CoCalc
Sharedwww / serrepqdata.gpOpen in CoCalc

\\ serrepqdata.gp defines two matrices:
\\ 1. E = a matrix
\\    E[N,i] = [v,f] = ith newform at level N
\\         v = vector of expressions in x.
\\             think of x as a root of f.
\\    This should be defined for all 11 <= N < 100 prime
\\    and all N<1000 the product of exactly two primes
\\    both >= 11.
\\ 2. reducible = a matrix
\\    reducible[N,i]= integer divisibile by exactly the primes for which
\\            the representation associated to the N,i newform is reducible.
\\            This should be defined for the primes p with 11<=p< 100.
\\            It is 1 (not 0!) if there are no such reducible primes.

E=matrix(1000,30,i,j,0);
reducible=matrix(100,30,i,j,0);
\\ This is probably NOT complete, there may be other primes for
\\ which rho is reducible.
\\   The numbers there now are just got from looking at torsion points
\\   on elliptic curves.
reducible[11,1]=5;
reducible[17,1]=2;
reducible[19,1]=3;
reducible[23,1]=1;
reducible[29,1]=1;
reducible[31,1]=1;
reducible[37,1]=1;
reducible[37,2]=3;
reducible[41,1]=1;
reducible[43,1]=1;
reducible[43,2]=1;
reducible[47,1]=1;
reducible[53,1]=1;
reducible[53,2]=1;
reducible[59,1]=1;
reducible[61,1]=1;
reducible[61,2]=1;
reducible[67,1]=1;
reducible[67,2]=1;
reducible[67,3]=1;
reducible[71,1]=1;
reducible[71,2]=1;
reducible[73,1]=2;
reducible[73,2]=1;
reducible[73,3]=1;
reducible[79,1]=1;
reducible[79,2]=1;
reducible[83,1]=1;
reducible[83,2]=1;
reducible[89,1]=1;
reducible[89,2]=2;
reducible[89,3]=1;
reducible[97,1]=1;
reducible[97,2]=1;

\\ the prime levels < 100
E[11,1]=[[-2,-1,1,-2,1,4,-2,0,-1,0,7,3,-8,-6,8,-6,5,12,-7,-3,4,-10,-6,15,-7], x-1];
E[17,1]=[[-1,0,-2,4,0,-2,1,-4,4,6,4,-2,-6,4,0,6,-12,-10,4,-4,-6,12,-4,10,2], x-1];
E[19,1]=[[0,-2,3,-1,3,-4,-3,1,0,6,-4,2,-6,-1,-3,12,-6,-1,-4,6,-7,8,12,12,8], x-1];
E[23,1]=[[x,-2*x-1,2*x,2*x+2,-2*x-4,3,-2*x+2,-2,1,-3,6*x+3,-2*x,-4*x-1,0,-2*x-1,4*x-2,4*x+4,-8*x-2,2*x-4,2*x+11,-4*x+9,-8*x-6,2*x-10,-4*x-8,6*x+14], x^2+x-1];
E[27,1]=[[0,0,0,-1,0,5,0,-7,0,0,-4,11,0,8,0,0,0,-1,5,0,-7,17,0,0,-19], x-1];
E[29,1]=[[x,-x,-1,2*x+2,x+2,2*x+1,-2*x-4,6,-4*x-6,1,-5*x-2,-4,6*x+10,x+6,3*x+4,-6*x-5,4*x+6,2*x,-4*x-4,2*x-4,4,x,-4*x-2,6*x+2,-6*x-10], x^2+2*x-1];
E[31,1]=[[x,-2*x,1,2*x-3,2,-2*x,-2*x+4,-2*x+1,6*x-4,-2*x+6,1,-2,7,2*x-2,4*x-4,-4*x-4,2*x-1,10*x-8,8,-10*x+7,4*x+2,-6*x-2,-8*x-2,6*x+2,-8*x-3], x^2-x-1];
E[32,1]=[[0,0,-2,0,0,6,2,0,0,-10,0,-2,10,0,0,14,0,-10,0,0,-6,0,0,10,18], x-1];
E[37,1]=[[-2,-3,-2,-1,-5,-2,0,0,2,6,-4,-1,-9,2,-9,1,8,-8,8,9,-1,4,-15,4,4], x-1];
E[37,2]=[[0,1,0,-1,3,-4,6,2,6,-6,-4,1,-9,8,3,-3,12,8,-4,-15,11,-10,9,6,8], x-1];
E[41,1]=[[x,-1/2*x^2-x+3/2,-x-1,1/2*x^2+x+1/2,3/2*x^2+x-9/2,-x^2+3,-2,-3/2*x^2-x+13/2,-2*x^2-2*x+8,x^2+2*x-5,2*x+6,-3*x-3,1,x^2-5,3/2*x^2-3*x-13/2,x^2+2*x-1,-2*x^2-2*x+4,-x^2+2*x+5,-3/2*x^2-x+9/2,-3/2*x^2+x+25/2,4*x^2+x-15,1/2*x^2-x+17/2,2*x^2+4*x-6,-4*x^2-2*x+12,-2*x^2-4*x+8], x^3+x^2-5*x-1];
E[43,1]=[[-2,-2,-4,0,3,-5,-3,-2,-1,-6,-1,0,5,-1,4,-5,-12,2,-3,2,2,-8,15,-4,7], x-1];
E[43,2]=[[x,-x,-x+2,x-2,2*x-1,2*x+1,2*x+5,-2*x-2,-4*x+1,3*x,-3,-6*x,-2*x-1,1,6,-2*x+11,2*x-2,3*x+4,6*x+1,-2*x-6,3*x-12,-2*x+2,4*x+9,-3*x-6,-2*x-1], x^2-2];
E[47,1]=[[x,x^3-x^2-6*x+4,-4*x^3+2*x^2+20*x-10,3*x^3-x^2-16*x+7,2*x^3-2*x^2-10*x+6,-4*x^3+2*x^2+22*x-8,x^3+x^2-6*x,-2*x^3+10*x-2,-2*x^3+12*x-4,-2*x^3+2*x^2+10*x-10,4*x^3-2*x^2-22*x+8,3*x^3-x^2-14*x+8,-2*x+2,-2*x^3+2*x^2+14*x-8,1,5*x^3-3*x^2-30*x+13,7*x^3-x^2-36*x+11,-7*x^3+5*x^2+38*x-23,-12*x^3+6*x^2+60*x-26,7*x^3-3*x^2-34*x+12,-2*x^2-4*x+12,7*x^3-3*x^2-34*x+20,8*x^3-4*x^2-40*x+24,5*x^3+x^2-26*x+1,-9*x^3+7*x^2+46*x-21], x^4-x^3-5*x^2+5*x-1];
E[49,1]=[[1,0,0,0,4,0,0,0,8,2,0,-6,0,-12,0,-10,0,0,4,16,0,8,0,0,0], x-1];
E[53,1]=[[-1,-3,0,-4,0,-3,-3,-5,7,-7,4,5,6,-2,-2,-1,-2,-8,-12,1,-4,-1,-1,-14,1], x-1];
E[53,2]=[[x,-x^2-x+3,x^2-3,x^2-1,x^2+2*x-3,1,2*x-1,x+4,2*x^2-x-4,-3*x^2-4*x+4,-x^2+4*x+3,x^2+6*x-2,-2*x-4,-3*x^2-6*x+11,-2*x^2-4*x,1,4*x^2+2*x-8,3*x^2-2*x-11,3*x^2+6*x-3,-3*x^2-7*x+3,x^2+4*x+1,5*x^2+3*x-13,3*x+10,-4*x^2+4*x+10,5*x^2-12], x^3+x^2-3*x-1];
E[59,1]=[[x,-1/4*x^4+5/4*x^2-1/2*x,3/4*x^4+1/2*x^3-23/4*x^2-3*x+7,-1/2*x^4-1/2*x^3+7/2*x^2+3/2*x-3,-1/2*x^4-x^3+9/2*x^2+6*x-8,-1/2*x^4-x^3+9/2*x^2+6*x-6,x^4-8*x^2+9,3/4*x^4+3/2*x^3-23/4*x^2-8*x+9,-1/2*x^4+9/2*x^2+x-8,-x^4-1/2*x^3+8*x^2+1/2*x-7,x^4+x^3-9*x^2-3*x+14,-x^4+7*x^2-2,1/4*x^4+x^3-13/4*x^2-17/2*x+6,-x^3+5*x-2,-2*x-4,1/4*x^4+x^3-13/4*x^2-9/2*x+6,1,1/2*x^4+x^3-9/2*x^2-2*x+12,-1/2*x^4-2*x^3+13/2*x^2+11*x-16,-x^4-2*x^3+8*x^2+10*x-11,1/2*x^4+2*x^3-5/2*x^2-9*x,7/4*x^4+2*x^3-51/4*x^2-21/2*x+16,1/2*x^4+3*x^3-5/2*x^2-16*x+4,-3/2*x^4-x^3+19/2*x^2+4*x-4,-3/2*x^4-2*x^3+27/2*x^2+11*x-26], x^5-9*x^3+2*x^2+16*x-8];
E[61,1]=[[-1,-2,-3,1,-5,1,4,-4,-9,-6,0,8,5,-8,4,6,9,-1,-7,-8,-11,3,4,-4,-14], x-1];
E[61,2]=[[x,-x^2+3,x^2-2*x-2,x^2-x-3,x+4,-2*x^2+2*x+1,-x^2+2*x+1,3*x^2-7,-x+2,-x^2+2*x+3,-x^2-4*x+3,3*x^2-9,4*x^2-4*x-7,-x^2+2*x-3,-4*x^2+6*x+6,-2*x,-x^2-3*x+13,1,-x^2-5*x+7,x^2+4*x+1,3*x^2-4*x-6,-4*x^2-x+14,4*x^2-12,4*x^2-2*x-10,-4*x^2+8*x+10], x^3-x^2-3*x+1];
E[67,1]=[[2,-2,2,-2,-4,2,3,7,9,-5,-10,-1,0,-2,-1,10,9,-2,1,0,-7,-8,4,7,0], x-1];
E[67,2]=[[x,x+1,-2*x+1,-x,1,x,-2*x+2,x-5,4*x+1,4*x+7,6*x+3,x+2,5*x+5,-5*x-7,-x-4,6*x+3,-6,-3*x-6,1,-14*x-7,8,-7*x-9,-3*x+5,6*x-5,6*x+3], x^2+x-1];
E[67,3]=[[x,-x-3,-3,3*x+4,-2*x-3,-3*x-8,-2*x-6,3*x+5,-4*x-3,4*x+3,-1,3*x+4,-x-3,-3*x-3,x-6,-9,6,9*x+10,-1,2*x+9,-4,-9*x-17,7*x+3,2*x+3,-12*x-17], x^2+3*x+1];
E[71,1]=[[x,-x^2+3,-x-1,2*x^2+2*x-6,-2*x^2-2*x+6,4,2*x^2+2*x-6,-x^2-x+7,2*x^2-4,x^2+2*x-5,-2*x-2,-3*x^2-x+13,2*x^2+2*x-2,-2*x^2-3*x+1,2*x^2-10,-2*x,2*x^2+2*x-14,-4*x^2-6*x+16,4*x-4,1,x+1,-2*x^2-7*x+9,-x^2-x+11,-5*x^2-2*x+21,-2*x^2-4*x+8], x^3-5*x+3];
E[71,2]=[[x,-x,-x^2+x+5,-2*x,2*x^2-6,-2*x^2+4,2*x^2+2*x-6,x^2+2*x-2,-4,-2*x^2+x+10,4,-x^2-2,-4*x-2,-x^2-x+7,2*x^2+2*x-4,-4*x^2+6,2*x^2-2*x-8,-4*x+4,-2*x^2+2,1,x^2+3*x+7,-x^2+3*x+3,x^2-2*x-10,-2*x^2-x+6,2*x+8], x^3+x^2-4*x-3];
E[73,1]=[[1,0,2,2,-2,-6,2,8,4,2,-2,-6,6,-2,6,10,-6,-14,8,0,1,-4,-14,-6,-10], x-1];
E[73,2]=[[x,-x+1,-x,-1,x+3,x-1,2*x-3,-7,x+6,-4*x+3,2*x+2,-2*x+5,-6,-4*x+5,9,4*x-3,0,-x-4,-6*x+5,-3*x+3,1,3*x-1,-5*x+6,6*x+3,-3*x-1], x^2-x-3];
E[73,3]=[[x,-x-3,x,-3,-x-3,3*x+5,-6*x-9,1,x-6,-4*x-3,6*x+10,-6*x-11,4*x+6,-1,-4*x-9,8*x+15,4*x,3*x+8,6*x+17,x-9,-1,3*x-5,-3*x-6,-2*x+3,-3*x-9], x^2+3*x+1];
E[79,1]=[[-1,-1,-3,-1,-2,3,-6,4,2,-6,-10,-2,-10,4,7,8,-3,-4,8,15,2,-1,-6,-7,-19], x-1];
E[79,2]=[[x,-x^4+x^3+3*x^2-3*x+1,x^4-4*x^2-x+3,x^4-x^3-5*x^2+3*x+3,-x^4-2*x^3+6*x^2+7*x-6,x^3+x^2-2*x-3,-2*x^3+6*x+2,-3*x^3+3*x^2+10*x-8,2*x^4+x^3-9*x^2-4*x+6,2*x^3-2*x^2-4*x+6,-x^4+2*x^3+6*x^2-5*x-6,2*x^4-2*x^3-10*x^2+4*x+8,2*x^3-6*x+6,-2*x^4+2*x^3+8*x^2-6*x-6,x^4-5*x^3-5*x^2+17*x+5,-4*x^4+16*x^2+2*x-6,x^4+x^3-5*x^2-7*x+5,-2*x^4+4*x^3+2*x^2-14*x+10,3*x^3-3*x^2-14*x+4,x^4+x^3-x^2-3*x-5,-x^3-x^2+2*x,1,2*x^4+2*x^3-10*x^2-6*x+2,-2*x^4-x^3+11*x^2+4*x-1,x^4-6*x^3+2*x^2+19*x-13], x^5-6*x^3+8*x-1];
E[83,1]=[[-1,-1,-2,-3,3,-6,5,2,-4,-7,5,-11,-2,-8,0,6,5,5,-2,2,0,14,-1,0,-8], x-1];
E[83,2]=[[x,1/2*x^4-1/2*x^3-7/2*x^2+3/2*x+4,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-8*x-2,3/4*x^5-1/4*x^4-25/4*x^3+3/4*x^2+19/2*x,-1/4*x^5+1/4*x^4+5/4*x^3+1/4*x^2-4,x^3-5*x+2,1/4*x^5-3/4*x^4-7/4*x^3+17/4*x^2+7/2*x-4,3/2*x^5-1/2*x^4-23/2*x^3-1/2*x^2+16*x+4,-x^5+7*x^3+3*x^2-8*x-7,3/2*x^5-12*x^3-4*x^2+39/2*x+8,-3/4*x^5+3/4*x^4+23/4*x^3-21/4*x^2-8*x+8,-3/4*x^5+3/4*x^4+19/4*x^3-13/4*x^2-3*x+8,-x^5+9*x^3+x^2-16*x-1,1/2*x^5-1/2*x^4-9/2*x^3+3/2*x^2+10*x,-1/2*x^5+3/2*x^4+9/2*x^3-21/2*x^2-10*x+10,x^5-8*x^3+9*x,-5/4*x^5-1/4*x^4+39/4*x^3+11/4*x^2-29/2*x-4,3/2*x^5+2*x^4-14*x^3-16*x^2+55/2*x+16,-2*x^5-x^4+17*x^3+13*x^2-29*x-18,1/2*x^5+1/2*x^4-11/2*x^3-3/2*x^2+13*x-8,-1/2*x^5+5/2*x^4+7/2*x^3-31/2*x^2-5*x+12,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-10*x-4,1,-x^5-x^4+9*x^3+9*x^2-20*x-14,2*x^4-2*x^3-16*x^2+10*x+22], x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8];
E[89,1]=[[-1,-1,-1,-4,-2,2,3,-5,7,0,-9,-2,0,-7,-12,-3,4,6,12,-10,7,-6,12,-1,9], x-1];
E[89,2]=[[1,2,-2,2,-4,2,6,-2,2,-6,6,10,-6,2,12,-6,-10,-6,12,4,10,-12,-6,1,-18], x-1];
E[89,3]=[[x,-1/2*x^4+1/2*x^3+7/2*x^2-5/2*x-4,-x^2+4,1/2*x^4-4*x^2-x+13/2,-x^3+5*x+2,-x^4+x^3+8*x^2-5*x-11,x^4-x^3-7*x^2+4*x+4,1/2*x^3-1/2*x^2-3/2*x+9/2,x^4-3/2*x^3-13/2*x^2+17/2*x+11/2,-x^4+9*x^2-14,1/2*x^4-3/2*x^3-7/2*x^2+15/2*x+8,x^4-2*x^3-8*x^2+10*x+9,-x^4+x^3+8*x^2-3*x-11,-3/2*x^3+1/2*x^2+17/2*x-1/2,x^3-7*x-2,-x^4+7*x^2+x-8,1/2*x^4+x^3-3*x^2-8*x-1/2,-x^2+5,-x^4+9*x^2-2*x-14,-2*x^4+4*x^3+16*x^2-20*x-24,x^4-7*x^2+1,-x^4+2*x^3+8*x^2-10*x-1,1/2*x^4-4*x^2-3*x+1/2,1,-x^3-x^2+2*x+7], x^5+x^4-10*x^3-10*x^2+21*x+17];
E[97,1]=[[x,-x^2-3*x-2,2*x^2+5*x-1,-x^2-3*x-3,x-1,-x-2,x^2+4*x+1,-4*x^2-6*x+7,-3*x-8,-4*x^2-14*x-5,x^2-6,6*x^2+17*x+2,x^2+x-1,3*x^2+8*x+1,4*x^2+12*x-3,-2*x^2-13*x-10,2*x^2+7*x+9,-5*x^2-8*x+7,3*x^2+13*x+7,3*x^2+11*x-3,-x^2-3*x-1,4*x^2+7*x-8,-8*x-10,-5*x^2-14*x+2,-1], x^3+4*x^2+3*x-1];
E[97,2]=[[x,-x^2+x+2,-x+1,x^3-x^2-4*x+2,-2*x^3+4*x^2+3*x-3,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+3,-x^3+2*x^2+3*x-4,-x^3+4*x^2-1,x^3-2*x^2+x+2,3*x^3-7*x^2-3*x+7,-3*x^3+6*x^2+6*x-9,3*x^3-7*x^2-10*x+14,-x^2+5,x^3-4*x^2-x+12,-x^3-2*x^2+8*x+3,-2*x^3+11*x+1,4*x^3-9*x^2-8*x+11,3*x^3-x^2-10*x-6,-x^3-x^2+8*x+4,3*x^3-x^2-10*x-8,-3*x^3+14*x-1,2*x^3-4*x^2+2*x+4,x^3+3*x^2-11*x-11,1], x^4-3*x^3-x^2+6*x-1];

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\ this part is:
\\ 11<=N<=700, N a product of exactly two primes both >=11.
\\ E[N,ith eigenform]=[[a_2,...,a_97],  f(x)]
\\ where the a_i are defined over Q[x]/f(x).
\\ Next
\\ E[N,ith eigenform]=[[a_2,...,a_29],  f(x)]
\\ where 700<=N<=1000, N a product of exactly two primes both >=11.

E[143,1]=[[x,-x^3+3*x^2-3,-2*x^2+2*x+4,x^3-x^2-4*x+2,1,-1,-4*x^2+6*x+8,-3*x^3+7*x^2+2*x-3,x^3-x^2-2*x-2,-2*x^3+4*x^2+4*x-6,4*x^3-6*x^2-8*x+2,-4*x^2+8*x+8,x^3-3*x^2+4*x+2,-2*x+8,-2*x^3+2*x^2+6*x-4,-x^3+3*x^2-2*x-3,2*x^3-2*x^2-4*x-6,-2*x^3+4*x^2+6*x-8,-4*x^3+4*x^2+14*x,-4*x^3+14*x^2-4*x-18,3*x^3-3*x^2-12*x+7,2*x^3-8*x^2-4*x+12,-x^3+5*x^2-4*x-6,-2*x^3+6*x^2-2*x-2,-6*x^3+20*x^2-18], x^4-3*x^3-x^2+5*x+1];
E[143,2]=[[x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^5+2*x^4-8*x^3-14*x^2+12*x+15,2*x^5+2*x^4-17*x^3-13*x^2+26*x+14,-1,1,-2*x,-2*x^5-3*x^4+16*x^3+20*x^2-23*x-22,-3*x^5-4*x^4+25*x^3+29*x^2-38*x-33,2*x^5+2*x^4-16*x^3-14*x^2+22*x+18,3*x^5+4*x^4-26*x^3-28*x^2+44*x+29,-x^5-2*x^4+8*x^3+16*x^2-10*x-19,2*x^5+2*x^4-17*x^3-11*x^2+26*x+6,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-16,2*x^5+2*x^4-16*x^3-12*x^2+24*x+12,6*x^5+7*x^4-50*x^3-48*x^2+75*x+54,-5*x^5-6*x^4+42*x^3+38*x^2-66*x-33,4*x^5+6*x^4-32*x^3-42*x^2+44*x+50,x^5+2*x^4-8*x^3-16*x^2+12*x+23,-3*x^5-4*x^4+26*x^3+28*x^2-40*x-33,-x^4+8*x^2+x-4,2*x^5+2*x^4-16*x^3-14*x^2+22*x+20,2*x^4+x^3-15*x^2-6*x+12,x^5+2*x^4-10*x^3-14*x^2+20*x+9,-5*x^5-6*x^4+42*x^3+40*x^2-66*x-37], x^6-10*x^4+2*x^3+24*x^2-7*x-12];
E[143,3]=[[0,-1,-1,-2,-1,-1,-4,2,7,-2,-3,-11,10,-4,-4,2,-1,-2,-1,-9,-16,8,0,-7,-13], x-1];
E[187,1]=[[0,1,3,2,1,2,-1,2,-3,-6,-7,-7,12,-10,0,6,-3,8,-7,-9,2,8,6,15,11], x-1];
E[187,2]=[[2,x,-x,-x+1,1,0,-1,2*x-2,3*x+2,-x+7,x,-x+2,3*x-1,2,3*x-1,-x+5,-3,-2*x-6,-2*x-1,-3*x+2,3*x+7,6*x,-4*x-2,-6*x+1,-3*x-10], x^2+x-4];
E[187,3]=[[-x-1,x,-x-2,-2,1,x-5,1,-3*x-1,-x-2,x-3,-x+4,-x-2,2*x+6,-2,4*x-6,2*x-6,3,4*x-4,1,-x+2,-3*x+9,3*x-3,8*x+2,-4*x-5,x+14], x^2-3];
E[187,4]=[[-x^2-x+2,x,x^2+x-5,-2*x-2,-1,-3*x^2-3*x+8,-1,3*x^2+5*x-4,x-4,2*x^2+3*x-9,-3*x^2-5*x+3,2*x^2+7*x-4,-2*x-2,4*x^2+8*x-4,-x^2-4*x+5,-3*x^2-4*x-3,-5*x^2-4*x+14,2*x,-2*x^2-6*x-3,-3*x^2-3*x+7,x-3,-2*x^2-x+11,4*x^2+4*x-8,2*x^2-2*x-9,2*x^2+x-12], x^3+3*x^2-x-5];
E[187,5]=[[1/3*x^3-8/3*x+1/3,x,-1/3*x^3+8/3*x+2/3,0,-1,x^2-x-6,1,-2/3*x^3-x^2+13/3*x+16/3,-2/3*x^3+13/3*x+4/3,-1/3*x^3-x^2+8/3*x+26/3,x^3+2*x^2-6*x-16,2/3*x^3-13/3*x+14/3,-2*x+2,2*x^2-2*x-12,1/3*x^3-11/3*x+4/3,1/3*x^3-11/3*x+22/3,2/3*x^3+x^2-22/3*x-4/3,4/3*x^3-32/3*x+10/3,-5/3*x^3-x^2+37/3*x+16/3,-x^3+2*x^2+10*x-8,-5/3*x^3-3*x^2+40/3*x+46/3,x^3-x^2-6*x,8/3*x^3+2*x^2-58/3*x-28/3,7/3*x^3+3*x^2-47/3*x-62/3,-2/3*x^3+25/3*x+10/3], x^4-x^3-11*x^2+9*x+20];
E[187,6]=[[2,0,4,-5,-1,4,1,2,-2,-3,4,-2,-3,-2,3,9,-3,-10,7,2,-3,0,14,1,-10], x-1];
E[209,1]=[[x,-x-1,-1,-x-2,-1,3*x-2,x+2,-1,-3,-3*x-2,-x-5,5*x+3,-4*x+4,-4*x+6,2*x+6,-6*x+4,x-3,-5*x-4,-x-9,-x-11,-6*x+4,x-16,x+2,7*x-5,x+1], x^2-2];
E[209,2]=[[x,1/2*x^4-x^3-5/2*x^2+4*x+1,-1/2*x^3+7/2*x-1,-1/2*x^3+3/2*x+2,1,-1/2*x^4+7/2*x^2-2,x^4-x^3-5*x^2+3*x,-1,-x^4+x^3+8*x^2-5*x-9,3/2*x^4-x^3-17/2*x^2+2*x+6,-1/2*x^4+2*x^3+5/2*x^2-10*x+1,x^4-8*x^2+9,-5/2*x^4+3*x^3+27/2*x^2-13*x-4,-x^4+5/2*x^3+4*x^2-15/2*x+4,x^4-9*x^2+8,-x^4-x^3+9*x^2+5*x-14,-x^4-x^3+6*x^2+5*x-1,x^4-x^3-5*x^2+5*x-2,-5/2*x^4+3*x^3+25/2*x^2-9*x-1,-1/2*x^4+3*x^3+1/2*x^2-10*x+7,x^4-4*x^3-7*x^2+22*x+8,x^3-5*x+8,x^4-3/2*x^3-4*x^2+17/2*x-6,x^3-x^2-5*x-3,2*x^4-2*x^3-13*x^2+4*x+15], x^5-2*x^4-6*x^3+10*x^2+5*x-4];
E[209,3]=[[x,-1/2*x^4+7/2*x^2-x-2,1/2*x^5-9/2*x^3+7*x+3,-1/4*x^6+3*x^4-37/4*x^2+13/2,-1,-1/4*x^6-1/2*x^5+5/2*x^4+9/2*x^3-27/4*x^2-9*x+7/2,x^4-x^3-9*x^2+7*x+12,1,1/2*x^6-5*x^4+21/2*x^2+2*x,-1/2*x^4+9/2*x^2-x-9,1/4*x^6+1/2*x^5-5/2*x^4-9/2*x^3+23/4*x^2+9*x+7/2,-x^5-x^4+10*x^3+8*x^2-21*x-13,-1/4*x^6-1/2*x^5+5/2*x^4+7/2*x^3-27/4*x^2-2*x+3/2,-1/2*x^6-1/2*x^5+5*x^4+9/2*x^3-21/2*x^2-9*x-1,x^4-2*x^3-9*x^2+14*x+12,-x^5-x^4+9*x^3+9*x^2-16*x-18,2*x^5+x^4-19*x^3-6*x^2+37*x+9,x^4-x^3-9*x^2+9*x+14,1/4*x^6-1/2*x^5-5/2*x^4+9/2*x^3+15/4*x^2-9*x+7/2,-1/2*x^6-x^5+9/2*x^4+9*x^3-6*x^2-17*x-9,1/2*x^6+x^5-5*x^4-7*x^3+27/2*x^2+6*x-7,x^3-9*x+8,-1/2*x^6+1/2*x^5+7*x^4-11/2*x^3-57/2*x^2+12*x+27,-1/2*x^6-x^5+4*x^4+8*x^3-3/2*x^2-13*x-18,x^5+2*x^4-10*x^3-17*x^2+27*x+23], x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30];
E[209,4]=[[0,1,-3,-4,1,2,0,1,3,-6,-7,-7,0,-10,0,6,3,-10,11,15,8,-16,0,9,-1], x-1];
E[221,1]=[[1,2,2,2,-6,-1,1,4,6,-6,-2,2,-6,0,-4,14,4,2,0,-10,10,14,12,-18,2], x-1];
E[221,2]=[[-1,0,4,-2,6,-1,1,8,4,-6,-2,-8,0,4,0,-6,0,-10,-8,2,0,0,-4,-2,-4], x-1];
E[221,3]=[[x,-x+1,x-1,2,2,-1,1,-2*x+2,-x-3,-6,2*x,-x+5,-x+5,2*x-6,2*x-2,-2*x,2*x-2,2*x+4,4*x,4*x+2,3*x-7,x+7,4*x+4,-2,x-9], x^2-5];
E[221,4]=[[x,x-1,-2*x-1,-x-1,3*x,-1,-1,3*x-2,-2*x+2,2*x-3,-7,4*x+7,-4*x,-11,2*x+2,x-1,-2*x-5,3*x+3,-10*x-6,4*x+10,8*x-1,-4*x-3,-2*x-5,-3*x+6,-9*x-1], x^2+x-1];
E[221,5]=[[x,-x-1,-x^2-x+2,x-3,x^2-5,1,1,-x^2-3,4*x^2+2*x-10,-x^2+x+4,-3*x^2-x+6,x^2-5*x-4,-2*x^2+2*x+6,-3*x^2-x+10,-4*x^2-2*x+10,4*x^2+3*x-7,3*x^2-3*x-6,x-5,-2*x-6,2*x^2-2*x-12,5*x^2+3*x-12,3*x^2-x-16,-x^2+x+10,-x^2+2*x-3,2*x^2+7*x-5], x^3-4*x+1];
E[221,6]=[[x,-1/2*x^5+1/2*x^4+4*x^3-5/2*x^2-13/2*x+1,1/2*x^4-1/2*x^3-3*x^2+3/2*x+3/2,-x^3+5*x+2,-x^2+3,1,-1,x^5-x^4-8*x^3+6*x^2+13*x-1,1/2*x^5+1/2*x^4-4*x^3-7/2*x^2+13/2*x,-x^3+x^2+5*x-3,x^3+x^2-7*x-1,-x^5+1/2*x^4+17/2*x^3-2*x^2-29/2*x+1/2,-x^5+1/2*x^4+19/2*x^3-3*x^2-39/2*x+3/2,-x^4+5*x^2+2*x+2,-2*x^3+2*x^2+12*x-6,x^5-2*x^4-8*x^3+11*x^2+15*x-9,x^5-2*x^4-8*x^3+10*x^2+17*x,x^5-10*x^3-x^2+19*x+5,x^4+x^3-8*x^2-5*x+11,-x^4+x^3+8*x^2-9*x-9,-x^5+3/2*x^4+19/2*x^3-10*x^2-35/2*x+19/2,1/2*x^5+1/2*x^4-5*x^3-5/2*x^2+15/2*x-1,-x^5-x^4+9*x^3+10*x^2-20*x-9,x^5-x^4-6*x^3+4*x^2+5*x+3,-x^5+1/2*x^4+17/2*x^3-5*x^2-25/2*x+19/2], x^6-x^5-9*x^4+6*x^3+19*x^2-5*x-3];
E[221,7]=[[x,x+1,-1,-x-3,x+2,-1,1,-x+2,-2*x+2,9,2*x+5,-2*x-5,0,9,-2*x-2,x-5,-2*x+3,-x+9,-2*x-10,2,-2*x+3,2*x-3,-2*x-1,5*x-2,-5*x+1], x^2+x-5];
E[247,1]=[[x,2*x-2,2*x,-2,2*x-4,1,-4*x+5,-1,-2*x+5,4*x-2,2*x+1,4*x+1,-3,-2*x+5,-8*x+2,-4*x+6,-6*x+3,7,2*x-3,-4*x+4,2*x+8,-6*x-2,14,10,-17], x^2-x-1];
E[247,2]=[[x,-x^2-x+1,-x^2-2*x,2*x^2+3*x-4,x^2-3,1,x^2+4*x-3,1,-x^2-4*x-3,2*x^2+5*x-6,-4*x^2-3*x+8,5*x^2+6*x-7,-3*x^2-5*x+3,-3*x^2-6*x+8,-2*x^2-4*x+3,x^2+5*x-3,4*x^2+x-9,-6*x^2-12*x+2,-6*x^2-6*x+11,-2*x^2-2*x+9,3*x-4,3*x+5,3*x^2+6*x-9,-7*x^2-13*x+3,-8*x^2-12*x+14], x^3+3*x^2-3];
E[247,3]=[[x,-x^2+x+3,x^3-2*x^2-2*x+3,-x^4+2*x^3+3*x^2-4*x-1,x^4-4*x^3+9*x-2,-1,x^3-6*x+2,1,-2*x^4+3*x^3+10*x^2-8*x-10,-3*x^4+6*x^3+11*x^2-14*x-9,x^3-x^2-5*x+1,2*x^4-5*x^3-4*x^2+8*x+2,x^4-3*x^3-3*x^2+6*x+9,3*x^4-8*x^3-8*x^2+23*x-1,-x^4+3*x^3-5*x+7,-2*x^3+3*x^2+7*x-3,x^4-4*x^3+x^2+14*x-6,-x^4+x^3+4*x^2+3*x-6,4*x^4-12*x^3-6*x^2+24*x+1,-x^4+5*x^3-4*x^2-9*x+11,-x^4+2*x^3+5*x^2-8*x+3,-2*x^4+5*x^3+5*x^2-9*x-2,x^4-2*x^3-4*x^2+7*x+2,-6*x^4+14*x^3+21*x^2-37*x-13,-3*x^4+5*x^3+16*x^2-15*x-12], x^5-4*x^4+12*x^2-5*x-5];
E[247,4]=[[x,x^3-5*x,-x^3+4*x+1,-x^3-x^2+5*x+5,-x^2+5,1,x^2+1,-1,x^4-6*x^2-x+4,-x^4+x^3+6*x^2-6*x-4,x^4+x^3-6*x^2-4*x+2,-x^4+6*x^2-x-8,-x^3+2*x^2+7*x-2,x^3-6*x-1,x^4-x^3-4*x^2+5*x-1,2*x^4-x^3-10*x^2+3*x,x^4-7*x^2-2*x+8,x^4-2*x^3-5*x^2+7*x-1,-x^3+x^2+8*x-6,-2*x^4+x^3+9*x^2-2*x,-2*x^4-x^3+11*x^2+7*x-9,x^4-2*x^3-3*x^2+6*x-10,-3*x^4+2*x^3+18*x^2-7*x-16,3*x^3-2*x^2-13*x+2,-2*x^4+14*x^2-2*x-12], x^5-9*x^3-x^2+19*x+4];
E[247,5]=[[x,-x^3-2*x^2+3*x+4,x^3+2*x^2-4*x-7,x^3+x^2-5*x-3,x^2+2*x-3,-1,x^2-7,-1,-3*x^3-6*x^2+14*x+16,2*x^3+2*x^2-9*x-4,2*x^3+6*x^2-7*x-14,-5*x^3-10*x^2+18*x+24,-x^3-2*x^2+3*x-2,x^3-4*x-1,-2*x^3-4*x^2+6*x+3,-5*x^3-8*x^2+17*x+16,3*x^3+7*x^2-13*x-16,-x^3-x^2+6*x+11,5*x^3+7*x^2-16*x-10,-3*x^3-x^2+16*x+4,3*x^3+5*x^2-13*x-17,5*x^3+7*x^2-23*x-18,-x^3-4*x^2-2*x+4,-x^3-2*x^2+3*x-2,-6*x^3-10*x^2+24*x+20], x^4+3*x^3-2*x^2-9*x-4];
E[253,1]=[[x,-x^2+x+3,x^2-2*x,-x^2+x+3,-1,x^2-3*x-1,-x^2+2*x+2,2*x^2-4*x+1,1,-x^2-3*x+6,3*x^2-4*x-5,-3*x^2+6*x-3,-3*x^2+6*x+7,x^2+2*x-5,2*x^2-6*x+2,-2*x^2+5*x+7,-4*x^2+6*x+3,x^2+4*x-9,-6*x^2+14*x+6,6*x^2-5*x-19,5*x-8,-x+4,6*x^2-10*x-1,-2*x^2+11*x+2,-x^2-x+1], x^3-3*x^2+3];
E[253,2]=[[x,-x^2-x+1,x^2+2*x-4,-x^2-3*x+1,1,x^2+x-3,x^2-6,2*x-1,1,x^2+3*x+2,-5*x^2-8*x+11,x^2+2*x-7,5*x^2+6*x-11,-3*x^2-6*x+9,-2*x^2-2*x+2,2*x^2+3*x-3,-2*x-9,x^2-7,-2*x^2-2*x+2,-2*x^2-3*x-1,-4*x^2-7*x+16,7*x+4,-11,-2*x^2+x,-x^2-3*x-9], x^3+x^2-4*x+1];
E[253,3]=[[x,-x^4-3*x^3+3*x^2+10*x+1,2*x^4+5*x^3-8*x^2-18*x-1,-2*x^4-4*x^3+9*x^2+13*x-3,-1,-x^4-3*x^3+3*x^2+10*x-1,-x^3-2*x^2+6*x+5,x^4+3*x^3-2*x^2-11*x-7,-1,2*x^4+4*x^3-7*x^2-11*x-4,-2*x^4-5*x^3+6*x^2+18*x+6,-x^4-4*x^3+2*x^2+17*x+8,-6*x^4-15*x^3+20*x^2+48*x+8,5*x^4+12*x^3-18*x^2-41*x-8,3*x^4+7*x^3-12*x^2-25*x-8,-x^3-x^2+x,-7*x^4-19*x^3+22*x^2+65*x+13,x^4+2*x^3-4*x^2-3*x+6,-4*x^4-10*x^3+12*x^2+30*x+8,3*x^4+10*x^3-7*x^2-40*x-14,2*x^4+7*x^3-5*x^2-25*x-13,-3*x^4-8*x^3+13*x^2+30*x-3,-7*x^4-17*x^3+26*x^2+55*x-5,3*x^4+8*x^3-7*x^2-24*x-9,-2*x^3-x^2+9*x+5], x^5+4*x^4-14*x^2-13*x-1];
E[253,4]=[[x,x^4-x^3-5*x^2+4*x+3,-x^3+4*x+1,-x^5+6*x^3+x^2-6*x-2,1,-2*x^5+3*x^4+11*x^3-15*x^2-6*x+5,2*x^5-4*x^4-9*x^3+20*x^2-2*x-7,4*x^5-5*x^4-21*x^3+22*x^2+11*x-3,-1,-2*x^5+14*x^3+3*x^2-21*x-6,x^5-7*x^3+2*x^2+9*x-7,4*x^5-5*x^4-22*x^3+24*x^2+15*x-8,-5*x^5+6*x^4+29*x^3-28*x^2-25*x+7,-2*x^5+3*x^4+12*x^3-16*x^2-15*x+12,-x^5+x^4+7*x^3-6*x^2-6*x+5,3*x^5-2*x^4-17*x^3+9*x^2+12*x-3,-x^4+x^3+4*x^2-3*x+7,-4*x^5+3*x^4+22*x^3-14*x^2-11*x,-4*x^4+2*x^3+20*x^2-10*x-4,-4*x^5+3*x^4+22*x^3-15*x^2-12*x+10,4*x^5-4*x^4-23*x^3+19*x^2+17*x-7,-x^5-3*x^4+6*x^3+15*x^2-x-8,-x^4+3*x^3+6*x^2-15*x+3,5*x^5-5*x^4-28*x^3+21*x^2+17*x+4,-3*x^5+8*x^4+16*x^3-39*x^2-8*x+14], x^6-3*x^5-4*x^4+16*x^3-3*x^2-10*x+1];
E[299,1]=[[-x-1,x+1,x,-1,-x-3,-1,-3*x-5,-2*x-5,-1,3*x+5,3*x+5,2*x,-2*x+3,3*x+1,-3*x,4*x+3,5,4*x+1,-4*x-5,6*x+9,-x+4,x,9*x+18,6*x+8,6*x-3], x^2+3*x+1];
E[299,2]=[[-x+1,-x+1,x,1,-x+3,1,-x+3,2*x-7,-1,x-7,-x+7,2*x+4,2*x-7,-3*x+9,x,7,-4*x+11,5,5,2*x+3,-x+12,-x,5*x-6,2*x+4,-2*x+3], x^2-3*x-3];
E[299,3]=[[x-1,0,x,-x+2,-x-2,1,2,-x+6,-1,-2*x+6,-2*x+8,x,10,-2*x+8,-4,4*x-2,-2*x+4,-10,x-6,-2*x-8,-2*x-2,4*x,5*x-6,-3*x+4,3*x+8], x^2-2*x-4];
E[299,4]=[[-x-1,-x-1,x,2*x-1,x+1,1,-3*x-3,-4*x-1,1,-3*x-5,-x-7,-2*x-8,6*x-3,-x+3,9*x+2,2*x+9,-1,2*x-9,-6*x-5,-6*x-1,3*x-6,11*x+4,-3*x+2,-6*x+4,1], x^2+x-1];
E[299,5]=[[7325538/647051513*x^9-26382263/1294103026*x^8-529610753/1294103026*x^7+854214131/1294103026*x^6+3111048928/647051513*x^5-8760561717/1294103026*x^4-26566626335/1294103026*x^3+28789537995/1294103026*x^2+13298939618/647051513*x+285982256/647051513,11105665/647051513*x^9-8975947/647051513*x^8-408454909/647051513*x^7+261031726/647051513*x^6+4952890973/647051513*x^5-2339136221/647051513*x^4-23039305101/647051513*x^3+4878757863/647051513*x^2+31977328284/647051513*x+13571719580/647051513,x,8138414/647051513*x^9-381664/647051513*x^8-338063888/647051513*x^7+14284585/647051513*x^6+4791240438/647051513*x^5-289272366/647051513*x^4-26563820741/647051513*x^3-35565023/647051513*x^2+43050679639/647051513*x+19161391516/647051513,4484362/647051513*x^9+7801185/647051513*x^8-239545786/647051513*x^7-150080751/647051513*x^6+4092126821/647051513*x^5-299353465/647051513*x^4-24398516457/647051513*x^3+9009731123/647051513*x^2+30359650107/647051513*x+11549732256/647051513,-1,-21122508/647051513*x^9+17765672/647051513*x^8+813303675/647051513*x^7-567740890/647051513*x^6-10485794070/647051513*x^5+5806555898/647051513*x^4+52141081291/647051513*x^3-15933816984/647051513*x^2-74492005626/647051513*x-29936657158/647051513,-16679710/647051513*x^9+5379568/647051513*x^8+642761641/647051513*x^7-185798839/647051513*x^6-8178006687/647051513*x^5+2444187110/647051513*x^4+38709257322/647051513*x^3-9240749183/647051513*x^2-46079550705/647051513*x-18739707548/647051513,1,1276536/647051513*x^9-17334419/647051513*x^8+37765472/647051513*x^7+433938419/647051513*x^6-1838295928/647051513*x^5-2210788701/647051513*x^4+15344068534/647051513*x^3-3014715375/647051513*x^2-20841564504/647051513*x-6316030514/647051513,-21350925/647051513*x^9+10707996/647051513*x^8+849781009/647051513*x^7-394808643/647051513*x^6-11298848687/647051513*x^5+5148631852/647051513*x^4+56492269481/647051513*x^3-20530556247/647051513*x^2-73149167020/647051513*x-22590535422/647051513,3218540/647051513*x^9+20220368/647051513*x^8-169499079/647051513*x^7-534659512/647051513*x^6+2734106374/647051513*x^5+2946244102/647051513*x^4-14322952806/647051513*x^3+3738434480/647051513*x^2+6621445541/647051513*x-2299916752/647051513,14861662/647051513*x^9-21773485/647051513*x^8-550869862/647051513*x^7+725355582/647051513*x^6+6723215274/647051513*x^5-7761449963/647051513*x^4-30781309146/647051513*x^3+25531444696/647051513*x^2+37919505344/647051513*x+8979131942/647051513,-5283822/647051513*x^9+1317306/647051513*x^8+203757539/647051513*x^7-116855622/647051513*x^6-2504484212/647051513*x^5+2636994486/647051513*x^4+10245403957/647051513*x^3-16462083052/647051513*x^2-2795409452/647051513*x+7618862968/647051513,901969/647051513*x^9+12943391/647051513*x^8-36132561/647051513*x^7-404767993/647051513*x^6+391272697/647051513*x^5+3533374733/647051513*x^4-553033209/647051513*x^3-8456377199/647051513*x^2-7247315266/647051513*x+3611583358/647051513,3358558/647051513*x^9-4276703/647051513*x^8-153682262/647051513*x^7+234091850/647051513*x^6+2240491704/647051513*x^5-4016334219/647051513*x^4-10142825532/647051513*x^3+22277755704/647051513*x^2-2089415256/647051513*x-10477262790/647051513,-17552800/647051513*x^9+44774318/647051513*x^8+610338347/647051513*x^7-1434170475/647051513*x^6-6836480326/647051513*x^5+14092744028/647051513*x^4+28007075487/647051513*x^3-41873815173/647051513*x^2-29782347244/647051513*x-2198739142/647051513,-11106526/647051513*x^9+12994531/647051513*x^8+399609712/647051513*x^7-381557028/647051513*x^6-4665891990/647051513*x^5+3273117101/647051513*x^4+20373211954/647051513*x^3-6407319318/647051513*x^2-26257249656/647051513*x-7394987238/647051513,-10245260/647051513*x^9+1732049/647051513*x^8+441326100/647051513*x^7-133776917/647051513*x^6-6345957714/647051513*x^5+2809495631/647051513*x^4+33452964380/647051513*x^3-15004746871/647051513*x^2-40524787223/647051513*x-15489330972/647051513,16879812/647051513*x^9-23983462/647051513*x^8-638707077/647051513*x^7+694343335/647051513*x^6+8165966868/647051513*x^5-5664784120/647051513*x^4-41581727929/647051513*x^3+8673168015/647051513*x^2+69870168408/647051513*x+32695974658/647051513,24878505/647051513*x^9-30563210/647051513*x^8-955718628/647051513*x^7+1032064746/647051513*x^6+12256118371/647051513*x^5-11228869640/647051513*x^4-59883085336/647051513*x^3+37233555330/647051513*x^2+80434182686/647051513*x+18873554390/647051513,-54878506/647051513*x^9+33027059/647051513*x^8+2096404845/647051513*x^7-1049045272/647051513*x^6-26658639024/647051513*x^5+11166928761/647051513*x^4+129824867595/647051513*x^3-32555788050/647051513*x^2-179108674954/647051513*x-66536449488/647051513,13585690/647051513*x^9+22237505/647051513*x^8-616659291/647051513*x^7-680245723/647051513*x^6+9469215824/647051513*x^5+5752749333/647051513*x^4-55901875141/647051513*x^3-16413500523/647051513*x^2+93591465865/647051513*x+45103175832/647051513,-3194807/647051513*x^9-2481977/647051513*x^8+115713552/647051513*x^7+46710408/647051513*x^6-1261704135/647051513*x^5+457958929/647051513*x^4+3492765697/647051513*x^3-7982500694/647051513*x^2+9284317385/647051513*x+8053164356/647051513,39780870/647051513*x^9-28130822/647051513*x^8-1584437439/647051513*x^7+1104872224/647051513*x^6+21050672066/647051513*x^5-14993323400/647051513*x^4-104297180117/647051513*x^3+64200153406/647051513*x^2+125373910331/647051513*x+26617583164/647051513], x^10-3*x^9-37*x^8+112*x^7+443*x^6-1401*x^5-1817*x^4+6424*x^3+1108*x^2-6140*x-2372];
E[299,6]=[[-x+1,x,x,-2*x+2,x+2,1,-6,x+2,-1,2,4*x-4,2*x+4,-6,-2*x,-8,2*x+6,-8,-2*x+6,-3*x-2,4,-6*x+6,-2*x-8,-3*x-2,-6*x+8,3*x-8], x^2-x-4];
E[299,7]=[[0,-x^2+2*x+4,x,-x^2+2*x+5,x^2-x-3,1,2*x,-x^2+x+5,-1,2*x^2-2*x-6,-4,x^2-4*x-1,2*x^2-6*x-6,2*x^2-6*x-10,-2*x^2+6*x+12,-2*x-6,-2*x-6,4*x^2-8*x-16,-2*x^2+3*x+14,2*x^2-4*x-18,2*x^2-2*x-4,-2*x^2+2*x+14,-4*x^2+5*x+18,x^2+4*x-9,2*x^2-7*x-4], x^3-x^2-7*x-3];
E[319,1]=[[2,-3,1,4,-1,6,4,-2,3,1,-7,-11,4,-4,8,2,-3,2,-15,-7,2,6,-6,9,-17], x-1];
E[319,2]=[[x,-x,-2*x^2+x+2,2*x^2-2*x-5,1,x^2+x-4,-x^2+x-2,x-4,-4*x^2+4*x+8,1,3*x^2-2*x-9,4*x^2-x-3,-x^2+2*x-3,-5*x^2+x+13,-2*x^2+x+3,-x^2-5*x,-2*x^2-3*x+4,4*x^2-8*x-11,x^2+4*x+3,-x^2-3*x+10,-2*x^2+5*x+1,-5*x^2+7*x+15,7*x^2-x-18,x^2+x-14,-6*x^2+x+10], x^3-3*x-1];
E[319,3]=[[x,-x^3-2*x^2+2*x+1,x^3+2*x^2-2*x-3,x^3+2*x^2-3*x-2,-1,-2*x^3-5*x^2+x+4,3*x^2+5*x-6,x,-x^3-4*x^2-x+5,-1,-x^2+2*x+1,2*x^3+2*x^2-5*x-1,-x^3-x^2+x-10,5*x^3+11*x^2-6*x-8,-x^3+6*x-4,3*x^2+7*x,3*x^3+6*x^2-8*x-11,-3*x^3-4*x^2+13*x+4,2*x^3+9*x^2-2*x-15,x^3+7*x^2+6*x-15,-x^3-2*x^2-4*x-2,-3*x^3-9*x^2+10,-7*x^2-11*x+12,-5*x^3-13*x^2+10*x+9,-x^3-8*x^2-8*x+15], x^4+2*x^3-3*x^2-3*x+2];
E[319,4]=[[x,-x^4+x^3+5*x^2-3*x-3,x^5-x^4-6*x^3+4*x^2+7*x-1,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,1,x^5-2*x^4-4*x^3+6*x^2+2*x+1,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3,-3*x^6+8*x^5+13*x^4-38*x^3-6*x^2+28*x+1,x^6-4*x^5-2*x^4+19*x^3-7*x^2-15*x+4,-1,x^6-4*x^5-x^4+17*x^3-13*x^2-6*x+7,-x^6+5*x^5+x^4-25*x^3+9*x^2+20*x,-x^6+x^5+7*x^4-4*x^3-12*x^2+7,-x^6+3*x^5+4*x^4-15*x^3+x^2+15*x-4,-3*x^6+7*x^5+13*x^4-33*x^3-5*x^2+28*x-2,x^6-3*x^5-4*x^4+15*x^3-x^2-15*x+7,x^6-6*x^5-x^4+36*x^3-10*x^2-46*x+1,3*x^6-10*x^5-8*x^4+47*x^3-13*x^2-33*x+5,x^6-3*x^5-5*x^4+16*x^3+4*x^2-14*x-3,-2*x^6+2*x^5+14*x^4-11*x^3-25*x^2+16*x+9,x^6-3*x^5-x^4+11*x^3-15*x^2+2*x+12,2*x^6-6*x^5-8*x^4+29*x^3+3*x^2-24*x,-2*x^6+9*x^5+4*x^4-46*x^3+12*x^2+44*x+3,-x^5+4*x^4+4*x^3-16*x^2-4*x+7,-x^4+x^3+3*x^2-x+3], x^7-3*x^6-4*x^5+15*x^4+x^3-14*x^2+1];
E[319,5]=[[x,-1/9*x^7-1/9*x^6+16/9*x^5+10/9*x^4-26/3*x^3-25/9*x^2+113/9*x+14/9,4/9*x^7-2/9*x^6-49/9*x^5+17/9*x^4+56/3*x^3-26/9*x^2-143/9*x+13/9,-2/9*x^7-1/3*x^6+3*x^5+34/9*x^4-12*x^3-98/9*x^2+13*x+29/9,-1,2/3*x^7-2/9*x^6-73/9*x^5+16/9*x^4+86/3*x^3-2*x^2-254/9*x-13/9,1/3*x^6-1/3*x^5-8/3*x^4+3*x^3+3*x^2-17/3*x+11/3,1/9*x^7+2/9*x^6-20/9*x^5-8/3*x^4+37/3*x^3+64/9*x^2-148/9*x-2/3,-4/9*x^7-5/9*x^6+50/9*x^5+6*x^4-61/3*x^3-139/9*x^2+181/9*x+10/3,1,1/9*x^7-4/3*x^5+4/9*x^4+4*x^3-23/9*x^2-2/3*x+14/9,7/9*x^7-31/3*x^5-8/9*x^4+40*x^3+55/9*x^2-116/3*x-19/9,2/9*x^7+1/3*x^6-3*x^5-43/9*x^4+12*x^3+170/9*x^2-14*x-83/9,-1/9*x^7+7/3*x^5+5/9*x^4-14*x^3-13/9*x^2+65/3*x-59/9,-1/3*x^7+5*x^5+2/3*x^4-22*x^3-13/3*x^2+24*x+7/3,10/9*x^7-5/9*x^6-127/9*x^5+38/9*x^4+161/3*x^3-29/9*x^2-533/9*x-53/9,-7/9*x^7+4/9*x^6+86/9*x^5-10/3*x^4-103/3*x^3+38/9*x^2+316/9*x+2/3,5/9*x^7-4/9*x^6-62/9*x^5+31/9*x^4+70/3*x^3-19/9*x^2-151/9*x-88/9,-1/9*x^6-5/9*x^5+23/9*x^4+16/3*x^3-40/3*x^2-100/9*x+109/9,1/3*x^7+1/9*x^6-40/9*x^5-11/9*x^4+50/3*x^3+11/3*x^2-134/9*x-4/9,-7/9*x^7+31/3*x^5+8/9*x^4-42*x^3-37/9*x^2+158/3*x-35/9,2/3*x^7-8*x^5-4/3*x^4+25*x^3+29/3*x^2-14*x-38/3,-2/9*x^6-1/9*x^5+28/9*x^4+2/3*x^3-32/3*x^2-20/9*x+11/9,-8/9*x^7+35/3*x^5+4/9*x^4-44*x^3-32/9*x^2+124/3*x+95/9,-5/9*x^7+1/3*x^6+16/3*x^5-26/9*x^4-10*x^3+61/9*x^2-19/3*x-28/9], x^8-13*x^6-x^5+50*x^4+7*x^3-54*x^2-5*x+1];
E[323,1]=[[x,x+1,2,-2*x,-2,2,-1,1,-2*x,x+5,x-3,-2*x+6,2*x+6,3*x-5,x+1,10,-2*x-6,-4*x-2,-2*x+2,-8,-4*x+2,4*x+8,5*x+9,-2,3*x+3], x^2+x-4];
E[323,2]=[[x,x^3-2*x^2-4*x+5,-x^3+x^2+3*x-4,-x^3+2*x^2+3*x-8,-2*x^3+4*x^2+7*x-11,-2*x^3+x^2+7*x-4,1,1,3*x^3-8*x^2-9*x+21,2*x^3-x^2-7*x-1,3*x^3-4*x^2-7*x+10,x^3+2*x^2-3*x-12,-x^3+5*x^2-x-13,-x^3-3*x^2+6*x+6,3*x^3-2*x^2-10*x+4,x^3-6*x^2-x+12,-6*x^3+7*x^2+18*x-13,-5*x^3+3*x^2+16*x-8,-3*x^3+6*x^2+8*x-18,-x^3+5*x^2-2*x-15,3*x^3-5*x^2-10*x+7,-3*x^3+6*x^2+14*x-13,4*x^3+3*x^2-15*x-9,x^3-5*x^2+19,5*x^3-7*x^2-21*x+8], x^4-6*x^2-x+7];
E[323,3]=[[x,-x^3-2*x^2+2*x+1,x^4+3*x^3-x^2-6*x-1,x^3+2*x^2-x-2,-2*x^4-6*x^3+2*x^2+9*x-1,-x^2-x-2,-1,-1,x^4+5*x^3+4*x^2-8*x-4,-3*x^4-10*x^3+5*x^2+24*x-4,x^3-2*x^2-9*x+4,4*x^4+11*x^3-8*x^2-21*x+2,-x^3-3*x^2+5*x+7,-2*x^4-7*x^3+5*x^2+20*x-6,5*x^4+15*x^3-6*x^2-29*x+3,x^3-2*x^2-9*x+4,2*x^4+6*x^3-5*x^2-14*x+7,-2*x^4-5*x^3+7*x^2+12*x-12,3*x^4+7*x^3-10*x^2-21*x+5,-3*x^4-7*x^3+9*x^2+19*x,x^4+7*x^3+3*x^2-19*x-2,4*x^4+11*x^3-6*x^2-16*x+3,5*x^4+12*x^3-11*x^2-20*x+2,-x^4-5*x^3-x^2+9*x-12,-5*x^4-17*x^3-x^2+26*x+3], x^5+3*x^4-2*x^3-7*x^2+2*x+1];
E[323,4]=[[x,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+6*x-1/2,-x^4+x^3+7*x^2-4*x-9,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+7*x+1/2,1/2*x^5-1/2*x^4-5*x^3+5/2*x^2+11*x+3/2,-x^5+x^4+8*x^3-4*x^2-13*x-1,-1,1,-1/2*x^5-1/2*x^4+4*x^3+11/2*x^2-8*x-21/2,x^4-9*x^2+12,1/2*x^5-1/2*x^4-4*x^3+9/2*x^2+5*x-11/2,-x^3+3*x+2,x^5-x^4-7*x^3+6*x^2+7*x-6,x^5-x^4-7*x^3+6*x^2+6*x-1,-x^5+2*x^4+5*x^3-13*x^2+x+18,x^3+2*x^2-5*x-12,-2*x^5+18*x^3+5*x^2-36*x-21,x^3-x^2-6*x+8,3*x^4-3*x^3-24*x^2+17*x+35,1/2*x^5+1/2*x^4-6*x^3-5/2*x^2+17*x-3/2,x^4-x^3-11*x^2+7*x+26,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+8*x-5/2,-x^5+2*x^4+6*x^3-8*x^2-4*x-3,2*x^5+x^4-19*x^3-13*x^2+41*x+30,-2*x^5+x^4+19*x^3-3*x^2-40*x-7], x^6-2*x^5-9*x^4+15*x^3+23*x^2-23*x-21];
E[323,5]=[[x,1/2*x^6-1/2*x^5-5*x^4+7/2*x^3+13*x^2-7/2*x-5,x^6-10*x^4+26*x^2+x-10,-x^3+5*x,-x^6+11*x^4+x^3-33*x^2-6*x+18,-x^2-x+6,1,-1,-x^4+x^3+6*x^2-4*x-4,3/2*x^6-1/2*x^5-15*x^4+7/2*x^3+39*x^2-5/2*x-15,-3/2*x^6+1/2*x^5+14*x^4-9/2*x^3-32*x^2+11/2*x+13,-3*x^6+x^5+30*x^4-6*x^3-78*x^2+36,-3*x^6+2*x^5+31*x^4-14*x^3-82*x^2+12*x+32,-2*x^6+x^5+19*x^4-7*x^3-44*x^2+4*x+13,x^6-x^5-9*x^4+8*x^3+20*x^2-12*x-9,-3*x^6+x^5+32*x^4-6*x^3-90*x^2+38,-x^6+9*x^4-x^3-20*x^2+7*x+6,-x^6-x^5+10*x^4+8*x^3-29*x^2-11*x+22,3*x^6-2*x^5-32*x^4+12*x^3+89*x^2-4*x-34,2*x^6-21*x^4-x^3+59*x^2+7*x-30,-4*x^6+2*x^5+41*x^4-13*x^3-107*x^2+5*x+42,-x^6+7*x^4-7*x^2-3*x-6,-2*x^6+x^5+18*x^4-8*x^3-40*x^2+8*x+13,2*x^6-19*x^4+x^3+45*x^2-x-18,5/2*x^6-1/2*x^5-26*x^4+7/2*x^3+70*x^2+9/2*x-25], x^7-x^6-10*x^5+9*x^4+26*x^3-19*x^2-12*x+8];
E[323,6]=[[0,3,-2,4,-2,6,-1,1,0,-9,-9,2,-6,-1,-3,2,14,-6,-14,16,-2,8,-3,2,-7], x-1];
E[341,1]=[[-x-1,-1,x,3*x+5,1,-4*x-7,-2*x-5,-2*x-8,-2*x-4,0,1,2*x+1,5*x+12,x-7,5*x+3,-5*x-6,2*x+3,-5*x-13,-7,-5*x-13,6*x+13,-5,-x+10,-7*x-13,-8*x-4], x^2+3*x+1];
E[341,2]=[[-1/4*x^3+1/2*x^2+3/2*x-7/4,1/2*x^3-4*x-5/2,x,-1/2*x^3+3*x+1/2,-1,-1/2*x^3+4*x+1/2,-3/2*x^3+10*x+11/2,1/2*x^3-4*x-11/2,3/2*x^3-x^2-11*x-3/2,-1/2*x^3+x^2+x-11/2,-1,2*x^3-x^2-11*x-2,-x^3+7*x+3,-7/2*x^3+3*x^2+22*x-3/2,-x^3+2*x^2+3*x-4,2*x^3-3*x^2-8*x+11,7/2*x^3-x^2-23*x-17/2,-3/2*x^3+3*x^2+8*x-19/2,-x^3+x^2+7*x-3,-3/2*x^3+9*x+15/2,4*x^3-x^2-23*x-10,9/2*x^3-4*x^2-28*x-1/2,4*x^3-3*x^2-26*x-3,-1/2*x^3-x^2+11/2,-3*x^2-x+13], x^4+x^3-8*x^2-11*x+1];
E[341,3]=[[83/2282*x^7+361/1141*x^6-235/1141*x^5-5625/1141*x^4-8047/2282*x^3+24985/2282*x^2+7491/1141*x-3786/1141,-20/1141*x^7-64/1141*x^6+127/1141*x^5+855/1141*x^4+2104/1141*x^3-1374/1141*x^2-4160/1141*x+2182/1141,x,-79/2282*x^7-481/2282*x^6+901/2282*x^5+3828/1141*x^4+1693/2282*x^3-9959/1141*x^2-3652/1141*x+13297/2282,-1,-243/2282*x^7-617/1141*x^6+2627/2282*x^5+9045/1141*x^4+6623/2282*x^3-31413/2282*x^2-12891/2282*x+10195/2282,247/2282*x^7+1475/2282*x^6-1098/1141*x^5-10842/1141*x^4-12977/2282*x^3+18240/1141*x^2+20569/2282*x-2235/1141,-229/2282*x^7-961/2282*x^6+1212/1141*x^5+6749/1141*x^4+8345/2282*x^3-8836/1141*x^2-21389/2282*x+1139/1141,4/1141*x^7+241/1141*x^6+431/1141*x^5-3594/1141*x^4-6354/1141*x^3+6208/1141*x^2+8819/1141*x-2262/1141,-411/2282*x^7-1114/1141*x^6+5063/2282*x^5+17200/1141*x^4+1933/2282*x^3-75359/2282*x^2-11323/2282*x+18483/2282,1,5/163*x^7+16/163*x^6+9/163*x^5-173/163*x^4-1178/163*x^3-227/163*x^2+2344/163*x+677/163,-4/163*x^7-78/163*x^6-105/163*x^5+1149/163*x^4+2116/163*x^3-1807/163*x^2-2788/163*x+306/163,-29/1141*x^7-321/1141*x^6+13/1141*x^5+4948/1141*x^4+4420/1141*x^3-9637/1141*x^2-1468/1141*x+3278/1141,-268/1141*x^7-1314/1141*x^6+3071/1141*x^5+19444/1141*x^4+4689/1141*x^3-35983/1141*x^2-6681/1141*x+7788/1141,-12/1141*x^7+418/1141*x^6+989/1141*x^5-6333/1141*x^4-10604/1141*x^3+9901/1141*x^2+8914/1141*x-60/1141,160/1141*x^7+512/1141*x^6-2157/1141*x^5-7981/1141*x^4+283/1141*x^3+22402/1141*x^2+8178/1141*x-11751/1141,585/2282*x^7+3013/2282*x^6-7423/2282*x^5-22916/1141*x^4+1213/2282*x^3+47764/1141*x^2+367/1141*x-19895/2282,18/163*x^7+188/163*x^6+65/163*x^5-2807/163*x^4-4143/163*x^3+5116/163*x^2+6352/163*x-2029/163,-422/1141*x^7-2035/1141*x^6+5304/1141*x^5+31162/1141*x^4+1721/1141*x^3-68470/1141*x^2-18175/1141*x+19569/1141,-291/2282*x^7-703/2282*x^6+1580/1141*x^5+4366/1141*x^4+12129/2282*x^3-2180/1141*x^2-38849/2282*x-157/1141,283/1141*x^7+1362/1141*x^6-2881/1141*x^5-20941/1141*x^4-11972/1141*x^3+50135/1141*x^2+33762/1141*x-19123/1141,424/1141*x^7+1585/1141*x^6-5659/1141*x^5-23831/1141*x^4+1948/1141*x^3+51036/1141*x^2+9463/1141*x-13854/1141,-374/1141*x^7-1425/1141*x^6+4771/1141*x^5+19982/1141*x^4+779/1141*x^3-25922/1141*x^2-7050/1141*x-10998/1141,298/1141*x^7+1410/1141*x^6-3832/1141*x^5-21297/1141*x^4+142/1141*x^3+41467/1141*x^2+9498/1141*x-1933/1141], x^8+5*x^7-12*x^6-77*x^5-11*x^4+176*x^3+35*x^2-77*x+9];
E[341,4]=[[-17231869/238511964*x^10+2959604/59627991*x^9+211058013/79503988*x^8-366800911/238511964*x^7-4118838803/119255982*x^6+2855931311/238511964*x^5+47802585967/238511964*x^4-2100871747/119255982*x^3-59187163817/119255982*x^2-12610347301/238511964*x+42085043485/119255982,-14435227/119255982*x^10+2006533/19875997*x^9+174963325/39751994*x^8-375404371/119255982*x^7-1120325712/19875997*x^6+3100385441/119255982*x^5+38282996387/119255982*x^4-3259898681/59627991*x^3-15466921429/19875997*x^2-6048639181/119255982*x+10681107173/19875997,x,2230445/39751994*x^10-2041285/59627991*x^9-41173040/19875997*x^8+44172427/39751994*x^7+3224242489/119255982*x^6-371214581/39751994*x^5-9306127999/59627991*x^4+2149119793/119255982*x^3+45439257013/119255982*x^2+596650927/19875997*x-15834430588/59627991,1,-12163796/59627991*x^10+19165495/119255982*x^9+148012993/19875997*x^8-297545720/59627991*x^7-11435398169/119255982*x^6+4803481991/119255982*x^5+21833376311/39751994*x^4-1489222576/19875997*x^3-159669291119/119255982*x^2-13844475043/119255982*x+55505815745/59627991,47116/59627991*x^10+862346/59627991*x^9-655632/19875997*x^8-55815241/119255982*x^7+63210283/119255982*x^6+295356532/59627991*x^5-69092718/19875997*x^4-809580699/39751994*x^3+558684398/59627991*x^2+3200443241/119255982*x-643097737/59627991,16412461/59627991*x^10-11520796/59627991*x^9-200570303/19875997*x^8+715348919/119255982*x^7+15594733465/119255982*x^6-2817607955/59627991*x^5-14992697474/19875997*x^4+3014104377/39751994*x^3+110542840946/59627991*x^2+21740636495/119255982*x-77864185165/59627991,-4573667/39751994*x^10+4635844/59627991*x^9+166745833/39751994*x^8-97680375/39751994*x^7-3212571320/59627991*x^6+793555235/39751994*x^5+36544520243/119255982*x^4-2222734472/59627991*x^3-44041710224/59627991*x^2-2280426297/39751994*x+30406576801/59627991,-10940036/59627991*x^10+17024527/119255982*x^9+132543205/19875997*x^8-265890332/59627991*x^7-10183154339/119255982*x^6+4341227423/119255982*x^5+19321079317/39751994*x^4-1435718715/19875997*x^3-140299812245/119255982*x^2-10502047699/119255982*x+48270729461/59627991,-1,10147378/59627991*x^10-2246898/19875997*x^9-125124209/19875997*x^8+212843008/59627991*x^7+1639837734/19875997*x^6-1715401508/59627991*x^5-28652710556/59627991*x^4+2802706660/59627991*x^3+23609866744/19875997*x^2+7078608169/59627991*x-16673554116/19875997,5364071/19875997*x^10-3448558/19875997*x^9-198364969/19875997*x^8+108141621/19875997*x^7+2598789054/19875997*x^6-853964376/19875997*x^5-15132059570/19875997*x^4+1279561122/19875997*x^3+37400625301/19875997*x^2+3839290217/19875997*x-26453390136/19875997,35818295/119255982*x^10-14484439/59627991*x^9-433967369/39751994*x^8+902044613/119255982*x^7+8334957041/59627991*x^6-7368635713/119255982*x^5-31642012503/39751994*x^4+2454099051/19875997*x^3+114944405156/59627991*x^2+17238411893/119255982*x-78795374203/59627991,-11336345/59627991*x^10+2487230/19875997*x^9+139772361/19875997*x^8-235159379/59627991*x^7-1831627998/19875997*x^6+1884699832/59627991*x^5+32013329785/59627991*x^4-2997976403/59627991*x^3-26423671247/19875997*x^2-8002237460/59627991*x+18709025308/19875997,4737821/59627991*x^10-5444203/59627991*x^9-56384084/19875997*x^8+167752829/59627991*x^7+2113492109/59627991*x^6-1420632913/59627991*x^5-11786089412/59627991*x^4+3480498319/59627991*x^3+28069374506/59627991*x^2+790394600/59627991*x-18624432838/59627991,65501693/119255982*x^10-7944169/19875997*x^9-802978565/39751994*x^8+1492895471/119255982*x^7+5219724032/19875997*x^6-12092071189/119255982*x^5-180942030139/119255982*x^4+10846070038/59627991*x^3+73958241298/19875997*x^2+40141109273/119255982*x-51563334765/19875997,-21279271/119255982*x^10+2183025/19875997*x^9+130723736/19875997*x^8-405706753/119255982*x^7-3412384405/39751994*x^6+3068253755/119255982*x^5+29722614691/59627991*x^4-3433607113/119255982*x^3-48950400157/39751994*x^2-9062107436/59627991*x+17284323244/19875997,-13872289/59627991*x^10+10037845/59627991*x^9+168530439/19875997*x^8-311752198/59627991*x^7-6495739415/59627991*x^6+2475180164/59627991*x^5+12354985519/19875997*x^4-1423514236/19875997*x^3-89814084314/59627991*x^2-8266056517/59627991*x+62239891378/59627991,12348545/39751994*x^10-3974757/19875997*x^9-455450279/39751994*x^8+249125887/39751994*x^7+2971863975/19875997*x^6-1962995591/39751994*x^5-34443207493/39751994*x^4+1461125872/19875997*x^3+42360187404/19875997*x^2+8869222503/39751994*x-29805456069/19875997,25250197/119255982*x^10-7456945/59627991*x^9-310280023/39751994*x^8+234199355/59627991*x^7+12140686213/119255982*x^6-3605290469/119255982*x^5-70257242479/119255982*x^4+4266059723/119255982*x^3+86266970939/59627991*x^2+10345536911/59627991*x-60719957884/59627991,-83123/119255982*x^10-1861297/59627991*x^9+2494795/39751994*x^8+120892933/119255982*x^7-94727104/59627991*x^6-1269433349/119255982*x^5+1734324473/119255982*x^4+2582896861/59627991*x^3-3121509505/59627991*x^2-7000501367/119255982*x+3562080809/59627991,29915314/59627991*x^10-21386720/59627991*x^9-365158000/19875997*x^8+665491672/59627991*x^7+14163846313/59627991*x^6-5290113743/59627991*x^5-81374359015/59627991*x^4+8874519962/59627991*x^3+198622884736/59627991*x^2+19216709299/59627991*x-138356626886/59627991,21441473/119255982*x^10-5323732/59627991*x^9-266551217/39751994*x^8+333751961/119255982*x^7+5300185958/59627991*x^6-2430981889/119255982*x^5-20831930589/39751994*x^4+198188995/19875997*x^3+78287710190/59627991*x^2+20800412513/119255982*x-56198441653/59627991,-3403016/19875997*x^10+2416253/19875997*x^9+124553128/19875997*x^8-76260335/19875997*x^7-1607364867/19875997*x^6+624859722/19875997*x^5+9182569814/19875997*x^4-1186616967/19875997*x^3-22138791401/19875997*x^2-1808602540/19875997*x+14985275758/19875997], x^11-3*x^10-35*x^9+106*x^8+423*x^7-1261*x^6-2318*x^5+6533*x^4+5956*x^3-14599*x^2-6045*x+10618];
E[377,1]=[[1,0,-2,0,-4,1,2,-4,8,1,-8,2,-10,-8,8,6,12,6,12,-16,-10,-12,-12,-10,14], x-1];
E[377,2]=[[x,x+1,-2*x,x+3,2,-1,-2*x-4,-2*x,2*x+2,1,-2*x+4,-4*x+2,-2,-x+3,-2*x,2*x+2,-3*x-9,-2*x+4,x+7,-x-11,4*x,5*x+5,-3*x+3,4*x-2,-4*x+6], x^2-3];
E[377,3]=[[x,x^3-3*x,-x^3-2*x^2+2*x+3,-x^4-x^3+4*x^2+2*x-5,x^3+3*x^2-2*x-5,-1,2*x^4+x^3-5*x^2-2,3*x^4+3*x^3-11*x^2-7*x+6,-2*x^4-x^3+6*x^2-x-3,-1,x^2+4*x-2,-2*x^4-5*x^3+4*x^2+12*x,-3*x^4-7*x^3+8*x^2+16*x-3,-2*x^4-2*x^3+7*x^2+4*x-9,2*x^4+6*x^3-6*x^2-15*x+2,2*x^4-3*x^3-13*x^2+10*x+13,2*x^4+5*x^3-4*x^2-16*x,-x^4-7*x^3-2*x^2+18*x+7,x^4+2*x^3-4*x^2-6*x,-4*x^4+2*x^3+17*x^2-8*x-9,-x^4+3*x^2-6*x+4,-x^4-5*x^3+2*x^2+15*x-7,3*x^4+4*x^3-4*x^2-7*x-4,-2*x^4-2*x^3+4*x^2+4*x+9,-x^4+5*x^3+10*x^2-11*x-9], x^5+x^4-5*x^3-3*x^2+6*x+1];
E[377,4]=[[x,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+8*x+1,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+9*x,4*x^6-3*x^5-40*x^4+16*x^3+83*x^2+28*x-6,-5*x^6+5*x^5+49*x^4-32*x^3-97*x^2-13*x+11,-1,3*x^6-2*x^5-30*x^4+9*x^3+62*x^2+29*x-1,4*x^6-4*x^5-39*x^4+25*x^3+75*x^2+15*x-6,-6*x^6+5*x^5+59*x^4-28*x^3-117*x^2-39*x+8,1,4*x^6-5*x^5-37*x^4+33*x^3+62*x^2+8*x-5,5*x^6-3*x^5-51*x^4+12*x^3+110*x^2+51*x-4,-11*x^6+9*x^5+108*x^4-50*x^3-212*x^2-75*x+7,-3*x^6+4*x^5+26*x^4-26*x^3-32*x^2-11*x-6,-7*x^6+7*x^5+67*x^4-43*x^3-122*x^2-32*x,-3*x^6+x^5+33*x^4-4*x^3-85*x^2-19*x+17,-8*x^6+9*x^5+75*x^4-58*x^3-129*x^2-22*x+3,-3*x^6+5*x^5+26*x^4-34*x^3-34*x^2-x+1,3*x^6-3*x^5-28*x^4+19*x^3+48*x^2+11*x-2,15*x^6-16*x^5-142*x^4+100*x^3+252*x^2+59*x-2,10*x^6-14*x^5-89*x^4+96*x^3+129*x^2+2*x,-3*x^6+2*x^5+31*x^4-9*x^3-69*x^2-30*x+14,-2*x^6-4*x^5+27*x^4+40*x^3-90*x^2-79*x,14*x^6-11*x^5-139*x^4+59*x^3+285*x^2+102*x-32,2*x^6-4*x^5-17*x^4+33*x^3+22*x^2-35*x-9], x^7-3*x^6-8*x^5+26*x^4+9*x^3-36*x^2-14*x+3];
E[377,5]=[[x,-2*x^4-5*x^3+8*x^2+21*x+6,2*x^4+5*x^3-8*x^2-22*x-7,x^4+3*x^3-4*x^2-14*x-7,-x^3-x^2+4*x+1,1,-2*x^4-3*x^3+11*x^2+12*x-2,x^4+3*x^3-3*x^2-11*x-8,-x^3+5*x-3,1,-x^2,2*x^4+3*x^3-12*x^2-12*x,-5*x^4-13*x^3+20*x^2+58*x+21,-4*x^4-8*x^3+19*x^2+36*x+5,6*x^4+14*x^3-26*x^2-59*x-18,-6*x^4-13*x^3+27*x^2+52*x+9,2*x^4+3*x^3-14*x^2-12*x+12,-x^4-3*x^3+6*x^2+14*x-3,x^4+4*x^3-2*x^2-14*x-12,2*x^4+6*x^3-7*x^2-26*x-5,5*x^4+12*x^3-21*x^2-54*x-22,-3*x^4-3*x^3+16*x^2+9*x-3,-9*x^4-22*x^3+38*x^2+95*x+26,-6*x^4-12*x^3+26*x^2+46*x+13,x^4-x^3-6*x^2+7*x-1], x^5+3*x^4-3*x^3-13*x^2-8*x-1];
E[377,6]=[[x,3/4*x^8-37/4*x^6+133/4*x^4-1/4*x^3-31*x^2-17/4*x+7/4,1/2*x^8-13/2*x^6+51/2*x^4-1/2*x^3-29*x^2-1/2*x+9/2,-1/4*x^8-1/2*x^7+13/4*x^6+6*x^5-51/4*x^4-83/4*x^3+15*x^2+75/4*x+5/4,-1/2*x^8+13/2*x^6-x^5-49/2*x^4+15/2*x^3+23*x^2-11/2*x-3/2,1,-1/2*x^8+13/2*x^6-51/2*x^4+1/2*x^3+28*x^2+1/2*x-3/2,-x^4+x^3+7*x^2-5*x-4,-1/2*x^8+11/2*x^6+x^5-33/2*x^4-13/2*x^3+9*x^2+17/2*x+15/2,-1,x^5-x^4-7*x^3+4*x^2+6*x+5,-3/2*x^8+39/2*x^6-x^5-151/2*x^4+17/2*x^3+82*x^2-9/2*x-23/2,1/2*x^8-13/2*x^6+x^5+51/2*x^4-15/2*x^3-30*x^2+11/2*x+15/2,-5/4*x^8+x^7+63/4*x^6-12*x^5-227/4*x^4+159/4*x^3+46*x^2-77/4*x-1/4,x^8+x^7-13*x^6-11*x^5+48*x^4+35*x^3-40*x^2-39*x-6,-1/2*x^8+13/2*x^6-x^5-49/2*x^4+15/2*x^3+25*x^2-11/2*x-15/2,-5/4*x^8-1/2*x^7+65/4*x^6+6*x^5-251/4*x^4-87/4*x^3+67*x^2+119/4*x-27/4,3/2*x^8+x^7-37/2*x^6-11*x^5+129/2*x^4+69/2*x^3-50*x^2-83/2*x-17/2,-3/4*x^8+1/2*x^7+35/4*x^6-6*x^5-113/4*x^4+83/4*x^3+20*x^2-43/4*x-1/4,-1/4*x^8+1/2*x^7+13/4*x^6-5*x^5-51/4*x^4+49/4*x^3+14*x^2-1/4*x-15/4,x^8-13*x^6+2*x^5+48*x^4-15*x^3-39*x^2+11*x-1,-7/4*x^8-x^7+85/4*x^6+12*x^5-293/4*x^4-159/4*x^3+59*x^2+173/4*x+29/4,1/4*x^8+1/2*x^7-13/4*x^6-7*x^5+55/4*x^4+107/4*x^3-22*x^2-79/4*x+27/4,3/2*x^8+x^7-39/2*x^6-11*x^5+147/2*x^4+71/2*x^3-69*x^2-93/2*x-3/2,3/2*x^8-37/2*x^6+135/2*x^4+1/2*x^3-70*x^2-27/2*x+25/2], x^9-x^8-13*x^7+13*x^6+51*x^5-50*x^4-59*x^3+45*x^2+20*x-3];
E[391,1]=[[x,-2,-x^2+2,-x,-x^2-x+3,2*x^2-x-6,-1,2*x^2+2*x-6,-1,2*x^2-10,2*x-2,-3*x^2-x+7,-8,4*x+2,-x^2+3*x+7,4*x^2+2*x-14,-3*x^2-6*x+10,-2*x^2-x+10,4*x^2-2*x-14,2*x^2-12,-4*x^2+2*x+16,-x^2+2*x-2,-2*x^2+12,4*x-4,7*x^2-3*x-23], x^3+x^2-4*x-3];
E[391,2]=[[x,0,-x^2-2*x+2,-x-2,x^2+3*x-3,2*x^2+3*x-6,1,-2*x^2-4*x+4,1,2*x-2,4*x^2+8*x-12,3*x^2+3*x-7,-2*x^2-4*x+2,-2*x^2-6*x,-5*x^2-5*x+15,-4*x^2-6*x+4,x^2+2*x-6,-6*x^2-5*x+16,-4*x^2-4*x+14,-4*x^2-8*x+12,6*x^2+8*x-14,-5*x^2-8*x+14,4*x^2+2*x-6,2*x^2-4*x-16,-3*x^2+x+11], x^3+x^2-4*x+1];
E[391,3]=[[x,-1/4*x^8+1/4*x^7+7/2*x^6-5/2*x^5-33/2*x^4+7*x^3+57/2*x^2-19/4*x-47/4,-1/4*x^8+1/4*x^7+13/4*x^6-11/4*x^5-55/4*x^4+35/4*x^3+85/4*x^2-13/2*x-9,-1/4*x^7+1/4*x^6+13/4*x^5-11/4*x^4-47/4*x^3+31/4*x^2+33/4*x-5/2,1/4*x^8-15/4*x^6+1/4*x^5+73/4*x^4-9/4*x^3-125/4*x^2+9/2*x+57/4,-x^8+3/2*x^7+12*x^6-16*x^5-43*x^4+47*x^3+43*x^2-26*x-23/2,-1,1/2*x^8-1/4*x^7-27/4*x^6+9/4*x^5+117/4*x^4-19/4*x^3-177/4*x^2+3/4*x+37/2,1,-3/4*x^8+3/4*x^7+37/4*x^6-31/4*x^5-131/4*x^4+83/4*x^3+105/4*x^2-7*x+3/2,1/2*x^8-1/4*x^7-27/4*x^6+9/4*x^5+117/4*x^4-19/4*x^3-169/4*x^2-5/4*x+25/2,3/4*x^8-1/2*x^7-39/4*x^6+17/4*x^5+161/4*x^4-29/4*x^3-221/4*x^2-5*x+83/4,7/4*x^8-2*x^7-23*x^6+21*x^5+95*x^4-119/2*x^3-257/2*x^2+113/4*x+51,-3/2*x^8+2*x^7+79/4*x^6-85/4*x^5-329/4*x^4+247/4*x^3+451/4*x^2-137/4*x-169/4,-1/2*x^6+1/2*x^5+11/2*x^4-9/2*x^3-31/2*x^2+13/2*x+15/2,5/4*x^8-5/4*x^7-16*x^6+12*x^5+64*x^4-59/2*x^3-83*x^2+33/4*x+129/4,1/2*x^7-5*x^5-x^4+13*x^3+6*x^2-5*x-15/2,-3/2*x^8+7/4*x^7+75/4*x^6-73/4*x^5-289/4*x^4+207/4*x^3+349/4*x^2-99/4*x-28,3/4*x^8-3/2*x^7-39/4*x^6+69/4*x^5+153/4*x^4-221/4*x^3-169/4*x^2+37*x+47/4,3/2*x^8-9/4*x^7-18*x^6+24*x^5+66*x^4-71*x^3-147/2*x^2+39*x+93/4,x^8-x^7-53/4*x^6+39/4*x^5+227/4*x^4-105/4*x^3-341/4*x^2+81/4*x+143/4,1/4*x^8-3/4*x^7-11/4*x^6+29/4*x^5+41/4*x^4-81/4*x^3-55/4*x^2+19*x+2,-x^8+1/2*x^7+55/4*x^6-21/4*x^5-233/4*x^4+59/4*x^3+291/4*x^2-31/4*x-51/4,-1/2*x^8+7/4*x^7+11/2*x^6-37/2*x^5-33/2*x^4+105/2*x^3+6*x^2-49/2*x+27/4,5/4*x^8-x^7-63/4*x^6+41/4*x^5+249/4*x^4-121/4*x^3-317/4*x^2+39/2*x+101/4], x^9-2*x^8-12*x^7+23*x^6+43*x^5-79*x^4-43*x^3+78*x^2+11*x-21];
E[391,4]=[[x,1,-2*x-2,2*x,-4,-1,-1,2,-1,-2*x-5,-4*x+1,8*x+4,6*x+1,-2*x+2,-2*x-9,4*x+2,4,4*x+2,-6*x+2,4*x-7,-6*x-9,-6*x,-4*x-2,4*x-4,-10*x-4], x^2+x-1];
E[391,5]=[[x,-9/14*x^11+12/7*x^10+19/2*x^9-181/7*x^8-89/2*x^7+888/7*x^6+460/7*x^5-429/2*x^4-30/7*x^3+867/14*x^2+7*x+9/14,-1/14*x^11-9/14*x^10+3*x^9+141/14*x^8-69/2*x^7-368/7*x^6+1084/7*x^5+205/2*x^4-3677/14*x^3-443/7*x^2+201/2*x+379/14,3/14*x^11-1/14*x^10-9/2*x^9+9/7*x^8+35*x^7-58/7*x^6-851/7*x^5+43/2*x^4+2435/14*x^3-191/14*x^2-60*x-82/7,13/7*x^11-39/14*x^10-33*x^9+295/7*x^8+425/2*x^7-1464/7*x^6-4230/7*x^5+366*x^4+10195/14*x^3-795/7*x^2-256*x-635/14,15/7*x^11-40/7*x^10-32*x^9+608/7*x^8+153*x^7-3030/7*x^6-1678/7*x^5+764*x^4+303/7*x^3-2012/7*x^2-22*x+97/7,1,-15/14*x^11+75/14*x^10+19/2*x^9-570/7*x^8+22*x^7+2838/7*x^6-2577/7*x^5-1433/2*x^4+11569/14*x^3+4161/14*x^2-279*x-521/7,-1,-55/14*x^11+121/14*x^10+63*x^9-1835/14*x^8-693/2*x^7+4561/7*x^6+5384/7*x^5-2289/2*x^4-9259/14*x^3+2837/7*x^2+503/2*x+391/14,-89/14*x^11+221/14*x^10+195/2*x^9-1674/7*x^8-493*x^7+8296/7*x^6+6351/7*x^5-4127/2*x^4-6737/14*x^3+9913/14*x^2+209*x+90/7,x^11-11/2*x^10-8*x^9+84*x^8-67/2*x^7-422*x^6+408*x^5+762*x^4-1781/2*x^3-346*x^2+321*x+175/2,-6/7*x^11+16/7*x^10+25/2*x^9-485/14*x^8-113/2*x^7+1205/7*x^6+499/7*x^5-304*x^4+219/7*x^3+1695/14*x^2-41/2*x-163/14,16/7*x^11-111/14*x^10-59/2*x^9+1683/14*x^8+93*x^7-4177/7*x^6+648/7*x^5+1047*x^4-7867/14*x^3-5619/14*x^2+377/2*x+404/7,-15/7*x^11+26/7*x^10+37*x^9-391/7*x^8-229*x^7+1910/7*x^6+4331/7*x^5-455*x^4-5000/7*x^3+696/7*x^2+277*x+379/7,85/14*x^11-104/7*x^10-187/2*x^9+1578/7*x^8+953/2*x^7-7850/7*x^6-6250/7*x^5+3949/2*x^4+3480/7*x^3-10111/14*x^2-198*x-29/14,-17/7*x^11+71/7*x^10+27*x^9-1082/7*x^8-33*x^7+5415/7*x^6-2974/7*x^5-1383*x^4+8191/7*x^3+4125/7*x^2-411*x-823/7,-55/14*x^11+163/14*x^10+111/2*x^9-1236/7*x^8-233*x^7+6136/7*x^6+1457/7*x^5-3071/2*x^4+4335/14*x^3+7977/14*x^2-79*x-368/7,-19/7*x^11+127/14*x^10+36*x^9-968/7*x^8-251/2*x^7+4846/7*x^6-227/7*x^5-1234*x^4+7337/14*x^3+3473/7*x^2-163*x-907/14,-29/14*x^11+41/7*x^10+30*x^9-1245/14*x^8-134*x^7+3097/7*x^6+1147/7*x^5-1557/2*x^4+552/7*x^3+2035/7*x^2-69/2*x-122/7,-55/7*x^11+277/14*x^10+239/2*x^9-4195/14*x^8-594*x^7+10389/7*x^6+7310/7*x^5-2582*x^4-6359/14*x^3+12475/14*x^2+391/2*x-15/7,103/14*x^11-263/14*x^10-111*x^9+3985/14*x^8+1085/2*x^7-9878/7*x^6-6372/7*x^5+4921/2*x^4+4413/14*x^3-6031/7*x^2-331/2*x+121/14,-27/7*x^11+165/14*x^10+107/2*x^9-2501/14*x^8-214*x^7+6203/7*x^6+926/7*x^5-1550*x^4+5989/14*x^3+8023/14*x^2-231/2*x-393/7,-9/2*x^11+11*x^10+70*x^9-335/2*x^8-364*x^7+839*x^6+717*x^5-3007/2*x^4-468*x^3+603*x^2+359/2*x-6,39/7*x^11-215/14*x^10-82*x^9+1634/7*x^8+759/2*x^7-8144/7*x^6-3716/7*x^5+2054*x^4-817/14*x^3-5416/7*x^2+23*x+559/14], x^12-4*x^11-12*x^10+62*x^9+27*x^8-321*x^7+108*x^6+625*x^5-362*x^4-372*x^3+116*x^2+97*x+13];
E[403,1]=[[x,-2,2*x-3,1,-4*x+6,1,-2*x+6,1,2*x-6,2*x,-1,-6*x+6,-2*x+3,-6*x+4,-8*x+12,-2*x+12,-4*x+3,6*x-2,-8,3,14,4,8*x-6,-2*x,6*x-7], x^2-3*x+1];
E[403,2]=[[x,x^5-3*x^4-3*x^3+13*x^2-6*x,-x^5+2*x^4+5*x^3-9*x^2-2*x+4,x^4-2*x^3-5*x^2+8*x+2,-x^6+3*x^5+3*x^4-14*x^3+7*x^2+5*x-1,-1,-x^5+4*x^4+x^3-17*x^2+14*x,-x^6+4*x^5+2*x^4-20*x^3+10*x^2+10*x,-x^6+4*x^5+2*x^4-19*x^3+9*x^2+4*x+4,x^6-4*x^5+x^4+13*x^3-23*x^2+19*x-2,1,-2*x^5+5*x^4+9*x^3-22*x^2-x+7,-x^6+4*x^5+x^4-16*x^3+14*x^2-9*x+2,x^5-4*x^4-x^3+20*x^2-16*x-8,3*x^5-8*x^4-13*x^3+39*x^2-x-16,-3*x^4+5*x^3+14*x^2-22*x+4,3*x^6-8*x^5-14*x^4+42*x^3+4*x^2-35*x-2,-2*x^6+6*x^5+9*x^4-31*x^3-x^2+20*x,x^6-3*x^5-3*x^4+13*x^3-7*x^2-x-2,x^6+x^5-15*x^4-2*x^3+50*x^2-13*x-14,4*x^6-12*x^5-17*x^4+62*x^3-2*x^2-40*x-1,x^6-3*x^5-x^4+10*x^3-17*x^2+14*x+2,2*x^6-9*x^5+3*x^4+37*x^3-53*x^2+11*x+8,x^6-4*x^5+18*x^3-23*x^2-x+15,-x^6+3*x^5+2*x^4-16*x^3+13*x^2+15*x-4], x^7-2*x^6-9*x^5+17*x^4+20*x^3-37*x^2+x+4];
E[403,3]=[[x,-x^5-x^4+7*x^3+5*x^2-10*x-4,-x^7+10*x^5-x^4-29*x^3+25*x+8,2*x^6+2*x^5-15*x^4-10*x^3+25*x^2+10*x-2,x^6+x^5-7*x^4-4*x^3+11*x^2+x-3,1,x^7-10*x^5+x^4+27*x^3-2*x^2-17*x,-x^7-x^6+9*x^5+7*x^4-22*x^3-15*x^2+13*x+8,x^7-x^6-11*x^5+9*x^4+35*x^3-16*x^2-33*x,-x^7-x^6+7*x^5+4*x^4-9*x^3-6*x-2,-1,-2*x^6-2*x^5+15*x^4+9*x^3-26*x^2-5*x+5,x^7+x^6-7*x^5-6*x^4+8*x^3+11*x^2+8*x-2,x^5-9*x^3-2*x^2+18*x+8,-2*x^7+21*x^5-63*x^3-9*x^2+51*x+20,-2*x^6-2*x^5+15*x^4+11*x^3-22*x^2-16*x-4,3*x^6+2*x^5-24*x^4-8*x^3+44*x^2+7*x-6,x^7-4*x^6-17*x^5+28*x^4+69*x^3-36*x^2-71*x-16,-x^6+x^5+11*x^4-9*x^3-29*x^2+19*x+14,3*x^6+5*x^5-19*x^4-30*x^3+18*x^2+41*x+14,-2*x^7+18*x^5-5*x^4-42*x^3+18*x^2+18*x-11,-3*x^6-7*x^5+19*x^4+44*x^3-23*x^2-58*x-10,3*x^7+2*x^6-28*x^5-12*x^4+77*x^3+26*x^2-68*x-28,x^6+6*x^5-2*x^4-40*x^3-11*x^2+53*x+13,-2*x^7+3*x^6+27*x^5-20*x^4-100*x^3+17*x^2+105*x+24], x^8+x^7-11*x^6-10*x^5+37*x^4+33*x^3-36*x^2-33*x-4];
E[403,4]=[[x,-x^5-3*x^4+5*x^3+19*x^2+6*x-8,3*x^5+8*x^4-17*x^3-51*x^2-8*x+18,-2*x^5-5*x^4+12*x^3+31*x^2-10,5*x^5+12*x^4-29*x^3-75*x^2-8*x+24,1,-3*x^5-8*x^4+17*x^3+51*x^2+6*x-24,-12*x^5-29*x^4+69*x^3+184*x^2+23*x-67,4*x^5+11*x^4-22*x^3-71*x^2-13*x+27,8*x^5+20*x^4-46*x^3-127*x^2-14*x+45,1,-3*x^4-3*x^3+20*x^2+17*x-13,-14*x^5-34*x^4+81*x^3+214*x^2+26*x-75,7*x^5+20*x^4-37*x^3-128*x^2-32*x+50,-x^5-2*x^4+5*x^3+13*x^2+9*x-6,-2*x^5-5*x^4+11*x^3+30*x^2+6*x-12,16*x^5+39*x^4-93*x^3-246*x^2-26*x+87,12*x^5+29*x^4-71*x^3-185*x^2-14*x+68,-9*x^5-22*x^4+50*x^3+139*x^2+26*x-55,7*x^5+16*x^4-39*x^3-102*x^2-20*x+39,-8*x^5-21*x^4+44*x^3+134*x^2+28*x-55,11*x^5+26*x^4-63*x^3-163*x^2-21*x+53,3*x^5+7*x^4-19*x^3-45*x^2+3*x+18,-12*x^5-33*x^4+67*x^3+211*x^2+34*x-84,11*x^5+25*x^4-65*x^3-155*x^2-10*x+47], x^6+2*x^5-7*x^4-13*x^3+6*x^2+7*x-3];
E[403,5]=[[x,-x^7-3*x^6+6*x^5+19*x^4-12*x^3-36*x^2+8*x+19,-x^5-2*x^4+5*x^3+7*x^2-6*x-6,x^4+2*x^3-3*x^2-4*x,2*x^7+7*x^6-9*x^5-43*x^4+8*x^3+77*x^2+x-37,-1,-x^6-x^5+9*x^4+4*x^3-25*x^2-x+17,-x^6-4*x^5+16*x^3+14*x^2-14*x-16,x^7+4*x^6-3*x^5-22*x^4-2*x^3+32*x^2+8*x-11,-x^7-2*x^6+7*x^5+11*x^4-14*x^3-12*x^2+7*x-5,-1,2*x^7+8*x^6-6*x^5-45*x^4-x^3+74*x^2+5*x-33,x^6-11*x^4-2*x^3+28*x^2+5*x-20,-x^7-6*x^6+35*x^4+11*x^3-59*x^2-7*x+28,-x^7-5*x^6+4*x^5+38*x^4+2*x^3-84*x^2-13*x+47,-x^7-5*x^6+x^5+29*x^4+10*x^3-49*x^2-10*x+19,-3*x^7-11*x^6+11*x^5+61*x^4-6*x^3-95*x^2-2*x+36,-2*x^7-8*x^6+10*x^5+55*x^4-13*x^3-111*x^2+62,2*x^7+7*x^6-9*x^5-41*x^4+11*x^3+69*x^2-5*x-30,3*x^7+10*x^6-18*x^5-69*x^4+35*x^3+145*x^2-23*x-87,-x^7-3*x^6+5*x^5+17*x^4-7*x^3-31*x^2-2*x+22,x^7+4*x^6-8*x^5-33*x^4+21*x^3+72*x^2-16*x-33,2*x^7+7*x^6-9*x^5-44*x^4+10*x^3+91*x^2-4*x-61,-2*x^6-4*x^5+13*x^4+15*x^3-33*x^2-8*x+22,-3*x^7-11*x^6+14*x^5+69*x^4-20*x^3-134*x^2+12*x+76], x^8+5*x^7-30*x^5-24*x^4+54*x^3+54*x^2-28*x-29];
E[407,1]=[[x,x^3+x^2-4*x,-x^3-x^2+3*x,-2*x^3-3*x^2+6*x,-1,x^3+x^2-2*x-2,x^3+3*x^2-x-6,3*x^3+6*x^2-7*x-7,-x^3+5*x-3,x^3-6*x+2,3*x^3+2*x^2-11*x+4,-1,-x^3-x^2+2*x-2,-3*x^3-6*x^2+8*x+4,2*x^3+2*x^2-6*x+1,4*x^3+2*x^2-18*x+3,-3*x^3-7*x^2+2*x+9,-8*x^3-10*x^2+24*x+2,-6*x^3-6*x^2+25*x-1,4*x^3+6*x^2-11*x+2,3*x^3+2*x^2-10*x-5,2*x^3+6*x^2-2*x-1,5*x^2+x-12,-3*x^3-7*x^2+10*x+7,x^2+2*x-10], x^4+x^3-4*x^2+1];
E[407,2]=[[x,-x^3+x^2+2*x-2,x^3-x^2-3*x,-x^2+2,1,-x^3+x^2+2*x-4,-x^3-x^2+3*x,3*x^3-4*x^2-7*x+5,-x^3+4*x^2+x-9,-3*x^3+4*x^2+10*x-6,x^3+x-4,1,-x^3+3*x^2,x^3+6*x^2-4*x-16,2*x^3-6*x^2-2*x+9,-6*x^2+2*x+15,-x^3-5*x^2+10*x+9,2*x^2-10,-4*x^3+2*x^2+9*x-1,2*x^3-2*x^2-11*x+6,-x^3+2*x-7,2*x^3-14*x-1,2*x^3+7*x^2-11*x-12,-x^3+3*x^2-2*x-9,7*x^2-4*x-22], x^4-x^3-4*x^2+2*x+3];
E[407,3]=[[x,-370/249*x^11+52/249*x^10+6619/249*x^9-934/249*x^8-40324/249*x^7+1087/83*x^6+94670/249*x^5+5092/249*x^4-67508/249*x^3-10735/249*x^2+3599/249*x-66/83,142/249*x^11+11/249*x^10-2512/249*x^9-188/249*x^8+15010/249*x^7+704/83*x^6-33614/249*x^5-10396/249*x^4+19526/249*x^3+11563/249*x^2+2806/249*x-164/83,-239/249*x^11+113/249*x^10+4256/249*x^9-2135/249*x^8-25856/249*x^7+4078/83*x^6+61468/249*x^5-22588/249*x^4-49207/249*x^3+12121/249*x^2+8362/249*x-153/83,1,350/249*x^11+18/83*x^10-6250/249*x^9-285/83*x^8+38086/249*x^7+6716/249*x^6-89371/249*x^5-8440/83*x^4+61757/249*x^3+7256/83*x^2-320/249*x+1199/249,157/83*x^11+85/249*x^10-8470/249*x^9-1498/249*x^8+52099/249*x^7+12004/249*x^6-41344/83*x^5-43526/249*x^4+88595/249*x^3+39143/249*x^2-3587/249*x-512/249,-92/83*x^11+56/83*x^10+1631/83*x^9-1025/83*x^8-9830/83*x^7+5772/83*x^6+23147/83*x^5-10580/83*x^4-18885/83*x^3+5384/83*x^2+4227/83*x-143/83,295/249*x^11+55/249*x^10-1752/83*x^9-940/249*x^8+10630/83*x^7+7406/249*x^6-74114/249*x^5-27080/249*x^4+16469/83*x^3+25445/249*x^2+582/83*x-634/249,395/249*x^11+63/83*x^10-7018/249*x^9-1122/83*x^8+42250/249*x^7+23174/249*x^6-95131/249*x^5-22900/83*x^4+51602/249*x^3+19005/83*x^2+13654/249*x-1240/249,-733/249*x^11+14/83*x^10+13196/249*x^9-277/83*x^8-81284/249*x^7+926/249*x^6+194918/249*x^5+6900/83*x^4-146611/249*x^3-8946/83*x^2+13234/249*x-211/249,-1,-201/83*x^11-105/83*x^10+3613/83*x^9+1870/83*x^8-22218/83*x^7-12690/83*x^6+52454/83*x^5+36728/83*x^4-34487/83*x^3-30015/83*x^2-2043/83*x+818/83,-85/249*x^11-2/83*x^10+1589/249*x^9+87/83*x^8-10217/249*x^7-3310/249*x^6+25820/249*x^5+4848/83*x^4-20935/249*x^3-5528/83*x^2+2710/249*x+2117/249,270/83*x^11-143/249*x^10-14488/249*x^9+2693/249*x^8+88564/249*x^7-11852/249*x^6-70416/83*x^5+1186/249*x^4+163154/249*x^3+17009/249*x^2-22202/249*x-1157/249,-631/249*x^11+16/249*x^10+11422/249*x^9-115/249*x^8-70750/249*x^7-1549/83*x^6+170408/249*x^5+36082/249*x^4-127631/249*x^3-41017/249*x^2+11642/249*x+599/83,231/83*x^11-54/83*x^10-4125/83*x^9+1021/83*x^8+25160/83*x^7-5056/83*x^6-59946/83*x^5+4736/83*x^4+46807/83*x^3+1140/83*x^2-6403/83*x-37/83,-19/83*x^11-88/249*x^10+1006/249*x^9+1504/249*x^8-6121/249*x^7-9094/249*x^6+4756/83*x^5+22412/249*x^4-7721/249*x^3-17306/249*x^2-4105/249*x+284/249,-437/249*x^11+17/249*x^10+7685/249*x^9-449/249*x^8-45572/249*x^7+258/83*x^6+101254/249*x^5+10916/249*x^4-59803/249*x^3-14183/249*x^2-5465/249*x-593/83,28/249*x^11+499/249*x^10-139/83*x^9-8800/249*x^8+646/83*x^7+53063/249*x^6+400/249*x^5-123770/249*x^4-7824/83*x^3+86594/249*x^2+8629/83*x-2248/249,448/249*x^11-565/249*x^10-8083/249*x^9+9928/249*x^8+49600/249*x^7-18730/83*x^6-119594/249*x^5+111944/249*x^4+102860/249*x^3-64589/249*x^2-25625/249*x+516/83,-365/249*x^11-265/249*x^10+6506/249*x^9+4597/249*x^8-39557/249*x^7-9822/83*x^6+91042/249*x^5+79454/249*x^4-52147/249*x^3-63065/249*x^2-12887/249*x+895/83,216/83*x^11-99/83*x^10-3869/83*x^9+1775/83*x^8+23606/83*x^7-9380/83*x^6-55868/83*x^5+14382/83*x^4+42224/83*x^3-5463/83*x^2-4421/83*x+195/83,175/249*x^11+92/83*x^10-3125/249*x^9-1595/83*x^8+19292/249*x^7+29254/249*x^6-46304/249*x^5-23974/83*x^4+31003/249*x^3+17738/83*x^2+2081/249*x-3011/249,-427/83*x^11-191/249*x^10+22958/249*x^9+3287/249*x^8-140414/249*x^7-27542/249*x^6+110100/83*x^5+106084/249*x^4-226351/249*x^3-98233/249*x^2-356/249*x+3163/249], x^12-x^11-18*x^10+18*x^9+111*x^8-104*x^7-274*x^6+212*x^5+255*x^4-129*x^3-78*x^2+4*x+1];
E[407,4]=[[x,10/59*x^10-1/59*x^9-156/59*x^8+831/59*x^6+78/59*x^5-1732/59*x^4-330/59*x^3+1171/59*x^2+305/59*x-196/59,-83/59*x^10+26/59*x^9+1342/59*x^8-6*x^7-7564/59*x^6+1630/59*x^5+17420/59*x^4-2512/59*x^3-14457/59*x^2+448/59*x+3090/59,61/59*x^10-12/59*x^9-987/59*x^8+3*x^7+5547/59*x^6-893/59*x^5-12701/59*x^4+1409/59*x^3+10512/59*x^2-57/59*x-2234/59,-1,100/59*x^10-10/59*x^9-1619/59*x^8+2*x^7+9136/59*x^6-459/59*x^5-21096/59*x^4+181/59*x^3+17610/59*x^2+1044/59*x-3671/59,-1/59*x^10+6/59*x^9-8/59*x^8-2*x^7+265/59*x^6+771/59*x^5-1467/59*x^4-1855/59*x^3+2532/59*x^2+1238/59*x-771/59,-148/59*x^10+3/59*x^9+2415/59*x^8-13762/59*x^6-175/59*x^5+32218/59*x^4+1167/59*x^3-27526/59*x^2-1977/59*x+6193/59,161/59*x^10-22/59*x^9-2606/59*x^8+5*x^7+14683/59*x^6-1411/59*x^5-33797/59*x^4+2121/59*x^3+28122/59*x^2-75/59*x-6141/59,-161/59*x^10+22/59*x^9+2606/59*x^8-5*x^7-14683/59*x^6+1352/59*x^5+33797/59*x^4-1590/59*x^3-28122/59*x^2-987/59*x+6141/59,202/59*x^10-32/59*x^9-3281/59*x^8+7*x^7+18627/59*x^6-1811/59*x^5-43565/59*x^4+2243/59*x^3+37531/59*x^2+615/59*x-8396/59,1,-113/59*x^10+29/59*x^9+1810/59*x^8-7*x^7-10057/59*x^6+2045/59*x^5+22675/59*x^4-3469/59*x^3-18324/59*x^2+772/59*x+4209/59,-52/59*x^10+17/59*x^9+823/59*x^8-4*x^7-4451/59*x^6+1093/59*x^5+9325/59*x^4-1647/59*x^3-5747/59*x^2+243/59*x+382/59,-79/59*x^10+2/59*x^9+1315/59*x^8-7680/59*x^6-156/59*x^5+18568/59*x^4+896/59*x^3-16797/59*x^2-1200/59*x+4227/59,-344/59*x^10+58/59*x^9+5567/59*x^8-13*x^7-31324/59*x^6+3441/59*x^5+71723/59*x^4-4401/59*x^3-58596/59*x^2-1111/59*x+11958/59,174/59*x^10-41/59*x^9-2797/59*x^8+9*x^7+15663/59*x^6-2289/59*x^5-35907/59*x^4+2931/59*x^3+30075/59*x^2+410/59*x-7092/59,-258/59*x^10+14/59*x^9+4190/59*x^8-2*x^7-23847/59*x^6+265/59*x^5+56285/59*x^4+903/59*x^3-49729/59*x^2-2736/59*x+12007/59,31/59*x^10-9/59*x^9-519/59*x^8+x^7+3113/59*x^6+171/59*x^5-7977/59*x^4-1495/59*x^3+7884/59*x^2+1506/59*x-1646/59,311/59*x^10-37/59*x^9-5064/59*x^8+8*x^7+28741/59*x^6-2070/59*x^5-66680/59*x^4+2186/59*x^3+55776/59*x^2+1963/59*x-12090/59,53/59*x^10-23/59*x^9-874/59*x^8+6*x^7+5012/59*x^6-1864/59*x^5-11634/59*x^4+3502/59*x^3+9469/59*x^2-1245/59*x-1676/59,241/59*x^10-30/59*x^9-3913/59*x^8+6*x^7+22157/59*x^6-1377/59*x^5-51429/59*x^4+1133/59*x^3+43626/59*x^2+1362/59*x-10010/59,5*x^10-x^9-81*x^8+14*x^7+456*x^6-68*x^5-1042*x^4+108*x^3+843*x^2-11*x-171,76/59*x^10-43/59*x^9-1221/59*x^8+11*x^7+6823/59*x^6-3313/59*x^5-15535/59*x^4+5929/59*x^3+12711/59*x^2-1930/59*x-2646/59,103/59*x^10-28/59*x^9-1713/59*x^8+7*x^7+9993/59*x^6-2123/59*x^5-24011/59*x^4+3917/59*x^3+21106/59*x^2-1431/59*x-4898/59], x^11-2*x^10-16*x^9+32*x^8+89*x^7-179*x^6-201*x^5+407*x^4+168*x^3-333*x^2-51*x+75];
E[437,1]=[[2,2,1,-3,5,-2,3,-1,1,4,-4,-8,0,-3,-3,12,4,5,12,12,1,-10,12,-6,10], x-1];
E[437,2]=[[0,2,-1,-5,-1,0,-7,1,1,6,4,2,-2,-5,-3,-4,6,11,-16,-10,-7,4,4,-16,-4], x-1];
E[437,3]=[[-x-1,1/2*x,x,1/2*x-2,1/2*x-3,-2*x-2,-x+2,1,1,-x,5/2*x-1,1/2*x-10,3*x+6,1/2*x-7,-3*x-6,3/2*x+5,-3/2*x-13,-x,4*x-2,-5/2*x+5,1/2*x-4,4,-7/2*x-2,9/2*x+11,-4*x+2], x^2+2*x-4];
E[437,4]=[[-x-1,-x-3,x,-x-2,-x,4*x+4,-x-4,1,1,5*x+3,-2*x+2,-x-1,6,-x-10,3,-6*x-10,2,-7*x-12,7*x+1,-x+5,2*x+5,-8,4*x+4,6*x+14,2*x-10], x^2+2*x-1];
E[437,5]=[[-1,1/2*x-2,x,-3/2*x+2,-3/2*x-1,2*x-2,-x+2,-1,-1,-x-4,-1/2*x-7,-1/2*x-4,-3*x+6,1/2*x-9,-x+2,3/2*x+1,7/2*x-3,x+12,2*x-10,5/2*x-9,3/2*x-12,0,9/2*x-6,-3/2*x+3,-6*x+2], x^2-2*x-4];
E[437,6]=[[1/2*x^4+1/2*x^3-5/2*x^2-3/2*x+1,-x-1,x,-x-2,-x^4+5*x^2-x-2,-x^2+1,-2*x^3+9*x,-1,-1,-x^3-2*x^2+2*x+7,x^3+3*x^2-3*x-9,x^4-8*x^2+x+8,2*x^4+2*x^3-11*x^2-4*x+5,x^4+x^3-5*x^2-2*x+2,x^3+2*x^2-7*x-7,4*x^2-12,-x^4+5*x^2-2*x,x^4+x^3-5*x^2,2*x^4+2*x^3-13*x^2-9*x+10,-x^4-2*x^3+3*x^2+7*x-1,-x^4-2*x^3+5*x^2+10*x+1,x^4-3*x^2+2*x-4,-x^4+3*x^3+11*x^2-15*x-18,x^4-9*x^2-4*x+12,2*x^4+3*x^3-12*x^2-13*x+8], x^5+x^4-7*x^3-5*x^2+10*x+4];
E[437,7]=[[-3/20*x^7+2/5*x^6+9/4*x^5-37/10*x^4-48/5*x^3+67/10*x^2+61/5*x+7/5,-1/20*x^7+3/10*x^6+1/2*x^5-39/10*x^4-49/20*x^3+62/5*x^2+42/5*x-16/5,x,-11/40*x^7+13/20*x^6+35/8*x^5-119/20*x^4-387/20*x^3+61/5*x^2+116/5*x-8/5,3/40*x^7-1/5*x^6-11/8*x^5+13/5*x^4+151/20*x^3-43/5*x^2-63/5*x+19/5,1/10*x^7+3/20*x^6-2*x^5-89/20*x^4+69/10*x^3+101/5*x^2+31/5*x-8/5,-1/4*x^6+19/4*x^4+4*x^3-19*x^2-21*x+2,-1,1,-3/20*x^7-7/20*x^6+13/4*x^5+161/20*x^4-53/5*x^3-159/5*x^2-79/5*x-18/5,1/10*x^7-7/20*x^6-7/4*x^5+91/20*x^4+223/20*x^3-133/10*x^2-119/5*x-3/5,-2/5*x^7+9/10*x^6+27/4*x^5-87/10*x^4-657/20*x^3+101/5*x^2+241/5*x+2/5,1/5*x^7-29/20*x^6-2*x^5+407/20*x^4+69/5*x^3-333/5*x^2-278/5*x+44/5,23/40*x^7-6/5*x^6-75/8*x^5+48/5*x^4+841/20*x^3-63/5*x^2-258/5*x-21/5,3/5*x^7-37/20*x^6-9*x^5+391/20*x^4+217/5*x^3-234/5*x^2-389/5*x-18/5,1/5*x^7-1/5*x^6-13/4*x^5-9/10*x^4+231/20*x^3+119/10*x^2-13/5*x-11/5,1/10*x^7+3/20*x^6-7/4*x^5-99/20*x^4+63/20*x^3+227/10*x^2+101/5*x-3/5,-1/20*x^7-1/5*x^6+5/4*x^5+18/5*x^4-37/10*x^3-53/5*x^2-58/5*x-56/5,3/5*x^7-27/20*x^6-19/2*x^5+241/20*x^4+389/10*x^3-124/5*x^2-174/5*x+92/5,-3/4*x^6+5/4*x^5+47/4*x^4-23/4*x^3-83/2*x^2-10*x+7,-3/40*x^7-3/10*x^6+11/8*x^5+69/10*x^4+9/20*x^3-147/5*x^2-152/5*x+6/5,3/4*x^6-1/2*x^5-53/4*x^4-9/2*x^3+48*x^2+42*x+10,-17/40*x^7+13/10*x^6+57/8*x^5-159/10*x^4-769/20*x^3+232/5*x^2+357/5*x-16/5,7/20*x^7+2/5*x^6-7*x^5-127/10*x^4+493/20*x^3+587/10*x^2+76/5*x-53/5,3/10*x^7+9/20*x^6-6*x^5-247/20*x^4+177/10*x^3+258/5*x^2+168/5*x+36/5], x^8-2*x^7-19*x^6+18*x^5+116*x^4-12*x^3-240*x^2-128*x+16];
E[437,8]=[[-2856385/7787766464*x^11+7001515/7787766464*x^10+124413155/7787766464*x^9-297519923/7787766464*x^8-903358373/3893883232*x^7+1078173669/1946941616*x^6+2445073891/1946941616*x^5-387699759/121683851*x^4-230407813/121683851*x^3+3338652325/486735404*x^2-64224415/121683851*x-398630292/121683851,6956803/7787766464*x^11-12952067/7787766464*x^10-309700335/7787766464*x^9+555708219/7787766464*x^8+1196925221/1946941616*x^7-2042980203/1946941616*x^6-7711989027/1946941616*x^5+6046195705/973470808*x^4+2511482249/243367702*x^3-7079521275/486735404*x^2-1876089519/243367702*x+1276669304/121683851,x,2025423/1946941616*x^11+1799985/973470808*x^10-4180820/121683851*x^9-11177725/243367702*x^8+705333703/1946941616*x^7+358539015/973470808*x^6-1072193121/973470808*x^5-318167661/243367702*x^4-622165105/486735404*x^3+220104383/121683851*x^2+672131149/121683851*x+159421816/121683851,-86969/243367702*x^11-641669/1946941616*x^10+7120457/486735404*x^9-2643887/973470808*x^8-56922751/243367702*x^7+577230087/1946941616*x^6+862083189/486735404*x^5-1788081845/486735404*x^4-1426963339/243367702*x^3+1725628019/121683851*x^2+712726759/121683851*x-1538208462/121683851,-8862911/7787766464*x^11-8857985/7787766464*x^10+339030923/7787766464*x^9+189695097/7787766464*x^8-1131366845/1946941616*x^7-160368641/1946941616*x^6+6148626091/1946941616*x^5-741516011/973470808*x^4-3139330255/486735404*x^3+1686356859/486735404*x^2+990679041/243367702*x+43949506/121683851,1182995/486735404*x^11+1154417/243367702*x^10-89034625/973470808*x^9-143163435/973470808*x^8+1179814633/973470808*x^7+1573878853/973470808*x^6-3224230051/486735404*x^5-3844740125/486735404*x^4+3370386203/243367702*x^3+1943530303/121683851*x^2-1051895569/121683851*x-897167424/121683851,1,-1,-19483265/7787766464*x^11+4161625/7787766464*x^10+844382933/7787766464*x^9-367295049/7787766464*x^8-3292650619/1946941616*x^7+1788876343/1946941616*x^6+22224782021/1946941616*x^5-5840937289/973470808*x^4-15681676965/486735404*x^3+6634639525/486735404*x^2+6884316783/243367702*x-995568822/121683851,-13681051/7787766464*x^11-27992113/7787766464*x^10+493324007/7787766464*x^9+922425069/7787766464*x^8-1488739823/1946941616*x^7-1411217845/973470808*x^6+6506116049/1946941616*x^5+8038428191/973470808*x^4-1558373949/486735404*x^3-9546649555/486735404*x^2-915949715/243367702*x+1730402266/121683851,454879/1946941616*x^11-7067579/1946941616*x^10-36626405/1946941616*x^9+255813397/1946941616*x^8+399838835/973470808*x^7-1612632531/973470808*x^6-428039857/121683851*x^5+2005690117/243367702*x^4+6078465905/486735404*x^3-1570007970/121683851*x^2-2097459897/121683851*x+233204578/121683851,43887485/7787766464*x^11+12737031/7787766464*x^10-1750102253/7787766464*x^9+168297241/7787766464*x^8+3096905047/973470808*x^7-2284333351/1946941616*x^6-37047384777/1946941616*x^5+9184791267/973470808*x^4+22640013247/486735404*x^3-11868806957/486735404*x^2-8448236587/243367702*x+1610284266/121683851,-3595883/3893883232*x^11+20586421/3893883232*x^10+189683079/3893883232*x^9-789158503/3893883232*x^8-825040149/973470808*x^7+5315538991/1946941616*x^6+5903911775/973470808*x^5-1840507714/121683851*x^4-2195430252/121683851*x^3+8076448961/243367702*x^2+2000011369/121683851*x-2093009804/121683851,-40134703/7787766464*x^11-84568101/7787766464*x^10+1495739967/7787766464*x^9+2448839709/7787766464*x^8-2509360615/973470808*x^7-5910863961/1946941616*x^6+28822686799/1946941616*x^5+11165194631/973470808*x^4-16423981579/486735404*x^3-6822101341/486735404*x^2+5054138055/243367702*x+366457554/121683851,-1155757/973470808*x^11-16820601/1946941616*x^10+39622437/973470808*x^9+297934127/973470808*x^8-549843357/973470808*x^7-7329649441/1946941616*x^6+3983843801/973470808*x^5+8945039101/486735404*x^4-3467277285/243367702*x^3-7442351069/243367702*x^2+2051993581/121683851*x+985014678/121683851,9259269/3893883232*x^11-12966151/3893883232*x^10-411711381/3893883232*x^9+572294201/3893883232*x^8+1598477289/973470808*x^7-4252618247/1946941616*x^6-1306182565/121683851*x^5+6119180987/486735404*x^4+7124761521/243367702*x^3-3177317762/121683851*x^2-3170810706/121683851*x+1587454380/121683851,5396769/3893883232*x^11+43570563/3893883232*x^10-135500973/3893883232*x^9-1490161831/3893883232*x^8+215405841/973470808*x^7+2226995707/486735404*x^6+373922683/973470808*x^5-10777729523/486735404*x^4-1690926793/243367702*x^3+8955687261/243367702*x^2+1646775997/121683851*x-851289938/121683851,-1289063/1946941616*x^11+955231/973470808*x^10+3541714/121683851*x^9-39809897/973470808*x^8-862284265/1946941616*x^7+259960917/486735404*x^6+638809923/243367702*x^5-543726073/243367702*x^4-450278557/121683851*x^3+172620764/121683851*x^2-1172423125/121683851*x+498435538/121683851,-3823151/7787766464*x^11-26403513/7787766464*x^10+112968919/7787766464*x^9+1086613973/7787766464*x^8-96740447/973470808*x^7-2015339107/973470808*x^6-839634095/1946941616*x^5+12587755317/973470808*x^4+2565784251/486735404*x^3-14488018615/486735404*x^2-2135955279/243367702*x+1949768934/121683851,-17620579/7787766464*x^11-51349417/7787766464*x^10+617679963/7787766464*x^9+1607353337/7787766464*x^8-928154987/973470808*x^7-4334335079/1946941616*x^6+8427805149/1946941616*x^5+9733242509/973470808*x^4-557231953/121683851*x^3-8634583125/486735404*x^2-1416480271/243367702*x+1306468168/121683851,-559101/121683851*x^11-2655107/486735404*x^10+171415025/973470808*x^9+112273435/973470808*x^8-2346908591/973470808*x^7-383563779/973470808*x^6+6741135117/486735404*x^5-1734498887/486735404*x^4-3666450483/121683851*x^3+2450604196/121683851*x^2+1720380298/121683851*x-2744227160/121683851,10360511/1946941616*x^11+17540007/1946941616*x^10-397584251/1946941616*x^9-496698463/1946941616*x^8+2761020261/973470808*x^7+1181071647/486735404*x^6-16645900927/973470808*x^5-2280358093/243367702*x^4+20935826173/486735404*x^3+1490409857/121683851*x^2-4408888583/121683851*x-200524512/121683851,580781/243367702*x^11+1545797/973470808*x^10-188180517/1946941616*x^9-43512797/1946941616*x^8+2758629063/1946941616*x^7-422006193/1946941616*x^6-8893992871/973470808*x^5+1065394611/243367702*x^4+6164781771/243367702*x^3-5026877819/243367702*x^2-2476677489/121683851*x+2902674486/121683851,-849409/1946941616*x^11+2563255/973470808*x^10+21287241/973470808*x^9-50489737/486735404*x^8-724314581/1946941616*x^7+1375180211/973470808*x^6+1426153443/486735404*x^5-914890589/121683851*x^4-3203787899/243367702*x^3+1705991800/121683851*x^2+2954791645/121683851*x-475342964/121683851], x^12+x^11-43*x^10-29*x^9+690*x^8+304*x^7-5116*x^6-1600*x^5+17904*x^4+4400*x^3-26240*x^2-4736*x+10368];
E[451,1]=[[x,-x^4-x^3+6*x^2+3*x-8,-2*x^4-x^3+11*x^2+3*x-12,2*x^4+x^3-12*x^2-4*x+13,-1,3*x^4+x^3-18*x^2-3*x+21,-3*x^4+19*x^2-25,-3*x^4-x^3+17*x^2+2*x-17,3*x^4+3*x^3-15*x^2-8*x+13,2*x^4-x^3-12*x^2+4*x+10,6*x^4+3*x^3-35*x^2-9*x+39,x^4-x^3-10*x^2+4*x+16,-1,-5*x^4-3*x^3+29*x^2+11*x-30,8*x^4+6*x^3-48*x^2-19*x+54,-x^4-2*x^3+3*x^2+4*x-2,-3*x^4+20*x^2+4*x-27,2*x^4+2*x^3-9*x^2-5*x+3,-7*x^4-4*x^3+37*x^2+10*x-36,x^4-3*x^3-7*x^2+13*x+5,7*x^4+4*x^3-36*x^2-13*x+33,-8*x^4-2*x^3+44*x^2+5*x-44,-4*x^4-5*x^3+25*x^2+17*x-30,-10*x^4-8*x^3+57*x^2+23*x-68,-3*x^4-2*x^3+19*x^2+4*x-23], x^5+2*x^4-5*x^3-10*x^2+4*x+9];
E[451,2]=[[x,-x^4-x^3+4*x^2+x-2,-x^3-3*x^2+x+2,2*x^4+3*x^3-6*x^2-4*x+1,1,x^4+3*x^3-5*x-3,-x^4-4*x^3+x^2+8*x-1,x^4+3*x^3+x^2-2*x-5,-x^4-3*x^3+x^2+6*x-1,-x^3-2*x^2+4*x-2,-4*x^4-9*x^3+7*x^2+13*x-3,-3*x^4-3*x^3+14*x^2+2*x-10,1,3*x^4+9*x^3-5*x^2-19*x,-2*x^4-4*x^3+4*x^2+9*x,-5*x^4-12*x^3+7*x^2+18*x-4,x^4+4*x^3-12*x-3,8*x^4+16*x^3-19*x^2-19*x+5,-3*x^4-6*x^3+5*x^2+4*x+6,7*x^4+11*x^3-23*x^2-17*x+11,x^4+6*x^3+4*x^2-9*x-3,-8*x^4-18*x^3+14*x^2+25*x-2,-6*x^4-17*x^3+5*x^2+25*x+4,-4*x^4-8*x^3+9*x^2+5*x-6,7*x^4+16*x^3-15*x^2-24*x+11], x^5+2*x^4-3*x^3-4*x^2+2*x+1];
E[451,3]=[[x,7/2*x^9-12*x^8-28*x^7+117*x^6+89/2*x^5-685/2*x^4+54*x^3+605/2*x^2-74*x-44,1/4*x^9-x^8-3/2*x^7+19/2*x^6-7/4*x^5-105/4*x^4+35/2*x^3+81/4*x^2-27/2*x-2,5/2*x^9-17/2*x^8-20*x^7+83*x^6+63/2*x^5-244*x^4+79/2*x^3+437/2*x^2-105/2*x-33,1,5/2*x^9-8*x^8-21*x^7+77*x^6+81/2*x^5-439/2*x^4+18*x^3+365/2*x^2-40*x-23,-3/4*x^9+3*x^8+11/2*x^7-61/2*x^6-19/4*x^5+383/4*x^4-49/2*x^3-383/4*x^2+47/2*x+18,-19/4*x^9+31/2*x^8+79/2*x^7-301/2*x^6-295/4*x^5+1749/4*x^4-40*x^3-1523/4*x^2+79*x+55,9/4*x^9-15/2*x^8-37/2*x^7+147/2*x^6+133/4*x^5-875/4*x^4+23*x^3+817/4*x^2-42*x-35,7/4*x^9-13/2*x^8-27/2*x^7+129/2*x^6+71/4*x^5-777/4*x^4+38*x^3+723/4*x^2-44*x-25,-7/2*x^9+23/2*x^8+29*x^7-112*x^6-107/2*x^5+327*x^4-61/2*x^3-575/2*x^2+115/2*x+41,-21/4*x^9+37/2*x^8+83/2*x^7-363/2*x^6-249/4*x^5+2147/4*x^4-91*x^3-1941/4*x^2+113*x+77,-1,-13/2*x^9+21*x^8+55*x^7-205*x^6-217/2*x^5+1201/2*x^4-39*x^3-1063/2*x^2+101*x+80,-3/2*x^9+5*x^8+13*x^7-50*x^6-55/2*x^5+303/2*x^4-4*x^3-279/2*x^2+20*x+18,-x^9+4*x^8+6*x^7-38*x^6+5*x^5+108*x^4-58*x^3-94*x^2+42*x+18,-27/2*x^9+89/2*x^8+111*x^7-432*x^6-395/2*x^5+1255*x^4-297/2*x^3-2189/2*x^2+511/2*x+161,-8*x^9+27*x^8+65*x^7-265*x^6-108*x^5+784*x^4-118*x^3-704*x^2+177*x+102,-5/2*x^9+9*x^8+19*x^7-89*x^6-41/2*x^5+533/2*x^4-76*x^3-483/2*x^2+86*x+28,13/2*x^9-21*x^8-55*x^7+205*x^6+219/2*x^5-1201/2*x^4+34*x^3+1059/2*x^2-103*x-76,12*x^9-41*x^8-97*x^7+401*x^6+160*x^5-1177*x^4+174*x^3+1037*x^2-259*x-146,1/2*x^9-x^8-6*x^7+10*x^6+49/2*x^5-61/2*x^4-39*x^3+63/2*x^2+24*x-7,21/2*x^9-35*x^8-86*x^7+341*x^6+299/2*x^5-1991/2*x^4+131*x^3+1745/2*x^2-219*x-126,-15*x^9+50*x^8+123*x^7-487*x^6-216*x^5+1422*x^4-176*x^3-1251*x^2+300*x+180,-5/2*x^9+8*x^8+21*x^7-77*x^6-83/2*x^5+435/2*x^4-10*x^3-335/2*x^2+31*x+6], x^10-4*x^9-6*x^8+38*x^7-7*x^6-105*x^5+74*x^4+77*x^3-74*x^2+8];
E[451,4]=[[x,-11/232*x^11-15/232*x^10+27/29*x^9+36/29*x^8-1559/232*x^7-883/116*x^6+4841/232*x^5+3869/232*x^4-5605/232*x^3-1119/116*x^2+188/29*x-31/29,59/232*x^11-83/232*x^10-487/116*x^9+147/29*x^8+5599/232*x^7-1369/58*x^6-13121/232*x^5+9213/232*x^4+11403/232*x^3-1179/58*x^2-485/58*x+103/29,-7/232*x^11+1/232*x^10+37/58*x^9+1/58*x^8-1203/232*x^7-61/116*x^6+4557/232*x^5+353/232*x^4-7553/232*x^3+63/116*x^2+959/58*x-54/29,-1,-49/232*x^11+123/232*x^10+86/29*x^9-214/29*x^8-3085/232*x^7+3923/116*x^6+4291/232*x^5-13073/232*x^4+489/232*x^3+3283/116*x^2-312/29*x-30/29,-1/29*x^11+71/116*x^10-19/116*x^9-277/29*x^8+172/29*x^7+5983/116*x^6-828/29*x^5-12927/116*x^4+4471/116*x^3+9787/116*x^2-441/58*x-244/29,21/232*x^11-61/232*x^10-135/116*x^9+229/58*x^8+825/232*x^7-1141/58*x^6+1061/232*x^5+8627/232*x^4-5703/232*x^3-823/29*x^2+519/29*x+220/29,-21/58*x^11+35/116*x^10+685/116*x^9-191/58*x^8-1927/58*x^7+921/116*x^6+2181/29*x^5+1277/116*x^4-7415/116*x^3-3797/116*x^2+418/29*x+251/29,-35/232*x^11+63/232*x^10+283/116*x^9-227/58*x^8-3231/232*x^7+540/29*x^6+7821/232*x^5-7225/232*x^4-7779/232*x^3+607/58*x^2+208/29*x+136/29,13/58*x^11-35/58*x^10-96/29*x^9+527/58*x^8+925/58*x^7-1345/29*x^6-1561/58*x^5+2682/29*x^4+387/29*x^3-1944/29*x^2-367/58*x+281/29,2/29*x^11+3/116*x^10-165/116*x^9-23/58*x^8+294/29*x^7+243/116*x^6-1647/58*x^5-507/116*x^4+2513/116*x^3+465/116*x^2+267/29*x-5/29,1,-21/116*x^11+61/116*x^10+135/58*x^9-229/29*x^8-825/116*x^7+1141/29*x^6-1061/116*x^5-8511/116*x^4+5587/116*x^3+1385/29*x^2-835/29*x-150/29,-27/116*x^11-21/116*x^10+273/58*x^9+95/29*x^8-3911/116*x^7-592/29*x^6+11661/116*x^5+5927/116*x^4-12487/116*x^3-1372/29*x^2+596/29*x+296/29,-x^4+7*x^2-2*x-2,9/116*x^11-51/116*x^10-31/29*x^9+449/58*x^8+453/116*x^7-2747/58*x^6-59/116*x^5+13723/116*x^4-787/116*x^3-6229/58*x^2-291/58*x+375/29,39/116*x^11+11/116*x^10-173/29*x^9-105/29*x^8+4399/116*x^7+1997/58*x^6-11817/116*x^5-13749/116*x^4+11689/116*x^3+7769/58*x^2-297/29*x-608/29,23/232*x^11-53/232*x^10-38/29*x^9+75/29*x^8+1467/232*x^7-1001/116*x^6-3373/232*x^5+1359/232*x^4+3705/232*x^3+1359/116*x^2-140/29*x-241/29,103/232*x^11+35/232*x^10-237/29*x^9-113/29*x^8+12299/232*x^7+3723/116*x^6-33413/232*x^5-23721/232*x^4+35505/232*x^3+12587/116*x^2-1357/29*x-585/29,27/58*x^11-37/58*x^10-215/29*x^9+245/29*x^8+2345/58*x^7-1020/29*x^6-4991/58*x^5+2715/58*x^4+3381/58*x^3-475/29*x^2+171/29*x+278/29,-117/232*x^11+199/232*x^10+216/29*x^9-321/29*x^8-8441/232*x^7+5203/116*x^6+14223/232*x^5-12925/232*x^4-2123/232*x^3+67/116*x^2-932/29*x+158/29,-77/116*x^11+69/116*x^10+669/58*x^9-221/29*x^8-8245/116*x^7+839/29*x^6+21475/116*x^5-3135/116*x^4-22125/116*x^3-161/29*x^2+1385/29*x-28/29,-67/232*x^11+109/232*x^10+263/58*x^9-192/29*x^8-5615/232*x^7+3675/116*x^6+11369/232*x^5-14071/232*x^4-6289/232*x^3+5243/116*x^2-152/29*x-115/29,185/232*x^11-275/232*x^10-375/29*x^9+486/29*x^8+17045/232*x^7-9267/116*x^6-40395/232*x^5+34353/232*x^4+39071/232*x^3-11467/116*x^2-1493/29*x+263/29], x^12-3*x^11-16*x^10+48*x^9+93*x^8-270*x^7-251*x^6+633*x^5+359*x^4-582*x^3-248*x^2+136*x+32];
E[451,5]=[[0,1,-3,4,-1,-6,2,-8,-5,-8,3,7,-1,6,0,-2,9,12,-9,-13,6,10,-12,13,-5], x-1];
E[473,1]=[[-1/2*x-1/2,x+1,-x-1,x,1,-6,-2,x+2,-x-8,-5,x+4,-3*x-3,3*x+3,1,x+10,-1,x+12,-2*x-7,3*x+4,-2*x-2,-4*x-14,-2*x-4,4,3*x+11,2*x+7], x^2+4*x-1];
E[473,2]=[[1/2*x+1/2,-2,-x+1,x,-1,-2*x,-x-3,x-2,x-6,4*x-1,-x-6,2*x,10,-1,x-6,4*x-5,x+8,-13,x+2,12,2,-5*x-3,-5*x-5,-4*x+6,-3], x^2-5];
