2-20*x+2,-x^4-5*x^3-x^2+9*x-12,-5*x^4-17*x^3-x^2+26*x+3], x^5+3*x^4-2*x^3-7*x^2+2*x+1];
E[323,4]=[[x,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+6*x-1/2,-x^4+x^3+7*x^2-4*x-9,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+7*x+1/2,1/2*x^5-1/2*x^4-5*x^3+5/2*x^2+11*x+3/2,-x^5+x^4+8*x^3-4*x^2-13*x-1,-1,1,-1/2*x^5-1/2*x^4+4*x^3+11/2*x^2-8*x-21/2,x^4-9*x^2+12,1/2*x^5-1/2*x^4-4*x^3+9/2*x^2+5*x-11/2,-x^3+3*x+2,x^5-x^4-7*x^3+6*x^2+7*x-6,x^5-x^4-7*x^3+6*x^2+6*x-1,-x^5+2*x^4+5*x^3-13*x^2+x+18,x^3+2*x^2-5*x-12,-2*x^5+18*x^3+5*x^2-36*x-21,x^3-x^2-6*x+8,3*x^4-3*x^3-24*x^2+17*x+35,1/2*x^5+1/2*x^4-6*x^3-5/2*x^2+17*x-3/2,x^4-x^3-11*x^2+7*x+26,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+8*x-5/2,-x^5+2*x^4+6*x^3-8*x^2-4*x-3,2*x^5+x^4-19*x^3-13*x^2+41*x+30,-2*x^5+x^4+19*x^3-3*x^2-40*x-7], x^6-2*x^5-9*x^4+15*x^3+23*x^2-23*x-21];
E[323,5]=[[x,1/2*x^6-1/2*x^5-5*x^4+7/2*x^3+13*x^2-7/2*x-5,x^6-10*x^4+26*x^2+x-10,-x^3+5*x,-x^6+11*x^4+x^3-33*x^2-6*x+18,-x^2-x+6,1,-1,-x^4+x^3+6*x^2-4*x-4,3/2*x^6-1/2*x^5-15*x^4+7/2*x^3+39*x^2-5/2*x-15,-3/2*x^6+1/2*x^5+14*x^4-9/2*x^3-32*x^2+11/2*x+13,-3*x^6+x^5+30*x^4-6*x^3-78*x^2+36,-3*x^6+2*x^5+31*x^4-14*x^3-82*x^2+12*x+32,-2*x^6+x^5+19*x^4-7*x^3-44*x^2+4*x+13,x^6-x^5-9*x^4+8*x^3+20*x^2-12*x-9,-3*x^6+x^5+32*x^4-6*x^3-90*x^2+38,-x^6+9*x^4-x^3-20*x^2+7*x+6,-x^6-x^5+10*x^4+8*x^3-29*x^2-11*x+22,3*x^6-2*x^5-32*x^4+12*x^3+89*x^2-4*x-34,2*x^6-21*x^4-x^3+59*x^2+7*x-30,-4*x^6+2*x^5+41*x^4-13*x^3-107*x^2+5*x+42,-x^6+7*x^4-7*x^2-3*x-6,-2*x^6+x^5+18*x^4-8*x^3-40*x^2+8*x+13,2*x^6-19*x^4+x^3+45*x^2-x-18,5/2*x^6-1/2*x^5-26*x^4+7/2*x^3+70*x^2+9/2*x-25], x^7-x^6-10*x^5+9*x^4+26*x^3-19*x^2-12*x+8];
E[323,6]=[[0,3,-2,4,-2,6,-1,1,0,-9,-9,2,-6,-1,-3,2,14,-6,-14,16,-2,8,-3,2,-7], x-1];
E[341,1]=[[-x-1,-1,x,3*x+5,1,-4*x-7,-2*x-5,-2*x-8,-2*x-4,0,1,2*x+1,5*x+12,x-7,5*x+3,-5*x-6,2*x+3,-5*x-13,-7,-5*x-13,6*x+13,-5,-x+10,-7*x-13,-8*x-4], x^2+3*x+1];
E[341,2]=[[-1/4*x^3+1/2*x^2+3/2*x-7/4,1/2*x^3-4*x-5/2,x,-1/2*x^3+3*x+1/2,-1,-1/2*x^3+4*x+1/2,-3/2*x^3+10*x+11/2,1/2*x^3-4*x-11/2,3/2*x^3-x^2-11*x-3/2,-1/2*x^3+x^2+x-11/2,-1,2*x^3-x^2-11*x-2,-x^3+7*x+3,-7/2*x^3+3*x^2+22*x-3/2,-x^3+2*x^2+3*x-4,2*x^3-3*x^2-8*x+11,7/2*x^3-x^2-23*x-17/2,-3/2*x^3+3*x^2+8*x-19/2,-x^3+x^2+7*x-3,-3/2*x^3+9*x+15/2,4*x^3-x^2-23*x-10,9/2*x^3-4*x^2-28*x-1/2,4*x^3-3*x^2-26*x-3,-1/2*x^3-x^2+11/2,-3*x^2-x+13], x^4+x^3-8*x^2-11*x+1];
E[341,3]=[[83/2282*x^7+361/1141*x^6-235/1141*x^5-5625/1141*x^4-8047/2282*x^3+24985/2282*x^2+7491/1141*x-3786/1141,-20/1141*x^7-64/1141*x^6+127/1141*x^5+855/1141*x^4+2104/1141*x^3-1374/1141*x^2-4160/1141*x+2182/1141,x,-79/2282*x^7-481/2282*x^6+901/2282*x^5+3828/1141*x^4+1693/2282*x^3-9959/1141*x^2-3652/1141*x+13297/2282,-1,-243/2282*x^7-617/1141*x^6+2627/2282*x^5+9045/1141*x^4+6623/2282*x^3-31413/2282*x^2-12891/2282*x+10195/2282,247/2282*x^7+1475/2282*x^6-1098/1141*x^5-10842/1141*x^4-12977/2282*x^3+18240/1141*x^2+20569/2282*x-2235/1141,-229/2282*x^7-961/2282*x^6+1212/1141*x^5+6749/1141*x^4+8345/2282*x^3-8836/1141*x^2-21389/2282*x+1139/1141,4/1141*x^7+241/1141*x^6+431/1141*x^5-3594/1141*x^4-6354/1141*x^3+6208/1141*x^2+8819/1141*x-2262/1141,-411/2282*x^7-1114/1141*x^6+5063/2282*x^5+17200/1141*x^4+1933/2282*x^3-75359/2282*x^2-11323/2282*x+18483/2282,1,5/163*x^7+16/163*x^6+9/163*x^5-173/163*x^4-1178/163*x^3-227/163*x^2+2344/163*x+677/163,-4/163*x^7-78/163*x^6-105/163*x^5+1149/163*x^4+2116/163*x^3-1807/163*x^2-2788/163*x+306/163,-29/1141*x^7-321/1141*x^6+13/1141*x^5+4948/1141*x^4+4420/1141*x^3-9637/1141*x^2-1468/1141*x+3278/1141,-268/1141*x^7-1314/1141*x^6+3071/1141*x^5+19444/1141*x^4+4689/1141*x^3-35983/1141*x^2-6681/1141*x+7788/1141,-12/1141*x^7+418/1141*x^6+989/1141*x^5-6333/1141*x^4-10604/1141*x^3+9901/1141*x^2+8914/1141*x-60/1141,160/1141*x^7+512/1141*x^6-2157/1141*x^5-7981/1141*x^4+283/1141*x^3+22402/1141*x^2+8178/1141*x-11751/1141,585/2282*x^7+3013/2282*x^6-7423/2282*x^5-22916/1141*x^4+1213/2282*x^3+47764/1141*x^2+367/1141*x-19895/2282,18/163*x^7+188/163*x^6+65/163*x^5-2807/163*x^4-4143/163*x^3+5116/163*x^2+6352/163*x-2029/163,-422/1141*x^7-2035/1141*x^6+5304/1141*x^5+31162/1141*x^4+1721/1141*x^3-68470/1141*x^2-18175/1141*x+19569/1141,-291/2282*x^7-703/2282*x^6+1580/1141*x^5+4366/1141*x^4+12129/2282*x^3-2180/1141*x^2-38849/2282*x-157/1141,283/1141*x^7+1362/1141*x^6-2881/1141*x^5-20941/1141*x^4-11972/1141*x^3+50135/1141*x^2+33762/1141*x-19123/1141,424/1141*x^7+1585/1141*x^6-5659/1141*x^5-23831/1141*x^4+1948/1141*x^3+51036/1141*x^2+9463/1141*x-13854/1141,-374/1141*x^7-1425/1141*x^6+4771/1141*x^5+19982/1141*x^4+779/1141*x^3-25922/1141*x^2-7050/1141*x-10998/1141,298/1141*x^7+1410/1141*x^6-3832/1141*x^5-21297/1141*x^4+142/1141*x^3+41467/1141*x^2+9498/1141*x-1933/1141], x^8+5*x^7-12*x^6-77*x^5-11*x^4+176*x^3+35*x^2-77*x+9];