E[473,3]=[[4/5*x^4+31/5*x^3+52/5*x^2-34/5*x-16,-x-2,-7/5*x^4-53/5*x^3-86/5*x^2+57/5*x+25,x,1,-3/5*x^4-17/5*x^3-4/5*x^2+38/5*x-1,7/5*x^4+48/5*x^3+56/5*x^2-67/5*x-17,17/5*x^4+123/5*x^3+176/5*x^2-147/5*x-52,8/5*x^4+62/5*x^3+104/5*x^2-73/5*x-31,-7/5*x^4-53/5*x^3-81/5*x^2+77/5*x+28,2/5*x^4+18/5*x^3+41/5*x^2-7/5*x-16,-2*x^4-13*x^3-13*x^2+19*x+16,-27/5*x^4-198/5*x^3-296/5*x^2+222/5*x+87,1,-12/5*x^4-83/5*x^3-106/5*x^2+97/5*x+21,3*x^4+21*x^3+28*x^2-22*x-33,13/5*x^4+97/5*x^3+154/5*x^2-108/5*x-51,-1/5*x^4-9/5*x^3-18/5*x^2+21/5*x+7,-16/5*x^4-124/5*x^3-218/5*x^2+96/5*x+57,x^4+7*x^3+10*x^2-9*x-20,-14/5*x^4-106/5*x^3-172/5*x^2+89/5*x+43,x^4+8*x^3+14*x^2-8*x-19,16/5*x^4+119/5*x^3+183/5*x^2-131/5*x-54,1/5*x^4+4/5*x^3-17/5*x^2-41/5*x+9,-23/5*x^4-162/5*x^3-214/5*x^2+203/5*x+54], x^5+9*x^4+23*x^3+9*x^2-30*x-25];
E[473,4]=[[-8*x^4-85*x^3-196*x^2+434*x+1460,-10*x^4-106*x^3-244*x^2+541*x+1820,-3*x^4-31*x^3-68*x^2+161*x+509,x,-1,13*x^4+137*x^3+312*x^2-702*x-2331,17*x^4+180*x^3+412*x^2-923*x-3071,5*x^4+55*x^3+134*x^2-277*x-994,20*x^4+212*x^3+488*x^2-1081*x-3639,-13*x^4-137*x^3-311*x^2+703*x+2318,-42*x^4-444*x^3-1015*x^2+2273*x+7564,-x^3-7*x^2+x+48,x^4+10*x^3+20*x^2-56*x-157,-1,30*x^4+317*x^3+724*x^2-1623*x-5397,17*x^4+179*x^3+406*x^2-918*x-3023,19*x^4+199*x^3+448*x^2-1024*x-3357,-53*x^4-561*x^3-1286*x^2+2871*x+9601,40*x^4+424*x^3+974*x^2-2168*x-7267,11*x^4+117*x^3+270*x^2-595*x-2002,-34*x^4-358*x^3-814*x^2+1837*x+6087,17*x^4+180*x^3+414*x^2-918*x-3095,-22*x^4-233*x^3-533*x^2+1195*x+3972,-23*x^4-244*x^3-561*x^2+1247*x+4175,-35*x^4-368*x^3-834*x^2+1887*x+6218], x^5+15*x^4+71*x^3+53*x^2-420*x-799];
E[473,5]=[[-155461/168768*x^10+702847/56256*x^9-106609/2344*x^8-3024853/42192*x^7+13403207/18752*x^6-7581049/10548*x^5-197943485/84384*x^4+218878765/56256*x^3+32652805/42192*x^2-12328069/7032*x+715151/2637,-343085/168768*x^10+515605/18752*x^9-87574/879*x^8-6711821/42192*x^7+29392735/18752*x^6-32987011/21096*x^5-433891285/84384*x^4+478165637/56256*x^3+70770803/42192*x^2-26934817/7032*x+1585630/2637,-118829/168768*x^10+532087/56256*x^9-238075/7032*x^8-2362277/42192*x^7+10025023/18752*x^6-5490629/10548*x^5-148188901/84384*x^4+161181749/56256*x^3+24202181/42192*x^2-3026531/2344*x+537820/2637,x,-1,-165389/21096*x^10+745493/7032*x^9-450025/1172*x^8-3236987/5274*x^7+14161671/2344*x^6-63535795/10548*x^5-209047621/10548*x^4+230357129/7032*x^3+68152483/10548*x^2-12993503/879*x+6103478/2637,55199/42192*x^10-249169/14064*x^9+226151/3516*x^8+1077923/10548*x^7-4742389/4688*x^6+10672025/10548*x^5+70055743/21096*x^4-77219375/14064*x^3-5782393/5274*x^2+1447003/586*x-1012006/2637,-162887/42192*x^10+732677/14064*x^9-110163/586*x^8-3203939/10548*x^7+13882365/4688*x^6-7727987/2637*x^5-205018663/21096*x^4+225003071/14064*x^3+33451763/10548*x^2-12702767/1758*x+2979604/2637,8963/56256*x^10-118267/56256*x^9+51269/7032*x^8+183787/14064*x^7-2172019/18752*x^6+93920/879*x^5+10613003/28128*x^4-11348635/18752*x^3-1480679/14064*x^2+1914773/7032*x-42986/879,299429/42192*x^10-1349785/14064*x^9+2444869/7032*x^8+5858243/10548*x^7-25643743/4688*x^6+115116421/21096*x^5+378496825/21096*x^4-417305441/14064*x^3-123189109/21096*x^2+7851575/586*x-5546686/2637,1326169/168768*x^10-5982379/56256*x^9+903959/2344*x^8+25925809/42192*x^7-113757859/18752*x^6+15975757/2637*x^5+1679750801/84384*x^4-1851479905/56256*x^3-275220037/42192*x^2+104318941/7032*x-6093374/2637,-958315/168768*x^10+4305121/56256*x^9-645765/2344*x^8-18921859/42192*x^7+81453449/18752*x^6-11271046/2637*x^5-1204108979/84384*x^4+1316284099/56256*x^3+198179743/42192*x^2-74295487/7032*x+4324520/2637,126725/28128*x^10-568671/9376*x^9+255435/1172*x^8+2506589/7032*x^7-32231477/9376*x^6+5930795/1758*x^5+158763229/14064*x^4-173439021/9376*x^3-25952069/7032*x^2+9795173/1172*x-1148942/879,1,201979/21096*x^10-908989/7032*x^9+273585/586*x^8+3969265/5274*x^7-17235185/2344*x^6+38429755/5274*x^5+254590271/10548*x^4-279504739/7032*x^3-20852087/2637*x^2+15768874/879*x-7369528/2637,-17455/10548*x^10+52089/2344*x^9-558913/7032*x^8-347626/2637*x^7+1471539/1172*x^6-25714601/21096*x^5-21768671/5274*x^4+5904202/879*x^3+28708511/21096*x^2-5329109/1758*x+1234262/2637,-2951893/168768*x^10+13289455/56256*x^9-2001017/2344*x^8-57984205/42192*x^7+252092791/18752*x^6-140621197/10548*x^5-3724313453/84384*x^4+4089123037/56256*x^3+611227549/42192*x^2-230586697/7032*x+13488026/2637,323495/84384*x^10-1449905/28128*x^9+433051/2344*x^8+6432107/21096*x^7-27356685/9376*x^6+59916935/21096*x^5+405056215/42192*x^4-439521527/28128*x^3-16896845/5274*x^2+24759539/3516*x-2858858/2637,976075/168768*x^10-4400545/56256*x^9+664225/2344*x^8+19116883/42192*x^7-83628969/18752*x^6+23425007/5274*x^5+1235662067/84384*x^4-1359117091/56256*x^3-203726887/42192*x^2+76537807/7032*x-4452542/2637,1497245/168768*x^10-6757207/56256*x^9+3065293/7032*x^8+29256773/42192*x^7-128576335/18752*x^6+36137701/5274*x^5+1899441397/84384*x^4-2093083973/56256*x^3-313160945/42192*x^2+39300163/2344*x-6873754/2637,2343527/84384*x^10-10554833/28128*x^9+3181099/2344*x^8+45965075/21096*x^7-200311213/9376*x^6+447940775/21096*x^5+2958020551/42192*x^4-3253246775/28128*x^3-120885923/5274*x^2+183510011/3516*x-21489830/2637,671315/42192*x^10-3023531/14064*x^9+1822663/2344*x^8+13162367/10548*x^7-57380793/4688*x^6+256764913/21096*x^5+847150987/21096*x^4-932245151/14064*x^3-276152077/21096*x^2+26303224/879*x-12343456/2637,1790839/84384*x^10-2689787/9376*x^9+7302137/7032*x^8+35081647/21096*x^7-153224797/9376*x^6+343265515/21096*x^5+2262139439/42192*x^4-2490760615/28128*x^3-46126025/2637*x^2+140508017/3516*x-16500352/2637,-1715947/168768*x^10+2577563/18752*x^9-3499189/7032*x^8-33618019/42192*x^7+146861257/18752*x^6-82243675/10548*x^5-2168933651/84384*x^4+2387190499/56256*x^3+355421059/42192*x^2-134656391/7032*x+7850948/2637,391745/168768*x^10-1764203/56256*x^9+132869/1172*x^8+7700057/42192*x^7-33487035/18752*x^6+37317121/21096*x^5+495307897/84384*x^4-542508569/56256*x^3-82494731/42192*x^2+30477977/7032*x-1746820/2637], x^11-17*x^10+96*x^9-92*x^8-1043*x^7+3448*x^6-142*x^5-12971*x^4+13700*x^3+4760*x^2-6848*x+1024];
E[473,6]=[[-1997/11345*x^8+13449/4538*x^7-41344/2269*x^6+513629/11345*x^5-130753/11345*x^4-2912269/22690*x^3+623289/4538*x^2+1795843/22690*x-1301779/11345,721/22690*x^8-1983/4538*x^7+4198/2269*x^6-12036/11345*x^5-198531/22690*x^4+121398/11345*x^3+29789/2269*x^2-287587/22690*x-77779/11345,4/11345*x^8-118/2269*x^7+1661/2269*x^6-42398/11345*x^5+73121/11345*x^4+62289/11345*x^3-51825/2269*x^2+10552/11345*x+215998/11345,x,1,-2856/11345*x^8+9375/2269*x^7-55992/2269*x^6+673067/11345*x^5-157534/11345*x^4-1828491/11345*x^3+385928/2269*x^2+1054037/11345*x-1564252/11345,920/2269*x^8-15443/2269*x^7+94950/2269*x^6-237623/2269*x^5+68072/2269*x^4+667090/2269*x^3-740890/2269*x^2-409290/2269*x+623760/2269,792/11345*x^8-2943/2269*x^7+20294/2269*x^6-294474/11345*x^5+171913/11345*x^4+761322/11345*x^3-211949/2269*x^2-406604/11345*x+881864/11345,1314/11345*x^8-4728/2269*x^7+31710/2269*x^6-449883/11345*x^5+246801/11345*x^4+1226489/11345*x^3-348497/2269*x^2-697283/11345*x+1512598/11345,3931/22690*x^8-12725/4538*x^7+37056/2269*x^6-420826/11345*x^5+48649/22690*x^4+1219453/11345*x^3-218630/2269*x^2-1508237/22690*x+965031/11345,-1033/2269*x^8+17362/2269*x^7-106637/2269*x^6+265697/2269*x^5-75190/2269*x^4-731244/2269*x^3+799804/2269*x^2+433394/2269*x-654994/2269,5249/11345*x^8-17571/2269*x^7+107483/2269*x^6-1333933/11345*x^5+379916/11345*x^4+3614234/11345*x^3-780857/2269*x^2-2115553/11345*x+3136788/11345,818/2269*x^8-14012/2269*x^7+88517/2269*x^6-231980/2269*x^5+96967/2269*x^4+611430/2269*x^3-759817/2269*x^2-340285/2269*x+613598/2269,-1,5687/11345*x^8-19147/2269*x^7+118053/2269*x^6-1483894/11345*x^5+462183/11345*x^4+4030627/11345*x^3-906855/2269*x^2-2321509/11345*x+3724184/11345,3847/11345*x^8-12516/2269*x^7+73266/2269*x^6-836204/11345*x^5+56028/11345*x^4+2367442/11345*x^3-401751/2269*x^2-1468894/11345*x+1625789/11345,947/2269*x^8-16022/2269*x^7+99389/2269*x^6-252664/2269*x^5+90254/2269*x^4+656998/2269*x^3-759304/2269*x^2-363023/2269*x+601224/2269,-1207/22690*x^8+4975/4538*x^7-19449/2269*x^6+335732/11345*x^5-681773/22690*x^4-720346/11345*x^3+296511/2269*x^2+616509/22690*x-1148867/11345,-164/11345*x^8+300/2269*x^7-31/2269*x^6-31502/11345*x^5+76534/11345*x^4+44156/11345*x^3-44339/2269*x^2-12867/11345*x+174702/11345,-188/2269*x^8+2771/2269*x^7-13681/2269*x^6+20945/2269*x^5+19000/2269*x^4-50491/2269*x^3-14731/2269*x^2+14581/2269*x+13214/2269,8127/22690*x^8-27595/4538*x^7+85738/2269*x^6-1080387/11345*x^5+593593/22690*x^4+3059996/11345*x^3-645929/2269*x^2-3985119/22690*x+2655217/11345,814/2269*x^8-13422/2269*x^7+80212/2269*x^6-189582/2269*x^5+21577/2269*x^4+569562/2269*x^3-546072/2269*x^2-371258/2269*x+486091/2269,-2219/11345*x^8+7601/2269*x^7-48442/2269*x^6+654443/11345*x^5-348686/11345*x^4-1645814/11345*x^3+474208/2269*x^2+749068/11345*x-1933323/11345,-5464/11345*x^8+18241/2269*x^7-111107/2269*x^6+1372188/11345*x^5-398981/11345*x^4-3641019/11345*x^3+792031/2269*x^2+2070253/11345*x-3191798/11345,-738/2269*x^8+13557/2269*x^7-92592/2269*x^6+266661/2269*x^5-152508/2269*x^4-699822/2269*x^3+966192/2269*x^2+399302/2269*x-770375/2269], x^9-19*x^8+140*x^7-482*x^6+627*x^5+570*x^4-2324*x^3+1223*x^2+1580*x-1368];
E[473,7]=[[-2,1,-1,0,-1,-2,6,-8,-1,6,-1,-3,-4,-1,-8,-14,9,-4,9,-13,-16,16,-6,-7,13], x-1];
E[481,1]=[[1,0,-2,2,-2,-1,-6,0,2,-6,8,-1,-6,2,-6,10,-4,10,2,6,2,-2,6,-2,-14], x-1];
E[481,2]=[[x,-2*x^6-x^5+16*x^4+5*x^3-33*x^2-2*x+13,x^6+x^5-8*x^4-6*x^3+16*x^2+5*x-6,x^4-6*x^2+5,3*x^6-26*x^4+2*x^3+61*x^2-9*x-33,1,x^6-10*x^4+2*x^3+28*x^2-8*x-18,-3*x^6+26*x^4-2*x^3-59*x^2+9*x+26,-x^3+x^2+3*x-6,-x^6-2*x^5+7*x^4+13*x^3-11*x^2-15*x,7*x^6-58*x^4+5*x^3+128*x^2-21*x-64,1,-2*x^6-x^5+15*x^4+3*x^3-28*x^2+8*x+9,-4*x^6-x^5+32*x^4+2*x^3-70*x^2+12*x+38,-9*x^6-3*x^5+74*x^4+13*x^3-162*x^2+3*x+75,12*x^6+4*x^5-95*x^4-18*x^3+194*x^2-2*x-87,-6*x^6+52*x^4-3*x^3-122*x^2+16*x+60,7*x^6+2*x^5-55*x^4-6*x^3+109*x^2-12*x-46,-6*x^6+49*x^4-3*x^3-105*x^2+15*x+50,-12*x^6-5*x^5+96*x^4+24*x^3-201*x^2-4*x+87,5*x^6+x^5-40*x^4-3*x^3+86*x^2-6*x-43,-9*x^6-2*x^5+74*x^4+6*x^3-159*x^2+9*x+68,5*x^6+5*x^5-39*x^4-27*x^3+77*x^2+19*x-27,-17*x^6-5*x^5+135*x^4+20*x^3-279*x^2+10*x+126,5*x^6-41*x^4+2*x^3+89*x^2-12*x-40], x^7+x^6-8*x^5-7*x^4+17*x^3+12*x^2-9*x-6];
E[481,3]=[[x,-13/86*x^10+17/43*x^9+81/43*x^8-397/86*x^7-687/86*x^6+684/43*x^5+1403/86*x^4-721/43*x^3-1575/86*x^2+287/86*x+268/43,-2/43*x^10+27/86*x^9-13/86*x^8-271/86*x^7+278/43*x^6+583/86*x^5-2489/86*x^4+228/43*x^3+1739/43*x^2-1119/86*x-675/43,23/172*x^10+3/86*x^9-269/86*x^8+107/172*x^7+4113/172*x^6-843/86*x^5-12273/172*x^4+1387/43*x^3+13047/172*x^2-4477/172*x-1741/86,-7/172*x^10-7/43*x^9+40/43*x^8+375/172*x^7-1177/172*x^6-398/43*x^5+3395/172*x^4+565/43*x^3-3739/172*x^2-421/172*x+743/86,-1,55/86*x^10-62/43*x^9-389/43*x^8+1587/86*x^7+3879/86*x^6-3261/43*x^5-8701/86*x^4+4992/43*x^3+8873/86*x^2-4727/86*x-1587/43,57/86*x^10-58/43*x^9-418/43*x^8+1529/86*x^7+4375/86*x^6-3310/43*x^5-10359/86*x^4+5523/43*x^3+11047/86*x^2-5909/86*x-1959/43,-97/172*x^10+107/86*x^9+697/86*x^8-2777/172*x^7-7071/172*x^6+5795/86*x^5+15999/172*x^4-4438/43*x^3-16257/172*x^2+7791/172*x+3121/86,16/43*x^10-65/43*x^9-120/43*x^8+740/43*x^7-117/43*x^6-2418/43*x^5+1829/43*x^4+2261/43*x^3-2474/43*x^2-340/43*x+842/43,40/43*x^10-98/43*x^9-515/43*x^8+1205/43*x^7+2223/43*x^6-4669/43*x^5-4221/43*x^4+6663/43*x^3+3963/43*x^2-3129/43*x-1292/43,1,55/86*x^10-62/43*x^9-346/43*x^8+1501/86*x^7+2761/86*x^6-2831/43*x^5-4057/86*x^4+3831/43*x^3+1907/86*x^2-3179/86*x-82/43,11/172*x^10-32/43*x^9+60/43*x^8+1229/172*x^7-3679/172*x^6-597/43*x^5+12553/172*x^4-507/43*x^3-11177/172*x^2+3217/172*x+663/86,-121/172*x^10+51/43*x^9+501/43*x^8-3027/172*x^7-11991/172*x^6+3858/43*x^5+31337/172*x^4-7796/43*x^3-33229/172*x^2+19309/172*x+5693/86,3/86*x^10-31/86*x^9-1/86*x^8+193/43*x^7-245/86*x^6-1523/86*x^5+455/43*x^4+1162/43*x^3-265/86*x^2-779/43*x-429/43,8/43*x^10+32/43*x^9-232/43*x^8-361/43*x^7+1941/43*x^6+1156/43*x^5-5987/43*x^4-1084/43*x^3+6374/43*x^2+217/43*x-1514/43,-19/86*x^10+48/43*x^9+39/43*x^8-1083/86*x^7+921/86*x^6+1777/43*x^5-5061/86*x^4-1884/43*x^3+6437/86*x^2+1339/86*x-981/43,-19/172*x^10+24/43*x^9-2/43*x^8-825/172*x^7+1867/172*x^6+136/43*x^5-7985/172*x^4+1509/43*x^3+9533/172*x^2-6057/172*x-2099/86,-65/172*x^10-1/86*x^9+663/86*x^8-265/172*x^7-9283/172*x^6+1571/86*x^5+26279/172*x^4-2426/43*x^3-27741/172*x^2+7111/172*x+4995/86,-33/86*x^10-23/43*x^9+457/43*x^8+183/86*x^7-7625/86*x^6+1002/43*x^5+24003/86*x^4-4741/43*x^3-26841/86*x^2+7979/86*x+3988/43,-227/172*x^10+74/43*x^9+990/43*x^8-4597/172*x^7-24605/172*x^6+6124/43*x^5+64687/172*x^4-12687/43*x^3-66235/172*x^2+31387/172*x+10445/86,-207/172*x^10+145/86*x^9+1733/86*x^8-4231/172*x^7-20849/172*x^6+10597/86*x^5+54213/172*x^4-10591/43*x^3-56363/172*x^2+26533/172*x+8789/86,5/43*x^10+63/43*x^9-274/43*x^8-704/43*x^7+2745/43*x^6+2163/43*x^5-9219/43*x^4-1473/43*x^3+10423/43*x^2-547/43*x-2892/43,-57/43*x^10+361/86*x^9+1285/86*x^8-4391/86*x^7-2139/43*x^6+16551/86*x^5+5453/86*x^4-11046/43*x^3-2791/43*x^2+9023/86*x+1639/43], x^11-3*x^10-14*x^9+45*x^8+64*x^7-237*x^6-99*x^5+529*x^4-7*x^3-460*x^2+67*x+110];
E[481,4]=[[x,-5/4*x^10+5/2*x^9+16*x^8-129/4*x^7-241/4*x^6+120*x^5+293/4*x^4-130*x^3-139/4*x^2+101/4*x+5/2,-1/4*x^10+5/4*x^9+11/4*x^8-16*x^7-27/4*x^6+237/4*x^5-125/2*x^3-13/4*x^2+9*x+1,3/8*x^10-1/4*x^9-11/2*x^8+27/8*x^7+215/8*x^6-13*x^5-423/8*x^4+27/2*x^3+321/8*x^2+17/8*x-21/4,3/8*x^10-1/2*x^9-19/4*x^8+53/8*x^7+139/8*x^6-103/4*x^5-145/8*x^4+32*x^3+29/8*x^2-97/8*x+1/4,1,1/4*x^10+1/2*x^9-4*x^8-27/4*x^7+89/4*x^6+29*x^5-201/4*x^4-45*x^3+159/4*x^2+83/4*x-11/2,7/4*x^10-4*x^9-45/2*x^8+209/4*x^7+343/4*x^6-401/2*x^5-437/4*x^4+235*x^3+229/4*x^2-217/4*x-3/2,9/8*x^10-13/4*x^9-14*x^8+333/8*x^7+397/8*x^6-307/2*x^5-441/8*x^4+321/2*x^3+283/8*x^2-185/8*x-7/4,1/2*x^10-4*x^9-6*x^8+105/2*x^7+39/2*x^6-206*x^5-47/2*x^4+249*x^3+71/2*x^2-97/2*x-1,-x^10+7/2*x^9+25/2*x^8-91/2*x^7-45*x^6+347/2*x^5+111/2*x^4-196*x^3-47*x^2+63/2*x+7,-1,11/4*x^10-9/2*x^9-37*x^8+235/4*x^7+623/4*x^6-223*x^5-987/4*x^4+252*x^3+665/4*x^2-207/4*x-35/2,-9/8*x^10+5/2*x^9+57/4*x^8-255/8*x^7-425/8*x^6+465/4*x^5+547/8*x^4-120*x^3-391/8*x^2+147/8*x+25/4,5/8*x^10-7/2*x^9-33/4*x^8+363/8*x^7+269/8*x^6-697/4*x^5-463/8*x^4+203*x^3+475/8*x^2-295/8*x-17/4,-1/2*x^10-1/4*x^9+23/4*x^8+15/4*x^7-15*x^6-79/4*x^5-55/4*x^4+73/2*x^3+53*x^2-47/4*x-13/2,-1/2*x^10-1/2*x^9+17/2*x^8+6*x^7-101/2*x^6-41/2*x^5+120*x^4+19*x^3-177/2*x^2-6*x+6,-9/4*x^10+2*x^9+61/2*x^8-103/4*x^7-517/4*x^6+185/2*x^5+783/4*x^4-90*x^3-383/4*x^2+39/4*x+5/2,19/8*x^10-9/2*x^9-127/4*x^8+469/8*x^7+1051/8*x^6-891/4*x^5-1593/8*x^4+254*x^3+981/8*x^2-457/8*x-35/4,-13/8*x^10+15/4*x^9+45/2*x^8-397/8*x^7-801/8*x^6+196*x^5+1433/8*x^4-487/2*x^3-1143/8*x^2+441/8*x+75/4,-3/4*x^10+1/2*x^9+11*x^8-27/4*x^7-219/4*x^6+27*x^5+463/4*x^4-36*x^3-409/4*x^2+55/4*x+23/2,9/8*x^10+3/2*x^9-57/4*x^8-161/8*x^7+417/8*x^6+347/4*x^5-371/8*x^4-128*x^3-161/8*x^2+309/8*x+23/4,1/8*x^10-3/4*x^9-5/2*x^8+81/8*x^7+141/8*x^6-42*x^5-421/8*x^4+109/2*x^3+435/8*x^2-5/8*x-7/4,-1/2*x^10+6*x^8+1/2*x^7-37/2*x^6-7*x^5+5/2*x^4+21*x^3+57/2*x^2-15/2*x-5,1/4*x^10-15/4*x^9-13/4*x^8+97/2*x^7+55/4*x^6-743/4*x^5-75/2*x^4+423/2*x^3+293/4*x^2-53/2*x-18], x^11-3*x^10-12*x^9+39*x^8+38*x^7-149*x^6-23*x^5+175*x^4-5*x^3-48*x^2+5*x+2];
E[481,5]=[[x,-4*x^6-15*x^5+10*x^4+69*x^3+15*x^2-42*x+5,-3*x^6-11*x^5+10*x^4+54*x^3-41*x+8,8*x^6+30*x^5-21*x^4-140*x^3-26*x^2+88*x-13,9*x^6+34*x^5-24*x^4-160*x^3-27*x^2+105*x-15,-1,-x^6-4*x^5+2*x^4+18*x^3+6*x^2-8*x,9*x^6+32*x^5-30*x^4-154*x^3-3*x^2+111*x-22,-8*x^6-30*x^5+22*x^4+143*x^3+23*x^2-99*x+8,-15*x^6-56*x^5+41*x^4+263*x^3+41*x^2-171*x+24,-13*x^6-48*x^5+36*x^4+225*x^3+36*x^2-147*x+14,-1,4*x^6+15*x^5-9*x^4-67*x^3-22*x^2+32*x+3,2*x^6+7*x^5-8*x^4-34*x^3+8*x^2+22*x-14,9*x^6+33*x^5-26*x^4-157*x^3-20*x^2+113*x-15,-4*x^6-16*x^5+9*x^4+74*x^3+18*x^2-38*x+5,-2*x^6-4*x^5+16*x^4+25*x^3-38*x^2-36*x+16,-7*x^6-28*x^5+15*x^4+132*x^3+37*x^2-86*x+4,12*x^6+46*x^5-29*x^4-215*x^3-51*x^2+135*x-10,x^5+4*x^4-4*x^3-21*x^2+2*x+5,-9*x^6-31*x^5+34*x^4+153*x^3-16*x^2-122*x+31,x^6+6*x^5+4*x^4-26*x^3-33*x^2+13*x+14,-17*x^6-63*x^5+45*x^4+295*x^3+61*x^2-193*x+11,-x^6-3*x^5+3*x^4+14*x^3+9*x^2-8*x-16,11*x^6+40*x^5-33*x^4-190*x^3-25*x^2+130*x-4], x^7+5*x^6+2*x^5-21*x^4-25*x^3+8*x^2+13*x-2];
E[493,1]=[[-1,-3,1,-2,3,1,1,-4,-2,1,1,-2,6,1,-9,-9,-6,8,-14,-10,0,3,8,16,2], x-1];
E[493,2]=[[1,x,x+2,x+3,-x,-2*x-1,-1,-x-1,-2*x+4,1,-3*x,x+3,-x-3,2*x-3,2*x+7,-2*x+5,-14,x+9,-6*x,-x+5,x-11,-3*x-2,-2*x+2,-4,-2], x^2+x-4];
E[493,3]=[[-x^3+x^2+8*x-9,x,2*x^3-x^2-16*x+14,-2*x^3+x^2+16*x-13,-x^3+8*x,3*x^3-2*x^2-25*x+23,1,x^2-3,2*x^3-2*x^2-18*x+20,-1,-3*x^3+2*x^2+26*x-28,-6*x^3+x^2+48*x-27,-6*x^3+x^2+50*x-29,7*x^3-3*x^2-58*x+51,4*x^3-3*x^2-35*x+33,-x^3+9*x-3,-10,4*x^3-3*x^2-34*x+31,x^3-5*x+4,-5*x^3+x^2+39*x-19,-x^3-x^2+5*x+3,10*x^3-6*x^2-79*x+74,-5*x^3+4*x^2+41*x-34,-4*x^3+2*x^2+34*x-24,-11*x^3+6*x^2+89*x-78], x^4-3*x^3-7*x^2+27*x-16];
E[493,4]=[[x^4+x^3-5*x^2-5*x,x,-x^3-x^2+5*x+3,x^2-x-4,-x^4+5*x^2-x-4,x^3-5*x-2,1,2*x^3-9*x-2,x^4+2*x^3-6*x^2-10*x,1,-2*x^4-3*x^3+11*x^2+13*x-3,3*x^4+3*x^3-14*x^2-12*x+1,x^4+x^3-5*x^2-4*x,3*x^4+4*x^3-16*x^2-20*x,-2*x^4-6*x^3+11*x^2+30*x-3,3*x^4+6*x^3-15*x^2-28*x-4,-x^4-3*x^3+6*x^2+15*x-5,-2*x^4-3*x^3+12*x^2+15*x-4,-x^4-5*x^3+6*x^2+26*x-4,5*x^3-x^2-22*x+3,-x^4+8*x^2-x-4,-5*x^4-9*x^3+24*x^2+41*x+2,7*x^4+9*x^3-37*x^2-47*x+1,-3*x^4-5*x^3+12*x^2+23*x+5,4*x^4+2*x^3-23*x^2-12*x+13], x^5+2*x^4-5*x^3-10*x^2+1];
E[493,5]=[[-3/19*x^5+1/19*x^4+22/19*x^3+1/19*x^2-11/19*x+33/19,x,5/19*x^5-8/19*x^4-24/19*x^3+11/19*x^2-7/19*x+40/19,6/19*x^5-2/19*x^4-44/19*x^3-21/19*x^2+41/19*x+48/19,-6/19*x^5+21/19*x^4+44/19*x^3-131/19*x^2-117/19*x+104/19,-4/19*x^5+14/19*x^4+23/19*x^3-100/19*x^2-21/19*x+120/19,1,8/19*x^5-28/19*x^4-46/19*x^3+162/19*x^2+61/19*x-126/19,4/19*x^5-33/19*x^4-4/19*x^3+214/19*x^2+2/19*x-158/19,-1,3/19*x^5-20/19*x^4+16/19*x^3+75/19*x^2-103/19*x+24/19,-1/19*x^5-25/19*x^4+20/19*x^3+222/19*x^2-48/19*x-274/19,16/19*x^5-37/19*x^4-111/19*x^3+191/19*x^2+198/19*x-138/19,-10/19*x^5-3/19*x^4+86/19*x^3+54/19*x^2-100/19*x-4/19,7/19*x^5+4/19*x^4-83/19*x^3-53/19*x^2+222/19*x+132/19,6/19*x^5+17/19*x^4-120/19*x^3-97/19*x^2+364/19*x+86/19,3/19*x^5-1/19*x^4-22/19*x^3+18/19*x^2-27/19*x+62/19,24/19*x^5-46/19*x^4-157/19*x^3+220/19*x^2+221/19*x-188/19,12/19*x^5-23/19*x^4-107/19*x^3+148/19*x^2+196/19*x-132/19,-7/19*x^5+34/19*x^4+26/19*x^3-213/19*x^2-32/19*x+134/19,-4/19*x^5+33/19*x^4+42/19*x^3-214/19*x^2-211/19*x+44/19,-2/19*x^5-31/19*x^4+21/19*x^3+254/19*x^2+75/19*x-244/19,1/19*x^5-13/19*x^4-20/19*x^3+177/19*x^2+67/19*x-410/19,-9/19*x^5+3/19*x^4+66/19*x^3+22/19*x^2-33/19*x+4/19,-x^5+2*x^4+7*x^3-9*x^2-14*x+2], x^6-2*x^5-11*x^4+14*x^3+38*x^2-15*x-26];
E[493,6]=[[19/107*x^9+145/107*x^8+259/107*x^7-405/107*x^6-1383/107*x^5-226/107*x^4+1531/107*x^3+825/107*x^2-269/107*x-285/107,x,-15/107*x^9-137/107*x^8-334/107*x^7+224/107*x^6+1548/107*x^5+674/107*x^4-1479/107*x^3-916/107*x^2+4/107*x+118/107,-18/107*x^9-143/107*x^8-251/107*x^7+547/107*x^6+1665/107*x^5-304/107*x^4-2695/107*x^3-500/107*x^2+1139/107*x+270/107,36/107*x^9+286/107*x^8+502/107*x^7-1094/107*x^6-3330/107*x^5+715/107*x^4+5604/107*x^3+465/107*x^2-2599/107*x-326/107,-25/107*x^9-157/107*x^8-93/107*x^7+944/107*x^6+1082/107*x^5-1944/107*x^4-1930/107*x^3+1826/107*x^2+506/107*x-588/107,-1,60/107*x^9+548/107*x^8+1336/107*x^7-1003/107*x^6-6620/107*x^5-2375/107*x^4+7842/107*x^3+3022/107*x^2-2370/107*x-258/107,-25/107*x^9-157/107*x^8-93/107*x^7+944/107*x^6+1082/107*x^5-2051/107*x^4-2465/107*x^3+1612/107*x^2+1897/107*x-374/107,-1,-14/107*x^9-135/107*x^8-433/107*x^7-169/107*x^6+1830/107*x^5+2498/107*x^4-2215/107*x^3-3052/107*x^2+1623/107*x+424/107,9/107*x^9+125/107*x^8+393/107*x^7-327/107*x^6-2277/107*x^5-62/107*x^4+3755/107*x^3+250/107*x^2-1800/107*x-242/107,-27/107*x^9-375/107*x^8-1500/107*x^7-731/107*x^6+6403/107*x^5+7890/107*x^4-6878/107*x^3-8882/107*x^2+2618/107*x+726/107,-18/107*x^9-143/107*x^8-251/107*x^7+547/107*x^6+1665/107*x^5-411/107*x^4-2909/107*x^3+35/107*x^2+1674/107*x-372/107,27/107*x^9+161/107*x^8+109/107*x^7-767/107*x^6-1053/107*x^5+777/107*x^4+1956/107*x^3+643/107*x^2-906/107*x-940/107,10/107*x^9+20/107*x^8-241/107*x^7-720/107*x^6+359/107*x^5+2297/107*x^4+986/107*x^3-1458/107*x^2-1572/107*x-150/107,-35/107*x^9-391/107*x^8-1243/107*x^7+166/107*x^6+6073/107*x^5+4319/107*x^4-8373/107*x^3-5490/107*x^2+4432/107*x+632/107,21/107*x^9+149/107*x^8+168/107*x^7-870/107*x^6-1889/107*x^5+1068/107*x^4+4446/107*x^3+191/107*x^2-3130/107*x+220/107,-28/107*x^9-163/107*x^8+97/107*x^7+1695/107*x^6+771/107*x^5-5169/107*x^4-2290/107*x^3+4703/107*x^2+678/107*x-222/107,-30/107*x^9-274/107*x^8-561/107*x^7+1197/107*x^6+4166/107*x^5-899/107*x^4-8094/107*x^3-1618/107*x^2+3967/107*x+1306/107,-13/107*x^9-26/107*x^8+431/107*x^7+1471/107*x^6-884/107*x^5-6271/107*x^4-704/107*x^3+6796/107*x^2+460/107*x-982/107,-49/107*x^9-419/107*x^8-927/107*x^7+853/107*x^6+4372/107*x^5+1146/107*x^4-4168/107*x^3-624/107*x^2+491/107*x-656/107,7/107*x^9+121/107*x^8+698/107*x^7+1208/107*x^6-1878/107*x^5-6599/107*x^4-337/107*x^3+7090/107*x^2+1168/107*x-1496/107,-7/107*x^9-121/107*x^8-591/107*x^7-566/107*x^6+2413/107*x^5+4031/107*x^4-2873/107*x^3-3880/107*x^2+2042/107*x-216/107,5/107*x^9+10/107*x^8-281/107*x^7-1216/107*x^6+19/107*x^5+5375/107*x^4+3061/107*x^3-6079/107*x^2-2926/107*x+1316/107], x^10+9*x^9+22*x^8-16*x^7-115*x^6-54*x^5+155*x^4+95*x^3-65*x^2-24*x+2];
E[493,7]=[[14/107*x^7-54/107*x^6-117/107*x^5+457/107*x^4+376/107*x^3-1011/107*x^2-435/107*x+359/107,x,-11/107*x^7+73/107*x^6-38/107*x^5-489/107*x^4+530/107*x^3+802/107*x^2-690/107*x-198/107,-19/214*x^7+29/107*x^6+197/214*x^5-184/107*x^4-515/107*x^3+325/214*x^2+941/107*x+257/107,9/107*x^7-50/107*x^6-37/107*x^5+439/107*x^4-64/107*x^3-948/107*x^2+263/107*x+376/107,13/214*x^7-48/107*x^6+113/214*x^5+323/107*x^4-712/107*x^3-977/214*x^2+1468/107*x+117/107,-1,-13/214*x^7+48/107*x^6-113/214*x^5-323/107*x^4+605/107*x^3+1405/214*x^2-826/107*x-759/107,-3/107*x^7-19/107*x^6+155/107*x^5+32/107*x^4-906/107*x^3+209/107*x^2+1125/107*x+160/107,1,-77/107*x^7+404/107*x^6+162/107*x^5-2888/107*x^4+1142/107*x^3+4758/107*x^2-1727/107*x-744/107,-9/214*x^7+25/107*x^6+37/214*x^5-273/107*x^4+139/107*x^3+1269/214*x^2-292/107*x+133/107,-93/214*x^7+187/107*x^6+739/214*x^5-1537/107*x^4-1096/107*x^3+5623/214*x^2+1334/107*x+19/107,-119/214*x^7+283/107*x^6+513/214*x^5-2183/107*x^4+221/107*x^3+8219/214*x^2-1174/107*x-857/107,65/214*x^7-133/107*x^6-505/214*x^5+1080/107*x^4+720/107*x^3-3387/214*x^2-1006/107*x-699/107,-157/214*x^7+341/107*x^6+907/214*x^5-2551/107*x^4-809/107*x^3+8655/214*x^2+922/107*x-129/107,47/107*x^7-273/107*x^6+104/107*x^5+1710/107*x^4-2284/107*x^3-2133/107*x^2+3882/107*x+846/107,169/214*x^7-410/107*x^6-671/214*x^5+2915/107*x^4+160/107*x^3-9277/214*x^2-604/107*x+23/107,66/107*x^7-224/107*x^6-628/107*x^5+1757/107*x^4+2491/107*x^3-3100/107*x^2-3778/107*x-96/107,-53/214*x^7+64/107*x^6+741/214*x^5-609/107*x^4-1797/107*x^3+2123/214*x^2+3143/107*x+807/107,81/214*x^7-118/107*x^6-975/214*x^5+1066/107*x^4+2173/107*x^3-4573/214*x^2-3150/107*x+515/107,47/107*x^7-166/107*x^6-431/107*x^5+1389/107*x^4+1461/107*x^3-2775/107*x^2-2003/107*x+418/107,26/107*x^7-85/107*x^6-309/107*x^5+864/107*x^4+1218/107*x^3-2061/107*x^2-1618/107*x+1110/107,-30/107*x^7+131/107*x^6+159/107*x^5-964/107*x^4-286/107*x^3+1876/107*x^2+978/107*x-1396/107,83/107*x^7-366/107*x^6-472/107*x^5+2824/107*x^4+563/107*x^3-4748/107*x^2+12/107*x-646/107], x^8-6*x^7+x^6+44*x^5-42*x^4-85*x^3+80*x^2+42*x-8];
E[493,8]=[[-1,0,-2,-5,0,7,1,5,4,-1,4,-11,3,-5,9,-3,6,-1,4,5,3,-6,14,-8,2], x-1];
E[517,1]=[[0,3,3,-2,1,-2,4,4,-7,-6,5,3,-6,-6,-1,-6,5,-14,15,5,0,-12,6,-1,1], x-1];
E[517,2]=[[2,-1,-3,-2,1,0,-6,8,-5,-4,3,3,4,-6,1,2,-3,8,-11,-3,-4,2,-14,-1,-15], x-1];
E[517,3]=[[-1/4*x+1/2,3,-1/4*x-1/2,-1/4*x+1/2,-1,1/4*x-1/2,x,1/4*x+7/2,3/4*x-1/2,8,3/4*x-5/2,-1/2*x-6,-3/2*x+7,-3/4*x+7/2,1,1/2*x-5,2*x-7,1/2*x-5,-3/4*x+5/2,-3/2*x,x+6,-1/4*x-7/2,-5/4*x+5/2,7,1/2*x], x^2-4*x-28];
E[517,4]=[[x-3,x-4,x-4,-3,-1,-x+3,x,x,-x+3,-6,-3*x+15,1,-x+7,2*x,1,-2*x+9,2*x,3*x-12,3*x-15,-2*x+14,6*x-22,6*x-21,-10*x+41,-4*x+7,-6*x+21], x^2-8*x+14];
E[517,5]=[[-x+3,-x+4,x-4,2*x-5,1,x-1,x,3*x-8,x+1,4*x-6,-x+5,4*x-3,5*x-5,-2*x+4,-1,-2*x-3,2*x-12,-5*x+16,-3*x+15,-2*x+14,2*x-6,-3,-4*x+7,4*x-5,-2*x-11], x^2-4*x+2];
E[517,6]=[[1/2*x-1,-1,1/2*x,-1/2*x+1,1,-1/2*x-3,x,-3/2*x-1,-3/2*x-2,-x+2,-1/2*x-6,2*x-3,4,1/2*x-3,1,2*x-4,2*x-3,2*x-4,1/2*x-14,x+3,-4,1/2*x+11,-1/2*x+1,2*x-1,-3*x+3], x^2-12];
E[517,7]=[[1/9*x^2+2/9*x-17/9,1/9*x^2+5/9*x-14/9,1/3*x+4/3,1/3*x+7/3,-1,2/9*x^2+4/9*x-25/9,x,-1/9*x^2-5/9*x-22/9,-1/9*x^2-5/9*x+59/9,-1/9*x^2-8/9*x+38/9,2/9*x^2+13/9*x-7/9,-1/3*x^2-4/3*x+3,-1/9*x^2-14/9*x-13/9,-2/9*x^2+8/9*x+82/9,1,-2/3*x+25/3,-6,-2/9*x^2+5/9*x+70/9,-5/9*x^2-31/9*x+55/9,-2/9*x^2-28/9*x+46/9,-1/9*x^2-20/9*x-46/9,1/9*x^2-1/9*x+25/9,-5/9*x^2-31/9*x+91/9,1/9*x^2-10/9*x-47/9,2/9*x^2+4/9*x-115/9], x^3+6*x^2-18*x-50];
E[517,8]=[[-1,1/9*x^2-5/9*x-8/3,-2/9*x^2+1/9*x+10/3,1/3*x^2+1/3*x-7,1,-1/9*x^2-4/9*x+5/3,x,-1/9*x^2+5/9*x+2/3,-5/9*x^2+7/9*x+19/3,-1/9*x^2-4/9*x+2/3,2/3*x^2-1/3*x-13,1/9*x^2+4/9*x-23/3,-2/3*x^2-2/3*x+11,2/9*x^2-10/9*x-10/3,1,4/9*x^2-20/9*x-23/3,-10/9*x^2+14/9*x+50/3,2/9*x^2-1/9*x+14/3,1/9*x^2-5/9*x+7/3,8/9*x^2-4/9*x-58/3,x^2-22,-4/3*x^2-1/3*x+25,-x-5,-1/9*x^2+14/9*x-25/3,-4/9*x^2-16/9*x+47/3], x^3-4*x^2-20*x+66];
E[517,9]=[[239894032149/50857743639712*x^9+139692592879/3178608977482*x^8-9141016826281/50857743639712*x^7-28839096623397/12714435909928*x^6+68369918953509/50857743639712*x^5+482605232001311/12714435909928*x^4+202146878239559/25428871819856*x^3-5978437814923763/25428871819856*x^2-520097704864441/6357217954964*x+2403244470779367/6357217954964,-62014699377/50857743639712*x^9-68231885007/6357217954964*x^8+2666742151989/50857743639712*x^7+7301899417919/12714435909928*x^6-29018465136449/50857743639712*x^5-127693516128477/12714435909928*x^4-5097165838195/25428871819856*x^3+1638351209840255/25428871819856*x^2+127633017999571/6357217954964*x-656542279902563/6357217954964,-578811617231/50857743639712*x^9-168160251813/1589304488741*x^8+22159564507611/50857743639712*x^7+69473171237511/12714435909928*x^6-170300519032687/50857743639712*x^5-1163753655390257/12714435909928*x^4-446682660368229/25428871819856*x^3+14428036155010233/25428871819856*x^2+1207843018716875/6357217954964*x-5781459199767433/6357217954964,90720780767/6357217954964*x^9+844420041431/6357217954964*x^8-3478244683999/6357217954964*x^7-43665375764443/6357217954964*x^6+26897550856231/6357217954964*x^5+732410431143327/6357217954964*x^4+68896887514109/3178608977482*x^3-1135467474716221/1589304488741*x^2-757865214254575/3178608977482*x+1821900305919451/1589304488741,1,-342831042485/6357217954964*x^9-3185764708245/6357217954964*x^8+13182763989549/6357217954964*x^7+164848433383165/6357217954964*x^6-103061359711309/6357217954964*x^5-2768264778241685/6357217954964*x^4-255268157871279/3178608977482*x^3+4299541376715201/1589304488741*x^2+2866434998245859/3178608977482*x-6911914044011809/1589304488741,x,-258398458927/25428871819856*x^9-604409122245/6357217954964*x^8+9746411177811/25428871819856*x^7+7771408977449/1589304488741*x^6-70641026948119/25428871819856*x^5-259015034815445/3178608977482*x^4-220792747265017/12714435909928*x^3+6394842472584989/12714435909928*x^2+271641804668067/1589304488741*x-2562458459932435/3178608977482,-1568092710555/50857743639712*x^9-910877284873/3178608977482*x^8+60123727495911/50857743639712*x^7+188183563593151/12714435909928*x^6-466078936797963/50857743639712*x^5-3151735606620393/12714435909928*x^4-1174579819165057/25428871819856*x^3+39042894931873197/25428871819856*x^2+3247174615111311/6357217954964*x-15628732526343733/6357217954964,2050936510817/25428871819856*x^9+2377479923079/3178608977482*x^8-79165850887637/25428871819856*x^7-246203228517611/6357217954964*x^6+628987917722929/25428871819856*x^5+4137483471750493/6357217954964*x^4+1456714992301827/12714435909928*x^3-51431106002533927/12714435909928*x^2-4228950264457487/3178608977482*x+20646769747862463/3178608977482,-794797302495/50857743639712*x^9-465629523689/3178608977482*x^8+29782408204891/50857743639712*x^7+95571209468907/12714435909928*x^6-210044539087471/50857743639712*x^5-1588226490269213/12714435909928*x^4-709821607287741/25428871819856*x^3+19572942102193081/25428871819856*x^2+1671955717900683/6357217954964*x-7887355552758769/6357217954964,1261690556725/50857743639712*x^9+1471209264963/6357217954964*x^8-48213595872729/50857743639712*x^7-152204508952875/12714435909928*x^6+365974064070229/50857743639712*x^5+2555590528124825/12714435909928*x^4+1024555710646087/25428871819856*x^3-31769450507912987/25428871819856*x^2-2716502179924215/6357217954964*x+12772053658589111/6357217954964,254746514513/25428871819856*x^9+295171595489/3178608977482*x^8-9841064667869/25428871819856*x^7-30516099554423/6357217954964*x^6+79519289929129/25428871819856*x^5+511385743613757/6357217954964*x^4+161801701158855/12714435909928*x^3-6328991573507719/12714435909928*x^2-499568093332777/3178608977482*x+2526749410463747/3178608977482,978254082475/12714435909928*x^9+4530953701807/6357217954964*x^8-37837725264619/12714435909928*x^7-234659121134117/6357217954964*x^6+303345685225895/12714435909928*x^5+3944453010745621/6357217954964*x^4+675410222199219/6357217954964*x^3-24520629377180311/6357217954964*x^2-4007383018712737/3178608977482*x+9851169462702854/1589304488741,-1,10567251935/6357217954964*x^9+45857115833/3178608977482*x^8-465768815261/6357217954964*x^7-2443670292039/3178608977482*x^6+5674525856233/6357217954964*x^5+42384482330921/3178608977482*x^4-3070321886540/1589304488741*x^3-266910318692879/3178608977482*x^2-23286460433734/1589304488741*x+212122585918216/1589304488741,-4573371953291/50857743639712*x^9-5306039612859/6357217954964*x^8+176345524053495/50857743639712*x^7+549576798233361/12714435909928*x^6-1392678544227707/50857743639712*x^5-9238898481030603/12714435909928*x^4-3333736255097569/25428871819856*x^3+114927000521921221/25428871819856*x^2+9545197938987521/6357217954964*x-46216038681772721/6357217954964,-1342752954527/25428871819856*x^9-1552798605785/3178608977482*x^8+52253990293147/25428871819856*x^7+161280090518665/6357217954964*x^6-427812651700399/25428871819856*x^5-2720435270813299/6357217954964*x^4-884448696421781/12714435909928*x^3+33919338316764705/12714435909928*x^2+2753564149794703/3178608977482*x-13628513830189717/3178608977482,-3582155733/50857743639712*x^9-4554784173/3178608977482*x^8-393420715383/50857743639712*x^7+285303949449/12714435909928*x^6+18040428584955/50857743639712*x^5+10751076623097/12714435909928*x^4-72120810798431/25428871819856*x^3-355213822360445/25428871819856*x^2-3229293496471/6357217954964*x+244645370483909/6357217954964,-4598593480795/50857743639712*x^9-5332458341669/6357217954964*x^8+177632990833095/50857743639712*x^7+552651610980173/12714435909928*x^6-1412526576180011/50857743639712*x^5-9297464046586071/12714435909928*x^4-3291923864151489/25428871819856*x^3+115712782420464933/25428871819856*x^2+9561748064635549/6357217954964*x-46530604815632441/6357217954964,-1384888666705/25428871819856*x^9-805094151005/1589304488741*x^8+53052077448437/25428871819856*x^7+166353345115369/6357217954964*x^6-409820901601489/25428871819856*x^5-2787470734676291/6357217954964*x^4-1046747557041483/12714435909928*x^3+34578936739139727/12714435909928*x^2+2876924102093013/3178608977482*x-13932345442062531/3178608977482,485518470945/12714435909928*x^9+2241744115229/6357217954964*x^8-19049390946757/12714435909928*x^7-116852414220867/6357217954964*x^6+160196516672737/12714435909928*x^5+1980815627671663/6357217954964*x^4+300651962987399/6357217954964*x^3-12407728423514201/6357217954964*x^2-1997259755735755/3178608977482*x+4990389233471342/1589304488741,434822921297/6357217954964*x^9+4033130805047/6357217954964*x^8-16762459601569/6357217954964*x^7-208679234462227/6357217954964*x^6+132601786656165/6357217954964*x^5+3503535231320851/6357217954964*x^4+311436359180929/3178608977482*x^3-5439537491000549/1589304488741*x^2-3582066711674291/3178608977482*x+8743060286141035/1589304488741,333235349441/50857743639712*x^9+398824254843/6357217954964*x^8-11889140978485/50857743639712*x^7-40601612660719/12714435909928*x^6+62325165920705/50857743639712*x^5+667979018550461/12714435909928*x^4+448321740825563/25428871819856*x^3-8183241870464239/25428871819856*x^2-813059332039411/6357217954964*x+3326885189803163/6357217954964,-2605359524329/50857743639712*x^9-3004067489637/6357217954964*x^8+102111297563901/50857743639712*x^7+312695521642723/12714435909928*x^6-857711833347881/50857743639712*x^5-5290380845303761/12714435909928*x^4-1586477249659635/25428871819856*x^3+66187046085899079/25428871819856*x^2+5269477907037623/6357217954964*x-26621348500322715/6357217954964], x^10+6*x^9-69*x^8-354*x^7+1881*x^6+7074*x^5-25042*x^4-54922*x^3+148036*x^2+135080*x-264560];
E[517,10]=[[-153551423/2111620312*x^9-1316236229/1055810156*x^8-10543381451/2111620312*x^7+16002315501/1055810156*x^6+213594714495/2111620312*x^5-47357735559/1055810156*x^4-120127879646/263952539*x^3+201968176211/1055810156*x^2+173519310983/263952539*x-121826252617/263952539,-43072719/263952539*x^9-1474528739/527905078*x^8-5867097759/527905078*x^7+18273349751/527905078*x^6+120141088873/527905078*x^5-57781178825/527905078*x^4-551818963001/527905078*x^3+121537443798/263952539*x^2+406399554792/263952539*x-289871322259/263952539,-142849843/2111620312*x^9-1202172493/1055810156*x^8-8996032059/2111620312*x^7+16854774443/1055810156*x^6+193760560247/2111620312*x^5-77418101851/1055810156*x^4-117498221146/263952539*x^3+297733578635/1055810156*x^2+177419853302/263952539*x-143401912140/263952539,164151985/2111620312*x^9+1394106275/1055810156*x^8+10821088385/2111620312*x^7-18102773217/1055810156*x^6-224966962917/2111620312*x^5+67302832725/1055810156*x^4+130315895879/263952539*x^3-264400500773/1055810156*x^2-190317975748/263952539*x+140004079257/263952539,-1,465091089/2111620312*x^9+3964379613/1055810156*x^8+31113320705/2111620312*x^7-50531462867/1055810156*x^6-643034275445/2111620312*x^5+177799488003/1055810156*x^4+372027658651/263952539*x^3-726731724421/1055810156*x^2-548619466256/263952539*x+403967541355/263952539,x,1206764025/2111620312*x^9+10337326773/1055810156*x^8+82574969789/2111620312*x^7-126814460775/1055810156*x^6-1682809216553/2111620312*x^5+385699199923/1055810156*x^4+1916837832627/527905078*x^3-1630579714833/1055810156*x^2-1401376183477/263952539*x+984841482361/263952539,-1180261263/2111620312*x^9-10117729377/1055810156*x^8-80989665155/2111620312*x^7+123658055123/1055810156*x^6+1648648022519/2111620312*x^5-370694219519/1055810156*x^4-1876824150609/527905078*x^3+1578534735303/1055810156*x^2+1373362513512/263952539*x-963393547366/263952539,-285639055/1055810156*x^9-1224565474/263952539*x^8-19635107995/1055810156*x^7+14868051047/263952539*x^6+397986141563/1055810156*x^5-43268104436/263952539*x^4-447996027856/263952539*x^3+361796772381/527905078*x^2+644987745717/263952539*x-442324403860/263952539,-55687261/2111620312*x^9-498406405/1055810156*x^8-4676666625/2111620312*x^7+3366244683/1055810156*x^6+79839037533/2111620312*x^5+23828332625/1055810156*x^4-64628550585/527905078*x^3-76179529063/1055810156*x^2+32119698191/263952539*x+6054092378/263952539,326025305/1055810156*x^9+1403877291/263952539*x^8+22837025749/1055810156*x^7-16512142309/263952539*x^6-457891522905/1055810156*x^5+41536723587/263952539*x^4+509637041413/263952539*x^3-365984703475/527905078*x^2-731425282949/263952539*x+485036252717/263952539,-68477923/263952539*x^9-2356468701/527905078*x^8-9563898943/527905078*x^7+27776456553/527905078*x^6+191860646673/527905078*x^5-70518706109/527905078*x^4-854939513717/527905078*x^3+155135090781/263952539*x^2+614984921511/263952539*x-410036383858/263952539,164517997/2111620312*x^9+1428085503/1055810156*x^8+11939985945/2111620312*x^7-15600011949/1055810156*x^6-232996224245/2111620312*x^5+23171898305/1055810156*x^4+247575392999/527905078*x^3-107339590265/1055810156*x^2-169360892095/263952539*x+94156029871/263952539,-1,712336349/1055810156*x^9+3052215749/263952539*x^8+48801950287/1055810156*x^7-37450113890/263952539*x^6-995890767815/1055810156*x^5+113701402845/263952539*x^4+2279332448287/527905078*x^3-967271206011/527905078*x^2-1676818695347/263952539*x+1180399637310/263952539,12126615/527905078*x^9+103982010/263952539*x^8+425526292/263952539*x^7-1152626337/263952539*x^6-8267888085/263952539*x^5+1996345688/263952539*x^4+69475791297/527905078*x^3-9531220682/263952539*x^2-48374753514/263952539*x+27885361891/263952539,224446519/527905078*x^9+1915982797/263952539*x^8+15095771501/527905078*x^7-24337956773/263952539*x^6-312699332945/527905078*x^5+83817711521/263952539*x^4+730778022702/263952539*x^3-345465342099/263952539*x^2-1090086173127/263952539*x+793898399326/263952539,-65612795/2111620312*x^9-612875275/1055810156*x^8-6325189407/2111620312*x^7+2462093305/1055810156*x^6+102216055243/2111620312*x^5+53920210271/1055810156*x^4-75674698411/527905078*x^3-162024368853/1055810156*x^2+36566255305/263952539*x+18949583222/263952539,-394646065/1055810156*x^9-3378948627/527905078*x^8-26984524455/1055810156*x^7+41326618241/527905078*x^6+548452769603/1055810156*x^5-124172160883/527905078*x^4-1240716361613/527905078*x^3+520053418283/527905078*x^2+898427234538/263952539*x-626042496443/263952539,-680551531/1055810156*x^9-5828353407/527905078*x^8-46489006911/1055810156*x^7+71795817947/527905078*x^6+948713860879/1055810156*x^5-222612562685/527905078*x^4-1082266779256/263952539*x^3+938153116553/527905078*x^2+1584762393480/263952539*x-1119515972318/263952539,741929381/2111620312*x^9+6324984925/1055810156*x^8+49760786773/2111620312*x^7-79859780947/1055810156*x^6-1022807609153/2111620312*x^5+271820672203/1055810156*x^4+585297499541/263952539*x^3-1106073065877/1055810156*x^2-851934992601/263952539*x+617436882879/263952539,213086821/2111620312*x^9+1806741395/1055810156*x^8+13885582981/2111620312*x^7-24143668609/1055810156*x^6-293022522817/2111620312*x^5+99230430593/1055810156*x^4+174936011838/263952539*x^3-409006236109/1055810156*x^2-266100038820/263952539*x+212798055957/263952539,-714408283/527905078*x^9-6118258200/263952539*x^8-48812725681/527905078*x^7+75309901825/263952539*x^6+996131463949/527905078*x^5-231917983978/263952539*x^4-2272402501067/263952539*x^3+972508299294/263952539*x^2+3320415756072/263952539*x-2333613700991/263952539,207285337/1055810156*x^9+1765595997/527905078*x^8+13798254293/1055810156*x^7-22874505615/527905078*x^6-288874730537/1055810156*x^5+83491648981/527905078*x^4+343674669949/263952539*x^3-340367376373/527905078*x^2-520994627518/263952539*x+385879349449/263952539], x^10+16*x^9+49*x^8-288*x^7-1157*x^6+2224*x^5+5640*x^4-9922*x^3-6252*x^2+17096*x-7408];
E[517,11]=[[2,-1,3,4,-1,0,0,2,1,2,-3,3,-2,-12,1,-10,9,-10,-5,9,-4,-10,4,-13,-15], x-1];
E[527,1]=[[x,-x^4-x^3+4*x^2+2*x-2,x^3-5*x+1,x^3-4*x+1,2*x^4+x^3-8*x^2+x+1,x^4-4*x^2+3*x-3,1,-2*x^3-2*x^2+5*x+1,-4*x^3-x^2+14*x-6,-2*x^4-4*x^3+7*x^2+11*x-6,1,-x^4-x^3+7*x^2+7*x-9,-x^4+2*x^3+10*x^2-6*x-12,5*x^3+5*x^2-15*x-4,-2*x^4+x^3+8*x^2-8*x+1,x^2+2*x,-2*x^4-x^3+7*x^2-x+2,-x^4+x^2-5*x+6,3*x^4+4*x^3-15*x^2-14*x+6,4*x^4+5*x^3-15*x^2-9*x+10,-x^4+3*x^2-3*x-4,2*x^4-x^3-10*x^2+8*x+6,-2*x^4-2*x^3+9*x^2-x-7,-3*x^3-3*x^2+7*x-4,2*x^4-2*x^3-11*x^2+11*x-1], x^5+2*x^4-5*x^3-7*x^2+7*x+1];
E[527,2]=[[x,2*x-1,0,2*x,2*x-5,2*x-2,-1,4,-2*x+3,-4*x+2,1,-4*x+9,-6*x+6,4*x+2,-2*x-7,-2*x+8,2*x-9,-1,6*x-1,4*x-4,-12*x+6,-4*x+4,4*x-6,4*x+4,-6*x+6], x^2-x-1];
E[527,3]=[[x,-x^6+8*x^4-15*x^2+x+6,-x^6+7*x^4-9*x^2+2*x+1,x^6+x^5-7*x^4-7*x^3+8*x^2+6*x-2,2*x^6-x^5-16*x^4+6*x^3+31*x^2-8*x-14,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+6,-1,-x^5-2*x^4+7*x^3+13*x^2-6*x-12,-3*x^6+23*x^4+x^3-38*x^2+x+12,5*x^6+x^5-37*x^4-8*x^3+57*x^2+3*x-19,-1,3*x^6-2*x^5-24*x^4+12*x^3+46*x^2-12*x-21,x^6-6*x^4-x^3+x^2+x+6,-2*x^5+15*x^3-x^2-21*x+4,2*x^6-2*x^5-16*x^4+13*x^3+28*x^2-16*x-5,x^6-5*x^4+x^3-4*x^2-5*x+8,3*x^6+3*x^5-23*x^4-19*x^3+37*x^2+13*x-13,-3*x^6-2*x^5+24*x^4+13*x^3-42*x^2-8*x+16,3*x^6+3*x^5-18*x^4-22*x^3+7*x^2+24*x+11,-3*x^6+3*x^5+23*x^4-19*x^3-39*x^2+21*x+9,x^6+6*x^5-4*x^4-43*x^3-12*x^2+50*x+6,-5*x^6-5*x^5+35*x^4+35*x^3-40*x^2-30*x+3,2*x^6-14*x^4+13*x^2-x+11,-4*x^6+2*x^5+28*x^4-13*x^3-37*x^2+21*x+8,-5*x^6+5*x^5+39*x^4-32*x^3-73*x^2+37*x+22], x^7+x^6-8*x^5-8*x^4+15*x^3+13*x^2-8*x-5];
E[527,4]=[[x,-5/13*x^10-1/13*x^9+79/13*x^8+7/13*x^7-437/13*x^6+21/13*x^5+978/13*x^4-211/13*x^3-720/13*x^2+289/13*x+4/13,7/13*x^10+4/13*x^9-121/13*x^8-54/13*x^7+734/13*x^6+241/13*x^5-1780/13*x^4-352/13*x^3+1333/13*x^2-77/13*x-42/13,7/13*x^10+4/13*x^9-108/13*x^8-54/13*x^7+578/13*x^6+228/13*x^5-1234/13*x^4-274/13*x^3+852/13*x^2-77/13*x-16/13,10/13*x^10+2/13*x^9-171/13*x^8-27/13*x^7+1017/13*x^6+114/13*x^5-2372/13*x^4-85/13*x^3+1583/13*x^2-357/13*x+57/13,-8/13*x^10+1/13*x^9+142/13*x^8+6/13*x^7-876/13*x^6-164/13*x^5+2090/13*x^4+562/13*x^3-1308/13*x^2-68/13*x+35/13,-1,-10/13*x^10-2/13*x^9+171/13*x^8+40/13*x^7-1030/13*x^6-257/13*x^5+2476/13*x^4+514/13*x^3-1765/13*x^2+110/13*x+47/13,-15/13*x^10-3/13*x^9+250/13*x^8+34/13*x^7-1467/13*x^6-93/13*x^5+3480/13*x^4-139/13*x^3-2641/13*x^2+698/13*x+90/13,-14/13*x^10+5/13*x^9+255/13*x^8-61/13*x^7-1611/13*x^6+233/13*x^5+3963/13*x^4-427/13*x^3-2705/13*x^2+921/13*x-33/13,1,16/13*x^10-2/13*x^9-284/13*x^8+27/13*x^7+1765/13*x^6-127/13*x^5-4349/13*x^4+397/13*x^3+3175/13*x^2-1034/13*x-31/13,-10/13*x^10-15/13*x^9+145/13*x^8+183/13*x^7-718/13*x^6-647/13*x^5+1423/13*x^4+488/13*x^3-1063/13*x^2+253/13*x+21/13,5/13*x^10+1/13*x^9-79/13*x^8-7/13*x^7+437/13*x^6+5/13*x^5-965/13*x^4+3/13*x^3+655/13*x^2+36/13*x-4/13,-15/13*x^10+10/13*x^9+276/13*x^8-135/13*x^7-1779/13*x^6+596/13*x^5+4572/13*x^4-1075/13*x^3-3551/13*x^2+1205/13*x+51/13,14/13*x^10-5/13*x^9-242/13*x^8+74/13*x^7+1481/13*x^6-376/13*x^5-3664/13*x^4+843/13*x^3+2796/13*x^2-1012/13*x-6/13,-16/13*x^10-11/13*x^9+271/13*x^8+142/13*x^7-1596/13*x^6-588/13*x^5+3699/13*x^4+760/13*x^3-2577/13*x^2+176/13*x+135/13,x^10-16*x^8+2*x^7+90*x^6-25*x^5-205*x^4+98*x^3+150*x^2-117*x+8,5/13*x^10-12/13*x^9-105/13*x^8+175/13*x^7+749/13*x^6-866/13*x^5-2057/13*x^4+1745/13*x^3+1552/13*x^2-1537/13*x+113/13,-19/13*x^10-9/13*x^9+321/13*x^8+89/13*x^7-1905/13*x^6-149/13*x^5+4577/13*x^4-573/13*x^3-3581/13*x^2+1262/13*x-42/13,-4/13*x^10-6/13*x^9+58/13*x^8+68/13*x^7-295/13*x^6-212/13*x^5+642/13*x^4+99/13*x^3-576/13*x^2+70/13*x+50/13,-19/13*x^10+4/13*x^9+334/13*x^8-28/13*x^7-2048/13*x^6-58/13*x^5+4902/13*x^4+428/13*x^3-3230/13*x^2+391/13*x+101/13,14/13*x^10-5/13*x^9-255/13*x^8+35/13*x^7+1611/13*x^6+79/13*x^5-3963/13*x^4-665/13*x^3+2731/13*x^2+67/13*x-162/13,9/13*x^10+7/13*x^9-137/13*x^8-75/13*x^7+719/13*x^6+191/13*x^5-1477/13*x^4+125/13*x^3+919/13*x^2-476/13*x+24/13,-14/13*x^10+5/13*x^9+229/13*x^8-87/13*x^7-1325/13*x^6+519/13*x^5+3131/13*x^4-1259/13*x^3-2419/13*x^2+1129/13*x+110/13], x^11+2*x^10-17*x^9-34*x^8+101*x^7+202*x^6-238*x^5-469*x^4+182*x^3+295*x^2-83*x-3];
E[527,5]=[[x,3893501/7121412*x^15-2465813/1780353*x^14-3350441/263756*x^13+231499103/7121412*x^12+808373819/7121412*x^11-2105046931/7121412*x^10-873966335/1780353*x^9+524087833/395634*x^8+68903131/65939*x^7-21951450889/7121412*x^6-1572293168/1780353*x^5+25272409501/7121412*x^4-1264122919/7121412*x^3-11447976029/7121412*x^2+126858519/263756*x+54448243/3560706,-2015909/7121412*x^15+2420629/3560706*x^14+1740441/263756*x^13-112886345/7121412*x^12-422441153/7121412*x^11+1017321721/7121412*x^10+924001879/3560706*x^9-250264171/395634*x^8-37339257/65939*x^7+10326542689/7121412*x^6+1840446037/3560706*x^5-11695757197/7121412*x^4+191643925/7121412*x^3+5229310079/7121412*x^2-58412837/263756*x-8485169/1780353,5855855/7121412*x^15-7359751/3560706*x^14-5040899/263756*x^13+344176271/7121412*x^12+1217628851/7121412*x^11-3112173919/7121412*x^10-2641449877/3560706*x^9+768382597/395634*x^8+105141787/65939*x^7-31793859067/7121412*x^6-4995241699/3560706*x^5+36008147959/7121412*x^4-1066579819/7121412*x^3-16026711317/7121412*x^2+171163123/263756*x+39446687/1780353,1502219/2373804*x^15-951977/593451*x^14-3861789/263756*x^13+88945817/2373804*x^12+308609705/2373804*x^11-803437897/2373804*x^10-330335177/593451*x^9+198193611/131878*x^8+76827434/65939*x^7-8198033407/2373804*x^6-562214753/593451*x^5+9286668127/2373804*x^4-565288993/2373804*x^3-4126498835/2373804*x^2+140531063/263756*x+17208925/1186902,-335281/1780353*x^15+866014/1780353*x^14+289227/65939*x^13-20350603/1780353*x^12-70135861/1780353*x^11+185246945/1780353*x^10+306530959/1780353*x^9-92262736/197817*x^8-24734472/65939*x^7+1928190875/1780353*x^6+602980246/1780353*x^5-2204015699/1780353*x^4+54170759/1780353*x^3+979854751/1780353*x^2-10392207/65939*x-256627/1780353,1,196165/2373804*x^15-142805/1186902*x^14-583743/263756*x^13+7313929/2373804*x^12+56074357/2373804*x^11-74177165/2373804*x^10-151606553/1186902*x^9+21094763/131878*x^8+24057925/65939*x^7-1030992173/2373804*x^6-603333017/1186902*x^5+1407714809/2373804*x^4+568663447/2373804*x^3-769467283/2373804*x^2+11869915/263756*x+4035118/593451,-6458563/7121412*x^15+4262689/1780353*x^14+5493463/263756*x^13-398083561/7121412*x^12-1303407901/7121412*x^11+3593748989/7121412*x^10+1374481033/1780353*x^9-885875501/395634*x^8-104058546/65939*x^7+36610609895/7121412*x^6+2145670420/1780353*x^5-41423734427/7121412*x^4+3255364121/7121412*x^3+18367082863/7121412*x^2-212754285/263756*x-76709609/3560706,199112/1780353*x^15-1067701/3560706*x^14-167943/65939*x^13+25117657/3560706*x^12+78365413/3560706*x^11-228790343/3560706*x^10-318567079/3560706*x^9+56926055/197817*x^8+10957245/65939*x^7-1184106649/1780353*x^6-283730803/3560706*x^5+1337030971/1780353*x^4-456094733/3560706*x^3-1164460165/3560706*x^2+15875371/131878*x+4223401/3560706,-1,-258469/791268*x^15+162076/197817*x^14+1982993/263756*x^13-15143899/791268*x^12-52429579/791268*x^11+136789595/791268*x^10+55511890/197817*x^9-101233761/131878*x^8-38100540/65939*x^7+1396221089/791268*x^6+89815639/197817*x^5-1582092101/791268*x^4+111074051/791268*x^3+699624121/791268*x^2-75015363/263756*x-743405/395634,2409887/2373804*x^15-1586279/593451*x^14-6118133/263756*x^13+147047333/2373804*x^12+480713753/2373804*x^11-1313247901/2373804*x^10-503123351/593451*x^9+318607327/131878*x^8+113779988/65939*x^7-12863204755/2373804*x^6-807162344/593451*x^5+14078902483/2373804*x^4-780216301/2373804*x^3-5982953819/2373804*x^2+188964619/263756*x+32152309/1186902,850213/1780353*x^15-3916745/3560706*x^14-748989/65939*x^13+92531723/3560706*x^12+373697525/3560706*x^11-848716951/3560706*x^10-1697388617/3560706*x^9+213700285/197817*x^8+72354427/65939*x^7-4538986451/1780353*x^6-3934175891/3560706*x^5+5316756377/1780353*x^4+301078475/3560706*x^3-4933316129/3560706*x^2+51016747/131878*x+45404447/3560706,-2263213/2373804*x^15+2725031/1186902*x^14+5934431/263756*x^13-128095009/2373804*x^12-488131993/2373804*x^11+1167026465/2373804*x^10+1091643071/1186902*x^9-291333215/131878*x^8-136392704/65939*x^7+12249693665/2373804*x^6+2357516051/1186902*x^5-14188565561/2373804*x^4-34228723/2373804*x^3+6490217851/2373804*x^2-208114583/263756*x-9520051/593451,-974083/593451*x^15+2433679/593451*x^14+2520662/65939*x^13-56925082/593451*x^12-203546047/593451*x^11+515146688/593451*x^10+886924921/593451*x^9-254794148/65939*x^8-213228540/65939*x^7+5288435429/593451*x^6+1709256259/593451*x^5-6024587726/593451*x^4+163066196/593451*x^3+2707115617/593451*x^2-87280310/65939*x-28299493/593451,-92660/197817*x^15+253934/197817*x^14+707214/65939*x^13-5931467/197817*x^12-18545660/197817*x^11+53590687/197817*x^10+77440661/197817*x^9-79370538/65939*x^8-51566878/65939*x^7+548083240/197817*x^6+107785715/197817*x^5-623535283/197817*x^4+64824913/197817*x^3+280153088/197817*x^2-30269471/65939*x-3444977/197817,-2230931/2373804*x^15+2907823/1186902*x^14+5726205/263756*x^13-135940523/2373804*x^12-456876119/2373804*x^11+1229191411/2373804*x^10+976998565/1186902*x^9-303670957/131878*x^8-113640607/65939*x^7+12590100943/2373804*x^6+1662183133/1186902*x^5-14319696727/2373804*x^4+914007943/2373804*x^3+6406665809/2373804*x^2-221587061/263756*x-9688157/593451,8818627/7121412*x^15-11325347/3560706*x^14-7554883/263756*x^13+530159203/7121412*x^12+1810702687/7121412*x^11-4803060779/7121412*x^10-3874716641/3560706*x^9+1189983803/395634*x^8+149979975/65939*x^7-49533772991/7121412*x^6-6511748351/3560706*x^5+56604324287/7121412*x^4-3826197551/7121412*x^3-25388508529/7121412*x^2+293392819/263756*x+40724989/1780353,-12990577/7121412*x^15+8117194/1780353*x^14+11175509/263756*x^13-758281087/7121412*x^12-2696831095/7121412*x^11+6846489395/7121412*x^10+2920941649/1780353*x^9-1687330853/395634*x^8-232055844/65939*x^7+69668723165/7121412*x^6+5498778733/1780353*x^5-78684322817/7121412*x^4+2309325383/7121412*x^3+34836919381/7121412*x^2-372164159/263756*x-146601743/3560706,-692681/3560706*x^15+1387451/3560706*x^14+632319/131878*x^13-16211092/1780353*x^12-82782178/1780353*x^11+146464799/1780353*x^10+804761357/3560706*x^9-72180748/197817*x^8-38020375/65939*x^7+2971079419/3560706*x^6+2545804889/3560706*x^5-3326459515/3560706*x^4-529527862/1780353*x^3+732480421/1780353*x^2-3270095/65939*x-8132993/3560706,1209085/1780353*x^15-2912410/1780353*x^14-1043714/65939*x^13+67986103/1780353*x^12+253217356/1780353*x^11-613274144/1780353*x^10-1106473867/1780353*x^9+301828372/197817*x^8+89215640/65939*x^7-6219126830/1780353*x^6-2192088136/1780353*x^5+7016149412/1780353*x^4-98133956/1780353*x^3-3114591250/1780353*x^2+33750522/65939*x+14655181/1780353,-619859/1186902*x^15+1750643/1186902*x^14+1572157/131878*x^13-20645026/593451*x^12-61641955/593451*x^11+188937389/593451*x^10+513262703/1186902*x^9-94864412/65939*x^8-56855609/65939*x^7+4014102211/1186902*x^6+711738185/1186902*x^5-4673006767/1186902*x^4+220299467/593451*x^3+1068741844/593451*x^2-34706457/65939*x-30251327/1186902,-2193175/1780353*x^15+5954125/1780353*x^14+1837172/65939*x^13-137994901/1780353*x^12-426207214/1780353*x^11+1232687990/1780353*x^10+1736914492/1780353*x^9-598530556/197817*x^8-124147710/65939*x^7+12103830377/1780353*x^6+2210974621/1780353*x^5-13305541100/1780353*x^4+1336365617/1780353*x^3+5712862174/1780353*x^2-63472630/65939*x-78416530/1780353,-3502837/7121412*x^15+2075815/1780353*x^14+3071833/263756*x^13-196598671/7121412*x^12-760939039/7121412*x^11+1810523495/7121412*x^10+853989928/1780353*x^9-459325553/395634*x^8-71208540/65939*x^7+19789895969/7121412*x^6+1825080538/1780353*x^5-23779553333/7121412*x^4+210247079/7121412*x^3+11531669893/7121412*x^2-116812355/263756*x-114244721/3560706], x^16-3*x^15-22*x^14+70*x^13+179*x^12-631*x^11-642*x^10+2789*x^9+792*x^8-6335*x^7+903*x^6+6928*x^5-3096*x^4-2631*x^3+2063*x^2-344*x-11];
E[533,1]=[[x,x,-2*x+2,-2*x+4,2*x-2,-1,-2*x+4,4,-6,-4*x+6,-x+4,2*x-4,1,-6*x+8,-2*x+8,2,x+2,4*x-5,2*x,-4*x,10*x-10,4*x+2,x-12,12*x-13,2*x+9], x^2-2*x-1];
E[533,2]=[[x,-5/164*x^12+15/164*x^11+101/164*x^10-303/164*x^9-741/164*x^8+1109/82*x^7+2397/164*x^6-3535/82*x^5-3471/164*x^4+4637/82*x^3+2651/164*x^2-981/41*x-371/82,-5/82*x^12-11/164*x^11+101/82*x^10+107/82*x^9-741/82*x^8-775/82*x^7+4753/164*x^6+5171/164*x^5-6327/164*x^4-7815/164*x^3+2801/164*x^2+3755/164*x-213/164,-33/328*x^12+29/164*x^11+321/164*x^10-297/82*x^9-557/41*x^8+8743/328*x^7+12983/328*x^6-27269/328*x^5-14397/328*x^4+32205/328*x^3+5951/328*x^2-10425/328*x-497/164,13/328*x^12+1/164*x^11-119/164*x^10-3/41*x^9+373/82*x^8+129/328*x^7-3395/328*x^6-683/328*x^5+513/328*x^4+2267/328*x^3+4325/328*x^2-1663/328*x-495/164,1,11/41*x^12-9/164*x^11-214/41*x^10+95/82*x^9+1499/41*x^8-345/41*x^7-17953/164*x^6+3709/164*x^5+20877/164*x^4-1899/164*x^3-6445/164*x^2-491/164*x-219/164,31/164*x^12-63/328*x^11-309/82*x^10+583/164*x^9+1126/41*x^8-3805/164*x^7-28829/328*x^6+20141/328*x^5+37981/328*x^4-17967/328*x^3-16005/328*x^2+4845/328*x+1583/328,-2/41*x^12-17/164*x^11+89/82*x^10+92/41*x^9-765/82*x^8-1481/82*x^7+6205/164*x^6+10705/164*x^5-11269/164*x^4-16215/164*x^3+6349/164*x^2+6981/164*x+51/164,11/164*x^12-33/164*x^11-107/82*x^10+321/82*x^9+385/41*x^8-4609/164*x^7-1263/41*x^6+7367/82*x^5+3937/82*x^4-4908/41*x^3-1661/41*x^2+3931/82*x+2313/164,-17/82*x^12-83/328*x^11+695/164*x^10+413/82*x^9-5293/164*x^8-5967/164*x^7+36691/328*x^6+37795/328*x^5-55463/328*x^4-49657/328*x^3+25287/328*x^2+18359/328*x+1397/328,27/164*x^12+1/164*x^11-285/82*x^10-3/41*x^9+1109/41*x^8+85/164*x^7-7747/82*x^6-263/82*x^5+11721/82*x^4+659/82*x^3-6063/82*x^2+25/82*x+1309/164,-1,-1/164*x^12+3/164*x^11+3/41*x^10-9/41*x^9-29/82*x^8+173/164*x^7+129/82*x^6-379/82*x^5-233/41*x^4+640/41*x^3+671/82*x^2-1319/82*x-173/164,21/164*x^12-167/328*x^11-104/41*x^10+1617/164*x^9+1511/82*x^8-11341/164*x^7-19405/328*x^6+68777/328*x^5+26885/328*x^4-83371/328*x^3-17373/328*x^2+30313/328*x+4683/328,-1/82*x^12-35/164*x^11+6/41*x^10+333/82*x^9-29/41*x^8-2205/82*x^7+639/164*x^6+11645/164*x^5-2807/164*x^4-9927/164*x^3+3791/164*x^2+997/164*x-1125/164,101/164*x^12-237/328*x^11-1991/164*x^10+581/41*x^9+14263/164*x^8-4112/41*x^7-89221/328*x^6+99119/328*x^5+115981/328*x^4-114049/328*x^3-55465/328*x^2+39523/328*x+6615/328,-91/328*x^12+17/82*x^11+437/82*x^10-695/164*x^9-6001/164*x^8+10167/328*x^7+34589/328*x^6-31217/328*x^5-36555/328*x^4+36037/328*x^3+8265/328*x^2-14681/328*x+349/164,-51/328*x^12+15/164*x^11+511/164*x^10-131/82*x^9-954/41*x^8+3165/328*x^7+25909/328*x^6-7375/328*x^5-38799/328*x^4+4567/328*x^3+21661/328*x^2-99/328*x-1439/164,-75/164*x^12+163/328*x^11+737/82*x^10-1511/164*x^9-2625/41*x^8+9941/164*x^7+64817/328*x^6-53553/328*x^5-81129/328*x^4+48251/328*x^3+35209/328*x^2-7881/328*x-5163/328,5/82*x^12+11/164*x^11-101/82*x^10-107/82*x^9+741/82*x^8+775/82*x^7-4589/164*x^6-5171/164*x^5+4687/164*x^4+7651/164*x^3+1299/164*x^2-2935/164*x-1427/164,21/41*x^12+29/328*x^11-416/41*x^10-297/164*x^9+3022/41*x^8+590/41*x^7-77907/328*x^6-18657/328*x^5+105367/328*x^4+35967/328*x^3-42227/328*x^2-19665/328*x-661/328,-1/8*x^11+1/4*x^10+5/2*x^9-15/4*x^8-75/4*x^7+141/8*x^6+517/8*x^5-185/8*x^4-783/8*x^3-103/8*x^2+361/8*x+87/8,-69/328*x^12+83/164*x^11+165/41*x^10-1529/164*x^9-4461/164*x^8+19973/328*x^7+24321/328*x^6-53737/328*x^5-19987/328*x^4+50729/328*x^3-3547/328*x^2-12569/328*x+399/41,125/328*x^12-3/164*x^11-621/82*x^10-5/164*x^9+8955/164*x^8+1663/328*x^7-55989/328*x^6-14351/328*x^5+69719/328*x^4+40431/328*x^3-22241/328*x^2-25351/328*x-631/82], x^13-21*x^11+166*x^9+x^8-613*x^7-16*x^6+1074*x^5+72*x^4-822*x^3-76*x^2+215*x+27];
E[533,4]=[[x,x^6+x^5-6*x^4-5*x^3+9*x^2+6*x-3,-x^5+5*x^3-x^2-5*x+1,x^6-8*x^4+17*x^2-8,-x^6+x^5+8*x^4-4*x^3-16*x^2+x+5,1,x^6-9*x^4-x^3+20*x^2+2*x-7,-2*x^6-2*x^5+15*x^4+12*x^3-31*x^2-16*x+10,2*x^6+2*x^5-13*x^4-7*x^3+26*x^2+3*x-16,-x^6+8*x^4-2*x^3-17*x^2+5*x+5,2*x^5+x^4-12*x^3-4*x^2+14*x+1,-3*x^6+20*x^4-3*x^3-33*x^2+10*x+8,1,-x^6-x^5+6*x^4+5*x^3-9*x^2-3*x-3,x^5-2*x^4-7*x^3+7*x^2+10*x+1,-5*x^6-5*x^5+31*x^4+24*x^3-48*x^2-24*x+10,x^6-9*x^4-4*x^3+23*x^2+12*x-14,x^6+x^5-3*x^4-2*x^3-8*x^2-2*x+15,2*x^6+x^5-11*x^4-7*x^3+11*x^2+13*x+2,-x^6+3*x^4-8*x^3-x^2+22*x+6,x^6+x^5-8*x^4-4*x^3+14*x^2+1,-3*x^6-4*x^5+18*x^4+22*x^3-27*x^2-27*x+1,3*x^6+3*x^5-18*x^4-11*x^3+31*x^2+2*x-18,-5*x^6-7*x^5+30*x^4+33*x^3-43*x^2-30*x+6,2*x^6+x^5-14*x^4-4*x^3+32*x^2+2*x-27], x^7+2*x^6-6*x^5-12*x^4+9*x^3+19*x^2-x-5];
E[533,5]=[[x,x^7-x^6-9*x^5+6*x^4+24*x^3-10*x^2-17*x+6,x^7-2*x^6-7*x^5+12*x^4+14*x^3-18*x^2-6*x+4,x^6-2*x^5-6*x^4+10*x^3+9*x^2-10*x,-x^6+x^5+8*x^4-6*x^3-16*x^2+9*x+3,-1,-3*x^6+6*x^5+19*x^4-35*x^3-26*x^2+48*x-9,x^4-5*x^2-2*x+4,-x^7+2*x^6+6*x^5-11*x^4-6*x^3+13*x^2-8*x+3,3*x^6-8*x^5-16*x^4+46*x^3+13*x^2-61*x+19,2*x^5-3*x^4-14*x^3+16*x^2+22*x-15,-x^7+3*x^6+6*x^5-20*x^4-10*x^3+36*x^2+5*x-9,1,-x^6+5*x^5+2*x^4-29*x^3+9*x^2+37*x-13,-2*x^7+4*x^6+13*x^5-24*x^4-19*x^3+33*x^2-4*x+1,-x^7+x^6+7*x^5-3*x^4-13*x^3-3*x^2+3*x+3,-x^7+x^6+8*x^5-3*x^4-21*x^3+17*x-3,-2*x^7-x^6+23*x^5+7*x^4-78*x^3-2*x^2+78*x-25,-3*x^7+2*x^6+27*x^5-9*x^4-72*x^3+10*x^2+50*x-7,x^7-5*x^6+29*x^4-25*x^3-36*x^2+41*x-13,x^7-x^6-7*x^5+4*x^4+13*x^3-3*x^2-9*x+4,-2*x^7+x^6+20*x^5-6*x^4-60*x^3+13*x^2+53*x-19,2*x^7-x^6-19*x^5+6*x^4+51*x^3-15*x^2-36*x+24,2*x^7-x^6-19*x^5+4*x^4+53*x^3-3*x^2-36*x+2,-2*x^6+5*x^5+14*x^4-30*x^3-28*x^2+42*x+3], x^8-x^7-10*x^6+8*x^5+31*x^4-22*x^3-28*x^2+22*x-3];
E[551,1]=[[-1,1,-1,2,-3,-5,2,1,0,1,-7,2,0,-11,-9,1,8,0,-4,0,2,3,4,0,4], x-1];
E[551,2]=[[-2,-2,-1,-1,1,2,3,1,8,1,-10,-8,-6,5,7,-12,-10,1,-2,-12,-9,12,-4,8,8], x-1];
E[551,3]=[[2,-2,-1,-1,-3,-2,-1,1,0,1,2,-4,-6,1,3,4,14,-3,2,0,11,-12,4,0,-8], x-1];
E[551,4]=[[-1,-x-1,-1,x,x+1,1,x,-1,-4,-1,x-1,-2,x-2,-3*x-3,-3*x+3,3,-x-2,-2*x-8,5*x+2,8,x-4,-5*x-7,3*x+2,-3*x-2,-8], x^2+2*x-4];
E[551,5]=[[-1/5*x^2-3/5*x+8/5,0,3/5*x^2+14/5*x-14/5,-1,-2/5*x^2-11/5*x-4/5,-2/5*x^2-11/5*x+1/5,x,-1,-1/5*x^2-8/5*x+13/5,-1,3/5*x^2+19/5*x-14/5,-3/5*x^2-19/5*x-6/5,-8/5*x^2-44/5*x+44/5,4/5*x^2+27/5*x-12/5,1/5*x^2+3/5*x-33/5,-8/5*x^2-44/5*x+24/5,2/5*x^2+6/5*x-6/5,3/5*x^2+29/5*x+1/5,2*x^2+11*x-9,6/5*x^2+43/5*x-13/5,11/5*x^2+63/5*x-63/5,-2/5*x^2-6/5*x+16/5,-7/5*x^2-46/5*x+61/5,-2*x-6,4/5*x^2+12/5*x-42/5], x^3+5*x^2-7*x-1];
E[551,6]=[[-2462915999383906250015997493/126843397964309990520878300688384*x^15-236110675206999434763478273/21140566327384998420146383448064*x^14+459797839129574213343585840505/126843397964309990520878300688384*x^13+97891523335666418063528374561/63421698982154995260439150344192*x^12-16552370498741358855559853843509/63421698982154995260439150344192*x^11-2770957553378053955402583757957/31710849491077497630219575172096*x^10+48359661025442597197343614644781/5285141581846249605036595862016*x^9+2855167912052756362142470663765/990964046596171800944361724128*x^8-642902035577416877869578945714269/3963856186384687203777446896512*x^7-12543697216278575073235775925493/220214232576927066876524827584*x^6+662759512743181704333817090291963/495482023298085900472180862064*x^5+5473435649667371934617690821870/10322542152043456259837101293*x^4-943443875320929396439107175057177/247741011649042950236090431032*x^3-38800566840153509722322646942595/41290168608173825039348405172*x^2+4133701633343618244968837875304/3440847384014485419945700431*x+253602739853225701550046638404/1146949128004828473315233477,-1670786654748323542525804151/253686795928619981041756601376768*x^15-157413857565598914884663519/42281132654769996840292766896128*x^14+311916947059917017503951211285/253686795928619981041756601376768*x^13+64881616372105328686685244713/126843397964309990520878300688384*x^12-5614309997760026289947708946001/63421698982154995260439150344192*x^11-456448770623157797374594616291/15855424745538748815109787586048*x^10+8201237589547877761279800820613/2642570790923124802518297931008*x^9+3758387477155556886788157505069/3963856186384687203777446896512*x^8-218056981685393723190725844081653/3963856186384687203777446896512*x^7-4144660793662567767009322792781/220214232576927066876524827584*x^6+56204626141472444509666994288029/123870505824521475118045215516*x^5+29053334760152269154160514004047/165160674432695300157393620688*x^4-320239485690398087502348684217573/247741011649042950236090431032*x^3-12731637117636562935730291430509/41290168608173825039348405172*x^2+937854734603482762973030164531/2293898256009656946630466954*x+82977503842762480806640619848/1146949128004828473315233477,168476263318788714232495013/84562265309539993680585533792256*x^15+14809695712487817353006089/14093710884923332280097588965376*x^14-31504429981486845102486298403/84562265309539993680585533792256*x^13-6079286748879480842036712155/42281132654769996840292766896128*x^12+284060950813089923961066145625/10570283163692499210073191724032*x^11+86412895556339453999404103587/10570283163692499210073191724032*x^10-831581486564295630547087756841/880856930307708267506099310336*x^9-91819827574118727058538581267/330321348865390600314787241376*x^8+22152615918932900113630576999955/1321285395461562401259148965504*x^7+629150838782436247746524492543/110107116288463533438262413792*x^6-45730533076027245903304234130369/330321348865390600314787241376*x^5-1001745345544835703429187619549/18351186048077255573043735632*x^4+16252052185734140365615328701493/41290168608173825039348405172*x^3+1336996142473076010338097431387/13763389536057941679782801724*x^2-420770802323312042774458404446/3440847384014485419945700431*x-25186388587430000358854945930/1146949128004828473315233477,725124950941465684320786449/21140566327384998420146383448064*x^15+280896935299326307029710023/14093710884923332280097588965376*x^14-135362343151202450521344599279/21140566327384998420146383448064*x^13-116765118089839639808054780207/42281132654769996840292766896128*x^12+4872562133042880826090751993249/10570283163692499210073191724032*x^11+1656048498600958594805808273079/10570283163692499210073191724032*x^10-9489759736679319897300812211393/587237953538472178337399540224*x^9-13641260206965235172154412670753/2642570790923124802518297931008*x^8+378448220522241043864782408932429/1321285395461562401259148965504*x^7+22405798597509439692782083911479/220214232576927066876524827584*x^6-780230619969718407902067536262659/330321348865390600314787241376*x^5-8668046470247001531884917344247/9175593024038627786521867816*x^4+138829464063029105906760928253251/20645084304086912519674202586*x^3+23139601388775020952821553828353/13763389536057941679782801724*x^2-4866675789778975063273518950883/2293898256009656946630466954*x-455821108720595019259427221460/1146949128004828473315233477,8659088832845094078036848137/253686795928619981041756601376768*x^15+70993237930840661658497105/3523427721230833070024397241344*x^14-1615948987932812886593230319215/253686795928619981041756601376768*x^13-177444513410301113288857437281/63421698982154995260439150344192*x^12+1817134180073801067403075502597/3963856186384687203777446896512*x^11+5033542464673037385607814648159/31710849491077497630219575172096*x^10-84903276728966054047540332658075/5285141581846249605036595862016*x^9-41279070642540016141898852408023/7927712372769374407554893793024*x^8+1128150299645979938014825157250841/3963856186384687203777446896512*x^7+67357923101302799704802407935629/660642697730781200629574482752*x^6-2324822471491525499318958329055229/990964046596171800944361724128*x^5-38896819292255882879130898574815/41290168608173825039348405172*x^4+1653957264940307918827118858748017/247741011649042950236090431032*x^3+23047166203026729980535902598175/13763389536057941679782801724*x^2-7237522279562430003481452836252/3440847384014485419945700431*x-455761151214595672575864140635/1146949128004828473315233477,616929956525271660695474711/253686795928619981041756601376768*x^15+3591438390324707894230039/2642570790923124802518297931008*x^14-115429877847026086920057089513/253686795928619981041756601376768*x^13-12175134916683782935453799221/63421698982154995260439150344192*x^12+1041526735332450520492463242133/31710849491077497630219575172096*x^11+359843790862378145916090632629/31710849491077497630219575172096*x^10-2034420112622390625760561428731/1761713860615416535012198620672*x^9-3127676969351542654060575888419/7927712372769374407554893793024*x^8+81360044916545208765455553550277/3963856186384687203777446896512*x^7+5342614447259283855089839748153/660642697730781200629574482752*x^6-168003279767510829974842811494445/990964046596171800944361724128*x^5-2114777103881545119286639918771/27526779072115883359565603448*x^4+119114362009962663754319146555429/247741011649042950236090431032*x^3+6172536978749423308950322180961/41290168608173825039348405172*x^2-170675103789124939021386767219/1146949128004828473315233477*x-39969032779911425117371770233/1146949128004828473315233477,x,1,645480132340472665493880005/19514368917586152387827430875136*x^15+63763297422999785466981421/3252394819597692064637905145856*x^14-120453951769930207037295378047/19514368917586152387827430875136*x^13-26585222586228784357584220079/9757184458793076193913715437568*x^12+2167114297168396391706390271627/4878592229396538096956857718784*x^11+377271961046446754317833574189/2439296114698269048478428859392*x^10-527349253324360652333664591721/33879112704142625673311511936*x^9-3092122176093637355537804170415/609824028674567262119607214848*x^8+21020391881739550210539651887087/76228003584320907764950901856*x^7+629819814414399711988517136115/6352333632026742313745908488*x^6-173258230835566339291160941195625/76228003584320907764950901856*x^5-645793390289254821524696722341/705814848002971368193989832*x^4+123232879521118683780964236327313/19057000896080226941237725464*x^3+5166426235897053204628016997761/3176166816013371156872954244*x^2-536964668783803863522721461347/264680568001114263072746187*x-33793157841510111710706793700/88226856000371421024248729,-1,-480047992487678490776206067/14093710884923332280097588965376*x^15-90717261834688227105770613/4697903628307777426699196321792*x^14+89640454013340111706202313523/14093710884923332280097588965376*x^13+37537298702542272547471960333/14093710884923332280097588965376*x^12-1075944380962981144984853017389/2348951814153888713349598160896*x^11-44275671566180462635956960161/293618976769236089168699770112*x^10+28299388676113908250409037768371/1761713860615416535012198620672*x^9+183278171263539802777989285901/36702372096154511146087471264*x^8-125439061995255871400340157333015/440428465153854133753049655168*x^7-21875060294133701797019022729253/220214232576927066876524827584*x^6+129335430779971441198969126851799/55053558144231766719131206896*x^5+4261386332771395366310425180593/4587796512019313893260933908*x^4-15338694789365641322252103761285/2293898256009656946630466954*x^3-3783445160681085272129508952095/2293898256009656946630466954*x^2+7228141824790579791638687790736/3440847384014485419945700431*x+455013632398060925004499709663/1146949128004828473315233477,574511074326179175799796393/15855424745538748815109787586048*x^15+864236254034643065813930179/42281132654769996840292766896128*x^14-429168887679166127775496235981/63421698982154995260439150344192*x^13-357409147636059323704497647843/126843397964309990520878300688384*x^12+30911909587336261387028710124977/63421698982154995260439150344192*x^11+5060061218302019001457856721577/31710849491077497630219575172096*x^10-30117734763779415854989145668739/1761713860615416535012198620672*x^9-20983000112332083507478739266039/3963856186384687203777446896512*x^8+600867179414124318116550260255485/1981928093192343601888723448256*x^7+69730467171837189099155316061721/660642697730781200629574482752*x^6-2478775254218399823832980837586685/990964046596171800944361724128*x^5-3401978394217965278097518732852/3440847384014485419945700431*x^4+220585846181930732267960040149036/30967626456130368779511303879*x^3+18147913113221294973807014676917/10322542152043456259837101293*x^2-5155701078231108075348342653663/2293898256009656946630466954*x-473247514329298497928867364555/1146949128004828473315233477,796815972135869693226740167/42281132654769996840292766896128*x^15+476580137646089836455480515/42281132654769996840292766896128*x^14-148620852332376878545735120549/42281132654769996840292766896128*x^13-66053343645290726117850447037/42281132654769996840292766896128*x^12+1336140291855120089969068159673/5285141581846249605036595862016*x^11+931074745992192156644240011349/10570283163692499210073191724032*x^10-46787303433994592073072670581953/5285141581846249605036595862016*x^9-7554680512801354391094658794047/2642570790923124802518297931008*x^8+69019353245799123802222651263457/440428465153854133753049655168*x^7+36620555109732518343702269455637/660642697730781200629574482752*x^6-426324905623872354277835043814247/330321348865390600314787241376*x^5-42012868742877069325485841311799/82580337216347650078696810344*x^4+75752390219181231489496345669837/20645084304086912519674202586*x^3+36617268491471033314857473656129/41290168608173825039348405172*x^2-7875023345691125512818320487557/6881694768028970839891400862*x-237276574059357643005186668906/1146949128004828473315233477,-1235412485496545577792837151/253686795928619981041756601376768*x^15-34280191255554786566493569/10570283163692499210073191724032*x^14+229789016226253812517891419241/253686795928619981041756601376768*x^13+28660937696885422922944001483/63421698982154995260439150344192*x^12-128703416907198444183010462969/1981928093192343601888723448256*x^11-796898151502843211852301541763/31710849491077497630219575172096*x^10+3991644779958581832785448761659/1761713860615416535012198620672*x^9+6175015776471531729299702136877/7927712372769374407554893793024*x^8-158397789497882395041407513982571/3963856186384687203777446896512*x^7-9416348075603461168582875711349/660642697730781200629574482752*x^6+325104989363739690233697605147821/990964046596171800944361724128*x^5+3445495353563710368345596666701/27526779072115883359565603448*x^4-230866285655526519649203347577737/247741011649042950236090431032*x^3-8468661984244742490018503323645/41290168608173825039348405172*x^2+980761212209764332848149203208/3440847384014485419945700431*x+56987438867510736041672281757/1146949128004828473315233477,38382194844911996562195842137/253686795928619981041756601376768*x^15+1854136374910658820018838123/21140566327384998420146383448064*x^14-7164528250390401977375567257903/253686795928619981041756601376768*x^13-384763461856585039569011516419/31710849491077497630219575172096*x^12+4029327934954938274155844611721/1981928093192343601888723448256*x^11+21781447433384571672361824034121/31710849491077497630219575172096*x^10-125547337042495427355790666912993/1761713860615416535012198620672*x^9-179125744130497646113331259263317/7927712372769374407554893793024*x^8+5006201153439782710874602211789035/3963856186384687203777446896512*x^7+294110196192485540345310058596205/660642697730781200629574482752*x^6-10319723933369186093628579206109679/990964046596171800944361724128*x^5-113785258695226829766361167524107/27526779072115883359565603448*x^4+7343668551358874799724433561644007/247741011649042950236090431032*x^3+302125169543287577641128377730643/41290168608173825039348405172*x^2-32091565964339557656786250500784/3440847384014485419945700431*x-1980657595779589812711844703635/1146949128004828473315233477,2115756184436528448947447719/84562265309539993680585533792256*x^15+9481680292509475384658257/660642697730781200629574482752*x^14-395123955538628700846034320529/84562265309539993680585533792256*x^13-42089091457732439789133212041/21140566327384998420146383448064*x^12+1778733944553814926085250588089/5285141581846249605036595862016*x^11+1199773057584157964623922999227/10570283163692499210073191724032*x^10-62388914868294024658146161142601/5285141581846249605036595862016*x^9-9972424653890969615705785314961/2642570790923124802518297931008*x^8+92195452589334858083467125162061/440428465153854133753049655168*x^7+49552393437833848097088926868103/660642697730781200629574482752*x^6-570401891838843721031107867194181/330321348865390600314787241376*x^5-57812502851450261410634637892109/82580337216347650078696810344*x^4+405821878404668995348644220729817/82580337216347650078696810344*x^3+52002460639967607456708689167823/41290168608173825039348405172*x^2-5332179182126648180669079523153/3440847384014485419945700431*x-332088457651296541886254074501/1146949128004828473315233477,-1301033138967408485053289515/14093710884923332280097588965376*x^15-46819032563910694927450495/880856930307708267506099310336*x^14+242873594557100700190191418453/14093710884923332280097588965376*x^13+8625518763308029299466733505/1174475907076944356674799080448*x^12-728553343265804152538715591087/587237953538472178337399540224*x^11-122011274904557600400734367307/293618976769236089168699770112*x^10+38310639984132592547197153349783/880856930307708267506099310336*x^9+1507299053984600980624037864275/110107116288463533438262413792*x^8-169752083616768240081320600222195/220214232576927066876524827584*x^7-14888135755225456483183645848103/55053558144231766719131206896*x^6+174972017271607202854057191006635/27526779072115883359565603448*x^5+17314855383031845960387970793777/6881694768028970839891400862*x^4-248999809765214910245282090689361/13763389536057941679782801724*x^3-15319138519034612310996864713741/3440847384014485419945700431*x^2+6514971411164141314240563233687/1146949128004828473315233477*x+1204092695650475916646981521714/1146949128004828473315233477,-383765612321315923631303239/126843397964309990520878300688384*x^15-45693144586864820899503029/21140566327384998420146383448064*x^14+71318200664096427051668126725/126843397964309990520878300688384*x^13+19370713071155064377293154575/63421698982154995260439150344192*x^12-1277010540791838991339783570889/31710849491077497630219575172096*x^11-34014706957505391361260033841/1981928093192343601888723448256*x^10+412147027594933989549425974537/293618976769236089168699770112*x^9+262193193567180850831097115503/495482023298085900472180862064*x^8-24510309924014121396636666801821/990964046596171800944361724128*x^7-3133497508168703493001428133549/330321348865390600314787241376*x^6+100568529110315736788036778819193/495482023298085900472180862064*x^5+2251263699394281454935881975915/27526779072115883359565603448*x^4-35772306712591597021491624602905/61935252912260737559022607758*x^3-2885881579828227433839715581535/20645084304086912519674202586*x^2+632353115219011140500590905307/3440847384014485419945700431*x+43150750763238411181027603616/1146949128004828473315233477,15541494024738799999975398889/126843397964309990520878300688384*x^15+11538861241444862692708571/165160674432695300157393620688*x^14-2901810163317690036078265306303/126843397964309990520878300688384*x^13-305767858478234893735309515725/31710849491077497630219575172096*x^12+13059844390668981507076507000781/7927712372769374407554893793024*x^11+4326553234814602654263661709329/7927712372769374407554893793024*x^10-152648197929900306651834224062151/2642570790923124802518297931008*x^9-71490681508174182552731400965485/3963856186384687203777446896512*x^8+2029651894547697316185439991326153/1981928093192343601888723448256*x^7+13132187474139257500687215261187/36702372096154511146087471264*x^6-2092574998257008156723792007588851/247741011649042950236090431032*x^5-68932105065467236653570370454975/20645084304086912519674202586*x^4+2978502024406347803976359974951397/123870505824521475118045215516*x^3+122103904350522799208170757215169/20645084304086912519674202586*x^2-26034005246500573178185487201039/3440847384014485419945700431*x-1605300652089985560720452955888/1146949128004828473315233477,-15108217974300130078352026963/126843397964309990520878300688384*x^15-727238243387873172536134127/10570283163692499210073191724032*x^14+2820281824778662333004835897145/126843397964309990520878300688384*x^13+150811671172208219098959710311/15855424745538748815109787586048*x^12-50758844615937806596609585791815/31710849491077497630219575172096*x^11-4267283028213087578146760242939/7927712372769374407554893793024*x^10+2316886351657749831556338490949/41290168608173825039348405172*x^9+70231594671644755336673997251665/3963856186384687203777446896512*x^8-1971026282036001595975212455616709/1981928093192343601888723448256*x^7-38485473317323969302171458153569/110107116288463533438262413792*x^6+4063307980041699133061986585535851/495482023298085900472180862064*x^5+134118480812091004390611712663405/41290168608173825039348405172*x^4-2891669041662893285273854334691827/123870505824521475118045215516*x^3-59274199974174582967306063020640/10322542152043456259837101293*x^2+8424792934844022931759339368719/1146949128004828473315233477*x+1551922937107654319784400261046/1146949128004828473315233477,-5404556272142338419208061869/126843397964309990520878300688384*x^15-262027037014657917668459789/10570283163692499210073191724032*x^14+1008763589291096933938678901395/126843397964309990520878300688384*x^13+6798515710890260680689737591/1981928093192343601888723448256*x^12-9076631634165669629197991672527/15855424745538748815109787586048*x^11-3077500655312944502019086490731/15855424745538748815109787586048*x^10+26512068989626166684776208553529/1321285395461562401259148965504*x^9+6317045705397330752704163795107/990964046596171800944361724128*x^8-352377930575387123569905914371673/990964046596171800944361724128*x^7-2300505370442642793053290983877/18351186048077255573043735632*x^6+363216298679984736330469527072175/123870505824521475118045215516*x^5+47997146557833121446217697847469/41290168608173825039348405172*x^4-517158901558936113143230029179035/61935252912260737559022607758*x^3-21219339548074511573878248936607/10322542152043456259837101293*x^2+9063698555528691571142619814807/3440847384014485419945700431*x+563317900865308328017516452652/1146949128004828473315233477,-8838129243562041243218940703/84562265309539993680585533792256*x^15-2561175996569476492297699865/42281132654769996840292766896128*x^14+1649807656392151847265099794197/84562265309539993680585533792256*x^13+39388640078858602193450741517/4697903628307777426699196321792*x^12-9897459438811551008125686554645/7046855442461666140048794482688*x^11-139487486277277303961328880467/293618976769236089168699770112*x^10+130106352279503676669326245388887/2642570790923124802518297931008*x^9+645938445829812274266742282729/41290168608173825039348405172*x^8-1152909912670290457938338419481315/1321285395461562401259148965504*x^7-203774255876857794048173558040011/660642697730781200629574482752*x^6+148530464267411358837207061731625/20645084304086912519674202586*x^5+118302619407716630894736110137475/41290168608173825039348405172*x^4-211325166685403841604654561924753/10322542152043456259837101293*x^3-52483198579638706422015555614809/10322542152043456259837101293*x^2+14739781671500913494981840702773/2293898256009656946630466954*x+1383794456092654726016222180168/1146949128004828473315233477,-6381941709016633771659246497/42281132654769996840292766896128*x^15-3687110671848301212707414399/42281132654769996840292766896128*x^14+1191360608263157894894517674129/42281132654769996840292766896128*x^13+56669054400953200514211891465/4697903628307777426699196321792*x^12-4765000997150009400084650280153/2348951814153888713349598160896*x^11-2407391220307547174934232104919/3523427721230833070024397241344*x^10+375849958717207357887183270854747/5285141581846249605036595862016*x^9+1859036534045071217774319203969/82580337216347650078696810344*x^8-416347636480481269866239514193313/330321348865390600314787241376*x^7-293553840377791223519759524957973/660642697730781200629574482752*x^6+3433336413535113854348764591783093/330321348865390600314787241376*x^5+85278778571905470723125760537955/20645084304086912519674202586*x^4-1221713873287363520160485123490385/41290168608173825039348405172*x^3-75576276332706812081707710946288/10322542152043456259837101293*x^2+64182686590833531442726004323631/6881694768028970839891400862*x+1972014910514263335720024882557/1146949128004828473315233477,-259277816090663196930824059/3523427721230833070024397241344*x^15-609424419490761076161879377/14093710884923332280097588965376*x^14+96771683800638488401209491539/7046855442461666140048794482688*x^13+84444886493875688875160991403/14093710884923332280097588965376*x^12-6964413464888309390045389138273/7046855442461666140048794482688*x^11-1194577579621636846821729800161/3523427721230833070024397241344*x^10+20337614331322192370743755569587/587237953538472178337399540224*x^9+407514848647747547793812691487/36702372096154511146087471264*x^8-45039721603478165378668232970697/73404744192309022292174942528*x^7-47882501991615239881883536995679/220214232576927066876524827584*x^6+556924217439789513623295366911875/110107116288463533438262413792*x^5+55322383201749024570829474121725/27526779072115883359565603448*x^4-66051557224786285324046443401057/4587796512019313893260933908*x^3-12200485214709588730049137328212/3440847384014485419945700431*x^2+31213223476547336425536401378977/6881694768028970839891400862*x+956629767389535035972731815383/1146949128004828473315233477,-64642426201335895130487313/990964046596171800944361724128*x^15-532457468447234198068130759/14093710884923332280097588965376*x^14+772274694773806543081141843597/63421698982154995260439150344192*x^13+662888765058371275558597476109/126843397964309990520878300688384*x^12-55596432036795480295502814567857/63421698982154995260439150344192*x^11-9381343995796038418698341168201/31710849491077497630219575172096*x^10+162411739188401581826283009175315/5285141581846249605036595862016*x^9+77163323229421184001662678287711/7927712372769374407554893793024*x^8-1079430955281622992036523762852571/1981928093192343601888723448256*x^7-31680969556298463263304423242663/165160674432695300157393620688*x^6+4450558973729736518727386551234225/990964046596171800944361724128*x^5+18384901833515610084792481284040/10322542152043456259837101293*x^4-3167261476587794790306292620456473/247741011649042950236090431032*x^3-43320578503556665723150440527257/13763389536057941679782801724*x^2+9223477971331126373452350682883/2293898256009656946630466954*x+848245454098613229983770523343/1146949128004828473315233477], x^16-187*x^14+28*x^13+13484*x^12-3248*x^11-473664*x^10+123616*x^9+8434432*x^8-1894272*x^7-70540288*x^6+12555264*x^5+211791872*x^4-65138688*x^3-89800704*x^2+24330240*x+6635520];