E[341,4]=[[-17231869/238511964*x^10+2959604/59627991*x^9+211058013/79503988*x^8-366800911/238511964*x^7-4118838803/119255982*x^6+2855931311/238511964*x^5+47802585967/238511964*x^4-2100871747/119255982*x^3-59187163817/119255982*x^2-12610347301/238511964*x+42085043485/119255982,-14435227/119255982*x^10+2006533/19875997*x^9+174963325/39751994*x^8-375404371/119255982*x^7-1120325712/19875997*x^6+3100385441/119255982*x^5+38282996387/119255982*x^4-3259898681/59627991*x^3-15466921429/19875997*x^2-6048639181/119255982*x+10681107173/19875997,x,2230445/39751994*x^10-2041285/59627991*x^9-41173040/19875997*x^8+44172427/39751994*x^7+3224242489/119255982*x^6-371214581/39751994*x^5-9306127999/59627991*x^4+2149119793/119255982*x^3+45439257013/119255982*x^2+596650927/19875997*x-15834430588/59627991,1,-12163796/59627991*x^10+19165495/119255982*x^9+148012993/19875997*x^8-297545720/59627991*x^7-11435398169/119255982*x^6+4803481991/119255982*x^5+21833376311/39751994*x^4-1489222576/19875997*x^3-159669291119/119255982*x^2-13844475043/119255982*x+55505815745/59627991,47116/59627991*x^10+862346/59627991*x^9-655632/19875997*x^8-55815241/119255982*x^7+63210283/119255982*x^6+295356532/59627991*x^5-69092718/19875997*x^4-809580699/39751994*x^3+558684398/59627991*x^2+3200443241/119255982*x-643097737/59627991,16412461/59627991*x^10-11520796/59627991*x^9-200570303/19875997*x^8+715348919/119255982*x^7+15594733465/119255982*x^6-2817607955/59627991*x^5-14992697474/19875997*x^4+3014104377/39751994*x^3+110542840946/59627991*x^2+21740636495/119255982*x-77864185165/59627991,-4573667/39751994*x^10+4635844/59627991*x^9+166745833/39751994*x^8-97680375/39751994*x^7-3212571320/59627991*x^6+793555235/39751994*x^5+36544520243/119255982*x^4-2222734472/59627991*x^3-44041710224/59627991*x^2-2280426297/39751994*x+30406576801/59627991,-10940036/59627991*x^10+17024527/119255982*x^9+132543205/19875997*x^8-265890332/59627991*x^7-10183154339/119255982*x^6+4341227423/119255982*x^5+19321079317/39751994*x^4-1435718715/19875997*x^3-140299812245/119255982*x^2-10502047699/119255982*x+48270729461/59627991,-1,10147378/59627991*x^10-2246898/19875997*x^9-125124209/19875997*x^8+212843008/59627991*x^7+1639837734/19875997*x^6-1715401508/59627991*x^5-28652710556/59627991*x^4+2802706660/59627991*x^3+23609866744/19875997*x^2+7078608169/59627991*x-16673554116/19875997,5364071/19875997*x^10-3448558/19875997*x^9-198364969/19875997*x^8+108141621/19875997*x^7+2598789054/19875997*x^6-853964376/19875997*x^5-15132059570/19875997*x^4+1279561122/19875997*x^3+37400625301/19875997*x^2+3839290217/19875997*x-26453390136/19875997,35818295/119255982*x^10-14484439/59627991*x^9-433967369/39751994*x^8+902044613/119255982*x^7+8334957041/59627991*x^6-7368635713/119255982*x^5-31642012503/39751994*x^4+2454099051/19875997*x^3+114944405156/59627991*x^2+17238411893/119255982*x-78795374203/59627991,-11336345/59627991*x^10+2487230/19875997*x^9+139