E[551,7]=[[7023253519982346433710359953602403/42491003655544576022989615919219810525184*x^17-18295201019911760024806251348122399/21245501827772288011494807959609905262592*x^16-330562527752682735082693907238226907/10622750913886144005747403979804952631296*x^15+789759086851348522295222440340998655/5311375456943072002873701989902476315648*x^14+103633025526235399944994872837741736871/42491003655544576022989615919219810525184*x^13-37629316745800960584805212072171254351/3540916971295381335249134659934984210432*x^12-1086632987601598653080606418052599904637/10622750913886144005747403979804952631296*x^11+1081736184651865316363476457281731620149/2655687728471536001436850994951238157824*x^10+1620681764049656630212785128083132487813/663921932117884000359212748737809539456*x^9-12045748583708831074820357777526030622007/1327843864235768000718425497475619078912*x^8-10630433414816502144419879357157394118021/331960966058942000179606374368904769728*x^7+1228776846114232946312430252213222549127/10373780189341937505612699199028274054*x^6+31758972159298380578665151549711242304005/165980483029471000089803187184452384864*x^5-1468798313524224295564575255120461548496/1728963364890322917602116533171379009*x^4-398358976603038509084736438067179517940/5186890094670968752806349599514137027*x^3+26201652744062756322362838088070385129673/10373780189341937505612699199028274054*x^2-14048280186068901606643897351303299140372/5186890094670968752806349599514137027*x+1408362404161764819896158724078946316283/1728963364890322917602116533171379009,8505205223644901929801208843946185/169964014622178304091958463676879242100736*x^17-47530637300107010073411445378476173/169964014622178304091958463676879242100736*x^16-1580071655552355797248570403466512365/169964014622178304091958463676879242100736*x^15+8160913227516203910963735236873838251/169964014622178304091958463676879242100736*x^14+7635082025140555203291367681109670049/10622750913886144005747403979804952631296*x^13-24115159287089592957308795845101183907/7081833942590762670498269319869968420864*x^12-631341477660661216225965373809079495973/21245501827772288011494807959609905262592*x^11+1372019830983170131535602548163008768179/10622750913886144005747403979804952631296*x^10+3705658487421982291688087799971412559907/5311375456943072002873701989902476315648*x^9-7533000126616484415640632571006796661935/2655687728471536001436850994951238157824*x^8-11881540368534033728239869635767900914517/1327843864235768000718425497475619078912*x^7+24152173785951127992519392847056849283071/663921932117884000359212748737809539456*x^6+8438276116995610722661628753104705893833/165980483029471000089803187184452384864*x^5-14127765330121722289478835701449881759321/55326827676490333363267729061484128288*x^4+508474005300728921727523023573908455577/82990241514735500044901593592226192432*x^3+15345593467120699842915245819951224714741/20747560378683875011225398398056548108*x^2-17496488608423427343388222018765707943945/20747560378683875011225398398056548108*x+459545688811302955022048423112239021932/1728963364890322917602116533171379009,17212040167208128379945275881848029/56654671540726101363986154558959747366912*x^17-88568409871159826679967143501698889/56654671540726101363986154558959747366912*x^16-3248533838505626910384542820563127529/56654671540726101363986154558959747366912*x^15+15291212678483739295701631161277624063/56654671540726101363986154558959747366912*x^14+31912274162059653728255087648535049909/7081833942590762670498269319869968420864*x^13-136591696566287676336712987792926477529/7081833942590762670498269319869968420864*x^12-1342389090821266660798723529377462008239/7081833942590762670498269319869968420864*x^11+2617805064254826808330087919808565458073/3540916971295381335249134659934984210432*x^10+8034929602249309738401098785570933144291/1770458485647690667624567329967492105216*x^9-14582030723463679896077660344458251064951/885229242823845333812283664983746052608*x^8-26463292935757276162881967320707191141269/442614621411922666906141832491873026304*x^7+47668918784330819298349022669192246680881/221307310705961333453070916245936513152*x^6+2491968754134141904800416032186504199059/6915853459561291670408466132685516036*x^5-85739100310817094622320955503386277859943/55326827676490333363267729061484128288*x^4-4905830178980912141958350757357214683529/27663413838245166681633864530742064144*x^3+32026555466154123411901588294924569150569/6915853459561291670408466132685516036*x^2-34121927033830133794045140368565542883067/6915853459561291670408466132685516036*x+2569821778811518299066906436774280957116/1728963364890322917602116533171379009,-82473777666970087843637998354985/84982007311089152045979231838439621050368*x^17-3114945787785099372752561164791973/84982007311089152045979231838439621050368*x^16+33010383672767018666691125263223191/84982007311089152045979231838439621050368*x^15+536516340382457981441098317070684375/84982007311089152045979231838439621050368*x^14-1978212515283690049882931174188506887/42491003655544576022989615919219810525184*x^13-392165728192489478452591797331410125/885229242823845333812283664983746052608*x^12+7021914417495596172325438212345143663/2655687728471536001436850994951238157824*x^11+43023024029561896283088414850103219597/2655687728471536001436850994951238157824*x^10-216692599605794001209468459656748975729/2655687728471536001436850994951238157824*x^9-216319420190405875553831521196390591531/663921932117884000359212748737809539456*x^8+939460176293265662508359736897166846867/663921932117884000359212748737809539456*x^7+570547073642429191014089061461136331361/165980483029471000089803187184452384864*x^6-1108269677297834521094479186621704859919/82990241514735500044901593592226192432*x^5-213156359774705184700095901115421141443/13831706919122583340816932265371032072*x^4+2527844669131487634151622451659170212403/41495120757367750022450796796113096216*x^3+33277281067135939458861188462045119174/5186890094670968752806349599514137027*x^2-965136511504366981314964937178558954347/10373780189341937505612699199028274054*x+80392720091060227194711804928096183638/1728963364890322917602116533171379009,57419161236027022624855503909811067/169964014622178304091958463676879242100736*x^17-297942084915515165708774893144779599/169964014622178304091958463676879242100736*x^16-10821674675709282573862732169456337679/169964014622178304091958463676879242100736*x^15+51458751171987925952035551163007326841/169964014622178304091958463676879242100736*x^14+106137732783332918327345333568035437961/21245501827772288011494807959609905262592*x^13-153282881221460523346346758592956718735/7081833942590762670498269319869968420864*x^12-4456450370689908252405406823334761857451/21245501827772288011494807959609905262592*x^11+8816058635391687565915511551838873427785/10622750913886144005747403979804952631296*x^10+26613013100218436593004608710748233572459/5311375456943072002873701989902476315648*x^9-49112349528557732135119479339903053789801/2655687728471536001436850994951238157824*x^8-87345468169404934167286349221441264250035/1327843864235768000718425497475619078912*x^7+160460516816638129433193931126006941356183/663921932117884000359212748737809539456*x^6+32624512101274084478832730165573948458637/82990241514735500044901593592226192432*x^5-96035225983510843762778888422997263201883/55326827676490333363267729061484128288*x^4-12951677603255876479833318674692353156739/82990241514735500044901593592226192432*x^3+107216133475073405377232125014256979273617/20747560378683875011225398398056548108*x^2-115637858035300921765473486730922966638099/20747560378683875011225398398056548108*x+2923179261072501443066157889125851084066/1728963364890322917602116533171379009,5870134755238414081704907222451079/56654671540726101363986154558959747366912*x^17-31209302003133608925582391238671587/56654671540726101363986154558959747366912*x^16-1119878658039155778748007033103096083/56654671540726101363986154558959747366912*x^15+5512298031770052999228150947366755765/56654671540726101363986154558959747366912*x^14+2779867969388635909595595808259001075/1770458485647690667624567329967492105216*x^13-50566109643479032011561818846625985725/7081833942590762670498269319869968420864*x^12-472376374545411783195794342202844643427/7081833942590762670498269319869968420864*x^11+999187747292200696788680215664294568265/3540916971295381335249134659934984210432*x^10+2848329583711932539975697154621646484507/1770458485647690667624567329967492105216*x^9-5756046587394867999616031766194912263965/885229242823845333812283664983746052608*x^8-9377475263208575063536762203022466977127/442614621411922666906141832491873026304*x^7+19453356570014976286789942039789567116187/221307310705961333453070916245936513152*x^6+3405686737664776786518638968472876969049/27663413838245166681633864530742064144*x^5-35914553986941132102764708084689813474113/55326827676490333363267729061484128288*x^4+869564178593106306062703826764673152913/27663413838245166681633864530742064144*x^3+13546875964352101216916909895164178945857/6915853459561291670408466132685516036*x^2-15816095808420668412608217701747270928443/6915853459561291670408466132685516036*x+1262770563673835637732250671899638011536/1728963364890322917602116533171379009,x,-1,-142877471231101176149134436356499/3540916971295381335249134659934984210432*x^17+3149497844701030113314077437805081/14163667885181525340996538639739936841728*x^16+106903456116719194075454030399944441/14163667885181525340996538639739936841728*x^15-560201091974548749928742847782209551/14163667885181525340996538639739936841728*x^14-8287272393696906959938300977464647067/14163667885181525340996538639739936841728*x^13+20795849544274824790016932945343747711/7081833942590762670498269319869968420864*x^12+85448191663791513501443993181354673591/3540916971295381335249134659934984210432*x^11-208781749450020435527868506980938417795/1770458485647690667624567329967492105216*x^10-248196516951270083395526864373892389083/442614621411922666906141832491873026304*x^9+1225047565645685556910674331838490234027/442614621411922666906141832491873026304*x^8+48262362489284971209843166256342940105/6915853459561291670408466132685516036*x^7-65684357021749121743195316340988185894/1728963364890322917602116533171379009*x^6-1913415949657810520562249504228799010347/55326827676490333363267729061484128288*x^5+3890905470498178112112723753407827126325/13831706919122583340816932265371032072*x^4-1209474853960634531879743041993431740475/13831706919122583340816932265371032072*x^3-5757654844701243797342439074362277849229/6915853459561291670408466132685516036*x^2+1881996173281436025876941007672977934155/1728963364890322917602116533171379009*x-621596687741593697882758095615564182624/1728963364890322917602116533171379009,1,-147542914061766036535219950851201645/169964014622178304091958463676879242100736*x^17+772316289911952737744028340837241117/169964014622178304091958463676879242100736*x^16+27742348413647548998614058765030583645/169964014622178304091958463676879242100736*x^15-133380986790351988272622162552115856251/169964014622178304091958463676879242100736*x^14-542774477773828810293924454933917087229/42491003655544576022989615919219810525184*x^13+198665562474502245154384931062939501617/3540916971295381335249134659934984210432*x^12+11361873522159594077064209341747224954971/21245501827772288011494807959609905262592*x^11-22854930047200711308133780874655569855369/10622750913886144005747403979804952631296*x^10-67624267916459215507715936799443399783057/5311375456943072002873701989902476315648*x^9+127309384204529450086502964122052159887717/2655687728471536001436850994951238157824*x^8+220962984769416146844118965969114160890853/1327843864235768000718425497475619078912*x^7-415608350685200867095772161514706404298293/663921932117884000359212748737809539456*x^6-163526841215766007260260308171737346242173/165980483029471000089803187184452384864*x^5+248154676992558908841152703988945358687425/55326827676490333363267729061484128288*x^4+24140769834249632539488237293070968415223/82990241514735500044901593592226192432*x^3-68952147602113622698625019931795608920701/5186890094670968752806349599514137027*x^2+300436543736611844416862465763786351201937/20747560378683875011225398398056548108*x-7636714520921052315161280929659011717062/1728963364890322917602116533171379009,7282761453591883353980203027523235/28327335770363050681993077279479873683456*x^17-38938041730353439830584798101860065/28327335770363050681993077279479873683456*x^16-1379924067627789559526756165890867161/28327335770363050681993077279479873683456*x^15+6835349397773255153089765366270804479/28327335770363050681993077279479873683456*x^14+54416000660075275906491885266367512563/14163667885181525340996538639739936841728*x^13-124549045344323156197980081104251866219/7081833942590762670498269319869968420864*x^12-286891599968501144802896869601878960773/1770458485647690667624567329967492105216*x^11+1221073406332263197667900570719354063147/1770458485647690667624567329967492105216*x^10+3436236946538622333960938237493113580761/885229242823845333812283664983746052608*x^9-3486507862220233163370562422762804467305/221307310705961333453070916245936513152*x^8-5624591965670559822191792081996227567071/110653655352980666726535458122968256576*x^7+23336569392415342563182455118242980576053/110653655352980666726535458122968256576*x^6+8160990055712797222369574470137959411179/27663413838245166681633864530742064144*x^5-42636593353383859303720017835015156607285/27663413838245166681633864530742064144*x^4+89359790328934289303602921451068993114/1728963364890322917602116533171379009*x^3+31871748737027774852812670585370850748889/6915853459561291670408466132685516036*x^2-9138112489806633399360753583427388845023/1728963364890322917602116533171379009*x+2860840637313431877950726139170338047586/1728963364890322917602116533171379009,-21841774351044516027327638201545593/28327335770363050681993077279479873683456*x^17+115087183136512391937987868460056115/28327335770363050681993077279479873683456*x^16+4115548461761177232569929341643740095/28327335770363050681993077279479873683456*x^15-19935543251091551056582739470178812801/28327335770363050681993077279479873683456*x^14-161426711789726736108363927011860622859/14163667885181525340996538639739936841728*x^13+22343973979605207095296885006682437679/442614621411922666906141832491873026304*x^12+211748669362345280102846083676144463687/442614621411922666906141832491873026304*x^11-26874483659637317411877236349591175745/13831706919122583340816932265371032072*x^10-10109254146156192048986220884104965813255/885229242823845333812283664983746052608*x^9+4809531721097470163977680493057394809827/110653655352980666726535458122968256576*x^8+33107073487496024198039825202328914071975/221307310705961333453070916245936513152*x^7-31532184260322882682134265481209389526537/55326827676490333363267729061484128288*x^6-12248712466044826815993219905680352801645/13831706919122583340816932265371032072*x^5+28350687184387643940059599554982287543189/6915853459561291670408466132685516036*x^4+3005797163418469097342254718204956307879/13831706919122583340816932265371032072*x^3-21066373455720773172939137650489936425548/1728963364890322917602116533171379009*x^2+46233776662020478969846541420158048409183/3457926729780645835204233066342758018*x-7079609426431146301950233581045135153788/1728963364890322917602116533171379009,79464411158910823008958086618206867/169964014622178304091958463676879242100736*x^17-430308344642111713817897101835586119/169964014622178304091958463676879242100736*x^16-14877432573431728389719385446354534887/169964014622178304091958463676879242100736*x^15+74488859950341974041698901048749876641/169964014622178304091958463676879242100736*x^14+144876421234079433034919450851863122909/21245501827772288011494807959609905262592*x^13-222498008051030502000426402846039431499/7081833942590762670498269319869968420864*x^12-6035458221322804552852740647478648923147/21245501827772288011494807959609905262592*x^11+12835713480714516317762242093196624429333/10622750913886144005747403979804952631296*x^10+35709740455406280169495669381663985001899/5311375456943072002873701989902476315648*x^9-71681550359295128563035045461934186061217/2655687728471536001436850994951238157824*x^8-115609422794715028236370962390810711224179/1327843864235768000718425497475619078912*x^7+234210175249930401425431724751957818867099/663921932117884000359212748737809539456*x^6+20851840305180394681286382016742776575521/41495120757367750022450796796113096216*x^5-139437681631027273807706677163377961630431/55326827676490333363267729061484128288*x^4+1612026082176981354187060306663754844233/82990241514735500044901593592226192432*x^3+153636601165687325826581364485480839778143/20747560378683875011225398398056548108*x^2-172584701043284555548982067921210233050747/20747560378683875011225398398056548108*x+4434819927063794937419652438866360987682/1728963364890322917602116533171379009,-39736278832937032387563593543750687/169964014622178304091958463676879242100736*x^17+211987089815063127566659109560298675/169964014622178304091958463676879242100736*x^16+7485228243126380497754008767603374563/169964014622178304091958463676879242100736*x^15-36673812152051995219143854754274412453/169964014622178304091958463676879242100736*x^14-73417676326465591666132086011161350089/21245501827772288011494807959609905262592*x^13+109356069866299632531739016388039174605/7081833942590762670498269319869968420864*x^12+3084372376731637867204815018258081177119/21245501827772288011494807959609905262592*x^11-6289858658504140878787848606616338896417/10622750913886144005747403979804952631296*x^10-18437466072774992280603919547835324022223/5311375456943072002873701989902476315648*x^9+34987953900986295418437099358949461670249/2655687728471536001436850994951238157824*x^8+60587008405242360228803450858283724571083/1327843864235768000718425497475619078912*x^7-113926439436545429321966001662255954642915/663921932117884000359212748737809539456*x^6-11329557606513009848198018531057578923959/41495120757367750022450796796113096216*x^5+67846252474818103385011949453988476380731/55326827676490333363267729061484128288*x^4+9087617897447205171986701428293562827515/82990241514735500044901593592226192432*x^3-75400322287968674810484346919294471713411/20747560378683875011225398398056548108*x^2+80321002879345896938087902708563182969791/20747560378683875011225398398056548108*x-1988695633029799413064800974774415937366/1728963364890322917602116533171379009,45213333220609184824627968029031251/169964014622178304091958463676879242100736*x^17-225470554078579736102760695673745751/169964014622178304091958463676879242100736*x^16-8584919503632009031388103215681753623/169964014622178304091958463676879242100736*x^15+38997249855272492476414041939820253105/169964014622178304091958463676879242100736*x^14+84837640943161343680133556076822925927/21245501827772288011494807959609905262592*x^13-116364147320722897358611841318671628579/7081833942590762670498269319869968420864*x^12-3589567896719724486185305140205548058403/21245501827772288011494807959609905262592*x^11+6708566177047926918818150228245917245117/10622750913886144005747403979804952631296*x^10+21612895701537529442511140188139366460047/5311375456943072002873701989902476315648*x^9-37511248407954428230272992939520918704465/2655687728471536001436850994951238157824*x^8-71683039801726794234950813325304375031131/1327843864235768000718425497475619078912*x^7+123331987920308501890444484971416771483131/663921932117884000359212748737809539456*x^6+13685482212092086239406768988007447882377/41495120757367750022450796796113096216*x^5-74583622904811713752438829881170329500999/55326827676490333363267729061484128288*x^4-17373977147640621142610551836947637920983/82990241514735500044901593592226192432*x^3+84589998797360109068160878404221924320695/20747560378683875011225398398056548108*x^2-88795294206700329995719561306859033903863/20747560378683875011225398398056548108*x+2187266833504509446197283668681190841636/1728963364890322917602116533171379009,1936381828612766834990303230132867/14163667885181525340996538639739936841728*x^17-9516292790115006408894606257091597/14163667885181525340996538639739936841728*x^16-367471419173144601271046716096145737/14163667885181525340996538639739936841728*x^15+1630838793950568756018968826889904639/14163667885181525340996538639739936841728*x^14+14520160970328847152839627566945697851/7081833942590762670498269319869968420864*x^13-14421621795497203390695598216863582715/1770458485647690667624567329967492105216*x^12-153537503316295519600120391891136057143/1770458485647690667624567329967492105216*x^11+272826623906614386566426804017649283039/885229242823845333812283664983746052608*x^10+462078850738766363408959161610986607523/221307310705961333453070916245936513152*x^9-1497017190659760962366135574060800104175/221307310705961333453070916245936513152*x^8-766779530401513599085166723271883220225/27663413838245166681633864530742064144*x^7+4826872873640085273900195605492681559943/55326827676490333363267729061484128288*x^6+295546852887462237337047893693628241287/1728963364890322917602116533171379009*x^5-8631931400266595232768057570699595241801/13831706919122583340816932265371032072*x^4-254434769511130372552109086305358954916/1728963364890322917602116533171379009*x^3+3247945833172794823728789079421146081996/1728963364890322917602116533171379009*x^2-3336405105338786240709538993177238619948/1728963364890322917602116533171379009*x+1001963981497441091755769884806989224054/1728963364890322917602116533171379009,-17729927007202389308429922723679647/28327335770363050681993077279479873683456*x^17+91135296789240998020979230478947915/28327335770363050681993077279479873683456*x^16+3339531407870024752998634184882344243/28327335770363050681993077279479873683456*x^15-15638908469418267881832004736445402997/28327335770363050681993077279479873683456*x^14-32747340503514058035040173567293680723/3540916971295381335249134659934984210432*x^13+34648642841128582508631792861476756351/885229242823845333812283664983746052608*x^12+1375459414226594877490609630058484714465/3540916971295381335249134659934984210432*x^11-2629561214545764704536411724619105930615/1770458485647690667624567329967492105216*x^10-8225092091180854372869819315539263026599/885229242823845333812283664983746052608*x^9+14471156296411941541680485716462612218487/442614621411922666906141832491873026304*x^8+27108756441648168341146281697107616621017/221307310705961333453070916245936513152*x^7-46702200446098548863148989261096162222951/110653655352980666726535458122968256576*x^6-10305947329922708691835103131912556772167/13831706919122583340816932265371032072*x^5+83134409868102784299749527977301510353423/27663413838245166681633864530742064144*x^4+7022587829715604816920572492172852182237/13831706919122583340816932265371032072*x^3-30932401438180548207160944180880373434299/3457926729780645835204233066342758018*x^2+31969871605394260413144659037686246295193/3457926729780645835204233066342758018*x-4709337794578594983169078385630480174346/1728963364890322917602116533171379009,-19782399064324901967748107429292055/21245501827772288011494807959609905262592*x^17+100987240164362093999510317252164809/21245501827772288011494807959609905262592*x^16+3739212687564304119595677684218222053/21245501827772288011494807959609905262592*x^15-17460271264499149648520238205787751419/21245501827772288011494807959609905262592*x^14-147122031460835050477525913203248663959/10622750913886144005747403979804952631296*x^13+52084077208354401796894587311180660987/885229242823845333812283664983746052608*x^12+1548855148200055566773525166422818732235/2655687728471536001436850994951238157824*x^11-6002962515298249759604771578356705874189/2655687728471536001436850994951238157824*x^10-9278546189740021272712515457611035801885/663921932117884000359212748737809539456*x^9+4191484719579536518241009005352725443377/82990241514735500044901593592226192432*x^8+30575522493536339368254935765558711711995/165980483029471000089803187184452384864*x^7-27490409223509346901696862577941303361103/41495120757367750022450796796113096216*x^6-92110870376731541413276593874463689004903/82990241514735500044901593592226192432*x^5+33063396223679890066130439851970762739389/6915853459561291670408466132685516036*x^4+2745808707125326389053258835724034393159/5186890094670968752806349599514137027*x^3-74257064448173023946267003970401580222164/5186890094670968752806349599514137027*x^2+79507707668984663797824612690890132314535/5186890094670968752806349599514137027*x-8023852699987921807738255489332963858086/1728963364890322917602116533171379009,-6852551305406330024641384362534261/14163667885181525340996538639739936841728*x^17+34859454424074792636714652542522715/14163667885181525340996538639739936841728*x^16+1299174922955755832407779130943192259/14163667885181525340996538639739936841728*x^15-6031664054139143891781720589209093101/14163667885181525340996538639739936841728*x^14-51292328229506020554246707473984433183/7081833942590762670498269319869968420864*x^13+108008185245940091750299406722938373569/3540916971295381335249134659934984210432*x^12+542020299501157000439335545504550367323/1770458485647690667624567329967492105216*x^11-259410583555284092356632160434537817319/221307310705961333453070916245936513152*x^10-3260239312673553687755690794699845045905/442614621411922666906141832491873026304*x^9+5797620737187754931190757759439160472481/221307310705961333453070916245936513152*x^8+2698515172986840245307512126765003128287/27663413838245166681633864530742064144*x^7-19028846653142606834647148620357534039191/55326827676490333363267729061484128288*x^6-16388943528571813762481610129465170531939/27663413838245166681633864530742064144*x^5+4302129885784986002544817794631175236727/1728963364890322917602116533171379009*x^4+2263217455862817371709900193649218212323/6915853459561291670408466132685516036*x^3-12948233168102796459951278612092036485721/1728963364890322917602116533171379009*x^2+13766478785474688798667334172628313844865/1728963364890322917602116533171379009*x-4130328701929842051796971569082195243820/1728963364890322917602116533171379009,176030355679189606537955806040855/1327843864235768000718425497475619078912*x^17-11938435915568906511270460527255815/21245501827772288011494807959609905262592*x^16-545783635188049082030145391516560397/21245501827772288011494807959609905262592*x^15+2055845035272845593709637280870987643/21245501827772288011494807959609905262592*x^14+44021141861834053981018742265057998755/21245501827772288011494807959609905262592*x^13-6107036442360531814418950157133339899/885229242823845333812283664983746052608*x^12-118757859823553541166971962646237958969/1327843864235768000718425497475619078912*x^11+701886926172233945202217163937048994327/2655687728471536001436850994951238157824*x^10+1461006299057808240926890732902634694381/663921932117884000359212748737809539456*x^9-491160532236044699410635131255659046279/82990241514735500044901593592226192432*x^8-4986262076136859476867124149611525119825/165980483029471000089803187184452384864*x^7+408328838594026896220607779973930180117/5186890094670968752806349599514137027*x^6+8119833798257390867675267725455737749861/41495120757367750022450796796113096216*x^5-4063535347969242695139635366441172126607/6915853459561291670408466132685516036*x^4-2786763129468242976626297756585264539249/10373780189341937505612699199028274054*x^3+9661469467608874604741973487379738745809/5186890094670968752806349599514137027*x^2-9080192038398164643698682429872056353497/5186890094670968752806349599514137027*x+859248264148326992998169274993086721064/1728963364890322917602116533171379009,17542551621517572683833876483217869/169964014622178304091958463676879242100736*x^17-83912270685641391356765577521085205/169964014622178304091958463676879242100736*x^16-3304047744174948244341938031241104197/169964014622178304091958463676879242100736*x^15+14304672898739212125994645519226363155/169964014622178304091958463676879242100736*x^14+64699104121511158718877076779076753859/42491003655544576022989615919219810525184*x^13-21013752288673261522776008731999303011/3540916971295381335249134659934984210432*x^12-1354799654844889160002507286398439323999/21245501827772288011494807959609905262592*x^11+2384100179746431242617847604176226947311/10622750913886144005747403979804952631296*x^10+8070395258987448143298562374459136474813/5311375456943072002873701989902476315648*x^9-13118639465186256411109707505422164614507/2655687728471536001436850994951238157824*x^8-26502200787876618098511040331345170564211/1327843864235768000718425497475619078912*x^7+42511558952259197299892114760963250710751/663921932117884000359212748737809539456*x^6+10079449066906097368521134153975957749355/82990241514735500044901593592226192432*x^5-25420573778796696528059913809985775423273/55326827676490333363267729061484128288*x^4-7585466640725451334416455341209948526169/82990241514735500044901593592226192432*x^3+28594197072794739712489162166515236343691/20747560378683875011225398398056548108*x^2-29975944848514757161522069354741866708851/20747560378683875011225398398056548108*x+763409784828951848290410952497377518688/1728963364890322917602116533171379009,3830094967008595629088693680351229/84982007311089152045979231838439621050368*x^17-22601744593846503672331723175419171/84982007311089152045979231838439621050368*x^16-719121456480241265657957326175194043/84982007311089152045979231838439621050368*x^15+3899825026503834571267555374077295997/84982007311089152045979231838439621050368*x^14+28168176408906679685432294924218123579/42491003655544576022989615919219810525184*x^13-23067486768007152151864567116136940321/7081833942590762670498269319869968420864*x^12-147829632533545075315540721893109370941/5311375456943072002873701989902476315648*x^11+653230018940132164470285408679963751281/5311375456943072002873701989902476315648*x^10+1765708744215898027314008426430665401957/2655687728471536001436850994951238157824*x^9-1773695543436078479547628630618326247763/663921932117884000359212748737809539456*x^8-45172980026527148524044415321844279695/5186890094670968752806349599514137027*x^7+11187872737774853408412976291578017770525/331960966058942000179606374368904769728*x^6+2140690340471585051536707200278664683607/41495120757367750022450796796113096216*x^5-6436767713341761600127543144444173090071/27663413838245166681633864530742064144*x^4-193991279582298317575220748703916310521/10373780189341937505612699199028274054*x^3+13856603513974233800441641635096806411527/20747560378683875011225398398056548108*x^2-3734008263157389002713928888285604622159/5186890094670968752806349599514137027*x+396793010737276074569029904786950387350/1728963364890322917602116533171379009,-9092615040454958262338659761972735/14163667885181525340996538639739936841728*x^17+3016173964448011839171774722421183/885229242823845333812283664983746052608*x^16+213535324232217707452024468074169429/1770458485647690667624567329967492105216*x^15-1042268642457218296967022965481031669/1770458485647690667624567329967492105216*x^14-133609135351831309177274707681535081587/14163667885181525340996538639739936841728*x^13+298128844632174517123716971696427737307/7081833942590762670498269319869968420864*x^12+1397831088858218086868240653951056580103/3540916971295381335249134659934984210432*x^11-1428886829628631920606722118254345694039/885229242823845333812283664983746052608*x^10-4158181047899097687436838110876816035883/442614621411922666906141832491873026304*x^9+15909446622199585360730092323011566905395/442614621411922666906141832491873026304*x^8+27149419196208568263883035777730431113109/221307310705961333453070916245936513152*x^7-25939360695638280055475596310020219529063/55326827676490333363267729061484128288*x^6-10009093938243215433549273111455560096973/13831706919122583340816932265371032072*x^5+46390114256281512704234677407737179874449/13831706919122583340816932265371032072*x^4+2417152763109800527488606746036587316571/13831706919122583340816932265371032072*x^3-68608525111098497437516210098022603403455/6915853459561291670408466132685516036*x^2+37536936551254156011782505983198716267643/3457926729780645835204233066342758018*x-5727023037155782111531234013857122256152/1728963364890322917602116533171379009,-13797434891227399891874204829246685/84982007311089152045979231838439621050368*x^17+59986390760127245742116404828529803/84982007311089152045979231838439621050368*x^16+2686105788810133260270639298246936451/84982007311089152045979231838439621050368*x^15-10508415787769380905153365683978510885/84982007311089152045979231838439621050368*x^14-108799827523089995321111905716153081151/42491003655544576022989615919219810525184*x^13+63732537614399809890358631073097413065/7081833942590762670498269319869968420864*x^12+73672075631648479127771943309841711495/663921932117884000359212748737809539456*x^11-1875814766464349410634958825132238807795/5311375456943072002873701989902476315648*x^10-7274194541511247632626365665784483069729/2655687728471536001436850994951238157824*x^9+10777993663894973127212556978659164906675/1327843864235768000718425497475619078912*x^8+3105317869708402478682884116682698640599/82990241514735500044901593592226192432*x^7-4586665399748896849537667286959989028513/41495120757367750022450796796113096216*x^6-19978400064458340827362249292969928086065/82990241514735500044901593592226192432*x^5+23127699716037349808725589018633072806963/27663413838245166681633864530742064144*x^4+10837493192876514246588672999376138437161/41495120757367750022450796796113096216*x^3-27412995252571100372201684546474761130369/10373780189341937505612699199028274054*x^2+13776737250328658374665604854482321039422/5186890094670968752806349599514137027*x-1368513531991615837382612385517748588548/1728963364890322917602116533171379009], x^18-7*x^17-179*x^16+1237*x^15+13154*x^14-90768*x^13-504248*x^12+3575872*x^11+10366592*x^10-81432448*x^9-95461888*x^8+1065127936*x^7-129328640*x^6-7221715968*x^5+8790904832*x^4+16087502848*x^3-43953332224*x^2+34624585728*x-8982429696];
E[551,8]=[[1,1,-1,-4,1,-1,0,1,-4,1,5,10,-6,-7,7,-3,-10,-8,10,0,-12,-9,-10,2,8], x-1];
E[559,1]=[[x,x+1,-x^2-2*x,x^2-4,-3*x^2-5*x+3,1,x^2+x,3*x^2+3*x-7,2*x^2+5*x,x^2-3,-2*x^2+8,-1,x-6,1,-9,5*x^2+4*x-15,2*x-3,3*x^2+12*x-1,-7,-2*x^2-2*x+3,-6*x^2-12*x+5,-3*x-4,5*x^2+10*x+3,-x^2-4*x-12,-6*x^2-9*x+2], x^3+3*x^2-3];
E[559,2]=[[x,-5210/3493*x^14-485/3493*x^13+112388/3493*x^12+1401/499*x^11-928511/3493*x^10-70057/3493*x^9+3663291/3493*x^8+177186/3493*x^7-7017688/3493*x^6+50017/3493*x^5+5906504/3493*x^4-485711/3493*x^3-1624691/3493*x^2+20965/499*x+33331/3493,-4430/3493*x^14-580/3493*x^13+95475/3493*x^12+1696/499*x^11-788020/3493*x^10-89001/3493*x^9+3106438/3493*x^8+272894/3493*x^7-5951796/3493*x^6-216637/3493*x^5+5033727/3493*x^4-164247/3493*x^3-1427910/3493*x^2+8193/499*x+40724/3493,5741/3493*x^14+2234/3493*x^13-122330/3493*x^12-6622/499*x^11+992192/3493*x^10+356430/3493*x^9-3801134/3493*x^8-1203889/3493*x^7+6932831/3493*x^6+1580326/3493*x^5-5392402/3493*x^4-450232/3493*x^3+1368660/3493*x^2-879/499*x-30676/3493,-1606/3493*x^14-297/3493*x^13+34707/3493*x^12+896/499*x^11-287288/3493*x^10-48893/3493*x^9+1136488/3493*x^8+161626/3493*x^7-2190596/3493*x^6-173247/3493*x^5+1883213/3493*x^4-36872/3493*x^3-565030/3493*x^2+6089/499*x+19914/3493,-1,5258/3493*x^14+2360/3493*x^13-111333/3493*x^12-6987/499*x^11+894542/3493*x^10+376114/3493*x^9-3376794/3493*x^8-1276374/3493*x^7+6011414/3493*x^6+1711618/3493*x^5-4500623/3493*x^4-552187/3493*x^3+1105166/3493*x^2+2178/499*x-15626/3493,1205/3493*x^14+1443/3493*x^13-24673/3493*x^12-4192/499*x^11+187059/3493*x^10+221603/3493*x^9-630960/3493*x^8-747874/3493*x^7+864951/3493*x^6+1049516/3493*x^5-255445/3493*x^4-445325/3493*x^3-106135/3493*x^2+7957/499*x+16504/3493,8410/3493*x^14+3230/3493*x^13-179446/3493*x^12-9531/499*x^11+1458311/3493*x^10+511362/3493*x^9-5605323/3493*x^8-1724138/3493*x^7+10289925/3493*x^6+2261872/3493*x^5-8119842/3493*x^4-642891/3493*x^3+2132764/3493*x^2-2876/499*x-52261/3493,5447/3493*x^14+792/3493*x^13-117003/3493*x^12-2223/499*x^11+960545/3493*x^10+108259/3493*x^9-3751357/3493*x^8-274982/3493*x^7+7062975/3493*x^6-20042/3493*x^5-5775225/3493*x^4+663027/3493*x^3+1542841/3493*x^2-38027/499*x-28653/3493,-17166/3493*x^14-5567/3493*x^13+366278/3493*x^12+16289/499*x^11-2976963/3493*x^10-859321/3493*x^9+11445184/3493*x^8+2780556/3493*x^7-21015840/3493*x^6-3177571/3493*x^5+16575456/3493*x^4+122995/3493*x^3-4338031/3493*x^2+40879/499*x+123750/3493,-10125/3493*x^14-2327/3493*x^13+216924/3493*x^12+6832/499*x^11-1773906/3493*x^10-362143/3493*x^9+6888283/3493*x^8+1169150/3493*x^7-12867731/3493*x^6-1279030/3493*x^5+10442162/3493*x^4-40631/3493*x^3-2813724/3493*x^2+11561/499*x+75123/3493,14212/3493*x^14+2389/3493*x^13-305602/3493*x^12-6972/499*x^11+2512779/3493*x^10+363623/3493*x^9-9839426/3493*x^8-1108732/3493*x^7+18616240/3493*x^6+886051/3493*x^5-15350246/3493*x^4+713680/3493*x^3+4094963/3493*x^2-44963/499*x-61674/3493,1,13028/3493*x^14+5041/3493*x^13-278066/3493*x^12-14892/499*x^11+2260865/3493*x^10+799215/3493*x^9-8694309/3493*x^8-2693916/3493*x^7+15957070/3493*x^6+3537659/3493*x^5-12548754/3493*x^4-1028040/3493*x^3+3238311/3493*x^2-723/499*x-71087/3493,-783/499*x^14-490/499*x^13+16504/499*x^12+10047/499*x^11-131725/499*x^10-76438/499*x^9+491885/499*x^8+257546/499*x^7-858976/499*x^6-346908/499*x^5+621830/499*x^4+112727/499*x^3-148062/499*x^2+2776/499*x+3071/499,12347/3493*x^14+3982/3493*x^13-263125/3493*x^12-11551/499*x^11+2133490/3493*x^10+603004/3493*x^9-8164162/3493*x^8-1919112/3493*x^7+14843861/3493*x^6+2088374/3493*x^5-11439105/3493*x^4+125523/3493*x^3+2822520/3493*x^2-42420/499*x-53534/3493,-12132/3493*x^14-1478/3493*x^13+261665/3493*x^12+4432/499*x^11-2161423/3493*x^10-238326/3493*x^9+8526806/3493*x^8+751514/3493*x^7-16342056/3493*x^6-652854/3493*x^5+13799451/3493*x^4-336148/3493*x^3-3861297/3493*x^2+13732/499*x+79060/3493,-12510/3493*x^14-5328/3493*x^13+266019/3493*x^12+15862/499*x^11-2150216/3493*x^10-858799/3493*x^9+8189609/3493*x^8+2933344/3493*x^7-14791500/3493*x^6-3972940/3493*x^5+11353665/3493*x^4+1327220/3493*x^3-2902822/3493*x^2-7155/499*x+66691/3493,-16185/3493*x^14-5888/3493*x^13+344832/3493*x^12+17207/499*x^11-2795553/3493*x^10-909801/3493*x^9+10699788/3493*x^8+2981105/3493*x^7-19483537/3493*x^6-3599378/3493*x^5+15107016/3493*x^4+521709/3493*x^3-3790667/3493*x^2+26996/499*x+76260/3493,-3544/3493*x^14-464/3493*x^13+76380/3493*x^12+1257/499*x^11-630416/3493*x^10-58626/3493*x^9+2482356/3493*x^8+136579/3493*x^7-4727904/3493*x^6+61420/3493*x^5+3911014/3493*x^4-431097/3493*x^3-1044524/3493*x^2+25217/499*x+45154/3493,-21692/3493*x^14-6404/3493*x^13+463136/3493*x^12+18678/499*x^11-3766905/3493*x^10-980598/3493*x^9+14492099/3493*x^8+3135068/3493*x^7-26603784/3493*x^6-3410506/3493*x^5+20847812/3493*x^4-214948/3493*x^3-5208925/3493*x^2+63664/499*x+69683/3493,-6886/3493*x^14-3953/3493*x^13+145702/3493*x^12+11566/499*x^11-1168444/3493*x^10-612002/3493*x^9+4391140/3493*x^8+2023880/3493*x^7-7747496/3493*x^6-2571627/3493*x^5+5745150/3493*x^4+581464/3493*x^3-1505870/3493*x^2+17734/499*x+70360/3493,1770/3493*x^14+2337/3493*x^13-36633/3493*x^12-6758/499*x^11+282130/3493*x^10+354945/3493*x^9-981098/3493*x^8-1185659/3493*x^7+1472958/3493*x^6+1628271/3493*x^5-774507/3493*x^4-632794/3493*x^3+203778/3493*x^2+5410/499*x-54024/3493,-1856/499*x^14-145/499*x^13+40211/499*x^12+2968/499*x^11-334230/499*x^10-21876/499*x^9+1330749/499*x^8+59990/499*x^7-2587246/499*x^6-5881/499*x^5+2232355/499*x^4-113292/499*x^3-641158/499*x^2+24692/499*x+17167/499], x^15-2*x^14-22*x^13+43*x^12+187*x^11-354*x^10-769*x^9+1395*x^8+1553*x^7-2684*x^6-1328*x^5+2265*x^4+241*x^3-606*x^2+33*x+13];
E[559,3]=[[x,-x^6-2*x^5+5*x^4+7*x^3-7*x^2-5*x+1,x^6+3*x^5-2*x^4-9*x^3-x^2+4*x,-x^5-4*x^4-x^3+10*x^2+7*x-2,x^4+2*x^3-4*x^2-4*x+2,-1,-x^5-3*x^4+3*x^3+9*x^2-3*x-5,x^6+2*x^5-6*x^4-7*x^3+13*x^2+4*x-6,2*x^6+5*x^5-4*x^4-8*x^3-8*x-3,-2*x^6-4*x^5+9*x^4+12*x^3-10*x^2-3*x-2,-x^6-3*x^5+2*x^4+9*x^3+2*x^2-6*x-4,-x^4-4*x^3+x^2+11*x+2,-3*x^6-5*x^5+17*x^4+17*x^3-27*x^2-12*x+3,-1,-x^6+12*x^4+5*x^3-26*x^2-7*x+6,-2*x^6-8*x^5+3*x^4+32*x^3-31*x+4,2*x^6+2*x^5-12*x^4-3*x^3+17*x^2-4*x-2,-x^6-3*x^5+3*x^3+3*x^2+6*x+3,-3*x^6-9*x^5+9*x^4+34*x^3-6*x^2-33*x+5,4*x^6+16*x^5-x^4-54*x^3-23*x^2+37*x+8,-6*x^6-18*x^5+16*x^4+61*x^3-5*x^2-40*x,-x^6-9*x^5-13*x^4+24*x^3+36*x^2-6*x-6,3*x^6+10*x^5-5*x^4-36*x^3-7*x^2+32*x,-2*x^6-4*x^5+10*x^4+15*x^3-12*x^2-8*x-3,x^6+2*x^5-2*x^4-x^3-6*x+1], x^7+2*x^6-6*x^5-9*x^4+11*x^3+10*x^2-5*x-1];
E[559,4]=[[x,-1963/1471*x^13+10940/1471*x^12+10027/1471*x^11-140569/1471*x^10+83093/1471*x^9+616701/1471*x^8-627484/1471*x^7-1139092/1471*x^6+1283819/1471*x^5+898190/1471*x^4-899391/1471*x^3-291733/1471*x^2+144509/1471*x+41169/1471,2498/1471*x^13-14345/1471*x^12-10146/1471*x^11+180010/1471*x^10-138201/1471*x^9-754700/1471*x^8+931786/1471*x^7+1270602/1471*x^6-1846577/1471*x^5-820275/1471*x^4+1257011/1471*x^3+185312/1471*x^2-188043/1471*x-35070/1471,-643/1471*x^13+3295/1471*x^12+4688/1471*x^11-43999/1471*x^10+9485/1471*x^9+206998/1471*x^8-131482/1471*x^7-434977/1471*x^6+302634/1471*x^5+430706/1471*x^4-239751/1471*x^3-187668/1471*x^2+54805/1471*x+23855/1471,-3091/1471*x^13+17473/1471*x^12+14108/1471*x^11-221354/1471*x^10+151183/1471*x^9+945254/1471*x^8-1067548/1471*x^7-1652664/1471*x^6+2136595/1471*x^5+1156915/1471*x^4-1466694/1471*x^3-299890/1471*x^2+230847/1471*x+49198/1471,1,940/1471*x^13-5199/1471*x^12-5117/1471*x^11+67566/1471*x^10-36638/1471*x^9-301498/1471*x^8+293170/1471*x^7+568212/1471*x^6-621406/1471*x^5-447777/1471*x^4+463191/1471*x^3+129626/1471*x^2-89110/1471*x-15762/1471,2430/1471*x^13-13706/1471*x^12-12336/1471*x^11+177576/1471*x^10-103946/1471*x^9-792706/1471*x^8+781975/1471*x^7+1521375/1471*x^6-1602238/1471*x^5-1305105/1471*x^4+1142392/1471*x^3+491023/1471*x^2-207261/1471*x-64971/1471,4926/1471*x^13-28162/1471*x^12-21335/1471*x^11+356303/1471*x^10-255114/1471*x^9-1519623/1471*x^8+1757768/1471*x^7+2661295/1471*x^6-3484850/1471*x^5-1900732/1471*x^4+2357483/1471*x^3+541904/1471*x^2-346634/1471*x-84177/1471,3333/1471*x^13-18752/1471*x^12-14621/1471*x^11+233910/1471*x^10-167914/1471*x^9-967827/1471*x^8+1153039/1471*x^7+1573973/1471*x^6-2248200/1471*x^5-899289/1471*x^4+1464064/1471*x^3+99667/1471*x^2-188845/1471*x-15254/1471,1151/1471*x^13-5992/1471*x^12-6239/1471*x^11+72739/1471*x^10-40327/1471*x^9-282514/1471*x^8+303940/1471*x^7+382134/1471*x^6-553847/1471*x^5-69342/1471*x^4+278579/1471*x^3-110323/1471*x^2+7081/1471*x+14004/1471,4680/1471*x^13-27105/1471*x^12-18528/1471*x^11+341181/1471*x^10-265788/1471*x^9-1440013/1471*x^8+1780885/1471*x^7+2462441/1471*x^6-3540930/1471*x^5-1650222/1471*x^4+2442496/1471*x^3+392360/1471*x^2-381027/1471*x-61386/1471,-3265/1471*x^13+19584/1471*x^12+9456/1471*x^11-241773/1471*x^10+227803/1471*x^9+980826/1471*x^8-1409224/1471*x^7-1527604/1471*x^6+2706999/1471*x^5+764828/1471*x^4-1780448/1471*x^3-15563/1471*x^2+234541/1471*x+17206/1471,-1,-4451/1471*x^13+25840/1471*x^12+17380/1471*x^11-324461/1471*x^10+253767/1471*x^9+1363405/1471*x^8-1680748/1471*x^7-2312322/1471*x^6+3284093/1471*x^5+1526368/1471*x^4-2179220/1471*x^3-359457/1471*x^2+296613/1471*x+58701/1471,261/1471*x^13-2431/1471*x^12+2565/1471*x^11+28422/1471*x^10-60503/1471*x^9-101901/1471*x^8+290393/1471*x^7+103668/1471*x^6-496682/1471*x^5+68132/1471*x^4+257336/1471*x^3-124200/1471*x^2+16524/1471*x+18568/1471,1327/1471*x^13-7992/1471*x^12-4205/1471*x^11+100325/1471*x^10-87799/1471*x^9-423832/1471*x^8+551595/1471*x^7+739325/1471*x^6-1067622/1471*x^5-546201/1471*x^4+726926/1471*x^3+182552/1471*x^2-123246/1471*x-30179/1471,4670/1471*x^13-26189/1471*x^12-23090/1471*x^11+336237/1471*x^10-208530/1471*x^9-1474676/1471*x^8+1547852/1471*x^7+2734290/1471*x^6-3175364/1471*x^5-2208335/1471*x^4+2244664/1471*x^3+776383/1471*x^2-371566/1471*x-108572/1471,-944/1471*x^13+4977/1471*x^12+5940/1471*x^11-64248/1471*x^10+23943/1471*x^9+284985/1471*x^8-219866/1471*x^7-541260/1471*x^6+434598/1471*x^5+458715/1471*x^4-263128/1471*x^3-174896/1471*x^2+23169/1471*x+22483/1471,-4807/1471*x^13+28147/1471*x^12+17077/1471*x^11-351308/1471*x^10+297770/1471*x^9+1458892/1471*x^8-1935060/1471*x^7-2415765/1471*x^6+3820338/1471*x^5+1526048/1471*x^4-2627252/1471*x^3-357947/1471*x^2+417776/1471*x+75825/1471,4354/1471*x^13-24604/1471*x^12-19855/1471*x^11+311514/1471*x^10-212626/1471*x^9-1330268/1471*x^8+1497527/1471*x^7+2336320/1471*x^6-2979010/1471*x^5-1684034/1471*x^4+2006915/1471*x^3+493622/1471*x^2-288247/1471*x-82166/1471,2100/1471*x^13-9956/1471*x^12-18724/1471*x^11+136517/1471*x^10+11542/1471*x^9-668583/1471*x^8+255656/1471*x^7+1483988/1471*x^6-721102/1471*x^5-1558926/1471*x^4+665630/1471*x^3+705883/1471*x^2-189248/1471*x-86385/1471,1073/1471*x^13-5908/1471*x^12-5636/1471*x^11+75658/1471*x^10-42958/1471*x^9-330176/1471*x^8+330034/1471*x^7+604672/1471*x^6-680913/1471*x^5-469458/1471*x^4+507456/1471*x^3+151350/1471*x^2-120356/1471*x-29250/1471,-9375/1471*x^13+54113/1471*x^12+37568/1471*x^11-680952/1471*x^10+526261/1471*x^9+2874368/1471*x^8-3538421/1471*x^7-4929724/1471*x^6+7035925/1471*x^5+3371617/1471*x^4-4846352/1471*x^3-899320/1471*x^2+754916/1471*x+168202/1471,7609/1471*x^13-41801/1471*x^12-41228/1471*x^11+538046/1471*x^10-290498/1471*x^9-2366351/1471*x^8+2285374/1471*x^7+4381430/1471*x^6-4687913/1471*x^5-3442391/1471*x^4+3270324/1471*x^3+1072670/1471*x^2-532450/1471*x-133319/1471], x^14-7*x^13+3*x^12+78*x^11-145*x^10-243*x^9+758*x^8+83*x^7-1422*x^6+532*x^5+1004*x^4-525*x^3-224*x^2+82*x+23];
E[559,5]=[[x,-x,-x^3-x^2+5*x+1,x^3-5*x+1,x^3+x^2-5*x-5,1,-5,-x^3-x^2+5*x+2,-2,-x^3-x^2+4*x-3,-x^3+7*x-1,x^3+4*x^2-4*x-11,2*x^3+2*x^2-6*x-5,1,-3*x^3+14*x,x^3-x^2-6*x+3,3*x^3+x^2-12*x+2,3*x^3+3*x^2-13*x-6,-3*x^3-3*x^2+17*x+9,-5*x^3-4*x^2+22*x+3,-3*x^3-3*x^2+16*x+6,-3*x^3-3*x^2+14*x+12,3*x^3-14*x-5,-5*x^3-4*x^2+18*x+11,x^3+2*x^2-9*x-7], x^4+x^3-5*x^2-3*x+1];
E[583,1]=[[1,-1,4,4,1,1,1,-3,5,-3,4,-3,10,-6,-10,-1,-10,12,-4,3,-8,-7,-15,-6,-7], x-1];
E[583,2]=[[2,1,3,0,-1,4,0,-4,-3,6,-3,7,-2,-2,0,1,5,0,7,3,-2,6,-10,-1,-7], x-1];
E[583,3]=[[2,3,-3,2,1,0,6,-8,-5,-4,-5,11,12,-2,-8,-1,13,-8,-3,1,-4,-10,2,7,1], x-1];
E[583,4]=[[x+1,x,-x-4,x+3,-1,-x-1,-4*x-6,-2*x+2,x-2,3*x+7,-3*x-4,2*x-7,3*x+1,-x+5,-10,-1,2*x-1,-x+9,-3*x-6,-5*x-6,4*x,-2*x+8,6*x+12,2*x-5,-6*x-13], x^2+2*x-1];
E[583,5]=[[x-1,x,-x,-x-1,-1,-x-3,2*x,-2*x-2,3*x+4,x-1,-3*x+4,2*x+5,-3*x-3,3*x-5,2*x-8,-1,-2*x-5,3*x-5,x+6,x+4,2*x+2,-2*x-4,-2*x-4,-11,-6*x-5], x^2-3];
E[583,6]=[[-x,x,-1/2*x^5+9/2*x^3-1/2*x^2-8*x+1/2,1/2*x^5-9/2*x^3-1/2*x^2+8*x+1/2,-1,1/2*x^5+1/2*x^4-4*x^3-7/2*x^2+13/2*x+3,1/2*x^5-9/2*x^3-1/2*x^2+8*x-5/2,1/2*x^5-3/2*x^4-4*x^3+21/2*x^2+7/2*x-8,1/2*x^5-1/2*x^4-3*x^3+7/2*x^2+1/2*x-4,-2*x^5+1/2*x^4+33/2*x^3-3*x^2-47/2*x-11/2,-3/2*x^5+3/2*x^4+12*x^3-19/2*x^2-31/2*x+3,x^5-x^4-10*x^3+8*x^2+19*x-8,-1/2*x^5+1/2*x^4+4*x^3-7/2*x^2-9/2*x,-2*x^5+3/2*x^4+33/2*x^3-11*x^2-47/2*x+13/2,1/2*x^5-x^4-9/2*x^3+11/2*x^2+6*x+7/2,-1,1/2*x^5-5/2*x^3+3/2*x^2-4*x-3/2,x^5-1/2*x^4-17/2*x^3+4*x^2+29/2*x-9/2,-1/2*x^5+3/2*x^4+2*x^3-19/2*x^2+11/2*x+7,x^5-3/2*x^4-13/2*x^3+12*x^2-5/2*x-23/2,1/2*x^5-1/2*x^4-3*x^3+3/2*x^2-1/2*x,-3/2*x^5+1/2*x^4+14*x^3-7/2*x^2-45/2*x-2,-5/2*x^5+5/2*x^4+20*x^3-39/2*x^2-51/2*x+14,x^5+1/2*x^4-15/2*x^3-4*x^2+15/2*x+21/2,3/2*x^5-x^4-27/2*x^3+5/2*x^2+24*x+23/2], x^6-2*x^5-8*x^4+16*x^3+10*x^2-20*x-1];
E[583,7]=[[1/2*x^6+3*x^5+3*x^4-8*x^3-9*x^2+6*x+3/2,x,-1/2*x^7-7/2*x^6-11/2*x^5+8*x^4+41/2*x^3-5/2*x^2-31/2*x-2,-1/2*x^6-7/2*x^5-5*x^4+17/2*x^3+29/2*x^2-7*x-4,1,3/2*x^7+21/2*x^6+33/2*x^5-45/2*x^4-56*x^3+11/2*x^2+34*x+7/2,-1/2*x^7-7/2*x^6-11/2*x^5+7*x^4+33/2*x^3-7/2*x^2-17/2*x,-1/2*x^6-5/2*x^5-1/2*x^4+9*x^3+7/2*x^2-13/2*x-5/2,1/2*x^6+7/2*x^5+9/2*x^4-10*x^3-29/2*x^2+11/2*x+3/2,-x^7-7*x^6-11*x^5+29/2*x^4+71/2*x^3-3*x^2-39/2*x-7/2,1/2*x^6+5/2*x^5+1/2*x^4-10*x^3-7/2*x^2+29/2*x-3/2,x^7+6*x^6+5*x^5-21*x^4-20*x^3+26*x^2+10*x-6,1/2*x^5+7/2*x^4+7*x^3-1/2*x^2-21/2*x-5,x^7+8*x^6+16*x^5-31/2*x^4-127/2*x^3-7*x^2+109/2*x+15/2,1/2*x^7+9/2*x^6+25/2*x^5+2*x^4-77/2*x^3-57/2*x^2+63/2*x+6,1,-1/2*x^7-5/2*x^6+1/2*x^5+14*x^4+15/2*x^3-19/2*x^2-11/2*x-13,-3/2*x^7-19/2*x^6-10*x^5+61/2*x^4+83/2*x^3-23*x^2-23*x-6,-2*x^7-27/2*x^6-37/2*x^5+73/2*x^4+72*x^3-47/2*x^2-113/2*x-11/2,3/2*x^7+10*x^6+14*x^5-41/2*x^4-73/2*x^3+8*x^2+6*x+17/2,-1/2*x^6-7/2*x^5-7/2*x^4+15*x^3+29/2*x^2-43/2*x-9/2,-2*x^7-27/2*x^6-37/2*x^5+67/2*x^4+63*x^3-25/2*x^2-53/2*x-15/2,-x^7-15/2*x^6-25/2*x^5+37/2*x^4+47*x^3-19/2*x^2-79/2*x-15/2,-3/2*x^7-11*x^6-21*x^5+23/2*x^4+113/2*x^3+16*x^2-26*x-23/2,1/2*x^7+11/2*x^6+39/2*x^5+12*x^4-107/2*x^3-103/2*x^2+87/2*x+7], x^8+8*x^7+17*x^6-10*x^5-58*x^4-16*x^3+45*x^2+10*x-1];
E[583,8]=[[473/4262*x^11-2043/4262*x^10-15305/8524*x^9+77525/8524*x^8+17285/2131*x^7-127281/2131*x^6-679/2131*x^5+346378/2131*x^4-607419/8524*x^3-1286315/8524*x^2+492597/4262*x-34495/2131,x,41/4262*x^11-629/8524*x^10+79/8524*x^9+4457/4262*x^8-3426/2131*x^7-8208/2131*x^6+33307/4262*x^5+12921/8524*x^4-28323/8524*x^3+25767/4262*x^2-41380/2131*x+16234/2131,55/2131*x^11-188/2131*x^10-2077/4262*x^9+3640/2131*x^8+6349/2131*x^7-48149/4262*x^6-23063/4262*x^5+63059/2131*x^4-15021/2131*x^3-97139/4262*x^2+47714/2131*x-19024/2131,1,-4397/8524*x^11+19253/8524*x^10+36097/4262*x^9-187927/4262*x^8-80951/2131*x^7+1282913/4262*x^6-127549/8524*x^5-7312229/8524*x^4+934023/2131*x^3+1773858/2131*x^2-1530956/2131*x+253058/2131,-2375/4262*x^11+21467/8524*x^10+73803/8524*x^9-204645/4262*x^8-71504/2131*x^7+676661/2131*x^6-207313/4262*x^5-7417567/8524*x^4+4301397/8524*x^3+3409531/4262*x^2-1570494/2131*x+282498/2131,-207/17048*x^11+625/8524*x^10+3153/17048*x^9-3456/2131*x^8-3753/8524*x^7+27616/2131*x^6-84479/17048*x^5-189101/4262*x^4+491955/17048*x^3+457127/8524*x^2-93458/2131*x+8330/2131,351/4262*x^11-1471/4262*x^10-5717/4262*x^9+28073/4262*x^8+24865/4262*x^7-92618/2131*x^6+8759/2131*x^5+251604/2131*x^4-319965/4262*x^3-225701/2131*x^2+254849/2131*x-50940/2131,-149/2131*x^11+1921/8524*x^10+13927/8524*x^9-23403/4262*x^8-53889/4262*x^7+100459/2131*x^6+137181/4262*x^5-1420695/8524*x^4+118177/8524*x^3+436874/2131*x^2-227830/2131*x+11010/2131,3989/4262*x^11-35833/8524*x^10-126307/8524*x^9+345171/4262*x^8+257217/4262*x^7-2316759/4262*x^6+287793/4262*x^5+12951527/8524*x^4-7293923/8524*x^3-6124545/4262*x^2+2788499/2131*x-480344/2131,1861/8524*x^11-2094/2131*x^10-28223/8524*x^9+78049/4262*x^8+53383/4262*x^7-251407/2131*x^6+130613/8524*x^5+1352417/4262*x^4-1399169/8524*x^3-629044/2131*x^2+494727/2131*x-64992/2131,651/17048*x^11-530/2131*x^10-7507/17048*x^9+22201/4262*x^8-10063/8524*x^7-164281/4262*x^6+518559/17048*x^5+1006121/8524*x^4-2019133/17048*x^3-1018967/8524*x^2+297285/2131*x-39848/2131,1199/2131*x^11-5377/2131*x^10-37607/4262*x^9+102793/2131*x^8+150235/4262*x^7-1366741/4262*x^6+91065/2131*x^5+3782055/4262*x^4-1080127/2131*x^3-1766094/2131*x^2+1630026/2131*x-288568/2131,-615/8524*x^11+913/2131*x^10+4735/8524*x^9-30231/4262*x^8+19425/4262*x^7+159347/4262*x^6-414365/8524*x^5-303641/4262*x^4+1085067/8524*x^3+114677/4262*x^2-194697/2131*x+55118/2131,-1,-1109/4262*x^11+9945/8524*x^10+36533/8524*x^9-97999/4262*x^8-41324/2131*x^7+337922/2131*x^6-24501/4262*x^5-3879057/8524*x^4+1813723/8524*x^3+1883831/4262*x^2-744203/2131*x+123682/2131,3827/17048*x^11-2042/2131*x^10-64531/17048*x^9+39990/2131*x^8+155737/8524*x^7-273970/2131*x^6-59613/17048*x^5+3136305/8524*x^4-2864985/17048*x^3-3072767/8524*x^2+627435/2131*x-106340/2131,1205/8524*x^11-5475/8524*x^10-4550/2131*x^9+50917/4262*x^8+16807/2131*x^7-326735/4262*x^6+109141/8524*x^5+1746935/8524*x^4-529821/4262*x^3-399676/2131*x^2+399567/2131*x-67004/2131,3343/4262*x^11-7767/2131*x^10-25352/2131*x^9+148206/2131*x^8+179313/4262*x^7-1964135/4262*x^6+427149/4262*x^5+5398467/4262*x^4-3399377/4262*x^3-2470793/2131*x^2+2420413/2131*x-464400/2131,3633/17048*x^11-3647/4262*x^10-66641/17048*x^9+37029/2131*x^8+190763/8524*x^7-528677/4262*x^6-492059/17048*x^5+3149581/8524*x^4-1855919/17048*x^3-3263615/8524*x^2+521913/2131*x-48048/2131,-18401/17048*x^11+41949/8524*x^10+287447/17048*x^9-403835/4262*x^8-558207/8524*x^7+1352709/2131*x^6-1734169/17048*x^5-3761893/2131*x^4+17631469/17048*x^3+14030483/8524*x^2-3253612/2131*x+585282/2131,-2713/17048*x^11+4753/8524*x^10+51207/17048*x^9-45469/4262*x^8-165559/8524*x^7+151427/2131*x^6+823007/17048*x^5-424767/2131*x^4-269459/17048*x^3+1731067/8524*x^2-146086/2131*x+134/2131,-972/2131*x^11+18753/8524*x^10+54311/8524*x^9-173021/4262*x^8-71325/4262*x^7+547549/2131*x^6-365037/4262*x^5-5696119/8524*x^4+3933545/8524*x^3+1222989/2131*x^2-1207715/2131*x+216560/2131,678/2131*x^11-7231/4262*x^10-17041/4262*x^9+134881/4262*x^8+6703/2131*x^7-867205/4262*x^6+494441/4262*x^5+2298255/4262*x^4-1013817/2131*x^3-990601/2131*x^2+1163476/2131*x-222038/2131], x^12-6*x^11-9*x^10+110*x^9-66*x^8-672*x^7+937*x^6+1492*x^5-3291*x^4-160*x^3+3592*x^2-2256*x+352];
E[583,9]=[[13/36*x^9+41/36*x^8-47/9*x^7-49/3*x^6+397/18*x^5+1267/18*x^4-661/36*x^3-327/4*x^2-403/18*x+37/9,x,-17/18*x^9-29/9*x^8+116/9*x^7+277/6*x^6-853/18*x^5-1796/9*x^4+64/9*x^3+1409/6*x^2+908/9*x-70/9,-x^9-11/3*x^8+13*x^7+317/6*x^6-247/6*x^5-230*x^4-173/6*x^3+1637/6*x^2+424/3*x-16/3,-1,13/9*x^9+91/18*x^8-349/18*x^7-217/3*x^6+1237/18*x^5+5617/18*x^4+5/9*x^3-365*x^2-1436/9*x+94/9,-35/18*x^9-59/9*x^8+242/9*x^7+563/6*x^6-1849/18*x^5-3632/9*x^4+328/9*x^3+929/2*x^2+1688/9*x-58/9,13/36*x^9+41/36*x^8-47/9*x^7-49/3*x^6+194/9*x^5+620/9*x^4-517/36*x^3-285/4*x^2-251/9*x-26/9,17/6*x^9+19/2*x^8-235/6*x^7-407/3*x^6+299/2*x^5+3493/6*x^4-319/6*x^3-2012/3*x^2-805/3*x+20,10/9*x^9+32/9*x^8-283/18*x^7-301/6*x^6+578/9*x^5+3805/18*x^4-797/18*x^3-697/3*x^2-794/9*x-14/9,1/9*x^9-1/9*x^8-49/18*x^7+8/3*x^6+415/18*x^5-335/18*x^4-676/9*x^3+77/2*x^2+595/9*x-8/9,13/18*x^9+47/18*x^8-85/9*x^7-112/3*x^6+274/9*x^5+1438/9*x^4+359/18*x^3-1075/6*x^2-1003/9*x-46/9,5/36*x^9+31/36*x^8-7/9*x^7-38/3*x^6-77/9*x^5+514/9*x^4+2227/36*x^3-287/4*x^2-694/9*x+8/9,-23/9*x^9-76/9*x^8+641/18*x^7+721/6*x^6-1258/9*x^5-9251/18*x^4+1297/18*x^3+590*x^2+1930/9*x-140/9,-2/9*x^9-17/18*x^8+22/9*x^7+27/2*x^6-59/18*x^5-529/9*x^4-515/18*x^3+214/3*x^2+433/9*x+4/9,1,-2/9*x^9-17/18*x^8+22/9*x^7+27/2*x^6-59/18*x^5-529/9*x^4-515/18*x^3+211/3*x^2+451/9*x+40/9,-23/36*x^9-91/36*x^8+70/9*x^7+73/2*x^6-335/18*x^5-1432/9*x^4-1915/36*x^3+2251/12*x^2+1228/9*x+52/9,11/18*x^9+49/18*x^8-121/18*x^7-40*x^6+151/18*x^5+3247/18*x^4+1531/18*x^3-692/3*x^2-1391/9*x+16/9,11/18*x^9+20/9*x^8-139/18*x^7-63/2*x^6+206/9*x^5+2455/18*x^4+212/9*x^3-506/3*x^2-797/9*x+124/9,-35/36*x^9-91/36*x^8+139/9*x^7+107/3*x^6-703/9*x^5-1339/9*x^4+4427/36*x^3+635/4*x^2-74/9*x-56/9,95/36*x^9+331/36*x^8-322/9*x^7-397/3*x^6+1159/9*x^5+5167/9*x^4-71/36*x^3-8081/12*x^2-2779/9*x+122/9,47/36*x^9+187/36*x^8-145/9*x^7-227/3*x^6+376/9*x^5+3019/9*x^4+3193/36*x^3-1651/4*x^2-2209/9*x+86/9,x^9+7/2*x^8-27/2*x^7-101/2*x^6+48*x^5+441/2*x^4+3/2*x^3-529/2*x^2-117*x+14,2*x^9+37/6*x^8-29*x^7-527/6*x^6+733/6*x^5+373*x^4-571/6*x^3-1237/3*x^2-436/3*x-2/3], x^10+x^9-22*x^8-16*x^7+170*x^6+90*x^5-525*x^4-227*x^3+496*x^2+264*x-16];
E[589,1]=[[x,-5/8*x^8+7/8*x^7+65/8*x^6-83/8*x^5-247/8*x^4+275/8*x^3+241/8*x^2-109/4*x+33/8,-1/2*x^8+1/2*x^7+13/2*x^6-13/2*x^5-51/2*x^4+47/2*x^3+57/2*x^2-20*x-1/2,5/8*x^8-7/8*x^7-65/8*x^6+83/8*x^5+247/8*x^4-275/8*x^3-249/8*x^2+113/4*x-1/8,-1/16*x^8+3/16*x^7+5/16*x^6-47/16*x^5+29/16*x^4+199/16*x^3-155/16*x^2-101/8*x+125/16,-15/16*x^8+13/16*x^7+187/16*x^6-177/16*x^5-685/16*x^4+665/16*x^3+651/16*x^2-291/8*x+83/16,7/8*x^8-13/8*x^7-91/8*x^6+161/8*x^5+341/8*x^4-569/8*x^3-307/8*x^2+251/4*x-59/8,1,-7/16*x^8+5/16*x^7+83/16*x^6-73/16*x^5-277/16*x^4+289/16*x^3+195/16*x^2-147/8*x+91/16,15/16*x^8+3/16*x^7-187/16*x^6-15/16*x^5+717/16*x^4+7/16*x^3-843/16*x^2-5/8*x+173/16,-1,33/16*x^8-35/16*x^7-421/16*x^6+431/16*x^5+1603/16*x^4-1447/16*x^3-1733/16*x^2+533/8*x+67/16,17/4*x^8-19/4*x^7-213/4*x^6+239/4*x^5+779/4*x^4-839/4*x^3-729/4*x^2+357/2*x-73/4,15/16*x^8-13/16*x^7-171/16*x^6+193/16*x^5+525/16*x^4-761/16*x^3-219/16*x^2+331/8*x-275/16,5/8*x^8+1/8*x^7-57/8*x^6-5/8*x^5+199/8*x^4+13/8*x^3-241/8*x^2-23/4*x+95/8,1/16*x^8-19/16*x^7-21/16*x^6+207/16*x^5+83/16*x^4-647/16*x^3+43/16*x^2+261/8*x-221/16,-5/8*x^8+7/8*x^7+57/8*x^6-91/8*x^5-167/8*x^4+347/8*x^3+49/8*x^2-193/4*x+113/8,-13/8*x^8+23/8*x^7+161/8*x^6-283/8*x^5-575/8*x^4+979/8*x^3+505/8*x^2-421/4*x+97/8,5/8*x^8-15/8*x^7-57/8*x^6+187/8*x^5+159/8*x^4-683/8*x^3+7/8*x^2+333/4*x-193/8,-7/8*x^8+13/8*x^7+91/8*x^6-161/8*x^5-349/8*x^4+577/8*x^3+363/8*x^2-279/4*x+27/8,15/8*x^8-13/8*x^7-187/8*x^6+169/8*x^5+685/8*x^4-609/8*x^3-651/8*x^2+263/4*x-91/8,31/8*x^8-37/8*x^7-379/8*x^6+473/8*x^5+1325/8*x^4-1705/8*x^3-1059/8*x^2+775/4*x-307/8,-79/16*x^8+77/16*x^7+971/16*x^6-1009/16*x^5-3453/16*x^4+3689/16*x^3+2987/16*x^2-1659/8*x+563/16,29/16*x^8-55/16*x^7-369/16*x^6+691/16*x^5+1351/16*x^4-2475/16*x^3-1185/16*x^2+1081/8*x-249/16,-27/8*x^8+41/8*x^7+343/8*x^6-485/8*x^5-1241/8*x^4+1613/8*x^3+1023/8*x^2-663/4*x+295/8], x^9-14*x^7+64*x^5+2*x^4-106*x^3-5*x^2+49*x-7];
E[589,2]=[[x,-4*x^9+4*x^8+47*x^7-47*x^6-153*x^5+169*x^4+98*x^3-147*x^2+31*x+4,11*x^9-11*x^8-130*x^7+129*x^6+430*x^5-463*x^4-301*x^3+404*x^2-62*x-15,-15*x^9+17*x^8+177*x^7-200*x^6-583*x^5+714*x^4+392*x^3-624*x^2+104*x+27,29*x^9-33*x^8-341*x^7+389*x^6+1113*x^5-1394*x^4-712*x^3+1230*x^2-235*x-59,-8*x^9+7*x^8+95*x^7-82*x^6-318*x^5+298*x^4+239*x^3-267*x^2+27*x+14,-13*x^9+14*x^8+153*x^7-165*x^6-501*x^5+594*x^4+331*x^3-527*x^2+91*x+23,-1,29*x^9-28*x^8-344*x^7+329*x^6+1147*x^5-1187*x^4-835*x^3+1047*x^2-132*x-48,-23*x^9+24*x^8+271*x^7-283*x^6-889*x^5+1021*x^4+592*x^3-905*x^2+161*x+38,-1,29*x^9-35*x^8-340*x^7+413*x^6+1102*x^5-1476*x^4-673*x^3+1300*x^2-266*x-62,9*x^9-6*x^8-108*x^7+70*x^6+370*x^5-258*x^4-312*x^3+224*x^2+5*x-4,-12*x^9+11*x^8+142*x^7-129*x^6-470*x^5+466*x^4+330*x^3-408*x^2+67*x+13,-30*x^9+35*x^8+353*x^7-413*x^6-1155*x^5+1480*x^4+749*x^3-1312*x^2+236*x+67,20*x^9-26*x^8-234*x^7+307*x^6+755*x^5-1094*x^4-444*x^3+967*x^2-199*x-52,4*x^9-11*x^8-45*x^7+131*x^6+130*x^5-456*x^4-x^3+392*x^2-125*x-18,50*x^9-58*x^8-588*x^7+684*x^6+1921*x^5-2449*x^4-1235*x^3+2159*x^2-401*x-103,10*x^9-14*x^8-116*x^7+166*x^6+366*x^5-594*x^4-183*x^3+536*x^2-131*x-38,-86*x^9+97*x^8+1013*x^7-1142*x^6-3321*x^5+4084*x^4+2178*x^3-3576*x^2+650*x+146,-19*x^9+22*x^8+223*x^7-260*x^6-724*x^5+934*x^4+446*x^3-827*x^2+177*x+37,20*x^9-21*x^8-235*x^7+247*x^6+765*x^5-887*x^4-486*x^3+774*x^2-164*x-22,-35*x^9+37*x^8+412*x^7-435*x^6-1349*x^5+1561*x^4+891*x^3-1370*x^2+242*x+54,-24*x^9+31*x^8+280*x^7-365*x^6-896*x^5+1295*x^4+493*x^3-1128*x^2+292*x+44,17*x^9-10*x^8-203*x^7+116*x^6+688*x^5-435*x^4-560*x^3+394*x^2-13*x-10], x^10-13*x^8+53*x^6-4*x^5-77*x^4+13*x^3+38*x^2-10*x-2];
E[589,3]=[[x,x^2-x-2,x^2-3,x^2-2*x-3,-x+3,-x^2+x,x-1,1,2*x-2,x^2-3*x-6,-1,2*x^2+2*x-6,-x^2+x+8,3*x-1,-x^2+2*x-5,5*x^2-5*x-12,-x^2-x+8,-2*x^2+5*x+1,x^2+3*x+2,-2*x+6,-2*x^2-x+15,-2*x^2+2*x+4,-4*x^2+4*x+16,4*x^2-2*x-8,x^2+x-10], x^3-x^2-4*x+2];
E[589,4]=[[x,-36059/1445084*x^13+121203/1445084*x^12+322793/722542*x^11-1163413/722542*x^10-1952545/722542*x^9+7920053/722542*x^8+4592261/722542*x^7-45582877/1445084*x^6-4657079/722542*x^5+26058045/722542*x^4+13242623/1445084*x^3-8866681/722542*x^2-2794653/361271*x+209651/722542,-8935/722542*x^13-25485/361271*x^12+130730/361271*x^11+484757/361271*x^10-1465829/361271*x^9-3238978/361271*x^8+7838790/361271*x^7+17894697/722542*x^6-40367753/722542*x^5-18460471/722542*x^4+22142505/361271*x^3+2255553/361271*x^2-7044403/361271*x+456151/361271,16021/1445084*x^13-131597/1445084*x^12-103201/722542*x^11+1297295/722542*x^10+59031/722542*x^9-9155161/722542*x^8+3817883/722542*x^7+55184903/1445084*x^6-16459889/722542*x^5-32636075/722542*x^4+43870575/1445084*x^3+8827497/722542*x^2-4242264/361271*x+1942309/722542,237067/2890168*x^13-109103/2890168*x^12-2271959/1445084*x^11+1205119/1445084*x^10+15283883/1445084*x^9-10032091/1445084*x^8-41750961/1445084*x^7+77970077/2890168*x^6+36258445/1445084*x^5-70317981/1445084*x^4+23176841/2890168*x^3+47091627/1445084*x^2-3910853/361271*x-2087791/1445084,4863/2890168*x^13-271667/2890168*x^12-136047/1445084*x^11+2952871/1445084*x^10+2074599/1445084*x^9-23970027/1445084*x^8-13392761/1445084*x^7+178948985/2890168*x^6+40116721/1445084*x^5-151070313/1445084*x^4-106587563/2890168*x^3+90452491/1445084*x^2+6049059/361271*x-4364047/1445084,-104923/1445084*x^13+186879/1445084*x^12+1061881/722542*x^11-1705445/722542*x^10-7858399/722542*x^9+10582633/722542*x^8+26139057/722542*x^7-50272893/1445084*x^6-39352113/722542*x^5+18185785/722542*x^4+47218975/1445084*x^3-3928477/722542*x^2-1629029/361271*x+2640321/722542,-1,40085/2890168*x^13-337197/2890168*x^12-662305/1445084*x^11+3568377/1445084*x^10+7932669/1445084*x^9-27942305/1445084*x^8-43843451/1445084*x^7+198952371/2890168*x^6+114953293/1445084*x^5-158973077/1445084*x^4-260516213/2890168*x^3+91797769/1445084*x^2+12054869/361271*x-2600361/1445084,101321/2890168*x^13+344487/2890168*x^12-1439389/1445084*x^11-3660887/1445084*x^10+15504857/1445084*x^9+28981383/1445084*x^8-78863779/1445084*x^7-210521001/2890168*x^6+191737013/1445084*x^5+172185727/1445084*x^4-401531121/2890168*x^3-96784147/1445084*x^2+17342216/361271*x+1731563/1445084,1,-583405/2890168*x^13+102101/2890168*x^12+6060405/1445084*x^11-1027061/1445084*x^10-46694345/1445084*x^9+7260713/1445084*x^8+165819007/1445084*x^7-41756835/2890168*x^6-278226181/1445084*x^5+19029297/1445084*x^4+403717141/2890168*x^3+7248083/1445084*x^2-10574267/361271*x-5259407/1445084,68323/722542*x^13-62495/722542*x^12-734205/361271*x^11+598797/361271*x^10+5943616/361271*x^9-4008495/361271*x^8-22633095/361271*x^7+21740517/722542*x^6+41255381/361271*x^5-9878203/361271*x^4-62410163/722542*x^3-320337/361271*x^2+5522467/361271*x+898485/361271,-90809/2890168*x^13+603393/2890168*x^12+949181/1445084*x^11-5602413/1445084*x^10-7202149/1445084*x^9+35832673/1445084*x^8+22975847/1445084*x^7-181721167/2890168*x^6-21265309/1445084*x^5+79738373/1445084*x^4-54889519/2890168*x^3-24754713/1445084*x^2+9099070/361271*x+3925017/1445084,-513043/1445084*x^13+503079/1445084*x^12+5194273/722542*x^11-4962769/722542*x^10-38468997/722542*x^9+35078987/722542*x^8+128104037/722542*x^7-214192061/1445084*x^6-192922685/722542*x^5+136783897/722542*x^4+232353631/1445084*x^3-59190235/722542*x^2-9003628/361271*x+3218673/722542,-442701/2890168*x^13+575625/2890168*x^12+4021141/1445084*x^11-5541433/1445084*x^10-24363085/1445084*x^9+37995265/1445084*x^8+51211439/1445084*x^7-225627355/2890168*x^6-2760327/1445084*x^5+149813535/1445084*x^4-132385423/2890168*x^3-95506401/1445084*x^2+7118383/361271*x+18508349/1445084,178453/1445084*x^13-796855/1445084*x^12-1709527/722542*x^11+7775959/722542*x^10+11479287/722542*x^9-54321137/722542*x^8-31227583/722542*x^7+328001011/1445084*x^6+13234699/361271*x^5-104646081/361271*x^4+26466925/1445084*x^3+97779449/722542*x^2-10300852/361271*x-2167295/722542,141043/1445084*x^13+476873/1445084*x^12-1532137/722542*x^11-4768975/722542*x^10+12539925/722542*x^9+34760583/722542*x^8-47944499/722542*x^7-226263703/1445084*x^6+85858061/722542*x^5+163859709/722542*x^4-125361495/1445084*x^3-90421315/722542*x^2+7215323/361271*x+7732983/722542,-111665/1445084*x^13+454903/1445084*x^12+895687/722542*x^11-4581361/722542*x^10-3984779/722542*x^9+33589573/722542*x^8-461703/722542*x^7-219001415/1445084*x^6+15734338/361271*x^5+78621131/361271*x^4-86908513/1445084*x^3-84991993/722542*x^2+8247884/361271*x+9238243/722542,237443/1445084*x^13-1015493/1445084*x^12-2280695/722542*x^11+10057875/722542*x^10+15711731/722542*x^9-71786869/722542*x^8-48129239/722542*x^7+447696789/1445084*x^6+36536410/361271*x^5-149477840/361271*x^4-139477209/1445084*x^3+144666759/722542*x^2+17469965/361271*x-9192265/722542,-511775/1445084*x^13+805475/1445084*x^12+5149439/722542*x^11-7684145/722542*x^10-37887049/722542*x^9+51585221/722542*x^8+125987647/722542*x^7-288369725/1445084*x^6-195466745/722542*x^5+156127667/722542*x^4+275044951/1445084*x^3-50296645/722542*x^2-17299909/361271*x-2914767/722542,-142325/1445084*x^13+580421/1445084*x^12+1362071/722542*x^11-5622117/722542*x^10-9294495/722542*x^9+38671527/722542*x^8+27549835/722542*x^7-225007775/1445084*x^6-36430089/722542*x^5+129109713/722542*x^4+40804229/1445084*x^3-39149509/722542*x^2+321804/361271*x-10270707/722542,265209/2890168*x^13+612243/2890168*x^12-3094917/1445084*x^11-6315351/1445084*x^10+27720985/1445084*x^9+47840059/1445084*x^8-118853503/1445084*x^7-327018265/2890168*x^6+246374811/1445084*x^5+250084253/1445084*x^4-434087861/2890168*x^3-135121791/1445084*x^2+15494204/361271*x+580767/1445084,-810613/2890168*x^13+1924197/2890168*x^12+8295465/1445084*x^11-18795289/1445084*x^10-62397273/1445084*x^9+131193805/1445084*x^8+212558875/1445084*x^7-785224243/2890168*x^6-329576749/1445084*x^5+478822745/1445084*x^4+403242253/2890168*x^3-175652389/1445084*x^2-8119687/361271*x-15144879/1445084,707127/1445084*x^13-610535/1445084*x^12-7213165/722542*x^11+5799097/722542*x^10+54129387/722542*x^9-38624997/722542*x^8-184652269/722542*x^7+212316773/1445084*x^6+291758809/722542*x^5-110159577/722542*x^4-396718691/1445084*x^3+32804771/722542*x^2+24767963/361271*x-2842723/722542], x^14-23*x^12+204*x^10-880*x^8+x^7+1913*x^6-12*x^5-1943*x^4+37*x^3+730*x^2-26*x-18];
E[589,5]=[[x,-2*x^8-5*x^7+17*x^6+41*x^5-45*x^4-104*x^3+31*x^2+79*x+10,7*x^8+17*x^7-61*x^6-139*x^5+169*x^4+348*x^3-133*x^2-256*x-27,-5*x^8-12*x^7+44*x^6+98*x^5-124*x^4-245*x^3+101*x^2+180*x+17,-9*x^8-22*x^7+79*x^6+182*x^5-220*x^4-461*x^3+173*x^2+341*x+33,-7*x^8-17*x^7+62*x^6+142*x^5-174*x^4-363*x^3+141*x^2+271*x+20,14*x^8+34*x^7-123*x^6-282*x^5+340*x^4+716*x^3-260*x^2-533*x-57,1,18*x^8+43*x^7-161*x^6-360*x^5+457*x^4+926*x^3-370*x^2-702*x-66,-10*x^8-24*x^7+89*x^6+200*x^5-251*x^4-511*x^3+200*x^2+385*x+36,1,3*x^8+9*x^7-23*x^6-73*x^5+54*x^4+182*x^3-31*x^2-132*x-16,-2*x^8-5*x^7+16*x^6+39*x^5-40*x^4-95*x^3+29*x^2+71*x,-23*x^8-56*x^7+203*x^6+466*x^5-566*x^4-1188*x^3+440*x^2+889*x+95,-9*x^8-23*x^7+77*x^6+191*x^5-206*x^4-489*x^3+146*x^2+370*x+45,-6*x^8-14*x^7+55*x^6+119*x^5-158*x^4-306*x^3+125*x^2+223*x+24,5*x^8+13*x^7-43*x^6-110*x^5+114*x^4+285*x^3-78*x^2-213*x-30,8*x^8+20*x^7-68*x^6-161*x^5+183*x^4+393*x^3-139*x^2-277*x-25,10*x^8+24*x^7-90*x^6-202*x^5+258*x^4+525*x^3-210*x^2-405*x-40,-15*x^8-37*x^7+132*x^6+311*x^5-364*x^4-806*x^3+268*x^2+622*x+78,4*x^8+10*x^7-34*x^6-81*x^5+92*x^4+201*x^3-76*x^2-149*x-1,-17*x^8-41*x^7+147*x^6+331*x^5-405*x^4-818*x^3+316*x^2+598*x+68,23*x^8+57*x^7-199*x^6-470*x^5+543*x^4+1190*x^3-409*x^2-886*x-102,5*x^8+12*x^7-45*x^6-102*x^5+127*x^4+267*x^3-94*x^2-204*x-36,-4*x^8-8*x^7+40*x^6+71*x^5-127*x^4-193*x^3+123*x^2+155*x+2], x^9+4*x^8-5*x^7-34*x^6-7*x^5+90*x^4+61*x^3-69*x^2-64*x-6];
E[611,1]=[[2,3,-2,2,-3,1,3,-4,-4,4,-5,8,7,-2,-1,9,-14,6,3,-8,9,3,-18,-6,4], x-1];
E[611,2]=[[x,1/16*x^13-19/16*x^11-1/16*x^10+69/8*x^9+19/16*x^8-499/16*x^7-97/16*x^6+959/16*x^5+147/16*x^4-213/4*x^3-2*x^2+12*x,1/16*x^13-27/16*x^11+7/16*x^10+137/8*x^9-109/16*x^8-1307/16*x^7+551/16*x^6+3023/16*x^5-1021/16*x^4-785/4*x^3+34*x^2+129/2*x+4,1/4*x^13-1/4*x^12-21/4*x^11+9/2*x^10+169/4*x^9-113/4*x^8-331/2*x^7+75*x^6+655/2*x^5-157/2*x^4-1205/4*x^3+29/2*x^2+93*x+12,-1/8*x^13-1/8*x^12+21/8*x^11+2*x^10-171/8*x^9-91/8*x^8+85*x^7+115/4*x^6-171*x^5-37*x^4+1287/8*x^3+113/4*x^2-103/2*x-10,-1,-1/4*x^12-3/4*x^11+19/4*x^10+13*x^9-135/4*x^8-325/4*x^7+109*x^6+447/2*x^5-154*x^4-529/2*x^3+269/4*x^2+100*x+10,-1/8*x^12+1/2*x^11+15/8*x^10-71/8*x^9-33/4*x^8+441/8*x^7+51/8*x^6-1167/8*x^5+209/8*x^4+1257/8*x^3-38*x^2-91/2*x+4,1/8*x^13-19/8*x^11-1/8*x^10+65/4*x^9+19/8*x^8-379/8*x^7-105/8*x^6+383/8*x^5+195/8*x^4+25/2*x^3-11*x^2-23*x,1/2*x^11-17/2*x^9+1/2*x^8+51*x^7-7/2*x^6-261/2*x^5+9/2*x^4+271/2*x^3+9/2*x^2-38*x-2,-1/2*x^13+3/4*x^12+11*x^11-57/4*x^10-371/4*x^9+98*x^8+1517/4*x^7-1195/4*x^6-3113/4*x^5+1547/4*x^4+2971/4*x^3-287/2*x^2-483/2*x-22,1/2*x^12-1/2*x^11-17/2*x^10+9*x^9+101/2*x^8-111/2*x^7-128*x^6+146*x^5+139*x^4-162*x^3-119/2*x^2+51*x+16,1/2*x^13-x^12-10*x^11+37/2*x^10+153/2*x^9-123*x^8-581/2*x^7+364*x^6+586*x^5-471*x^4-1175/2*x^3+387/2*x^2+209*x+13,1/2*x^13+1/4*x^12-21/2*x^11-17/4*x^10+339/4*x^9+27*x^8-1323/4*x^7-313/4*x^6+2569/4*x^5+413/4*x^4-2269/4*x^3-60*x^2+166*x+28,1,-1/8*x^13-1/2*x^12+19/8*x^11+73/8*x^10-65/4*x^9-487/8*x^8+355/8*x^7+1441/8*x^6-199/8*x^5-1755/8*x^4-58*x^3+58*x^2+87/2*x+14,1/4*x^13-1/2*x^12-21/4*x^11+37/4*x^10+85/2*x^9-247/4*x^8-681/4*x^7+735/4*x^6+1407/4*x^5-949/4*x^4-338*x^3+183/2*x^2+103*x+10,-3/16*x^13+65/16*x^11-5/16*x^10-275/8*x^9+71/16*x^8+2305/16*x^7-357/16*x^6-4957/16*x^5+711/16*x^4+1247/4*x^3-21*x^2-213/2*x-14,1/16*x^13+1/4*x^12-27/16*x^11-77/16*x^10+143/8*x^9+547/16*x^8-1463/16*x^7-1749/16*x^6+3651/16*x^5+2407/16*x^4-247*x^3-141/2*x^2+80*x+14,1/4*x^13-1/4*x^12-15/4*x^11+9/2*x^10+67/4*x^9-111/4*x^8-27/2*x^7+151/2*x^6-57*x^5-99*x^4+393/4*x^3+60*x^2-28*x-10,-3/8*x^13+59/8*x^11+3/8*x^10-55*x^9-59/8*x^8+1581/8*x^7+333/8*x^6-2851/8*x^5-643/8*x^4+1183/4*x^3+181/4*x^2-86*x-6,1/8*x^13-7/8*x^12-5/8*x^11+15*x^10-109/8*x^9-709/8*x^8+127*x^7+873/4*x^6-372*x^5-214*x^4+3273/8*x^3+255/4*x^2-241/2*x-20,3/4*x^12+1/2*x^11-53/4*x^10-37/4*x^9+84*x^8+265/4*x^7-931/4*x^6-865/4*x^5+1075/4*x^4+1191/4*x^3-151/2*x^2-116*x-22,-5/8*x^13+3/4*x^12+103/8*x^11-109/8*x^10-101*x^9+701/8*x^8+3065/8*x^7-1973/8*x^6-5825/8*x^5+2419/8*x^4+2531/4*x^3-129*x^2-176*x+2,-1/8*x^13+1/4*x^12+27/8*x^11-37/8*x^10-71/2*x^9+249/8*x^8+1473/8*x^7-741/8*x^6-3865/8*x^5+899/8*x^4+2309/4*x^3-17*x^2-221*x-34], x^14-23*x^12-x^11+206*x^10+23*x^9-907*x^8-181*x^7+2027*x^6+615*x^5-2104*x^4-884*x^3+704*x^2+400*x+32];