772361/19875997*x^8-235159379/59627991*x^7-1831627998/19875997*x^6+1884699832/59627991*x^5+32013329785/59627991*x^4-2997976403/59627991*x^3-26423671247/19875997*x^2-8002237460/59627991*x+18709025308/19875997,4737821/59627991*x^10-5444203/59627991*x^9-56384084/19875997*x^8+167752829/59627991*x^7+2113492109/59627991*x^6-1420632913/59627991*x^5-11786089412/59627991*x^4+3480498319/59627991*x^3+28069374506/59627991*x^2+790394600/59627991*x-18624432838/59627991,65501693/119255982*x^10-7944169/19875997*x^9-802978565/39751994*x^8+1492895471/119255982*x^7+5219724032/19875997*x^6-12092071189/119255982*x^5-180942030139/119255982*x^4+10846070038/59627991*x^3+73958241298/19875997*x^2+40141109273/119255982*x-51563334765/19875997,-21279271/119255982*x^10+2183025/19875997*x^9+130723736/19875997*x^8-405706753/119255982*x^7-3412384405/39751994*x^6+3068253755/119255982*x^5+29722614691/59627991*x^4-3433607113/119255982*x^3-48950400157/39751994*x^2-9062107436/59627991*x+17284323244/19875997,-13872289/59627991*x^10+10037845/59627991*x^9+168530439/19875997*x^8-311752198/59627991*x^7-6495739415/59627991*x^6+2475180164/59627991*x^5+12354985519/19875997*x^4-1423514236/19875997*x^3-89814084314/59627991*x^2-8266056517/59627991*x+62239891378/59627991,12348545/39751994*x^10-3974757/19875997*x^9-455450279/39751994*x^8+249125887/39751994*x^7+2971863975/19875997*x^6-1962995591/39751994*x^5-34443207493/39751994*x^4+1461125872/19875997*x^3+42360187404/19875997*x^2+8869222503/39751994*x-29805456069/19875997,25250197/119255982*x^10-7456945/59627991*x^9-310280023/39751994*x^8+234199355/59627991*x^7+12140686213/119255982*x^6-3605290469/119255982*x^5-70257242479/119255982*x^4+4266059723/119255982*x^3+86266970939/59627991*x^2+10345536911/59627991*x-60719957884/59627991,-83123/119255982*x^10-1861297/59627991*x^9+2494795/39751994*x^8+120892933/119255982*x^7-94727104/59627991*x^6-1269433349/119255982*x^5+1734324473/119255982*x^4+2582896861/59627991*x^3-3121509505/59627991*x^2-7000501367/119255982*x+3562080809/59627991,29915314/59627991*x^10-21386720/59627991*x^9-365158000/19875997*x^8+665491672/59627991*x^7+14163846313/59627991*x^6-5290113743/59627991*x^5-81374359015/59627991*x^4+8874519962/59627991*x^3+198622884736/59627991*x^2+19216709299/59627991*x-138356626886/59627991,21441473/119255982*x^10-5323732/59627991*x^9-266551217/39751994*x^8+333751961/119255982*x^7+5300185958/59627991*x^6-2430981889/119255982*x^5-20831930589/39751994*x^4+198188995/19875997*x^3+78287710190/59627991*x^2+20800412513/119255982*x-56198441653/59627991,-3403016/19875997*x^10+2416253/19875997*x^9+124553128/19875997*x^8-76260335/19875997*x^7-1607364867/19875997*x^6+624859722/19875997*x^5+9182569814/19875997*x^4-1186616967/19875997*x^3-22138791401/19875997*x^2-1808602540/19875997*x+14985275758/19875997], x^11-3*x^10-35*x^9+106*x^8+423*x^7-1261*x^6-2318*x^5+6533*x^4+5956*x^3-14599*x^2-6045*x+10618];
E[377,1]=[[1,0,-2,0,-4,1,2,-4,8,1,-8,2,-10,-8,8,6,12,6,12,-16,-10,-12,-12,-10,14], x-1];
E[377,2]=[[x,x+1,-2*x,x+3,2,-1,-2*x-4,-2*x,2*x+2,1,-2*x+4,-4*x+2,-2,-x+3,-2*x,2*x+2,-3*x-9,-2*x+4,x+7,-x-11,4*x,5*x+5,-3*x+3,4*x-2,-4*x+6], x^2-3];
E[377,3]=[[x,x^3-3*x,-x^3-2*x^2+2*x+3,-x^4-x^3+4*x^2+2*x-5,x^3+3*x^2-2*x-5,-1,2*x^4+x^3-5*x^2-2,3*x^4+3*x^3-11*x^2-7*x+6,-2*x^4-x^3+6*x^2-x-3,-1,x^2+4*x-2,-2*x^4-5*x^3+4*x^2+12*x,-3*x^4-7*x^3+8*x^2+16*x-3,-2*x^4-2*x^3+7*x^2+4*x-9,2*x^4+6*x^3-6*x^2-15*x+2,2*x^4-3*x^3-13*x^2+10*x+13,2*x^4+5*x^3-4*x^2-16*x,-x^4-7*x^3-2*x^2+18*x+7,x^4+2*x^3-4*x^2-6*x,-4*x^4+2*x^3+17*x^2-8*x-9,-x^4+3*x^2-6*x+4,-x^4-5*x^3+2*x^2+15*x-7,3*x^4+4*x^3-4*x^2-7*x-4,-2*x^4-2*x^3+4*x^2+4*x+9,-x^4+5*x^3+10*x^2-11*x-9], x^5+x^4-5*x^3-3*x^2+6*x+1];
E[377,4]=[[x,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+8*x+1,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+9*x,4*x^6-3*x^5-40*x^4+16*x^3+83*x^2+28*x-6,-5*x^6+5*x^5+49*x^4-32*x^3-97*x^2-13*x+11,-1,3*x^6-2*x^5-30*x^4+9*x^3+62*x^2+29*x-1,4*x^6-4*x^5-39*x^4+25*x^3+75*x^2+15*x-6,-6*x^6+5*x^5+59*x^4-28*x^3-117*x^2-39*x+8,1,4*x^6-5*x^5-37*x^4+33*x^3+62*x^2+8*x-5,5*x^6-3*x^5-51*x^4+12*x^3+110*x^2+51*x-4,-11*x^6+9*x^5+108*x^4-50*x^3-212*x^2-75*x+7,-3*x^6+4*x^5+26*x^4-26*x^3-32*x^2-11*x-6,-7*x^6+7*x^5+67*x^4-43*x^3-122*x^2-32*x,-3*x^6+x^5+33*x^4-4*x^3-85*x^2-19*x+17,-8*x^6+9*x^5+75*x^4-58*x^3-129*x^2-22*x+3,-3*x^6+5*x^5+26*x^4-34*x^3-34*x^2-x+1,3*x^6-3*x^5-28*x^4+19*x^3+48*x^2+11*x-2,15*x^6-16*x^5-142*x^4+100*x^3+252*x^2+59*x-2,10*x^6-14*x^5-89*x^4+96*x^3+129*x^2+2*x,-3*x^6+2*x^5+31*x^4-9*x^3-69*x^2-30*x+14,-2*x^6-4*x^5+27*x^4+40*x^3-90*x^2-79*x,14*x^6-11*x^5-139*x^4+59*x^3+285*x^2+102*x-32,2*x^6-4*x^5-17*x^4+33*x^3+22*x^2-35*x-9], x^7-3*x^6-8*x^5+26*x^4+9*x^3-36*x^2-14*x+3];
E[377,5]=[[x,-2*x^4-5*x^3+8*x^2+21*x+6,2*x^4+5*x^3-8*x^2-22*x-7,x^4+3*x^3-4*x^2-14*x-7,-x^3-x^2+4*x+1,1,-2*x^4-3*x^3+11*x^2+12*x-2,x^4+3*x^3-3*x^2-11*x-8,-x^3+5*x-3,1,-x^2,2*x^4+3*x^3-12*x^2-12*x,-5*x^4-13*x^3+20*x^2+58*x+21,-4*x^4-8*x^3+19*x^2+36*x+5,6*x^4+14*x^3-26*x^2-59*x-18,-6*x^4-13*x^3+27*x^2+52*x+9,2*x^4+3*x^3-14*x^2-12*x+12,-x^4-3*x^3+6*x^2+14*x-3,x^4+4*x^3-2*x^2-14*x-12,2*x^4+6*x^3-7*x^2-26*x-5,5*x^4+12*x^3-21*x^2-54*x-22,-3*x^4-3*x^3+16*x^2+9*x-3,-9*x^4-22*x^3+38*x^2+95*x+26,-6*x^4-12*x^3+26*x^2+46*x+13,x^4-x^3-6*x^2+7*x-1], x^5+3*x^4-3*x^3-13*x^2-8*x-1];