E[611,3]=[[x,-x^4+x^3+3*x^2-2*x-1,-1,x^4-x^3-5*x^2+2*x+4,x^4+x^3-4*x^2-4*x+1,1,x^4-3*x^3-2*x^2+7*x-1,-x^4+6*x^2-2*x-8,-x^4-2*x^3+6*x^2+6*x-5,3*x^4-x^3-13*x^2+x+8,-3*x^3+4*x^2+12*x-7,-4*x^4+4*x^3+14*x^2-8*x-9,-3*x^4+x^3+10*x^2-3,2*x^4-6*x^2-3,1,3*x^3+x^2-7*x-3,-6*x^4+2*x^3+21*x^2-2*x-7,x^4-6*x^2-3*x,-x^4+8*x^3+3*x^2-22*x-4,8*x^4-8*x^3-30*x^2+17*x+19,3*x^4-5*x^3-9*x^2+14*x+1,2*x^3-4*x^2-3*x+6,-2*x^4+10*x^2+3*x-9,-8*x^4+5*x^3+28*x^2-11*x-11,7*x^4-6*x^3-28*x^2+8*x+15], x^5-5*x^3-x^2+5*x+1];
E[611,5]=[[x,x^5+x^4-6*x^3-4*x^2+7*x+2,x^8+2*x^7-8*x^6-14*x^5+20*x^4+27*x^3-16*x^2-14*x,-x^5-x^4+6*x^3+4*x^2-7*x-3,x^7+2*x^6-7*x^5-12*x^4+14*x^3+17*x^2-8*x-5,-1,x^7+2*x^6-6*x^5-10*x^4+9*x^3+8*x^2-4*x,x^8+2*x^7-8*x^6-13*x^5+21*x^4+22*x^3-19*x^2-9*x,-2*x^8-6*x^7+12*x^6+39*x^5-19*x^4-65*x^3+11*x^2+25*x-2,-x^8-4*x^7+6*x^6+30*x^5-9*x^4-64*x^3+3*x^2+37*x+1,x^8+3*x^7-6*x^6-20*x^5+9*x^4+36*x^3-4*x^2-19*x-1,3*x^6+3*x^5-19*x^4-14*x^3+26*x^2+12*x-6,-2*x^8-3*x^7+18*x^6+21*x^5-52*x^4-40*x^3+47*x^2+20*x-3,-x^8-2*x^7+8*x^6+16*x^5-20*x^4-41*x^3+16*x^2+32*x+2,-1,-3*x^8-6*x^7+23*x^6+40*x^5-59*x^4-73*x^3+64*x^2+34*x-14,-x^7-2*x^6+6*x^5+11*x^4-10*x^3-17*x^2+7*x+8,2*x^8+6*x^7-10*x^6-38*x^5+5*x^4+60*x^3+12*x^2-15*x-8,-2*x^8-5*x^7+13*x^6+32*x^5-21*x^4-51*x^3-2*x^2+18*x+13,-x^8-4*x^7+2*x^6+25*x^5+14*x^4-40*x^3-23*x^2+14*x+5,-x^8-4*x^7-x^6+20*x^5+34*x^4-17*x^3-58*x^2+x+10,-2*x^7-4*x^6+11*x^5+22*x^4-13*x^3-27*x^2+6*x+1,2*x^8+6*x^7-11*x^6-40*x^5+11*x^4+75*x^3+5*x^2-46*x-1,4*x^8+11*x^7-28*x^6-77*x^5+61*x^4+150*x^3-45*x^2-75*x-7,2*x^7+5*x^6-8*x^5-28*x^4-7*x^3+35*x^2+23*x-9], x^9+3*x^8-6*x^7-21*x^6+8*x^5+42*x^4+2*x^3-25*x^2-6*x+1];
E[629,1]=[[1,0,1,-1,-5,-2,-1,3,2,3,-4,-1,6,-1,-6,1,-7,1,14,-15,-10,4,-6,16,1], x-1];
E[629,2]=[[-1,0,3,-1,-5,-2,1,1,-6,1,4,1,-6,-11,-10,1,3,-5,-6,1,14,-8,6,0,-13], x-1];
E[629,3]=[[2,3,-2,1,-3,4,1,2,-2,-6,-2,-1,-3,4,3,-3,0,2,4,-13,9,0,5,16,8], x-1];
E[629,4]=[[x,x^4-5*x^2+4,-x^4-2*x^3+5*x^2+7*x-7,x^3+x^2-3*x-4,-x^4+x^3+4*x^2-5*x-1,x^3-2*x^2-5*x+7,1,x^3-4*x-2,x^4+4*x^3-6*x^2-13*x+12,-x^4-4*x^3+8*x^2+13*x-19,3*x^4+4*x^3-17*x^2-13*x+20,1,4*x^4+6*x^3-22*x^2-20*x+31,-2*x^4-5*x^3+11*x^2+17*x-19,-x^3+3*x^2+3*x-11,2*x^4+x^3-13*x^2-7*x+17,-2*x^4-x^3+15*x^2+8*x-25,-3*x^4-9*x^3+19*x^2+32*x-31,x^4+x^3-5*x^2-2*x-3,-x^4-x^3+3*x^2+6*x+4,x^4+3*x^3-13*x^2-13*x+27,x^4-x^3-6*x^2+9*x+5,-3*x^4+17*x^2-x-20,5*x^4+3*x^3-17*x^2-5*x-1,-4*x^4-4*x^3+22*x^2+14*x-21], x^5-7*x^3+2*x^2+12*x-7];
E[629,5]=[[x,301/10156*x^16+691/40624*x^15-34565/40624*x^14-13833/40624*x^13+403243/40624*x^12+47107/20312*x^11-2445553/40624*x^10-188173/40624*x^9+1021467/5078*x^8-550705/40624*x^7-14590269/40624*x^6+2840693/40624*x^5+12073265/40624*x^4-216187/2539*x^3-2811381/40624*x^2+681417/40624*x+400/2539,-203/10156*x^16-853/20312*x^15+10209/20312*x^14+11145/10156*x^13-49079/10156*x^12-118183/10156*x^11+435281/20312*x^10+1303519/20312*x^9-775933/20312*x^8-1981733/10156*x^7-67543/10156*x^6+6432619/20312*x^5+1627273/20312*x^4-4843763/20312*x^3-212183/5078*x^2+262993/5078*x+17208/2539,2367/20312*x^16+2803/20312*x^15-67605/20312*x^14-72743/20312*x^13+388137/10156*x^12+749329/20312*x^11-4563963/20312*x^10-1930889/10156*x^9+14476839/20312*x^8+10231045/20312*x^7-23923741/20312*x^6-12661929/20312*x^5+2265145/2539*x^4+5693651/20312*x^3-4286819/20312*x^2-488101/10156*x+4601/2539,-53/2539*x^16-353/20312*x^15+1414/2539*x^14+746/2539*x^13-122259/20312*x^12-11469/10156*x^11+687029/20312*x^10-31417/5078*x^9-2138281/20312*x^8+152510/2539*x^7+3585389/20312*x^6-3411963/20312*x^5-686427/5078*x^4+3615751/20312*x^3+226703/10156*x^2-860909/20312*x-1353/2539,2093/20312*x^16+2515/20312*x^15-61253/20312*x^14-64479/20312*x^13+363107/10156*x^12+645569/20312*x^11-4453973/20312*x^10-1565757/10156*x^9+14934447/20312*x^8+7235329/20312*x^7-26456725/20312*x^6-5941035/20312*x^5+10709603/10156*x^4-1151893/20312*x^3-4696137/20312*x^2+179489/5078*x+3044/2539,-1,1641/20312*x^16+438/2539*x^15-47661/20312*x^14-94621/20312*x^13+562515/20312*x^12+1012745/20312*x^11-861607/5078*x^10-676864/2539*x^9+1448240/2539*x^8+14909541/20312*x^7-5163159/5078*x^6-2434564/2539*x^5+4227679/5078*x^4+4922169/10156*x^3-3750739/20312*x^2-2004771/20312*x-17872/2539,1737/40624*x^16+1265/20312*x^15-27195/20312*x^14-36369/20312*x^13+684283/40624*x^12+810507/40624*x^11-2209195/20312*x^10-4362667/40624*x^9+15477445/40624*x^8+5668957/20312*x^7-3558385/5078*x^6-5843625/20312*x^5+24013303/40624*x^4+1341849/40624*x^3-1482443/10156*x^2+493935/40624*x+17709/2539,-5543/40624*x^16-568/2539*x^15+19695/5078*x^14+123899/20312*x^13-1792665/40624*x^12-2701801/40624*x^11+1295981/5078*x^10+14915983/40624*x^9-31966921/40624*x^8-21692087/20312*x^7+12614099/10156*x^6+3915385/2539*x^5-36098335/40624*x^4-38515993/40624*x^3+2156719/10156*x^2+7961499/40624*x+18597/2539,973/40624*x^16+719/10156*x^15-5843/10156*x^14-9293/5078*x^13+208625/40624*x^12+767307/40624*x^11-196607/10156*x^10-4010981/40624*x^9+623377/40624*x^8+2769149/10156*x^7+1679273/20312*x^6-3807941/10156*x^5-7328063/40624*x^4+8719253/40624*x^3+1739667/20312*x^2-1263775/40624*x-21583/2539,1,1191/20312*x^16+3309/20312*x^15-32781/20312*x^14-91353/20312*x^13+45144/2539*x^12+1011467/20312*x^11-2019991/20312*x^10-712201/2539*x^9+6002105/20312*x^8+17060703/20312*x^7-9091881/20312*x^6-25800285/20312*x^5+798922/2539*x^4+17011241/20312*x^3-1883643/20312*x^2-1821193/10156*x+513/2539,-1257/40624*x^16-925/5078*x^15+2090/2539*x^14+26895/5078*x^13-344577/40624*x^12-2507227/40624*x^11+422835/10156*x^10+14902473/40624*x^9-3786621/40624*x^8-11885081/10156*x^7+1215043/20312*x^6+19607633/10156*x^5+1721943/40624*x^4-58806465/40624*x^3-414681/20312*x^2+13685491/40624*x+57119/2539,489/5078*x^16+2371/20312*x^15-58077/20312*x^14-65425/20312*x^13+693567/20312*x^12+356511/10156*x^11-4249177/20312*x^10-3855613/20312*x^9+1763061/2539*x^8+10581883/20312*x^7-24564701/20312*x^6-13328175/20312*x^5+19696437/20312*x^4+1521649/5078*x^3-4603733/20312*x^2-1385283/20312*x-6621/2539,1355/40624*x^16+2621/20312*x^15-18171/20312*x^14-17127/5078*x^13+403291/40624*x^12+1423657/40624*x^11-1198375/20312*x^10-7444361/40624*x^9+8197673/40624*x^8+5101513/10156*x^7-7954143/20312*x^6-13845301/20312*x^5+15672713/40624*x^4+15892393/40624*x^3-2777107/20312*x^2-3246373/40624*x+10758/2539,-4921/40624*x^16-3309/20312*x^15+35433/10156*x^14+44407/10156*x^13-1638883/40624*x^12-1898523/40624*x^11+4838281/20312*x^10+10204425/40624*x^9-30648087/40624*x^8-1783158/2539*x^7+3121031/2539*x^6+19300445/20312*x^5-36159325/40624*x^4-21396035/40624*x^3+3645709/20312*x^2+4722921/40624*x+14721/2539,3281/40624*x^16+6339/20312*x^15-42905/20312*x^14-170257/20312*x^13+897579/40624*x^12+3646791/40624*x^11-2383211/20312*x^10-19721387/40624*x^9+13430181/40624*x^8+28047143/20312*x^7-2382525/5078*x^6-39588167/20312*x^5+11624743/40624*x^4+47102517/40624*x^3-183763/5078*x^2-9002965/40624*x-46105/2539,757/20312*x^16+1899/10156*x^15-5073/5078*x^14-51317/10156*x^13+224093/20312*x^12+1104279/20312*x^11-657487/10156*x^10-5988161/20312*x^9+4384081/20312*x^8+8525227/10156*x^7-4074139/10156*x^6-12056789/10156*x^5+7550757/20312*x^4+14543589/20312*x^3-306390/2539*x^2-2951683/20312*x+18470/2539,-8169/40624*x^16-6721/20312*x^15+29195/5078*x^14+94065/10156*x^13-2657735/40624*x^12-4205847/40624*x^11+7620395/20312*x^10+23760625/40624*x^9-45904547/40624*x^8-17641727/10156*x^7+17177697/10156*x^6+51937001/20312*x^5-43514077/40624*x^4-65183515/40624*x^3+3576871/20312*x^2+13748057/40624*x+75936/2539,101/20312*x^16-1967/10156*x^15-485/10156*x^14+60321/10156*x^13-10477/20312*x^12-1458521/20312*x^11+90953/10156*x^10+8834205/20312*x^9-914683/20312*x^8-14049455/10156*x^7+251195/2539*x^6+22445745/10156*x^5-2138157/20312*x^4-31456339/20312*x^3+108325/2539*x^2+7067495/20312*x+33479/2539,-485/40624*x^16+172/2539*x^15+3163/10156*x^14-10153/5078*x^13-126213/40624*x^12+937037/40624*x^11+74141/5078*x^10-5319547/40624*x^9-1296277/40624*x^8+3821033/10156*x^7+585977/20312*x^6-2542225/5078*x^5-1019297/40624*x^4+9912975/40624*x^3+1114093/20312*x^2-1874021/40624*x-38263/2539,1047/10156*x^16+1923/20312*x^15-60609/20312*x^14-55391/20312*x^13+694687/20312*x^12+79884/2539*x^11-3985549/20312*x^10-3735811/20312*x^9+1485578/2539*x^8+11489061/20312*x^7-17274055/20312*x^6-17477779/20312*x^5+10212811/20312*x^4+1416514/2539*x^3-1536331/20312*x^2-2499747/20312*x-29355/2539,-3925/20312*x^16-3601/10156*x^15+53891/10156*x^14+92679/10156*x^13-1190559/20312*x^12-1900163/20312*x^11+3367649/10156*x^10+9828947/20312*x^9-20542521/20312*x^8-13343863/10156*x^7+8138431/5078*x^6+17854683/10156*x^5-23564355/20312*x^4-20002653/20312*x^3+1370939/5078*x^2+4240761/20312*x-20052/2539,4887/40624*x^16+3217/20312*x^15-69119/20312*x^14-83353/20312*x^13+1573329/40624*x^12+1723337/40624*x^11-4585285/20312*x^10-9000429/40624*x^9+28795839/40624*x^8+12335439/20312*x^7-11695791/10156*x^6-16637441/20312*x^5+33833457/40624*x^4+19089239/40624*x^3-1540565/10156*x^2-5036287/40624*x-40291/2539], x^17+x^16-30*x^15-26*x^14+367*x^13+266*x^12-2349*x^11-1339*x^10+8394*x^9+3341*x^8-16544*x^7-3504*x^6+16591*x^5+760*x^4-6981*x^3-59*x^2+1031*x+48];
E[629,6]=[[x,-3717/126320*x^14+233/25264*x^13+96313/126320*x^12-26801/126320*x^11-488571/63160*x^10+50729/25264*x^9+980411/25264*x^8-80772/7895*x^7-2524817/25264*x^6+3728069/126320*x^5+15603531/126320*x^4-5419127/126320*x^3-907899/15790*x^2+549861/25264*x+79277/126320,184/7895*x^14-413/12632*x^13-31793/63160*x^12+20483/31580*x^11+31249/7895*x^10-28407/6316*x^9-167891/12632*x^8+760427/63160*x^7+181727/12632*x^6-149907/31580*x^5+405957/31580*x^4-1549753/63160*x^3-1497403/63160*x^2+291793/12632*x-56961/31580,129/126320*x^14+675/25264*x^13-3521/126320*x^12-85883/126320*x^11+12177/63160*x^10+169271/25264*x^9+11573/25264*x^8-252341/7895*x^7-244503/25264*x^6+9473867/126320*x^5+4323093/126320*x^4-9708421/126320*x^3-582657/15790*x^2+564711/25264*x+213211/126320,-8889/126320*x^14+1225/25264*x^13+208471/126320*x^12-117147/126320*x^11-931617/63160*x^10+157249/25264*x^9+1580587/25264*x^8-1092947/63160*x^7-3196451/25264*x^6+2439723/126320*x^5+12817007/126320*x^4-1712959/126320*x^3-461287/63160*x^2+380263/25264*x-495781/126320,4189/63160*x^14-1215/12632*x^13-99771/63160*x^12+129957/63160*x^11+461887/31580*x^10-208053/12632*x^9-845701/12632*x^8+1952707/31580*x^7+2016579/12632*x^6-7193053/63160*x^5-11906547/63160*x^4+6284469/63160*x^3+2703607/31580*x^2-430355/12632*x+3391/63160,1,3151/63160*x^14+1065/12632*x^13-10743/7895*x^12-31183/15790*x^11+457543/31580*x^10+218509/12632*x^9-959387/12632*x^8-4363159/63160*x^7+641187/3158*x^6+3754529/31580*x^5-16277153/63160*x^4-3312629/63160*x^3+7496911/63160*x^2-47487/1579*x+33633/7895,2667/63160*x^14-1541/12632*x^13-55903/63160*x^12+170261/63160*x^11+212461/31580*x^10-281795/12632*x^9-280483/12632*x^8+1350903/15790*x^7+366227/12632*x^6-9607109/63160*x^5-505121/63160*x^4+6620327/63160*x^3+20793/15790*x^2-106031/12632*x-299977/63160,-9507/126320*x^14+2765/25264*x^13+207713/126320*x^12-285531/126320*x^11-834991/63160*x^10+433703/25264*x^9+1185035/25264*x^8-3735461/63160*x^7-1628525/25264*x^6+11805299/126320*x^5-157259/126320*x^4-7543027/126320*x^3+2945649/63160*x^2+210557/25264*x-512893/126320,2299/31580*x^14+134/1579*x^13-61771/31580*x^12-16247/7895*x^11+161661/7895*x^10+120053/6316*x^9-165914/1579*x^8-656064/7895*x^7+1721763/6316*x^6+2712461/15790*x^5-10438687/31580*x^4-1091739/7895*x^3+2260737/15790*x^2+68529/6316*x-35087/15790,-1,-2217/15790*x^14+297/3158*x^13+107621/31580*x^12-58587/31580*x^11-253156/7895*x^10+42015/3158*x^9+232859/1579*x^8-1368699/31580*x^7-2164975/6316*x^6+2243263/31580*x^5+2922083/7895*x^4-1134927/15790*x^3-4355619/31580*x^2+287065/6316*x+113539/31580,-4779/126320*x^14+4811/25264*x^13+92251/126320*x^12-535227/126320*x^11-310107/63160*x^10+892619/25264*x^9+340197/25264*x^8-2153253/15790*x^7-377827/25264*x^6+30472283/126320*x^5+1948297/126320*x^4-19567869/126320*x^3-359753/15790*x^2-29301/25264*x+706459/126320,1799/15790*x^14-269/1579*x^13-21828/7895*x^12+60847/15790*x^11+208007/7895*x^10-105471/3158*x^9-198939/1579*x^8+2206139/15790*x^7+505621/1579*x^6-4605313/15790*x^5-6525017/15790*x^4+2176342/7895*x^3+3375049/15790*x^2-129206/1579*x-50829/15790,5867/126320*x^14-4773/25264*x^13-118153/126320*x^12+542851/126320*x^11+423091/63160*x^10-939143/25264*x^9-508571/25264*x^8+9667921/63160*x^7+575101/25264*x^6-38741979/126320*x^5-901261/126320*x^4+33307907/126320*x^3+260031/63160*x^2-1328877/25264*x+589933/126320,3987/126320*x^14-1611/25264*x^13-74673/126320*x^12+159541/126320*x^11+216251/63160*x^10-223019/25264*x^9-75033/25264*x^8+1570491/63160*x^7-788667/25264*x^6-2308349/126320*x^5+10932779/126320*x^4-3337403/126320*x^3-3788469/63160*x^2+771999/25264*x+162443/126320,-14751/126320*x^14+4335/25264*x^13+337259/126320*x^12-450223/126320*x^11-1471743/63160*x^10+687223/25264*x^9+2469913/25264*x^8-2954909/31580*x^7-5191847/25264*x^6+18181787/126320*x^5+26014753/126320*x^4-10623141/126320*x^3-652041/7895*x^2+263219/25264*x+1015031/126320,798/7895*x^14-887/6316*x^13-19027/7895*x^12+98531/31580*x^11+175258/7895*x^10-83131/3158*x^9-630447/6316*x^8+1673991/15790*x^7+722761/3158*x^6-6667589/31580*x^5-4027163/15790*x^4+6051307/31580*x^3+1852381/15790*x^2-186079/3158*x-221207/31580,-4313/31580*x^14+114/1579*x^13+204169/63160*x^12-71243/63160*x^11-464779/15790*x^10+27521/6316*x^9+820133/6316*x^8+522909/63160*x^7-3632545/12632*x^6-4573083/63160*x^5+9426959/31580*x^4+3205067/31580*x^3-7400501/63160*x^2-234667/12632*x+791871/63160,-628/7895*x^14+129/1579*x^13+26999/15790*x^12-11599/7895*x^11-104423/7895*x^10+13177/1579*x^9+66663/1579*x^8-168921/15790*x^7-55317/1579*x^6-659743/15790*x^5-1071477/15790*x^4+1839509/15790*x^3+753637/7895*x^2-229075/3158*x+5223/7895,-36/7895*x^14-423/6316*x^13+11091/31580*x^12+10197/7895*x^11-95297/15790*x^10-13345/1579*x^9+268841/6316*x^8+597801/31580*x^7-864791/6316*x^6+82292/7895*x^5+2928721/15790*x^4-2732729/31580*x^3-2135599/31580*x^2+490311/6316*x-162883/15790,4183/31580*x^14-715/3158*x^13-49161/15790*x^12+159289/31580*x^11+444429/15790*x^10-268437/6316*x^9-389979/3158*x^8+5338593/31580*x^7+433243/1579*x^6-10216281/31580*x^5-9309119/31580*x^4+4183859/15790*x^3+4186943/31580*x^2-92958/1579*x-322693/31580,-8919/63160*x^14+4887/12632*x^13+192031/63160*x^12-538927/63160*x^11-766267/31580*x^10+894311/12632*x^9+1115065/12632*x^8-2171343/7895*x^7-1827551/12632*x^6+32040863/63160*x^5+5450837/63160*x^4-24526769/63160*x^3-26318/7895*x^2+816567/12632*x-105081/63160,-16191/126320*x^14-3053/25264*x^13+400799/126320*x^12+399777/126320*x^11-1903643/63160*x^10-793977/25264*x^9+3462477/25264*x^8+2315293/15790*x^7-7627971/25264*x^6-40486493/126320*x^5+35861233/126320*x^4+35204639/126320*x^3-2440399/31580*x^2-1285465/25264*x+1010111/126320], x^15-2*x^14-24*x^13+46*x^12+225*x^11-407*x^10-1050*x^9+1751*x^8+2573*x^7-3822*x^6-3134*x^5+3962*x^4+1409*x^3-1497*x^2+144*x+17];
E[629,7]=[[x,-2*x^7+x^6+19*x^5-10*x^4-49*x^3+21*x^2+29*x-3,2*x^7-x^6-19*x^5+10*x^4+49*x^3-21*x^2-30*x+2,-x^7+x^6+10*x^5-9*x^4-28*x^3+18*x^2+20*x-3,-x^7+x^6+9*x^5-10*x^4-21*x^3+23*x^2+10*x-7,-x^5+8*x^3-13*x-2,-1,4*x^7-3*x^6-38*x^5+27*x^4+97*x^3-52*x^2-57*x+4,4*x^7-4*x^6-38*x^5+37*x^4+96*x^3-78*x^2-55*x+16,-3*x^7+x^6+28*x^5-10*x^4-71*x^3+19*x^2+44*x-2,x^7-9*x^5+x^4+22*x^3-2*x^2-13*x-4,-1,-5*x^7+4*x^6+49*x^5-36*x^4-130*x^3+73*x^2+78*x-15,x^7-10*x^5+28*x^3+2*x^2-19*x-6,2*x^7-2*x^6-18*x^5+18*x^4+41*x^3-35*x^2-15*x+9,4*x^7-2*x^6-38*x^5+20*x^4+97*x^3-45*x^2-53*x+15,-11*x^7+7*x^6+104*x^5-67*x^4-264*x^3+138*x^2+153*x-22,-8*x^7+5*x^6+75*x^5-48*x^4-188*x^3+99*x^2+107*x-20,-6*x^7+5*x^6+57*x^5-46*x^4-142*x^3+95*x^2+71*x-26,-10*x^7+8*x^6+97*x^5-75*x^4-254*x^3+159*x^2+150*x-33,7*x^7-4*x^6-65*x^5+41*x^4+159*x^3-92*x^2-79*x+23,2*x^7-x^6-19*x^5+10*x^4+48*x^3-22*x^2-26*x,-5*x^7+3*x^6+48*x^5-26*x^4-125*x^3+44*x^2+78*x+1,8*x^7-4*x^6-77*x^5+39*x^4+202*x^3-83*x^2-125*x+14,2*x^7-19*x^5+2*x^4+47*x^3-8*x^2-20*x], x^8-10*x^6+29*x^4+3*x^3-24*x^2-7*x+2];
E[629,8]=[[0,-3,0,3,-1,0,1,-2,-2,2,-8,1,3,-12,3,-11,-4,4,4,-3,-1,-2,1,6,0], x-1];
E[649,1]=[[-1,1,-1,1,1,-4,-2,-1,6,-9,2,-4,-3,6,-12,-13,1,8,10,0,-4,-1,-6,0,-2], x-1];
E[649,2]=[[-1,-2,x,-x,1,-x+1,2*x,-x+1,x+1,0,-x-5,-10,0,-6,-3*x-6,x+9,1,-x-11,-3*x-2,-12,3*x+2,-4,-2*x+10,-6,4*x+8], x^2+x-9];
E[649,3]=[[-x^2-2*x+1,x^3+5*x^2+5*x-1,x,-x^3-5*x^2-6*x-1,1,-2*x^3-6*x^2+1,x^3+5*x^2+5*x-2,2*x^3+7*x^2-x-8,3*x^3+11*x^2+5*x-9,6*x^3+24*x^2+18*x-4,-x^3-8*x^2-14*x-3,-2*x^3-9*x^2-9*x+1,-7*x^3-26*x^2-10*x+13,-x^3-3*x^2+3*x+6,3*x^3+10*x^2+3*x+3,-5*x^3-22*x^2-17*x+5,1,-2*x^3-10*x^2-5*x+7,-2*x^3-6*x^2+1,2*x^3+12*x^2+16*x-11,-x^3-6*x^2-8*x+8,6*x^3+24*x^2+9*x-16,10*x^3+41*x^2+35*x-4,7*x^2+24*x+6,-4*x^3-24*x^2-35*x+1], x^4+5*x^3+6*x^2-1];
E[649,4]=[[3024753/104049569*x^10+35509787/416198276*x^9-76061562/104049569*x^8-185103313/104049569*x^7+1390583335/208099138*x^6+361897143/32015252*x^5-885106801/32015252*x^4-4751433239/208099138*x^3+1459913819/32015252*x^2+2914909255/416198276*x-7214956253/416198276,15872637/416198276*x^10+15495985/208099138*x^9-228676837/208099138*x^8-160653265/104049569*x^7+4855679637/416198276*x^6+304602937/32015252*x^5-438962670/8003813*x^4-6871615279/416198276*x^3+3203429951/32015252*x^2+197512193/416198276*x-8608538345/208099138,x,609927/208099138*x^10-1414100/104049569*x^9-35747245/208099138*x^8+51530413/208099138*x^7+559558537/208099138*x^6-10756755/8003813*x^5-124878315/8003813*x^4+658625875/208099138*x^3+532890293/16007626*x^2-360512622/104049569*x-1774832135/104049569,-1,20120361/416198276*x^10+31313785/416198276*x^9-152043716/104049569*x^8-318437339/208099138*x^7+6733407411/416198276*x^6+141468161/16007626*x^5-2497335405/32015252*x^4-4629216445/416198276*x^3+2296002477/16007626*x^2-1353715853/208099138*x-25113493855/416198276,17546401/416198276*x^10+7172811/208099138*x^9-293031347/208099138*x^8-76881570/104049569*x^7+7019781489/416198276*x^6+140672537/32015252*x^5-686723523/8003813*x^4-1621750551/416198276*x^3+5310875015/32015252*x^2-3451890543/416198276*x-15299207399/208099138,-12873621/416198276*x^10-13333293/208099138*x^9+91097308/104049569*x^8+138421299/104049569*x^7-3789226735/416198276*x^6-261117819/32015252*x^5+672410129/16007626*x^4+5557344635/416198276*x^3-2449900219/32015252*x^2+1299420365/416198276*x+3675931338/104049569,13974317/416198276*x^10+4124459/208099138*x^9-244392389/208099138*x^8-52361228/104049569*x^7+6045504457/416198276*x^6+121241465/32015252*x^5-602787075/8003813*x^4-2975871199/416198276*x^3+4750992091/32015252*x^2+196708937/416198276*x-14408180629/208099138,-2872313/416198276*x^10+8582825/208099138*x^9+88509029/208099138*x^8-81105610/104049569*x^7-2790057029/416198276*x^6+140912563/32015252*x^5+309343862/8003813*x^4-3945470173/416198276*x^3-2603802235/32015252*x^2+2760151599/416198276*x+8937888721/208099138,-13120780/104049569*x^10-118907213/416198276*x^9+364255638/104049569*x^8+1252186285/208099138*x^7-3722040794/104049569*x^6-1238586509/32015252*x^5+5216334793/32015252*x^4+16402513177/208099138*x^3-9322739009/32015252*x^2-12420567401/416198276*x+52465761109/416198276,26386329/416198276*x^10+29917313/208099138*x^9-366641371/208099138*x^8-323314650/104049569*x^7+7439916001/416198276*x^6+674723325/32015252*x^5-641214998/8003813*x^4-20329373123/416198276*x^3+4520154451/32015252*x^2+11330026629/416198276*x-12965493651/208099138,-5011887/32015252*x^10-10958843/32015252*x^9+70368249/16007626*x^8+114956599/16007626*x^7-1455227751/32015252*x^6-363928215/8003813*x^5+6688745253/32015252*x^4+2781291491/32015252*x^3-5978625151/16007626*x^2-164468766/8003813*x+4968122515/32015252,-11485431/416198276*x^10+10488371/416198276*x^9+227121925/208099138*x^8-102316483/208099138*x^7-5939130991/416198276*x^6+56724573/16007626*x^5+2356888099/32015252*x^4-6301895857/416198276*x^3-1084735791/8003813*x^2+4882338165/208099138*x+23964202113/416198276,-20188131/208099138*x^10-90578433/416198276*x^9+285605253/104049569*x^8+962248985/208099138*x^7-5991548231/208099138*x^6-960680991/32015252*x^5+4338727949/32015252*x^4+6379045123/104049569*x^3-8071896971/32015252*x^2-9023186503/416198276*x+47739026705/416198276,-19468145/416198276*x^10-18806223/416198276*x^9+321630483/208099138*x^8+218469997/208099138*x^7-7530354297/416198276*x^6-115473129/16007626*x^5+2812474781/32015252*x^4+4984064833/416198276*x^3-1234463762/8003813*x^2+299631625/208099138*x+24666355427/416198276,1,-9632899/104049569*x^10-28062204/104049569*x^9+481469379/208099138*x^8+572778928/104049569*x^7-4402520777/208099138*x^6-538676437/16007626*x^5+1427504867/16007626*x^4+6585839638/104049569*x^3-1236967031/8003813*x^2-3450209577/208099138*x+13848398261/208099138,-18558987/416198276*x^10-13339397/416198276*x^9+328408153/208099138*x^8+185428199/208099138*x^7-8121998315/416198276*x^6-115659763/16007626*x^5+3186606307/32015252*x^4+5883866475/416198276*x^3-1509807046/8003813*x^2+770343853/208099138*x+35444432557/416198276,-15673993/104049569*x^10-165394901/416198276*x^9+404525465/104049569*x^8+1700520483/208099138*x^7-3809970753/104049569*x^6-1626669421/32015252*x^5+4985331461/32015252*x^4+20717625927/208099138*x^3-8485806173/32015252*x^2-13524205521/416198276*x+46669905641/416198276,-30786487/416198276*x^10-63096901/416198276*x^9+223925739/104049569*x^8+337968694/104049569*x^7-9573685939/416198276*x^6-168938817/8003813*x^5+3456750323/32015252*x^4+17602272555/416198276*x^3-1553659747/8003813*x^2-1978036692/104049569*x+33485788173/416198276,9446201/104049569*x^10+79387353/416198276*x^9-264662571/104049569*x^8-811696673/208099138*x^7+2720274096/104049569*x^6+743034021/32015252*x^5-3803444185/32015252*x^4-7437249303/208099138*x^3+6669524409/32015252*x^2-2249205347/416198276*x-34792611309/416198276,9675461/208099138*x^10-21917465/416198276*x^9-203588993/104049569*x^8+198603463/208099138*x^7+5606237269/208099138*x^6-183142963/32015252*x^5-4712490399/32015252*x^4+1996582308/104049569*x^3+9378167933/32015252*x^2-9139086623/416198276*x-54329126471/416198276,-18414053/104049569*x^10-163807477/416198276*x^9+521785001/104049569*x^8+1771346415/208099138*x^7-5427287318/104049569*x^6-1819313437/32015252*x^5+7671504321/32015252*x^4+25238630223/208099138*x^3-13699833061/32015252*x^2-19850500237/416198276*x+75823403301/416198276,2274998/104049569*x^10+8281060/104049569*x^9-54238110/104049569*x^8-175384122/104049569*x^7+482318597/104049569*x^6+90510057/8003813*x^5-159196579/8003813*x^4-2950471597/104049569*x^3+280899213/8003813*x^2+2726639523/104049569*x-1833202628/104049569], x^11+x^10-31*x^9-14*x^8+351*x^7-24*x^6-1716*x^5+836*x^4+3140*x^3-2293*x^2-1242*x+1013];
E[649,6]=[[4205022557/32495788088*x^11+2353337594/4061973511*x^10-13853519821/4061973511*x^9-72711215683/4061973511*x^8+105786995725/8123947022*x^7+1134191454123/8123947022*x^6+454898543923/4061973511*x^5-610290059275/4061973511*x^4-4777492005781/32495788088*x^3+542903270985/32495788088*x^2+127848692889/16247894044*x-39292726463/32495788088,14592858351/16247894044*x^11+34451492849/8123947022*x^10-184719052641/8123947022*x^9-1057623808877/8123947022*x^8+499372546071/8123947022*x^7+8090593428657/8123947022*x^6+8157131606607/8123947022*x^5-7224893054079/8123947022*x^4-20752480684853/16247894044*x^3-1595219647317/16247894044*x^2+323683909534/4061973511*x+87713638961/16247894044,x,-60103143595/16247894044*x^11-70534113475/4061973511*x^10+382048341098/4061973511*x^9+2166571595416/4061973511*x^8-1079323558304/4061973511*x^7-16603094502713/4061973511*x^6-16401328764804/4061973511*x^5+15110755569427/4061973511*x^4+83744102092935/16247894044*x^3+5161000737985/16247894044*x^2-2626189292503/8123947022*x-265153453107/16247894044,-1,7816847135/4061973511*x^11+72396584017/8123947022*x^10-402038426677/8123947022*x^9-2228768363701/8123947022*x^8+1261996995499/8123947022*x^7+17195651053363/8123947022*x^6+16004713946205/8123947022*x^5-16740154560071/8123947022*x^4-20853438842469/8123947022*x^3-29400835267/4061973511*x^2+1463667514031/8123947022*x+2609267861/8123947022,-23039670871/16247894044*x^11-26559606873/4061973511*x^10+148817161661/4061973511*x^9+818675863110/4061973511*x^8-486412489732/4061973511*x^7-6339957771338/4061973511*x^6-5729502449004/4061973511*x^5+6388445089446/4061973511*x^4+30056740053763/16247894044*x^3-961734819699/16247894044*x^2-1035698046851/8123947022*x+35139227185/16247894044,11228716345/8123947022*x^11+26213430046/4061973511*x^10-143491020226/4061973511*x^9-805996735422/4061973511*x^8+426258152698/4061973511*x^7+6195140168462/4061973511*x^6+5946560199538/4061973511*x^5-5808163192361/4061973511*x^4-15224267656463/8123947022*x^3-597006703981/8123947022*x^2+452336798206/4061973511*x+19587498003/8123947022,16538924392/4061973511*x^11+77319828689/4061973511*x^10-422187620066/4061973511*x^9-2377082749811/4061973511*x^8+1239427937888/4061973511*x^7+18264532311595/4061973511*x^6+17653768288696/4061973511*x^5-17073830054520/4061973511*x^4-22643396022786/4061973511*x^3-859080744243/4061973511*x^2+1425612984966/4061973511*x+24805774410/4061973511,-7727727569/8123947022*x^11-36751692103/8123947022*x^10+194396292961/8123947022*x^9+1126692085419/8123947022*x^8-490963820433/8123947022*x^7-8582734765471/8123947022*x^6-8925012426969/8123947022*x^5+7319259400265/8123947022*x^4+5602677443463/4061973511*x^3+1291789672023/8123947022*x^2-607382779627/8123947022*x-44628806267/4061973511,30896551989/8123947022*x^11+145333586761/8123947022*x^10-784446895061/8123947022*x^9-4463600484483/8123947022*x^8+2183957427979/8123947022*x^7+34192903478943/8123947022*x^6+34008395550293/8123947022*x^5-30992027848401/8123947022*x^4-21709680443471/4061973511*x^3-2795367298125/8123947022*x^2+2722312991263/8123947022*x+71646822665/4061973511,31214093217/16247894044*x^11+73927576377/8123947022*x^10-393792514189/8123947022*x^9-2267565784493/8123947022*x^8+1027666059255/8123947022*x^7+17301711275589/8123947022*x^6+17756173914073/8123947022*x^5-15037088903231/8123947022*x^4-44898568884551/16247894044*x^3-4369886319627/16247894044*x^2+686008641812/4061973511*x+220313328015/16247894044,69526973687/16247894044*x^11+162341961213/8123947022*x^10-887684379043/8123947022*x^9-4990595432277/8123947022*x^8+2613239344069/8123947022*x^7+38337533910311/8123947022*x^6+37056614399723/8123947022*x^5-35772279875755/8123947022*x^4-95250586876089/16247894044*x^3-3853724170757/16247894044*x^2+1554938742123/4061973511*x+145038808709/16247894044,-21609499109/16247894044*x^11-51724331161/8123947022*x^10+270636476391/8123947022*x^9+1585566220661/8123947022*x^8-649763987619/8123947022*x^7-12075337574457/8123947022*x^6-12781783936975/8123947022*x^5+10268263845569/8123947022*x^4+32323303375055/16247894044*x^3+3539706541515/16247894044*x^2-564172443985/4061973511*x-234866391811/16247894044,21888451075/8123947022*x^11+103839631059/8123947022*x^10-551970698913/8123947022*x^9-3185850955425/8123947022*x^8+1431025347315/8123947022*x^7+24326962171631/8123947022*x^6+24995480767683/8123947022*x^5-21313722289441/8123947022*x^4-15851308060265/4061973511*x^3-2802898984253/8123947022*x^2+1995704430223/8123947022*x+50168693075/4061973511,21006022034/4061973511*x^11+98618331433/4061973511*x^10-534422278897/4061973511*x^9-3030188379191/4061973511*x^8+1518729654524/4061973511*x^7+23243308456254/4061973511*x^6+22853518320876/4061973511*x^5-21350947640610/4061973511*x^4-29215580258071/4061973511*x^3-1572386284992/4061973511*x^2+1828821195575/4061973511*x+83329079744/4061973511,-1,-9667508408/4061973511*x^11-44952580807/4061973511*x^10+247750873201/4061973511*x^9+1382810779451/4061973511*x^8-754224776188/4061973511*x^7-10643723007490/4061973511*x^6-10091344868153/4061973511*x^5+10126415613858/4061973511*x^4+13015285892983/4061973511*x^3+328711225378/4061973511*x^2-804720734798/4061973511*x-35041109933/4061973511,-18712053867/8123947022*x^11-86989385139/8123947022*x^10+480584880857/8123947022*x^9+2678783627609/8123947022*x^8-1491285032645/8123947022*x^7-20684365295563/8123947022*x^6-19310575639893/8123947022*x^5+20258002715021/8123947022*x^4+12609838691723/4061973511*x^3+5383513255/8123947022*x^2-1868968205753/8123947022*x-17891685915/4061973511,-42607979699/8123947022*x^11-99990921678/4061973511*x^10+541782168380/4061973511*x^9+3071464564763/4061973511*x^8-1533786358575/4061973511*x^7-23539496724683/4061973511*x^6-23219583949610/4061973511*x^5+21443625926602/4061973511*x^4+59147614634827/8123947022*x^3+3567004755095/8123947022*x^2-1712728676042/4061973511*x-156363882453/8123947022,-19153310890/4061973511*x^11-179536627219/8123947022*x^10+976370018863/8123947022*x^9+5519349968913/8123947022*x^8-2824444136025/8123947022*x^7-42403098117143/8123947022*x^6-41261731563419/8123947022*x^5+39579583038319/8123947022*x^4+52972266088553/8123947022*x^3+998186034040/4061973511*x^2-3438014708665/8123947022*x-62017406051/8123947022,-82855610659/8123947022*x^11-194788979413/4061973511*x^10+1052168852805/4061973511*x^9+5982415863949/4061973511*x^8-2939715391786/4061973511*x^7-45825461671677/4061973511*x^6-45492594706155/4061973511*x^5+41521293266509/4061973511*x^4+115886439078817/8123947022*x^3+7431026307823/8123947022*x^2-3529413508408/4061973511*x-325511796179/8123947022,-44677466943/4061973511*x^11-209292254968/4061973511*x^10+1138483475107/4061973511*x^9+6432383249006/4061973511*x^8-3285996790687/4061973511*x^7-49377044610755/4061973511*x^6-48185480657978/4061973511*x^5+45709823061446/4061973511*x^4+61802613981010/4061973511*x^3+2944687928711/4061973511*x^2-4034258169653/4061973511*x-166554645858/4061973511,-18596725939/8123947022*x^11-44361241006/4061973511*x^10+233287059829/4061973511*x^9+1359983221151/4061973511*x^8-570313928804/4061973511*x^7-10360483305335/4061973511*x^6-10927620816513/4061973511*x^5+8844826867403/4061973511*x^4+27876891194727/8123947022*x^3+3029958918997/8123947022*x^2-1029520976746/4061973511*x-222527721527/8123947022,11147044093/8123947022*x^11+26326090600/4061973511*x^10-141486617907/4061973511*x^9-809410850888/4061973511*x^8+392754821493/4061973511*x^7+6219782230374/4061973511*x^6+6157257277910/4061973511*x^5-5798837660933/4061973511*x^4-15994612060247/8123947022*x^3-775705775279/8123947022*x^2+651420266341/4061973511*x+107413033393/8123947022], x^12+5*x^11-24*x^10-152*x^9+28*x^8+1128*x^7+1428*x^6-680*x^5-1705*x^4-504*x^3+67*x^2+31*x+1];
E[667,1]=[[x,-2*x^8-7*x^7+14*x^6+63*x^5-14*x^4-172*x^3-54*x^2+146*x+82,3*x^9+10*x^8-23*x^7-91*x^6+39*x^5+253*x^4+32*x^3-226*x^2-84*x+16,-x^9-2*x^8+13*x^7+22*x^6-62*x^5-83*x^4+127*x^3+130*x^2-92*x-76,-x^9-2*x^8+12*x^7+21*x^6-50*x^5-74*x^4+82*x^3+103*x^2-43*x-46,x^9+5*x^8-3*x^7-45*x^6-29*x^5+121*x^4+124*x^3-90*x^2-122*x-24,-x^9-3*x^8+10*x^7+30*x^6-37*x^5-102*x^4+67*x^3+144*x^2-50*x-73,-3*x^9-16*x^8+2*x^7+134*x^6+151*x^5-304*x^4-552*x^3+89*x^2+521*x+212,1,1,x^9+4*x^8-6*x^7-37*x^6-4*x^5+103*x^4+65*x^3-79*x^2-81*x-22,-4*x^9-14*x^8+28*x^7+126*x^6-25*x^5-339*x^4-128*x^3+265*x^2+194*x+28,-4*x^9-13*x^8+32*x^7+119*x^6-67*x^5-338*x^4+11*x^3+329*x^2+56*x-65,5*x^8+16*x^7-39*x^6-146*x^5+65*x^4+405*x^3+75*x^2-348*x-175,6*x^9+26*x^8-25*x^7-225*x^6-110*x^5+559*x^4+569*x^3-324*x^2-580*x-188,5*x^9+12*x^8-56*x^7-122*x^6+227*x^5+418*x^4-403*x^3-586*x^2+264*x+287,-x^9-5*x^8+3*x^7+46*x^6+32*x^5-127*x^4-144*x^3+92*x^2+146*x+37,-3*x^9-9*x^8+26*x^7+83*x^6-65*x^5-236*x^4+35*x^3+223*x^2+34*x-33,-3*x^8-10*x^7+22*x^6+88*x^5-30*x^4-230*x^3-59*x^2+185*x+109,4*x^9+17*x^8-19*x^7-149*x^6-49*x^5+383*x^4+302*x^3-261*x^2-316*x-78,2*x^9+7*x^8-14*x^7-62*x^6+15*x^5+163*x^4+49*x^3-124*x^2-80*x-16,-4*x^9-12*x^8+35*x^7+113*x^6-88*x^5-334*x^4+45*x^3+339*x^2+48*x-64,4*x^9+15*x^8-26*x^7-136*x^6+10*x^5+375*x^4+158*x^3-321*x^2-209*x-4,-x^9+3*x^8+33*x^7-8*x^6-244*x^5-90*x^4+630*x^3+363*x^2-521*x-349,-2*x^9-15*x^8-15*x^7+116*x^6+243*x^5-208*x^4-737*x^3-98*x^2+641*x+333], x^10+3*x^9-10*x^8-32*x^7+32*x^6+118*x^5-29*x^4-182*x^3-28*x^2+101*x+43];
E[667,2]=[[x,549/6469*x^11+1451/6469*x^10-8798/6469*x^9-21760/6469*x^8+52179/6469*x^7+114560/6469*x^6-143208/6469*x^5-255406/6469*x^4+177916/6469*x^3+216607/6469*x^2-75949/6469*x-34852/6469,-1227/6469*x^11-2642/6469*x^10+18320/6469*x^9+36402/6469*x^8-95833/6469*x^7-168053/6469*x^6+212320/6469*x^5+303228/6469*x^4-190488/6469*x^3-177063/6469*x^2+64932/6469*x+15501/6469,3131/6469*x^11+9536/6469*x^10-38534/6469*x^9-125914/6469*x^8+139003/6469*x^7+537706/6469*x^6-105033/6469*x^5-823680/6469*x^4-174693/6469*x^3+273441/6469*x^2+76304/6469*x+7737/6469,-2737/6469*x^11-5867/6469*x^10+41187/6469*x^9+80156/6469*x^8-221356/6469*x^7-366821/6469*x^6+523807/6469*x^5+665670/6469*x^4-522626/6469*x^3-423988/6469*x^2+170558/6469*x+57970/6469,-1891/6469*x^11-7873/6469*x^10+18085/6469*x^9+104421/6469*x^8-20159/6469*x^7-451379/6469*x^6-179504/6469*x^5+710819/6469*x^4+416468/6469*x^3-247259/6469*x^2-116475/6469*x-29460/6469,-397/6469*x^11-955/6469*x^10+7293/6469*x^9+14451/6469*x^8-51342/6469*x^7-75890/6469*x^6+171642/6469*x^5+167324/6469*x^4-263469/6469*x^3-147539/6469*x^2+131583/6469*x+18333/6469,-183/6469*x^11-2640/6469*x^10-1380/6469*x^9+37442/6469*x^8+40828/6469*x^7-176192/6469*x^6-211024/6469*x^5+302925/6469*x^4+363336/6469*x^3-108860/6469*x^2-138565/6469*x-16415/6469,-1,-1,932/6469*x^11-23/6469*x^10-19272/6469*x^9+978/6469*x^8+145918/6469*x^7-6671/6469*x^6-487876/6469*x^5+250/6469*x^4+675765/6469*x^3+53401/6469*x^2-257088/6469*x-14637/6469,3635/6469*x^11+12883/6469*x^10-40460/6469*x^9-170918/6469*x^8+107050/6469*x^7+738108/6469*x^6+101264/6469*x^5-1165791/6469*x^4-558468/6469*x^3+456492/6469*x^2+288353/6469*x-27970/6469,1296/6469*x^11+4910/6469*x^10-14194/6469*x^9-66745/6469*x^8+39822/6469*x^7+305539/6469*x^6-6449/6469*x^5-556264/6469*x^4-22969/6469*x^3+331157/6469*x^2-94238/6469*x-33597/6469,-3768/6469*x^11-13317/6469*x^10+39351/6469*x^9+171653/6469*x^8-76246/6469*x^7-705637/6469*x^6-250672/6469*x^5+1011596/6469*x^4+760281/6469*x^3-248463/6469*x^2-267491/6469*x-58654/6469,-6983/6469*x^11-24489/6469*x^10+78206/6469*x^9+320162/6469*x^8-219627/6469*x^7-1352215/6469*x^6-84065/6469*x^5+2063723/6469*x^4+756349/6469*x^3-723841/6469*x^2-252991/6469*x-22704/6469,-685/6469*x^11+829/6469*x^10+17635/6469*x^9-8812/6469*x^8-155070/6469*x^7+12906/6469*x^6+571278/6469*x^5+104056/6469*x^4-820449/6469*x^3-287257/6469*x^2+274717/6469*x+64613/6469,-6242/6469*x^11-22071/6469*x^10+66826/6469*x^9+290191/6469*x^8-143579/6469*x^7-1230006/6469*x^6-370786/6469*x^5+1852652/6469*x^4+1260302/6469*x^3-565032/6469*x^2-465333/6469*x-40970/6469,5057/6469*x^11+20247/6469*x^10-51901/6469*x^9-268321/6469*x^8+95218/6469*x^7+1155203/6469*x^6+338842/6469*x^5-1809200/6469*x^4-970103/6469*x^3+673304/6469*x^2+290793/6469*x-7421/6469,601/6469*x^11+4004/6469*x^10+2093/6469*x^9-46221/6469*x^8-95130/6469*x^7+149920/6469*x^6+480053/6469*x^5-82617/6469*x^4-781356/6469*x^3-212254/6469*x^2+320669/6469*x+95516/6469,1068/6469*x^11+4166/6469*x^10-8702/6469*x^9-52547/6469*x^8-9951/6469*x^7+202251/6469*x^6+203191/6469*x^5-217133/6469*x^4-428332/6469*x^3-82957/6469*x^2+178106/6469*x+33230/6469,-1954/6469*x^11-9100/6469*x^10+13474/6469*x^9+113281/6469*x^8+44482/6469*x^7-435998/6469*x^6-440601/6469*x^5+531211/6469*x^4+766057/6469*x^3+20156/6469*x^2-190690/6469*x-75940/6469,1191/6469*x^11+2865/6469*x^10-15410/6469*x^9-36884/6469*x^8+56991/6469*x^7+143573/6469*x^6-16813/6469*x^5-139708/6469*x^4-205819/6469*x^3-133124/6469*x^2+148647/6469*x+93788/6469,8755/6469*x^11+27888/6469*x^10-107157/6469*x^9-370471/6469*x^8+389918/6469*x^7+1619170/6469*x^6-346775/6469*x^5-2698348/6469*x^4-338538/6469*x^3+1347556/6469*x^2+174655/6469*x-105353/6469,4115/6469*x^11+12066/6469*x^10-53384/6469*x^9-162335/6469*x^8+221709/6469*x^7+728120/6469*x^6-325443/6469*x^5-1284603/6469*x^4+124010/6469*x^3+732482/6469*x^2-114085/6469*x-57664/6469,6524/6469*x^11+19246/6469*x^10-83152/6469*x^9-258383/6469*x^8+329243/6469*x^7+1137130/6469*x^6-407047/6469*x^5-1848384/6469*x^4-4953/6469*x^3+742540/6469*x^2-33579/6469*x+1045/6469], x^12+3*x^11-13*x^10-41*x^9+54*x^8+188*x^7-77*x^6-342*x^5+13*x^4+215*x^3+9*x^2-37*x-5];
E[667,3]=[[x,-785211/1247936*x^15+392591/623968*x^14+1160527/77996*x^13-3965075/311984*x^12-172213973/1247936*x^11+58026853/623968*x^10+799917747/1247936*x^9-371328085/1247936*x^8-1954600569/1247936*x^7+239195243/623968*x^6+1173422731/623968*x^5-65418451/623968*x^4-267281811/311984*x^3-5825419/1247936*x^2+7031159/77996*x+197175/19499,-124169/1247936*x^15+97405/623968*x^14+87553/38998*x^13-1031197/311984*x^12-24534615/1247936*x^11+16455207/623968*x^10+106985521/1247936*x^9-125237015/1247936*x^8-247933907/1247936*x^7+119469681/623968*x^6+147696225/623968*x^5-109312217/623968*x^4-37735661/311984*x^3+82287639/1247936*x^2+936593/77996*x-63083/19499,203897/311984*x^15-84393/155992*x^14-605035/38998*x^13+822891/77996*x^12+45092591/311984*x^11-11270943/155992*x^10-210501617/311984*x^9+61808511/311984*x^8+517413267/311984*x^7-20916149/155992*x^6-313843813/155992*x^5-32011075/155992*x^4+74110535/77996*x^3+51140001/311984*x^2-2349133/19499*x-525624/19499,416323/1247936*x^15-142087/623968*x^14-613233/77996*x^13+1290291/311984*x^12+90516525/1247936*x^11-15151837/623968*x^10-417034555/1247936*x^9+47965421/1247936*x^8+1007097233/1247936*x^7+57219485/623968*x^6-595383747/623968*x^5-188691413/623968*x^4+134569971/311984*x^3+222615603/1247936*x^2-4262071/77996*x-383407/19499,630919/1247936*x^15-290115/623968*x^14-239578/19499*x^13+2885099/311984*x^12+147254777/1247936*x^11-40571593/623968*x^10-713642271/1247936*x^9+230416377/1247936*x^8+1828666269/1247936*x^7-82625039/623968*x^6-1150387391/623968*x^5-121938073/623968*x^4+270383835/311984*x^3+185100551/1247936*x^2-7439499/77996*x-451206/19499,928009/623968*x^15-368325/311984*x^14-695186/19499*x^13+3592413/155992*x^12+209804215/623968*x^11-49109423/311984*x^10-993779697/623968*x^9+266325639/623968*x^8+2480718627/623968*x^7-82017449/311984*x^6-1523319953/311984*x^5-151999255/311984*x^4+357015741/155992*x^3+201554761/623968*x^2-5098650/19499*x-975785/19499,550465/623968*x^15-174565/311984*x^14-823663/38998*x^13+1634265/155992*x^12+123909519/623968*x^11-20596023/311984*x^10-583465801/623968*x^9+88498943/623968*x^8+1442418539/623968*x^7+19029911/311984*x^6-874278145/311984*x^5-145686327/311984*x^4+203111985/155992*x^3+149524337/623968*x^2-3063124/19499*x-568163/19499,1,-1,-2334859/1247936*x^15+1157135/623968*x^14+3482125/77996*x^13-11691259/311984*x^12-522940453/1247936*x^11+170695349/623968*x^10+2466663235/1247936*x^9-1079333733/1247936*x^8-6141913513/1247936*x^7+658722923/623968*x^6+3770655243/623968*x^5-94575667/623968*x^4-884222571/311984*x^3-115857467/1247936*x^2+24979507/77996*x+747109/19499,-340543/623968*x^15+136787/311984*x^14+250866/19499*x^13-1391779/155992*x^12-73934689/623968*x^11+20865097/311984*x^10+339018455/623968*x^9-143585073/623968*x^8-812349973/623968*x^7+116714175/311984*x^6+477851415/311984*x^5-86739263/311984*x^4-109062059/155992*x^3+66100737/623968*x^2+1072048/19499*x+46861/19499,-643795/623968*x^15+195543/311984*x^14+963233/38998*x^13-1846731/155992*x^12-144739517/623968*x^11+23758941/311984*x^10+679527531/623968*x^9-109943933/623968*x^8-1670797185/623968*x^7-2446989/311984*x^6+1005298403/311984*x^5+135806709/311984*x^4-232154547/155992*x^3-148181507/623968*x^2+6724733/38998*x+670792/19499,-1839989/1247936*x^15+912641/623968*x^14+2728719/77996*x^13-9166725/311984*x^12-406974171/1247936*x^11+132654075/623968*x^10+1904188349/1247936*x^9-826072187/1247936*x^8-4699016311/1247936*x^7+484292485/623968*x^6+2855877525/623968*x^5-24661229/623968*x^4-660950725/311984*x^3-176062661/1247936*x^2+18464971/77996*x+795440/19499,-817175/1247936*x^15+392027/623968*x^14+1223111/77996*x^13-3950975/311984*x^12-184362489/1247936*x^11+57356873/623968*x^10+871707247/1247936*x^9-357298681/1247936*x^8-2165277997/1247936*x^7+206812167/623968*x^6+1306819367/623968*x^5-7423183/623968*x^4-284530063/311984*x^3-46571879/1247936*x^2+5571451/77996*x+228233/19499,-2359437/1247936*x^15+912865/623968*x^14+889867/19499*x^13-8782345/311984*x^12-542096179/1247936*x^11+116231235/623968*x^10+2598515477/1247936*x^9-567529779/1247936*x^8-6580987135/1247936*x^7+25774789/623968*x^6+4107994965/623968*x^5+670864083/623968*x^4-983333641/311984*x^3-795462989/1247936*x^2+31721829/77996*x+1776171/19499,17243/10064*x^15-7319/5032*x^14-25683/629*x^13+72271/2516*x^12+3847461/10064*x^11-1014573/5032*x^10-18069091/10064*x^9+5921749/10064*x^8+44689113/10064*x^7-2792411/5032*x^6-27197419/5032*x^5-1177861/5032*x^4+6329063/2516*x^3+2346395/10064*x^2-175228/629*x-33655/629,-43505/623968*x^15-49531/311984*x^14+37593/19499*x^13+614307/155992*x^12-13253103/623968*x^11-11985345/311984*x^10+74076121/623968*x^9+116918257/623968*x^8-221218891/623968*x^7-149366631/311984*x^6+170046537/311984*x^5+189211023/311984*x^4-59266293/155992*x^3-195943025/623968*x^2+3728481/38998*x+764676/19499,1178789/623968*x^15-477961/311984*x^14-882021/19499*x^13+4617401/155992*x^12+266050779/623968*x^11-61892651/311984*x^10-1261321485/623968*x^9+317546011/623968*x^8+3159160647/623968*x^7-57362669/311984*x^6-1954290541/311984*x^5-275903579/311984*x^4+466957817/155992*x^3+357974981/623968*x^2-14948531/38998*x-1780210/19499,563079/623968*x^15-156715/311984*x^14-857799/38998*x^13+1344007/155992*x^12+132214121/623968*x^11-13079337/311984*x^10-642654463/623968*x^9-9324055/623968*x^8+1652421341/623968*x^7+183985705/311984*x^6-1048628615/311984*x^5-408792097/311984*x^4+258498903/155992*x^3+441179159/623968*x^2-9971189/38998*x-1608903/19499,64647/311984*x^15-63991/155992*x^14-174831/38998*x^13+702821/77996*x^12+11377665/311984*x^11-11895505/155992*x^10-43280287/311984*x^9+99610481/311984*x^8+76297549/311984*x^7-110505811/155992*x^6-22831443/155992*x^5+125889035/155992*x^4-3524951/77996*x^3-121093169/311984*x^2+971615/19499*x+739972/19499,-147633/73408*x^15+67837/36704*x^14+221053/4588*x^13-681977/18352*x^12-33354623/73408*x^11+9860895/36704*x^10+158206873/73408*x^9-60920863/73408*x^8-396751947/73408*x^7+34123313/36704*x^6+246691585/36704*x^5+2623975/36704*x^4-60037209/18352*x^3-18616929/73408*x^2+1924543/4588*x+69632/1147,-76011/77996*x^15+32025/38998*x^14+456988/19499*x^13-313150/19499*x^12-17319797/77996*x^11+4284585/38998*x^10+82556603/77996*x^9-23003141/77996*x^8-207601533/77996*x^7+6050439/38998*x^6+128220833/38998*x^5+16161787/38998*x^4-30035040/19499*x^3-20885207/77996*x^2+3812901/19499*x+773926/19499,87935/311984*x^15-5759/155992*x^14-142713/19499*x^13-12017/77996*x^12+23590273/311984*x^11+2253947/155992*x^10-123168695/311984*x^9-45769991/311984*x^8+337942493/311984*x^7+92693397/155992*x^6-225113687/155992*x^5-155989849/155992*x^4+56590627/77996*x^3+159250511/311984*x^2-5258959/38998*x-1092783/19499,-2267215/623968*x^15+1084227/311984*x^14+3373897/38998*x^13-10960503/155992*x^12-504980673/623968*x^11+160421665/311984*x^10+2370201479/623968*x^9-1023145601/623968*x^8-5863967925/623968*x^7+645913503/311984*x^6+3577639007/311984*x^5-140021607/311984*x^4-839284367/155992*x^3-78280095/623968*x^2+23502943/38998*x+1422572/19499], x^16-3*x^15-22*x^14+68*x^13+187*x^12-597*x^11-795*x^10+2592*x^9+1860*x^8-5877*x^7-2496*x^6+6612*x^5+1842*x^4-3011*x^3-505*x^2+336*x+64];
E[667,4]=[[x,31/19*x^12-82/19*x^11-457/19*x^10+1196/19*x^9+2422/19*x^8-6195/19*x^7-5575/19*x^6+13478/19*x^5+5774/19*x^4-11397/19*x^3-3736/19*x^2+3175/19*x+1136/19,9/19*x^12-33/19*x^11-110/19*x^10+479/19*x^9+382/19*x^8-2447/19*x^7-44/19*x^6+5121/19*x^5-1379/19*x^4-3869/19*x^3+865/19*x^2+942/19*x+16/19,10/19*x^12-24/19*x^11-156/19*x^10+357/19*x^9+910/19*x^8-1923/19*x^7-2464/19*x^6+4512/19*x^5+3203/19*x^4-4377/19*x^3-2024/19*x^2+1338/19*x+516/19,-21/19*x^12+58/19*x^11+301/19*x^10-839/19*x^9-1512/19*x^8+4272/19*x^7+3092/19*x^6-8947/19*x^5-2400/19*x^4+6887/19*x^3+1313/19*x^2-1628/19*x-430/19,-3/19*x^12+11/19*x^11+43/19*x^10-166/19*x^9-235/19*x^8+917/19*x^7+648/19*x^6-2239/19*x^5-1054/19*x^4+2303/19*x^3+1029/19*x^2-789/19*x-341/19,-23/38*x^12+39/19*x^11+279/38*x^10-554/19*x^9-467/19*x^8+2733/19*x^7-143/38*x^6-10731/38*x^5+2027/19*x^4+7067/38*x^3-1233/19*x^2-1603/38*x+83/19,51/38*x^12-65/19*x^11-769/38*x^10+955/19*x^9+2102/19*x^8-4973/19*x^7-10161/38*x^6+21647/38*x^5+5672/19*x^4-18061/38*x^3-3664/19*x^2+4863/38*x+951/19,-1,1,-21/19*x^12+58/19*x^11+301/19*x^10-839/19*x^9-1512/19*x^8+4272/19*x^7+3092/19*x^6-8947/19*x^5-2381/19*x^4+6906/19*x^3+1161/19*x^2-1704/19*x-278/19,-117/38*x^12+148/19*x^11+1753/38*x^10-2154/19*x^9-4782/19*x^8+11165/19*x^7+23163/38*x^6-48903/38*x^5-12877/19*x^4+42127/38*x^3+8067/19*x^2-11885/38*x-2213/19,-37/19*x^12+85/19*x^11+581/19*x^10-1243/19*x^9-3405/19*x^8+6490/19*x^7+9246/19*x^6-14441/19*x^5-12157/19*x^4+12982/19*x^3+8188/19*x^2-3917/19*x-2046/19,-107/38*x^12+136/19*x^11+1597/38*x^10-1985/19*x^9-4289/19*x^8+10251/19*x^7+20015/38*x^6-44163/38*x^5-10392/19*x^4+36515/38*x^3+6409/19*x^2-9977/38*x-1803/19,11/19*x^12-34/19*x^11-145/19*x^10+482/19*x^9+602/19*x^8-2349/19*x^7-628/19*x^6+4435/19*x^5-803/19*x^4-2510/19*x^3+730/19*x^2+233/19*x-86/19,16/19*x^12-27/19*x^11-280/19*x^10+404/19*x^9+1874/19*x^8-2180/19*x^7-5926/19*x^6+5114/19*x^5+8845/19*x^4-4993/19*x^3-5545/19*x^2+1434/19*x+1122/19,-84/19*x^12+251/19*x^11+1147/19*x^10-3603/19*x^9-5307/19*x^8+18209/19*x^7+9100/19*x^6-37783/19*x^5-4185/19*x^4+28536/19*x^3+2763/19*x^2-6835/19*x-1511/19,68/19*x^12-186/19*x^11-981/19*x^10+2686/19*x^9+5029/19*x^8-13730/19*x^7-10869/19*x^6+29249/19*x^5+9875/19*x^4-23771/19*x^3-6129/19*x^2+6351/19*x+2080/19,-26/19*x^12+51/19*x^11+436/19*x^10-761/19*x^9-2803/19*x^8+4122/19*x^7+8618/19*x^6-9797/19*x^5-12903/19*x^4+9788/19*x^3+8576/19*x^2-3057/19*x-1828/19,81/19*x^12-221/19*x^11-1161/19*x^10+3171/19*x^9+5889/19*x^8-16019/19*x^7-12556/19*x^6+33321/19*x^5+11548/19*x^4-25663/19*x^3-8004/19*x^2+6445/19*x+2557/19,-4/19*x^12+2/19*x^11+70/19*x^10-6/19*x^9-459/19*x^8-158/19*x^7+1358/19*x^6+1011/19*x^5-1703/19*x^4-1749/19*x^3+726/19*x^2+734/19*x+52/19,-83/38*x^12+111/19*x^11+1253/38*x^10-1644/19*x^9-3482/19*x^8+8730/19*x^7+17719/38*x^6-39665/38*x^5-11230/19*x^4+36407/38*x^3+8620/19*x^2-11493/38*x-2719/19,-24/19*x^12+50/19*x^11+420/19*x^10-796/19*x^9-2811/19*x^8+4638/19*x^7+8984/19*x^6-12022/19*x^5-14037/19*x^4+13370/19*x^3+9999/19*x^2-4735/19*x-2614/19,-51/38*x^12+84/19*x^11+693/38*x^10-1240/19*x^9-1589/19*x^8+6550/19*x^7+5297/38*x^6-29399/38*x^5-979/19*x^4+26041/38*x^3+605/19*x^2-7675/38*x-647/19,-2/19*x^12+1/19*x^11+54/19*x^10-41/19*x^9-505/19*x^8+415/19*x^7+2104/19*x^6-1632/19*x^5-3901/19*x^4+2403/19*x^3+2681/19*x^2-621/19*x-620/19], x^13-4*x^12-11*x^11+58*x^10+24*x^9-298*x^8+97*x^7+641*x^6-402*x^5-547*x^4+352*x^3+219*x^2-88*x-40];
E[671,1]=[[x,-x^4-2*x^3+3*x^2+3*x-2,x^4+2*x^3-2*x^2-2*x,-x^4-2*x^3+x^2+x+1,1,x^4+2*x^3-3*x^2-3*x,-x^4-2*x^3+2*x^2+2*x-1,x^4+3*x^3-2*x^2-6*x-1,3*x^4+7*x^3-5*x^2-11*x,-3*x^4-3*x^3+11*x^2-x-7,x^4-5*x^2+5*x+1,-x^3+x^2+5*x-4,-x^4-4*x^3+9*x-1,x^4-3*x^2+5*x,x^2-x-3,-2*x^4-9*x^3-3*x^2+17*x+5,3*x^3+6*x^2-4*x-8,1,4*x^4+8*x^3-12*x^2-12*x+7,-4*x^4-10*x^3+6*x^2+17*x+1,-3*x^4-10*x^3-x^2+14*x+4,3*x^4+5*x^3-8*x^2-6*x-3,-3*x^4-9*x^3-x^2+14*x+7,-5*x^4-12*x^3+6*x^2+15*x,-2*x^4+3*x^3+16*x^2-8*x-11], x^5+2*x^4-3*x^3-4*x^2+2*x+1];
E[671,2]=[[x,x^5+x^4-5*x^3-3*x^2+5*x+1,-x^5-x^4+5*x^3+2*x^2-6*x+1,-x^5-x^4+5*x^3+3*x^2-5*x-2,-1,-x^4+5*x^2-x-4,x^5+3*x^4-3*x^3-10*x^2+2,x^5+x^4-6*x^3-4*x^2+8*x+2,x^5+x^4-6*x^3-x^2+9*x-5,x^5+x^4-6*x^3-3*x^2+9*x,x^4+2*x^3-3*x^2-5*x-1,3*x^5+4*x^4-18*x^3-15*x^2+27*x+3,3*x^5+x^4-19*x^3+27*x-6,-2*x^5-x^4+14*x^3+3*x^2-23*x,-x^5-2*x^4+3*x^3+3*x^2+x+6,-x^5-2*x^4+6*x^3+11*x^2-7*x-12,-x^5-2*x^4+6*x^3+10*x^2-8*x-9,-1,4*x^5+4*x^4-24*x^3-14*x^2+34*x+3,-4*x^5-4*x^4+24*x^3+12*x^2-35*x-3,-2*x^5-5*x^4+4*x^3+13*x^2+8*x-2,-3*x^5-5*x^4+12*x^3+12*x^2-8*x+4,-5*x^5-9*x^4+20*x^3+31*x^2-16*x-12,-x^5-x^4+7*x^3+2*x^2-9*x-1,4*x^4+5*x^3-16*x^2-12*x+5], x^6-7*x^4+2*x^3+12*x^2-5*x-2];
E[671,3]=[[x,-31072255429176/2375081017244365*x^20+1454323883055/475016203448873*x^19+1108689119035839/2375081017244365*x^18-60812279963341/475016203448873*x^17-16642242246279208/2375081017244365*x^16+5186723845285309/2375081017244365*x^15+136330784978538154/2375081017244365*x^14-46942431873681234/2375081017244365*x^13-661245790998621024/2375081017244365*x^12+244244793983123622/2375081017244365*x^11+1928339291558410958/2375081017244365*x^10-737953131728860954/2375081017244365*x^9-3288318866533040961/2375081017244365*x^8+1246558440353898561/2375081017244365*x^7+3055321177153510054/2375081017244365*x^6-1079116369850324064/2375081017244365*x^5-1360048022682682579/2375081017244365*x^4+402242185147319109/2375081017244365*x^3+252464820834491711/2375081017244365*x^2-53402524310403576/2375081017244365*x-16840771353983021/2375081017244365,-2068241750403/2375081017244365*x^20-7659511966971/475016203448873*x^19+92659529385282/2375081017244365*x^18+263017900648069/475016203448873*x^17-1861460722302184/2375081017244365*x^16-18873948600361763/2375081017244365*x^15+21453901316601352/2375081017244365*x^14+146363521849142668/2375081017244365*x^13-152474219310194427/2375081017244365*x^12-661226285553141434/2375081017244365*x^11+676879256000549194/2375081017244365*x^10+1745222686812511268/2375081017244365*x^9-1834211041071205728/2375081017244365*x^8-2546061605626104822/2375081017244365*x^7+2862257814544278832/2375081017244365*x^6+1781260401060557323/2375081017244365*x^5-2311467773849214907/2375081017244365*x^4-403552631321154563/2375081017244365*x^3+784080037118294213/2375081017244365*x^2+6721587011869672/2375081017244365*x-86174878344617523/2375081017244365,82420471535102/2375081017244365*x^20+44387192107744/2375081017244365*x^19-3018368778176369/2375081017244365*x^18-1435124535803637/2375081017244365*x^17+46953460676103774/2375081017244365*x^16+19229860238189722/2375081017244365*x^15-404395508842602434/2375081017244365*x^14-137919100517131854/2375081017244365*x^13+2108113637483553352/2375081017244365*x^12+569960270684907896/2375081017244365*x^11-6838178804805961859/2375081017244365*x^10-1353928795587408302/2375081017244365*x^9+13694930282198703528/2375081017244365*x^8+1706193186809727098/2375081017244365*x^7-16289292811772849022/2375081017244365*x^6-852872211284406357/2375081017244365*x^5+10605975634776017564/2375081017244365*x^4-86337123339297881/2375081017244365*x^3-3211125213986254341/2375081017244365*x^2+86397016827781074/2375081017244365*x+329577197107442888/2375081017244365,-1,-29991289901131/475016203448873*x^20-125561680971216/2375081017244365*x^19+5532817456164734/2375081017244365*x^18+4253823680441188/2375081017244365*x^17-86846050752133422/2375081017244365*x^16-12010118775941942/475016203448873*x^15+756478708429609464/2375081017244365*x^14+457109999678253008/2375081017244365*x^13-4001029636017256016/2375081017244365*x^12-405312285955147070/475016203448873*x^11+13218324967326168272/2375081017244365*x^10+1052085633565743632/475016203448873*x^9-27055408994299358144/2375081017244365*x^8-1513137378948706578/475016203448873*x^7+32893296133817721556/2375081017244365*x^6+1029088925416816833/475016203448873*x^5-21692943014282790854/2375081017244365*x^4-975241027300625118/2375081017244365*x^3+6462786213796057026/2375081017244365*x^2-54292287152939388/2375081017244365*x-640821114099480754/2375081017244365,43218519235074/2375081017244365*x^20-2650787774426/475016203448873*x^19-1510926704861996/2375081017244365*x^18+95789372370652/475016203448873*x^17+22054608273623277/2375081017244365*x^16-7163018779110666/2375081017244365*x^15-173730140490910056/2375081017244365*x^14+56890031966808836/2375081017244365*x^13+796008846815916166/2375081017244365*x^12-254986892635809703/2375081017244365*x^11-2126289902538622292/2375081017244365*x^10+626612683403255656/2375081017244365*x^9+3128009596583601074/2375081017244365*x^8-727824928600114764/2375081017244365*x^7-2184684530508933986/2375081017244365*x^6+185054466948830746/2375081017244365*x^5+465309725276444501/2375081017244365*x^4+219726609989039024/2375081017244365*x^3+7408021543160546/2375081017244365*x^2-57778243697044441/2375081017244365*x+1121471638682544/2375081017244365,-110218504176472/2375081017244365*x^20+78178401114113/2375081017244365*x^19+3935292386565056/2375081017244365*x^18-2882518200868919/2375081017244365*x^17-11796706725489669/475016203448873*x^16+44413738497594378/2375081017244365*x^15+481131649695335216/2375081017244365*x^14-369789872052713062/2375081017244365*x^13-463083373379694666/475016203448873*x^12+1795994848881081054/2375081017244365*x^11+1333873524651427994/475016203448873*x^10-5125616360060721908/2375081017244365*x^9-2235612977002454792/475016203448873*x^8+8252722013257604972/2375081017244365*x^7+2037291944339465108/475016203448873*x^6-6831678585843112708/2375081017244365*x^5-4500724381981355991/2375081017244365*x^4+2392949910975620742/2375081017244365*x^3+878110890590121749/2375081017244365*x^2-254295260619674433/2375081017244365*x-11889906997821224/475016203448873,137379063646548/2375081017244365*x^20+22141517272887/475016203448873*x^19-5080245954706242/2375081017244365*x^18-749805200782951/475016203448873*x^17+79957301527910629/2375081017244365*x^16+52932026678631493/2375081017244365*x^15-698681404750052342/2375081017244365*x^14-403193802818509238/2375081017244365*x^13+3708869095454910662/2375081017244365*x^12+1789498180490551644/2375081017244365*x^11-12303266419025393694/2375081017244365*x^10-4651601754607402258/2375081017244365*x^9+25289760181597356558/2375081017244365*x^8+6703036782543024752/2375081017244365*x^7-30861206574089487082/2375081017244365*x^6-4583077558792648548/2375081017244365*x^5+20390967958840587677/2375081017244365*x^4+902520169761934308/2375081017244365*x^3-6066747823678402123/2375081017244365*x^2+27489291344320533/2375081017244365*x+604565261323509423/2375081017244365,79781104174313/2375081017244365*x^20-92729294109237/2375081017244365*x^19-2802285849298839/2375081017244365*x^18+3364876226201841/2375081017244365*x^17+8202535908544792/475016203448873*x^16-51119828761726952/2375081017244365*x^15-322719137777570844/2375081017244365*x^14+420475345413085558/2375081017244365*x^13+293241795019013450/475016203448873*x^12-2021290016889054866/2375081017244365*x^11-763980197700564742/475016203448873*x^10+5717641415872840557/2375081017244365*x^9+1047197120954422096/475016203448873*x^8-9117171196966033238/2375081017244365*x^7-559970427762150699/475016203448873*x^6+7408139400185820697/2375081017244365*x^5-467922833014347411/2375081017244365*x^4-2463711132089726153/2375081017244365*x^3+580951715212874539/2375081017244365*x^2+237814231159387112/2375081017244365*x-13195736042789334/475016203448873,133130281701347/2375081017244365*x^20-84615775242073/2375081017244365*x^19-4718979772175581/2375081017244365*x^18+3199836540019349/2375081017244365*x^17+14044162164343716/475016203448873*x^16-50434382572965553/2375081017244365*x^15-568726116155235926/2375081017244365*x^14+428482218374286792/2375081017244365*x^13+543599536418120782/475016203448873*x^12-2117942350618303744/2375081017244365*x^11-1555489940408110144/475016203448873*x^10+6131080548240961738/2375081017244365*x^9+2592479391488850354/475016203448873*x^8-9955190554093769232/2375081017244365*x^7-2359836300623175680/475016203448873*x^6+8199881788470704993/2375081017244365*x^5+5344738039494559181/2375081017244365*x^4-2767381390049000287/2375081017244365*x^3-1226092157003005199/2375081017244365*x^2+290027211515493648/2375081017244365*x+25727049168926665/475016203448873,32622277115711/2375081017244365*x^20+205273025416718/2375081017244365*x^19-1326971809369821/2375081017244365*x^18-7266653613776174/2375081017244365*x^17+23523406717463449/2375081017244365*x^16+107706297245014681/2375081017244365*x^15-237010597998070296/2375081017244365*x^14-173040496199958058/475016203448873*x^13+1480928380285866592/2375081017244365*x^12+4070967730041852478/2375081017244365*x^11-5865453229440164034/2375081017244365*x^10-11309698691661786736/2375081017244365*x^9+14440311810395494898/2375081017244365*x^8+17767267326316811464/2375081017244365*x^7-20817948163165791442/2375081017244365*x^6-14185955417575890871/2375081017244365*x^5+15671414902144932206/2375081017244365*x^4+913483661442220801/475016203448873*x^3-4894841050404417684/2375081017244365*x^2-90711156823897539/475016203448873*x+475463351205505103/2375081017244365,9282276220133/2375081017244365*x^20+148481762358563/2375081017244365*x^19-413878747311454/2375081017244365*x^18-5240781262473594/2375081017244365*x^17+1647964179879581/475016203448873*x^16+77427085977891158/2375081017244365*x^15-94039854617550404/2375081017244365*x^14-619399446540184892/2375081017244365*x^13+132464282630532298/475016203448873*x^12+2896906112459053924/2375081017244365*x^11-582997402749174412/475016203448873*x^10-7970932527957049728/2375081017244365*x^9+1563971789170605258/475016203448873*x^8+12316466023191502722/2375081017244365*x^7-2403360506916998030/475016203448873*x^6-9523267871247450173/2375081017244365*x^5+9428841003204739969/2375081017244365*x^4+2808958560681472992/2375081017244365*x^3-2985395711199069866/2375081017244365*x^2-197902933532349963/2375081017244365*x+57473678621886342/475016203448873,9241647901798/2375081017244365*x^20+38564670200543/2375081017244365*x^19-399166224863124/2375081017244365*x^18-1369693168415719/2375081017244365*x^17+1505540525134587/475016203448873*x^16+20201108123443598/2375081017244365*x^15-80517984429060114/2375081017244365*x^14-159369337187687762/2375081017244365*x^13+106230516415781142/475016203448873*x^12+720136174027073654/2375081017244365*x^11-440784656981394626/475016203448873*x^10-1841059853141396113/2375081017244365*x^9+1127892099646587248/475016203448873*x^8+2414000602714144262/2375081017244365*x^7-1682202385741540817/475016203448873*x^6-1152242870584816848/2375081017244365*x^5+6601941872121557209/2375081017244365*x^4-237889442824701028/2375081017244365*x^3-2257431771663731241/2375081017244365*x^2+138590564568404547/2375081017244365*x+51717056375341612/475016203448873,17911157355575/475016203448873*x^20+206164284199662/2375081017244365*x^19-3418317274940498/2375081017244365*x^18-7228705211873006/2375081017244365*x^17+55980848870223844/2375081017244365*x^16+21185315533045610/475016203448873*x^15-514138099716214628/2375081017244365*x^14-839700652552085561/2375081017244365*x^13+2902307675272747452/2375081017244365*x^12+778353171391836160/475016203448873*x^11-10362707591004323184/2375081017244365*x^10-2125116444989433456/475016203448873*x^9+23151766375645570888/2375081017244365*x^8+3266018332238652846/475016203448873*x^7-30804269130211487722/2375081017244365*x^6-2514857678169384937/475016203448873*x^5+22019341508028317468/2375081017244365*x^4+3677851927744043006/2375081017244365*x^3-6867960468468249147/2375081017244365*x^2-249797061594271504/2375081017244365*x+676567164767154948/2375081017244365,-194810895704881/2375081017244365*x^20+36243922358607/2375081017244365*x^19+7043031991230866/2375081017244365*x^18-1484564900728311/2375081017244365*x^17-107504013719365659/2375081017244365*x^16+25158766650785264/2375081017244365*x^15+901048107852354686/2375081017244365*x^14-45758662490681040/475016203448873*x^13-4520024562904712442/2375081017244365*x^12+1210188079705844792/2375081017244365*x^11+13899269278838178214/2375081017244365*x^10-3779376125785034584/2375081017244365*x^9-25905011933677801508/2375081017244365*x^8+6804653654664818226/2375081017244365*x^7+28148934166016273102/2375081017244365*x^6-6681575913312492979/2375081017244365*x^5-16592846694645419451/2375081017244365*x^4+632131634516812728/475016203448873*x^3+4664863877319350509/2375081017244365*x^2-103229888073862317/475016203448873*x-457243759783607328/2375081017244365,26501613132337/2375081017244365*x^20-176192748321701/2375081017244365*x^19-793156337589774/2375081017244365*x^18+6285706378861523/2375081017244365*x^17+8551070678049429/2375081017244365*x^16-93672565846807523/2375081017244365*x^15-28965887799234234/2375081017244365*x^14+753996785682255006/2375081017244365*x^13-165906996093037618/2375081017244365*x^12-3536653900363233404/2375081017244365*x^11+1911836293960820616/2375081017244365*x^10+9714359541584455308/2375081017244365*x^9-7356121718062827672/2375081017244365*x^8-14877946129202224042/2375081017244365*x^7+13671499117753609438/2375081017244365*x^6+11266849661474236213/2375081017244365*x^5-12018046645123919481/2375081017244365*x^4-3173563329141291706/2375081017244365*x^3+4087903908412706619/2375081017244365*x^2+225359499276039979/2375081017244365*x-411907750212623787/2375081017244365,1,-44037843140178/2375081017244365*x^20-44898784011921/2375081017244365*x^19+1609963286845941/2375081017244365*x^18+1551136984243963/2375081017244365*x^17-24933906239001596/2375081017244365*x^16-22351628961636973/2375081017244365*x^15+213235265549276496/2375081017244365*x^14+174152103081481686/2375081017244365*x^13-1100963389109199158/2375081017244365*x^12-795227709447104884/2375081017244365*x^11+3527813997556671196/2375081017244365*x^10+2155658272570218638/2375081017244365*x^9-6952646824602001912/2375081017244365*x^8-3346774329522046542/2375081017244365*x^7+8060339327856658848/2375081017244365*x^6+2706467390703598668/2375081017244365*x^5-4948181939988014861/2375081017244365*x^4-947741639876266581/2375081017244365*x^3+1249520421536100839/2375081017244365*x^2+121385670650568684/2375081017244365*x-87343788121969057/2375081017244365,-15756596120515/475016203448873*x^20+7526403774638/475016203448873*x^19+558022873328910/475016203448873*x^18-294682699726119/475016203448873*x^17-8297294852592283/475016203448873*x^16+4782810038578377/475016203448873*x^15+67161524631576116/475016203448873*x^14-41695537726347740/475016203448873*x^13-320996235555829326/475016203448873*x^12+211206423344323312/475016203448873*x^11+920889941963929544/475016203448873*x^10-627968338900799982/475016203448873*x^9-1552639546988934284/475016203448873*x^8+1057596126968365294/475016203448873*x^7+1474914893696095698/475016203448873*x^6-930519804638331339/475016203448873*x^5-768884966597403684/475016203448873*x^4+364912970237109670/475016203448873*x^3+238189669276666767/475016203448873*x^2-50925943226043455/475016203448873*x-32127024391834575/475016203448873,-237311218081828/2375081017244365*x^20+21355401493219/2375081017244365*x^19+8467999021488651/2375081017244365*x^18-1102751207050152/2375081017244365*x^17-127242989553763181/2375081017244365*x^16+21408744597579572/2375081017244365*x^15+1045558558750865836/2375081017244365*x^14-210860430213080914/2375081017244365*x^13-5106947485562717938/2375081017244365*x^12+1158479664457335456/2375081017244365*x^11+15112358956232726446/2375081017244365*x^10-3606377911483167442/2375081017244365*x^9-26549586746833790322/2375081017244365*x^8+6130402287047916088/2375081017244365*x^7+26234765899482700028/2375081017244365*x^6-5205999149394227492/2375081017244365*x^5-13309256843534807261/2375081017244365*x^4+1819851755848241259/2375081017244365*x^3+3106941003678129354/2375081017244365*x^2-217658647641013371/2375081017244365*x-246107474680964272/2375081017244365,154441596178454/2375081017244365*x^20+13562452938466/2375081017244365*x^19-1122540979327506/475016203448873*x^18-244131094409508/2375081017244365*x^17+86366901876572519/2375081017244365*x^16-13888049083046/2375081017244365*x^15-146522163908631716/475016203448873*x^14+30418388112891048/2375081017244365*x^13+3738970746516952632/2375081017244365*x^12-292795765104139928/2375081017244365*x^11-11777528564097487614/2375081017244365*x^10+1269903693136465546/2375081017244365*x^9+22661604796091501613/2375081017244365*x^8-2893947755367226349/2375081017244365*x^7-25566093630756468222/2375081017244365*x^6+3494539248269324316/2375081017244365*x^5+3114470822880037958/475016203448873*x^4-2024556010312289248/2375081017244365*x^3-875358467299706616/475016203448873*x^2+396762738195883587/2375081017244365*x+417789902777666318/2375081017244365,-200813282489721/2375081017244365*x^20-141647601099373/2375081017244365*x^19+7416412866706566/2375081017244365*x^18+4758864641598204/2375081017244365*x^17-116688222537552214/2375081017244365*x^16-66568037581760686/2375081017244365*x^15+1020314985614289626/2375081017244365*x^14+100232124914456146/475016203448873*x^13-5424603594677108332/2375081017244365*x^12-2189217676122233008/2375081017244365*x^11+18033652088868178434/2375081017244365*x^10+5558815299386911186/2375081017244365*x^9-37149809371054865408/2375081017244365*x^8-7706613377113913304/2375081017244365*x^7+45385589836489501682/2375081017244365*x^6+4859670828604727801/2375081017244365*x^5-29939126263099737141/2375081017244365*x^4-129799552173216734/475016203448873*x^3+8843741232035408604/2375081017244365*x^2-22008906921446224/475016203448873*x-867899161484232708/2375081017244365,-93460112935857/2375081017244365*x^20-9845561103776/2375081017244365*x^19+3486991627293497/2375081017244365*x^18+238655873796983/2375081017244365*x^17-55347951315377043/2375081017244365*x^16-1724241384013527/2375081017244365*x^15+487439510765498152/2375081017244365*x^14-505481948737886/475016203448873*x^13-2606061570740240174/2375081017244365*x^12+100948701994208774/2375081017244365*x^11+8706692928569877268/2375081017244365*x^10-585992628171703088/2375081017244365*x^9-18070703242564796656/2375081017244365*x^8+1602380948943572532/2375081017244365*x^7+22480516809497335294/2375081017244365*x^6-2257294911737678943/2375081017244365*x^5-15536764641261461872/2375081017244365*x^4+298039104639732389/475016203448873*x^3+5136367653772532183/2375081017244365*x^2-62343894085857549/475016203448873*x-579256707420800001/2375081017244365,-170972514740528/2375081017244365*x^20-21630570037018/475016203448873*x^19+6247681421061007/2375081017244365*x^18+721248564265746/475016203448873*x^17-96817070617769084/2375081017244365*x^16-50006195395841963/2375081017244365*x^15+828988383845002212/2375081017244365*x^14+373058736577041228/2375081017244365*x^13-4285125785758366442/2375081017244365*x^12-1616929540729367389/2375081017244365*x^11+13733824771706683614/2375081017244365*x^10+4091916300982103498/2375081017244365*x^9-27034487072313750788/2375081017244365*x^8-5713912243745712932/2375081017244365*x^7+31346387510178390262/2375081017244365*x^6+3728943948316399008/2375081017244365*x^5-19627244749031239927/2375081017244365*x^4-634839775166857903/2375081017244365*x^3+5597819279637930248/2375081017244365*x^2-56398108054449498/2375081017244365*x-528821169607219603/2375081017244365], x^21-37*x^19+2*x^18+582*x^17-65*x^16-5074*x^15+876*x^14+26808*x^13-6340*x^12-88228*x^11+26710*x^10+179236*x^9-66498*x^8-215174*x^7+94807*x^6+138664*x^5-70301*x^4-39180*x^3+21784*x^2+3447*x-2082];
E[671,4]=[[x,-91424960248/2584793613763*x^18+290362672773/2584793613763*x^17+2163987038842/2584793613763*x^16-7229272850781/2584793613763*x^15-19906864553003/2584793613763*x^14+71928744979165/2584793613763*x^13+89628292185599/2584793613763*x^12-369628093368947/2584793613763*x^11-196989043393835/2584793613763*x^10+1054469865039305/2584793613763*x^9+148090368081498/2584793613763*x^8-1669129966062270/2584793613763*x^7+134975892121205/2584793613763*x^6+1394627423083597/2584793613763*x^5-249311959857695/2584793613763*x^4-557432190432943/2584793613763*x^3+94000023879346/2584793613763*x^2+76490070141423/2584793613763*x-5331850884506/2584793613763,-8867201804/2584793613763*x^18+28397403169/2584793613763*x^17+153963852608/2584793613763*x^16-585160018840/2584793613763*x^15-420015084215/2584793613763*x^14+3896315485489/2584793613763*x^13-7816695786848/2584793613763*x^12-4170318228153/2584793613763*x^11+74752830871939/2584793613763*x^10-61181608853165/2584793613763*x^9-280962923414937/2584793613763*x^8+283316198675975/2584793613763*x^7+514007340828783/2584793613763*x^6-474088918297633/2584793613763*x^5-431277028203763/2584793613763*x^4+300469578965604/2584793613763*x^3+132758950019250/2584793613763*x^2-50083912844543/2584793613763*x-7406641729547/2584793613763,386309035457/2584793613763*x^18-1365268186173/2584793613763*x^17-8692512067202/2584793613763*x^16+33566135421448/2584793613763*x^15+73247230474246/2584793613763*x^14-327363575480166/2584793613763*x^13-276164257045428/2584793613763*x^12+1627427645433792/2584793613763*x^11+350590014826373/2584793613763*x^10-4379858371730078/2584793613763*x^9+537601793521600/2584793613763*x^8+6212724005068246/2584793613763*x^7-1859899256299250/2584793613763*x^6-4173706077317173/2584793613763*x^5+1430231827654368/2584793613763*x^4+1122823610741571/2584793613763*x^3-279954024772659/2584793613763*x^2-99943970595050/2584793613763*x+8519539396534/2584793613763,1,-33000843061/2584793613763*x^18+9226018724/2584793613763*x^17+952674472052/2584793613763*x^16-63920640873/2584793613763*x^15-11360126969362/2584793613763*x^14-1695174774014/2584793613763*x^13+72549730799666/2584793613763*x^12+25474132921836/2584793613763*x^11-268268593424606/2584793613763*x^10-139151402025820/2584793613763*x^9+579777728660434/2584793613763*x^8+365230691059814/2584793613763*x^7-710631646617024/2584793613763*x^6-469901231765576/2584793613763*x^5+475074283604528/2584793613763*x^4+280221263313475/2584793613763*x^3-168279303014270/2584793613763*x^2-58397797289878/2584793613763*x+22240856862231/2584793613763,-135366732638/2584793613763*x^18+702247993404/2584793613763*x^17+2354424449793/2584793613763*x^16-17014402112672/2584793613763*x^15-8705280475438/2584793613763*x^14+162360558102966/2584793613763*x^13-67936667379744/2584793613763*x^12-780233756236695/2584793613763*x^11+689652892397450/2584793613763*x^10+1983770046028082/2584793613763*x^9-2343798082994664/2584793613763*x^8-2528316714993914/2584793613763*x^7+3618384453572424/2584793613763*x^6+1335756238901982/2584793613763*x^5-2346195834404427/2584793613763*x^4-195219138948700/2584793613763*x^3+489826800003680/2584793613763*x^2+10243794435787/2584793613763*x-19745505136944/2584793613763,470244867539/2584793613763*x^18-1446972736943/2584793613763*x^17-11152661369559/2584793613763*x^16+35719187859626/2584793613763*x^15+102874693026857/2584793613763*x^14-350329053379797/2584793613763*x^13-465385521850041/2584793613763*x^12+1755999440409027/2584793613763*x^11+1037966656958795/2584793613763*x^10-4788082181613627/2584793613763*x^9-869017369338461/2584793613763*x^8+6948196911299851/2584793613763*x^7-373491414926991/2584793613763*x^6-4862162297400797/2584793613763*x^5+794716359191193/2584793613763*x^4+1355590061596868/2584793613763*x^3-253629161825580/2584793613763*x^2-93053759129998/2584793613763*x+25212189505533/2584793613763,289606156659/2584793613763*x^18-684955217697/2584793613763*x^17-7564046592845/2584793613763*x^16+17180182879161/2584793613763*x^15+80402168595053/2584793613763*x^14-172153550938419/2584793613763*x^13-451667956997535/2584793613763*x^12+889034091013635/2584793613763*x^11+1447656789947581/2584793613763*x^10-2534664501417235/2584793613763*x^9-2646349432846753/2584793613763*x^8+3959333582916645/2584793613763*x^7+2583224107649089/2584793613763*x^6-3167837396315831/2584793613763*x^5-1143186439735635/2584793613763*x^4+1124181450796846/2584793613763*x^3+118703419509528/2584793613763*x^2-131118392504714/2584793613763*x+17634556239720/2584793613763,-653431966699/2584793613763*x^18+1846400209389/2584793613763*x^17+15821445358602/2584793613763*x^16-45190864580979/2584793613763*x^15-151007332765533/2584793613763*x^14+437794075615717/2584793613763*x^13+725548805455077/2584793613763*x^12-2154927501328327/2584793613763*x^11-1830114976878403/2584793613763*x^10+5713585774599448/2584793613763*x^9+2213930791208257/2584793613763*x^8-7913312756680755/2584793613763*x^7-803117332757034/2584793613763*x^6+5069459102664943/2584793613763*x^5-321989702482311/2584793613763*x^4-1154954724169936/2584793613763*x^3+167505682511138/2584793613763*x^2+48352198905997/2584793613763*x-11612400265732/2584793613763,540140907463/2584793613763*x^18-1980216847675/2584793613763*x^17-11845224647038/2584793613763*x^16+48538876204854/2584793613763*x^15+94528926029981/2584793613763*x^14-471097516704989/2584793613763*x^13-305820404585759/2584793613763*x^12+2322869312751007/2584793613763*x^11+72118881145551/2584793613763*x^10-6159288149854545/2584793613763*x^9+1928687542187331/2584793613763*x^8+8477816624370511/2584793613763*x^7-4328784307129999/2584793613763*x^6-5305045381685399/2584793613763*x^5+3142232257578237/2584793613763*x^4+1195174480226386/2584793613763*x^3-610209750459424/2584793613763*x^2-94321010720963/2584793613763*x+5522049287791/2584793613763,-126207607550/2584793613763*x^18-52132042234/2584793613763*x^17+3977395426903/2584793613763*x^16+1724673586142/2584793613763*x^15-51671094703640/2584793613763*x^14-23200439791410/2584793613763*x^13+357328205713064/2584793613763*x^12+162807854995570/2584793613763*x^11-1416121122966410/2584793613763*x^10-636445477472746/2584793613763*x^9+3220130992358578/2584793613763*x^8+1372002063902018/2584793613763*x^7-3977442596001300/2584793613763*x^6-1524488122727000/2584793613763*x^5+2358276999825460/2584793613763*x^4+777603803187460/2584793613763*x^3-515293710791082/2584793613763*x^2-128061780385321/2584793613763*x+21884370050160/2584793613763,-631920055384/2584793613763*x^18+2122373738258/2584793613763*x^17+14480828225807/2584793613763*x^16-52253269453541/2584793613763*x^15-126047080462131/2584793613763*x^14+510931332528189/2584793613763*x^13+509365979167059/2584793613763*x^12-2552325206290427/2584793613763*x^11-834928454719787/2584793613763*x^10+6933684308823575/2584793613763*x^9-287652252951083/2584793613763*x^8-10025834114779397/2584793613763*x^7+2484047429806253/2584793613763*x^6+7025619843820943/2584793613763*x^5-2327411508419833/2584793613763*x^4-2058553811208625/2584793613763*x^3+625700508442113/2584793613763*x^2+193946839441538/2584793613763*x-27606946275166/2584793613763,-324855580237/2584793613763*x^18+929684019777/2584793613763*x^17+7958487601547/2584793613763*x^16-23298207332750/2584793613763*x^15-77013801697495/2584793613763*x^14+233668461803861/2584793613763*x^13+375689234383901/2584793613763*x^12-1212087632377115/2584793613763*x^11-961959858628859/2584793613763*x^10+3493411975082372/2584793613763*x^9+1172131747209949/2584793613763*x^8-5579853952192585/2584793613763*x^7-380695051919366/2584793613763*x^6+4669523672087587/2584793613763*x^5-289728100407615/2584793613763*x^4-1835531128414568/2584793613763*x^3+149485810351816/2584793613763*x^2+245864704719378/2584793613763*x-1728992516513/2584793613763,667053774001/2584793613763*x^18-2073518697502/2584793613763*x^17-15687382805568/2584793613763*x^16+50975871409141/2584793613763*x^15+142805031779724/2584793613763*x^14-497319368125161/2584793613763*x^13-631312130001732/2584793613763*x^12+2476264438560888/2584793613763*x^11+1337848649599884/2584793613763*x^10-6699248822272050/2584793613763*x^9-894714906330568/2584793613763*x^8+9653829449549284/2584793613763*x^7-979682295497320/2584793613763*x^6-6808903257403626/2584793613763*x^5+1413593942328654/2584793613763*x^4+2131591122445211/2584793613763*x^3-423502030128051/2584793613763*x^2-292495736847350/2584793613763*x+31271325092321/2584793613763,394260622308/2584793613763*x^18-1177446431487/2584793613763*x^17-9744615511827/2584793613763*x^16+29840262105659/2584793613763*x^15+95912110193007/2584793613763*x^14-304205513298623/2584793613763*x^13-483595732205861/2584793613763*x^12+1616250820877853/2584793613763*x^11+1324739334887619/2584793613763*x^10-4828809072071353/2584793613763*x^9-1890547222300901/2584793613763*x^8+8150205130892255/2584793613763*x^7+1132379007908433/2584793613763*x^6-7412648148775673/2584793613763*x^5+35499672951951/2584793613763*x^4+3230821721123755/2584793613763*x^3-263289773732398/2584793613763*x^2-475657543182150/2584793613763*x+39424200990090/2584793613763,-41934302944/2584793613763*x^18+29126385773/2584793613763*x^17+1203889332335/2584793613763*x^16-429746290348/2584793613763*x^15-14426087244839/2584793613763*x^14-122616260467/2584793613763*x^13+93756890671341/2584793613763*x^12+34889803878739/2584793613763*x^11-356798061335945/2584793613763*x^10-249951897898507/2584793613763*x^9+798656807810601/2584793613763*x^8+761909569355997/2584793613763*x^7-1014819465634721/2584793613763*x^6-1075253862585589/2584793613763*x^5+709741848069463/2584793613763*x^4+600397627560323/2584793613763*x^3-277328323271248/2584793613763*x^2-62200035789358/2584793613763*x+38376019977371/2584793613763,-1,328250013152/2584793613763*x^18-614518510513/2584793613763*x^17-9071126062790/2584793613763*x^16+15692953665807/2584793613763*x^15+103278437572519/2584793613763*x^14-161055313183715/2584793613763*x^13-629049699682347/2584793613763*x^12+859300354701587/2584793613763*x^11+2212753865067903/2584793613763*x^10-2567821643553667/2584793613763*x^9-4496318330588791/2584793613763*x^8+4313983569986043/2584793613763*x^7+4952666771484303/2584793613763*x^6-3884490609206089/2584793613763*x^5-2529065562151997/2584793613763*x^4+1641980368615745/2584793613763*x^3+397800802278104/2584793613763*x^2-224439711134869/2584793613763*x-8313562095300/2584793613763,28484788885/2584793613763*x^18+303222995125/2584793613763*x^17-1819794510203/2584793613763*x^16-7254414176124/2584793613763*x^15+34305168335788/2584793613763*x^14+68228791437648/2584793613763*x^13-300875031863726/2584793613763*x^12-322774649042064/2584793613763*x^11+1407358296862820/2584793613763*x^10+808437356413088/2584793613763*x^9-3607175258060136/2584793613763*x^8-1026648318172244/2584793613763*x^7+4806296348377608/2584793613763*x^6+598171067446178/2584793613763*x^5-2806121893134122/2584793613763*x^4-220571056467769/2584793613763*x^3+438024126507903/2584793613763*x^2+71694015502457/2584793613763*x+9543219616976/2584793613763,265975447356/2584793613763*x^18-840709371726/2584793613763*x^17-6589227872773/2584793613763*x^16+21492214728036/2584793613763*x^15+65149733387865/2584793613763*x^14-221156953065069/2584793613763*x^13-331840724068537/2584793613763*x^12+1185227969909189/2584793613763*x^11+932309219105179/2584793613763*x^10-3560322269214697/2584793613763*x^9-1427229458344247/2584793613763*x^8+5989269768349631/2584793613763*x^7+1091155591872845/2584793613763*x^6-5317192402547633/2584793613763*x^5-333220849366867/2584793613763*x^4+2167758636244225/2584793613763*x^3+9739898374661/2584793613763*x^2-280898389525802/2584793613763*x+527193577489/2584793613763,593768206224/2584793613763*x^18-1848503687720/2584793613763*x^17-13798049815455/2584793613763*x^16+45083709464392/2584793613763*x^15+123136863171124/2584793613763*x^14-434874111019848/2584793613763*x^13-524443589646716/2584793613763*x^12+2128963560537612/2584793613763*x^11+1013300716849086/2584793613763*x^10-5601659574736202/2584793613763*x^9-352770165081655/2584793613763*x^8+7655356773535073/2584793613763*x^7-1432135113052102/2584793613763*x^6-4774489196574870/2584793613763*x^5+1577565566818868/2584793613763*x^4+1090957592675482/2584793613763*x^3-453268017972324/2584793613763*x^2-119499125625277/2584793613763*x+36230956212676/2584793613763,-1457693908770/2584793613763*x^18+4095889726638/2584793613763*x^17+35484423175150/2584793613763*x^16-100605856557917/2584793613763*x^15-341458728139009/2584793613763*x^14+979054272382243/2584793613763*x^13+1664058784007997/2584793613763*x^12-4846478627303583/2584793613763*x^11-4326386736075125/2584793613763*x^10+12942253112083425/2584793613763*x^9+5705001088187123/2584793613763*x^8-18096722155556351/2584793613763*x^7-3170460585514443/2584793613763*x^6+11777480743513495/2584793613763*x^5+508416206150057/2584793613763*x^4-2826151745553933/2584793613763*x^3-8317832278715/2584793613763*x^2+149406346244049/2584793613763*x-4122092934668/2584793613763,-854317780136/2584793613763*x^18+2479364227133/2584793613763*x^17+20916557822745/2584793613763*x^16-61686090699814/2584793613763*x^15-203286518484210/2584793613763*x^14+612081239530428/2584793613763*x^13+1008530342655888/2584793613763*x^12-3123322267773508/2584793613763*x^11-2712823912704106/2584793613763*x^10+8769762588091132/2584793613763*x^9+3842482124734410/2584793613763*x^8-13420359091547188/2584793613763*x^7-2541570923725422/2584793613763*x^6+10480244903532786/2584793613763*x^5+619391815988254/2584793613763*x^4-3762642464743978/2584793613763*x^3+22695996344067/2584793613763*x^2+503452190907001/2584793613763*x-24665388001250/2584793613763,123919917381/2584793613763*x^18-1004258986230/2584793613763*x^17-1421597420302/2584793613763*x^16+25030836206703/2584793613763*x^15-9975713284492/2584793613763*x^14-249480641349016/2584793613763*x^13+236354327573538/2584793613763*x^12+1283829066772787/2584793613763*x^11-1495210005321514/2584793613763*x^10-3653873627641322/2584793613763*x^9+4481947913619856/2584793613763*x^8+5695237503393580/2584793613763*x^7-6696816540734002/2584793613763*x^6-4529524844602348/2584793613763*x^5+4521110724258853/2584793613763*x^4+1638112862941245/2584793613763*x^3-1027451489026736/2584793613763*x^2-197341579320552/2584793613763*x+20298554563345/2584793613763], x^19-5*x^18-18*x^17+122*x^16+78*x^15-1177*x^14+387*x^13+5755*x^12-4673*x^11-15053*x^10+16875*x^9+20141*x^8-28019*x^7-11589*x^6+21077*x^5+1674*x^4-6404*x^3+241*x^2+643*x-43];