E[377,6]=[[x,3/4*x^8-37/4*x^6+133/4*x^4-1/4*x^3-31*x^2-17/4*x+7/4,1/2*x^8-13/2*x^6+51/2*x^4-1/2*x^3-29*x^2-1/2*x+9/2,-1/4*x^8-1/2*x^7+13/4*x^6+6*x^5-51/4*x^4-83/4*x^3+15*x^2+75/4*x+5/4,-1/2*x^8+13/2*x^6-x^5-49/2*x^4+15/2*x^3+23*x^2-11/2*x-3/2,1,-1/2*x^8+13/2*x^6-51/2*x^4+1/2*x^3+28*x^2+1/2*x-3/2,-x^4+x^3+7*x^2-5*x-4,-1/2*x^8+11/2*x^6+x^5-33/2*x^4-13/2*x^3+9*x^2+17/2*x+15/2,-1,x^5-x^4-7*x^3+4*x^2+6*x+5,-3/2*x^8+39/2*x^6-x^5-151/2*x^4+17/2*x^3+82*x^2-9/2*x-23/2,1/2*x^8-13/2*x^6+x^5+51/2*x^4-15/2*x^3-30*x^2+11/2*x+15/2,-5/4*x^8+x^7+63/4*x^6-12*x^5-227/4*x^4+159/4*x^3+46*x^2-77/4*x-1/4,x^8+x^7-13*x^6-11*x^5+48*x^4+35*x^3-40*x^2-39*x-6,-1/2*x^8+13/2*x^6-x^5-49/2*x^4+15/2*x^3+25*x^2-11/2*x-15/2,-5/4*x^8-1/2*x^7+65/4*x^6+6*x^5-251/4*x^4-87/4*x^3+67*x^2+119/4*x-27/4,3/2*x^8+x^7-37/2*x^6-11*x^5+129/2*x^4+69/2*x^3-50*x^2-83/2*x-17/2,-3/4*x^8+1/2*x^7+35/4*x^6-6*x^5-113/4*x^4+83/4*x^3+20*x^2-43/4*x-1/4,-1/4*x^8+1/2*x^7+13/4*x^6-5*x^5-51/4*x^4+49/4*x^3+14*x^2-1/4*x-15/4,x^8-13*x^6+2*x^5+48*x^4-15*x^3-39*x^2+11*x-1,-7/4*x^8-x^7+85/4*x^6+12*x^5-293/4*x^4-159/4*x^3+59*x^2+173/4*x+29/4,1/4*x^8+1/2*x^7-13/4*x^6-7*x^5+55/4*x^4+107/4*x^3-22*x^2-79/4*x+27/4,3/2*x^8+x^7-39/2*x^6-11*x^5+147/2*x^4+71/2*x^3-69*x^2-93/2*x-3/2,3/2*x^8-37/2*x^6+135/2*x^4+1/2*x^3-70*x^2-27/2*x+25/2], x^9-x^8-13*x^7+13*x^6+51*x^5-50*x^4-59*x^3+45*x^2+20*x-3];
E[391,1]=[[x,-2,-x^2+2,-x,-x^2-x+3,2*x^2-x-6,-1,2*x^2+2*x-6,-1,2*x^2-10,2*x-2,-3*x^2-x+7,-8,4*x+2,-x^2+3*x+7,4*x^2+2*x-14,-3*x^2-6*x+10,-2*x^2-x+10,4*x^2-2*x-14,2*x^2-12,-4*x^2+2*x+16,-x^2+2*x-2,-2*x^2+12,4*x-4,7*x^2-3*x-23], x^3+x^2-4*x-3];
E[391,2]=[[x,0,-x^2-2*x+2,-x-2,x^2+3*x-3,2*x^2+3*x-6,1,-2*x^2-4*x+4,1,2*x-2,4*x^2+8*x-12,3*x^2+3*x-7,-2*x^2-4*x+2,-2*x^2-6*x,-5*x^2-5*x+15,-4*x^2-6*x+4,x^2+2*x-6,-6*x^2-5*x+16,-4*x^2-4*x+14,-4*x^2-8*x+12,6*x^2+8*x-14,-5*x^2-8*x+14,4*x^2+2*x-6,2*x^2-4*x-16,-3*x^2+x+11], x^3+x^2-4*x+1];
E[391,3]=[[x,-1/4*x^8+1/4*x^7+7/2*x^6-5/2*x^5-33/2*x^4+7*x^3+57/2*x^2-19/4*x-47/4,-1/4*x^8+1/4*x^7+13/4*x^6-11/4*x^5-55/4*x^4+35/4*x^3+85/4*x^2-13/2*x-9,-1/4*x^7+1/4*x^6+13/4*x^5-11/4*x^4-47/4*x^3+31/4*x^2+33/4*x-5/2,1/4*x^8-15/4*x^6+1/4*x^5+73/4*x^4-9/4*x^3-125/4*x^2+9/2*x+57/4,-x^8+3/2*x^7+12*x^6-16*x^5-43*x^4+47*x^3+43*x^2-26*x-23/2,-1,1/2*x^8-1/4*x^7-27/4*x^6+9/4*x^5+117/4*x^4-19/4*x^3-177/4*x^2+3/4*x+37/2,1,-3/4*x^8+3/4*x^7+37/4*x^6-31/4*x^5-131/4*x^4+83/4*x^3+105/4*x^2-7*x+3/2,1/2*x^8-1/4*x^7-27/4*x^6+9/4*x^5+117/4