E[689,1]=[[-1,-2,-2,2,2,-1,-2,4,6,6,-8,-6,-10,-12,6,-1,-6,10,-8,-12,14,-10,12,10,-14], x-1];
E[689,2]=[[1,x,-x,-x^2-2*x+2,2*x^2+3*x-8,-1,-2*x^2-5*x+4,2*x,2*x^2+6*x-6,-3*x^2-4*x+10,2*x^2+4*x-8,-4*x^2-8*x+10,-x^2+2*x+2,2*x^2+6*x-8,-x^2-2*x+6,-1,2*x^2+6*x-10,4*x^2+4*x-14,4*x^2+4*x-8,-6*x^2-12*x+20,5*x^2+6*x-14,-5*x^2-8*x+10,-4*x^2-8*x+20,2*x^2+4*x-14,4*x^2+8*x-6], x^3+x^2-5*x+2];
E[689,3]=[[-136891888214509/2969597335666848*x^17+15357201484277/989865778555616*x^16+820366244831449/494932889277808*x^15-1860228548176549/2969597335666848*x^14-23252873354926477/989865778555616*x^13+6579343329599939/742399333916712*x^12+494838421804963787/2969597335666848*x^11-165978452576689955/2969597335666848*x^10-614791710124642173/989865778555616*x^9+40107482266559377/247466444638904*x^8+1157464833923348793/989865778555616*x^7-627030811889394523/2969597335666848*x^6-1477885346684576881/1484798667833424*x^5+485731985154220037/2969597335666848*x^4+321730241248294959/989865778555616*x^3-85498442956606897/1484798667833424*x^2-16928592253094647/742399333916712*x+1279299204536381/371199666958356,x,-3806920643983/494932889277808*x^17+2993149035169/494932889277808*x^16+64994972475707/247466444638904*x^15-132105506071327/494932889277808*x^14-1744244925521209/494932889277808*x^13+132953588565628/30933305579863*x^12+11751131913786545/494932889277808*x^11-16248093775501933/494932889277808*x^10-42696381564712545/494932889277808*x^9+3900947539905381/30933305579863*x^8+85840923421047585/494932889277808*x^7-116148162746725749/494932889277808*x^6-48122335776211045/247466444638904*x^5+94696516188661703/494932889277808*x^4+49833840202717059/494932889277808*x^3-14070395026764357/247466444638904*x^2-1727612470722651/123733222319452*x+147242865610423/61866611159726,-1124045546231/247466444638904*x^17-573548961081/247466444638904*x^16+10731991948451/61866611159726*x^15+29319370749485/247466444638904*x^14-639752034634875/247466444638904*x^13-282437187623769/123733222319452*x^12+4681617453955217/247466444638904*x^11+5245550301885417/247466444638904*x^10-17195341119206715/247466444638904*x^9-12196978261542553/123733222319452*x^8+28082661344832657/247466444638904*x^7+52542137243213457/247466444638904*x^6-3262566916599661/61866611159726*x^5-41552596765458057/247466444638904*x^4-688004268154923/247466444638904*x^3+1106596881584147/30933305579863*x^2+143225736168021/61866611159726*x+51819697929400/30933305579863,6680428090705/742399333916712*x^17-1073732313535/247466444638904*x^16-18695807442577/61866611159726*x^15+167875176821893/742399333916712*x^14+979695512425995/247466444638904*x^13-1484084408748355/371199666958356*x^12-19002099429393743/742399333916712*x^11+24248921496907481/742399333916712*x^10+21188196651144283/247466444638904*x^9-16472741857411981/123733222319452*x^8-35456268564122189/247466444638904*x^7+195424137780725449/742399333916712*x^6+9858616971006148/92799916739589*x^5-169667546655144617/742399333916712*x^4-4088928584521049/247466444638904*x^3+6743874954468670/92799916739589*x^2-209463497661959/185599833479178*x-420314361377192/92799916739589,1,-3979919363419/123733222319452*x^17-362170016769/30933305579863*x^16+144862564892891/123733222319452*x^15+45674740034157/123733222319452*x^14-1046619695744383/61866611159726*x^13-633506865858609/123733222319452*x^12+15270378396889443/123733222319452*x^11+2450886750355833/61866611159726*x^10-29564065693517761/61866611159726*x^9-21010029048216273/123733222319452*x^8+117041318066041219/123733222319452*x^7+21748903592817583/61866611159726*x^6-106590717692492591/123733222319452*x^5-32016327335356613/123733222319452*x^4+10160352304964656/30933305579863*x^3+6598205522715605/123733222319452*x^2-1076553670824861/30933305579863*x-11574467727725/30933305579863,28128209475245/371199666958356*x^17-1211865651918/30933305579863*x^16-340212083885245/123733222319452*x^15+529196124729851/371199666958356*x^14+2429634001574353/61866611159726*x^13-6969698395421143/371199666958356*x^12-104059862697750259/371199666958356*x^11+20623240021623539/185599833479178*x^10+32449102934852160/30933305579863*x^9-36579990871922137/123733222319452*x^8-244277400254578781/123733222319452*x^7+59396955444368305/185599833479178*x^6+619414493954417383/371199666958356*x^5-68300930921928103/371199666958356*x^4-16701583249576932/30933305579863*x^3+17148607063518979/371199666958356*x^2+7126301868481249/185599833479178*x+91706825418226/92799916739589,7100913137975/371199666958356*x^17-1400900130781/123733222319452*x^16-21933392769267/30933305579863*x^15+142564352356259/371199666958356*x^14+1280496101663597/123733222319452*x^13-885155432476211/185599833479178*x^12-28035777718405069/371199666958356*x^11+9948045676984207/371199666958356*x^10+35745295119976593/123733222319452*x^9-4318599221695053/61866611159726*x^8-68649146134925631/123733222319452*x^7+34285798635057431/371199666958356*x^6+44825775694614304/92799916739589*x^5-40321344151346431/371199666958356*x^4-23666438853825735/123733222319452*x^3+5408161616818834/92799916739589*x^2+3342919998265469/92799916739589*x-679853467592018/92799916739589,-5194609771589/371199666958356*x^17+235519691417/61866611159726*x^16+63708101252185/123733222319452*x^15-38036199937685/371199666958356*x^14-229261316655900/30933305579863*x^13+249446987998231/371199666958356*x^12+19545506876891761/371199666958356*x^11+249115941824744/92799916739589*x^10-5890954503985267/30933305579863*x^9-5051812744833455/123733222319452*x^8+39687537185112075/123733222319452*x^7+10813643688368920/92799916739589*x^6-71800496595544063/371199666958356*x^5-25110471013689287/371199666958356*x^4+1877849234504177/61866611159726*x^3-1265868899955031/371199666958356*x^2-39351649771937/92799916739589*x+380883341751227/92799916739589,42525333556301/371199666958356*x^17-511275179948/30933305579863*x^16-506643085304773/123733222319452*x^15+304487449496603/371199666958356*x^14+3570584094536893/61866611159726*x^13-4555594376573719/371199666958356*x^12-151199327296800727/371199666958356*x^11+13686585845492801/185599833479178*x^10+46738091199905406/30933305579863*x^9-21006068208796573/123733222319452*x^8-350475397985214197/123733222319452*x^7+15958925541828205/185599833479178*x^6+893701079156362855/371199666958356*x^5-2827274671678459/371199666958356*x^4-24914682312939763/30933305579863*x^3+3190201706989399/371199666958356*x^2+13716473441420479/185599833479178*x-333787284836696/92799916739589,34391514305785/371199666958356*x^17-2316530991019/123733222319452*x^16-103574986842465/30933305579863*x^15+301114963185949/371199666958356*x^14+5913104073404207/123733222319452*x^13-2148286585869235/185599833479178*x^12-127045976416023887/371199666958356*x^11+25953470883300377/371199666958356*x^10+159866191600634639/123733222319452*x^9-11150013207044621/61866611159726*x^8-306042386058444141/123733222319452*x^7+70794304369797829/371199666958356*x^6+199838749800315452/92799916739589*x^5-66478329595844777/371199666958356*x^4-91947719241972717/123733222319452*x^3+6940330357017389/92799916739589*x^2+5894122626409372/92799916739589*x-27684317697472/92799916739589,-6244739926741/494932889277808*x^17-5451893512989/494932889277808*x^16+115249439058333/247466444638904*x^15+201801692071035/494932889277808*x^14-3378414922546755/494932889277808*x^13-387692714298925/61866611159726*x^12+24965239300456891/494932889277808*x^11+25000046232719121/494932889277808*x^10-97397765144234843/494932889277808*x^9-13689389113844031/61866611159726*x^8+191544658359133691/494932889277808*x^7+246382291167770953/494932889277808*x^6-84308409302626583/247466444638904*x^5-248788276960091299/494932889277808*x^4+63698251203038105/494932889277808*x^3+48152438996096657/247466444638904*x^2-2521628886198905/123733222319452*x-755497272469835/61866611159726,25472672889023/742399333916712*x^17+2214906352449/247466444638904*x^16-152598415115747/123733222319452*x^15-162441966884833/742399333916712*x^14+4365524241433455/247466444638904*x^13+440919560937629/185599833479178*x^12-95156434219463545/742399333916712*x^11-12554050177850471/742399333916712*x^10+124184088235149815/247466444638904*x^9+5009238711902811/61866611159726*x^8-257634355273131795/247466444638904*x^7-155828668390992031/742399333916712*x^6+397649385399806987/371199666958356*x^5+164838321614944697/742399333916712*x^4-121755805352007949/247466444638904*x^3-32979606418885429/371199666958356*x^2+13978990371630605/185599833479178*x+785650050450311/92799916739589,5238851216561/742399333916712*x^17-2661541819455/247466444638904*x^16-7799773448600/30933305579863*x^15+272371305366509/742399333916712*x^14+861636830290483/247466444638904*x^13-1745735346585263/371199666958356*x^12-17347599659839087/742399333916712*x^11+20863643147117125/742399333916712*x^10+19386410482134451/247466444638904*x^9-9700385577975317/123733222319452*x^8-29641962744949989/247466444638904*x^7+64490610392015549/742399333916712*x^6+6044400246352550/92799916739589*x^5-12661522880565745/742399333916712*x^4-716472594346941/247466444638904*x^3-5063442931374407/185599833479178*x^2-1800053590044253/185599833479178*x+802041990933440/92799916739589,-1,1012786848242/30933305579863*x^17+1352452948091/123733222319452*x^16-149361895337387/123733222319452*x^15-13255366323511/30933305579863*x^14+2173885190340591/123733222319452*x^13+900141056829395/123733222319452*x^12-7908694284021057/61866611159726*x^11-8042589962774161/123733222319452*x^10+59876564562808419/123733222319452*x^9+37675173970126427/123733222319452*x^8-55289969211022299/61866611159726*x^7-83698465634975025/123733222319452*x^6+83042020523569979/123733222319452*x^5+17579334162536050/30933305579863*x^4-19642233199089335/123733222319452*x^3-18555796345598789/123733222319452*x^2-236039574114403/30933305579863*x+215447362277341/30933305579863,5655591325865/123733222319452*x^17-548904835497/123733222319452*x^16-49890477481431/30933305579863*x^15+32078162710897/123733222319452*x^14+2767047420056897/123733222319452*x^13-243416940158665/61866611159726*x^12-19096350337726887/123733222319452*x^11+2633512007178001/123733222319452*x^10+68526497438488441/123733222319452*x^9-1523432527258217/61866611159726*x^8-121510326419071975/123733222319452*x^7-12058635559645515/123733222319452*x^6+23007597134641574/30933305579863*x^5+23787089001491443/123733222319452*x^4-22021349527980531/123733222319452*x^3-3345236141591524/30933305579863*x^2+56828327657625/30933305579863*x+438000921660582/30933305579863,5023177217383/123733222319452*x^17-250825604305/30933305579863*x^16-186161592045709/123733222319452*x^15+27489713275513/123733222319452*x^14+1358061638935479/61866611159726*x^13-167040404576429/123733222319452*x^12-19773401269847301/123733222319452*x^11-543770291854507/61866611159726*x^10+18732439529404127/30933305579863*x^9+14121670738101511/123733222319452*x^8-139834848730547677/123733222319452*x^7-21315826298245743/61866611159726*x^6+112168899250734125/123733222319452*x^5+35679753606868739/123733222319452*x^4-9598261392036196/30933305579863*x^3-10161144584693603/123733222319452*x^2+2829229670785711/61866611159726*x+318387427022410/30933305579863,-23003917009559/371199666958356*x^17-1730087589193/30933305579863*x^16+273017007346703/123733222319452*x^15+662250922122871/371199666958356*x^14-1931523415107525/61866611159726*x^13-8663613267090803/371199666958356*x^12+82802264096047753/371199666958356*x^11+29692686566294665/185599833479178*x^10-26132709101693652/30933305579863*x^9-73854411465347009/123733222319452*x^8+201446376518095051/123733222319452*x^7+207966679135587149/185599833479178*x^6-529208826251817109/371199666958356*x^5-316258059261235931/371199666958356*x^4+16219948034588972/30933305579863*x^3+83483409460125035/371199666958356*x^2-11011218314207707/185599833479178*x-1221175562332702/92799916739589,-67291828650013/1484798667833424*x^17+24880466956281/494932889277808*x^16+424516522123695/247466444638904*x^15-2477718627090013/1484798667833424*x^14-12651963054166217/494932889277808*x^13+3857251282192657/185599833479178*x^12+283500151634280995/1484798667833424*x^11-178434147503485799/1484798667833424*x^10-372339005361536417/494932889277808*x^9+20042596309506847/61866611159726*x^8+745676038693202401/494932889277808*x^7-540282651758746063/1484798667833424*x^6-1019015553520825231/742399333916712*x^5+224454135623897957/1484798667833424*x^4+231760603485736123/494932889277808*x^3+2811593281953305/742399333916712*x^2-11209094986987873/371199666958356*x-659124532585435/185599833479178,-4558744709087/371199666958356*x^17+5139051284845/123733222319452*x^16+13428874975951/30933305579863*x^15-554298761712503/371199666958356*x^14-739649719492577/123733222319452*x^13+3849475270280537/185599833479178*x^12+15301386037945441/371199666958356*x^11-52095645367420759/371199666958356*x^10-19260832447661417/123733222319452*x^9+29618903601292495/61866611159726*x^8+42526581158019083/123733222319452*x^7-284160924519492803/371199666958356*x^6-42825712877826175/92799916739589*x^5+177130495171194655/371199666958356*x^4+36073215420432371/123733222319452*x^3-8625570484109332/92799916739589*x^2-6635969389343042/92799916739589*x+551864389654004/92799916739589,-9894146357441/742399333916712*x^17+11376852046987/247466444638904*x^16+32811339258467/61866611159726*x^15-1136148591892925/742399333916712*x^14-2028951337497791/247466444638904*x^13+7315541935854803/371199666958356*x^12+46839935715219535/742399333916712*x^11-91848223881354241/742399333916712*x^10-63561705253279859/247466444638904*x^9+48888722471785737/123733222319452*x^8+134926726155652093/247466444638904*x^7-462565078207135505/742399333916712*x^6-53293203148907858/92799916739589*x^5+342694497146045389/742399333916712*x^4+66933381713811617/247466444638904*x^3-12248656452656111/92799916739589*x^2-3298672898552599/92799916739589*x+351698496332083/92799916739589,-5524647143921/742399333916712*x^17+6647265717865/247466444638904*x^16+34047259832281/123733222319452*x^15-680307806490833/742399333916712*x^14-965352641795321/247466444638904*x^13+2239694388646267/185599833479178*x^12+19867052539304407/742399333916712*x^11-57329048861090119/742399333916712*x^10-22748030970657993/247466444638904*x^9+15424427924084231/61866611159726*x^8+36521637913410309/247466444638904*x^7-287105093233812983/742399333916712*x^6-36588048415620989/371199666958356*x^5+194946210131538769/742399333916712*x^4+9175331542326427/247466444638904*x^3-24482963160483677/371199666958356*x^2-4442784612702263/185599833479178*x+386046056178955/92799916739589,81267900133081/742399333916712*x^17-23231830066305/247466444638904*x^16-488192170131773/123733222319452*x^15+2616192789291889/742399333916712*x^14+13868075138970409/247466444638904*x^13-9212222773850873/185599833479178*x^12-296527994161290143/742399333916712*x^11+246691421148531359/742399333916712*x^10+373695547211349097/247466444638904*x^9-68320429202806449/61866611159726*x^8-733048466019885293/247466444638904*x^7+1301928561818427439/742399333916712*x^6+1038903934249923097/371199666958356*x^5-934401671979924545/742399333916712*x^4-266724380018452603/247466444638904*x^3+120523747680019465/371199666958356*x^2+19999003939291747/185599833479178*x-919992568718831/92799916739589], x^18-x^17-36*x^16+37*x^15+509*x^14-518*x^13-3591*x^12+3481*x^11+13297*x^10-11814*x^9-24999*x^8+19921*x^7+21688*x^6-16429*x^5-7147*x^4+5528*x^3+440*x^2-464*x+16];
E[689,4]=[[-1,x,-3*x+2,x-1,3*x-2,-1,x,-2*x,-4,-3*x-5,-2*x-2,-6,-x+3,-2,5*x-9,-1,8*x,-4*x+2,4*x,10*x-2,5*x-11,9*x-7,4*x,-10*x,-8*x+10], x^2-x-1];
E[689,5]=[[-2*x-1,x,x,x-1,x,-1,-x,-2*x-4,-4,3*x+3,2*x+2,2,-3*x+1,-4*x-2,x+3,-1,-4,-8*x-6,4*x-4,-2*x-2,-5*x+3,-3*x-13,4*x-4,2*x+4,-12*x-6], x^2+x-1];
E[689,6]=[[1173141870055/51772582173368*x^17-789876474809/12943145543342*x^16-42315062542603/51772582173368*x^15+105861854406275/51772582173368*x^14+161456800345739/12943145543342*x^13-210021763950437/7396083167624*x^12-5433740392583625/51772582173368*x^11+5512667172686391/25886291086684*x^10+6855936273979957/12943145543342*x^9-48708543070776523/51772582173368*x^8-84378400407821937/51772582173368*x^7+64646259548097539/25886291086684*x^6+21871884472320603/7396083167624*x^5-199655320560623131/51772582173368*x^4-73998558746111619/25886291086684*x^3+160844583391762731/51772582173368*x^2+7179186843597616/6471572771671*x-6182146289909382/6471572771671,x,1040848178373/51772582173368*x^17-3773536223649/51772582173368*x^16-7877873597541/12943145543342*x^15+115760124942181/51772582173368*x^14+384771373947899/51772582173368*x^13-51237742962449/1849020791906*x^12-2430603753131395/51772582173368*x^11+9273022459426029/51772582173368*x^10+8373661337421283/51772582173368*x^9-4204297175464601/6471572771671*x^8-14732549211338887/51772582173368*x^7+68348587080487017/51772582173368*x^6+651820333983707/3698041583812*x^5-72554001525600535/51772582173368*x^4+4967678781032573/51772582173368*x^3+8278628315663217/12943145543342*x^2-1352703272151729/12943145543342*x-431164056289336/6471572771671,4040476812705/51772582173368*x^17-16090428913423/51772582173368*x^16-61477174633211/25886291086684*x^15+510635216699441/51772582173368*x^14+1520034096318233/51772582173368*x^13-473637553620103/3698041583812*x^12-9903070637237139/51772582173368*x^11+45715346432716195/51772582173368*x^10+36904307485341645/51772582173368*x^9-90704690200236323/25886291086684*x^8-80218294941664399/51772582173368*x^7+419029979378108095/51772582173368*x^6+1804691920939955/924510395953*x^5-539732332057220663/51772582173368*x^4-73565746792912777/51772582173368*x^3+171539048355412407/25886291086684*x^2+3561200747123415/6471572771671*x-9652153260330694/6471572771671,1429071830175/51772582173368*x^17-1180922344633/51772582173368*x^16-32440535665411/25886291086684*x^15+59568596427647/51772582173368*x^14+1199574612997391/51772582173368*x^13-82240939509161/3698041583812*x^12-11802658074790109/51772582173368*x^11+11440107444094353/51772582173368*x^10+67474400151445715/51772582173368*x^9-32309776695093169/25886291086684*x^8-228625086396542057/51772582173368*x^7+212803621883544653/51772582173368*x^6+7953853181491626/924510395953*x^5-395930047969370113/51772582173368*x^4-451153452632003019/51772582173368*x^3+186386419044360187/25886291086684*x^2+22302981410144823/6471572771671*x-16219279274039582/6471572771671,-1,-798327230705/12943145543342*x^17+3708774968095/25886291086684*x^16+61594941676475/25886291086684*x^15-66084557700435/12943145543342*x^14-1002882249801605/25886291086684*x^13+280504933284413/3698041583812*x^12+4476882708400303/12943145543342*x^11-15820968349808413/25886291086684*x^10-47621334559774281/25886291086684*x^9+75236171812230615/25886291086684*x^8+76644967200448005/12943145543342*x^7-214573787327351901/25886291086684*x^6-41286096677244309/3698041583812*x^5+88430557597857225/6471572771671*x^4+288489974875472791/25886291086684*x^3-300863987776937535/25886291086684*x^2-28720470988044054/6471572771671*x+24050192948217314/6471572771671,-161071466265/51772582173368*x^17+386915145123/51772582173368*x^16+3922519460369/25886291086684*x^15-18763869656489/51772582173368*x^14-154062857141061/51772582173368*x^13+25576937351535/3698041583812*x^12+1609406431766555/51772582173368*x^11-3550148738654311/51772582173368*x^10-9823065875179509/51772582173368*x^9+10020987833220083/25886291086684*x^8+35855919774380935/51772582173368*x^7-65690717442765131/51772582173368*x^6-1358784742728568/924510395953*x^5+120655215024401123/51772582173368*x^4+85130665691545645/51772582173368*x^3-55297442709783213/25886291086684*x^2-9468692488909233/12943145543342*x+4542998002018720/6471572771671,-5605393161225/51772582173368*x^17+16298128275097/51772582173368*x^16+24521250565247/6471572771671*x^15-538204687846533/51772582173368*x^14-2895593806763447/51772582173368*x^13+131117784527701/924510395953*x^12+23516368548072111/51772582173368*x^11-53874827351829985/51772582173368*x^10-114539104954894451/51772582173368*x^9+57922085437100889/12943145543342*x^8+340767154842982779/51772582173368*x^7-595148948624235989/51772582173368*x^6-42914382249642557/3698041583812*x^5+884263476857108331/51772582173368*x^4+569273960311376163/51772582173368*x^3-85363482979711891/6471572771671*x^2-27416804908505478/6471572771671*x+25203494833824168/6471572771671,162500736852/6471572771671*x^17+936645591949/25886291086684*x^16-36584921790821/25886291086684*x^15-3016787101813/6471572771671*x^14+763972692214873/25886291086684*x^13-20605223294767/3698041583812*x^12-2025090263695370/6471572771671*x^11+3774223757453509/25886291086684*x^10+48579536938934541/25886291086684*x^9-30189211944853841/25886291086684*x^8-42456354016737993/6471572771671*x^7+119900516184125841/25886291086684*x^6+48229626036495863/3698041583812*x^5-125212781328699923/12943145543342*x^4-346038124702457631/25886291086684*x^3+254389971877546341/25886291086684*x^2+34339675520636380/6471572771671*x-23316668069903458/6471572771671,-1648088679091/12943145543342*x^17+10687571084913/25886291086684*x^16+111485777616207/25886291086684*x^15-87561991796700/6471572771671*x^14-1583476782253159/25886291086684*x^13+676212543728197/3698041583812*x^12+3086240855536480/6471572771671*x^11-34310535563908655/25886291086684*x^10-57745776817986785/25886291086684*x^9+145134929589372171/25886291086684*x^8+41408991749202583/6471572771671*x^7-364293848973723363/25886291086684*x^6-40531604998843965/3698041583812*x^5+262001525503150749/12943145543342*x^4+264426693352455041/25886291086684*x^3-387104375881749391/25886291086684*x^2-51084166803177257/12943145543342*x+26963626134611692/6471572771671,4260175981623/25886291086684*x^17-15493437294351/25886291086684*x^16-34262801500804/6471572771671*x^15+500115198436907/25886291086684*x^14+1832557143568497/25886291086684*x^13-237089423426614/924510395953*x^12-13332955914190345/25886291086684*x^11+47099418768176343/25886291086684*x^10+57945275362146441/25886291086684*x^9-48537687453337777/6471572771671*x^8-154964298668459197/25886291086684*x^7+472124651083414751/25886291086684*x^6+17958753399308331/1849020791906*x^5-652812944639069713/25886291086684*x^4-229096904374732641/25886291086684*x^3+114648167968792769/6471572771671*x^2+22682705627135026/6471572771671*x-29827647856688326/6471572771671,107110934727/12943145543342*x^17-137876328943/6471572771671*x^16-4067464033111/12943145543342*x^15+4884734933028/6471572771671*x^14+32759900443488/6471572771671*x^13-20707053922027/1849020791906*x^12-582888596913011/12943145543342*x^11+587211068719145/6471572771671*x^10+3118167167791181/12943145543342*x^9-5667186216474611/12943145543342*x^8-10211333492971467/12943145543342*x^7+8284507869848038/6471572771671*x^6+1416321400855406/924510395953*x^5-28233851287646983/12943145543342*x^4-10290631266472196/6471572771671*x^3+12408399464626589/6471572771671*x^2+8534217909042363/12943145543342*x-4001737826902528/6471572771671,7080212688173/51772582173368*x^17-29426401290323/51772582173368*x^16-106494945475993/25886291086684*x^15+937963214229129/51772582173368*x^14+2589712181420885/51772582173368*x^13-875005701223359/3698041583812*x^12-16472476901616763/51772582173368*x^11+85061584848906479/51772582173368*x^10+59314059503510857/51772582173368*x^9-170184213962278331/25886291086684*x^8-122946112938345327/51772582173368*x^7+793115209874951483/51772582173368*x^6+2617448602541994/924510395953*x^5-1029469271598549259/51772582173368*x^4-104984838018374365/51772582173368*x^3+328345495673777637/25886291086684*x^2+5621311475822282/6471572771671*x-18286284369191612/6471572771671,-8156143390405/51772582173368*x^17+23431808740875/51772582173368*x^16+145708944695383/25886291086684*x^15-789110583749669/51772582173368*x^14-4404148787393125/51772582173368*x^13+787242608062443/3698041583812*x^12+36718315661252983/51772582173368*x^11-83119879280309455/51772582173368*x^10-184034025025264009/51772582173368*x^9+184379536805355695/25886291086684*x^8+564519470943262931/51772582173368*x^7-979662102615150251/51772582173368*x^6-18339937083763251/924510395953*x^5+1505797726787057315/51772582173368*x^4+1002958999889025581/51772582173368*x^3-599404480546215899/25886291086684*x^2-49581285362375756/6471572771671*x+45169511328832050/6471572771671,1,5888574900799/51772582173368*x^17-20253227562613/51772582173368*x^16-96372405303705/25886291086684*x^15+653077773604003/51772582173368*x^14+2634920175250035/51772582173368*x^13-618629439923963/3698041583812*x^12-19687022838987121/51772582173368*x^11+61429647175111337/51772582173368*x^10+88074715946566287/51772582173368*x^9-126783002644834171/25886291086684*x^8-241934185565860261/51772582173368*x^7+619378270452370173/51772582173368*x^6+14261778149862043/1849020791906*x^5-864428377605508425/51772582173368*x^4-363247223685735315/51772582173368*x^3+308499230016461913/25886291086684*x^2+17487489204382872/6471572771671*x-20608623759857118/6471572771671,373220721809/12943145543342*x^17-1330210148294/6471572771671*x^16-5945389633147/12943145543342*x^15+79104269370829/12943145543342*x^14-13624557898803/6471572771671*x^13-133555136067355/1849020791906*x^12+1190271565042727/12943145543342*x^11+2786710762719505/6471572771671*x^10-5207633812210905/6471572771671*x^9-17222146870761153/12943145543342*x^8+43561401101923111/12943145543342*x^7+11610968450814312/6471572771671*x^6-13606341724121277/1849020791906*x^5+2437583617815593/12943145543342*x^4+51115677058402825/6471572771671*x^3-33993370880182761/12943145543342*x^2-20443853554403896/6471572771671*x+9950576041814746/6471572771671,3124175244845/51772582173368*x^17-7942078521339/51772582173368*x^16-56933875202919/25886291086684*x^15+267772942679173/51772582173368*x^14+1749616993554877/51772582173368*x^13-267152522054209/3698041583812*x^12-14739832357240919/51772582173368*x^11+28183388137191039/51772582173368*x^10+74006730685380485/51772582173368*x^9-62462445013701713/25886291086684*x^8-225119383221462907/51772582173368*x^7+332014869547511595/51772582173368*x^6+14362288794387583/1849020791906*x^5-511796132029648351/51772582173368*x^4-382496934707498517/51772582173368*x^3+204992629222655167/25886291086684*x^2+36610714499484035/12943145543342*x-15624554074238376/6471572771671,-1491075549365/12943145543342*x^17+7224920979737/25886291086684*x^16+110743937447783/25886291086684*x^15-61559788525217/6471572771671*x^14-1737839082042471/25886291086684*x^13+498129059795477/3698041583812*x^12+3745957075891724/6471572771671*x^11-26735312072417451/25886291086684*x^10-77128859020280069/25886291086684*x^9+121091267936289507/25886291086684*x^8+60190542990934649/6471572771671*x^7-330285544886743935/25886291086684*x^6-63003985710776173/3698041583812*x^5+262258452114609429/12943145543342*x^4+428547847204584673/25886291086684*x^3-433994448169916551/25886291086684*x^2-83156442036952455/12943145543342*x+34211579305413520/6471572771671,-412414130808/6471572771671*x^17+1836910909801/12943145543342*x^16+31010730334445/12943145543342*x^15-62595419988959/12943145543342*x^14-491325031825547/12943145543342*x^13+126201487631541/1849020791906*x^12+2129771598112910/6471572771671*x^11-6722411827775303/12943145543342*x^10-10963393083966181/6471572771671*x^9+30078661480776931/12943145543342*x^8+33991547891935134/6471572771671*x^7-80736486789463465/12943145543342*x^6-8761170409468875/924510395953*x^5+63025614683272725/6471572771671*x^4+116204381231262221/12943145543342*x^3-51530923647559187/6471572771671*x^2-43404791913762967/12943145543342*x+16309033619741844/6471572771671,-12099372001839/51772582173368*x^17+46790733366891/51772582173368*x^16+93464362214191/12943145543342*x^15-1487723135973339/51772582173368*x^14-4730402358206477/51772582173368*x^13+691878195991607/1849020791906*x^12+31933334024846977/51772582173368*x^11-134121054817650827/51772582173368*x^10-125645876104037801/51772582173368*x^9+66963082828779821/6471572771671*x^8+296223508592467909/51772582173368*x^7-1250184823320718239/51772582173368*x^6-29756187249286757/3698041583812*x^5+1636822292297285957/51772582173368*x^4+336091825694950377/51772582173368*x^3-267091686619474963/12943145543342*x^2-16149887670582333/6471572771671*x+31489138619744784/6471572771671,-888387801454/6471572771671*x^17+10428498356237/25886291086684*x^16+127196864648341/25886291086684*x^15-176929743453473/12943145543342*x^14-1925638022215363/25886291086684*x^13+711983349878787/3698041583812*x^12+8042582228970367/12943145543342*x^11-37920381469945187/25886291086684*x^10-80828939372780341/25886291086684*x^9+169691931403813285/25886291086684*x^8+124455859317664671/12943145543342*x^7-454206420370712915/25886291086684*x^6-65061287571757311/3698041583812*x^5+175448878002279573/6471572771671*x^4+448063317330182221/25886291086684*x^3-559573704169177149/25886291086684*x^2-89407428487529605/12943145543342*x+41995284473688236/6471572771671,-1058483982931/6471572771671*x^17+3204128589253/6471572771671*x^16+36761168696184/6471572771671*x^15-105957238350741/6471572771671*x^14-538352591956696/6471572771671*x^13+206851916483261/924510395953*x^12+4341272985626834/6471572771671*x^11-10642811185493484/6471572771671*x^10-21040850818281377/6471572771671*x^9+45836343923661510/6471572771671*x^8+62518622629543705/6471572771671*x^7-117806026352097157/6471572771671*x^6-15801611966702137/924510395953*x^5+174801600196394763/6471572771671*x^4+105724987839569893/6471572771671*x^3-134347571099865763/6471572771671*x^2-41295285912353155/6471572771671*x+39258879644670722/6471572771671,-884792196133/12943145543342*x^17+1814096861947/12943145543342*x^16+17092979924592/6471572771671*x^15-63505232768003/12943145543342*x^14-556085327402005/12943145543342*x^13+66064190990585/924510395953*x^12+4942020079417033/12943145543342*x^11-7300636932882621/12943145543342*x^10-26038370533555235/12943145543342*x^9+17031753132441220/6471572771671*x^8+82546797551267087/12943145543342*x^7-95733530204590767/12943145543342*x^6-10875592667036498/924510395953*x^5+156624416586538109/12943145543342*x^4+147537784408214927/12943145543342*x^3-66759269895732425/6471572771671*x^2-28189365359867631/6471572771671*x+21682429887583870/6471572771671], x^18-5*x^17-28*x^16+165*x^15+291*x^14-2260*x^13-1207*x^12+16757*x^11-713*x^10-73440*x^9+26157*x^8+194393*x^7-104038*x^6-302555*x^5+191313*x^4+251884*x^3-168800*x^2-85056*x+55616];
E[689,7]=[[55/136*x^8+5/8*x^7-343/68*x^6-879/136*x^5+331/17*x^4+2455/136*x^3-3721/136*x^2-483/34*x+181/17,x,23/68*x^8+3/4*x^7-66/17*x^6-511/68*x^5+473/34*x^4+1311/68*x^3-1459/68*x^2-463/34*x+186/17,11/68*x^8+1/4*x^7-55/34*x^6-135/68*x^5+61/17*x^4+151/68*x^3+31/68*x^2+19/17*x-84/17,-53/68*x^8-7/4*x^7+299/34*x^6+1213/68*x^5-501/17*x^4-3225/68*x^3+2515/68*x^2+573/17*x-232/17,1,-73/68*x^8-7/4*x^7+433/34*x^6+1137/68*x^5-785/17*x^4-2665/68*x^3+4375/68*x^2+404/17*x-478/17,-3/17*x^8-1/2*x^7+43/34*x^6+77/17*x^5+23/34*x^4-154/17*x^3-309/34*x^2+127/34*x+36/17,-6/17*x^8+94/17*x^6+1/17*x^5-470/17*x^4-19/17*x^3+796/17*x^2+25/17*x-336/17,39/68*x^8+5/4*x^7-229/34*x^6-899/68*x^5+411/17*x^4+2563/68*x^3-2233/68*x^2-506/17*x+206/17,-1/17*x^8+1/2*x^7+71/34*x^6-82/17*x^5-525/34*x^4+181/17*x^3+1019/34*x^2-173/34*x-260/17,-9/34*x^8-1/2*x^7+45/17*x^6+163/34*x^5-106/17*x^4-411/34*x^3+55/34*x^2+176/17*x+54/17,57/68*x^8+5/4*x^7-168/17*x^6-817/68*x^5+1187/34*x^4+2025/68*x^3-2921/68*x^2-735/34*x+186/17,-57/68*x^8-7/4*x^7+319/34*x^6+1157/68*x^5-517/17*x^4-2773/68*x^3+2275/68*x^2+393/17*x-152/17,21/68*x^8-1/4*x^7-173/34*x^6+243/68*x^5+441/17*x^4-979/68*x^3-2871/68*x^2+248/17*x+260/17,1,1/68*x^8-1/4*x^7-5/34*x^6+167/68*x^5-30/17*x^4-351/68*x^3+961/68*x^2-6/17*x-224/17,7/34*x^8+1/2*x^7-18/17*x^6-123/34*x^5-97/17*x^4+59/34*x^3+913/34*x^2+154/17*x-314/17,21/17*x^8+5/2*x^7-471/34*x^6-420/17*x^5+1573/34*x^4+1061/17*x^3-2019/34*x^2-1433/34*x+292/17,45/34*x^8+2*x^7-569/34*x^6-679/34*x^5+2233/34*x^4+1749/34*x^3-1540/17*x^2-1199/34*x+444/17,-49/68*x^8-5/4*x^7+131/17*x^6+793/68*x^5-749/34*x^4-1841/68*x^3+1157/68*x^2+707/34*x-6/17,22/17*x^8+3*x^7-254/17*x^6-542/17*x^5+896/17*x^4+1543/17*x^3-1264/17*x^2-1140/17*x+552/17,-9/34*x^8-x^7+107/34*x^6+401/34*x^5-399/34*x^4-1363/34*x^3+291/17*x^2+1355/34*x-184/17,31/34*x^8+3/2*x^7-189/17*x^6-535/34*x^5+690/17*x^4+1495/34*x^3-1693/34*x^2-525/17*x+290/17,-21/17*x^8-2*x^7+278/17*x^6+369/17*x^5-1152/17*x^4-1095/17*x^3+1647/17*x^2+861/17*x-598/17], x^9+3*x^8-10*x^7-33*x^6+24*x^5+105*x^4-7*x^3-116*x^2-16*x+32];
E[697,1]=[[-1,x,-x^2+4,-x-2,2*x^2+x-6,-2*x^2-2*x+4,1,x^2-x-4,-x^2+4,0,x^2+2*x-8,x^2-4*x-8,1,2*x^2+2*x-8,-x^2+x,2*x-6,2*x^2+2*x,4*x^2+2*x-10,3*x^2+x-14,2*x^2+3*x-16,-x^2-4*x,-5*x,2*x-4,-8,2*x+8], x^3+2*x^2-4*x-6];
E[697,2]=[[2371191409/11099230876*x^14+14683669077/11099230876*x^13-20851654805/11099230876*x^12-274896999571/11099230876*x^11-90555864415/5549615438*x^10+1683003144373/11099230876*x^9+2262493753605/11099230876*x^8-2066888557537/5549615438*x^7-3775687055759/5549615438*x^6+859288066015/2774807719*x^5+2405791751057/2774807719*x^4+129516688260/2774807719*x^3-963729311485/2774807719*x^2-156059159947/2774807719*x+89128620388/2774807719,x,1222927629/5549615438*x^14+6941115877/5549615438*x^13-7035442088/2774807719*x^12-66672496781/2774807719*x^11-29427262389/5549615438*x^10+429496968664/2774807719*x^9+750529342465/5549615438*x^8-2342342792967/5549615438*x^7-2728069466467/5549615438*x^6+1301844369043/2774807719*x^5+1775043914457/2774807719*x^4-368162640975/2774807719*x^3-692484063752/2774807719*x^2-16131592662/2774807719*x+50495680378/2774807719,-21117857/2774807719*x^14-264353759/2774807719*x^13-538994573/2774807719*x^12+4083426913/2774807719*x^11+15359317489/2774807719*x^10-14304664146/2774807719*x^9-107379352877/2774807719*x^8-21803507624/2774807719*x^7+305193946342/2774807719*x^6+173783585107/2774807719*x^5-370169042284/2774807719*x^4-232378615969/2774807719*x^3+154917183176/2774807719*x^2+60940404059/2774807719*x-17692458828/2774807719,-1096237397/2774807719*x^14-6514967643/2774807719*x^13+11125179652/2774807719*x^12+123693485412/2774807719*x^11+55559198795/2774807719*x^10-778182751701/2774807719*x^9-867720000844/2774807719*x^8+2018207681644/2774807719*x^7+3011542403850/2774807719*x^6-1951380301236/2774807719*x^5-3901920883708/2774807719*x^4+130354643743/2774807719*x^3+1580202975388/2774807719*x^2+211405708161/2774807719*x-146299041900/2774807719,345551765/2774807719*x^14+2166915357/2774807719*x^13-5628343595/5549615438*x^12-80023900157/5549615438*x^11-60408231679/5549615438*x^10+476521164485/5549615438*x^9+349083970704/2774807719*x^8-1100734456831/5549615438*x^7-2270156527799/5549615438*x^6+360357502150/2774807719*x^5+1422485512897/2774807719*x^4+233702182089/2774807719*x^3-569710855983/2774807719*x^2-150497531200/2774807719*x+46295030680/2774807719,-1,-68395867/2774807719*x^14-1371152493/5549615438*x^13-1362821169/5549615438*x^12+12009893215/2774807719*x^11+31014144597/2774807719*x^10-125487113289/5549615438*x^9-244748362230/2774807719*x^8+183027008157/5549615438*x^7+1540089529417/5549615438*x^6+223623911163/5549615438*x^5-1024261077958/2774807719*x^4-317213669769/2774807719*x^3+449694530149/2774807719*x^2+117221026970/2774807719*x-37211269184/2774807719,-391176837/2774807719*x^14-4440992887/5549615438*x^13+8857811255/5549615438*x^12+42267368987/2774807719*x^11+10140155965/2774807719*x^10-536305048001/5549615438*x^9-237958956225/2774807719*x^8+1430911381705/5549615438*x^7+1685496627879/5549615438*x^6-1547248897905/5549615438*x^5-1080025100624/2774807719*x^4+213460129229/2774807719*x^3+442031219211/2774807719*x^2-7516137013/2774807719*x-46258665200/2774807719,-3551007195/5549615438*x^14-10303952590/2774807719*x^13+38454139537/5549615438*x^12+392997477615/5549615438*x^11+65700683722/2774807719*x^10-1247419728938/2774807719*x^9-1235153921720/2774807719*x^8+3299874855721/2774807719*x^7+8671519115049/5549615438*x^6-3388486327598/2774807719*x^5-5501148222141/2774807719*x^4+569474082578/2774807719*x^3+2032970749447/2774807719*x^2+202773546550/2774807719*x-141362995762/2774807719,-82001945/2774807719*x^14-921699279/2774807719*x^13-1596333897/2774807719*x^12+28993896263/5549615438*x^11+101041369945/5549615438*x^10-111106230951/5549615438*x^9-726306938295/5549615438*x^8-32098242250/2774807719*x^7+2125362375249/5549615438*x^6+920290262707/5549615438*x^5-1359894678829/2774807719*x^4-635182734738/2774807719*x^3+652486789301/2774807719*x^2+206886108439/2774807719*x-86695145012/2774807719,434137987/5549615438*x^14+2768012053/5549615438*x^13-1531157713/2774807719*x^12-25319048492/2774807719*x^11-49584987785/5549615438*x^10+146416195227/2774807719*x^9+542322075713/5549615438*x^8-604638046339/5549615438*x^7-1834644637997/5549615438*x^6+56506018548/2774807719*x^5+1232689934559/2774807719*x^4+378977158789/2774807719*x^3-536175467032/2774807719*x^2-169429319116/2774807719*x+56919258402/2774807719,-1,-2308528433/5549615438*x^14-12969188861/5549615438*x^13+27119245501/5549615438*x^12+249349788905/5549615438*x^11+22212892686/2774807719*x^10-1608415573911/5549615438*x^9-1339079102557/5549615438*x^8+2197541287418/2774807719*x^7+2449353207138/2774807719*x^6-2454953981540/2774807719*x^5-3151869564006/2774807719*x^4+719439418296/2774807719*x^3+1175544552000/2774807719*x^2+7405282624/2774807719*x-86804893246/2774807719,-750715171/2774807719*x^14-8414986359/5549615438*x^13+17986211025/5549615438*x^12+81464879710/2774807719*x^11+11605594878/2774807719*x^10-1063735996481/5549615438*x^9-422475142863/2774807719*x^8+2961773805141/5549615438*x^7+3155927760893/5549615438*x^6-3405238032537/5549615438*x^5-2063412459951/2774807719*x^4+522650235791/2774807719*x^3+787347437669/2774807719*x^2+37952399690/2774807719*x-64961943406/2774807719,-613644453/5549615438*x^14-1953384389/5549615438*x^13+14881272157/5549615438*x^12+45264215919/5549615438*x^11-69172239389/2774807719*x^10-387362747893/5549615438*x^9+645497546469/5549615438*x^8+781795590393/2774807719*x^7-804170123671/2774807719*x^6-1530836681708/2774807719*x^5+1005347411211/2774807719*x^4+1301546149210/2774807719*x^3-477012288306/2774807719*x^2-326933555332/2774807719*x+52110826490/2774807719,613754613/2774807719*x^14+6268402979/5549615438*x^13-17751524313/5549615438*x^12-122977152051/5549615438*x^11+46319860729/5549615438*x^10+413712291086/2774807719*x^9+192357923265/5549615438*x^8-2473287244673/5549615438*x^7-431280511377/2774807719*x^6+1702351263823/2774807719*x^5+356815425574/2774807719*x^4-951425837667/2774807719*x^3+112132058576/2774807719*x^2+181498576036/2774807719*x-54526844666/2774807719,4008465745/5549615438*x^14+23247140315/5549615438*x^13-43956183267/5549615438*x^12-445536085117/5549615438*x^11-69745502745/2774807719*x^10+2856529837813/5549615438*x^9+2751799125537/5549615438*x^8-3856601922452/2774807719*x^7-4893859639210/2774807719*x^6+4177143981165/2774807719*x^5+6323162987772/2774807719*x^4-1009528509446/2774807719*x^3-2446791994006/2774807719*x^2-142303903180/2774807719*x+170298332446/2774807719,581394947/2774807719*x^14+4032392839/2774807719*x^13-3099046747/2774807719*x^12-148614979265/5549615438*x^11-168530464277/5549615438*x^10+878997018159/5549615438*x^9+1647338363943/5549615438*x^8-990489943035/2774807719*x^7-5259123690649/5549615438*x^6+1121088529739/5549615438*x^5+3286640171842/2774807719*x^4+535323328699/2774807719*x^3-1248310792587/2774807719*x^2-253318267864/2774807719*x+98734373454/2774807719,1526846381/2774807719*x^14+9235983013/2774807719*x^13-14692648682/2774807719*x^12-174875774374/2774807719*x^11-93794710836/2774807719*x^10+1094205235427/2774807719*x^9+1325410259420/2774807719*x^8-2807259433057/2774807719*x^7-4561241615227/2774807719*x^6+2650465960652/2774807719*x^5+5931331228267/2774807719*x^4-144759527236/2774807719*x^3-2420964669028/2774807719*x^2-241676830277/2774807719*x+219767714534/2774807719,2549426475/5549615438*x^14+14575760833/5549615438*x^13-14782009319/2774807719*x^12-141470833177/2774807719*x^11-60878938855/5549615438*x^10+927582317968/2774807719*x^9+1603571231623/5549615438*x^8-5198120559409/5549615438*x^7-5958232534381/5549615438*x^6+3018841875379/2774807719*x^5+3991383493139/2774807719*x^4-968362454393/2774807719*x^3-1659074685496/2774807719*x^2+5303538970/2774807719*x+145188542894/2774807719,1528319835/2774807719*x^14+9669083633/2774807719*x^13-12312799614/2774807719*x^12-179753553498/2774807719*x^11-138452471414/2774807719*x^10+1085118212999/2774807719*x^9+1600696571106/2774807719*x^8-2585475543195/2774807719*x^7-5282922095600/2774807719*x^6+1938558190576/2774807719*x^5+6777583646510/2774807719*x^4+641827560220/2774807719*x^3-2835045460764/2774807719*x^2-490865908329/2774807719*x+307294465220/2774807719,1254796117/2774807719*x^14+14162955531/5549615438*x^13-29541278087/5549615438*x^12-273834725913/5549615438*x^11-49572445757/5549615438*x^10+891800725952/2774807719*x^9+1491940085429/5549615438*x^8-4948926340615/5549615438*x^7-2778956238932/2774807719*x^6+2831073362182/2774807719*x^5+3718688553606/2774807719*x^4-863641370529/2774807719*x^3-1573954633616/2774807719*x^2-33948606778/2774807719*x+145791959962/2774807719,-685023850/2774807719*x^14-4037540611/2774807719*x^13+14369908621/5549615438*x^12+154724932763/5549615438*x^11+63873845347/5549615438*x^10-985591732191/5549615438*x^9-541561075074/2774807719*x^8+2574728376405/5549615438*x^7+3880320024003/5549615438*x^6-1195652765853/2774807719*x^5-2570598481407/2774807719*x^4-81672219595/2774807719*x^3+1045062805403/2774807719*x^2+231393983608/2774807719*x-101549968048/2774807719,1638692524/2774807719*x^14+21104908205/5549615438*x^13-12472928124/2774807719*x^12-195991134947/2774807719*x^11-162082988725/2774807719*x^10+2364313892493/5549615438*x^9+3600447790533/5549615438*x^8-2822278747090/2774807719*x^7-11758614773625/5549615438*x^6+2160473531213/2774807719*x^5+7490292400975/2774807719*x^4+621022380884/2774807719*x^3-3093658486297/2774807719*x^2-530999329168/2774807719*x+296504926680/2774807719], x^15+8*x^14+2*x^13-134*x^12-281*x^11+613*x^10+2238*x^9-281*x^8-6500*x^7-3592*x^6+7246*x^5+6704*x^4-1852*x^3-2832*x^2-164*x+220];
E[697,3]=[[x^2-2*x-1,x,x^2-2*x-2,2*x^2-3*x-2,3*x-2,-2,-1,-2*x^2+5*x+2,-2*x^2+2*x+6,-2*x^2+4*x+6,4*x^2-6*x-6,-x^2+2*x+10,1,2*x^2+2*x-12,-2*x^2-x+14,6*x-6,4*x^2-8*x-8,-2*x^2+2*x+2,-6*x^2+7*x+8,-5*x+4,-x^2+2*x-6,-2*x^2-x,-6*x^2+4*x+16,-4*x^2+2*x+14,-6*x^2+6*x+10], x^3-2*x^2-2*x+2];
E[697,4]=[[-89/404*x^6-231/404*x^5+1053/404*x^4+2279/404*x^3-747/101*x^2-3721/404*x+805/404,x,-x-1,-52/101*x^6-110/101*x^5+588/101*x^4+965/101*x^3-1495/101*x^2-1012/101*x+215/101,79/101*x^6+171/101*x^5-870/101*x^4-1569/101*x^3+2044/101*x^2+2058/101*x-449/101,133/202*x^6+293/202*x^5-1535/202*x^4-2777/202*x^3+1975/101*x^2+4049/202*x-513/202,1,-16/101*x^6+5/101*x^5+212/101*x^4-76/101*x^3-662/101*x^2+147/101*x+4/101,-6/101*x^6-36/101*x^5+29/101*x^4+426/101*x^3+181/101*x^2-1018/101*x-554/101,55/202*x^6+27/202*x^5-855/202*x^4-67/202*x^3+1788/101*x^2-1105/202*x-1453/202,157/202*x^6+437/202*x^5-1651/202*x^4-4077/202*x^3+1714/101*x^2+5293/202*x-115/202,-48/101*x^6-86/101*x^5+535/101*x^4+782/101*x^3-1279/101*x^2-973/101*x+315/101,1,-233/202*x^6-489/202*x^5+2759/202*x^4+4423/202*x^3-3867/101*x^2-4923/202*x+1851/202,-165/101*x^6-384/101*x^5+1858/101*x^4+3534/101*x^3-4769/101*x^2-4866/101*x+1026/101,-27/202*x^6-61/202*x^5+383/202*x^4+503/202*x^3-628/101*x^2-137/202*x-473/202,-205/202*x^6-523/202*x^5+2287/202*x^4+4657/202*x^3-2909/101*x^2-5155/202*x-277/202,-335/202*x^6-697/202*x^5+3757/202*x^4+6413/202*x^3-4702/101*x^2-8897/202*x+2735/202,141/202*x^6+341/202*x^5-1641/202*x^4-2941/202*x^3+2292/101*x^2+2713/202*x-1525/202,-69/101*x^6-212/101*x^5+687/101*x^4+1970/101*x^3-1201/101*x^2-2718/101*x-8/101,9/101*x^6+54/101*x^5+7/101*x^4-437/101*x^3-524/101*x^2+517/101*x+124/101,220/101*x^6+512/101*x^5-2410/101*x^4-4712/101*x^3+5719/101*x^2+6488/101*x-1368/101,77/202*x^6+159/202*x^5-793/202*x^4-1225/202*x^3+766/101*x^2+675/202*x-903/202,205/202*x^6+523/202*x^5-2287/202*x^4-4657/202*x^3+2909/101*x^2+5155/202*x-1137/202,-92/101*x^6-148/101*x^5+1118/101*x^4+1280/101*x^3-3251/101*x^2-1604/101*x+831/101], x^7+2*x^6-12*x^5-18*x^4+35*x^3+21*x^2-14*x+1];
E[697,5]=[[-15664577/1222608148*x^14+165534715/1222608148*x^13-160604849/1222608148*x^12-3353920141/1222608148*x^11+4458172109/611304074*x^10+22565513091/1222608148*x^9-92360167213/1222608148*x^8-21195004139/611304074*x^7+100497923771/305652037*x^6-60566490549/611304074*x^5-383737095991/611304074*x^4+128703780943/305652037*x^3+122920814294/305652037*x^2-107103056964/305652037*x+3976773179/305652037,x,-19858162/305652037*x^14+112367277/305652037*x^13+569223215/611304074*x^12-2518476534/305652037*x^11-22349540/305652037*x^10+20885967506/305652037*x^9-35932400535/611304074*x^8-154177992851/611304074*x^7+106477806996/305652037*x^6+224937820491/611304074*x^5-229014402033/305652037*x^4-7475595092/305652037*x^3+157415615187/305652037*x^2-64023043401/305652037*x+1192015576/305652037,-8760925/305652037*x^14+75330066/305652037*x^13+27207246/305652037*x^12-1649976137/305652037*x^11+2236823668/305652037*x^10+13117664748/305652037*x^9-27219095908/305652037*x^8-43972268758/305652037*x^7+123666167795/305652037*x^6+44008297289/305652037*x^5-238860727387/305652037*x^4+53553163165/305652037*x^3+153580466624/305652037*x^2-80675887307/305652037*x+2909585086/305652037,-13777509/305652037*x^14+102319848/305652037*x^13+111390425/305652037*x^12-2271014058/305652037*x^11+1949727890/305652037*x^10+18472793359/305652037*x^9-29357101861/305652037*x^8-65095817904/305652037*x^7+141179568473/305652037*x^6+80059108074/305652037*x^5-280068232785/305652037*x^4+38027513885/305652037*x^3+182391548392/305652037*x^2-89494981309/305652037*x+4537407330/305652037,10453949/611304074*x^14-101354863/611304074*x^13+17334090/305652037*x^12+2133966119/611304074*x^11-2078731367/305652037*x^10-15831823625/611304074*x^9+22387066288/305652037*x^8+45151150049/611304074*x^7-97142400629/305652037*x^6-10936417759/611304074*x^5+183140590777/305652037*x^4-72980941932/305652037*x^3-117730379974/305652037*x^2+75000636813/305652037*x-739977830/305652037,1,-40239766/305652037*x^14+193050922/305652037*x^13+731019664/305652037*x^12-8920482781/611304074*x^11-3547362666/305652037*x^10+38889170850/305652037*x^9-6477919587/305652037*x^8-315681237843/611304074*x^7+193742253459/611304074*x^6+292161177116/305652037*x^5-496752274445/611304074*x^4-186811601574/305652037*x^3+182674129744/305652037*x^2-4415768251/305652037*x+355343411/305652037,28157599/305652037*x^14-112008378/305652037*x^13-570900952/305652037*x^12+5122836445/611304074*x^11+3843625908/305652037*x^10-22081134893/305652037*x^9-7214089450/305652037*x^8+177477643363/611304074*x^7-41633679275/611304074*x^6-164567274127/305652037*x^5+177749742311/611304074*x^4+112830230760/305652037*x^3-75300784158/305652037*x^2-8573748926/305652037*x+1362828103/305652037,-93328243/611304074*x^14+253731901/305652037*x^13+645441323/305652037*x^12-11073444035/611304074*x^11+522946995/305652037*x^10+43816732745/305652037*x^9-95089962833/611304074*x^8-292346454787/611304074*x^7+545585355287/611304074*x^6+292901557469/611304074*x^5-579697087887/305652037*x^4+171028387284/305652037*x^3+389794161659/305652037*x^2-258318160387/305652037*x+11643440424/305652037,12154807/611304074*x^14-59491374/305652037*x^13-63925971/611304074*x^12+1401579455/305652037*x^11-1196449008/305652037*x^10-12597541650/305652037*x^9+15199466532/305652037*x^8+107646318989/611304074*x^7-67878234748/305652037*x^6-110150658497/305652037*x^5+252004981997/611304074*x^4+92226809646/305652037*x^3-76685730975/305652037*x^2-18514538860/305652037*x-1006225625/305652037,-711836/13289219*x^14+5577690/13289219*x^13+10393977/26578438*x^12-125096281/13289219*x^11+112245862/13289219*x^10+1039782208/13289219*x^9-3205848655/26578438*x^8-7724989859/26578438*x^7+7584942718/13289219*x^6+11514378407/26578438*x^5-14949148096/13289219*x^4-675224412/13289219*x^3+9858604785/13289219*x^2-3098264217/13289219*x+34592870/13289219,-1,48468215/611304074*x^14-189344109/611304074*x^13-1187878595/611304074*x^12+4902647627/611304074*x^11+5654078549/305652037*x^10-50051992949/611304074*x^9-52833285461/611304074*x^8+127762529829/305652037*x^7+63095511682/305652037*x^6-339941044381/305652037*x^5-72484174217/305652037*x^4+439402152006/305652037*x^3+29965905372/305652037*x^2-211492144866/305652037*x+8042147152/305652037,-76348393/611304074*x^14+130765267/305652037*x^13+905509600/305652037*x^12-6341929489/611304074*x^11-16595217281/611304074*x^10+59908928063/611304074*x^9+37247759152/305652037*x^8-139904617813/305652037*x^7-172259124441/611304074*x^6+338071311167/305652037*x^5+194624185289/611304074*x^4-396375643439/305652037*x^3-39952724712/305652037*x^2+174254712347/305652037*x-6293768643/305652037,1639277/13289219*x^14-26351641/26578438*x^13-16177277/26578438*x^12+573132423/26578438*x^11-696731057/26578438*x^10-2247779837/13289219*x^9+8949639643/26578438*x^8+14585868707/26578438*x^7-20619164311/13289219*x^6-6146852875/13289219*x^5+40058746767/13289219*x^4-12071497837/13289219*x^3-25822237388/13289219*x^2+15795240486/13289219*x-527365626/13289219,54680583/305652037*x^14-287626758/305652037*x^13-1662705801/611304074*x^12+12764762675/611304074*x^11+2356940013/611304074*x^10-104388167069/611304074*x^9+39548928799/305652037*x^8+376921483673/611304074*x^7-503890600867/611304074*x^6-261572290811/305652037*x^5+552064663661/305652037*x^4-13275628533/305652037*x^3-380966230863/305652037*x^2+179698605282/305652037*x-3162536796/305652037,1737887/305652037*x^14-55523423/611304074*x^13+315288137/611304074*x^12+549548109/611304074*x^11-8487945611/611304074*x^10+2679197630/305652037*x^9+77777618127/611304074*x^8-94503490109/611304074*x^7-162277939828/305652037*x^6+231084430513/305652037*x^5+306862950063/305652037*x^4-455427506255/305652037*x^3-199303677898/305652037*x^2+295326003844/305652037*x-7825642996/305652037,-72247885/305652037*x^14+388710583/305652037*x^13+2047662233/611304074*x^12-8527753607/305652037*x^11+603851245/611304074*x^10+136213918185/611304074*x^9-69852189014/305652037*x^8-231740532545/305652037*x^7+410717111573/305652037*x^6+252592164678/305652037*x^5-1770970477541/611304074*x^4+217077346954/305652037*x^3+607513156021/305652037*x^2-374092419483/305652037*x+11459848525/305652037,-6786181/611304074*x^14-167746466/305652037*x^13+844818258/305652037*x^12+3216466628/305652037*x^11-36538078303/611304074*x^10-37192355557/611304074*x^9+154728853447/305652037*x^8+10365960499/611304074*x^7-614602088121/305652037*x^6+277999313121/305652037*x^5+1113308251967/305652037*x^4-812116184769/305652037*x^3-691183471152/305652037*x^2+621788947131/305652037*x-22257389338/305652037,43207466/305652037*x^14-157271788/305652037*x^13-1984185375/611304074*x^12+3799637890/305652037*x^11+8572443052/305652037*x^10-35569730078/305652037*x^9-68704895871/611304074*x^8+326151047089/611304074*x^7+62555770854/305652037*x^6-761910783593/611304074*x^5-38688272773/305652037*x^4+423568275394/305652037*x^3-5494699711/305652037*x^2-175732070549/305652037*x+8721976332/305652037,93033267/305652037*x^14-443072373/305652037*x^13-1679616372/305652037*x^12+10178652559/305652037*x^11+7985694458/305652037*x^10-88052413935/305652037*x^9+16613144178/305652037*x^8+353133766868/305652037*x^7-229612390329/305652037*x^6-639565576152/305652037*x^5+582826552137/305652037*x^4+383471917482/305652037*x^3-425538623048/305652037*x^2+31658995181/305652037*x-1593526614/305652037,31209030/305652037*x^14-173602914/305652037*x^13-854472849/611304074*x^12+7677399505/611304074*x^11-1121408993/611304074*x^10-61841217765/611304074*x^9+34756069685/305652037*x^8+212029544033/611304074*x^7-399335760597/611304074*x^6-115123793242/305652037*x^5+430040033698/305652037*x^4-105402998551/305652037*x^3-296274092717/305652037*x^2+176432054784/305652037*x-1344150502/305652037,251071165/611304074*x^14-1187131703/611304074*x^13-2238334667/305652037*x^12+27023021265/611304074*x^11+10146013569/305652037*x^10-230536181107/611304074*x^9+27749624059/305652037*x^8+903079980539/611304074*x^7-330938658503/305652037*x^6-1557014912087/611304074*x^5+824895027256/305652037*x^4+385814595832/305652037*x^3-597932076996/305652037*x^2+118112888395/305652037*x-3986094848/305652037,-38102981/305652037*x^14+170189295/611304074*x^13+2089581313/611304074*x^12-2125532896/305652037*x^11-11489893090/305652037*x^10+42145020427/611304074*x^9+64568923142/305652037*x^8-212913597839/611304074*x^7-388163276145/611304074*x^6+581810696261/611304074*x^5+290652152565/305652037*x^4-407569635978/305652037*x^3-161910246849/305652037*x^2+221724552421/305652037*x-5534358850/305652037], x^15-4*x^14-24*x^13+106*x^12+213*x^11-1119*x^10-786*x^9+5993*x^8+390*x^7-17050*x^6+5244*x^5+24068*x^4-13256*x^3-12640*x^2+9184*x-324];
E[697,6]=[[543/11788*x^9+197/11788*x^8-9123/11788*x^7-539/1684*x^6+21117/5894*x^5+16413/11788*x^4-38335/11788*x^3+3147/2947*x^2+16397/5894*x-603/5894,x,-183/2947*x^9+48/421*x^8+3370/2947*x^7-5497/2947*x^6-19146/2947*x^5+3670/421*x^4+32453/2947*x^3-4201/421*x^2-592/421*x+11492/2947,155/2947*x^9-326/2947*x^8-3816/2947*x^7+4955/2947*x^6+32394/2947*x^5-16330/2947*x^4-101526/2947*x^3-17480/2947*x^2+54681/2947*x+210/421,-324/2947*x^9+236/2947*x^8+878/421*x^7-3866/2947*x^6-5302/421*x^5+17553/2947*x^4+10752/421*x^3-17322/2947*x^2-35047/2947*x+10698/2947,543/5894*x^9-645/5894*x^8-11649/5894*x^7+8857/5894*x^6+42167/2947*x^5-23161/5894*x^4-221891/5894*x^3-24018/2947*x^2+55129/2947*x+9501/2947,-1,193/2947*x^9-99/2947*x^8-4173/2947*x^7+1661/2947*x^6+31435/2947*x^5-7201/2947*x^4-93217/2947*x^3+4744/2947*x^2+71107/2947*x-14738/2947,-75/2947*x^9-304/2947*x^8+1602/2947*x^7+742/421*x^6-11125/2947*x^5-25208/2947*x^4+25468/2947*x^3+27308/2947*x^2-8600/2947*x+3716/2947,267/5894*x^9+55/5894*x^8-6663/5894*x^7-2139/5894*x^6+29275/2947*x^5+24957/5894*x^4-190241/5894*x^3-47160/2947*x^2+46883/2947*x+5123/2947,-533/5894*x^9+1303/5894*x^8+12109/5894*x^7-21955/5894*x^6-48021/2947*x^5+102695/5894*x^4+294163/5894*x^3-48306/2947*x^2-107321/2947*x+28029/2947,285/2947*x^9+229/2947*x^8-593/421*x^7-4076/2947*x^6+1709/421*x^5+16895/2947*x^4+3640/421*x^3+10489/2947*x^2-27102/2947*x-9574/2947,1,-1233/5894*x^9+4079/5894*x^8+26219/5894*x^7-9643/842*x^6-95868/2947*x^5+302173/5894*x^4+523725/5894*x^3-105828/2947*x^2-126685/2947*x+27127/2947,52/2947*x^9+152/421*x^8-555/2947*x^7-18600/2947*x^6-2531/2947*x^5+13025/421*x^4+30426/2947*x^3-12812/421*x^2-1173/421*x+24884/2947,789/5894*x^9-1635/5894*x^8-18857/5894*x^7+3999/842*x^6+77673/2947*x^5-130535/5894*x^4-480461/5894*x^3+52748/2947*x^2+154275/2947*x-30509/2947,149/5894*x^9+1721/5894*x^8-303/5894*x^7-27939/5894*x^6-12455/2947*x^5+116727/5894*x^4+155789/5894*x^3-17718/2947*x^2-58677/2947*x+617/421,-2953/5894*x^9+5415/5894*x^8+60769/5894*x^7-86361/5894*x^6-210103/2947*x^5+362081/5894*x^4+1062267/5894*x^3-94020/2947*x^2-260101/2947*x+36843/2947,-269/5894*x^9+2171/5894*x^8+677/5894*x^7-5551/842*x^6+20816/2947*x^5+219651/5894*x^4-250939/5894*x^3-204784/2947*x^2+74952/2947*x+40417/2947,1172/2947*x^9-1020/2947*x^8-23131/2947*x^7+16552/2947*x^6+147043/2947*x^5-76514/2947*x^4-320370/2947*x^3+90850/2947*x^2+164561/2947*x-5800/421,464/2947*x^9-1128/2947*x^8-9389/2947*x^7+19206/2947*x^6+63073/2947*x^5-95086/2947*x^4-155109/2947*x^3+120405/2947*x^2+89692/2947*x-4532/421,-1573/2947*x^9+1073/2947*x^8+4338/421*x^7-15804/2947*x^6-26757/421*x^5+55394/2947*x^4+54929/421*x^3+6332/2947*x^2-145147/2947*x+8006/2947,-1005/5894*x^9+389/5894*x^8+20709/5894*x^7-5591/5894*x^6-69696/2947*x^5+25199/5894*x^4+326873/5894*x^3-26526/2947*x^2-86669/2947*x+27339/2947,-1669/5894*x^9+145/5894*x^8+29739/5894*x^7-4491/5894*x^6-79930/2947*x^5+50257/5894*x^4+259547/5894*x^3-97540/2947*x^2-89655/2947*x+4193/421,-1287/2947*x^9+1031/2947*x^8+25840/2947*x^7-2137/421*x^6-170276/2947*x^5+42605/2947*x^4+392708/2947*x^3+84788/2947*x^2-165258/2947*x-37846/2947], x^10-2*x^9-20*x^8+34*x^7+133*x^6-167*x^5-324*x^4+209*x^3+190*x^2-100*x-2];

\\ levels 700-1000
\\ here I only computed the a_p for p<=29 in order to save time.
E[703,1]=[[-2,0,-3,3,-1,2,3,1,0,-4], x-1];
E[703,2]=[[x,-x+1,-2,2*x+1,-5,-2*x+2,-x,-1,x-2,6*x-2], x^2-2];
E[703,3]=[[x,-x^3-x^2+5*x-1,x^3+2*x^2-4*x-4,-x^2-2*x+3,-1,-2*x^2-2*x+6,x^2+x-6,1,x^3+3*x^2-x-6,3*x^3+4*x^2-10*x-2], x^4-6*x^2+4*x+2];
E[703,4]=[[x,-x^4-2*x^3+5*x^2+8*x-2,-2*x^4-3*x^3+10*x^2+12*x-3,-2*x^4-3*x^3+10*x^2+13*x-4,5*x^4+8*x^3-25*x^2-34*x+6,2*x^4+2*x^3-11*x^2-9*x+5,3*x^4+5*x^3-15*x^2-19*x+3,1,-x^4+5*x^2-2*x-6,-2*x^4-3*x^3+12*x^2+11*x-12], x^5+3*x^4-3*x^3-14*x^2-7*x+3];
E[703,5]=[[x,66/137*x^10-246/137*x^9-597/137*x^8+2839/137*x^7+805/137*x^6-9901/137*x^5+3213/137*x^4+10508/137*x^3-4049/137*x^2-3373/137*x+429/137,-14/137*x^10-35/137*x^9+438/137*x^8+253/137*x^7-3849/137*x^6+286/137*x^5+12732/137*x^4-3956/137*x^3-14838/137*x^2+3634/137*x+5252/137,-124/137*x^10+512/137*x^9+885/137*x^8-5666/137*x^7+1294/137*x^6+17838/137*x^5-16324/137*x^4-12884/137*x^3+20041/137*x^2+442/137*x-6149/137,143/137*x^10-533/137*x^9-1362/137*x^8+6311/137*x^7+2589/137*x^6-23119/137*x^5+3468/137*x^4+27608/137*x^3-3270/137*x^2-10208/137*x-1605/137,17/137*x^10-300/137*x^9+662/137*x^8+3108/137*x^7-9310/137*x^6-8078/137*x^5+34486/137*x^4-50/137*x^3-37350/137*x^2+5510/137*x+11550/137,-20/137*x^10+87/137*x^9+156/137*x^8-989/137*x^7+1/137*x^6+3266/137*x^5-1559/137*x^4-2794/137*x^3+1173/137*x^2+553/137*x+418/137,1,69/137*x^10-307/137*x^9-456/137*x^8+3460/137*x^7-1120/137*x^6-11391/137*x^5+10427/137*x^4+9790/137*x^3-12671/137*x^2-1079/137*x+3942/137,-105/137*x^10+354/137*x^9+1093/137*x^8-4199/137*x^7-2906/137*x^6+15434/137*x^5+549/137*x^4-18573/137*x^3+96/137*x^2+6842/137*x+1578/137], x^11-5*x^10-6*x^9+60*x^8-25*x^7-228*x^6+193*x^5+312*x^4-257*x^3-194*x^2+94*x+54];
E[703,7]=[[x,2,-x^3+x^2+4*x-1,x^3-2*x^2-4*x+7,-x^3+x^2+3*x-1,x^3-2*x^2-5*x+4,-x^3+3*x^2+4*x-7,1,4*x^3-6*x^2-16*x+16,-2*x^2+x+6], x^4-3*x^3-2*x^2+9*x-4];
E[703,8]=[[x,1/8*x^8+3/8*x^7-11/8*x^6-13/4*x^5+43/8*x^4+49/8*x^3-37/4*x^2-3/4*x+3,-3/8*x^8-7/8*x^7+31/8*x^6+8*x^5-101/8*x^4-149/8*x^3+16*x^2+35/4*x-7/2,1/4*x^8+3/4*x^7-11/4*x^6-15/2*x^5+39/4*x^4+81/4*x^3-25/2*x^2-27/2*x+1,x^8+5/2*x^7-19/2*x^6-45/2*x^5+25*x^4+101/2*x^3-41/2*x^2-23*x+2,-1/4*x^8-1/2*x^7+7/2*x^6+19/4*x^5-65/4*x^4-21/2*x^3+103/4*x^2+3*x-15/2,-5/8*x^8-15/8*x^7+47/8*x^6+69/4*x^5-127/8*x^4-317/8*x^3+61/4*x^2+63/4*x-4,-1,-5/4*x^8-3*x^7+13*x^6+109/4*x^5-165/4*x^4-61*x^3+181/4*x^2+25*x-17/2,-3/4*x^7-5/4*x^6+29/4*x^5+21/2*x^4-77/4*x^3-87/4*x^2+27/2*x+13/2], x^9+3*x^8-9*x^7-28*x^6+21*x^5+69*x^4-12*x^3-44*x^2-4*x+4];
E[703,9]=[[0,3,-2,-1,3,6,2,1,0,6], x-1];
E[713,1]=[[1,1,0,-3,-4,2,3,-4,1,-6], x-1];
E[713,2]=[[x,2*x-2,-2*x-1,-1,-2,0,4,-4*x+3,-1,2*x+4], x^2-x-1];
E[713,3]=[[x,-x^3-2*x^2+3*x+3,x^4+2*x^3-2*x^2-3*x-2,2*x^4+5*x^3-4*x^2-11*x-3,x^4+4*x^3+2*x^2-7*x-3,3*x^3+4*x^2-9*x-4,-x^4-2*x^3+x^2,-2*x^4-6*x^3+3*x^2+15*x,-1,-3*x^4-6*x^3+9*x^2+10*x-5], x^5+4*x^4+x^3-9*x^2-5*x+1];
E[713,4]=[[x,-136807/5819940*x^14+39952/1454985*x^13+93799/161665*x^12-133643/187740*x^11-2681048/484995*x^10+4576473/646660*x^9+10519909/415710*x^8-32556337/969990*x^7-21653069/387996*x^6+21027649/277140*x^5+41720483/831420*x^4-132316729/1939980*x^3-212327/23095*x^2+15327632/1454985*x+2696893/1939980,85837/2909970*x^14+48136/1454985*x^13-120938/161665*x^12-71257/93870*x^11+3608821/484995*x^10+2184557/323330*x^9-7601899/207855*x^8-14095598/484995*x^7+17773709/193998*x^6+8402771/138570*x^5-45082013/415710*x^4-50612531/969990*x^3+1161469/23095*x^2+15339536/1454985*x-4041973/969990,16019/387996*x^14-1223/96999*x^13-65153/64666*x^12+4231/12516*x^11+613283/64666*x^10-451733/129332*x^9-593746/13857*x^8+1132125/64666*x^7+12021243/129332*x^6-801985/18476*x^5-4482691/55428*x^4+6003455/129332*x^3+111411/9238*x^2-1093231/96999*x+278693/129332,-8129/415710*x^14+9043/207855*x^13+9446/23095*x^12-12751/13410*x^11-229802/69285*x^10+376341/46190*x^9+2739596/207855*x^8-2376134/69285*x^7-741595/27714*x^6+10035821/138570*x^5+10799707/415710*x^4-9635033/138570*x^3-201386/23095*x^2+4635743/207855*x+83381/138570,-36052/484995*x^14+55528/484995*x^13+286058/161665*x^12-39398/15645*x^11-2668002/161665*x^10+3483164/161665*x^9+5218433/69285*x^8-14517929/161665*x^7-5486480/32333*x^6+4276479/23095*x^5+11263253/69285*x^4-26585239/161665*x^3-888219/23095*x^2+16335923/484995*x+537993/161665,27583/831420*x^14+1789/415710*x^13-20046/23095*x^12+857/26820*x^11+1229089/138570*x^10-140367/92380*x^9-18544477/415710*x^8+845564/69285*x^7+6285857/55428*x^6-10663747/277140*x^5-108962159/831420*x^4+12992611/277140*x^3+1069991/23095*x^2-5616391/415710*x-162697/277140,1987/969990*x^14-13123/969990*x^13-10663/323330*x^12+4609/15645*x^11+23161/161665*x^10-771299/323330*x^9+37747/138570*x^8+2700569/323330*x^7-133264/32333*x^6-426039/46190*x^5+978596/69285*x^4-2931951/323330*x^3-956681/46190*x^2+13826737/969990*x+1048371/161665,-1,36913/484995*x^14-33877/484995*x^13-277742/161665*x^12+22157/15645*x^11+2419663/161665*x^10-1767156/161665*x^9-4307927/69285*x^8+6430836/161665*x^7+3893532/32333*x^6-1570506/23095*x^5-5637782/69285*x^4+7340671/161665*x^3-177264/23095*x^2-1214117/484995*x+685103/161665], x^15-x^14-24*x^13+23*x^12+225*x^11-207*x^10-1031*x^9+912*x^8+2343*x^7-1992*x^6-2324*x^5+1872*x^4+675*x^3-428*x^2-69*x+9];
E[713,5]=[[x,-59538821/1807413068*x^17+385708105/1807413068*x^16+698669197/1807413068*x^15-8720084431/1807413068*x^14+3307738291/1807413068*x^13+37719573969/903706534*x^12-85537114065/1807413068*x^11-313081906059/1807413068*x^10+492089597783/1807413068*x^9+315642604993/903706534*x^8-1256379809619/1807413068*x^7-521737187467/1807413068*x^6+742257170017/903706534*x^5+35761189097/1807413068*x^4-738053113451/1807413068*x^3+116083241867/1807413068*x^2+112457628603/1807413068*x-5167879147/451853267,-27641915/903706534*x^17+83097319/903706534*x^16+760616369/903706534*x^15-2312029515/903706534*x^14-8493899099/903706534*x^13+13017413996/451853267*x^12+49850686049/903706534*x^11-152463675249/903706534*x^10-167570172533/903706534*x^9+248138328907/451853267*x^8+333839566403/903706534*x^7-887801562167/903706534*x^6-198693555880/451853267*x^5+800469445195/903706534*x^4+267019968387/903706534*x^3-287002119197/903706534*x^2-74996284301/903706534*x+7844905026/451853267,78957705/903706534*x^17-765903847/1807413068*x^16-3023405019/1807413068*x^15+18477942525/1807413068*x^14+18282231755/1807413068*x^13-176401206125/1807413068*x^12-8206997531/903706534*x^11+856937606613/1807413068*x^10-219965847917/1807413068*x^9-2272375426231/1807413068*x^8+394757868447/903706534*x^7+3288363968057/1807413068*x^6-865599196663/1807413068*x^5-614724248729/451853267*x^4+163793790147/1807413068*x^3+774275873985/1807413068*x^2+103037676667/1807413068*x-38039511625/1807413068,19400527/451853267*x^17-120743043/903706534*x^16-972984563/903706534*x^15+3007208761/903706534*x^14+10135248769/903706534*x^13-30338283755/903706534*x^12-29141644228/451853267*x^11+161357297323/903706534*x^10+205441070855/903706534*x^9-490488351123/903706534*x^8-226439533212/451853267*x^7+850114950455/903706534*x^6+594699755993/903706534*x^5-386253441114/451853267*x^4-412788698305/903706534*x^3+295422850195/903706534*x^2+111144725393/903706534*x-20516861077/903706534,-77095212/451853267*x^17+342176133/451853267*x^16+1544802809/451853267*x^15-8208317192/451853267*x^14-10630198047/451853267*x^13+77879171177/451853267*x^12+24540914611/451853267*x^11-376172345075/451853267*x^10+28229128408/451853267*x^9+994101508668/451853267*x^8-191213885217/451853267*x^7-1440597463714/451853267*x^6+193571884157/451853267*x^5+1085030192808/451853267*x^4+29375595147/451853267*x^3-342423699890/451853267*x^2-63241562848/451853267*x+15360931903/451853267,525803627/1807413068*x^17-2275574545/1807413068*x^16-10547609333/1807413068*x^15+54066790921/1807413068*x^14+73248199419/1807413068*x^13-126697867476/451853267*x^12-178248793293/1807413068*x^11+2411051994521/1807413068*x^10-133000242179/1807413068*x^9-1562837908808/451853267*x^8+1191662065247/1807413068*x^7+8834658065077/1807413068*x^6-679363374523/903706534*x^5-6431577991983/1807413068*x^4+56432312879/1807413068*x^3+1954697881965/1807413068*x^2+299686196275/1807413068*x-21499851504/451853267,-20534937/451853267*x^17+42818210/451853267*x^16+1143990901/903706534*x^15-1149854318/451853267*x^14-12958523275/903706534*x^13+12366785354/451853267*x^12+77360386947/903706534*x^11-136607925585/903706534*x^10-132631111483/451853267*x^9+414240699455/903706534*x^8+269022662252/451853267*x^7-343749911985/451853267*x^6-637697720375/903706534*x^5+293138650488/451853267*x^4+199270504608/451853267*x^3-207775793569/903706534*x^2-47537139202/451853267*x+13490980747/903706534,1,66442969/903706534*x^17-101920181/451853267*x^16-866800466/451853267*x^15+2659619138/451853267*x^14+9314573934/451853267*x^13-56373111747/903706534*x^12-108133974505/903706534*x^11+156910486286/451853267*x^10+186505621694/451853267*x^9-986765008937/903706534*x^8-786718632827/903706534*x^7+868958256311/451853267*x^6+992086867753/903706534*x^5-1572072620889/903706534*x^4-339904333346/451853267*x^3+288049511827/451853267*x^2+93070504847/451853267*x-30784431925/903706534], x^18-5*x^17-18*x^16+120*x^15+86*x^14-1141*x^13+216*x^12+5545*x^11-3248*x^10-14881*x^9+11254*x^8+22409*x^7-17505*x^6-18664*x^5+12837*x^4+7970*x^3-3926*x^2-1353*x+271];
E[713,6]=[[x,-x,-x^3+4*x+1,x^3-x^2-4*x+1,x^3-x^2-4*x,x^4-x^3-3*x^2+4*x-3,-x^4+4*x^2+x-3,-x^4+2*x^3+3*x^2-8*x,-1,-x^4-2*x^3+6*x^2+8*x-5], x^5-7*x^3+11*x-1];
E[713,7]=[[x,24/37*x^8+97/37*x^7-100/37*x^6-773/37*x^5-413/37*x^4+1300/37*x^3+1307/37*x^2+85/37*x-125/37,13/37*x^8+51/37*x^7-85/37*x^6-448/37*x^5+43/37*x^4+994/37*x^3+173/37*x^2-455/37*x+14/37,9/37*x^8+41/37*x^7-19/37*x^6-313/37*x^5-326/37*x^4+432/37*x^3+874/37*x^2+240/37*x-144/37,-53/37*x^8-225/37*x^7+227/37*x^6+1835/37*x^5+855/37*x^4-3321/37*x^3-2820/37*x^2+264/37*x+330/37,-45/37*x^8-205/37*x^7+132/37*x^6+1639/37*x^5+1223/37*x^4-2789/37*x^3-3297/37*x^2-127/37*x+313/37,-3/37*x^8-26/37*x^7-6/37*x^6+240/37*x^5+195/37*x^4-551/37*x^3-353/37*x^2+142/37*x-137/37,-13/37*x^8-14/37*x^7+159/37*x^6+115/37*x^5-635/37*x^4-217/37*x^3+937/37*x^2+85/37*x-310/37,1,52/37*x^8+204/37*x^7-266/37*x^6-1681/37*x^5-531/37*x^4+3125/37*x^3+2394/37*x^2-377/37*x-462/37], x^9+5*x^8-x^7-38*x^6-43*x^5+52*x^4+102*x^3+31*x^2-11*x-3];
E[731,1]=[[1,1,-1,0,-6,1,-1,-2,2,6], x-1];
E[731,2]=[[-1,x,-x,0,-2,-x-2,-1,-2*x+4,2,-2*x], x^2-x-4];
E[731,3]=[[-2*x^5-7*x^4+3*x^3+22*x^2+6*x-6,x,x^5+4*x^4-13*x^2-8*x+5,3*x^5+10*x^4-6*x^3-32*x^2-7*x+7,-2*x^5-6*x^4+5*x^3+18*x^2+2*x-3,-2*x^5-7*x^4+3*x^3+24*x^2+9*x-11,-1,-4*x^5-14*x^4+5*x^3+42*x^2+16*x-12,-x^5-4*x^4+x^3+15*x^2+4*x-8,7*x^5+22*x^4-17*x^3-70*x^2-7*x+16], x^6+3*x^5-3*x^4-10*x^3+x^2+4*x-1];
E[731,4]=[[17/514*x^7-41/257*x^6-248/257*x^5+757/514*x^4+2959/514*x^3-1483/514*x^2-3723/514*x+521/514,x,-36/257*x^7-38/257*x^6+491/257*x^5+332/257*x^4-1882/257*x^3-775/257*x^2+1716/257*x+91/257,-47/257*x^7-121/257*x^6+434/257*x^5+976/257*x^4-1015/257*x^3-1690/257*x^2+784/257*x+283/257,62/257*x^7+94/257*x^6-660/257*x^5-686/257*x^4+1585/257*x^3+1092/257*x^2-214/257*x-685/257,89/257*x^7+251/257*x^6-707/257*x^5-1963/257*x^4+812/257*x^3+2894/257*x^2+298/257*x-689/257,1,105/257*x^7+325/257*x^6-811/257*x^5-2596/257*x^4+906/257*x^3+4038/257*x^2+135/257*x-758/257,-155/257*x^7-235/257*x^6+1650/257*x^5+1458/257*x^4-4348/257*x^3-931/257*x^2+2077/257*x-472/257,40/257*x^7+185/257*x^6-260/257*x^5-1711/257*x^4+235/257*x^3+3631/257*x^2-279/257*x-1843/257], x^8+3*x^7-10*x^6-29*x^5+28*x^4+74*x^3-30*x^2-50*x+5];
E[731,5]=[[-37357984284168317458331371/126574606109780416485315878708*x^20+64636064934540468364851305/63287303054890208242657939354*x^19+507203164978975554179446820/31643651527445104121328969677*x^18-6258374689705903561189971291/126574606109780416485315878708*x^17-45913488385396733577433632035/126574606109780416485315878708*x^16+126848875139009358293368494991/126574606109780416485315878708*x^15+281021554574814289062864972565/63287303054890208242657939354*x^14-1397501002748072115025556742477/126574606109780416485315878708*x^13-4045343753789868470838948443717/126574606109780416485315878708*x^12+9076161725885331814968636462571/126574606109780416485315878708*x^11+8724753508626208174757655796865/63287303054890208242657939354*x^10-8794759388268020172072735999986/31643651527445104121328969677*x^9-11048591115237439986722084140317/31643651527445104121328969677*x^8+78403907933287438884888029108807/126574606109780416485315878708*x^7+31105193708978784581534747176367/63287303054890208242657939354*x^6-45587371451825291106301469654841/63287303054890208242657939354*x^5-44545796283820793035445923818745/126574606109780416485315878708*x^4+44597810462775081395086661846959/126574606109780416485315878708*x^3+7693049756072278264828500267181/63287303054890208242657939354*x^2-1534579165365179904423626758479/31643651527445104121328969677*x-478047392515293391671479564223/31643651527445104121328969677,x,115247566400389284808887477/31643651527445104121328969677*x^20+73058270003926142060918524/31643651527445104121328969677*x^19-5578345149219206083212996128/31643651527445104121328969677*x^18-2880933108446614668667342273/31643651527445104121328969677*x^17+112699103446576257716882903362/31643651527445104121328969677*x^16+44674813536865602639793414822/31643651527445104121328969677*x^15-1232543294673739669574744841218/31643651527445104121328969677*x^14-345572006157645913368769007260/31643651527445104121328969677*x^13+7906013913822352842938898213557/31643651527445104121328969677*x^12+1393690598262948365274824589047/31643651527445104121328969677*x^11-30106204423289994208021944966620/31643651527445104121328969677*x^10-2813088377903671995982016260108/31643651527445104121328969677*x^9+65790479999181892110073311319530/31643651527445104121328969677*x^8+2635007917311400748106262724132/31643651527445104121328969677*x^7-76007068610107190158965535424224/31643651527445104121328969677*x^6-1038528690272961458402660563890/31643651527445104121328969677*x^5+39393831429967035611714897907629/31643651527445104121328969677*x^4+121025777563942229733437798311/31643651527445104121328969677*x^3-7115460243053778243640658357691/31643651527445104121328969677*x^2+102215431856387234163139166350/31643651527445104121328969677*x+263334901972807500392108197668/31643651527445104121328969677,125392733383414453828689047/31643651527445104121328969677*x^20+65235450804562409397340805/31643651527445104121328969677*x^19-6058779929551202201880209417/31643651527445104121328969677*x^18-2187751010094996576247285920/31643651527445104121328969677*x^17+122428713462620632929719174766/31643651527445104121328969677*x^16+23990185987918984453409885122/31643651527445104121328969677*x^15-1342950711075209058563379954007/31643651527445104121328969677*x^14-44677288395300319329619684218/31643651527445104121328969677*x^13+8672801820513681294098030926870/31643651527445104121328969677*x^12-1010996722338002401582487027333/31643651527445104121328969677*x^11-33423179523645778679026982862180/31643651527445104121328969677*x^10+8057099352664333959718124202137/31643651527445104121328969677*x^9+74485697143306911129826557198423/31643651527445104121328969677*x^8-24336428580072805601726684808839/31643651527445104121328969677*x^7-89009053946905258249934201536536/31643651527445104121328969677*x^6+32253104371706635880411726218377/31643651527445104121328969677*x^5+49579453722642480553000144903884/31643651527445104121328969677*x^4-15998965967012494124685881900146/31643651527445104121328969677*x^3-11100355166756790557812235437532/31643651527445104121328969677*x^2+2118645195376205173915072312941/31643651527445104121328969677*x+787597626355099152827315341956/31643651527445104121328969677,-129607733841771661575575453/63287303054890208242657939354*x^20-116368359837621253399787359/31643651527445104121328969677*x^19+3059063575526314982789323924/31643651527445104121328969677*x^18+10092248781132910793904877531/63287303054890208242657939354*x^17-120790722741896293524599394985/63287303054890208242657939354*x^16-179037075172980701872512405075/63287303054890208242657939354*x^15+648261015253667082847384425676/31643651527445104121328969677*x^14+1682131603655364518495420156263/63287303054890208242657939354*x^13-8211045926784966543804995110391/63287303054890208242657939354*x^12-9054077349898115111286386186215/63287303054890208242657939354*x^11+15509153901288572373433114195759/31643651527445104121328969677*x^10+14131450221884712374902870999583/31643651527445104121328969677*x^9-33382013552699401794093975797435/31643651527445104121328969677*x^8-49783267938858466524674009906091/63287303054890208242657939354*x^7+35901591736742416534912229561340/31643651527445104121328969677*x^6+23486094580713904593257221997193/31643651527445104121328969677*x^5-26498423785602668494680135462133/63287303054890208242657939354*x^4-22479962774793049004234188824817/63287303054890208242657939354*x^3-496549336674163076457096191209/31643651527445104121328969677*x^2+1943275965323029735018485812565/31643651527445104121328969677*x+458236391016989055427662191258/31643651527445104121328969677,-73424083480603137295811335/31643651527445104121328969677*x^20-45650392532033542558290717/31643651527445104121328969677*x^19+3529525215767948124903630547/31643651527445104121328969677*x^18+1518932080565672780537978761/31643651527445104121328969677*x^17-71186276872595073702833035566/31643651527445104121328969677*x^16-16183283810616838876685459954/31643651527445104121328969677*x^15+783622841687736494290526731291/31643651527445104121328969677*x^14+17930876256946525174849037675/31643651527445104121328969677*x^13-5120485615901737756383571118645/31643651527445104121328969677*x^12+868889915809009033912348480874/31643651527445104121328969677*x^11+20201799760529473616759814345992/31643651527445104121328969677*x^10-6744979387353754251056726575642/31643651527445104121328969677*x^9-46811721227583209334954941622232/31643651527445104121328969677*x^8+21093192849882415242081211735439/31643651527445104121328969677*x^7+59275443346389530882567117773429/31643651527445104121328969677*x^6-29473481612345515501261149611950/31643651527445104121328969677*x^5-36087809477806592917751992987057/31643651527445104121328969677*x^4+15635620659513903252024031431116/31643651527445104121328969677*x^3+9601595759510277218419341742581/31643651527445104121328969677*x^2-2590089764301911535903575116492/31643651527445104121328969677*x-855946919546012527851679276518/31643651527445104121328969677,-1,668550294752407549748632989/63287303054890208242657939354*x^20+280269109437954260901654800/31643651527445104121328969677*x^19-16023934203302353437837711786/31643651527445104121328969677*x^18-21915281027741053016933983071/63287303054890208242657939354*x^17+642504595862093892657982798039/63287303054890208242657939354*x^16+333724465656282464785022880107/63287303054890208242657939354*x^15-3498816121474614886869877864184/31643651527445104121328969677*x^14-2465330591573301586433896887683/63287303054890208242657939354*x^13+44937562648657795539550319362725/63287303054890208242657939354*x^12+8608514813176759874527444941879/63287303054890208242657939354*x^11-86279111893577214157921857258642/31643651527445104121328969677*x^10-4152527032810606022381052565930/31643651527445104121328969677*x^9+191725320917582610729633543535212/31643651527445104121328969677*x^8-25491061268654807668286550770615/63287303054890208242657939354*x^7-226866559194788807568331655298120/31643651527445104121328969677*x^6+32433467453090852678730999076377/31643651527445104121328969677*x^5+243694589026563018091137542943871/63287303054890208242657939354*x^4-39365471816273358977737043680963/63287303054890208242657939354*x^3-25622786084370551637345807341390/31643651527445104121328969677*x^2+3095071219277524464210473948946/31643651527445104121328969677*x+1724548989267351022064306708064/31643651527445104121328969677,-225964354524316049210426240/31643651527445104121328969677*x^20-281905462182146248135920987/31643651527445104121328969677*x^19+10806573756219028626567816268/31643651527445104121328969677*x^18+11981087447332913684445066446/31643651527445104121328969677*x^17-216122468062548683604043160668/31643651527445104121328969677*x^16-206937639345497013466629907032/31643651527445104121328969677*x^15+2347950014385722503460681683374/31643651527445104121328969677*x^14+1876368560625527051572893623661/31643651527445104121328969677*x^13-15036884478363910058213161904406/31643651527445104121328969677*x^12-9632009395135020420960552137222/31643651527445104121328969677*x^11+57503685688053512868859452568599/31643651527445104121328969677*x^10+28219570875392944873977000801181/31643651527445104121328969677*x^9-126519877215741057432908142247879/31643651527445104121328969677*x^8-45591784195106242446658135892638/31643651527445104121328969677*x^7+145067016247766970381372445090757/31643651527445104121328969677*x^6+37810592830219831461787933865007/31643651527445104121328969677*x^5-69781819410787715933589166279766/31643651527445104121328969677*x^4-15075123744197105389827698180197/31643651527445104121328969677*x^3+9841824779596850858018601683501/31643651527445104121328969677*x^2+2049147406130503247569660751645/31643651527445104121328969677*x+32529305957934977395113826674/31643651527445104121328969677,-162382074322949768012037528/31643651527445104121328969677*x^20-174058601284868393180351374/31643651527445104121328969677*x^19+7689377242522742813891496075/31643651527445104121328969677*x^18+7089450376493644208589394480/31643651527445104121328969677*x^17-152173450931422512092020471155/31643651527445104121328969677*x^16-115625584662799152710498675408/31643651527445104121328969677*x^15+1635995572477419395390158153079/31643651527445104121328969677*x^14+968638498525484925229333574071/31643651527445104121328969677*x^13-10382244388909963682476152922250/31643651527445104121328969677*x^12-4439696954698059820535217011541/31643651527445104121328969677*x^11+39504090149279529774210914729974/31643651527445104121328969677*x^10+10967976552899193652554329215423/31643651527445104121328969677*x^9-87391115844170539896554479943151/31643651527445104121328969677*x^8-13467335542727598952161368466290/31643651527445104121328969677*x^7+103583678204534490191942972049081/31643651527445104121328969677*x^6+6921651710457920809794670004139/31643651527445104121328969677*x^5-55948323168187561679933412459746/31643651527445104121328969677*x^4-1881104069636490662421619139030/31643651527445104121328969677*x^3+11313613561418009215889312858775/31643651527445104121328969677*x^2+497960864785326684204444648230/31643651527445104121328969677*x-585667037760037254942235927680/31643651527445104121328969677], x^21+x^20-48*x^19-41*x^18+964*x^17+674*x^16-10525*x^15-5705*x^14+67848*x^13+26590*x^12-262265*x^11-68190*x^10+590444*x^9+93377*x^8-719141*x^7-67956*x^6+414111*x^5+34290*x^4-99217*x^3-11164*x^2+8076*x+1384];
E[731,6]=[[-31952922949/478994458716*x^18+45163569437/239497229358*x^17+286133555686/119748614679*x^16-3181701769825/478994458716*x^15-16799344157893/478994458716*x^14+45723959674843/478994458716*x^13+1210694251786/4435133877*x^12-344313201178879/478994458716*x^11-588146795253025/478994458716*x^10+1454705225922667/478994458716*x^9+264817959029033/79832409786*x^8-861878762189698/119748614679*x^7-1317194821105079/239497229358*x^6+486087769872763/53221606524*x^5+10321278290527/1947131946*x^4-1286923251969545/239497229358*x^3-1089621904704731/478994458716*x^2+50872003194415/53221606524*x+2905620352417/39916204893,x,9794287954/119748614679*x^18-26417362624/119748614679*x^17-357399553003/119748614679*x^16+940915112089/119748614679*x^15+5367254594962/119748614679*x^14-13706051783773/119748614679*x^13-4776184122734/13305401631*x^12+104950471284520/119748614679*x^11+200229415880146/119748614679*x^10-452728152261634/119748614679*x^9-187324064829466/39916204893*x^8+1100411636941303/119748614679*x^7+960019279653502/119748614679*x^6-159574428770240/13305401631*x^5-7611924189452/973565973*x^4+871205225051188/119748614679*x^3+398988333323837/119748614679*x^2-18056800219654/13305401631*x-3920404529722/39916204893,9129084020/119748614679*x^18-26124174755/119748614679*x^17-327182682134/119748614679*x^16+921782434727/119748614679*x^15+4809536230199/119748614679*x^14-13282937602094/119748614679*x^13-4170694549082/13305401631*x^12+100442823936374/119748614679*x^11+169524016190816/119748614679*x^10-426968753444864/119748614679*x^9-153351745055737/39916204893*x^8+1020011643279446/119748614679*x^7+764826172278719/119748614679*x^6-144944589190552/13305401631*x^5-5996980747597/973565973*x^4+771011670165308/119748614679*x^3+315898446505918/119748614679*x^2-15200193157396/13305401631*x-3247029215876/39916204893,1445674759/79832409786*x^18-1368682073/39916204893*x^17-30084610412/39916204893*x^16+111826938703/79832409786*x^15+1034090381305/79832409786*x^14-1870666083175/79832409786*x^13-176258616956/1478377959*x^12+16486158785485/79832409786*x^11+51009622007419/79832409786*x^10-82042781390431/79832409786*x^9-27138745674190/13305401631*x^8+114897793594568/39916204893*x^7+152604787274600/39916204893*x^6-12639313282079/2956755918*x^5-1269280816696/324521991*x^4+115796408201360/39916204893*x^3+134645308096697/79832409786*x^2-5435822251751/8870267754*x-655955506532/13305401631,-17958741820/119748614679*x^18+49501024042/119748614679*x^17+657663753874/119748614679*x^16-1772612821099/119748614679*x^15-9929654691949/119748614679*x^14+26000098373431/119748614679*x^13+8906933290889/13305401631*x^12-200902820902573/119748614679*x^11-377737531432906/119748614679*x^10+877092903481915/119748614679*x^9+358942776369856/39916204893*x^8-2164533944385694/119748614679*x^7-1873502989637182/119748614679*x^6+319100937714509/13305401631*x^5+15148155812228/973565973*x^4-1766798073441196/119748614679*x^3-808787065664027/119748614679*x^2+36837426144007/13305401631*x+8314790780638/39916204893,1,41426672191/239497229358*x^18-61382893163/119748614679*x^17-743478626036/119748614679*x^16+4368573028537/239497229358*x^15+21856513765951/239497229358*x^14-63470192234587/239497229358*x^13-1050760192822/1478377959*x^12+483615698494675/239497229358*x^11+765980222740459/239497229358*x^10-2069484928416409/239497229358*x^9-12814595466329/1478377959*x^8+2485585988818811/119748614679*x^7+1743857949686933/119748614679*x^6-709778162716433/26610803262*x^5-14045799148807/973565973*x^4+1891212846119459/119748614679*x^3+1530395606945129/239497229358*x^2-24596686715231/8870267754*x-8054334954152/39916204893,15116354224/119748614679*x^18-44262288202/119748614679*x^17-538115783089/119748614679*x^16+1565851453345/119748614679*x^15+7809212231389/119748614679*x^14-22569502980169/119748614679*x^13-6624799232237/13305401631*x^12+170062045430161/119748614679*x^11+260223002784742/119748614679*x^10-716253693997717/119748614679*x^9-225110051566345/39916204893*x^8+1682814376970770/119748614679*x^7+1081140251902018/119748614679*x^6-233660527609235/13305401631*x^5-8388731439116/973565973*x^4+1203278022736828/119748614679*x^3+450228718722944/119748614679*x^2-22076549614165/13305401631*x-5170994301484/39916204893,-44238499564/119748614679*x^18+125407765192/119748614679*x^17+1596775780333/119748614679*x^16-4457525237533/119748614679*x^15-23638415489170/119748614679*x^14+64713487738168/119748614679*x^13+6880331553796/4435133877*x^12-492963579050986/119748614679*x^11-844777537802107/119748614679*x^10+2110329780581812/119748614679*x^9+769915320332489/39916204893*x^8-5075437081660864/119748614679*x^7-3875978688552313/119748614679*x^6+242115231927592/4435133877*x^5+30721353009722/973565973*x^4-3893933327070640/119748614679*x^3-1633995227999576/119748614679*x^2+77619882792995/13305401631*x+16907031611254/39916204893], x^19-5*x^18-30*x^17+179*x^16+318*x^15-2624*x^14-1061*x^13+20311*x^12-4812*x^11-89702*x^10+50281*x^9+230680*x^8-159654*x^7-344023*x^6+234519*x^5+280066*x^4-154817*x^3-98750*x^2+33639*x+2568];
E[737,1]=[[-2,2,-2,-2,1,-2,7,3,-7,-9], x-1];
E[737,2]=[[x,x-2,x-2,2*x-2,1,-3*x,-x-3,x+1,-1,-3*x+1], x^2-2];
E[737,3]=[[x,-27575/2721286*x^16-13959/2721286*x^15+421780/1360643*x^14+226336/1360643*x^13-5145829/1360643*x^12-5668067/2721286*x^11+64184009/2721286*x^10+18133909/1360643*x^9-108214772/1360643*x^8-129471301/2721286*x^7+378647651/2721286*x^6+255334209/2721286*x^5-285346173/2721286*x^4-118464833/1360643*x^3+18588852/1360643*x^2+26293787/1360643*x-116947/1360643,-79595/1360643*x^16-1558/1360643*x^15+2027846/1360643*x^14-122103/1360643*x^13-21015197/1360643*x^12+2362756/1360643*x^11+114156154/1360643*x^10-15446807/1360643*x^9-348529496/1360643*x^8+45126608/1360643*x^7+590962892/1360643*x^6-60356771/1360643*x^5-500950147/1360643*x^4+38093562/1360643*x^3+152317469/1360643*x^2-20978969/1360643*x-2813674/1360643,-436709/2721286*x^16+160039/1360643*x^15+5661340/1360643*x^14-7612317/2721286*x^13-118167911/2721286*x^12+67982097/2721286*x^11+637884591/2721286*x^10-280545071/2721286*x^9-1901012233/2721286*x^8+511831833/2721286*x^7+3061470609/2721286*x^6-123898893/1360643*x^5-2325621837/2721286*x^4-92799286/1360643*x^3+254834310/1360643*x^2+6083559/1360643*x-4393979/1360643,1,674298/1360643*x^16-218655/1360643*x^15-34735067/2721286*x^14+5710751/1360643*x^13+360933595/2721286*x^12-109960013/2721286*x^11-971918078/1360643*x^10+245265824/1360643*x^9+5792436367/2721286*x^8-1023601847/2721286*x^7-4686751954/1360643*x^6+435458634/1360643*x^5+7296219993/2721286*x^4-147221772/1360643*x^3-907207135/1360643*x^2+160330356/1360643*x+2832435/1360643,175081/1360643*x^16-189075/1360643*x^15-4992326/1360643*x^14+4011681/1360643*x^13+57220778/1360643*x^12-31430453/1360643*x^11-339144855/1360643*x^10+106173948/1360643*x^9+1108362283/1360643*x^8-108307302/1360643*x^7-1948104866/1360643*x^6-165271890/1360643*x^5+1598499322/1360643*x^4+321706256/1360643*x^3-369696706/1360643*x^2-25262969/1360643*x+7143603/1360643,2375247/5442572*x^16-285489/1360643*x^15-15575793/1360643*x^14+28337525/5442572*x^13+660294635/5442572*x^12-265676361/5442572*x^11-3634362175/5442572*x^10+1179424583/5442572*x^9+11095636931/5442572*x^8-2514466743/5442572*x^7-18446939141/5442572*x^6+570195646/1360643*x^5+14819445489/5442572*x^4-397616943/2721286*x^3-969791216/1360643*x^2+315882101/2721286*x+20041495/2721286,8611/2721286*x^16+50462/1360643*x^15-113948/1360643*x^14-2701341/2721286*x^13+2303893/2721286*x^12+29563433/2721286*x^11-9914489/2721286*x^10-170052715/2721286*x^9+6542363/2721286*x^8+547603833/2721286*x^7+85269403/2721286*x^6-480783675/1360643*x^5-258058191/2721286*x^4+401502117/1360643*x^3+110846743/1360643*x^2-101466197/1360643*x+1577562/1360643,-495327/2721286*x^16-170990/1360643*x^15+6000119/1360643*x^14+6407591/2721286*x^13-117423713/2721286*x^12-45411131/2721286*x^11+595875329/2721286*x^10+150927509/2721286*x^9-1671971695/2721286*x^8-231017089/2721286*x^7+2537860253/2721286*x^6+50612395/1360643*x^5-1837775421/2721286*x^4+59239305/1360643*x^3+208995628/1360643*x^2-66647148/1360643*x+3903540/1360643], x^17-x^16-26*x^15+25*x^14+272*x^13-244*x^12-1472*x^11+1186*x^10+4406*x^9-3042*x^8-7180*x^7+4055*x^6+5665*x^5-2655*x^4-1418*x^3+810*x^2-76*x-2];
E[737,4]=[[x,-3/13*x^11-5/13*x^10+45/13*x^9+59/13*x^8-250/13*x^7-232/13*x^6+613/13*x^5+343/13*x^4-621/13*x^3-147/13*x^2+193/13*x+12/13,-5/13*x^11-15/13*x^10+54/13*x^9+183/13*x^8-163/13*x^7-759/13*x^6+3/13*x^5+1202/13*x^4+480/13*x^3-551/13*x^2-21*x+40/13,11/13*x^11+29/13*x^10-134/13*x^9-357/13*x^8+542/13*x^7+1501/13*x^6-740/13*x^5-2443/13*x^4+9/13*x^3+1208/13*x^2+210/13*x-128/13,-1,2/13*x^11+11/13*x^10-x^9-138/13*x^8-36/13*x^7+603/13*x^6+391/13*x^5-83*x^4-714/13*x^3+706/13*x^2+225/13*x-122/13,14/13*x^11+31/13*x^10-180/13*x^9-374/13*x^8+808/13*x^7+1531/13*x^6-1450/13*x^5-2399/13*x^4+860/13*x^3+1086/13*x^2-131/13*x-53/13,9/13*x^11+18/13*x^10-121/13*x^9-206/13*x^8+591/13*x^7+768/13*x^6-96*x^5-987/13*x^4+1048/13*x^3+190/13*x^2-249/13*x+59/13,-19/13*x^11-46/13*x^10+18*x^9+557/13*x^8-984/13*x^7-2303/13*x^6+1570/13*x^5+283*x^4-666/13*x^3-1741/13*x^2-12/13*x+93/13,-23/13*x^11-73/13*x^10+254/13*x^9+903/13*x^8-829/13*x^7-3824/13*x^6+375/13*x^5+6261/13*x^4+1622/13*x^3-2986/13*x^2-999/13*x+105/13], x^12+2*x^11-14*x^10-25*x^9+72*x^8+109*x^7-165*x^6-196*x^5+165*x^4+134*x^3-64*x^2-30*x+6];
E[737,5]=[[x,-22786/27669*x^14+117353/55338*x^13+471050/27669*x^12-2508073/55338*x^11-7145261/55338*x^10+10162456/27669*x^9+11800910/27669*x^8-25961013/18446*x^7-27316081/55338*x^6+70546519/27669*x^5-2078627/9223*x^4-101446331/55338*x^3+14710864/27669*x^2+9113714/27669*x-1067672/9223,684/9223*x^14-2188/9223*x^13-14906/9223*x^12+49601/9223*x^11+120581/9223*x^10-429750/9223*x^9-431747/9223*x^8+1769565/9223*x^7+570167/9223*x^6-3454563/9223*x^5+146548/9223*x^4+2697746/9223*x^3-512623/9223*x^2-543101/9223*x+115044/9223,11021/27669*x^14-29645/27669*x^13-226771/27669*x^12+643447/27669*x^11+1689386/27669*x^10-5310596/27669*x^9-5240740/27669*x^8+6921898/9223*x^7+4156102/27669*x^6-38389202/27669*x^5+2876898/9223*x^4+28079162/27669*x^3-11705774/27669*x^2-5177314/27669*x+806498/9223,-1,80333/55338*x^14-96475/27669*x^13-1675759/55338*x^12+4114069/55338*x^11+6443791/27669*x^10-16626640/27669*x^9-43681729/55338*x^8+42360523/18446*x^7+27412583/27669*x^6-114769648/27669*x^5+4173631/18446*x^4+82112407/27669*x^3-23648059/27669*x^2-14727959/27669*x+1789760/9223,-81178/27669*x^14+201532/27669*x^13+1686272/27669*x^12-4297415/27669*x^11-12893899/27669*x^10+34736338/27669*x^9+43316411/27669*x^8-44248498/9223*x^7-53203226/27669*x^6+239813635/27669*x^5-4937857/9223*x^4-171912295/27669*x^3+48039040/27669*x^2+30970907/27669*x-3571017/9223,-19977/18446*x^14+22324/9223*x^13+420865/18446*x^12-952513/18446*x^11-1641419/9223*x^10+3853297/9223*x^9+11403109/18446*x^8-29498543/18446*x^7-7688932/9223*x^6+26694785/9223*x^5-368255/18446*x^4-19116222/9223*x^3+4913401/9223*x^2+3444175/9223*x-1119577/9223,-5719/9223*x^14+14195/9223*x^13+121044/9223*x^12-307374/9223*x^11-950035/9223*x^10+2527931/9223*x^9+3325765/9223*x^8-9832787/9223*x^7-4520002/9223*x^6+18032357/9223*x^5-132891/9223*x^4-13022134/9223*x^3+2877797/9223*x^2+2364556/9223*x-642165/9223,8038/27669*x^14-24202/27669*x^13-156128/27669*x^12+497585/27669*x^11+1092553/27669*x^10-3846832/27669*x^9-3254597/27669*x^8+4663313/9223*x^7+3244880/27669*x^6-24195811/27669*x^5+562383/9223*x^4+17252176/27669*x^3-3158818/27669*x^2-3186677/27669*x+229347/9223], x^15-2*x^14-22*x^13+43*x^12+185*x^11-353*x^10-745*x^9+1391*x^8+1463*x^7-2685*x^6-1277*x^5+2284*x^4+457*x^3-718*x^2-58*x+72];
E[737,6]=[[x,x^7-2*x^6-7*x^5+13*x^4+5*x^3-6*x^2-2*x-2,-4*x^7+10*x^6+25*x^5-69*x^4+x^3+52*x^2-11*x-4,3*x^7-8*x^6-18*x^5+56*x^4-6*x^3-47*x^2+12*x+6,1,x^7-4*x^6-4*x^5+29*x^4-15*x^3-29*x^2+12*x+6,3*x^7-7*x^6-21*x^5+50*x^4+14*x^3-47*x^2+x+5,-7*x^7+20*x^6+40*x^5-140*x^4+27*x^3+115*x^2-38*x-16,8*x^7-24*x^6-41*x^5+165*x^4-63*x^3-117*x^2+62*x+5,-4*x^7+13*x^6+19*x^5-90*x^4+41*x^3+67*x^2-37*x-5], x^8-2*x^7-8*x^6+15*x^5+12*x^4-19*x^3-7*x^2+6*x+1];
E[767,1]=[[-1,-x^2+x+5,x,-1,-x-1,1,-x^2+3,x^2-2*x-6,3*x^2-x-14,x^2-2*x-6], x^3+x^2-7*x-9];
E[767,2]=[[x^3+2*x^2-2*x-2,-x^3-x^2+2*x,x,2*x^3+x^2-5*x,-x^3-3*x^2+x+4,1,x^3-4*x-1,-x^3+x^2+x-4,2*x^2+2*x-5,-3*x^3-x^2+7*x-3], x^4+x^3-3*x^2-x+1];
E[767,3]=[[100/139*x^9+615/139*x^8-73/139*x^7-6165/139*x^6-7268/139*x^5+10892/139*x^4+10928/139*x^3-9587/139*x^2-145/139*x+296/139,-106/139*x^9-638/139*x^8+158/139*x^7+6521/139*x^6+6909/139*x^5-12563/139*x^4-10316/139*x^3+11972/139*x^2-722/139*x-614/139,x,6/139*x^9+23/139*x^8-85/139*x^7-356/139*x^6+359/139*x^5+1671/139*x^4-612/139*x^3-2385/139*x^2+728/139*x+40/139,401/139*x^9+2487/139*x^8-283/139*x^7-25229/139*x^6-29545/139*x^5+46974/139*x^4+46529/139*x^3-42985/139*x^2-1339/139*x+1932/139,-1,-460/139*x^9-2829/139*x^8+447/139*x^7+28915/139*x^6+32988/139*x^5-55274/139*x^4-54272/139*x^3+49549/139*x^2+3169/139*x-2001/139,-396/139*x^9-2491/139*x^8+50/139*x^7+24886/139*x^6+31489/139*x^5-43288/139*x^4-50236/139*x^3+37731/139*x^2+6023/139*x-2223/139,-73/139*x^9-442/139*x^8+38/139*x^7+4285/139*x^6+5339/139*x^5-6500/139*x^4-7149/139*x^3+5735/139*x^2-610/139*x-533/139,-27/139*x^9-173/139*x^8+35/139*x^7+1880/139*x^6+1929/139*x^5-4392/139*x^4-3779/139*x^3+3991/139*x^2+616/139*x-597/139], x^10+6*x^9-2*x^8-63*x^7-61*x^6+134*x^5+96*x^4-132*x^3+13*x^2+7*x-1];
E[767,4]=[[x,x,x,2*x+1,-3*x-3,-1,-2*x-2,-1,-x-1,7], x^2+2*x-1];
E[767,5]=[[4241881332764649335422691071212339814226643255/1818440269695395831123600644639697414278027616254976*x^22-11716435342483193220030163274159918488298672315/909220134847697915561800322319848707139013808127488*x^21-305536559234114050479109982651871560540841528859/1818440269695395831123600644639697414278027616254976*x^20+1796713380271765236805380620682875381021089159757/1818440269695395831123600644639697414278027616254976*x^19+8974843302251097322636612912337319961959175528097/1818440269695395831123600644639697414278027616254976*x^18-57832755764722351849483460170503248143040625268965/1818440269695395831123600644639697414278027616254976*x^17-136451879836763159055372942136699344312280618106707/1818440269695395831123600644639697414278027616254976*x^16+507575691836273364210237042228053876846886581159785/909220134847697915561800322319848707139013808127488*x^15+1105132789075651357371298867063224919349083418018137/1818440269695395831123600644639697414278027616254976*x^14-10578125838113377209143492978508282641704965942173999/1818440269695395831123600644639697414278027616254976*x^13-251131297354052708464147435995593837697644733165713/113652516855962239445225040289981088392376726015936*x^12+66938815702583354948863617172387059528431571191812617/1818440269695395831123600644639697414278027616254976*x^11-1882764207314261664536776961388956345934397111130031/1818440269695395831123600644639697414278027616254976*x^10-127030453882767532982256312802858964817896411983412341/909220134847697915561800322319848707139013808127488*x^9+15369219683973785085066015739742661974425340174079109/454610067423848957780900161159924353569506904063744*x^8+69326600822391712018397009055516163991787973016048721/227305033711924478890450080579962176784753452031872*x^7-2730039250781852487440471524946456984578034768618129/28413129213990559861306260072495272098094181503984*x^6-9941793120709683244160055268013725243649540063136725/28413129213990559861306260072495272098094181503984*x^5+673301150231183203555868738163049461815862325938967/7103282303497639965326565018123818024523545375996*x^4+2503860068251708396399303249473415425100188156208669/14206564606995279930653130036247636049047090751992*x^3-144633759095419354766392966721366010772098282779153/7103282303497639965326565018123818024523545375996*x^2-112888951791428803845070605496943414641546718583187/3551641151748819982663282509061909012261772687998*x-1652434034593053337027836614576206093373245954806/1775820575874409991331641254530954506130886343999,-15376350550609598193251191424962903345867534083/1818440269695395831123600644639697414278027616254976*x^22+21964971952020773745916660720682097957119579249/454610067423848957780900161159924353569506904063744*x^21+1084662704026592125803558449087235078401957574995/1818440269695395831123600644639697414278027616254976*x^20-6696823512232259275539208733140711618252958107079/1818440269695395831123600644639697414278027616254976*x^19-30797080102126627340162846850515342548966875219579/1818440269695395831123600644639697414278027616254976*x^18+213899619898943409906738358193678743695824691542899/1818440269695395831123600644639697414278027616254976*x^17+439505388010850460312185167653437554799395180306253/1818440269695395831123600644639697414278027616254976*x^16-464515172115990543724101870855340647974995312833351/227305033711924478890450080579962176784753452031872*x^15-3055733927315552016895748222470933226462858972156521/1818440269695395831123600644639697414278027616254976*x^14+38180431249605919483055439493104834350484687092970157/1818440269695395831123600644639697414278027616254976*x^13+2448770660050127169187162209845289007196866778300793/909220134847697915561800322319848707139013808127488*x^12-236885739724337633729364126606429891946593352505355917/1818440269695395831123600644639697414278027616254976*x^11+66114532000611108442183342086561134842443183011502397/1818440269695395831123600644639697414278027616254976*x^10+218565298209958971590639230560300362098420017109372561/454610067423848957780900161159924353569506904063744*x^9-54908506752105501741710093982464500976009284775492191/227305033711924478890450080579962176784753452031872*x^8-229185391969820408857931903615103895416888102588699127/227305033711924478890450080579962176784753452031872*x^7+67778692091462592873309317880970970479944932563587725/113652516855962239445225040289981088392376726015936*x^6+30878874619042175493964572099614673344200950647431609/28413129213990559861306260072495272098094181503984*x^5-17268906266294683639348302983307429000675323433040059/28413129213990559861306260072495272098094181503984*x^4-867891288350512051861424803049362728627882652544593/1775820575874409991331641254530954506130886343999*x^3+638739930231057254443652853886602794965202281491689/3551641151748819982663282509061909012261772687998*x^2+286540010166298878952949630280275374835078229003835/3551641151748819982663282509061909012261772687998*x-6176487031376422533733433886174923895159749337457/1775820575874409991331641254530954506130886343999,x,14206932975427278351511136663858291460532403623/909220134847697915561800322319848707139013808127488*x^22-40926500189979602090114509441766891965672072567/454610067423848957780900161159924353569506904063744*x^21-1001713039692840854707369119452720883684673319939/909220134847697915561800322319848707139013808127488*x^20+6248435230162655050755112978937613459386363039597/909220134847697915561800322319848707139013808127488*x^19+28415511776423702132195294889937909470432073474785/909220134847697915561800322319848707139013808127488*x^18-199966686154179693570537387544368594026789005864765/909220134847697915561800322319848707139013808127488*x^17-404627129950281198417765448636879582600667048179963/909220134847697915561800322319848707139013808127488*x^16+1741438796906607063675199354564287805770613896328429/454610067423848957780900161159924353569506904063744*x^15+2793629175649508212974928344242420517955361328036617/909220134847697915561800322319848707139013808127488*x^14-35903651168141309307041483778694433247111029041722783/909220134847697915561800322319848707139013808127488*x^13-130110270580212907261852978502126171561195380978563/28413129213990559861306260072495272098094181503984*x^12+223741384465753450912481655907761618182753657129928121/909220134847697915561800322319848707139013808127488*x^11-63688294232024027746852029900781037279096254664679503/909220134847697915561800322319848707139013808127488*x^10-415212965870143089562488414255498677175235343961141733/454610067423848957780900161159924353569506904063744*x^9+104018204053130498888871587627244865338264924874518081/227305033711924478890450080579962176784753452031872*x^8+109589067552701642733412734306872463726965312460467697/56826258427981119722612520144990544196188363007968*x^7-63685601402753570020109598599999091959093520131223661/56826258427981119722612520144990544196188363007968*x^6-59560015603096534640812663285808140659928792177109271/28413129213990559861306260072495272098094181503984*x^5+15937106827402073688519649413235647982373015565353939/14206564606995279930653130036247636049047090751992*x^4+6812145308165710020693279389920368954533272390354589/7103282303497639965326565018123818024523545375996*x^3-545277925782918893771162421046539282947292422364754/1775820575874409991331641254530954506130886343999*x^2-301962819768948296240721085150123458764034473726388/1775820575874409991331641254530954506130886343999*x+2344693373083842597762313822458951770453575645090/1775820575874409991331641254530954506130886343999,7167369958441910885595283737609852455260755705/1818440269695395831123600644639697414278027616254976*x^22-20740393649958236574047032081399629864097613751/909220134847697915561800322319848707139013808127488*x^21-506132721092952919780967521292199151134459869765/1818440269695395831123600644639697414278027616254976*x^20+3174815270010185435160000256356772053562722801511/1818440269695395831123600644639697414278027616254976*x^19+14376952076012593670071104203914206152422881204107/1818440269695395831123600644639697414278027616254976*x^18-101954632098722511467346831112306770464831072314863/1818440269695395831123600644639697414278027616254976*x^17-204731578453494842582792546589431767517493201034249/1818440269695395831123600644639697414278027616254976*x^16+892121856301388498811708224378560479765158275594573/909220134847697915561800322319848707139013808127488*x^15+1403153061940718665886501288550534418524664512414055/1818440269695395831123600644639697414278027616254976*x^14-18519453724801979700841970377926927402559394675544445/1818440269695395831123600644639697414278027616254976*x^13-452252269989481771286575152869627325024341251325617/454610067423848957780900161159924353569506904063744*x^12+116611833681009058480788775015912834162957337572026879/1818440269695395831123600644639697414278027616254976*x^11-35814733198811244790103283987673279112740165168599757/1818440269695395831123600644639697414278027616254976*x^10-220055628119188171183972134467864654283391628755923909/909220134847697915561800322319848707139013808127488*x^9+58096894184040872800604309492471045179380305681730519/454610067423848957780900161159924353569506904063744*x^8+119612918105928002291292197052437136818358176404023249/227305033711924478890450080579962176784753452031872*x^7-36408168360174222212807339768336271422542130016786737/113652516855962239445225040289981088392376726015936*x^6-34486050040109072696272150850458642540936172632065913/56826258427981119722612520144990544196188363007968*x^5+4749791959412549151631138062630615747349801768259519/14206564606995279930653130036247636049047090751992*x^4+4533790273503920725595800329956581995263042554029255/14206564606995279930653130036247636049047090751992*x^3-689594925073239510071693849741715368215930672403963/7103282303497639965326565018123818024523545375996*x^2-122998647964699959352285553308485029060626721167871/1775820575874409991331641254530954506130886343999*x-5875523457224041925347384045583592321487148068926/1775820575874409991331641254530954506130886343999,1,1084502500572929786006335333807804569293756781/227305033711924478890450080579962176784753452031872*x^22-6625778488217946808601249218068036959816791571/227305033711924478890450080579962176784753452031872*x^21-37084357535385067435758396040767861855467129415/113652516855962239445225040289981088392376726015936*x^20+502257347965238527323096512841188603793225311655/227305033711924478890450080579962176784753452031872*x^19+1997868788750097545399723576418579132012441324273/227305033711924478890450080579962176784753452031872*x^18-497556219598794129195684746453579010066731890847/7103282303497639965326565018123818024523545375996*x^17-3198015903669227694041436822864569606929632250297/28413129213990559861306260072495272098094181503984*x^16+273676617764294957319261082834645493171192921999495/227305033711924478890450080579962176784753452031872*x^15+125039590173233791409529993114323210483822172367069/227305033711924478890450080579962176784753452031872*x^14-2768233318340035419226293364113410249994589474340003/227305033711924478890450080579962176784753452031872*x^13+266565278093751552242702602062661686400093214346833/113652516855962239445225040289981088392376726015936*x^12+16772784133026918931060331661784802871200287562976961/227305033711924478890450080579962176784753452031872*x^11-9667951545945024491307198843062997429607294999276617/227305033711924478890450080579962176784753452031872*x^10-29821100380874851580163924187158719749327944132535717/113652516855962239445225040289981088392376726015936*x^9+2947111401950365167899431532000124060879864513192207/14206564606995279930653130036247636049047090751992*x^8+117739546195374150504755976708063719583597978534474825/227305033711924478890450080579962176784753452031872*x^7-52005925344601236359829592468138030505176167029261799/113652516855962239445225040289981088392376726015936*x^6-3554491444762937764328744748234894079231596495683243/7103282303497639965326565018123818024523545375996*x^5+6196340814684430168040571829157213707247908736981021/14206564606995279930653130036247636049047090751992*x^4+311541883124815953116443985022748469442677393877903/1775820575874409991331641254530954506130886343999*x^3-880205458479943639780368284976397897077926754303279/7103282303497639965326565018123818024523545375996*x^2-38181506179766615071816323056029283132403390842467/1775820575874409991331641254530954506130886343999*x+5038060902637780783488241257397907996622245565969/1775820575874409991331641254530954506130886343999,23025556073917148246337570566564372490701544781/909220134847697915561800322319848707139013808127488*x^22-17414441859838365674063436296821322264223844951/113652516855962239445225040289981088392376726015936*x^21-1592435921887154792457190867508653983998954960085/909220134847697915561800322319848707139013808127488*x^20+10622872818083482126344524637498442617803458871333/909220134847697915561800322319848707139013808127488*x^19+43697434540679186827279785733773923308253950061889/909220134847697915561800322319848707139013808127488*x^18-339413911050840007427333359321414466410236014410337/909220134847697915561800322319848707139013808127488*x^17-581014127969927535588040066626362430368142720581919/909220134847697915561800322319848707139013808127488*x^16+1474444562577160549117912804247093121393460209169129/227305033711924478890450080579962176784753452031872*x^15+3240134400225893840733447324216670031976534843288367/909220134847697915561800322319848707139013808127488*x^14-60582244830311627096213125044437823856949636051142503/909220134847697915561800322319848707139013808127488*x^13+3155041309133543267042675148122890764598545124715015/454610067423848957780900161159924353569506904063744*x^12+375449571270020263788287111773670086484081985223564995/909220134847697915561800322319848707139013808127488*x^11-182586648865950471792283414216705417030679165867711895/909220134847697915561800322319848707139013808127488*x^10-43164738667757604416050694477868706379861446577228285/28413129213990559861306260072495272098094181503984*x^9+59808503722685309131796053365307837308650039985219715/56826258427981119722612520144990544196188363007968*x^8+359362211827152788287575611397076763862119723891588903/113652516855962239445225040289981088392376726015936*x^7-68914385296620106927208959540472618654733087304248627/28413129213990559861306260072495272098094181503984*x^6-95205897431356564791723315340019381158134734591548697/28413129213990559861306260072495272098094181503984*x^5+33947038460404745486377730127961274102718075816065181/14206564606995279930653130036247636049047090751992*x^4+2588613305765448283084790571585972151652980712707753/1775820575874409991331641254530954506130886343999*x^3-2419251711285652206655634899316253701208238071133949/3551641151748819982663282509061909012261772687998*x^2-454568538476743233470765823989445119380516293584294/1775820575874409991331641254530954506130886343999*x+27298379010055713081042258712544867999157019410106/1775820575874409991331641254530954506130886343999,-3155543747571789767802283371586043403417980909/454610067423848957780900161159924353569506904063744*x^22+9076031824418089208383832555615365874932045511/227305033711924478890450080579962176784753452031872*x^21+222064558115805297505295692769109667370056301427/454610067423848957780900161159924353569506904063744*x^20-1383823719429603641616824519974831887189573964627/454610067423848957780900161159924353569506904063744*x^19-6273230466952547863093075934937433803699581644593/454610067423848957780900161159924353569506904063744*x^18+44188348711924783272242618890091637897300278169461/454610067423848957780900161159924353569506904063744*x^17+88445518787847254301005391439489638089395579733495/454610067423848957780900161159924353569506904063744*x^16-191692062000766151995496877328038113685343590244447/113652516855962239445225040289981088392376726015936*x^15-591507747118355748118671458663644187904976138545665/454610067423848957780900161159924353569506904063744*x^14+7852307498780151894838026354350042562200766279547681/454610067423848957780900161159924353569506904063744*x^13+288735721139986189418534432518536076088244261148993/227305033711924478890450080579962176784753452031872*x^12-48334535785498059920234514915890728645482729632386945/454610067423848957780900161159924353569506904063744*x^11+16628239982667694446743351814685762214875375401064309/454610067423848957780900161159924353569506904063744*x^10+21881695390113523816278564272152553867365906199355647/56826258427981119722612520144990544196188363007968*x^9-51296616790339777988452611729542610523577519520076897/227305033711924478890450080579962176784753452031872*x^8-43840137703087410200719266316327809271907041940765671/56826258427981119722612520144990544196188363007968*x^7+30994132900436640006634884672427484176232010256784065/56826258427981119722612520144990544196188363007968*x^6+1311696993516624351842081234270696091751066702736226/1775820575874409991331641254530954506130886343999*x^5-7688927998331245299478842875126612111869098990747523/14206564606995279930653130036247636049047090751992*x^4-801237389695251676527491134331451883831706091155765/3551641151748819982663282509061909012261772687998*x^3+264235392008205114749571871323544967801913049421550/1775820575874409991331641254530954506130886343999*x^2+31483941089274646386813281429022383004242218517049/1775820575874409991331641254530954506130886343999*x-14476977579775072800984183120825148919372264748636/1775820575874409991331641254530954506130886343999,-418143359281894227199270867822482534930192373/454610067423848957780900161159924353569506904063744*x^22+884340467298290547834475285380921837846526657/909220134847697915561800322319848707139013808127488*x^21+19211880348406426330462567309904705351902226865/227305033711924478890450080579962176784753452031872*x^20-77633430852868838843101075182832420349435660735/909220134847697915561800322319848707139013808127488*x^19-3008807282997952611908259275842026268298941424083/909220134847697915561800322319848707139013808127488*x^18+2925575313842596179602213654097329012595230690197/909220134847697915561800322319848707139013808127488*x^17+65407126374103508838389648543999327020854360544319/909220134847697915561800322319848707139013808127488*x^16-61650050881861369760021766976809572960194939996065/909220134847697915561800322319848707139013808127488*x^15-215673588694054643504079522591358824703929147716039/227305033711924478890450080579962176784753452031872*x^14+791658260242233895281246100004454022413401417128173/909220134847697915561800322319848707139013808127488*x^13+7094780887901089968245376427825747761688734077926143/909220134847697915561800322319848707139013808127488*x^12-3160261017896083784174277303445221727145755154220373/454610067423848957780900161159924353569506904063744*x^11-36122789699091655851420576629432469050126248209610955/909220134847697915561800322319848707139013808127488*x^10+30708346789327627809780407680134410607485116232063835/909220134847697915561800322319848707139013808127488*x^9+55112007864076441949661845198528334684166641518532307/454610067423848957780900161159924353569506904063744*x^8-21447626346099234180597840850476695559385598108263397/227305033711924478890450080579962176784753452031872*x^7-5965660646315265246810333344628573215340463157551901/28413129213990559861306260072495272098094181503984*x^6+7887609289996241216768358608539121659813699647851137/56826258427981119722612520144990544196188363007968*x^5+2646836441861973303501798048069839507037977557329149/14206564606995279930653130036247636049047090751992*x^4-1270629441866308757451249218704529555392722502904153/14206564606995279930653130036247636049047090751992*x^3-461487598092025238827162847303962739320557079831453/7103282303497639965326565018123818024523545375996*x^2+23354084360467361173129858917760326764357147071392/1775820575874409991331641254530954506130886343999*x+7969760687179018540772990273201391182074781894106/1775820575874409991331641254530954506130886343999], x^23-4*x^22-81*x^21+317*x^20+2801*x^19-10657*x^18-54111*x^17+198312*x^16+643019*x^15-2238143*x^14-4894174*x^13+15814887*x^12+24187057*x^11-69900276*x^10-77130544*x^9+187733632*x^8+153123344*x^7-285750528*x^6-173058880*x^5+212348800*x^4+92806144*x^3-54402560*x^2-20271104*x+657408];
E[767,6]=[[-617883329159403/1074680639744532352*x^16+206652836728615/134335079968066544*x^15+33385612643653657/1074680639744532352*x^14-5792779827941175/67167539984033272*x^13-351948954907604671/537340319872266176*x^12+292966331650600147/153525805677790336*x^11+913578058741839265/134335079968066544*x^10-22892716250181468913/1074680639744532352*x^9-19139713303271825597/537340319872266176*x^8+34156277439317554767/268670159936133088*x^7+45536856850058647/572857483872352*x^6-52258805614364788603/134335079968066544*x^5-371573002001256957/134335079968066544*x^4+33943996289241158095/67167539984033272*x^3-5430311526193897703/33583769992016636*x^2-1074684966851092272/8395942498004159*x+99576273634283463/8395942498004159,-24019761488696271/4298722558978129408*x^16+14010444778701227/1074680639744532352*x^15+1313778088334981849/4298722558978129408*x^14-396197801237795635/537340319872266176*x^13-14096035533021351241/2149361279489064704*x^12+10116186192448573555/614103222711161344*x^11+75156558814304677649/1074680639744532352*x^10-798919128876409024905/4298722558978129408*x^9-823740433962585216761/2149361279489064704*x^8+150692225379569862579/134335079968066544*x^7+1093606758284384639/1145714967744704*x^6-466447845389208671027/134335079968066544*x^5-30643373499509617655/67167539984033272*x^4+38277413291615170845/8395942498004159*x^3-9892484379659467594/8395942498004159*x^2-9796395453143148468/8395942498004159*x+708059588217461694/8395942498004159,x,-5278369332832103/1074680639744532352*x^16+6167833179161625/537340319872266176*x^15+289799428329638527/1074680639744532352*x^14-349972608473966993/537340319872266176*x^13-1562057535481566877/268670159936133088*x^12+2242991427713908623/153525805677790336*x^11+33509146352583143015/537340319872266176*x^10-177984795854865727771/1074680639744532352*x^9-46239772166887282343/134335079968066544*x^8+539926531269767045683/537340319872266176*x^7+496103078658298001/572857483872352*x^6-419929339053996295659/134335079968066544*x^5-14539418448868987815/33583769992016636*x^4+138401108047940600227/33583769992016636*x^3-8768299263710037923/8395942498004159*x^2-8890487857535754699/8395942498004159*x+611607530130077952/8395942498004159,-23458927082702997/2149361279489064704*x^16+3493354334780743/134335079968066544*x^15+1282922493504584015/2149361279489064704*x^14-197436161985556169/134335079968066544*x^13-13759342294374969365/1074680639744532352*x^12+10076055806434564397/307051611355580672*x^11+4580797649058144837/33583769992016636*x^10-795328590403253685759/2149361279489064704*x^9-801560577860838324779/1074680639744532352*x^8+1199621322534136036475/537340319872266176*x^7+2114393783474334133/1145714967744704*x^6-1856304595865757412349/268670159936133088*x^5-111112855019319724419/134335079968066544*x^4+609678045609820737565/67167539984033272*x^3-79981089897969882539/33583769992016636*x^2-39263559711089100231/16791884996008318*x+1389266845927755313/8395942498004159,-1,-2984437969114421/1074680639744532352*x^16+7926937261146599/1074680639744532352*x^15+20183824794805215/134335079968066544*x^14-443358619402402153/1074680639744532352*x^13-3413668430873793573/1074680639744532352*x^12+1397649126234722143/153525805677790336*x^11+35649771760891476057/1074680639744532352*x^10-54453700818400119461/537340319872266176*x^9-189270202755657981285/1074680639744532352*x^8+648443217611576667073/1074680639744532352*x^7+470080316602086807/1145714967744704*x^6-247845506433917193813/134335079968066544*x^5-6455832871485400659/67167539984033272*x^4+80818446104361123307/33583769992016636*x^3-22857177241082155129/33583769992016636*x^2-5306193172657480260/8395942498004159*x+394684979726824161/8395942498004159,-7269711945544901/2149361279489064704*x^16+4489105092086917/537340319872266176*x^15+393930771483783403/2149361279489064704*x^14-62788765001116867/134335079968066544*x^13-4175677877691469815/1074680639744532352*x^12+3166417532682049577/307051611355580672*x^11+21916843634598085099/537340319872266176*x^10-246580333684706599163/2149361279489064704*x^9-235256514135722819975/1074680639744532352*x^8+183365357010976757621/268670159936133088*x^7+150799671591676841/286428741936176*x^6-280098179483762764395/134335079968066544*x^5-6699174539429661435/33583769992016636*x^4+22818100025880107863/8395942498004159*x^3-12229381286335947775/16791884996008318*x^2-5996771799136710797/8395942498004159*x+425801501989186748/8395942498004159,-1116392355663141/1074680639744532352*x^16+2711581914871933/1074680639744532352*x^15+61673086256100605/1074680639744532352*x^14-155639933031644727/1074680639744532352*x^13-167348262723442219/134335079968066544*x^12+505635394374775003/153525805677790336*x^11+14454599834313238517/1074680639744532352*x^10-40753780558024061193/1074680639744532352*x^9-80108479216002814951/1074680639744532352*x^8+31419049386007727645/134335079968066544*x^7+106863982006743425/572857483872352*x^6-49681093054718234677/67167539984033272*x^5-5621675660379033173/67167539984033272*x^4+8331798773721455650/8395942498004159*x^3-2028343892379677352/8395942498004159*x^2-2250948800536968173/8395942498004159*x+86943049623909376/8395942498004159,11928833037817909/4298722558978129408*x^16-5733808245412573/1074680639744532352*x^15-665484926297598527/4298722558978129408*x^14+166870673809836093/537340319872266176*x^13+7326546271857058397/2149361279489064704*x^12-4399023155586664833/614103222711161344*x^11-40399229607932966517/1074680639744532352*x^10+359671833521895984935/4298722558978129408*x^9+463624900970308448387/2149361279489064704*x^8-562353724469958082029/1074680639744532352*x^7-333687618689543569/572857483872352*x^6+449945342594899113535/268670159936133088*x^5+28688730463068421651/67167539984033272*x^4-151524391745872945579/67167539984033272*x^3+15702040099444629675/33583769992016636*x^2+4849842224732292050/8395942498004159*x-262074760209090720/8395942498004159], x^17-4*x^16-51*x^15+224*x^14+962*x^13-4947*x^12-7716*x^11+54891*x^10+13542*x^9-321428*x^8+167128*x^7+929632*x^6-981312*x^5-980800*x^4+1623296*x^3-148480*x^2-376320*x+25600];
E[779,1]=[[x,-x,2*x-1,-x+1,-3*x+1,2*x-4,-x-1,1,-2*x+2,2*x-6], x^2-2];
E[779,2]=[[x,-x^6-x^5+7*x^4+8*x^3-6*x^2-7*x-2,-x-1,x^7+5*x^6-3*x^5-38*x^4-27*x^3+44*x^2+36*x-5,x^7+3*x^6-6*x^5-23*x^4-3*x^3+26*x^2+10*x-1,-x^6-2*x^5+7*x^4+16*x^3-6*x^2-19*x,-6*x^7-16*x^6+36*x^5+125*x^4+18*x^3-152*x^2-67*x+21,1,x^7+5*x^6-4*x^5-38*x^4-20*x^3+46*x^2+28*x-8,4*x^7+15*x^6-19*x^5-117*x^4-52*x^3+150*x^2+87*x-30], x^8+2*x^7-9*x^6-18*x^5+20*x^4+37*x^3-17*x^2-21*x+4];
E[779,3]=[[x,-x^9+11*x^7-x^6-37*x^5+8*x^4+39*x^3-11*x^2-9*x+2,2*x^10-x^9-23*x^8+13*x^7+83*x^6-52*x^5-101*x^4+56*x^3+40*x^2-10*x-5,-x^8-x^7+10*x^6+9*x^5-28*x^4-20*x^3+19*x^2+9*x-1,2*x^9+x^8-21*x^7-8*x^6+64*x^5+13*x^4-52*x^3-3*x^2+3*x-1,x^9-x^8-11*x^7+12*x^6+36*x^5-44*x^4-32*x^3+44*x^2+2*x-8,-x^10+x^9+11*x^8-13*x^7-36*x^6+53*x^5+33*x^4-66*x^3-7*x^2+19*x+1,-1,-3*x^10-x^9+33*x^8+8*x^7-111*x^6-13*x^5+118*x^4+6*x^3-25*x^2-4,-4*x^10+x^9+45*x^8-15*x^7-156*x^6+67*x^5+172*x^4-72*x^3-48*x^2+10*x+2], x^11-13*x^9+58*x^7+x^6-105*x^5-9*x^4+72*x^3+10*x^2-12*x-2];
E[779,4]=[[x,-689037/30360352*x^18+35113/948761*x^17+20640399/30360352*x^16-1049173/948761*x^15-255122555/30360352*x^14+414588707/30360352*x^13+418836999/7590088*x^12-2734739379/30360352*x^11-3126877749/15180176*x^10+10406103817/30360352*x^9+13073303301/30360352*x^8-23063953343/30360352*x^7-428133089/948761*x^6+14386991197/15180176*x^5+2254516821/15180176*x^4-211092085/345004*x^3+66357092/948761*x^2+149637107/948761*x-37332232/948761,2113/30360352*x^18-162317/7590088*x^17-299347/30360352*x^16+4690921/7590088*x^15+8116975/30360352*x^14-221399059/30360352*x^13-12700593/3795044*x^12+1367117023/30360352*x^11+356378207/15180176*x^10-4686722429/30360352*x^9-2967563565/30360352*x^8+8613638135/30360352*x^7+1811596841/7590088*x^6-3543982425/15180176*x^5-4779722161/15180176*x^4+1898517/86251*x^3+172608036/948761*x^2+79924965/1897522*x-25586166/948761,-567031/15180176*x^18+127463/7590088*x^17+17638061/15180176*x^16-3863433/7590088*x^15-229344329/15180176*x^14+96489091/15180176*x^13+807927773/7590088*x^12-642432793/15180176*x^11-1670351559/3795044*x^10+2470649743/15180176*x^9+16390213793/15180176*x^8-5579373347/15180176*x^7-11448403103/7590088*x^6+3620365247/7590088*x^5+8144838057/7590088*x^4-114453877/345004*x^3-276109491/948761*x^2+89108407/948761*x-1325780/948761,-1399231/15180176*x^18+18245/7590088*x^17+42377877/15180176*x^16-553427/7590088*x^15-533879889/15180176*x^14+12286831/15180176*x^13+1811522395/7590088*x^12-58295617/15180176*x^11-1792237767/1897522*x^10+65661599/15180176*x^9+33495294989/15180176*x^8+398331225/15180176*x^7-22343364685/7590088*x^6-694219569/7590088*x^5+15678058573/7590088*x^4+30190449/345004*x^3-609208341/948761*x^2-21558495/948761*x+48449364/948761,388111/15180176*x^18-66443/15180176*x^17-12040823/15180176*x^16+1307373/15180176*x^15+156380063/15180176*x^14-2918177/7590088*x^13-1103968461/15180176*x^12-46845265/15180176*x^11+4603915621/15180176*x^10+595703281/15180176*x^9-1443784389/1897522*x^8-1269076295/7590088*x^7+17041342997/15180176*x^6+323346071/948761*x^5-3486005353/3795044*x^4-225240197/690008*x^3+1430355441/3795044*x^2+224299695/1897522*x-53156660/948761,-186671/3795044*x^18-44421/7590088*x^17+5711083/3795044*x^16+1228239/7590088*x^15-73110849/3795044*x^14-14571465/7590088*x^13+1017688131/7590088*x^12+49596935/3795044*x^11-4191739907/7590088*x^10-109043669/1897522*x^9+10437896071/7590088*x^8+1284927715/7590088*x^7-15427270411/7590088*x^6-602860803/1897522*x^5+6366680209/3795044*x^4+112647661/345004*x^3-634656111/948761*x^2-125058402/948761*x+80331600/948761,1,291779/7590088*x^18-12003/948761*x^17-1066584/948761*x^16+689331/1897522*x^15+51327877/3795044*x^14-33009677/7590088*x^13-653424317/7590088*x^12+107949517/3795044*x^11+1173872263/3795044*x^10-213540045/1897522*x^9-4650727121/7590088*x^8+268007494/948761*x^7+4379082483/7590088*x^6-3430781251/7590088*x^5-384515239/3795044*x^4+145675729/345004*x^3-570747741/3795044*x^2-152451879/948761*x+49204062/948761,-3413/345004*x^18+12841/1380016*x^17+104633/345004*x^16-403727/1380016*x^15-1326429/345004*x^14+5321527/1380016*x^13+36055601/1380016*x^12-9490725/345004*x^11-142959197/1380016*x^10+78811163/690008*x^9+340396099/1380016*x^8-380769205/1380016*x^7-489673433/1380016*x^6+126518213/345004*x^5+206915989/690008*x^4-14811027/62728*x^3-10302779/86251*x^2+9043773/172502*x+623328/86251], x^19-31*x^17+403*x^15+x^14-2856*x^13-21*x^12+12018*x^11+167*x^10-30705*x^9-609*x^8+46868*x^7+898*x^6-40530*x^5+48*x^4+17736*x^3-1056*x^2-2912*x+576];
E[779,5]=[[x,5831005153/37155100960*x^20-179435849/37155100960*x^19-213197531607/37155100960*x^18+7035144813/37155100960*x^17+659894188269/7431020192*x^16-56345763801/18577550480*x^15-5630383542155/7431020192*x^14+1019633311313/37155100960*x^13+28901428553035/7431020192*x^12-1222502111533/7431020192*x^11-228342485992563/18577550480*x^10+13068941861197/18577550480*x^9+871773192744021/37155100960*x^8-4814878154313/2322193810*x^7-47027840637717/1857755048*x^6+8589895075933/2322193810*x^5+49347019677519/3715510096*x^4-3746833023837/1161096905*x^3-540493454216/232219381*x^2+946862686244/1161096905*x-39972880842/1161096905,-5016498653/37155100960*x^20-903666551/37155100960*x^19+185228833127/37155100960*x^18+27957810387/37155100960*x^17-579052237597/7431020192*x^16-177222695629/18577550480*x^15+4988723010783/7431020192*x^14+2327643733727/37155100960*x^13-25839681049899/7431020192*x^12-1583444948611/7431020192*x^11+205771312024913/18577550480*x^10+4559019775063/18577550480*x^9-790558593879521/37155100960*x^8+6128587860437/9288775240*x^7+42815054830733/1857755048*x^6-11626251626891/4644387620*x^5-44928243202955/3715510096*x^4+12557332925003/4644387620*x^3+488670797393/232219381*x^2-1693294025483/2322193810*x+38539429242/1161096905,3086318421/18577550480*x^20-39015103/18577550480*x^19-113574153209/18577550480*x^18+2801377231/18577550480*x^17+353872139919/3715510096*x^16-15654815541/4644387620*x^15-3039474745331/3715510096*x^14+703872946531/18577550480*x^13+15704372037045/3715510096*x^12-941928878783/3715510096*x^11-62431807875213/4644387620*x^10+10068456001359/9288775240*x^9+479612458932837/18577550480*x^8-27603889369533/9288775240*x^7-26021811854621/928877524*x^6+11275680119707/2322193810*x^5+27438327101727/1857755048*x^4-18336196344127/4644387620*x^3-600413679103/232219381*x^2+1112614377911/1161096905*x-49245397768/1161096905,11575438547/18577550480*x^20-7887304301/18577550480*x^19-404693098003/18577550480*x^18+246933198077/18577550480*x^17+1193941491533/3715510096*x^16-395143879751/2322193810*x^15-9689627884517/3715510096*x^14+21460148122497/18577550480*x^13+47274339339751/3715510096*x^12-16860244241277/3715510096*x^11-44388194432589/1161096905*x^10+99419748578873/9288775240*x^9+1289200428334939/18577550480*x^8-145380173266581/9288775240*x^7-66036310219101/928877524*x^6+34743848335279/2322193810*x^5+65529393045897/1857755048*x^4-42307636442999/4644387620*x^3-1365479159300/232219381*x^2+2380876781247/1161096905*x-101232266976/1161096905,1488742843/9288775240*x^20-223644003/18577550480*x^19-108355282299/18577550480*x^18+7428046491/18577550480*x^17+333717276543/3715510096*x^16-101447456659/18577550480*x^15-1416297538257/1857755048*x^14+766451615161/18577550480*x^13+14462351751235/3715510096*x^12-751664501143/3715510096*x^11-227268915508717/18577550480*x^10+3386780609787/4644387620*x^9+107834358783753/4644387620*x^8-36581826567261/18577550480*x^7-46252687471615/1857755048*x^6+4008590522086/1161096905*x^5+12065532894071/928877524*x^4-28304249236239/9288775240*x^3-2126351506769/928877524*x^2+1808022762677/2322193810*x-30825847658/1161096905,805222679/4644387620*x^20-478309339/9288775240*x^19-57794112337/9288775240*x^18+15180845413/9288775240*x^17+175532865397/1857755048*x^16-197996074297/9288775240*x^15-367584510203/464438762*x^14+1389920663773/9288775240*x^13+7419433593397/1857755048*x^12-1171315257349/1857755048*x^11-115485205760631/9288775240*x^10+8001072077547/4644387620*x^9+27209784867272/1161096905*x^8-30417343428113/9288775240*x^7-5813012571370/232219381*x^6+5022423965621/1161096905*x^5+3032592752071/232219381*x^4-15242600733187/4644387620*x^3-537475678911/232219381*x^2+924730713306/1161096905*x-29255853748/1161096905,-1,2963298713/9288775240*x^20-525712131/2322193810*x^19-103344120087/9288775240*x^18+65798489713/9288775240*x^17+304125659167/1857755048*x^16-210459252903/2322193810*x^15-307798350597/232219381*x^14+713877775861/1161096905*x^13+11990483769061/1857755048*x^12-4481729691229/1857755048*x^11-22489602634282/1161096905*x^10+52708322972279/9288775240*x^9+326502277837981/9288775240*x^8-76509047451273/9288775240*x^7-66942446030795/1857755048*x^6+9005821469856/1161096905*x^5+16624847840281/928877524*x^4-21541801337837/4644387620*x^3-2768981889485/928877524*x^2+1191780074861/1161096905*x-49774662258/1161096905,-2765847427/3715510096*x^20+621695829/1857755048*x^19+49050032299/1857755048*x^18-9687682537/928877524*x^17-367562570581/928877524*x^16+492393319721/3715510096*x^15+12136924774539/3715510096*x^14-413938636465/464438762*x^13-30134669123207/1857755048*x^12+1616199804447/464438762*x^11+184327291062503/3715510096*x^10-7743382434673/928877524*x^9-340487637364797/3715510096*x^8+49075510079059/3715510096*x^7+88708982570215/928877524*x^6-3493515703013/232219381*x^5-89520928126649/1857755048*x^4+20415891938781/1857755048*x^3+1891971909945/232219381*x^2-1252151613931/464438762*x+26915607066/232219381], x^21-x^20-35*x^19+33*x^18+517*x^17-454*x^16-4203*x^15+3401*x^14+20547*x^13-15245*x^12-61842*x^11+42414*x^10+112133*x^9-73432*x^8-113232*x^7+76256*x^6+51782*x^5-42048*x^4-3816*x^3+8096*x^2-1696*x+64];
E[781,1]=[[0,0,-1,-3,-1,7,3,-2,8,4], x-1];
E[781,2]=[[0,0,-1,3,1,1,-3,-2,-4,-8], x-1];
E[781,3]=[[x,-x,-x-1,x,1,-5,-2*x,-x-2,-4,-x+4], x^2-x-3];
E[781,4]=[[1/2*x^5+3*x^4+5/2*x^3-23/2*x^2-19*x-6,-1/2*x^3-x^2+5/2*x+3/2,1/2*x^4+2*x^3-3/2*x^2-19/2*x-4,x,1,-5/2*x^5-27/2*x^4-7*x^3+53*x^2+69*x+35/2,-1/2*x^5-3*x^4-2*x^3+27/2*x^2+31/2*x-3/2,-1/2*x^4-2*x^3+3/2*x^2+23/2*x+4,3*x^5+31/2*x^4+11/2*x^3-125/2*x^2-70*x-23/2,7/2*x^5+18*x^4+13/2*x^3-147/2*x^2-86*x-17], x^6+6*x^5+6*x^4-20*x^3-41*x^2-22*x-3];
E[781,5]=[[-321731768591851189/20375351870941069088*x^14-823910444685305145/10187675935470534544*x^13+7755553129533103311/10187675935470534544*x^12+84568955820669635017/20375351870941069088*x^11-255549662356036687969/20375351870941069088*x^10-185878419134902601367/2546918983867633636*x^9+2053937010722985504183/20375351870941069088*x^8+11324447650168603372351/20375351870941069088*x^7-6190699366931790771407/10187675935470534544*x^6-40151255586904470748671/20375351870941069088*x^5+1672773263430430871076/636729745966908409*x^4+5726882376259259451711/2546918983867633636*x^3-6415301624868440211773/1273459491933816818*x^2+1492555628282340206943/636729745966908409*x-114368043294744934965/636729745966908409,611364831697222423/10187675935470534544*x^14+3044104977454878199/10187675935470534544*x^13-3753716495515306475/1273459491933816818*x^12-157144544823693342853/10187675935470534544*x^11+256521100942759320395/5093837967735267272*x^10+2788311022333783238925/10187675935470534544*x^9-4357011747747651463977/10187675935470534544*x^8-5371674022346266305849/2546918983867633636*x^7+26703535361496260670671/10187675935470534544*x^6+76567919181907905157951/10187675935470534544*x^5-112581711936153713972841/10187675935470534544*x^4-5298909630111644577480/636729745966908409*x^3+52633768271121109139177/2546918983867633636*x^2-6337684177113970399122/636729745966908409*x+485818531263218333563/636729745966908409,-577448378437553227/10187675935470534544*x^14-1446429100237459887/5093837967735267272*x^13+14124839005681643179/5093837967735267272*x^12+149122113140772414779/10187675935470534544*x^11-479000525223776503391/10187675935470534544*x^10-660028118052916047027/2546918983867633636*x^9+4024705984735734726433/10187675935470534544*x^8+20286427117952900873149/10187675935470534544*x^7-12302961385655923079335/5093837967735267272*x^6-72193723516412096013593/10187675935470534544*x^5+26063561978473838310279/2546918983867633636*x^4+20095954606979642993001/2546918983867633636*x^3-48962652430334584516833/2546918983867633636*x^2+11718774289992978080233/1273459491933816818*x-449835750215045354431/636729745966908409,x,-1,36115349740646163/2546918983867633636*x^14+99498797494276849/1273459491933816818*x^13-824478902830824933/1273459491933816818*x^12-10045424636502252293/2546918983867633636*x^11+24163333917710365617/2546918983867633636*x^10+43001689984736937200/636729745966908409*x^9-156709484107018083025/2546918983867633636*x^8-1262683269518074062903/2546918983867633636*x^7+441612990830221348879/1273459491933816818*x^6+4388998064017130770885/2546918983867633636*x^5-1072492848200652485225/636729745966908409*x^4-1336607517866796635098/636729745966908409*x^3+4518739004674939306313/1273459491933816818*x^2-934611358646016008867/636729745966908409*x+72065140369064320334/636729745966908409,-109475697869954719/10187675935470534544*x^14-241889721717278177/5093837967735267272*x^13+2875986682876769237/5093837967735267272*x^12+25545420968298431747/10187675935470534544*x^11-110590950391370590327/10187675935470534544*x^10-117193547222067408489/2546918983867633636*x^9+1095716095349065576677/10187675935470534544*x^8+3764714959531316159017/10187675935470534544*x^7-3525418663438253577171/5093837967735267272*x^6-13591712849264041228029/10187675935470534544*x^5+7021706638009918736901/2546918983867633636*x^4+802345145146616909060/636729745966908409*x^3-6135898764213184764273/1273459491933816818*x^2+1657812667307241187368/636729745966908409*x-131349795320054051138/636729745966908409,-103263044376895653/1273459491933816818*x^14-4159270563674319441/10187675935470534544*x^13+20144696063886096949/5093837967735267272*x^12+107144103585975209095/5093837967735267272*x^11-678740004656934416635/10187675935470534544*x^10-3790742316228229458745/10187675935470534544*x^9+1409853100585090183115/2546918983867633636*x^8+29099716997969619797403/10187675935470534544*x^7-34252513280737628418121/10187675935470534544*x^6-51802671423774224762837/5093837967735267272*x^5+145509951409194677985989/10187675935470534544*x^4+29192721354550047676577/2546918983867633636*x^3-34331317903129165550477/1273459491933816818*x^2+16175755266410519469023/1273459491933816818*x-613592402438561350429/636729745966908409,45118475727903889/5093837967735267272*x^14+194881900503918221/5093837967735267272*x^13-601681324353203523/1273459491933816818*x^12-10405803910203561795/5093837967735267272*x^11+23608921958223361079/2546918983867633636*x^10+194105186094477601811/5093837967735267272*x^9-474461979965369295239/5093837967735267272*x^8-198907063174896589765/636729745966908409*x^7+3019493880056110359501/5093837967735267272*x^6+5841452810382229936837/5093837967735267272*x^5-11845515693250975964099/5093837967735267272*x^4-719025459923883554977/636729745966908409*x^3+2573882565119958371375/636729745966908409*x^2-1353049220513054130356/636729745966908409*x+103107801126437005930/636729745966908409,10224366729101815/93464916839179216*x^14+51458115564080403/93464916839179216*x^13-124676483228604303/23366229209794804*x^12-2650686120167563437/93464916839179216*x^11+4202705752745629033/46732458419589608*x^10+46876974419568205773/93464916839179216*x^9-69935727536229740341/93464916839179216*x^8-44961833124040468307/11683114604897402*x^7+425559921728831223431/93464916839179216*x^6+1279776367733089073635/93464916839179216*x^5-1808504939934835587197/93464916839179216*x^4-359199838656908306941/23366229209794804*x^3+852854197705248805153/23366229209794804*x^2-101057810243328257460/5841557302448701*x+7741074745747356989/5841557302448701], x^15+4*x^14-54*x^13-209*x^12+1091*x^11+3742*x^10-11591*x^9-28217*x^8+78036*x^7+82851*x^6-306450*x^5+40124*x^4+479896*x^3-500400*x^2+173536*x-12352];
E[781,6]=[[-3382/32635*x^11+98097/130540*x^10+73947/261080*x^9-2643749/261080*x^8+947833/130540*x^7+6030613/130540*x^6-2573213/65270*x^5-4503531/52216*x^4+1720437/32635*x^3+7747991/130540*x^2-238367/65270*x-93244/32635,-63189/261080*x^11+224223/130540*x^10+63887/65270*x^9-6221621/261080*x^8+1677397/130540*x^7+29908529/261080*x^6-19342113/261080*x^5-12233571/52216*x^4+5750741/65270*x^3+12104697/65270*x^2+757371/32635*x-346916/32635,-37337/261080*x^11+267033/261080*x^10+148199/261080*x^9-3756703/261080*x^8+261179/32635*x^7+18488797/261080*x^6-6146377/130540*x^5-7838973/52216*x^4+3897933/65270*x^3+16240487/130540*x^2+403353/32635*x-282563/32635,x,-1,-38057/261080*x^11+35636/32635*x^10+48209/261080*x^9-3795773/261080*x^8+3389137/261080*x^7+17137447/261080*x^6-17417929/261080*x^5-3222671/26108*x^4+23042187/261080*x^3+11640527/130540*x^2-106877/32635*x-83213/32635,-10349/26108*x^11+145451/52216*x^10+48491/26108*x^9-1027079/26108*x^8+951767/52216*x^7+1267401/6527*x^6-5835621/52216*x^5-21485867/52216*x^4+6781469/52216*x^3+2218873/6527*x^2+688447/13054*x-145173/6527,-23533/65270*x^11+329469/130540*x^10+240367/130540*x^9-9455313/261080*x^8+3852807/261080*x^7+23955141/130540*x^6-12335597/130540*x^5-10559117/26108*x^4+27632347/261080*x^3+45991187/130540*x^2+1920513/32635*x-968773/32635,15853/32635*x^11-832381/261080*x^10-1041483/261080*x^9+3138119/65270*x^8+37973/130540*x^7-8491673/32635*x^6+9738623/261080*x^5+8063937/13054*x^4+929119/65270*x^3-74975679/130540*x^2-5422921/32635*x+1750101/32635,-8271/32635*x^11+217721/130540*x^10+510041/261080*x^9-6410197/261080*x^8+180519/130540*x^7+8341547/65270*x^6-1717969/65270*x^5-14890761/52216*x^4+1314289/130540*x^3+7879192/32635*x^2+2075417/32635*x-679832/32635], x^12-7*x^11-5*x^10+100*x^9-43*x^8-503*x^7+280*x^6+1099*x^5-371*x^4-964*x^3-36*x^2+128*x-16];