*x^4-19/4*x^3-169/4*x^2-5/4*x+25/2,3/4*x^8-1/2*x^7-39/4*x^6+17/4*x^5+161/4*x^4-29/4*x^3-221/4*x^2-5*x+83/4,7/4*x^8-2*x^7-23*x^6+21*x^5+95*x^4-119/2*x^3-257/2*x^2+113/4*x+51,-3/2*x^8+2*x^7+79/4*x^6-85/4*x^5-329/4*x^4+247/4*x^3+451/4*x^2-137/4*x-169/4,-1/2*x^6+1/2*x^5+11/2*x^4-9/2*x^3-31/2*x^2+13/2*x+15/2,5/4*x^8-5/4*x^7-16*x^6+12*x^5+64*x^4-59/2*x^3-83*x^2+33/4*x+129/4,1/2*x^7-5*x^5-x^4+13*x^3+6*x^2-5*x-15/2,-3/2*x^8+7/4*x^7+75/4*x^6-73/4*x^5-289/4*x^4+207/4*x^3+349/4*x^2-99/4*x-28,3/4*x^8-3/2*x^7-39/4*x^6+69/4*x^5+153/4*x^4-221/4*x^3-169/4*x^2+37*x+47/4,3/2*x^8-9/4*x^7-18*x^6+24*x^5+66*x^4-71*x^3-147/2*x^2+39*x+93/4,x^8-x^7-53/4*x^6+39/4*x^5+227/4*x^4-105/4*x^3-341/4*x^2+81/4*x+143/4,1/4*x^8-3/4*x^7-11/4*x^6+29/4*x^5+41/4*x^4-81/4*x^3-55/4*x^2+19*x+2,-x^8+1/2*x^7+55/4*x^6-21/4*x^5-233/4*x^4+59/4*x^3+291/4*x^2-31/4*x-51/4,-1/2*x^8+7/4*x^7+11/2*x^6-37/2*x^5-33/2*x^4+105/2*x^3+6*x^2-49/2*x+27/4,5/4*x^8-x^7-63/4*x^6+41/4*x^5+249/4*x^4-121/4*x^3-317/4*x^2+39/2*x+101/4], x^9-2*x^8-12*x^7+23*x^6+43*x^5-79*x^4-43*x^3+78*x^2+11*x-21];
E[391,4]=[[x,1,-2*x-2,2*x,-4,-1,-1,2,-1,-2*x-5,-4*x+1,8*x+4,6*x+1,-2*x+2,-2*x-9,4*x+2,4,4*x+2,-6*x+2,4*x-7,-6*x-9,-6*x,-4*x-2,4*x-4,-10*x-4], x^2+x-1];
E[391,5]=[[x,-9/14*x^11+12/7*x^10+19/2*x^9-181/7*x^8-89/2*x^7+888/7*x^6+460/7*x^5-429/2*x^4-30/7*x^3+867/14*x^2+7*x+9/14,-1/14*x^11-9/14*x^10+3*x^9+141/14*x^8-69/2*x^7-368/7*x^6+1084/7*x^5+205/2*x^4-3677/14*x^3-443/7*x^2+201/2*x+379/14,3/14*x^11-1/14*x^10-9/2*x^9+9/7*x^8+35*x^7-58/7*x^6-851/7*x^5+43/2*x^4+2435/14*x^3-191/14*x^2-60*x-82/7,13/7*x^11-39/14*x^10-33*x^9+295/7*x^8+425/2*x^7-1464/7*x^6-4230/7*x^5+366*x^4+10195/14*x^3-795/7*x^2-256*x-635/14,15/7*x^11-40/7*x^10-32*x^9+608/7*x^8+153*x^7-3030/7*x^6-1678/7*x^5+764*x^4+303/7*x^3-2012/7*x^2-22*x+97/7,1,-15/14*x^11+75/14*x^10+19/2*x^9-570/7*x^8+22*x^7+2838/7*x^6-2577/7*x^5-1433/2*x^4+11569/14*x^3+4161/14*x^2-279*x-521/7,-1,-55/14*x^11+121/14*x^10+63*x^9-1835/14*x^8-693/2*x^7+4561/7*x^6+5384/7*x^5-2289/2*x^4-9259/14*x^3+2837/7*x^2+503/2*x+391/14,-89/14*x^11+221/14*x^10+195/2*x^9-1674/7*x^8-493*x^7+8296/7*x^6+6351/7*x^5-4127/2*x^4-6737/14*x^3+9913/14*x^2+209*x+90/7,x^11-11/2*x^10-8*x^9+84*x^8-67/2*x^7-422*x^6+408*x^5+762*x^4-1781/2*x^3-346*x^2+321*x+175/2,-6/7*x^11+16/7*x^10+25/2*x^9-485/14*x^8-113/2*x^7+1205/7*x^6+499/7*x^5-304*x^4+219/7*x^3+1695/14*x^2-41/2*x-163/14,16/7*x^11-111/14*x^10-59/2*x^9+1683/14*x^8+93*x^7-4177/7*x^6+648/7*x^5+1047*x^4-7867/14*x^3-5619/14*x^2+377/2*x+404/7,-15/7*x^11+26/7*x^10+37*x^9-391/7*x^8-229*x^7+1910/7*x^6+4331/7*x^5-455*x^4-5000/7*x^3+696/7*x^2+277*x+379/7,85/14*x^11-104/7*x^10-187/2*x^9+1578/7*x^8+953/2*x^7-7850/7*x^6-6250/7*x^5+3949/2*x^4+3480/7*x^3-10111/14*x^2-198*x-29/14,-17/7*x^11+71/7*x^10+27*x^9-1082/7*x^8-33*x^7+5415/7*x^6-2974/7*x^5-1383*x^4+8191/7*x^3+4125/7*x^2-411*x-823/7,-55/14*x^11+163/14*x^10+111/2*x^9-1236/7*x^8-233*x^7+6136/7*x^6+1457/7*x^5-3071/2*x^4+4335/14*x^3+7977/14*x^2-79*x-368/7,-19/7*x^11+127/14*x^10+36*x^9-968/7*x^8-251/2*x^7+4846/7*x^6-227/7*x^5-1234*x^4+7337/14*x^3+3473/7*x^2-163*x-907/14,-29/14*x^11+41/7*x^10+30*x^9-1245/14*x^8-134*x^7+3097/7*x^6+1147/7*x^5-1557/2*x^4+552/7*x^3+2035/7*x^2-69/2*x-122/7,-55/7*x^11+277/14*x^10+239/2*x^9-4195/14*x^8-594*x^7+10389/7*x^6+7310/7*x^5-2582*x^4-6359/14*x^3+12475/14*x^2+391/2*x-15/7,103/14*x^11-263/14*x^10-111*x^9+3985/14*x^8+1085/2*x^7-9878/7*x^6-6372/7*x^5+4921/2*x^4+4413/14*x^3-6031/7*x^2-331/2*x+121/14,-27/7*x^11+165/14*x^10+107/2*x^9-2501/14*x^8-214*x^7+6203/7*x^6+926/7*x^5-1550*x^4+5989/14*x^3+8023/14*x^2-231/2*x-393/7,-9/2*x^11+11*x^10+70*x^9-335/2*x^8-364*x^7+839*x^6+717*x^5-3007/2*x^4-468*x^3+603*x^2+359/2*x-6,39/7*x^11-215/14*x^10-82*x^9+1634/7*x^8+759/2*x^7-8144/7*x^6-3716/7*x^5+2054*x^4-817/14*x^3-5416/7*x^2+23*x+559/14], x^12-4*x^11-12*x^10+62*x^9+27*x^8-321*x^7+108*x^6+625*x^5-362*x^4-372*x^3+116*x^2+97*x+13];
E[403,1]=[[x,-2,2*x-3,1,-4*x+6,1,-2*x+6,1,2*x-6,2*x,-1,-6*x+6,-2*x+3,-6*x+4,-8*x+12,-2*x+12,-4*x+3,6*x-2,-8,3,14,4,8*x-6,-2*x,6*x-7], x^2-3*x+1];
E[403,2]=[[x,x^5-3*x^4-3*x^3+13*x^2-6*x,-x^5+2*x^4+5*x^3-9*x^2-2*x+4,x^4-2*x^3-5*x^2+8*x+2,-x^6+3*x^5+3*x^4-14*x^3+7*x^2+5*x-1,-1,-x^5+4*x^4+x^3-17*x^2+14*x,-x^6+4*x^5+2*x^4-20*x^3+10*x^2+10*x,-x^6+4*x^5+2*x^4-19*x^3+9*x^2+4*x+4,x^6-4*x^5+x^4+13*x^3-23*x^2+19*x-2,1,-2*x^5+5*x^4+9*x^3-22*x^2-x+7,-x^6+4*x^5+x^4-16*x^3+14*x^2-9*x+2,x^5-4*x^4-x^3+20*x^2-16*x-8,3*x^5-8*x^4-13*x^3+39*x^2-x-16,-3*x^4+5*x^3+14*x^2-22*x+4,3*x^6-8*x^5-14*x^4+42*x^3+4*x^2-35*x-2,-2*x^6+6*x^5+9*x^4-31*x^3-x^2+20*x,x^6-3*x^5-3*x^4+13*x^3-7*x^2-x-2,x^6+x^5-15*x^4-2*x^3+50*x^2-13*x-14,4*x^6-12*x^5-17*x^4+62*x^3-2*x^2-40*x-1,x^6-3*x^5-x^4+10*x^3-17*x^2+14*x+2,2*x^6-9*x^5+3*x^4+37*x^3-53*x^2+11*x+8,x^6-4*x^5+18*x^3-23*x^2-x+15,-x^6+3*x^5+2*x^4-16*x^3+13*x^2+15*x-4], x^7-2*x^6-9*x^5+17*x^4+20*x^3-37*x^2+x+4];
E[403,3]=[[x,-x^5-x^4+7*x^3+5*x^2-10*x-4,-x^7+10*x^5-x^4-29*x^3+25*x+8,2*x^6+2*x^5-15*x^4-10*x^3+25*x^2+10*x-2,x^6+x^5-7*x^4-4*x^3+11*x^2+x-3,1,x^7-10*x^5+x^4+27*x^3-2*x^2-17*x,-x^7-x^6+9*x^5+7*x^4-22*x^3-15*x^2+13*x+8,x^7-x^6-11*x^5+9*x^4+35*x^3-16*x^2-33*x,-x^7-x^6+7*x^5+4*x^4-9*x^3-6*x-2,-1,-2*x^6-2*x^5+15*x^4+9*