E[781,7]=[[-63527295515043189121166470798128955/12309713632871316302486140041114840585216*x^19-16824167856176836046973135135338779/769357102054457268905383752569677536576*x^18+2741598006037410202059347944724538433/6154856816435658151243070020557420292608*x^17+21732947180948879259474340202226835991/12309713632871316302486140041114840585216*x^16-65064495777107836692417559271643295553/4103237877623772100828713347038280195072*x^15-172555677165864817619321718818853246233/3077428408217829075621535010278710146304*x^14+3771997744267494518728711615031646539723/12309713632871316302486140041114840585216*x^13+11027127729111871505522836191918187548745/12309713632871316302486140041114840585216*x^12-7258538464066355404316976441960843811903/2051618938811886050414356673519140097536*x^11-31348031671089157005582816975352310100173/4103237877623772100828713347038280195072*x^10+37961013904109863862970186198056074038845/1538714204108914537810767505139355073152*x^9+17289464739794973200847732237826969218589/512904734702971512603589168379785024384*x^8-74757052621790004018036874073326213134847/769357102054457268905383752569677536576*x^7-4471797999852487133704401634600850568451/64113091837871439075448646047473128048*x^6+71338736499053502816725644320042590289809/384678551027228634452691876284838768288*x^5+6977371551303137312863469921435935776233/96169637756807158613172969071209692072*x^4-4899179815184454557619066508921136272419/32056545918935719537724323023736564024*x^3-171068277795364860935956097610636234975/4007068239866964942215540377967070503*x^2+493953044563075650841134273019871635991/12021204719600894826646621133901211509*x+140671483501898634435349380359856415283/12021204719600894826646621133901211509,11456889889111127374305641456146089/4103237877623772100828713347038280195072*x^19+18786515726265156813768071172310987/2051618938811886050414356673519140097536*x^18-511270094732405164493334925947379667/2051618938811886050414356673519140097536*x^17-3033924971179671521157177730084807569/4103237877623772100828713347038280195072*x^16+37778362904717203351502298617870807539/4103237877623772100828713347038280195072*x^15+48022148052694656636686501205104992761/2051618938811886050414356673519140097536*x^14-756537004105255086360435578356141087057/4103237877623772100828713347038280195072*x^13-1518630465519134997502753749067592221705/4103237877623772100828713347038280195072*x^12+2243772150928201518079594232188125858127/1025809469405943025207178336759570048768*x^11+12626265721725145155754347801579885842369/4103237877623772100828713347038280195072*x^10-31803230863927755679839260285662866142701/2051618938811886050414356673519140097536*x^9-6564340396353203140482393185886528398951/512904734702971512603589168379785024384*x^8+15853554969244132938172571908466015599431/256452367351485756301794584189892512192*x^7+5914443759897222526404946611702577396311/256452367351485756301794584189892512192*x^6-15565027627719264345866680368963733584853/128226183675742878150897292094946256096*x^5-339054572585230964639005784716403943857/16028272959467859768862161511868282012*x^4+422708010902441928860345933285850139195/4007068239866964942215540377967070503*x^3+260612612793692321007706895777324202935/16028272959467859768862161511868282012*x^2-255224504961952919590048158784108022285/8014136479733929884431080755934141006*x-23962971113800169212512560893474722392/4007068239866964942215540377967070503,-175973814924732245851110757679860141/12309713632871316302486140041114840585216*x^19-280785715954721621376371690721854285/6154856816435658151243070020557420292608*x^18+7912341992012704926085569177797903935/6154856816435658151243070020557420292608*x^17+44311209604125816940564124110174786997/12309713632871316302486140041114840585216*x^16-196780504998913682488128430744178136561/4103237877623772100828713347038280195072*x^15-673972606941205542353410596721002463867/6154856816435658151243070020557420292608*x^14+11944570189264698554173657494725356087469/12309713632871316302486140041114840585216*x^13+19756303381520111060623273947343041377473/12309713632871316302486140041114840585216*x^12-5939315670259149498471236244177985472353/512904734702971512603589168379785024384*x^11-46305746263218936180049986469047090617079/4103237877623772100828713347038280195072*x^10+500188587933000065245626290167910334687623/6154856816435658151243070020557420292608*x^9+14270476611163026745419351449353231285385/512904734702971512603589168379785024384*x^8-474552938274477236911955493365667292502519/1538714204108914537810767505139355073152*x^7+325869711860952975753283883411490741147/8014136479733929884431080755934141006*x^6+6283131600214494027142251390731945606179/12021204719600894826646621133901211509*x^5-3719534851068303627980314092922519146583/24042409439201789653293242267802423018*x^4-11388755745286385490221914950126505220603/32056545918935719537724323023736564024*x^3+258373689969088870318541345575966588453/4007068239866964942215540377967070503*x^2+2102459969222194049269962553954286103397/24042409439201789653293242267802423018*x+136446022080352898464032364766945108210/12021204719600894826646621133901211509,x,1,-184436699882627129511620074010303563/12309713632871316302486140041114840585216*x^19-168047259286200486460981734507796825/3077428408217829075621535010278710146304*x^18+8174815304485687651589420231235443197/6154856816435658151243070020557420292608*x^17+53739678809470754327068933785425228831/12309713632871316302486140041114840585216*x^16-200112722052204138904792944580446436917/4103237877623772100828713347038280195072*x^15-104621552139180578127461460991897547993/769357102054457268905383752569677536576*x^14+11966551303294110929738068320355668334211/12309713632871316302486140041114840585216*x^13+25705748586594917249208047179428103106509/12309713632871316302486140041114840585216*x^12-23557207440615655175911608882323261189497/2051618938811886050414356673519140097536*x^11-67080475396740847079050006592471554692861/4103237877623772100828713347038280195072*x^10+247525438262514028530672232378838378947885/3077428408217829075621535010278710146304*x^9+14965831433786460869784701874932279834901/256452367351485756301794584189892512192*x^8-237430495699452997196561842115696367215107/769357102054457268905383752569677536576*x^7-923970429002884103965428326817206590327/16028272959467859768862161511868282012*x^6+26035589458631899887093461182108806348727/48084818878403579306586484535604846036*x^5-1557789285571408458877950140794248740611/96169637756807158613172969071209692072*x^4-12433862452052379994281997408436908447325/32056545918935719537724323023736564024*x^3-9820895031839285780479415793884062409/8014136479733929884431080755934141006*x^2+1140076229514200053363080410352515485004/12021204719600894826646621133901211509*x+202948821500146007473125882331634223662/12021204719600894826646621133901211509,-48984474148908454438003900812922989/4103237877623772100828713347038280195072*x^19-47348781334520878198480555096360333/1025809469405943025207178336759570048768*x^18+2146412934771121759458682725769496981/2051618938811886050414356673519140097536*x^17+15198135937244750856471514571969550201/4103237877623772100828713347038280195072*x^16-155537663465557366153049583562156785305/4103237877623772100828713347038280195072*x^15-119269899080137546578190278973393366443/1025809469405943025207178336759570048768*x^14+3058541836713934816765358136264419949145/4103237877623772100828713347038280195072*x^13+7448814160814666977926224319090620627091/4103237877623772100828713347038280195072*x^12-17872923956716888587739246784311912338243/2051618938811886050414356673519140097536*x^11-60599898679640934479278377483112767692029/4103237877623772100828713347038280195072*x^10+62372659088902829442124973395459150356407/1025809469405943025207178336759570048768*x^9+60154124072174624554390642062668271168245/1025809469405943025207178336759570048768*x^8-15092102683567431645502227007053202365065/64113091837871439075448646047473128048*x^7-11912316082746836624571623980295461525679/128226183675742878150897292094946256096*x^6+13745549544071981274357300049340093260085/32056545918935719537724323023736564024*x^5+2211924540144083440041508634309020671357/32056545918935719537724323023736564024*x^4-10845542826773185821252319972388696433329/32056545918935719537724323023736564024*x^3-221782450001361996627915388446330788377/4007068239866964942215540377967070503*x^2+821624438290070206584807714672108022991/8014136479733929884431080755934141006*x+99885389547044263187714542008944784546/4007068239866964942215540377967070503,26047869543951041396122874911414507/1025809469405943025207178336759570048768*x^19+175108614292527423038452846829660037/2051618938811886050414356673519140097536*x^18-2330446240059137061636782126098073129/1025809469405943025207178336759570048768*x^17-3478006834553799728460313916534780599/512904734702971512603589168379785024384*x^16+172925659983303365398177413278709836633/2051618938811886050414356673519140097536*x^15+428489669514373346936182402045368829451/2051618938811886050414356673519140097536*x^14-435262895154145409696214196664032585133/256452367351485756301794584189892512192*x^13-6438175766399499406826882977100312908711/2051618938811886050414356673519140097536*x^12+41454535818483267881170304725302460980307/2051618938811886050414356673519140097536*x^11+24022560629102865417344735525694647761855/1025809469405943025207178336759570048768*x^10-291577290136077698282419791970433442944275/2051618938811886050414356673519140097536*x^9-74406619479454421210577221075663256891411/1025809469405943025207178336759570048768*x^8+139849704791722551329517461736516912343571/256452367351485756301794584189892512192*x^7+3225906645124447215657795963198943476261/256452367351485756301794584189892512192*x^6-122470866437602252460888848510446748825769/128226183675742878150897292094946256096*x^5+559184801216450111235846010396345543196/4007068239866964942215540377967070503*x^4+22347851383009027474550102980976337766557/32056545918935719537724323023736564024*x^3-150815184285948029880845186254002499631/4007068239866964942215540377967070503*x^2-1525713724902118189066839722064451106483/8014136479733929884431080755934141006*x-116509591317254738975661723426799249880/4007068239866964942215540377967070503,-492596438161982041059146641477158863/12309713632871316302486140041114840585216*x^19-864026189632449922097181422761280017/6154856816435658151243070020557420292608*x^18+21876399237581079543874680312922524887/6154856816435658151243070020557420292608*x^17+137415935486987805293900256215859770959/12309713632871316302486140041114840585216*x^16-536525618083412051632069026279165326551/4103237877623772100828713347038280195072*x^15-2121096530963886487823831447187994447781/6154856816435658151243070020557420292608*x^14+32120029222170066490282477758325209396307/12309713632871316302486140041114840585216*x^13+64094207512288603406852011364276279193215/12309713632871316302486140041114840585216*x^12-7898671543245512388281847524913463225599/256452367351485756301794584189892512192*x^11-161695639665895812690926294820586153751385/4103237877623772100828713347038280195072*x^10+1322916559498067436183436854440297374193455/6154856816435658151243070020557420292608*x^9+131170618614092143582478375901644265261913/1025809469405943025207178336759570048768*x^8-1257260183446934592421381950377936783848867/1538714204108914537810767505139355073152*x^7-14550829052879646708303471027762619702245/256452367351485756301794584189892512192*x^6+539819006619521283277626772933754830722523/384678551027228634452691876284838768288*x^5-36702174854601939561992375024921082455311/192339275513614317226345938142419384144*x^4-15648567228135188003289061032059528929537/16028272959467859768862161511868282012*x^3+325256587994270798690788728042638598709/4007068239866964942215540377967070503*x^2+2933827464677066244973785842945399250532/12021204719600894826646621133901211509*x+364248878475469882231659416339393118472/12021204719600894826646621133901211509,257221964897117359167242615455077159/4103237877623772100828713347038280195072*x^19+454201540663489485448268815414264777/2051618938811886050414356673519140097536*x^18-11386945767446780784604740879416156081/2051618938811886050414356673519140097536*x^17-72323157604201926217178873925493424639/4103237877623772100828713347038280195072*x^16+834461299292806028650262499799231938949/4103237877623772100828713347038280195072*x^15+1119266057276588956810450866549576990831/2051618938811886050414356673519140097536*x^14-16575999645923948216153001202515081221943/4103237877623772100828713347038280195072*x^13-34025009492217768820147112244426078549247/4103237877623772100828713347038280195072*x^12+48695434443050085079946865112383281089973/1025809469405943025207178336759570048768*x^11+261487449640548815841611195014237766351815/4103237877623772100828713347038280195072*x^10-677371712102548693805209791935844970183279/2051618938811886050414356673519140097536*x^9-55820530717491323993614288316741172826603/256452367351485756301794584189892512192*x^8+80412554446381329125544741941720301319731/64113091837871439075448646047473128048*x^7+43131599187114488246757786856274770586109/256452367351485756301794584189892512192*x^6-277618468790236000273433564883113108943663/128226183675742878150897292094946256096*x^5+4636921171841808981722906734867730656253/32056545918935719537724323023736564024*x^4+24375574363167774646902640921232064554567/16028272959467859768862161511868282012*x^3-191650433658074639706195528235823485677/16028272959467859768862161511868282012*x^2-3007460176596633241860135832316796931237/8014136479733929884431080755934141006*x-259270238235331792454904012366245916642/4007068239866964942215540377967070503], x^20+2*x^19-94*x^18-145*x^17+3679*x^16+3686*x^15-77889*x^14-31965*x^13+960848*x^12-170343*x^11-6812398*x^10+4828640*x^9+25056784*x^8-28885904*x^7-37008736*x^6+56238784*x^5+17695232*x^4-37068288*x^3-4181504*x^2+7863296*x+1466368];
E[793,1]=[[1,0,2,-4,4,-1,-6,-2,-6,10], x-1];
E[793,2]=[[x,-848314/2939147*x^15+2704611/2939147*x^14+15728883/2939147*x^13-54973997/2939147*x^12-100360737/2939147*x^11+18268247/127789*x^10+221870072/2939147*x^9-1485173926/2939147*x^8+129507424/2939147*x^7+2354035899/2939147*x^6-941723839/2939147*x^5-1299243618/2939147*x^4+574313871/2939147*x^3+229237475/2939147*x^2-58017864/2939147*x-14805745/2939147,-122942/2939147*x^15+190709/2939147*x^14+2393055/2939147*x^13-3369355/2939147*x^12-17007806/2939147*x^11+865813/127789*x^10+53508171/2939147*x^9-34555346/2939147*x^8-73429814/2939147*x^7-68196668/2939147*x^6+62335119/2939147*x^5+253906252/2939147*x^4-100252220/2939147*x^3-144424074/2939147*x^2+38979481/2939147*x+11413169/2939147,-385671/2939147*x^15+1814371/2939147*x^14+6185939/2939147*x^13-36460927/2939147*x^12-26946474/2939147*x^11+11843555/127789*x^10-33915427/2939147*x^9-918874457/2939147*x^8+500068493/2939147*x^7+1296222327/2939147*x^6-1037855851/2939147*x^5-426047072/2939147*x^4+464290117/2939147*x^3-75050853/2939147*x^2-7716936/2939147*x+14272920/2939147,300503/2939147*x^15+517692/2939147*x^14-7588219/2939147*x^13-10924318/2939147*x^12+75031821/2939147*x^11+3694856/127789*x^10-369266527/2939147*x^9-295979414/2939147*x^8+942001356/2939147*x^7+430740222/2939147*x^6-1150335483/2939147*x^5-171399723/2939147*x^4+489890177/2939147*x^3+23620706/2939147*x^2-33613844/2939147*x-8241271/2939147,-1,-1412850/2939147*x^15+4789100/2939147*x^14+25231050/2939147*x^13-97116436/2939147*x^12-147355401/2939147*x^11+32177494/127789*x^10+215442542/2939147*x^9-2606084158/2939147*x^8+782974912/2939147*x^7+4109191447/2939147*x^6-2560694376/2939147*x^5-2252950265/2939147*x^4+1670831517/2939147*x^3+422526217/2939147*x^2-253680418/2939147*x-41023689/2939147,-323864/2939147*x^15+51404/2939147*x^14+8349591/2939147*x^13-2338478/2939147*x^12-85387851/2939147*x^11+1550226/127789*x^10+439072833/2939147*x^9-246755580/2939147*x^8-1172931324/2939147*x^7+824683004/2939147*x^6+1470001476/2939147*x^5-1213728110/2939147*x^4-580250411/2939147*x^3+517944276/2939147*x^2+19667172/2939147*x-21117556/2939147,479491/2939147*x^15-4102431/2939147*x^14-4596480/2939147*x^13+83298860/2939147*x^12-28517985/2939147*x^11-27387076/127789*x^10+511723280/2939147*x^9+2160455315/2939147*x^8-2276872330/2939147*x^7-3157399309/2939147*x^6+3929640884/2939147*x^5+1288995346/2939147*x^4-2041346200/2939147*x^3-98057314/2939147*x^2+237267486/2939147*x+33520271/2939147,448399/2939147*x^15+52362/2939147*x^14-10124226/2939147*x^13-1722461/2939147*x^12+88575200/2939147*x^11+720054/127789*x^10-380046260/2939147*x^9-58825405/2939147*x^8+830654665/2939147*x^7+48266375/2939147*x^6-862904573/2939147*x^5+95235421/2939147*x^4+331332534/2939147*x^3-118992659/2939147*x^2-27996913/2939147*x+27881693/2939147], x^16-3*x^15-20*x^14+63*x^13+148*x^12-507*x^11-487*x^10+1959*x^9+625*x^8-3706*x^7-35*x^6+3151*x^5-203*x^4-1134*x^3+22*x^2+123*x+13];
E[793,3]=[[x,43627/216585*x^14+288917/216585*x^13-17233/216585*x^12-3695777/216585*x^11-1728751/72195*x^10+3123640/43317*x^9+6825190/43317*x^8-23477776/216585*x^7-27885569/72195*x^6-177571/216585*x^5+5478814/14439*x^4+20537327/216585*x^3-22794557/216585*x^2-237028/14439*x+77963/24065,-27437/72195*x^14-179447/72195*x^13+11031/24065*x^12+2340092/72195*x^11+2955803/72195*x^10-2058413/14439*x^9-1328002/4813*x^8+5750062/24065*x^7+48900592/72195*x^6-4708159/72195*x^5-9462124/14439*x^4-9869062/72195*x^3+12199502/72195*x^2+424495/14439*x-97459/24065,2687/14439*x^14+17443/14439*x^13-4562/14439*x^12-230467/14439*x^11-91719/4813*x^10+1032208/14439*x^9+1905385/14439*x^8-1767470/14439*x^7-1583554/4813*x^6+484789/14439*x^5+1553389/4813*x^4+1078561/14439*x^3-1239961/14439*x^2-75138/4813*x+16061/4813,-12088/72195*x^14-90703/72195*x^13-12611/24065*x^12+1156168/72195*x^11+2075002/72195*x^10-966940/14439*x^9-862604/4813*x^8+2334163/24065*x^7+31773773/72195*x^6+672409/72195*x^5-6433988/14439*x^4-6263063/72195*x^3+9880168/72195*x^2+67160/14439*x-159536/24065,1,-7672/24065*x^14-54812/24065*x^13-9662/24065*x^12+713107/24065*x^11+1124058/24065*x^10-617194/4813*x^9-1456064/4813*x^8+4776226/24065*x^7+18074037/24065*x^6+58176/24065*x^5-3625849/4813*x^4-4583747/24065*x^3+5216287/24065*x^2+181084/4813*x-248577/24065,32954/43317*x^14+223603/43317*x^13-9908/43317*x^12-2922577/43317*x^11-446836/4813*x^10+12870625/43317*x^9+26646436/43317*x^8-21450824/43317*x^7-7311666/4813*x^6+5210956/43317*x^5+21679610/14439*x^4+13384717/43317*x^3-18160102/43317*x^2-1066982/14439*x+56650/4813,48377/72195*x^14+306542/72195*x^13-43821/24065*x^12-4135172/72195*x^11-4230908/72195*x^10+3904013/14439*x^9+2038871/4813*x^8-13062327/24065*x^7-77736382/72195*x^6+29319184/72195*x^5+15817993/14439*x^4-2105468/72195*x^3-24078332/72195*x^2+77996/14439*x+293314/24065,-84452/72195*x^14-544892/72195*x^13+52836/24065*x^12+7246937/72195*x^11+8470658/72195*x^10-6619127/14439*x^9-3961423/4813*x^8+20261722/24065*x^7+150589612/72195*x^6-30934219/72195*x^5-30665590/14439*x^4-16820782/72195*x^3+46365497/72195*x^2+889507/14439*x-704734/24065], x^15+8*x^14+8*x^13-89*x^12-231*x^11+242*x^10+1295*x^9+332*x^8-2847*x^7-2275*x^6+2304*x^5+2831*x^4-194*x^3-792*x^2-54*x+27];
E[793,4]=[[x,-x^6-x^5+8*x^4+9*x^3-11*x^2-13*x-3,x^6+x^5-8*x^4-9*x^3+11*x^2+12*x+2,-x^8+13*x^6+2*x^5-53*x^4-14*x^3+65*x^2+18*x-2,2*x^8+2*x^7-23*x^6-22*x^5+79*x^4+64*x^3-85*x^2-52*x-1,-1,x^8+x^7-10*x^6-9*x^5+27*x^4+15*x^3-25*x^2-3*x+5,-x^7-2*x^6+10*x^5+17*x^4-26*x^3-28*x^2+23*x+5,-x^8-x^7+11*x^6+9*x^5-35*x^4-15*x^3+36*x^2-2*x-4,-x^8-2*x^7+11*x^6+21*x^5-34*x^4-59*x^3+30*x^2+45*x+3], x^9+3*x^8-9*x^7-32*x^6+15*x^5+94*x^4+13*x^3-85*x^2-29*x+1];
E[793,5]=[[x,-x^3-x^2+5*x,-x^3-x^2+5*x-1,x^3+x^2-5*x-1,2*x^3+2*x^2-11*x-1,-1,-2*x^3-2*x^2+9*x-2,x^3+x^2-6*x-1,x^2+3*x-1,4*x^3+4*x^2-17*x-2], x^4+x^3-5*x^2-x+1];
E[793,6]=[[x,-178/58147*x^15-355/58147*x^14+633/58147*x^13+27103/58147*x^12+549/58147*x^11-391397/58147*x^10+127520/58147*x^9+2325796/58147*x^8-1226092/58147*x^7-6523673/58147*x^6+3859081/58147*x^5+8385810/58147*x^4-4408417/58147*x^3-4213487/58147*x^2+1496616/58147*x+444955/58147,1462/58147*x^15-17991/58147*x^14+18321/58147*x^13+306593/58147*x^12-608846/58147*x^11-1959697/58147*x^10+4715703/58147*x^9+5827150/58147*x^8-15859156/58147*x^7-8443784/58147*x^6+24662973/58147*x^5+6790178/58147*x^4-16600124/58147*x^3-3501094/58147*x^2+3516367/58147*x+774995/58147,16923/58147*x^15-69803/58147*x^14-252589/58147*x^13+1278251/58147*x^12+1185552/58147*x^11-9045945/58147*x^10-798115/58147*x^9+31093111/58147*x^8-8281163/58147*x^7-53935835/58147*x^6+21817177/58147*x^5+45424794/58147*x^4-19604397/58147*x^3-15495587/58147*x^2+5885106/58147*x+1024460/58147,32307/58147*x^15-139082/58147*x^14-492845/58147*x^13+2610842/58147*x^12+2429751/58147*x^11-19118368/58147*x^10-2386401/58147*x^9+68977588/58147*x^8-14587768/58147*x^7-128243920/58147*x^6+44294501/58147*x^5+118534943/58147*x^4-45068033/58147*x^3-45908510/58147*x^2+15726670/58147*x+3582891/58147,1,44340/58147*x^15-184664/58147*x^14-679044/58147*x^13+3439364/58147*x^12+3384077/58147*x^11-24926176/58147*x^10-3631374/58147*x^9+88667006/58147*x^8-18719230/58147*x^7-161559341/58147*x^6+57982830/58147*x^5+145138127/58147*x^4-57991253/58147*x^3-54212315/58147*x^2+19309814/58147*x+4196229/58147,12386/58147*x^15-47818/58147*x^14-187781/58147*x^13+869180/58147*x^12+909137/58147*x^11-6093610/58147*x^10-779193/58147*x^9+20750604/58147*x^8-5804206/58147*x^7-35982654/58147*x^6+16439274/58147*x^5+31508848/58147*x^4-15665371/58147*x^3-12479830/58147*x^2+4941534/58147*x+1375050/58147,-17383/58147*x^15+83259/58147*x^14+223518/58147*x^13-1521158/58147*x^12-561503/58147*x^11+10777832/58147*x^10-3826594/58147*x^9-37417631/58147*x^8+24538282/58147*x^7+67003663/58147*x^6-50271598/58147*x^5-61150614/58147*x^4+42980498/58147*x^3+24544688/58147*x^2-12831482/58147*x-1975055/58147,8499/58147*x^15-27150/58147*x^14-151418/58147*x^13+529045/58147*x^12+998546/58147*x^11-4103230/58147*x^10-2751476/58147*x^9+16093743/58147*x^8+1339521/58147*x^7-33410563/58147*x^6+7735563/58147*x^5+34805943/58147*x^4-13124560/58147*x^3-15173345/58147*x^2+5705779/58147*x+1381345/58147], x^16-5*x^15-12*x^14+91*x^13+14*x^12-637*x^11+375*x^10+2141*x^9-2071*x^8-3516*x^7+4367*x^6+2507*x^5-4115*x^4-320*x^3+1504*x^2-249*x-77];
E[799,1]=[[-1,2,4,-2,0,2,1,4,-4,8], x-1];
E[799,2]=[[x-1,-2*x-1,x,2*x,-3,-2*x+3,1,3*x+6,-x-3,-2*x-6], x^2+x-1];
E[799,3]=[[622657/215191*x^11+5289806/215191*x^10+5454893/215191*x^9-64545208/215191*x^8-194457995/215191*x^7-16528993/215191*x^6+480424033/215191*x^5+312832402/215191*x^4-363571968/215191*x^3-288863692/215191*x^2+80027534/215191*x+62752643/215191,-414883/215191*x^11-3516574/215191*x^10-3582413/215191*x^9+42959894/215191*x^8+128735518/215191*x^7+10138332/215191*x^6-317353329/215191*x^5-204988905/215191*x^4+238407066/215191*x^3+188919016/215191*x^2-51229019/215191*x-41137218/215191,x,-837539/215191*x^11-7088052/215191*x^10-7132604/215191*x^9+86869543/215191*x^8+258788270/215191*x^7+16512762/215191*x^6-642487741/215191*x^5-406409504/215191*x^4+488368749/215191*x^3+378445060/215191*x^2-107688463/215191*x-82817726/215191,53981/215191*x^11+410304/215191*x^10+201655/215191*x^9-5214403/215191*x^8-12838739/215191*x^7+1735058/215191*x^6+31767177/215191*x^5+18580339/215191*x^4-21913736/215191*x^3-19268493/215191*x^2+3641922/215191*x+4093118/215191,3803640/215191*x^11+32267346/215191*x^10+32881598/215191*x^9-394800943/215191*x^8-1182072436/215191*x^7-84714509/215191*x^6+2929055612/215191*x^5+1868627100/215191*x^4-2221599412/215191*x^3-1729819739/215191*x^2+486376958/215191*x+375486836/215191,-1,1709242/215191*x^11+14556450/215191*x^10+15131852/215191*x^9-177666047/215191*x^8-536353021/215191*x^7-44846303/215191*x^6+1327547940/215191*x^5+859957607/215191*x^4-1007542890/215191*x^3-796087454/215191*x^2+222020218/215191*x+173961470/215191,-2420297/215191*x^11-20625626/215191*x^10-21472247/215191*x^9+251847966/215191*x^8+760313961/215191*x^7+61888209/215191*x^6-1883816373/215191*x^5-1212941907/215191*x^4+1432581924/215191*x^3+1119321995/215191*x^2-316919566/215191*x-242473810/215191,390801/215191*x^11+3328893/215191*x^10+3442744/215191*x^9-40777172/215191*x^8-122714807/215191*x^7-8408162/215191*x^6+307588865/215191*x^5+196082293/215191*x^4-237285408/215191*x^3-185823166/215191*x^2+52840079/215191*x+41291212/215191], x^12+11*x^11+30*x^10-82*x^9-572*x^8-805*x^7+713*x^6+2431*x^5+656*x^4-1927*x^3-1021*x^2+422*x+250];
E[799,4]=[[14498008617206932475816295504864882787/586992818147987827007617363578522082033212*x^19-184543813436891637695635017660811425481/586992818147987827007617363578522082033212*x^18+148712872482851297987078734493396831795/586992818147987827007617363578522082033212*x^17+7046294345762845293469182989284102567535/586992818147987827007617363578522082033212*x^16-2010571004510247089083161643723591926745/48916068178998985583968113631543506836101*x^15-91152464877241141208055554471796929816171/586992818147987827007617363578522082033212*x^14+522524157454846142411795370796053461898493/586992818147987827007617363578522082033212*x^13+81248369446959702219562125076224939658199/146748204536996956751904340894630520508303*x^12-1670993300416345288187640800305281234241511/195664272715995942335872454526174027344404*x^11+1288956641409511260402878140287959879237825/293496409073993913503808681789261041016606*x^10+8112577931319422219025903242442750160997091/195664272715995942335872454526174027344404*x^9-26641442790666268933265080055312402825363635/586992818147987827007617363578522082033212*x^8-19599107307151426433090720973601850854213607/195664272715995942335872454526174027344404*x^7+42638902247842139951365182262557904057975069/293496409073993913503808681789261041016606*x^6+5350439143200474189977077243935255971158539/48916068178998985583968113631543506836101*x^5-26668721227646861194988548505377865024927911/146748204536996956751904340894630520508303*x^4-17837307862508995636152184925487500418935425/293496409073993913503808681789261041016606*x^3+4315298564180171032562662584272456028300892/48916068178998985583968113631543506836101*x^2+2743311973561109293902156067876888428908101/146748204536996956751904340894630520508303*x-526111346425627639994956296189661672714179/48916068178998985583968113631543506836101,-44500690658078149889927761472640884701/586992818147987827007617363578522082033212*x^19+493063193228807910240308371352295615445/586992818147987827007617363578522082033212*x^18+91274536432775440123157682074271857593/146748204536996956751904340894630520508303*x^17-10635930742116979588028650158078225464629/293496409073993913503808681789261041016606*x^16+3373229376375067892464303494843703492508/48916068178998985583968113631543506836101*x^15+352287285701478952479472933096838163430049/586992818147987827007617363578522082033212*x^14-1095664781968729737999767068387201799995135/586992818147987827007617363578522082033212*x^13-2766595156037735798432773191668933458207079/586992818147987827007617363578522082033212*x^12+1003943015368165473756188834562014938216419/48916068178998985583968113631543506836101*x^11+9660964968820729110383879596313691943933847/586992818147987827007617363578522082033212*x^10-22761991839879082280952020547814372487015703/195664272715995942335872454526174027344404*x^9-2095078194943885875116412179482561189932901/293496409073993913503808681789261041016606*x^8+34507543650860899766903937924713070379884217/97832136357997971167936227263087013672202*x^7-29208716334839395106907859997678411454302791/293496409073993913503808681789261041016606*x^6-26972781914112340390604231591771068218650830/48916068178998985583968113631543506836101*x^5+32215639308423119029459013786668256277364153/146748204536996956751904340894630520508303*x^4+60571107308273308670248154260206143532040679/146748204536996956751904340894630520508303*x^3-7674723960293540388722489891609037240055276/48916068178998985583968113631543506836101*x^2-17017735139825206925397407027079847538619571/146748204536996956751904340894630520508303*x+1616624152969821065043045866194068399819130/48916068178998985583968113631543506836101,x,-68174087611702166589112506277694029655/586992818147987827007617363578522082033212*x^19+772787620977180738693975578453058427463/586992818147987827007617363578522082033212*x^18+76683808064504565646141351055587302641/146748204536996956751904340894630520508303*x^17-16020478954301698336806581896366069190825/293496409073993913503808681789261041016606*x^16+5878455212877016872510644271364888964155/48916068178998985583968113631543506836101*x^15+495289675851563609665734326218880005638475/586992818147987827007617363578522082033212*x^14-1752650269918453962569336302849304772328769/586992818147987827007617363578522082033212*x^13-3369205555413982795811835290891346353712169/586992818147987827007617363578522082033212*x^12+1499669317259325305751715167783765878986146/48916068178998985583968113631543506836101*x^11+7103485931686432005173547392304534571607425/586992818147987827007617363578522082033212*x^10-31001912512690296489695229006287419571590109/195664272715995942335872454526174027344404*x^9+13280934423658483868209712646888268933474741/293496409073993913503808681789261041016606*x^8+40546806512933364333458673881613852499189199/97832136357997971167936227263087013672202*x^7-74018496517440002090867329195681142771821121/293496409073993913503808681789261041016606*x^6-24648118104100078450109597346090510333647470/48916068178998985583968113631543506836101*x^5+51134817113438362107261368520425249518866125/146748204536996956751904340894630520508303*x^4+39616298668369578228791430248725867767675853/146748204536996956751904340894630520508303*x^3-7759312648991334026384974980111228673283242/48916068178998985583968113631543506836101*x^2-7774565694841257429819511121488445549936441/146748204536996956751904340894630520508303*x+723814361010565813958068486408818906348182/48916068178998985583968113631543506836101,-37706260333533330590897436686195864615/195664272715995942335872454526174027344404*x^19+439527884526645268380293041621663532849/195664272715995942335872454526174027344404*x^18+23533391373225580168993840207479561593/97832136357997971167936227263087013672202*x^17-8967903323884567097419988476176310528997/97832136357997971167936227263087013672202*x^16+11129706756041011362375935161444032596348/48916068178998985583968113631543506836101*x^15+268622763638664852631538117445219129099783/195664272715995942335872454526174027344404*x^14-1067969925355542742437390278067359372659163/195664272715995942335872454526174027344404*x^13-1679918625389005814987904832831163297915979/195664272715995942335872454526174027344404*x^12+5434727732368043376230950743299182951725489/97832136357997971167936227263087013672202*x^11+1856218186417031590079195682130684678267089/195664272715995942335872454526174027344404*x^10-56288135905483987018456899735347403598443221/195664272715995942335872454526174027344404*x^9+6538529019305030752748781923103719095558165/48916068178998985583968113631543506836101*x^8+74994554237173752925073511856035040436216639/97832136357997971167936227263087013672202*x^7-57350675901167546171953765386210297022788671/97832136357997971167936227263087013672202*x^6-48614587717964535858548804404481613363138949/48916068178998985583968113631543506836101*x^5+39993840701139669566951575819794498093630642/48916068178998985583968113631543506836101*x^4+31158618742334831434892287844395431610755548/48916068178998985583968113631543506836101*x^3-20533435059876296118582534809377063959725800/48916068178998985583968113631543506836101*x^2-8471555558002728851982427620556529183950846/48916068178998985583968113631543506836101*x+2778526853896550117496480960694844786372628/48916068178998985583968113631543506836101,43817869663533893497602257306957030335/293496409073993913503808681789261041016606*x^19-460801917621748969732659266024858723371/293496409073993913503808681789261041016606*x^18-552642938643897539457798465386106146731/293496409073993913503808681789261041016606*x^17+19905726559367388924151618669679745900935/293496409073993913503808681789261041016606*x^16-4868968119835201189945620843454661047025/48916068178998985583968113631543506836101*x^15-332718830519060919607660244142004503196511/293496409073993913503808681789261041016606*x^14+836627598228707662139124899975533369537891/293496409073993913503808681789261041016606*x^13+1352612944918824943039220275307781078341785/146748204536996956751904340894630520508303*x^12-2973881467570154444212452125088364815837111/97832136357997971167936227263087013672202*x^11-5425949252504862008940769862410557588842866/146748204536996956751904340894630520508303*x^10+15581936620701380463738812310288968839660289/97832136357997971167936227263087013672202*x^9+18151172879842000200893037780339135136935803/293496409073993913503808681789261041016606*x^8-40664679214880837059929958352200053103730177/97832136357997971167936227263087013672202*x^7-1774609762831843464189377581035244265975627/146748204536996956751904340894630520508303*x^6+23693788126319377940442936448466623562092215/48916068178998985583968113631543506836101*x^5-2408012332042115367209548640381258389821728/146748204536996956751904340894630520508303*x^4-30127277197268796101675334287469162408306577/146748204536996956751904340894630520508303*x^3-484376252115392388488861207998929940886966/48916068178998985583968113631543506836101*x^2+1786867549376846900682282514501753748564924/146748204536996956751904340894630520508303*x+190858649486006356094583251824594910931758/48916068178998985583968113631543506836101,-1,-35495954866293910342620366752889899531/97832136357997971167936227263087013672202*x^19+188600913553052975106002613059671804229/48916068178998985583968113631543506836101*x^18+212113402249896608134649075072277977343/48916068178998985583968113631543506836101*x^17-16362185661587896052467465734187111349645/97832136357997971167936227263087013672202*x^16+12627413301519458156615979215301604248262/48916068178998985583968113631543506836101*x^15+274817298149519638611859945090693367325663/97832136357997971167936227263087013672202*x^14-360165024677790359136670093770708115424764/48916068178998985583968113631543506836101*x^13-2243911797734176217949583929621643748156599/97832136357997971167936227263087013672202*x^12+3907712603248205438476568830380872429263851/48916068178998985583968113631543506836101*x^11+4484320161938965821846710615942102615796041/48916068178998985583968113631543506836101*x^10-21202081310277917235560959555827672172356084/48916068178998985583968113631543506836101*x^9-6999926409705800050314359571956663853697672/48916068178998985583968113631543506836101*x^8+118507054124190425372003268593415487372156993/97832136357997971167936227263087013672202*x^7-2189598740053781478511873973098948849112754/48916068178998985583968113631543506836101*x^6-80429403121094904114671689283685247514177761/48916068178998985583968113631543506836101*x^5+11908325034894631412891191252387008885461184/48916068178998985583968113631543506836101*x^4+49249204375339091329832931884868169171141575/48916068178998985583968113631543506836101*x^3-8739439340603821833115709435789501088806590/48916068178998985583968113631543506836101*x^2-10505494847953568000682207279685956716589060/48916068178998985583968113631543506836101*x+2423544707890243613112271031926521191315810/48916068178998985583968113631543506836101,340786054719833980495149309205012752587/586992818147987827007617363578522082033212*x^19-3876539530024611049904772543613879603835/586992818147987827007617363578522082033212*x^18-348251571213307434030965599407420751688/146748204536996956751904340894630520508303*x^17+80296381338042211220859227708049288797477/293496409073993913503808681789261041016606*x^16-30012487450660235054171813290706127871320/48916068178998985583968113631543506836101*x^15-2478835498702777308187762414381241288390083/586992818147987827007617363578522082033212*x^14+8940379227202391301635381128518599833065233/586992818147987827007617363578522082033212*x^13+16790795615684672056584786102077764376264317/586992818147987827007617363578522082033212*x^12-7702707669495358057021330343367418874335683/48916068178998985583968113631543506836101*x^11-34209889652300375019990838598694113686064773/586992818147987827007617363578522082033212*x^10+161969748223187192145553077847421118695296509/195664272715995942335872454526174027344404*x^9-73138343425067452169508708185439363382836715/293496409073993913503808681789261041016606*x^8-220325316536180594161085585926907088695197629/97832136357997971167936227263087013672202*x^7+407939087025556872979408023237336794910960551/293496409073993913503808681789261041016606*x^6+147052485287944191442829695104441327190273110/48916068178998985583968113631543506836101*x^5-308106039914568177621833442155594205424175477/146748204536996956751904340894630520508303*x^4-283563022131804210327841027667957050877810191/146748204536996956751904340894630520508303*x^3+57004433304533354349831474978805763112932376/48916068178998985583968113631543506836101*x^2+72590789457497900838438241966719197837802812/146748204536996956751904340894630520508303*x-8812418175608882856235857734548074387696240/48916068178998985583968113631543506836101,-19406965444485131392614571131729912182/146748204536996956751904340894630520508303*x^19+231866474468793846448021151846517458579/146748204536996956751904340894630520508303*x^18-27087347155687787762605448387593569547/146748204536996956751904340894630520508303*x^17-9385093201413770555383629484748351576467/146748204536996956751904340894630520508303*x^16+8465458220662383535023329679028755358361/48916068178998985583968113631543506836101*x^15+137898800921447230772311949298818894008060/146748204536996956751904340894630520508303*x^14-598962334640629499734846132547466898494680/146748204536996956751904340894630520508303*x^13-808320428901675858017072266853371333709740/146748204536996956751904340894630520508303*x^12+2039423392108544754178035477911782769729807/48916068178998985583968113631543506836101*x^11+127272733625795902819758899306535898907188/146748204536996956751904340894630520508303*x^10-10740606158453931813300413044389022934399458/48916068178998985583968113631543506836101*x^9+19174622059495058025342907869656464572296630/146748204536996956751904340894630520508303*x^8+29703461641711771414176385230107588841915345/48916068178998985583968113631543506836101*x^7-79916551547653785898000034068348321848514108/146748204536996956751904340894630520508303*x^6-41428143041060181208207156332768709257654391/48916068178998985583968113631543506836101*x^5+120476999020644349387083329238122829133239746/146748204536996956751904340894630520508303*x^4+86853841150272016459608685571881010192637025/146748204536996956751904340894630520508303*x^3-23028807433161146961312404108806686237390148/48916068178998985583968113631543506836101*x^2-24440982222686564980023408758648379140813507/146748204536996956751904340894630520508303*x+3487468612135645626357853119668374845034932/48916068178998985583968113631543506836101], x^20-13*x^19+14*x^18+482*x^17-1818*x^16-5729*x^15+38323*x^14+9389*x^13-358596*x^12+319657*x^11+1663371*x^10-2674360*x^9-3552042*x^8+8622044*x^7+2202456*x^6-12131764*x^5+1528708*x^4+7557516*x^3-1964948*x^2-1720968*x+468504];
E[799,5]=[[-367/21679*x^7-1324/21679*x^6+7111/21679*x^5+24146/21679*x^4-24565/21679*x^3-72185/21679*x^2-6382/21679*x+2732/3097,-1594/21679*x^7-11953/21679*x^6-10287/21679*x^5+88275/21679*x^4+141581/21679*x^3-147711/21679*x^2-290289/21679*x-9543/3097,x,-253/3097*x^7-1495/3097*x^6+860/3097*x^5+14114/3097*x^4+3099/3097*x^3-36674/3097*x^2-7370/3097*x+7344/3097,4147/21679*x^7+27602/21679*x^6+5832/21679*x^5-230135/21679*x^4-233385/21679*x^3+437263/21679*x^2+578352/21679*x+16774/3097,402/21679*x^7-440/21679*x^6-16827/21679*x^5-15816/21679*x^4+98856/21679*x^3+63120/21679*x^2-145294/21679*x-7541/3097,1,-3945/21679*x^7-24156/21679*x^6+1891/21679*x^5+185301/21679*x^4+102832/21679*x^3-328537/21679*x^2-228566/21679*x-15417/3097,3875/21679*x^7+27684/21679*x^6+17541/21679*x^5-201961/21679*x^4-229735/21679*x^3+411704/21679*x^2+358486/21679*x-18323/3097,-4519/21679*x^7-25577/21679*x^6+18152/21679*x^5+243800/21679*x^4+89812/21679*x^3-526735/21679*x^2-333888/21679*x-10258/3097], x^8+10*x^7+23*x^6-53*x^5-226*x^4-22*x^3+463*x^2+286*x+7];
E[799,6]=[[131860540946973/3295948156660916*x^16-1540820121306041/3295948156660916*x^15+1671513804647611/1647974078330458*x^14+5958820430860661/823987039165229*x^13-52639119831364393/1647974078330458*x^12-75794569196123647/3295948156660916*x^11+892191053390493009/3295948156660916*x^10-426083981714209165/3295948156660916*x^9-1595453896854899943/1647974078330458*x^8+2719456708717902637/3295948156660916*x^7+5080499007460172631/3295948156660916*x^6-906601801087520405/823987039165229*x^5-1048756012660504779/823987039165229*x^4+325273298117726965/1647974078330458*x^3+245503428542082441/823987039165229*x^2+29858282197850667/823987039165229*x-1944172892018803/823987039165229,20143034849726/823987039165229*x^16-466698716504427/1647974078330458*x^15+983588655987137/1647974078330458*x^14+3646232984341617/823987039165229*x^13-15693393216531080/823987039165229*x^12-12244574450198412/823987039165229*x^11+266506820192880991/1647974078330458*x^10-117685503511106299/1647974078330458*x^9-950676075282298641/1647974078330458*x^8+395430996024599538/823987039165229*x^7+1489309979482779039/1647974078330458*x^6-1082519721951305493/1647974078330458*x^5-584959940381452150/823987039165229*x^4+124253164924948042/823987039165229*x^3+125167524426937077/823987039165229*x^2+7312491819895904/823987039165229*x-4148367967128/823987039165229,x,4657133375633/823987039165229*x^16-117028279872761/1647974078330458*x^15+368226067843325/1647974078330458*x^14+558910650514242/823987039165229*x^13-4308857294532903/823987039165229*x^12+3977108318617477/823987039165229*x^11+51425748287764213/1647974078330458*x^10-129377239892391531/1647974078330458*x^9-50574774703111641/1647974078330458*x^8+249284631337527188/823987039165229*x^7-328953187059513493/1647974078330458*x^6-660334511927698897/1647974078330458*x^5+291069768309072724/823987039165229*x^4+215673230464264178/823987039165229*x^3-75867932018173165/823987039165229*x^2-39489590541595964/823987039165229*x-763573165947796/823987039165229,56408683903240/823987039165229*x^16-1235248988638633/1647974078330458*x^15+2019260535578173/1647974078330458*x^14+10663180386589566/823987039165229*x^13-37468892912249727/823987039165229*x^12-53372981720211415/823987039165229*x^11+676367496597581773/1647974078330458*x^10+4761709376834597/1647974078330458*x^9-2601023838608331487/1647974078330458*x^8+528402884915872113/823987039165229*x^7+4569753635227624795/1647974078330458*x^6-1478119855171213587/1647974078330458*x^5-1938260847182609119/823987039165229*x^4-45109761940052751/823987039165229*x^3+457488255398121887/823987039165229*x^2+83418067860652751/823987039165229*x-4452092706075114/823987039165229,-44810699580443/1647974078330458*x^16+470273411321931/1647974078330458*x^15-299851683987114/823987039165229*x^14-4323201337261212/823987039165229*x^13+12946937381262849/823987039165229*x^12+51948691063370943/1647974078330458*x^11-243187082386960111/1647974078330458*x^10-91291554799357059/1647974078330458*x^9+484987504668351506/823987039165229*x^8-88936925083084005/1647974078330458*x^7-1775084723519526687/1647974078330458*x^6+54887721398143114/823987039165229*x^5+759541519377256348/823987039165229*x^4+122642275844760485/823987039165229*x^3-189087541822505890/823987039165229*x^2-46812268914756618/823987039165229*x+1684923294834498/823987039165229,1,69504207140927/1647974078330458*x^16-758488339806907/1647974078330458*x^15+619330852557138/823987039165229*x^14+6484160112198657/823987039165229*x^13-22765736724074185/823987039165229*x^12-63380728058444069/1647974078330458*x^11+405194793154961555/1647974078330458*x^10-9174765466275385/1647974078330458*x^9-759996602218833009/823987039165229*x^8+672054458371164663/1647974078330458*x^7+2548406680241633235/1647974078330458*x^6-461741125888927509/823987039165229*x^5-1015934080698454556/823987039165229*x^4+576188357976275/823987039165229*x^3+216026439712071976/823987039165229*x^2+49849966763605740/823987039165229*x+5135288977539844/823987039165229,-67129749733153/823987039165229*x^16+1508081531115313/1647974078330458*x^15-2800261877504551/1647974078330458*x^14-12416119794623445/823987039165229*x^13+47983798458692262/823987039165229*x^12+52915699720581624/823987039165229*x^11-838930728036844437/1647974078330458*x^10+173464667794408479/1647974078330458*x^9+3107670815691830285/1647974078330458*x^8-922514909022421979/823987039165229*x^7-5199261968522467835/1647974078330458*x^6+2453488095205011453/1647974078330458*x^5+2186536753415614200/823987039165229*x^4-82776172847911268/823987039165229*x^3-536219921768195871/823987039165229*x^2-84142982774807061/823987039165229*x+9182782089486778/823987039165229,-71020968563414/823987039165229*x^16+787327212672442/823987039165229*x^15-1328771472265314/823987039165229*x^14-13691536092246987/823987039165229*x^13+49081234541971055/823987039165229*x^12+69666777956216373/823987039165229*x^11-449706768663842975/823987039165229*x^10-12379659187592144/823987039165229*x^9+1781903659980262191/823987039165229*x^8-645523067063273276/823987039165229*x^7-3305209965069078681/823987039165229*x^6+846803876972618491/823987039165229*x^5+2971773832583370114/823987039165229*x^4+304305439245615763/823987039165229*x^3-688877565779807564/823987039165229*x^2-176235931128153557/823987039165229*x-461289825682004/823987039165229], x^17-11*x^16+18*x^15+192*x^14-672*x^13-999*x^12+6135*x^11+503*x^10-24124*x^9+7077*x^8+44295*x^7-6560*x^6-39544*x^5-9768*x^4+8072*x^3+3900*x^2+420*x-8];
E[799,7]=[[-1,2,0,-2,0,-6,1,-4,4,-4], x-1];
E[803,1]=[[-1,x,-2,-x,-1,-x+1,-x+1,2*x,-3*x+1,-x+4], x^2-x-5];
E[803,2]=[[0,x,x^4-3*x^3-4*x^2+10*x+5,-x^3+2*x^2+4*x-3,-1,x^4-3*x^3-5*x^2+12*x+9,x^4-4*x^3-3*x^2+17*x+7,-2*x^2+2*x+8,x^3-3*x^2-x+6,x^4-4*x^3-4*x^2+17*x+14], x^5-2*x^4-9*x^3+8*x^2+25*x+7];
E[803,3]=[[-1247939820708213149/90296383901295427166*x^18+3605357448380436094/135444575851943140749*x^17+69353557531775046754/135444575851943140749*x^16-88958049741258724291/90296383901295427166*x^15-2088880512954662258941/270889151703886281498*x^14+662295754130863401162/45148191950647713583*x^13+16608651047324523772543/270889151703886281498*x^12-15412326461597424971717/135444575851943140749*x^11-75703913834632417919525/270889151703886281498*x^10+22393271266100301177763/45148191950647713583*x^9+201167422827359033129429/270889151703886281498*x^8-165189518505906414906650/135444575851943140749*x^7-304234984053053253095161/270889151703886281498*x^6+145374750894392702226255/90296383901295427166*x^5+123155854558394579682229/135444575851943140749*x^4-136590491001119929184455/135444575851943140749*x^3-99531493761040922738785/270889151703886281498*x^2+20113127951788195399591/90296383901295427166*x+8244958325651529901093/135444575851943140749,x,5026871240196985349/45148191950647713583*x^18-31429926275229371279/135444575851943140749*x^17-558719574074821845764/135444575851943140749*x^16+387176471559399567975/45148191950647713583*x^15+8409958647162649469107/135444575851943140749*x^14-5759127429961517543066/45148191950647713583*x^13-66796100996040673893133/135444575851943140749*x^12+133908770646328004244949/135444575851943140749*x^11+303908362358806748843105/135444575851943140749*x^10-194355363362244639933802/45148191950647713583*x^9-805289751278827538367101/135444575851943140749*x^8+1430535765231895989251824/135444575851943140749*x^7+1213089152579904891464293/135444575851943140749*x^6-626109662110966695293563/45148191950647713583*x^5-978109289028283733755850/135444575851943140749*x^4+1163380205842053894843647/135444575851943140749*x^3+395512717426333536588967/135444575851943140749*x^2-84481075280126271166227/45148191950647713583*x-65022152725828905617351/135444575851943140749,10766504240835470918/135444575851943140749*x^18-19048213839000592193/135444575851943140749*x^17-398905417812586857889/135444575851943140749*x^16+705393451856754386231/135444575851943140749*x^15+6006797917530004083947/135444575851943140749*x^14-10501624291146216206684/135444575851943140749*x^13-15908738938021628284665/45148191950647713583*x^12+27130344272604494570581/45148191950647713583*x^11+217060922997951197698816/135444575851943140749*x^10-354165521662304486209519/135444575851943140749*x^9-573708332049883083034706/135444575851943140749*x^8+868195942266813973378165/135444575851943140749*x^7+857808159329332879116542/135444575851943140749*x^6-1139389794748816241696932/135444575851943140749*x^5-226426562010858444333076/45148191950647713583*x^4+235065265848985822380117/45148191950647713583*x^3+262978913023987476523835/135444575851943140749*x^2-153337374252314689406017/135444575851943140749*x-40136118620170026989410/135444575851943140749,1,-3147518407849783129/45148191950647713583*x^18+21870401790567297496/135444575851943140749*x^17+351305006844502471078/135444575851943140749*x^16-269239319647507600555/45148191950647713583*x^15-5314482245990858796947/135444575851943140749*x^14+4005987154337010286418/45148191950647713583*x^13+42478997390066775470978/135444575851943140749*x^12-93246454668083705627258/135444575851943140749*x^11-194901145902854142212179/135444575851943140749*x^10+135583234558817961649408/45148191950647713583*x^9+522372094963204280288185/135444575851943140749*x^8-1000448696636053734339557/135444575851943140749*x^7-799067476690717639174646/135444575851943140749*x^6+439305102357540217805217/45148191950647713583*x^5+656895360524502461413864/135444575851943140749*x^4-820408191345669465779701/135444575851943140749*x^3-271829533298671680393962/135444575851943140749*x^2+60025135771294355304940/45148191950647713583*x+45987282294007012448203/135444575851943140749,12347997312765669433/135444575851943140749*x^18-8643827917145250361/45148191950647713583*x^17-458539264204794607903/135444575851943140749*x^16+958212051640758177553/135444575851943140749*x^15+6922939484293066141226/135444575851943140749*x^14-14254473542699409244384/135444575851943140749*x^13-55207765793360452807615/135444575851943140749*x^12+110520077793635355777475/135444575851943140749*x^11+252568689671634638767993/135444575851943140749*x^10-481590749125282820940713/135444575851943140749*x^9-224797526785689211073494/45148191950647713583*x^8+394398463588946799907134/45148191950647713583*x^7+1026959112522881377366184/135444575851943140749*x^6-1557300769970312531179901/135444575851943140749*x^5-840595188938364248060327/135444575851943140749*x^4+968444759696915763227096/135444575851943140749*x^3+344858770708388059987970/135444575851943140749*x^2-211965044736498419705897/135444575851943140749*x-56317883562218686985464/135444575851943140749,26284433685136379327/135444575851943140749*x^18-48871822834075433567/135444575851943140749*x^17-973562894099426782225/135444575851943140749*x^16+1809886646941234622300/135444575851943140749*x^15+14654398259923073954987/135444575851943140749*x^14-26961734000383803327224/135444575851943140749*x^13-38799019717030906738469/45148191950647713583*x^12+69740198126162362281193/45148191950647713583*x^11+529400731409304190181587/135444575851943140749*x^10-912169825481000648595604/135444575851943140749*x^9-1400677403027324029160828/135444575851943140749*x^8+2242379996812592925705601/135444575851943140749*x^7+2101371883411873088139785/135444575851943140749*x^6-2954842696151118268607722/135444575851943140749*x^5-559688695818596885280384/45148191950647713583*x^4+613775797633516433347861/45148191950647713583*x^3+664888613506361661290051/135444575851943140749*x^2-405383768395503523257751/135444575851943140749*x-106091505818918782419658/135444575851943140749,-380702831944557181/45148191950647713583*x^18+5771576742684373943/135444575851943140749*x^17+43175130888616794359/135444575851943140749*x^16-70547525558191834288/45148191950647713583*x^15-664674458626981659268/135444575851943140749*x^14+1045762696496674611635/45148191950647713583*x^13+5439763618536954281824/135444575851943140749*x^12-24318581999475214205995/135444575851943140749*x^11-25882418393483608193525/135444575851943140749*x^10+35402871238870856006649/45148191950647713583*x^9+73530366339048169137059/135444575851943140749*x^8-261873279761590781354476/135444575851943140749*x^7-123100717532690416310047/135444575851943140749*x^6+115290032496029821039361/45148191950647713583*x^5+115153127197690322741684/135444575851943140749*x^4-216773472987782308052633/135444575851943140749*x^3-57097595449965879827605/135444575851943140749*x^2+16182786194939145930131/45148191950647713583*x+11654915466045512597966/135444575851943140749,-5111233443260203204/135444575851943140749*x^18+5427232183168545803/135444575851943140749*x^17+62679257000085477038/45148191950647713583*x^16-202189091666387258032/135444575851943140749*x^15-936261275410504308007/45148191950647713583*x^14+3010223036421415744504/135444575851943140749*x^13+22089482728407032239763/135444575851943140749*x^12-23231013858184547602694/135444575851943140749*x^11-33009922213406242086915/45148191950647713583*x^10+100401136096688068783307/135444575851943140749*x^9+256086766468117927899575/135444575851943140749*x^8-244486487959841041565524/135444575851943140749*x^7-123264633916146854519998/45148191950647713583*x^6+319973075483003592097622/135444575851943140749*x^5+276288808988903970269719/135444575851943140749*x^4-197752800360186351820201/135444575851943140749*x^3-31585774945189557195718/45148191950647713583*x^2+42843508794795860150018/135444575851943140749*x+3926058425825325680246/45148191950647713583], x^19-3*x^18-35*x^17+111*x^16+482*x^15-1658*x^14-3304*x^13+12959*x^12+11430*x^11-57301*x^10-15408*x^9+144599*x^8-12824*x^7-200394*x^6+57748*x^5+139435*x^4-49971*x^3-42564*x^2+12386*x+4307];
E[803,4]=[[-33551138969/218584036746*x^15+129147424153/218584036746*x^14+342408794767/72861345582*x^13-2113379562271/109292018373*x^12-5696509718200/109292018373*x^11+53154054438127/218584036746*x^10+50698386168061/218584036746*x^9-319036601550131/218584036746*x^8-12989056121660/109292018373*x^7+904265856962839/218584036746*x^6-408309586739063/218584036746*x^5-476420643289850/109292018373*x^4+787077589209761/218584036746*x^3+12691059595055/218584036746*x^2-42592108753013/109292018373*x-908689440757/109292018373,x,-21366447037/109292018373*x^15+74044431305/109292018373*x^14+220262018225/36430672791*x^13-2425030598689/109292018373*x^12-7476943144882/109292018373*x^11+30533692451315/109292018373*x^10+35176135797173/109292018373*x^9-183687273157354/109292018373*x^8-34980570010562/109292018373*x^7+522853117123055/109292018373*x^6-202786701191791/109292018373*x^5-556045950350888/109292018373*x^4+433419113985910/109292018373*x^3+13856232887632/109292018373*x^2-48455056339352/109292018373*x-994930710034/109292018373,9615470884/109292018373*x^15-32522406560/109292018373*x^14-98843432723/36430672791*x^13+1065703964263/109292018373*x^12+3337316333500/109292018373*x^11-13427665311785/109292018373*x^10-15495536386694/109292018373*x^9+80832741709318/109292018373*x^8+13913836236293/109292018373*x^7-229952561838764/109292018373*x^6+95517729534832/109292018373*x^5+242342837931518/109292018373*x^4-198316642160599/109292018373*x^3-755467363324/109292018373*x^2+21561693049448/109292018373*x-18674742704/109292018373,-1,-17724240772/109292018373*x^15+60548140571/109292018373*x^14+183555705578/36430672791*x^13-1982172990661/109292018373*x^12-6287156717533/109292018373*x^11+24947648790656/109292018373*x^10+30274537114727/109292018373*x^9-150062991490060/109292018373*x^8-35760637029347/109292018373*x^7+427599159186422/109292018373*x^6-148522898340673/109292018373*x^5-458010987834512/109292018373*x^4+337296887659660/109292018373*x^3+18166135569946/109292018373*x^2-37853730213311/109292018373*x-865103096158/109292018373,-44798651950/109292018373*x^15+148954304549/109292018373*x^14+462206825264/36430672791*x^13-4881540969688/109292018373*x^12-15728061507274/109292018373*x^11+61514423700344/109292018373*x^10+74607895818923/109292018373*x^9-370479233129026/109292018373*x^8-80187527689226/109292018373*x^7+1055973472162928/109292018373*x^6-399104998963771/109292018373*x^5-1123578552578375/109292018373*x^4+871720333350079/109292018373*x^3+25293836435857/109292018373*x^2-95342967516467/109292018373*x-1833218761114/109292018373,-4378257841/36430672791*x^15+4863157614/12143557597*x^14+45076618252/12143557597*x^13-477310065310/36430672791*x^12-509432050170/12143557597*x^11+6001383724532/36430672791*x^10+2396462510898/12143557597*x^9-36030070542940/36430672791*x^8-7292570159827/36430672791*x^7+34047509909799/12143557597*x^6-40271352109090/36430672791*x^5-107099524592038/36430672791*x^4+85955174898002/36430672791*x^3-66588154678/36430672791*x^2-8662855571923/36430672791*x-1259366424/12143557597,-18921773065/109292018373*x^15+58447758455/109292018373*x^14+194747614643/36430672791*x^13-1918156216135/109292018373*x^12-6603763819198/109292018373*x^11+24207023355704/109292018373*x^10+31139139975905/109292018373*x^9-145984562076397/109292018373*x^8-32668005865988/109292018373*x^7+416004554468543/109292018373*x^6-167969068034179/109292018373*x^5-438083131112870/109292018373*x^4+363172847686462/109292018373*x^3-836059625492/109292018373*x^2-40310689537319/109292018373*x-17132568268/109292018373,35037973987/109292018373*x^15-127962996779/109292018373*x^14-359017899071/36430672791*x^13+4186331704582/109292018373*x^12+12045952425340/109292018373*x^11-52623790589336/109292018373*x^10-54931535309381/109292018373*x^9+315721448802817/109292018373*x^8+40185957579662/109292018373*x^7-894160350486350/109292018373*x^6+384569453664952/109292018373*x^5+938472242641943/109292018373*x^4-770389434874657/109292018373*x^3-4562194744633/109292018373*x^2+82586493456206/109292018373*x+386485291486/109292018373], x^16-4*x^15-29*x^14+130*x^13+287*x^12-1615*x^11-856*x^10+9461*x^9-3102*x^8-25236*x^7+22922*x^6+20598*x^5-34448*x^4+10606*x^3+2476*x^2-1167*x-20];
E[803,5]=[[-23*x^8-80*x^7+122*x^6+436*x^5-229*x^4-599*x^3+230*x^2+142*x-17,x,34*x^8+119*x^7-178*x^6-649*x^5+326*x^4+895*x^3-324*x^2-219*x+23,-27*x^8-95*x^7+140*x^6+519*x^5-252*x^4-720*x^3+248*x^2+181*x-16,-1,15*x^8+52*x^7-81*x^6-287*x^5+154*x^4+405*x^3-150*x^2-104*x+8,-71*x^8-248*x^7+374*x^6+1355*x^5-691*x^4-1875*x^3+684*x^2+461*x-47,73*x^8+256*x^7-380*x^6-1394*x^5+690*x^4+1917*x^3-682*x^2-465*x+41,21*x^8+72*x^7-116*x^6-396*x^5+233*x^4+553*x^3-239*x^2-134*x+19,51*x^8+179*x^7-265*x^6-975*x^5+480*x^4+1345*x^3-478*x^2-336*x+35], x^9+5*x^8-27*x^6-19*x^5+41*x^4+30*x^3-21*x^2-9*x+1];
E[803,6]=[[x^8+2*x^7-10*x^6-14*x^5+33*x^4+23*x^3-28*x^2-12*x+1,x,-3*x^8-7*x^7+28*x^6+50*x^5-88*x^4-90*x^3+71*x^2+49*x+2,x^9+4*x^8-5*x^7-31*x^6-2*x^5+71*x^4+36*x^3-45*x^2-34*x-5,1,-2*x^9-6*x^8+16*x^7+47*x^6-40*x^5-106*x^4+18*x^3+69*x^2+16*x+1,2*x^9+10*x^8-6*x^7-84*x^6-36*x^5+221*x^4+140*x^3-163*x^2-119*x-12,-x^9-x^8+12*x^7+3*x^6-48*x^5+17*x^4+54*x^3-26*x^2-16*x+1,x^9+3*x^8-8*x^7-23*x^6+22*x^5+50*x^4-20*x^3-27*x^2-x-3,-x^9-5*x^8+3*x^7+42*x^6+19*x^5-109*x^4-78*x^3+74*x^2+75*x+9], x^10+3*x^9-13*x^8-35*x^7+67*x^6+136*x^5-156*x^4-188*x^3+106*x^2+89*x+7];
E[817,1]=[[0,-2,-2,4,3,1,-3,1,-5,-4], x-1];
E[817,2]=[[0,-2,-2,-4,-5,-3,-3,-1,3,-4], x-1];
E[817,3]=[[-19993/17272*x^12-690971/51816*x^11-1848851/51816*x^10+6660307/51816*x^9+39063485/51816*x^8+17711489/51816*x^7-64062279/17272*x^6-138981523/25908*x^5+73064141/17272*x^4+160336607/17272*x^3-36289799/25908*x^2-953049/254*x+1699849/2159,-26863/8636*x^12-78567/2159*x^11-217553/2159*x^10+4424567/12954*x^9+27172895/12954*x^8+7027111/6477*x^7-132769109/12954*x^6-399550783/25908*x^5+99254397/8636*x^4+344565767/12954*x^3-32146611/8636*x^2-2746955/254*x+14575241/6477,-26026/6477*x^12-613033/12954*x^11-1720259/12954*x^10+5698499/12954*x^9+11870603/4318*x^8+6393629/4318*x^7-173627737/12954*x^6-264350579/12954*x^5+96922480/6477*x^4+455103443/12954*x^3-62460577/12954*x^2-5445521/381*x+6405844/2159,x,-139771/25908*x^12-137368/2159*x^11-386590/2159*x^10+2547921/4318*x^9+47960255/12954*x^8+4347785/2159*x^7-233711503/12954*x^6-237996779/8636*x^5+173738119/8636*x^4+614603581/12954*x^3-167805451/25908*x^2-4907987/254*x+25986953/6477,18372/2159*x^12+429519/4318*x^11+1186235/4318*x^10-4043469/4318*x^9-24724383/4318*x^8-12602973/4318*x^7+120919325/4318*x^6+180944333/4318*x^5-68003600/2159*x^4-312054411/4318*x^3+44237365/4318*x^2+3726548/127*x-13196816/2159,-24916/6477*x^12-1161817/25908*x^11-3191741/25908*x^10+3658473/8636*x^9+22223559/8636*x^8+33467095/25908*x^7-108765459/8636*x^6-162099033/8636*x^5+183691651/12954*x^4+839243185/25908*x^3-39805863/8636*x^2-10023395/762*x+5909406/2159,1,324193/25908*x^12+952996/6477*x^11+2666233/6477*x^10-17753149/12954*x^9-110529793/12954*x^8-29533111/6477*x^7+539153581/12954*x^6+1638340327/25908*x^5-401702769/8636*x^4-1411320385/12954*x^3+129828383/8636*x^2+11265983/254*x-59772182/6477,28663/8636*x^12+169253/4318*x^11+1433465/12954*x^10-782436/2159*x^9-4932237/2159*x^8-16302637/12954*x^7+24007376/2159*x^6+442135837/25908*x^5-319981547/25908*x^4-190124950/6477*x^3+33982689/8636*x^2+9101489/762*x-16011428/6477], x^13+15*x^12+71*x^11-3*x^10-1037*x^9-2573*x^8+2149*x^7+15828*x^6+12639*x^5-20749*x^4-26976*x^3+7432*x^2+10728*x-2384];
E[817,4]=[[2868742486302386758837/2345963366929204447872532*x^14+6387649570186887985036/586490841732301111968133*x^13-69323769034486046537579/2345963366929204447872532*x^12-1036862211439527879423677/2345963366929204447872532*x^11+236152581672284391924475/2345963366929204447872532*x^10+16646701676111497927544465/2345963366929204447872532*x^9+3510698563163569109318597/2345963366929204447872532*x^8-68612708557801393101192509/1172981683464602223936266*x^7-815045772468748970945478/586490841732301111968133*x^6+296251469844396824438242719/1172981683464602223936266*x^5-66928357487741708754239645/586490841732301111968133*x^4-1041984599956510067187910291/2345963366929204447872532*x^3+551613712628575509351784771/1172981683464602223936266*x^2-110919086728750839780148861/1172981683464602223936266*x-10212569518000963942451465/586490841732301111968133,11377437070068914910279/9383853467716817791490128*x^14+101877245536139907026837/9383853467716817791490128*x^13-263147959879639830477595/9383853467716817791490128*x^12-4078343625680539633178545/9383853467716817791490128*x^11+519722458273110917989105/9383853467716817791490128*x^10+64366159678418141366613251/9383853467716817791490128*x^9+19908552764854953265886643/9383853467716817791490128*x^8-130284304741574105049123383/2345963366929204447872532*x^7-63481759424867231004958803/9383853467716817791490128*x^6+2217951037165381988168967531/9383853467716817791490128*x^5-397250933609303299798137103/4691926733858408895745064*x^4-1950729630498444801134101447/4691926733858408895745064*x^3+233188045287315565041800515/586490841732301111968133*x^2-74794970121807340558624373/1172981683464602223936266*x-9842858125451623215800297/586490841732301111968133,-4022302692675820516223/2345963366929204447872532*x^14-36221394166227675480803/2345963366929204447872532*x^13+90611342079924952451765/2345963366929204447872532*x^12+1440242790737090300096347/2345963366929204447872532*x^11-106538830873722270308891/2345963366929204447872532*x^10-22541212858113304708363989/2345963366929204447872532*x^9-7878255317214726001288401/2345963366929204447872532*x^8+90468358213198822105804159/1172981683464602223936266*x^7+26249411446770445766607243/2345963366929204447872532*x^6-764123325244618737743789137/2345963366929204447872532*x^5+68431795083204232016217567/586490841732301111968133*x^4+665136704631595032824429661/1172981683464602223936266*x^3-327938185679042584273729068/586490841732301111968133*x^2+60622834935711976937333151/586490841732301111968133*x+12730453227217805038508036/586490841732301111968133,x,-35128122476788441048191/9383853467716817791490128*x^14-321135487680962779714505/9383853467716817791490128*x^13+763030040762707952589703/9383853467716817791490128*x^12+12782368264597468560924037/9383853467716817791490128*x^11+275695566504504687185355/9383853467716817791490128*x^10-200454204023589358434944447/9383853467716817791490128*x^9-88035648194305180364375895/9383853467716817791490128*x^8+100950747497867646176848664/586490841732301111968133*x^7+367980824187065694388274891/9383853467716817791490128*x^6-6870881091263621922138456815/9383853467716817791490128*x^5+990659682304383646528529589/4691926733858408895745064*x^4+6071423023539796461571157619/4691926733858408895745064*x^3-701022153964359393058709277/586490841732301111968133*x^2+238537023170228473068083719/1172981683464602223936266*x+24715017428130223296614463/586490841732301111968133,405898533252011731507/2345963366929204447872532*x^14+4965459781897284589535/2345963366929204447872532*x^13+4552248926621621826511/2345963366929204447872532*x^12-155852176926363875040801/2345963366929204447872532*x^11-476282873144500461853607/2345963366929204447872532*x^10+1639199441862093615063563/2345963366929204447872532*x^9+7303582251029188391880979/2345963366929204447872532*x^8-1700714198743527785450677/586490841732301111968133*x^7-45907684931285255223095189/2345963366929204447872532*x^6+9086862372096216470730995/2345963366929204447872532*x^5+31680597956141299746309769/586490841732301111968133*x^4-505097198165145472634458/586490841732301111968133*x^3-61560335207081488970117337/1172981683464602223936266*x^2+2323553683651757554330001/586490841732301111968133*x+2575023165361460237557660/586490841732301111968133,23554554512816956247853/9383853467716817791490128*x^14+209751581817892556875847/9383853467716817791490128*x^13-558234977817154362511809/9383853467716817791490128*x^12-8446260655658552529598835/9383853467716817791490128*x^11+1501291247211771698928819/9383853467716817791490128*x^10+134046350752261927206053897/9383853467716817791490128*x^9+36126594192916459131028473/9383853467716817791490128*x^8-272090548334831363618100171/2345963366929204447872532*x^7-95984949486899039792175737/9383853467716817791490128*x^6+4621269671744253269930452361/9383853467716817791490128*x^5-909250447538729614394148481/4691926733858408895745064*x^4-4006412612582713928599115353/4691926733858408895745064*x^3+509595326897644103412353480/586490841732301111968133*x^2-205536509934146968422633059/1172981683464602223936266*x-20427225710875349416365180/586490841732301111968133,-1,9326229335175833675935/9383853467716817791490128*x^14+81408938832219077420489/9383853467716817791490128*x^13-219967984173773431365063/9383853467716817791490128*x^12-3203431738036157953922189/9383853467716817791490128*x^11+685454288105188415988301/9383853467716817791490128*x^10+49439939033949012027588631/9383853467716817791490128*x^9+11589399409419281677007999/9383853467716817791490128*x^8-48752495036420648133615561/1172981683464602223936266*x^7-23476767497620073987104611/9383853467716817791490128*x^6+1613518153151256519923537415/9383853467716817791490128*x^5-325963210622401174214746069/4691926733858408895745064*x^4-1375019123910928287848680639/4691926733858408895745064*x^3+341242334638645246906976635/1172981683464602223936266*x^2-57615679107658676359944697/1172981683464602223936266*x-7349853445191928691453470/586490841732301111968133,14431222046046829136493/9383853467716817791490128*x^14+131946444334787731686199/9383853467716817791490128*x^13-299077717250155312898049/9383853467716817791490128*x^12-5172853115525631657686715/9383853467716817791490128*x^11-677934538056292250778885/9383853467716817791490128*x^10+79382110490975452749409249/9383853467716817791490128*x^9+45440982603174718391130865/9383853467716817791490128*x^8-155827059379921947268194201/2345963366929204447872532*x^7-238031862165609374654445073/9383853467716817791490128*x^6+2594208328182289500527971169/9383853467716817791490128*x^5-171601232817918566184763537/4691926733858408895745064*x^4-2303037448467060487420845341/4691926733858408895745064*x^3+436306905011048984463118081/1172981683464602223936266*x^2-33938671070077596322487811/1172981683464602223936266*x-8176854066165986043015348/586490841732301111968133], x^15+13*x^14+13*x^13-453*x^12-1403*x^11+5879*x^10+24651*x^9-39302*x^8-191153*x^7+177467*x^6+718900*x^5-651322*x^4-1046764*x^3+1330320*x^2-276448*x-51552];
E[817,5]=[[5229494243/2787423000*x^14-76574321381/2787423000*x^13+1589405749/13937115*x^12+58811091513/464570500*x^11-1368833236913/696855750*x^10+1476171085557/464570500*x^9+1938217814249/278742300*x^8-70119879222473/2787423000*x^7+932378305519/69685575*x^6+20594966371741/557484600*x^5-182191645779451/2787423000*x^4+327736844775/7433128*x^3-19818149297081/1393711500*x^2+1423555471489/696855750*x-31002796007/348427875,-1288494027/464570500*x^14+9516239867/232285250*x^13-3226498447/18582820*x^12-39022125071/232285250*x^11+682302267689/232285250*x^10-1173845156819/232285250*x^9-228858415328/23228525*x^8+17986538373647/464570500*x^7-2210658244943/92914100*x^6-5021705207069/92914100*x^5+24128582569007/232285250*x^4-687491101869/9291410*x^3+11663995932793/464570500*x^2-878145258267/232285250*x+20369266721/116142625,-355054199/232285250*x^14+5207364033/232285250*x^13-173619377/1858282*x^12-11746050077/116142625*x^11+186261038393/116142625*x^10-305012258778/116142625*x^9-130525957002/23228525*x^8+4798840305989/232285250*x^7-263227859013/23228525*x^6-698352660704/23228525*x^5+6279969623734/116142625*x^4-342072403013/9291410*x^3+2764087474741/232285250*x^2-195619657379/116142625*x+8352409004/116142625,x,-292227371/464570500*x^14+1043048358/116142625*x^13-649767679/18582820*x^12-12786056933/232285250*x^11+148149921097/232285250*x^10-193604917687/232285250*x^9-60935222239/23228525*x^8+3466206308931/464570500*x^7-168559455569/92914100*x^6-1199688829827/92914100*x^5+3990950824611/232285250*x^4-8129024038/929141*x^3+867832004289/464570500*x^2-35426633541/232285250*x+1049059883/116142625,732815973/232285250*x^14-10721037741/232285250*x^13+1776298469/9291410*x^12+25005018654/116142625*x^11-383268550561/116142625*x^10+615546611631/116142625*x^9+273082074049/23228525*x^8-9785866541453/232285250*x^7+510103083696/23228525*x^6+1446704861893/23228525*x^5-12658032541143/116142625*x^4+677352941449/9291410*x^3-5412787735557/232285250*x^2+386293000158/116142625*x-16957578008/116142625,-1220338244/348427875*x^14+72414463067/1393711500*x^13-2479557181/11149692*x^12-23289914783/116142625*x^11+2600277511957/696855750*x^10-766604416762/116142625*x^9-1700117324423/139371150*x^8+34741739566093/696855750*x^7-9041170853249/278742300*x^6-4743137365648/69685575*x^5+189003630596257/1393711500*x^4-1831951954849/18582820*x^3+47299684829209/1393711500*x^2-3564661210421/696855750*x+79398108148/348427875,-1,6151193309/1393711500*x^14-22587096332/348427875*x^13+15114553823/55748460*x^12+66630294969/232285250*x^11-3232720557913/696855750*x^10+1783202168141/232285250*x^9+1122172196086/69685575*x^8-83660595297749/1393711500*x^7+9422413359371/278742300*x^6+24101169425443/278742300*x^5-55015950023722/348427875*x^4+506111057342/4645705*x^3-50083621596781/1393711500*x^2+3676442285339/696855750*x-81842330332/348427875,202522531/27874230*x^14-2984449153/27874230*x^13+25161242153/55748460*x^12+4206850841/9291410*x^11-213737402599/27874230*x^10+60362437868/4645705*x^9+363067264664/13937115*x^8-1397720121356/13937115*x^7+833287692859/13937115*x^6+7881475464503/55748460*x^5-2978733303533/11149692*x^4+1754786552331/9291410*x^3-712419897653/11149692*x^2+268306716413/27874230*x-6231739498/13937115], x^15-15*x^14+66*x^13+46*x^12-1072*x^11+2066*x^10+3118*x^9-14751*x^8+11848*x^7+17325*x^6-41887*x^5+35611*x^4-15584*x^3+3624*x^2-408*x+16];
E[817,6]=[[-463321988553753105064770915/25240805230939564577854034888*x^17+10334013940324013655346483409/50481610461879129155708069776*x^16+1459085734916604659475406861/6310201307734891144463508722*x^15-122923561741473411549827269581/12620402615469782288927017444*x^14+439137818244173516099527073213/25240805230939564577854034888*x^13+4343275497318103357371276247103/25240805230939564577854034888*x^12-13680370734976999355964564385705/25240805230939564577854034888*x^11-2992838181303540423096750084627/2294618657358142234350366808*x^10+320403593428190409888567948559693/50481610461879129155708069776*x^9+126006584703522123732300312382681/50481610461879129155708069776*x^8-897808806482275354120194657951413/25240805230939564577854034888*x^7+985437484133269151782904838303405/50481610461879129155708069776*x^6+2332086013462484927354690833023737/25240805230939564577854034888*x^5-2752802744493341926086524981041989/25240805230939564577854034888*x^4-235154277432955342915942996389574/3155100653867445572231754361*x^3+1023540031051760601508239052839425/6310201307734891144463508722*x^2-296406037536946382399966026953643/6310201307734891144463508722*x-4592787897970152737189077430357/286827332169767779293795851,-608317088443414605977085319/100963220923758258311416139552*x^17+6821158677379882424189635733/100963220923758258311416139552*x^16+3658178486095582988275679025/50481610461879129155708069776*x^15-161945174507125608857811037765/50481610461879129155708069776*x^14+148570632538030129442689529343/25240805230939564577854034888*x^13+1424989755523909703299997087235/25240805230939564577854034888*x^12-9158019381639282184561354606923/50481610461879129155708069776*x^11-3889241125856684243680462796147/9178474629432568937401467232*x^10+26727706226466516042440852357983/12620402615469782288927017444*x^9+76321033682392797164811366029759/100963220923758258311416139552*x^8-1195976138169430615484375571421889/100963220923758258311416139552*x^7+687109328915510338416547183474559/100963220923758258311416139552*x^6+1549372453138244672560194766186209/50481610461879129155708069776*x^5-1866954716893797631325991755840607/50481610461879129155708069776*x^4-154798733028932778995334008498875/6310201307734891144463508722*x^3+344868117301416281522720026048905/6310201307734891144463508722*x^2-100870560071007849868236118000077/6310201307734891144463508722*x-1556293309602802177652188147464/286827332169767779293795851,1419676544394002630565960923/50481610461879129155708069776*x^17-15987427182863312186997744125/50481610461879129155708069776*x^16-2053225403507565460676630769/6310201307734891144463508722*x^15+378904831927475902154259492851/25240805230939564577854034888*x^14-354984934080017448722361182541/12620402615469782288927017444*x^13-830709601586638684111975216502/3155100653867445572231754361*x^12+21700139410427051953757075335729/25240805230939564577854034888*x^11+8989374463978777473604551593955/4589237314716284468700733616*x^10-126336339407136222354066782423937/12620402615469782288927017444*x^9-164645092223977881031187774294569/50481610461879129155708069776*x^8+2821274699194121468356255833536267/50481610461879129155708069776*x^7-1688019672392620954168094710598979/50481610461879129155708069776*x^6-911115594173548350427613557721935/6310201307734891144463508722*x^5+4483444659871919301585979253019227/25240805230939564577854034888*x^4+1439790807196407640552588472851141/12620402615469782288927017444*x^3-823829272852743664150794384135284/3155100653867445572231754361*x^2+244483406941188494539261977023683/3155100653867445572231754361*x+7486564788201158621294637401050/286827332169767779293795851,x,-1778916791967605959379094509/100963220923758258311416139552*x^17+19852895841927882602059612111/100963220923758258311416139552*x^16+11161218898580839766100868113/50481610461879129155708069776*x^15-472353675279209805155691593319/50481610461879129155708069776*x^14+422724702695006709817050876541/25240805230939564577854034888*x^13+4173387279973902916336541875567/25240805230939564577854034888*x^12-26317011167775251662592543945157/50481610461879129155708069776*x^11-11510156442147059526450537643737/9178474629432568937401467232*x^10+19260218403244166363831171355675/3155100653867445572231754361*x^9+243330389617588118882175914947393/100963220923758258311416139552*x^8-3454662815298526667770742459322687/100963220923758258311416139552*x^7+1886579380819151604221952768077405/100963220923758258311416139552*x^6+4489122899903285168502002316210481/50481610461879129155708069776*x^5-5280218222297268385562436833473097/50481610461879129155708069776*x^4-907423457587235749966384326471151/12620402615469782288927017444*x^3+982111256959786418027379246018625/6310201307734891144463508722*x^2-283443878781826674953489650203459/6310201307734891144463508722*x-4399542604322950949292308797904/286827332169767779293795851,-1086449086367074136708552355/50481610461879129155708069776*x^17+12035853226509422436118521297/50481610461879129155708069776*x^16+903818644109384669263449471/3155100653867445572231754361*x^15-287157126777912802496519009995/25240805230939564577854034888*x^14+247598718847075752194620921573/12620402615469782288927017444*x^13+637588974795822496307718367661/3155100653867445572231754361*x^12-15650575795876087185522614152365/25240805230939564577854034888*x^11-7126297874788883286378192390971/4589237314716284468700733616*x^10+46018341156805232850517245860397/6310201307734891144463508722*x^9+164026448686391639399947675227333/50481610461879129155708069776*x^8-2069483687720581752979958692185947/50481610461879129155708069776*x^7+1055104717674041919815636393226511/50481610461879129155708069776*x^6+674908463574315172687644539763049/6310201307734891144463508722*x^5-3079964437952633647113998633940347/25240805230939564577854034888*x^4-1106986237513434449799050540740171/12620402615469782288927017444*x^3+1156403090932280265185450430238205/6310201307734891144463508722*x^2-163885922479534693872791395035853/3155100653867445572231754361*x-5133726581178613957696719575574/286827332169767779293795851,16218009951637960185005999/2294618657358142234350366808*x^17-348016801256404258975678357/4589237314716284468700733616*x^16-536844519122841439889508261/4589237314716284468700733616*x^15+8404128625913506883318952647/2294618657358142234350366808*x^14-12098983355401615754241764343/2294618657358142234350366808*x^13-38161662024447571359607604193/573654664339535558587591702*x^12+206817926872486977949612373577/1147309328679071117175183404*x^11+154659610561611858622314615498/286827332169767779293795851*x^10-9940882673951529349832954530341/4589237314716284468700733616*x^9-1712010185256802090145738496005/1147309328679071117175183404*x^8+56648214480468314896459539192131/4589237314716284468700733616*x^7-19198684444677167700420371440079/4589237314716284468700733616*x^6-150486898733050217436712240882487/4589237314716284468700733616*x^5+73586694931626403486152402513869/2294618657358142234350366808*x^4+65695403221082222874650658474605/2294618657358142234350366808*x^3-29043589201725597907029985054447/573654664339535558587591702*x^2+7455867756517577330425284594587/573654664339535558587591702*x+1353515801716503521427600682778/286827332169767779293795851,1,-60557470010916078407660839/25240805230939564577854034888*x^17+1641893089716613408788113373/50481610461879129155708069776*x^16-1213969810361462459146719561/50481610461879129155708069776*x^15-36352305528230345747164181903/25240805230939564577854034888*x^14+127281181027964258733765795595/25240805230939564577854034888*x^13+275644321311423539441807107607/12620402615469782288927017444*x^12-397561464299975341061565433188/3155100653867445572231754361*x^11-110221946616408061929341306331/1147309328679071117175183404*x^10+69062933825503584247539852567933/50481610461879129155708069776*x^9-18498722485307099113913545375607/25240805230939564577854034888*x^8-366779393809689283073110294701105/50481610461879129155708069776*x^7+463902090124418113330226725081415/50481610461879129155708069776*x^6+879056241764259210145947156592505/50481610461879129155708069776*x^5-859060214062390847656289583506419/25240805230939564577854034888*x^4-242297477815916808086953562493883/25240805230939564577854034888*x^3+141403048559837359982724723924058/3155100653867445572231754361*x^2-103697556095467327864297087795845/6310201307734891144463508722*x-1438346894781057926661046475732/286827332169767779293795851,946923476241090874879243843/50481610461879129155708069776*x^17-10614128600690641064588031869/50481610461879129155708069776*x^16-11435450955146637113625268969/50481610461879129155708069776*x^15+63015917207554194442228044017/6310201307734891144463508722*x^14-230683464541971060839230740591/12620402615469782288927017444*x^13-4438152629936871842009485443657/25240805230939564577854034888*x^12+7116262035525719408593398713405/12620402615469782288927017444*x^11+6064185874566990710432520232045/4589237314716284468700733616*x^10-41548547536981069641471576478759/6310201307734891144463508722*x^9-30020562930369471155691375933869/12620402615469782288927017444*x^8+232426728919741189493998534648967/6310201307734891144463508722*x^7-1062494059983587644835752397903661/50481610461879129155708069776*x^6-4818306559550161698303310843930189/50481610461879129155708069776*x^5+2896600603218007085872925624929827/25240805230939564577854034888*x^4+1926352261800272121434337597930693/25240805230939564577854034888*x^3-535505256544176460955852879643398/3155100653867445572231754361*x^2+313365257808578868328580620953859/6310201307734891144463508722*x+4830386452824066755941162222634/286827332169767779293795851], x^18-13*x^17+8*x^16+554*x^15-1928*x^14-7628*x^13+46850*x^12+16595*x^11-477198*x^10+501983*x^9+2190865*x^8-4639631*x^7-3079348*x^6+15233622*x^5-6887244*x^4-16339616*x^3+18852320*x^2-3841248*x-1607936];
E[851,1]=[[0,1,x,x-1,-x+3,6,-x-4,x+2,-1,-2*x+4], x^2-x-10];
E[851,2]=[[-1/3*x^2-x+3,1/3*x^2+x-2,x,-1/3*x^2-x-1,-2/3*x^2-x+3,-1/3*x^2+2,-2/3*x^2-x,x^2+2*x-10,1,5/3*x^2-12], x^3-9*x+9];
E[851,3]=[[-x^2-3*x-1,-x^2-x+2,x,x^2+3*x+1,2*x^2+3*x-5,-x^2-4*x-4,2*x^2+3*x-4,-5*x^2-14*x-2,1,-3*x^2-4*x+6], x^3+4*x^2+3*x-1];
E[851,4]=[[x^4+3*x^3-4*x^2-2*x,-x-1,x,x^4+2*x^3-8*x^2+5,-x^4-2*x^3+7*x^2-2*x-3,-x^2-3*x,-2*x^4-6*x^3+9*x^2+6*x-2,x^4+3*x^3-4*x^2,1,x^3+2*x^2-8*x], x^5+3*x^4-5*x^3-5*x^2+3*x+2];
E[851,5]=[[391501602915393082758478905775779/32888082528421707703229513458001294*x^19-4102444072947128272299991509549495/32888082528421707703229513458001294*x^18-1446522907566837598434516180458876/16444041264210853851614756729000647*x^17+12773293451915751380926829067146657/2529852502186285207940731804461638*x^16-365067820626230764735659700714654637/32888082528421707703229513458001294*x^15-1132644895384948435717894437767285242/16444041264210853851614756729000647*x^14+4300725438704603981921408298202341721/16444041264210853851614756729000647*x^13+11577373904885497060179401534492834697/32888082528421707703229513458001294*x^12-78863906697912656357568848742925339773/32888082528421707703229513458001294*x^11-65364880060566457574697154324055784/1264926251093142603970365902230819*x^10+363294848704923050692596278158149999797/32888082528421707703229513458001294*x^9-90712942053317607751461174975270705830/16444041264210853851614756729000647*x^8-907615011970643049514592803075372593705/32888082528421707703229513458001294*x^7+591000125950622415011832613709481132297/32888082528421707703229513458001294*x^6+1271498990183371071704324275402697500175/32888082528421707703229513458001294*x^5-328660150574232163537468267450978087459/16444041264210853851614756729000647*x^4-993796348377824711233368450538984928805/32888082528421707703229513458001294*x^3+83131461419400190528233454489343988011/16444041264210853851614756729000647*x^2+330017238758296966621059156028356948631/32888082528421707703229513458001294*x+32859406269890055343561632623568608484/16444041264210853851614756729000647,-289396117072609970805194602710137/16444041264210853851614756729000647*x^19+3079287714245470742856881815462382/16444041264210853851614756729000647*x^18+1806213910747578876051967961634893/16444041264210853851614756729000647*x^17-9555541775505637876846215614059207/1264926251093142603970365902230819*x^16+284753022878979782010838850196142482/16444041264210853851614756729000647*x^15+1681564978862980864252485140090256298/16444041264210853851614756729000647*x^14-6606691838242260794989247385647242143/16444041264210853851614756729000647*x^13-8376233847002523597063218216082758535/16444041264210853851614756729000647*x^12+60321439589480966709274281435575168439/16444041264210853851614756729000647*x^11-97139020627624791612057088271094842/1264926251093142603970365902230819*x^10-277485635035400720950874597579374893316/16444041264210853851614756729000647*x^9+146930168054556956041433479292105298366/16444041264210853851614756729000647*x^8+693502664915692726362665647683559858150/16444041264210853851614756729000647*x^7-467260991642470019859232861067585425326/16444041264210853851614756729000647*x^6-974113589614730987598993020605742699961/16444041264210853851614756729000647*x^5+517565407521827733239957099243439921540/16444041264210853851614756729000647*x^4+765240545903100500555241885790049570220/16444041264210853851614756729000647*x^3-132156256606225140894032360404062150491/16444041264210853851614756729000647*x^2-255525292940493023074422844319543057516/16444041264210853851614756729000647*x-50705131418363780774363176670647518233/16444041264210853851614756729000647,x,-516200608526216602368302331484682/16444041264210853851614756729000647*x^19+5470360354094869477445430516031700/16444041264210853851614756729000647*x^18+3367349257806884539350804626997020/16444041264210853851614756729000647*x^17-16986065064369299654457738448221533/1264926251093142603970365902230819*x^16+501378705302366666652277777898214763/16444041264210853851614756729000647*x^15+2993440143768253410360680829689795729/16444041264210853851614756729000647*x^14-11675072734243539602969003280865190937/16444041264210853851614756729000647*x^13-14980909842757854260027231686273001657/16444041264210853851614756729000647*x^12+106703589392135741396429161042215875601/16444041264210853851614756729000647*x^11-112113070444544378096520684981900278/1264926251093142603970365902230819*x^10-491035315184900097226709094220493088467/16444041264210853851614756729000647*x^9+257874812774209036813932281182392242578/16444041264210853851614756729000647*x^8+1227342256212678932237308448941655375834/16444041264210853851614756729000647*x^7-823784438099110332358154881051344992097/16444041264210853851614756729000647*x^6-1723820141249234545805366979991900059983/16444041264210853851614756729000647*x^5+913985108568694981496828503947492142347/16444041264210853851614756729000647*x^4+1353890341797983291459898720904663575647/16444041264210853851614756729000647*x^3-233730648427382293369277628499431153477/16444041264210853851614756729000647*x^2-451929897397026826777626924492048401837/16444041264210853851614756729000647*x-89565189957282285077549058811832020541/16444041264210853851614756729000647,-656266583986684341466826307217465/16444041264210853851614756729000647*x^19+6806769091141319070417979628924941/16444041264210853851614756729000647*x^18+5387398413055421792705646661482221/16444041264210853851614756729000647*x^17-21257158695866096173257006073285033/1264926251093142603970365902230819*x^16+587997835544211711380845413434091398/16444041264210853851614756729000647*x^15+3795912131118316826673526497004169414/16444041264210853851614756729000647*x^14-14022543213188065918925812209820617672/16444041264210853851614756729000647*x^13-19835675838327700688257185860529601596/16444041264210853851614756729000647*x^12+129013805819998396874700887717731179082/16444041264210853851614756729000647*x^11+608753811887198774623941205344858375/1264926251093142603970365902230819*x^10-595130257656738689024563775173392579455/16444041264210853851614756729000647*x^9+279274877301397787242427246164098648936/16444041264210853851614756729000647*x^8+1486556718456606033833389236736629174078/16444041264210853851614756729000647*x^7-932132237950208773016002353017237254851/16444041264210853851614756729000647*x^6-2077131234200896697968891336809819007860/16444041264210853851614756729000647*x^5+1040032027889691166307272116414968321828/16444041264210853851614756729000647*x^4+1614247385916387783163694809471264392892/16444041264210853851614756729000647*x^3-259549433289018988158114892945204112817/16444041264210853851614756729000647*x^2-532756048668908036588517440522908751079/16444041264210853851614756729000647*x-106468978809634428743409225944249033089/16444041264210853851614756729000647,-518076331257474062927763859270222/16444041264210853851614756729000647*x^19+5419210380490849607378384011816333/16444041264210853851614756729000647*x^18+3929803783716509657331535864728222/16444041264210853851614756729000647*x^17-16889629297802085599516167371281353/1264926251093142603970365902230819*x^16+478466769181095220879514781134364455/16444041264210853851614756729000647*x^15+3002316317284086402298686818345857629/16444041264210853851614756729000647*x^14-11302447727450969398345360224865796616/16444041264210853851614756729000647*x^13-15467208007253661814466984455775576851/16444041264210853851614756729000647*x^12+103667279165819911190326609716416501797/16444041264210853851614756729000647*x^11+287995360051552510313932816970283633/1264926251093142603970365902230819*x^10-477312092606743783763604595673549814876/16444041264210853851614756729000647*x^9+232760350373827754254473836923115474512/16444041264210853851614756729000647*x^8+1190522294125493551499338072934817682222/16444041264210853851614756729000647*x^7-763981122975980131723753191556387558272/16444041264210853851614756729000647*x^6-1662137543702870418224808109624549723024/16444041264210853851614756729000647*x^5+849728046690395196858711628405932060679/16444041264210853851614756729000647*x^4+1292644967979340449414403671149491457567/16444041264210853851614756729000647*x^3-214524255289960509731217324951798190924/16444041264210853851614756729000647*x^2-427398493343671104680799479721767966249/16444041264210853851614756729000647*x-84840583035663590646060188286919418964/16444041264210853851614756729000647,-1078331647276446843288043011879592/16444041264210853851614756729000647*x^19+11354361345324157439576193222560567/16444041264210853851614756729000647*x^18+7585155910627217555427420104098940/16444041264210853851614756729000647*x^17-35319632184826719802599008695556065/1264926251093142603970365902230819*x^16+1022906425587878695080528621171401487/16444041264210853851614756729000647*x^15+6250023638791174815480822200393412352/16444041264210853851614756729000647*x^14-23986894077159009314769201443477288180/16444041264210853851614756729000647*x^13-31707099230902810084169829288938889968/16444041264210853851614756729000647*x^12+219698146867225680112863218751653605799/16444041264210853851614756729000647*x^11+146077876236014383063088167481685148/1264926251093142603970365902230819*x^10-1012059219525639798271234795846320626774/16444041264210853851614756729000647*x^9+514549112432270670166258914862888505603/16444041264210853851614756729000647*x^8+2530387738884371695868594813475942377669/16444041264210853851614756729000647*x^7-1664625087171027972059601624770212073896/16444041264210853851614756729000647*x^6-3550844452005823610852169513956422882821/16444041264210853851614756729000647*x^5+1850836520530028345256790736935412915156/16444041264210853851614756729000647*x^4+2781804906688815484384558435281315485734/16444041264210853851614756729000647*x^3-470382710857263071014907529570630661144/16444041264210853851614756729000647*x^2-925838172728349704510440606428947972350/16444041264210853851614756729000647*x-183835646343898119214236647736915549924/16444041264210853851614756729000647,-847386601520955623910888188548388/16444041264210853851614756729000647*x^19+8697278683995094136197140244806911/16444041264210853851614756729000647*x^18+7633944647703841556450997279006098/16444041264210853851614756729000647*x^17-27231492296846401666924520248851086/1264926251093142603970365902230819*x^16+728713732432378342798068446063960499/16444041264210853851614756729000647*x^15+4891639430491437029511679702447279774/16444041264210853851614756729000647*x^14-17592395694086230063312866221963272452/16444041264210853851614756729000647*x^13-26045674532543880422446543841150660998/16444041264210853851614756729000647*x^12+162326520656280977441286511738826531983/16444041264210853851614756729000647*x^11+1221081292097035180053390781399101456/1264926251093142603970365902230819*x^10-749040490303228685504077307022239473662/16444041264210853851614756729000647*x^9+331890451388108987585475853801888136353/16444041264210853851614756729000647*x^8+1867565130262529716974839073988243782540/16444041264210853851614756729000647*x^7-1134669276042873871470765351623431905554/16444041264210853851614756729000647*x^6-2596747659353357725434783446473756442214/16444041264210853851614756729000647*x^5+1270321995356858400294822058229707278548/16444041264210853851614756729000647*x^4+2002221323860369025580599787448527196610/16444041264210853851614756729000647*x^3-315684445763522019303570499441146072619/16444041264210853851614756729000647*x^2-655748599404397996124739626308130701516/16444041264210853851614756729000647*x-130784604070545309874390060337059749286/16444041264210853851614756729000647,1,1453199478513594195945056648481416/16444041264210853851614756729000647*x^19-15073771232258594248199699981910777/16444041264210853851614756729000647*x^18-11883653893449281982792640546800940/16444041264210853851614756729000647*x^17+47054758250375229104484609709374820/1264926251093142603970365902230819*x^16-1303640946693566237245705942509163228/16444041264210853851614756729000647*x^15-8394783593554146309236358868580992085/16444041264210853851614756729000647*x^14+31065294528200757030200780241141848795/16444041264210853851614756729000647*x^13+43741926486179648052758518860000364472/16444041264210853851614756729000647*x^12-285637710946086624416060958842473011890/16444041264210853851614756729000647*x^11-1237823771360955636491803964918496002/1264926251093142603970365902230819*x^10+1316535855061876739691711650854936468633/16444041264210853851614756729000647*x^9-624222402985178089920221600488069304598/16444041264210853851614756729000647*x^8-3284735555844815684933130839244014101747/16444041264210853851614756729000647*x^7+2076368352115593184129845889061798777050/16444041264210853851614756729000647*x^6+4583482417003223697992815265215411538817/16444041264210853851614756729000647*x^5-2316459679931344677374268061777610701689/16444041264210853851614756729000647*x^4-3559107440799439918592760476066554262770/16444041264210853851614756729000647*x^3+582608862122676914328618283013093701304/16444041264210853851614756729000647*x^2+1174617637420421893298445858783882421885/16444041264210853851614756729000647*x+233763516616859051188073961769990268508/16444041264210853851614756729000647], x^20-13*x^19+19*x^18+443*x^17-2001*x^16-3445*x^15+36558*x^14-25663*x^13-276167*x^12+502325*x^11+940829*x^10-2798094*x^9-1158810*x^8+7343270*x^7-539281*x^6-9850887*x^5+1677633*x^4+6808852*x^3-224506*x^2-1951231*x-421276];
E[851,6]=[[5866230391333/1108327213496138*x^11+16170822474133/1108327213496138*x^10-183257524330409/1108327213496138*x^9-492758951929663/1108327213496138*x^8+917547409922174/554163606748069*x^7+4861442920203877/1108327213496138*x^6-3359286142380917/554163606748069*x^5-8930965657781662/554163606748069*x^4+3346235074396574/554163606748069*x^3+19016216682825757/1108327213496138*x^2-1904061736656147/1108327213496138*x-1997473768840801/554163606748069,-5933156221176/554163606748069*x^11-13581644228870/554163606748069*x^10+192231330817915/554163606748069*x^9+408074843821395/554163606748069*x^8-2056193867538353/554163606748069*x^7-3936251493733609/554163606748069*x^6+8593923347120271/554163606748069*x^5+13783120682241830/554163606748069*x^4-12147576220890726/554163606748069*x^3-12340676049019460/554163606748069*x^2+4225082125637497/554163606748069*x+1481469250262033/554163606748069,x,3944926490164/554163606748069*x^11+9868994047535/554163606748069*x^10-125898459451380/554163606748069*x^9-298624504320358/554163606748069*x^8+1304346387740703/554163606748069*x^7+2910540715533513/554163606748069*x^6-5036355158532878/554163606748069*x^5-10406321650156501/554163606748069*x^4+5521623377947064/554163606748069*x^3+10136091537516889/554163606748069*x^2-1224502911407549/554163606748069*x-2321360804361838/554163606748069,-2502565763268/554163606748069*x^11-10713218432166/554163606748069*x^10+67928328566360/554163606748069*x^9+327427838937856/554163606748069*x^8-475119454763185/554163606748069*x^7-3194196833843047/554163606748069*x^6-48393304365508/554163606748069*x^5+11117080382566410/554163606748069*x^4+6481025302765527/554163606748069*x^3-8963652478992739/554163606748069*x^2-4104410424346444/554163606748069*x+319089815321870/554163606748069,-1263074561885/554163606748069*x^11-8248997788052/554163606748069*x^10+26537276216500/554163606748069*x^9+250471199490781/554163606748069*x^8-7259141977285/554163606748069*x^7-2395430095541570/554163606748069*x^6-2259956382360090/554163606748069*x^5+7933490901983779/554163606748069*x^4+11061281872667418/554163606748069*x^3-5381974346029453/554163606748069*x^2-8912331564730481/554163606748069*x-462180669669415/554163606748069,2033558125486/554163606748069*x^11+5658144151026/554163606748069*x^10-57861949570835/554163606748069*x^9-166722176489578/554163606748069*x^8+456103037496440/554163606748069*x^7+1526587689122654/554163606748069*x^6-537569867026361/554163606748069*x^5-4445897974325202/554163606748069*x^4-3733143235654795/554163606748069*x^3-17390292140046/554163606748069*x^2+3057069873099887/554163606748069*x+1863107178667922/554163606748069,-6086419688936/554163606748069*x^11-20650181428550/554163606748069*x^10+177064287914660/554163606748069*x^9+626757571439712/554163606748069*x^8-1500677369586521/554163606748069*x^7-6097928696680042/554163606748069*x^6+2959049978980365/554163606748069*x^5+21522740108774980/554163606748069*x^4+7410015969780886/554163606748069*x^3-19268507257426532/554163606748069*x^2-10078992309517223/554163606748069*x+836425005251680/554163606748069,-1,7795509021666/554163606748069*x^11+24536304367647/554163606748069*x^10-241514642449779/554163606748069*x^9-743634683831296/554163606748069*x^8+2397978033708796/554163606748069*x^7+7218579709578441/554163606748069*x^6-8761135324214506/554163606748069*x^5-25523156680701029/554163606748069*x^4+9183803640549757/554163606748069*x^3+24096285401760230/554163606748069*x^2-3040688930481527/554163606748069*x-4447723353853409/554163606748069], x^12+5*x^11-25*x^10-153*x^9+124*x^8+1495*x^7+688*x^6-5232*x^5-5286*x^4+4299*x^3+5237*x^2-10*x-484];
E[851,7]=[[-1059908247347964569175510806844396270763337/364330058818332909602458506556775790899099108*x^20+566391764979527757746133433670544367831057/91082514704583227400614626639193947724774777*x^19+67041060409019510559815879280167116463721561/364330058818332909602458506556775790899099108*x^18-65032888759778028650840909676583171668421021/182165029409166454801229253278387895449549554*x^17-1732638262382491394116993111395188400575451583/364330058818332909602458506556775790899099108*x^16+1517078572219452592294157666631086182340068643/182165029409166454801229253278387895449549554*x^15+11869625719853563749819287917283065616547263433/182165029409166454801229253278387895449549554*x^14-37633043571201302220658819245697059665005417251/364330058818332909602458506556775790899099108*x^13-93375794209019249262480064130617351704059352051/182165029409166454801229253278387895449549554*x^12+272226926540787805156931895493500976200614027157/364330058818332909602458506556775790899099108*x^11+425293005469414650617861577241945857034340733889/182165029409166454801229253278387895449549554*x^10-295314651678535903651851839839060220388282525444/91082514704583227400614626639193947724774777*x^9-1066805712269349809570965723834388004147544360473/182165029409166454801229253278387895449549554*x^8+1508285634667362107375237663550458383257351286343/182165029409166454801229253278387895449549554*x^7+2529866381277327743663264343764917549315357067775/364330058818332909602458506556775790899099108*x^6-2075554897447776064696927880206659977876005609407/182165029409166454801229253278387895449549554*x^5-676706312358310306879443486242020121822607995899/364330058818332909602458506556775790899099108*x^4+2448746573576713384038445046239629450448627987031/364330058818332909602458506556775790899099108*x^3-668428392671476758803113642476456120394198810521/364330058818332909602458506556775790899099108*x^2-42132083395863788202828165972451751458453911518/91082514704583227400614626639193947724774777*x+15912783172772061152467665273620593831130189370/91082514704583227400614626639193947724774777,-1526749989214504045307555262809166157094405/364330058818332909602458506556775790899099108*x^20+1775573011325669652770811341651986829203227/182165029409166454801229253278387895449549554*x^19+96076069260010052563841927246412313250988539/364330058818332909602458506556775790899099108*x^18-102842587286418667839294718393746888255999655/182165029409166454801229253278387895449549554*x^17-2468377104955817468470941542557956098977205529/364330058818332909602458506556775790899099108*x^16+1211951297140197340919148748260167393585388607/91082514704583227400614626639193947724774777*x^15+16791117266457315977537994705929693280820959427/182165029409166454801229253278387895449549554*x^14-60794872362278699276282223733321506263006815807/364330058818332909602458506556775790899099108*x^13-65445623657436380834462097170955626166695635505/91082514704583227400614626639193947724774777*x^12+444355205139284528624303084824665343461140541199/364330058818332909602458506556775790899099108*x^11+587972288858361950558394064343550343334888874769/182165029409166454801229253278387895449549554*x^10-971146969419552354742312135733604891212812378047/182165029409166454801229253278387895449549554*x^9-1436052394238954798218220683754262588176376434851/182165029409166454801229253278387895449549554*x^8+1241688407428739015349944709982183753393390365738/91082514704583227400614626639193947724774777*x^7+3157720529006737914894233639084887983782330590853/364330058818332909602458506556775790899099108*x^6-1698585657777891065260726931127345748494862382261/91082514704583227400614626639193947724774777*x^5-337264988044560232033831880124163114324131271987/364330058818332909602458506556775790899099108*x^4+3948350910256178610422811092407241175181973212817/364330058818332909602458506556775790899099108*x^3-1328299670864707247299924778526295267778957074193/364330058818332909602458506556775790899099108*x^2-126489089083193289150933749064412557684824194447/182165029409166454801229253278387895449549554*x+30802401455460432877128747037727048699359902608/91082514704583227400614626639193947724774777,x,-750432402041823953786060149753286997844458/91082514704583227400614626639193947724774777*x^20+1779612751603002172719648340270647667231335/91082514704583227400614626639193947724774777*x^19+47159104761132564800331260830872660545615877/91082514704583227400614626639193947724774777*x^18-103276293023139606841007874402013515529411817/91082514704583227400614626639193947724774777*x^17-1209611276967661073370437723493852625154426474/91082514704583227400614626639193947724774777*x^16+2439637429184496279921263440419392619265821638/91082514704583227400614626639193947724774777*x^15+16422560284306486853391384375571736975560980020/91082514704583227400614626639193947724774777*x^14-30670534485551900126742465749227762715580090741/91082514704583227400614626639193947724774777*x^13-127649437382561280486056549589156023692446930704/91082514704583227400614626639193947724774777*x^12+224722560152396408013602496168758617674866011372/91082514704583227400614626639193947724774777*x^11+570726874723084429001192950116207682581594148231/91082514704583227400614626639193947724774777*x^10-984242775751122300438396923219458034439438517684/91082514704583227400614626639193947724774777*x^9-1380510112057298479660159198238068221911968282762/91082514704583227400614626639193947724774777*x^8+2519508938580705776312973263996696967997008626860/91082514704583227400614626639193947724774777*x^7+1472720214083833010137074610058889578097911744647/91082514704583227400614626639193947724774777*x^6-3445701396499740348392979094835900752124677008590/91082514704583227400614626639193947724774777*x^5-55900793283765552457648589567689235755172038170/91082514704583227400614626639193947724774777*x^4+1996723246551552215670636435626353264202764693624/91082514704583227400614626639193947724774777*x^3-718987818041166479305653678478628168438494206723/91082514704583227400614626639193947724774777*x^2-123399225567552970335363387119696245201261243029/91082514704583227400614626639193947724774777*x+66220519260637578073562208581188527107436766066/91082514704583227400614626639193947724774777,-1008827809841153477678787053275624489889753/182165029409166454801229253278387895449549554*x^20+1136806970277303035868162404455512602388198/91082514704583227400614626639193947724774777*x^19+63637843685712913732627553354391023731119167/182165029409166454801229253278387895449549554*x^18-65656136508713550565128524500855589824019358/91082514704583227400614626639193947724774777*x^17-1639709206502626561267735457888717364096613481/182165029409166454801229253278387895449549554*x^16+1542363300915822165414673904040604511376338492/91082514704583227400614626639193947724774777*x^15+11193645838980956406136615551993115779057118104/91082514704583227400614626639193947724774777*x^14-38550287014808947352492330058425477459135757951/182165029409166454801229253278387895449549554*x^13-87660528369098950022294303909647893942669753546/91082514704583227400614626639193947724774777*x^12+280875445340994391430594580524426949896578866897/182165029409166454801229253278387895449549554*x^11+396430646922968886293171395165090937219021548422/91082514704583227400614626639193947724774777*x^10-612628162369602199488166252523329147704087167251/91082514704583227400614626639193947724774777*x^9-979766461420684409777178560717570112801356611985/91082514704583227400614626639193947724774777*x^8+1567025832863721274881644077724295442560527499268/91082514704583227400614626639193947724774777*x^7+2220490900947903416371951732356040932464343198459/182165029409166454801229253278387895449549554*x^6-2150721580051523172089384897743001732975214492134/91082514704583227400614626639193947724774777*x^5-368333238040044021846237321987543123748024531209/182165029409166454801229253278387895449549554*x^4+2514435407568655751942491365175737584077827861445/182165029409166454801229253278387895449549554*x^3-813417554411568935000243740642979975888045254965/182165029409166454801229253278387895449549554*x^2-79461953095930803723590654790857792944353929019/91082514704583227400614626639193947724774777*x+38076119150318938356684866254765155990229094484/91082514704583227400614626639193947724774777,3649910771403044552252282378633761591140217/364330058818332909602458506556775790899099108*x^20-4403741185533692283975137841722410169353917/182165029409166454801229253278387895449549554*x^19-229093074929861330685523439558263824986851335/364330058818332909602458506556775790899099108*x^18+256027903570568430570234655176917151390558601/182165029409166454801229253278387895449549554*x^17+5867623401842556888770068261395698598505477409/364330058818332909602458506556775790899099108*x^16-3030554949203465789637389038126931100442601260/91082514704583227400614626639193947724774777*x^15-39759285751988987821794148818795114509356836459/182165029409166454801229253278387895449549554*x^14+152769539169485942242758418513548730538318948039/364330058818332909602458506556775790899099108*x^13+154135632519164768954192580436559764690600731765/91082514704583227400614626639193947724774777*x^12-1122183588213554554012399118194138632545169093767/364330058818332909602458506556775790899099108*x^11-1372757255650733349500755270984267086805131665907/182165029409166454801229253278387895449549554*x^10+2463165715260917438867331396887808252800501842617/182165029409166454801229253278387895449549554*x^9+3292845909967646693503517570934447615700768953519/182165029409166454801229253278387895449549554*x^8-3157841547312720491645666210562136424907544216346/91082514704583227400614626639193947724774777*x^7-6836103589732884845985541419462191137663492263089/364330058818332909602458506556775790899099108*x^6+4321241363308335993245720613425977927851517373894/91082514704583227400614626639193947724774777*x^5-191034290710588903392146048190285234047675242969/364330058818332909602458506556775790899099108*x^4-9999296743635676274258455689441229277359627692249/364330058818332909602458506556775790899099108*x^3+3795698972846289202550557085711118925961005750581/364330058818332909602458506556775790899099108*x^2+299753196187371939038298212491095306155804412183/182165029409166454801229253278387895449549554*x-88136064291606367639263545788884819135681433130/91082514704583227400614626639193947724774777,-229811785002557042390332939252208118209145/182165029409166454801229253278387895449549554*x^20+373707325244314845888803100436070041436804/91082514704583227400614626639193947724774777*x^19+14094458771798071660294387421068801937880693/182165029409166454801229253278387895449549554*x^18-22277981912200636784420604649088022066342606/91082514704583227400614626639193947724774777*x^17-351080252230214388266080056328736928979505459/182165029409166454801229253278387895449549554*x^16+542427916968855776657854710881911537473049262/91082514704583227400614626639193947724774777*x^15+2297356417554449278476595865268153481723825519/91082514704583227400614626639193947724774777*x^14-14077047804545480431217051341393419791996077475/182165029409166454801229253278387895449549554*x^13-16970000436363792449760172059638078797207512007/91082514704583227400614626639193947724774777*x^12+106244440099079267351538769272479468113477551905/182165029409166454801229253278387895449549554*x^11+69656776817251776303920999893896658739500871040/91082514704583227400614626639193947724774777*x^10-237965937727005152325536306171683503285543643785/91082514704583227400614626639193947724774777*x^9-137951201248112569938219601095974586818202800966/91082514704583227400614626639193947724774777*x^8+615141136276087429713886164205245312669550762833/91082514704583227400614626639193947724774777*x^7+88604166678976557805581957417767511027409405373/182165029409166454801229253278387895449549554*x^6-836773601953977516241362754711908663755356258156/91082514704583227400614626639193947724774777*x^5+472522227225189580087762170347607718204952089397/182165029409166454801229253278387895449549554*x^4+943803633815391381077154057426826044584051824203/182165029409166454801229253278387895449549554*x^3-511473537884100362137991344114372278670283702343/182165029409166454801229253278387895449549554*x^2-22984626510041157327676243019543576569213024952/91082514704583227400614626639193947724774777*x+22876702011663527549825768244517921813121552772/91082514704583227400614626639193947724774777,511451198343374591628258177539168210402531/182165029409166454801229253278387895449549554*x^20-477955700851841141201077178968458660007378/91082514704583227400614626639193947724774777*x^19-32591184526663292168917266993314344244906603/182165029409166454801229253278387895449549554*x^18+26977761663235121888634992304038536751717760/91082514704583227400614626639193947724774777*x^17+849555551569635711200219093443248122570024603/182165029409166454801229253278387895449549554*x^16-616298160663761283151646759838190512513190734/91082514704583227400614626639193947724774777*x^15-5879748594443077500663555430413436785937744895/91082514704583227400614626639193947724774777*x^14+14918022887214263961125416756423642265178336017/182165029409166454801229253278387895449549554*x^13+46869116314278282777660954931771600238433342953/91082514704583227400614626639193947724774777*x^12-105100546917842299625439796190175473653217432911/182165029409166454801229253278387895449549554*x^11-217714052772095723707221242903683831126129410360/91082514704583227400614626639193947724774777*x^10+222519056510565126730296733018898323553505387157/91082514704583227400614626639193947724774777*x^9+566387232418471483336165153460804011139958704134/91082514704583227400614626639193947724774777*x^8-558737727482461563764703126988137394013365871174/91082514704583227400614626639193947724774777*x^7-1474326090293971557728116014568843461042624173219/182165029409166454801229253278387895449549554*x^6+764346422067868639379956201134534135188153671697/91082514704583227400614626639193947724774777*x^5+670913450183725884829464539273298124362981265049/182165029409166454801229253278387895449549554*x^4-910678590432629335328073031582406058793999841465/182165029409166454801229253278387895449549554*x^3+112521366966815091184315152973588754191557643723/182165029409166454801229253278387895449549554*x^2+33551992259779968159510983804239312720106369784/91082514704583227400614626639193947724774777*x-6063286410572076210461864819539775797060039214/91082514704583227400614626639193947724774777,-1,5337277378914183151280337118190454848345523/364330058818332909602458506556775790899099108*x^20-6514013057615927003874938763649104408356455/182165029409166454801229253278387895449549554*x^19-334863222861761947931479019557990712724934165/364330058818332909602458506556775790899099108*x^18+379173820566325346117647232921181128671367303/182165029409166454801229253278387895449549554*x^17+8573350163214935254774623122386151400743437535/364330058818332909602458506556775790899099108*x^16-4494217175275746969525682073983359803598478539/91082514704583227400614626639193947724774777*x^15-58074874937734261645983909142069429505427801853/182165029409166454801229253278387895449549554*x^14+226855361241485077814176304831913159288898485641/364330058818332909602458506556775790899099108*x^13+225082291421954971611439347054198146910540094324/91082514704583227400614626639193947724774777*x^12-1668243440041770773591053560555551252453305865425/364330058818332909602458506556775790899099108*x^11-2003991815162480253261242752633723081315957831375/182165029409166454801229253278387895449549554*x^10+3663869956492279537685775280224511335515315260169/182165029409166454801229253278387895449549554*x^9+4802479900854589605388653186455829965318882160693/182165029409166454801229253278387895449549554*x^8-4696160817975210380890709920529021351980907328909/91082514704583227400614626639193947724774777*x^7-9922844223369111432372889104976189203478885126299/364330058818332909602458506556775790899099108*x^6+6420998202739782111880658378455191852153132540553/91082514704583227400614626639193947724774777*x^5-409227520668723929757782352635344674329810488867/364330058818332909602458506556775790899099108*x^4-14845105037620690106175245598385820798909062538359/364330058818332909602458506556775790899099108*x^3+5642088073714085101755906408508713285097396491183/364330058818332909602458506556775790899099108*x^2+447780468788551066157270959707752169330602589921/182165029409166454801229253278387895449549554*x-130310066457948392808182397875900005592931849030/91082514704583227400614626639193947724774777], x^21-4*x^20-59*x^19+240*x^18+1389*x^17-5878*x^16-16622*x^15+76555*x^14+103986*x^13-577015*x^12-276364*x^11+2553842*x^10-280214*x^9-6368404*x^8+3463991*x^7+7822938*x^6-7350113*x^5-2824907*x^4+5264627*x^3-1375068*x^2-354840*x+142728];
E[851,8]=[[-2,1,0,-3,1,4,0,2,-1,-8], x-1];
E[869,1]=[[1,-1,1,1,1,1,-8,0,-4,6], x-1];
E[869,2]=[[-1,-2,2,4,1,2,0,-4,0,0], x-1];
E[869,3]=[[-2,1,1,-2,-1,2,0,2,-9,0], x-1];
E[869,4]=[[1,1,1,-5,-1,5,0,-4,0,-6], x-1];
E[869,5]=[[602894169/67252922855*x^10+2628703042/67252922855*x^9-14711147442/67252922855*x^8-67422054713/67252922855*x^7+97097736649/67252922855*x^6+507376915076/67252922855*x^5-182429202689/67252922855*x^4-1307869947582/67252922855*x^3-12413960036/13450584571*x^2+708757267844/67252922855*x+47315799721/13450584571,453738272/13450584571*x^10+1900705696/13450584571*x^9-10370625887/13450584571*x^8-44386645753/13450584571*x^7+62618860385/13450584571*x^6+280493091853/13450584571*x^5-152645362057/13450584571*x^4-602409779904/13450584571*x^3+152594208654/13450584571*x^2+267998543787/13450584571*x+42319568721/13450584571,-1536158656/67252922855*x^10-6357544353/67252922855*x^9+35516227003/67252922855*x^8+150249444722/67252922855*x^7-215132101046/67252922855*x^6-972681440114/67252922855*x^5+452640877226/67252922855*x^4+2140047608378/67252922855*x^3-41174038425/13450584571*x^2-1061279588061/67252922855*x-53981766419/13450584571,x,-1,30256666/13450584571*x^10-153055822/13450584571*x^9-1562548806/13450584571*x^8+3492938010/13450584571*x^7+21729550286/13450584571*x^6-19163803448/13450584571*x^5-84868227551/13450584571*x^4+27378056386/13450584571*x^3+74077955404/13450584571*x^2+30802035250/13450584571*x-50363396680/13450584571,-2936340681/67252922855*x^10-11134383943/67252922855*x^9+72213474968/67252922855*x^8+269282346867/67252922855*x^7-495635653456/67252922855*x^6-1833168310894/67252922855*x^5+1182045577971/67252922855*x^4+4288192425923/67252922855*x^3-102758786029/13450584571*x^2-2316160889591/67252922855*x-141145157975/13450584571,3410576252/67252922855*x^10+14593359426/67252922855*x^9-77248149081/67252922855*x^8-347528781579/67252922855*x^7+437413815402/67252922855*x^6+2296843838383/67252922855*x^5-710996404022/67252922855*x^4-5318083632081/67252922855*x^3-66693096337/13450584571*x^2+2910191616327/67252922855*x+175365852221/13450584571,7651992803/67252922855*x^10+30655327189/67252922855*x^9-180345671014/67252922855*x^8-730166771296/67252922855*x^7+1134859609558/67252922855*x^6+4831207439952/67252922855*x^5-2442386215898/67252922855*x^4-11159228274559/67252922855*x^3+173826591288/13450584571*x^2+6345389687843/67252922855*x+290186645870/13450584571,-11351916011/67252922855*x^10-46662930098/67252922855*x^9+270366667378/67252922855*x^8+1130874334927/67252922855*x^7-1758588506816/67252922855*x^6-7730940810964/67252922855*x^5+4182240607026/67252922855*x^4+18440934775268/67252922855*x^3-550685165124/13450584571*x^2-10103061699176/67252922855*x-366374202461/13450584571], x^11+3*x^10-28*x^9-72*x^8+256*x^7+484*x^6-1056*x^5-1088*x^4+1855*x^3+436*x^2-665*x-125];
E[869,6]=[[-84309143/31274496781*x^10-809986740/31274496781*x^9-263563606/31274496781*x^8+17739236607/31274496781*x^7+38059212607/31274496781*x^6-94611075338/31274496781*x^5-241342758015/31274496781*x^4+242434025722/31274496781*x^3+418709915438/31274496781*x^2-399117514148/31274496781*x-359346467/31274496781,542580640/31274496781*x^10+4266715760/31274496781*x^9-3652887633/31274496781*x^8-96854993233/31274496781*x^7-124213124905/31274496781*x^6+561752363277/31274496781*x^5+891439842229/31274496781*x^4-1405390668672/31274496781*x^3-1575420695964/31274496781*x^2+1644695545531/31274496781*x+48772908395/31274496781,-88479978/31274496781*x^10+599250031/31274496781*x^9+6339426175/31274496781*x^8-12050060650/31274496781*x^7-113047394322/31274496781*x^6+53517451974/31274496781*x^5+636373336620/31274496781*x^4-200266720076/31274496781*x^3-1204724834239/31274496781*x^2+638524339951/31274496781*x+98337741083/31274496781,x,1,763779628/31274496781*x^10+6213710058/31274496781*x^9-4362284042/31274496781*x^8-140617751330/31274496781*x^7-191731474280/31274496781*x^6+810185535420/31274496781*x^5+1344308931327/31274496781*x^4-2022353192766/31274496781*x^3-2476908837406/31274496781*x^2+2309015268354/31274496781*x+373512276598/31274496781,566886895/31274496781*x^10+3220796833/31274496781*x^9-8628089218/31274496781*x^8-72256666583/31274496781*x^7-17125242474/31274496781*x^6+401560829774/31274496781*x^5+269014447359/31274496781*x^4-895508128591/31274496781*x^3-541516610113/31274496781*x^2+846250015881/31274496781*x+121947849395/31274496781,-83875816/31274496781*x^10-538911568/31274496781*x^9+2030217153/31274496781*x^8+16677688747/31274496781*x^7-9135014446/31274496781*x^6-159568105561/31274496781*x^5-47203722528/31274496781*x^4+496120529501/31274496781*x^3+203593548261/31274496781*x^2-379131226907/31274496781*x-242575154289/31274496781,-485761147/31274496781*x^10-5671182859/31274496781*x^9-4406527410/31274496781*x^8+129706489684/31274496781*x^7+296055923492/31274496781*x^6-778261027890/31274496781*x^5-1980775029044/31274496781*x^4+2184398909109/31274496781*x^3+3928863969630/31274496781*x^2-3208036171027/31274496781*x-557138807498/31274496781,658864819/31274496781*x^10+3932845608/31274496781*x^9-9428920544/31274496781*x^8-86704227443/31274496781*x^7-26134151396/31274496781*x^6+459656660722/31274496781*x^5+235865196294/31274496781*x^4-966670176616/31274496781*x^3-163337229676/31274496781*x^2+765866118770/31274496781*x-139291687511/31274496781], x^11+7*x^10-14*x^9-174*x^8-64*x^7+1264*x^6+690*x^5-4200*x^4-573*x^3+5980*x^2-2631*x-277];
E[869,7]=[[2047527414121425708049316448/128632468107164111741566183321*x^17-250822786986052596403479719985/2058119489714625787865058933136*x^16-670229554565936088722622937875/1029059744857312893932529466568*x^15+13757959681037610131350282264063/2058119489714625787865058933136*x^14+2709401926109721111177850102571/514529872428656446966264733284*x^13-69784514396432952804109456931151/514529872428656446966264733284*x^12+24585408122088361766955070216837/257264936214328223483132366642*x^11+1290602090021970741282078361524971/1029059744857312893932529466568*x^10-451106759409903000071339805828543/257264936214328223483132366642*x^9-11142456684793871717161731574449975/2058119489714625787865058933136*x^8+18735928956672579516903363123260913/2058119489714625787865058933136*x^7+24831136764390317517251227081314497/2058119489714625787865058933136*x^6-19115085950069554804555265080805147/1029059744857312893932529466568*x^5-34845246900306754312125658465472165/2058119489714625787865058933136*x^4+3289059978724845750071587036585233/257264936214328223483132366642*x^3+3500716497825666429449908847923893/257264936214328223483132366642*x^2+328493772855799943103520186528825/128632468107164111741566183321*x+3762981833723701858778106412525/128632468107164111741566183321,-69102845596282834580602609457/4116238979429251575730117866272*x^17+132943605520640583723333741133/1029059744857312893932529466568*x^16+2811394076590977981095486681807/4116238979429251575730117866272*x^15-14576327703101843795115710913217/2058119489714625787865058933136*x^14-1374109771425190541421447828753/257264936214328223483132366642*x^13+36932141018819409726889927441847/257264936214328223483132366642*x^12-216195184914343295797475821635541/2058119489714625787865058933136*x^11-1363567318147267415237558219025773/1029059744857312893932529466568*x^10+7770711908718636512619134165935009/4116238979429251575730117866272*x^9+23463647375434839915066547173199959/4116238979429251575730117866272*x^8-40162778638398227430359229092375869/4116238979429251575730117866272*x^7-13021741129554511745205971484249457/1029059744857312893932529466568*x^6+81788635273586294386132805197964675/4116238979429251575730117866272*x^5+36631495661359511471687335558002601/2058119489714625787865058933136*x^4-14063626481009194511249106641824589/1029059744857312893932529466568*x^3-1857288187107494468810955632719414/128632468107164111741566183321*x^2-704996744813950394632436064097827/257264936214328223483132366642*x-4759563597914656490498946348660/128632468107164111741566183321,-4973786609861995538139532045/2058119489714625787865058933136*x^17+2242759820063241712032366210/128632468107164111741566183321*x^16+216325882683867085210732712075/2058119489714625787865058933136*x^15-989116243331130375659275491921/1029059744857312893932529466568*x^14-293705538306249216740257907065/257264936214328223483132366642*x^13+10125017170071490868993552411411/514529872428656446966264733284*x^12-7744134220880779422826882635321/1029059744857312893932529466568*x^11-95234254075999351545326266723651/514529872428656446966264733284*x^10+413445537610318049045084259109741/2058119489714625787865058933136*x^9+1697310194406021858101032755600519/2058119489714625787865058933136*x^8-2260108606801185700867127008032917/2058119489714625787865058933136*x^7-978399042094789051366670294353991/514529872428656446966264733284*x^6+4615692091241729396065296338522771/2058119489714625787865058933136*x^5+2680819091830174212356129773898085/1029059744857312893932529466568*x^4-747965060419593238376646202405655/514529872428656446966264733284*x^3-973159646000522848646357084974189/514529872428656446966264733284*x^2-51082400124662443842135797611316/128632468107164111741566183321*x-886345159877571938237348618278/128632468107164111741566183321,x,1,-126500618822004077872500980/128632468107164111741566183321*x^17+12237306911509163484566527469/1029059744857312893932529466568*x^16+1966601543878375679122788621/128632468107164111741566183321*x^15-651365367716201385277158519851/1029059744857312893932529466568*x^14+534986835261411325197410203335/514529872428656446966264733284*x^13+1560524021479968376219045239732/128632468107164111741566183321*x^12-4319583900890727611175434534419/128632468107164111741566183321*x^11-51234307006889508085544015378343/514529872428656446966264733284*x^10+93771356672747607580388149079651/257264936214328223483132366642*x^9+336233130436827407909507852895763/1029059744857312893932529466568*x^8-1701160310994547097126843440690279/1029059744857312893932529466568*x^7-492503591588273475273566844680483/1029059744857312893932529466568*x^6+422541123793660466834120062490404/128632468107164111741566183321*x^5+970012921816301917669965517764177/1029059744857312893932529466568*x^4-1269792871898719427606686437477291/514529872428656446966264733284*x^3-401328470636401200791061515440715/257264936214328223483132366642*x^2-33432327177525114057711914725973/128632468107164111741566183321*x-716994091713638371201281773978/128632468107164111741566183321,-26423616552137979081871160345/4116238979429251575730117866272*x^17+23423829055515982002283387957/514529872428656446966264733284*x^16+1146329178207680648486702520611/4116238979429251575730117866272*x^15-5111649334466674084857396352355/2058119489714625787865058933136*x^14-3106635484838846080799622899199/1029059744857312893932529466568*x^13+12856224863998356583165673617453/257264936214328223483132366642*x^12-39740973290444100494177884733909/2058119489714625787865058933136*x^11-468289279722079230389180951350547/1029059744857312893932529466568*x^10+2099433952449551586831130278619825/4116238979429251575730117866272*x^9+7796480431099493556301828169986619/4116238979429251575730117866272*x^8-11002932633056155852519603217829373/4116238979429251575730117866272*x^7-3971952650900363234610887582881167/1029059744857312893932529466568*x^6+20870306700784952379325678406634671/4116238979429251575730117866272*x^5+9447350909534627291203046892795071/2058119489714625787865058933136*x^4-387559379028595818822484826105834/128632468107164111741566183321*x^3-394802674451746342218737842092894/128632468107164111741566183321*x^2-146052115925333264678498491658505/257264936214328223483132366642*x-579887656336644395254809685736/128632468107164111741566183321,30614969909857531950931233895/2058119489714625787865058933136*x^17-240040730684931659947182817607/2058119489714625787865058933136*x^16-1224274192295622211970787650643/2058119489714625787865058933136*x^15+13165667449740932697585556420899/2058119489714625787865058933136*x^14+2137218178811118086999120017599/514529872428656446966264733284*x^13-66757342886360635608892332843285/514529872428656446966264733284*x^12+108365369253479647795694252781799/1029059744857312893932529466568*x^11+1233678674295046871592454288506975/1029059744857312893932529466568*x^10-3693319802327683520497665869634255/2058119489714625787865058933136*x^9-5323541080649233254072549344647775/1029059744857312893932529466568*x^8+9503608143167182429525556972638823/1029059744857312893932529466568*x^7+23885345284859191476577025154103103/2058119489714625787865058933136*x^6-39042825437639596291434871374400735/2058119489714625787865058933136*x^5-34420960264122179387426395576882501/2058119489714625787865058933136*x^4+6838618742890075666412084832153491/514529872428656446966264733284*x^3+3591984265566859674741126223795159/257264936214328223483132366642*x^2+340720473500959365593682106492364/128632468107164111741566183321*x+4453007388671577122739212483052/128632468107164111741566183321,3114154994817872841435831485/1029059744857312893932529466568*x^17-11360866971134660214766906975/514529872428656446966264733284*x^16-133818021817150299644621152561/1029059744857312893932529466568*x^15+312511231044408785078499675789/257264936214328223483132366642*x^14+691799722969532779735178483799/514529872428656446966264733284*x^13-3187259781396336555116012965492/128632468107164111741566183321*x^12+5712392417263481196211761718817/514529872428656446966264733284*x^11+29764974961577787329494412523961/128632468107164111741566183321*x^10-274084783545331374360228647360025/1029059744857312893932529466568*x^9-1045385308068936088712723548489889/1029059744857312893932529466568*x^8+1474148631401185207326225142055701/1029059744857312893932529466568*x^7+293981364047607742352351856837048/128632468107164111741566183321*x^6-2995765438486701466963903143949353/1029059744857312893932529466568*x^5-393625775921408057120183495808796/128632468107164111741566183321*x^4+998680187966351252466099958590693/514529872428656446966264733284*x^3+284513586989527100666934870126714/128632468107164111741566183321*x^2+48012183873220935217870437997626/128632468107164111741566183321*x-465792186814542099061703717808/128632468107164111741566183321,26193160025796593381920371513/1029059744857312893932529466568*x^17-406126574811938207682208144345/2058119489714625787865058933136*x^16-528423630107652030012927900021/514529872428656446966264733284*x^15+22246489653832167168199658727275/2058119489714625787865058933136*x^14+3928140974860620046640842354581/514529872428656446966264733284*x^13-112566870222123029709695582870713/514529872428656446966264733284*x^12+86716833640316777082637075047865/514529872428656446966264733284*x^11+2072071023706723034831581472129799/1029059744857312893932529466568*x^10-3031385846076281642590867862972693/1029059744857312893932529466568*x^9-17723975452874581724374577257296645/2058119489714625787865058933136*x^8+31139640289028893568408987533391947/2058119489714625787865058933136*x^7+39020770815975785077963105186217073/2058119489714625787865058933136*x^6-15810222118461822828329557158699427/514529872428656446966264733284*x^5-54780744333072334488333907787205657/2058119489714625787865058933136*x^4+5447954227675297789675892410917947/257264936214328223483132366642*x^3+2801782295890845969763981973439372/128632468107164111741566183321*x^2+1044540420195566629126628751993891/257264936214328223483132366642*x+5884879921848299607962850221572/128632468107164111741566183321], x^18-10*x^17-23*x^16+516*x^15-652*x^14-9304*x^13+25946*x^12+64888*x^11-294601*x^10-83585*x^9+1368375*x^8-574658*x^7-2942339*x^6+1653448*x^5+3292400*x^4-1009632*x^3-1835808*x^2-376512*x-4736];
E[869,8]=[[-171847479209777915290146684280318549175813557397/85324360545812676287391140043523430717722720225504*x^20+7137802781337136654384104520060577765436031162173/341297442183250705149564560174093722870890880902016*x^19+16159392137095582418224982542394878486534427688345/170648721091625352574782280087046861435445440451008*x^18-563711214998661184942090868942234696673717980694463/341297442183250705149564560174093722870890880902016*x^17+96448817333429173990996182539531452763649310909449/170648721091625352574782280087046861435445440451008*x^16+8459797037643025539088562451974423687180414907117537/170648721091625352574782280087046861435445440451008*x^15-417443548086680360783484722162836936099373972871839/3878380024809667103972324547432883214441941828432*x^14-58825667188125300608182515765328326193924769997852551/85324360545812676287391140043523430717722720225504*x^13+417487073228752375288816704097512384187741699898294413/170648721091625352574782280087046861435445440451008*x^12+1359301475989173749282587372354224960752408116415968427/341297442183250705149564560174093722870890880902016*x^11-8221485676711325511736090975367574612060525558144109353/341297442183250705149564560174093722870890880902016*x^10+359623868874862833185046428989745686276305319746026491/341297442183250705149564560174093722870890880902016*x^9+9294114370961379944171298695854867330240566265983065779/85324360545812676287391140043523430717722720225504*x^8-33737590831313162696119050720121437504746022691832333121/341297442183250705149564560174093722870890880902016*x^7-30583435161669696986994091166397318285171469464215864107/170648721091625352574782280087046861435445440451008*x^6+104825865611914299373474503059020998919486451936856027/361543900617850323251657373065777248803909831464*x^5-948454187578704396922857612409626825054100530995607529/42662180272906338143695570021761715358861360112752*x^4-1182893079675240256000365093171125984895565572216166043/10665545068226584535923892505440428839715340028188*x^3+61644704098309253166282186880393363055623322449830827/5332772534113292267961946252720214419857670014094*x^2+43637149391387159597919073932040530737922055334021427/2666386267056646133980973126360107209928835007047*x+4293073873609300413155088001496895420724333579088539/2666386267056646133980973126360107209928835007047,25817847958410095472089196038297351515612505903/85324360545812676287391140043523430717722720225504*x^20-1070555751946099247394896331603606384377179350879/341297442183250705149564560174093722870890880902016*x^19-1218727158957665415999872113560747138289613179931/85324360545812676287391140043523430717722720225504*x^18+84612796180874115340183311980967552261087032358281/341297442183250705149564560174093722870890880902016*x^17-6868106561873768920413391618312390345547474147469/85324360545812676287391140043523430717722720225504*x^16-1271515044485848098823281184126225045569706665250989/170648721091625352574782280087046861435445440451008*x^15+124434053902602129294345562833175768121780376368153/7756760049619334207944649094865766428883883656864*x^14+8866054405746396397023184583060257282016294099176837/85324360545812676287391140043523430717722720225504*x^13-62437151240291186070835887608002804911203849561496387/170648721091625352574782280087046861435445440451008*x^12-206620577513805719194714056859976432810013367245554125/341297442183250705149564560174093722870890880902016*x^11+1232601452495332049592645873603408035196945680613279697/341297442183250705149564560174093722870890880902016*x^10-31588243172149538759840407249500991369097895780430939/341297442183250705149564560174093722870890880902016*x^9-2797745335950015099275308444589399778477816807952658499/170648721091625352574782280087046861435445440451008*x^8+4976109119430013409931746767763023305854053674472526067/341297442183250705149564560174093722870890880902016*x^7+582270764365581735850874889361118815329541612339568807/21331090136453169071847785010880857679430680056376*x^6-62542284918234856716310601504900761038260876473939995/1446175602471401293006629492263108995215639325856*x^5+104395199571368694471541324548667073659392189233144717/42662180272906338143695570021761715358861360112752*x^4+364571797542174432435718673107694406179226227638961333/21331090136453169071847785010880857679430680056376*x^3-8606379535271669902258751522769194510015053575324101/5332772534113292267961946252720214419857670014094*x^2-13574987466474517938556387706803967063765084985674439/5332772534113292267961946252720214419857670014094*x-666678512351863928458157024145335275008908563387000/2666386267056646133980973126360107209928835007047,35293637982802914015473985264210365791381747365/341297442183250705149564560174093722870890880902016*x^20-181614888450140290920064066894686767455126553513/170648721091625352574782280087046861435445440451008*x^19-1693803674634210998110427518276156873670536701139/341297442183250705149564560174093722870890880902016*x^18+14398572611653565720364308589900324257537348989521/170648721091625352574782280087046861435445440451008*x^17-3605805494668664679563441726016792045036144542357/170648721091625352574782280087046861435445440451008*x^16-108769931617180161449502330661829691096474651080537/42662180272906338143695570021761715358861360112752*x^15+41059755578630455955564507858090848111512922826479/7756760049619334207944649094865766428883883656864*x^14+6134997088086711005630121079666137604843745870642883/170648721091625352574782280087046861435445440451008*x^13-41802567899830320666940968194135864951028977405267385/341297442183250705149564560174093722870890880902016*x^12-73917912785999082604161417033764000075022646141062605/341297442183250705149564560174093722870890880902016*x^11+416601093136630999706721698083399808307139219576297775/341297442183250705149564560174093722870890880902016*x^10+5222330393244875438012622417540446487971146224694381/85324360545812676287391140043523430717722720225504*x^9-1918580885986331761534659646604235937584769740896522501/341297442183250705149564560174093722870890880902016*x^8+781976157246028908251537071143670997604659373152796109/170648721091625352574782280087046861435445440451008*x^7+832621397736448793184186967332385247823975744112641243/85324360545812676287391140043523430717722720225504*x^6-10282928245793043736701758994184304678733432133078641/723087801235700646503314746131554497607819662928*x^5-6043330532214655763374270546307163363106728850795615/21331090136453169071847785010880857679430680056376*x^4+66132385506442862069149243535784144320715328311112155/10665545068226584535923892505440428839715340028188*x^3-3736545959586815168980435449732812677243964017245187/10665545068226584535923892505440428839715340028188*x^2-2520084283394738555557561024398553531286452820216684/2666386267056646133980973126360107209928835007047*x-255793245435038602808024273991800034375834105487618/2666386267056646133980973126360107209928835007047,x,-1,-1203890195688670682490892400217337816195653854245/341297442183250705149564560174093722870890880902016*x^20+6252668000605823794364108294385366603457763138439/170648721091625352574782280087046861435445440451008*x^19+56552280251983877459552501018262473361238483422623/341297442183250705149564560174093722870890880902016*x^18-493713583477059806122659738479809920752236832827623/170648721091625352574782280087046861435445440451008*x^17+170865194272578913053668610423053639016420105864459/170648721091625352574782280087046861435445440451008*x^16+3703433973047978168953224175880302377436504909174815/42662180272906338143695570021761715358861360112752*x^15-1464741486081595851615460026078803781427126240222921/7756760049619334207944649094865766428883883656864*x^14-205875039323656471832819778292692754040307352021784491/170648721091625352574782280087046861435445440451008*x^13+1463749598565754367483360191653894808985892230344600081/341297442183250705149564560174093722870890880902016*x^12+2373558532152113395008639679740889307781762397586064793/341297442183250705149564560174093722870890880902016*x^11-14404058518389755218784273185878087976584594417493775039/341297442183250705149564560174093722870890880902016*x^10+173644252028512727986832665689175997305787522754727327/85324360545812676287391140043523430717722720225504*x^9+65069257449910172601531883993002583742938907467323978161/341297442183250705149564560174093722870890880902016*x^8-29675444242364626735223383929812316754645733397347036539/170648721091625352574782280087046861435445440451008*x^7-13341450971627725268572362078007967844957161272536219025/42662180272906338143695570021761715358861360112752*x^6+183906786480383869042851001548938306224768677985979753/361543900617850323251657373065777248803909831464*x^5-887905306206934222472422841851193998379921571191780627/21331090136453169071847785010880857679430680056376*x^4-2058434268114457559485961029716391951737544452653864865/10665545068226584535923892505440428839715340028188*x^3+110415716426429294805506387641358753287618840915770165/5332772534113292267961946252720214419857670014094*x^2+75710563191717031187525868553038656277256367995402233/2666386267056646133980973126360107209928835007047*x+7412185033781780331117925475647804222812996139575106/2666386267056646133980973126360107209928835007047,-707306439107267481085841250819125714997070123517/170648721091625352574782280087046861435445440451008*x^20+114788982608570220419184233002739060748159704652/2666386267056646133980973126360107209928835007047*x^19+16617115881384026678686879406876624367629687445035/85324360545812676287391140043523430717722720225504*x^18-290059658856939223973156998537111452471276203532821/85324360545812676287391140043523430717722720225504*x^17+200105437170182803933703655850566199733848267633925/170648721091625352574782280087046861435445440451008*x^16+8704117767973098467075339903204979426152973376160949/85324360545812676287391140043523430717722720225504*x^15-1720275280799472453849926450357814933391250293408643/7756760049619334207944649094865766428883883656864*x^14-120993827836771435325001446116196249485567433513045559/85324360545812676287391140043523430717722720225504*x^13+859759664634954996261617936657327920045863800829136129/170648721091625352574782280087046861435445440451008*x^12+1395943455314047004304212630201701601523442224601263329/170648721091625352574782280087046861435445440451008*x^11-1057763428288636581425365584791267413682578914501392045/21331090136453169071847785010880857679430680056376*x^10+395383727633928969478168753188127003150710213680714087/170648721091625352574782280087046861435445440451008*x^9+19119701988916727332368267088778022685355292444396587325/85324360545812676287391140043523430717722720225504*x^8-8704743430444397102087953333853840977401733889344105245/42662180272906338143695570021761715358861360112752*x^7-62787808679328743691561906442137129830011273763918131423/170648721091625352574782280087046861435445440451008*x^6+863911120195736464994737304472080999733173513256400097/1446175602471401293006629492263108995215639325856*x^5-2041369167461358858381711365098594871484513785000140031/42662180272906338143695570021761715358861360112752*x^4-2423889118849139965296397173300298210171184578273834923/10665545068226584535923892505440428839715340028188*x^3+128752563658885930516643989949032567563651220287047115/5332772534113292267961946252720214419857670014094*x^2+178455572125566629722341178561488960174509114822252361/5332772534113292267961946252720214419857670014094*x+8751244504582825449467848251712566620578381446481230/2666386267056646133980973126360107209928835007047,-1988099260748458573589746612777508346110466903541/682594884366501410299129120348187445741781761804032*x^20+5160923578649800646068514152649164547625624451403/170648721091625352574782280087046861435445440451008*x^19+93474918581915847859615622447631610464501130042903/682594884366501410299129120348187445741781761804032*x^18-203791139061415841433160832740648997724382137936899/85324360545812676287391140043523430717722720225504*x^17+278886803093389563158599905764249425787468856251323/341297442183250705149564560174093722870890880902016*x^16+12233226014376379583848150182021903807269473323592421/170648721091625352574782280087046861435445440451008*x^15-2414551147991108983447780136165702300015303689445011/15513520099238668415889298189731532857767767313728*x^14-340245180835435782679278015535076508420773469581401231/341297442183250705149564560174093722870890880902016*x^13+2414787900916555948296932104950890789399779499190040981/682594884366501410299129120348187445741781761804032*x^12+3930615607439356226492073290049204472578684885373406603/682594884366501410299129120348187445741781761804032*x^11-23776274893005459271301551194456637196639521783895280321/682594884366501410299129120348187445741781761804032*x^10+523029716271905471295869807743798593963271822148343769/341297442183250705149564560174093722870890880902016*x^9+107505411869089434694197772013587806775965287626095800997/682594884366501410299129120348187445741781761804032*x^8-24399762853349376402263106646884335170700534789528204373/170648721091625352574782280087046861435445440451008*x^7-690757557985135580866046236779934471263001301767122826/2666386267056646133980973126360107209928835007047*x^6+303210732294797412999087032248275050726279684959811355/723087801235700646503314746131554497607819662928*x^5-1380488378371786812577356848242091765318012128240778327/42662180272906338143695570021761715358861360112752*x^4-427583966228760805826645530884348240505900241897435294/2666386267056646133980973126360107209928835007047*x^3+44845771351986639843017962996691744354833709335173583/2666386267056646133980973126360107209928835007047*x^2+63087624493217285602716438877786178785672557729726298/2666386267056646133980973126360107209928835007047*x+6175190062843404031207699547586278801589453702793104/2666386267056646133980973126360107209928835007047,-1210677420800034060138565877956718067677423771667/682594884366501410299129120348187445741781761804032*x^20+3146381830165222497325730238917957904041233670753/170648721091625352574782280087046861435445440451008*x^19+56765886659982376196840836521898172201450399147073/682594884366501410299129120348187445741781761804032*x^18-124174237288177931174017321722557691160805317957817/85324360545812676287391140043523430717722720225504*x^17+175883971880040598802358320552945466410875610187717/341297442183250705149564560174093722870890880902016*x^16+7446863540007269399492381086206237969760303738601327/170648721091625352574782280087046861435445440451008*x^15-1478294300277631004822706843808285326141497091268473/15513520099238668415889298189731532857767767313728*x^14-206713574013599052150738308520842805492388728825534521/341297442183250705149564560174093722870890880902016*x^13+1474938042280145645903132390852430682724194713721325235/682594884366501410299129120348187445741781761804032*x^12+2373512819706646021614843944020301914220030273430612381/682594884366501410299129120348187445741781761804032*x^11-14496737622571764402297278860866445197805086825335822967/682594884366501410299129120348187445741781761804032*x^10+411075958332880485218346690374710475407621954953251967/341297442183250705149564560174093722870890880902016*x^9+65359708063280817800714550877574111001717461225924795715/682594884366501410299129120348187445741781761804032*x^8-15045907902803496300480050863902668651044933414843428015/170648721091625352574782280087046861435445440451008*x^7-6659710526232635304601639087545481874599421781696071641/42662180272906338143695570021761715358861360112752*x^6+46371313477108291630420775723391109281187725245743615/180771950308925161625828686532888624401954915732*x^5-503075746060373314350226449418019300706435155018861087/21331090136453169071847785010880857679430680056376*x^4-254955712475918486263578273745152170588358636472724386/2666386267056646133980973126360107209928835007047*x^3+57582866177854130403725947679014374558315042047378503/5332772534113292267961946252720214419857670014094*x^2+37228931716937516550597948956379099667796504545102484/2666386267056646133980973126360107209928835007047*x+3623618810702398713745721007008349489605178569332316/2666386267056646133980973126360107209928835007047,1360769115734025355370956232111946596045273946967/341297442183250705149564560174093722870890880902016*x^20-14130126971772777788859484504379929944856723438543/341297442183250705149564560174093722870890880902016*x^19-63972391880540882312555707219695887653352155320895/341297442183250705149564560174093722870890880902016*x^18+1115888821094275948361933285464064716302992532064657/341297442183250705149564560174093722870890880902016*x^17-5973514649743679148599110441126016005543998578577/5332772534113292267961946252720214419857670014094*x^16-16745351197889961737392079704774828913685469313149581/170648721091625352574782280087046861435445440451008*x^15+1652977769294056454007344417413712229698364554209555/7756760049619334207944649094865766428883883656864*x^14+232846552272646407250084894697751718153946039681388723/170648721091625352574782280087046861435445440451008*x^13-1652960689785973071720084368819756516337844977144435041/341297442183250705149564560174093722870890880902016*x^12-1344534021255444771751339772034464642409333897210419601/170648721091625352574782280087046861435445440451008*x^11+8136834605593219138729157867061884564108944939890369155/170648721091625352574782280087046861435445440451008*x^10-726417284103893966016378612004458498313349232966369171/341297442183250705149564560174093722870890880902016*x^9-73569541954685878548420332085036108034923493448230960743/341297442183250705149564560174093722870890880902016*x^8+66838100592850324428959293199943579770612528498728542611/341297442183250705149564560174093722870890880902016*x^7+60474389646841622293600821957869078806694267107238353449/170648721091625352574782280087046861435445440451008*x^6-51885451413850668406827960158169649778378596423014931/90385975154462580812914343266444312200977457866*x^5+1911429598811355047069189995217725749412933975808420509/42662180272906338143695570021761715358861360112752*x^4+1168271696310333579378033030912107208003655955030495517/5332772534113292267961946252720214419857670014094*x^3-61412810534096523847425651050291270301867745506639867/2666386267056646133980973126360107209928835007047*x^2-172148982580500307240597742146550845834184573432798529/5332772534113292267961946252720214419857670014094*x-8450575763323398645745660003962718249360412275600746/2666386267056646133980973126360107209928835007047], x^21-10*x^20-51*x^19+802*x^18+34*x^17-24720*x^16+43996*x^15+362766*x^14-1083285*x^13-2442801*x^12+11200143*x^11+4060240*x^10-54269061*x^9+28349170*x^8+107743960*x^7-109829248*x^6-44052576*x^5+59249280*x^4+15322368*x^3-10312960*x^2-3903488*x-305152];
E[871,1]=[[2,2,2,2,0,-1,-5,-5,1,3], x-1];
E[871,2]=[[0,x,0,-x^2-x+4,x^2-x-6,1,-x^2-2*x+3,x^2+x-3,-3,x^2+2*x-9], x^3-6*x+2];
E[871,3]=[[x^5+2*x^4-4*x^3-6*x^2+4*x+2,x,-x^7-4*x^6+13*x^4+6*x^3-10*x^2-5*x,x^7+3*x^6-3*x^5-11*x^4+5*x^3+12*x^2-6*x-3,x^4+x^3-4*x^2-x+2,1,-x^5-2*x^4+2*x^3+3*x^2-2,2*x^6+6*x^5-5*x^4-19*x^3+6*x^2+13*x-5,-x^7-x^6+10*x^5+11*x^4-21*x^3-19*x^2+9*x+3,3*x^3+3*x^2-10*x-4], x^8+4*x^7-x^6-17*x^5-6*x^4+21*x^3+8*x^2-6*x-1];
E[871,4]=[[24714393459725/14567949211528192*x^19-2923370383767/1820993651441024*x^18-1128893826269277/14567949211528192*x^17+949733715937769/14567949211528192*x^16+2665125048537557/1820993651441024*x^15-15594822795112097/14567949211528192*x^14-26968195152071865/1820993651441024*x^13+66679492709815589/7283974605764096*x^12+1267472778284077345/14567949211528192*x^11-319871888142880009/7283974605764096*x^10-2188531206020513543/7283974605764096*x^9+217149472565975261/1820993651441024*x^8+1068719152691245555/1820993651441024*x^7-159775779634809133/910496825720512*x^6-265635529968950121/455248412860256*x^5+27116367500950301/227624206430128*x^4+13364912510833489/56906051607532*x^3-665885653594183/56906051607532*x^2-712053586950993/28453025803766*x-16241554767876/14226512901883,x,-23110848638519/7283974605764096*x^19+73603500224837/7283974605764096*x^18+985871888182311/7283974605764096*x^17-399090831961407/910496825720512*x^16-17107136950966167/7283974605764096*x^15+56807311105276419/7283974605764096*x^14+155569516933544935/7283974605764096*x^13-268176461197925895/3641987302882048*x^12-796777657360866265/7283974605764096*x^11+2907268234190685623/7283974605764096*x^10+71699779414034409/227624206430128*x^9-4571027314026078747/3641987302882048*x^8-215745682090084267/455248412860256*x^7+1992718903402151235/910496825720512*x^6+135234306102561637/455248412860256*x^5-105338219720233807/56906051607532*x^4-1097852840566261/28453025803766*x^3+29407423386275537/56906051607532*x^2+852399058366255/14226512901883*x-30755590583208/14226512901883,24470390675713/14567949211528192*x^19-1599282153383/455248412860256*x^18-1098433735091269/14567949211528192*x^17+2197202647141533/14567949211528192*x^16+5089948620343853/3641987302882048*x^15-38606926431359953/14567949211528192*x^14-25235384859461279/1820993651441024*x^13+179471283331221627/7283974605764096*x^12+1159678635568722765/14567949211528192*x^11-955047409611285317/7283974605764096*x^10-1948271142775245797/7283974605764096*x^9+736033316920285785/1820993651441024*x^8+114097931406789701/227624206430128*x^7-157985452131147473/227624206430128*x^6-26265147289969841/56906051607532*x^5+33384122619349905/56906051607532*x^4+19327136511169625/113812103215064*x^3-9105135747090243/56906051607532*x^2-1210920899182535/28453025803766*x+28018727315629/14226512901883,71689796121449/14567949211528192*x^19-19854558969995/1820993651441024*x^18-3184177025048485/14567949211528192*x^17+6820941047347277/14567949211528192*x^16+14555703306868745/3641987302882048*x^15-119878819060807713/14567949211528192*x^14-4432046729675611/113812103215064*x^13+557300257024129207/7283974605764096*x^12+3186379797711485621/14567949211528192*x^11-2963239847346155481/7283974605764096*x^10-5201750956302437505/7283974605764096*x^9+2275791413743409403/1820993651441024*x^8+293200251445448111/227624206430128*x^7-483367113257612649/227624206430128*x^6-505715659061649545/455248412860256*x^5+49761578914808907/28453025803766*x^4+18702541550202069/56906051607532*x^3-12979526809882201/28453025803766*x^2-862339434351495/14226512901883*x+91022781384004/14226512901883,-1,-3789666351819/14567949211528192*x^19-796182204039/910496825720512*x^18+178388748344487/14567949211528192*x^17+557233735531233/14567949211528192*x^16-850963527588415/3641987302882048*x^15-9848281527711397/14567949211528192*x^14+4205867709927265/1820993651441024*x^13+45071411566460415/7283974605764096*x^12-181585440659577087/14567949211528192*x^11-227761628077542593/7283974605764096*x^10+252925562900653615/7283974605764096*x^9+157163772091329695/1820993651441024*x^8-515702040300746/14226512901883*x^7-55895779301216151/455248412860256*x^6-1638567267595167/56906051607532*x^5+1239107986379440/14226512901883*x^4+9376443622178985/113812103215064*x^3-2077805512182415/56906051607532*x^2-887859105451535/28453025803766*x+26741184198795/14226512901883,-530681511845/113812103215064*x^19+30460496130311/3641987302882048*x^18+188494395888763/910496825720512*x^17-1265915779861875/3641987302882048*x^16-13779279923862889/3641987302882048*x^15+2662442462845833/455248412860256*x^14+134206707180331649/3641987302882048*x^13-46655794284952911/910496825720512*x^12-377061633978060211/1820993651441024*x^11+913885653664913019/3641987302882048*x^10+1234714294228092579/1820993651441024*x^9-1251209758131561151/1820993651441024*x^8-562173901174295495/455248412860256*x^7+28280186979426159/28453025803766*x^6+249525735615572985/227624206430128*x^5-73960342115566347/113812103215064*x^4-9911526390933193/28453025803766*x^3+1393040923791324/14226512901883*x^2+357583645959579/14226512901883*x+2300588059308/14226512901883,131997120071415/14567949211528192*x^19-154960840157087/7283974605764096*x^18-5807081169995139/14567949211528192*x^17+13276840008148697/14567949211528192*x^16+52440231976343387/7283974605764096*x^15-232577447187422135/14567949211528192*x^14-502719867771902001/7283974605764096*x^13+1076483247671279405/7283974605764096*x^12+5524671658044683791/14567949211528192*x^11-2845360046460039651/3641987302882048*x^10-8743111736816157805/7283974605764096*x^9+8674487589072776427/3641987302882048*x^8+938094054448495233/455248412860256*x^7-3645773512791783219/910496825720512*x^6-182404973911336517/113812103215064*x^5+737525546611439573/227624206430128*x^4+36761899854106841/113812103215064*x^3-11531224293814287/14226512901883*x^2-1827394829054227/28453025803766*x+146223049604603/14226512901883,-99881292907307/14567949211528192*x^19+66734058373797/3641987302882048*x^18+4325570695372959/14567949211528192*x^17-11440242465987747/14567949211528192*x^16-2394826354365093/455248412860256*x^15+200478603138534899/14567949211528192*x^14+179499377506580269/3641987302882048*x^13-928306475336013949/7283974605764096*x^12-3846462716620135063/14567949211528192*x^11+4911074715409827313/7283974605764096*x^10+5954256312971496119/7283974605764096*x^9-1874634591460474183/910496825720512*x^8-1277343064859532761/910496825720512*x^7+1582483625829625097/455248412860256*x^6+272053631237624925/227624206430128*x^5-650182871903553183/227624206430128*x^4-24864354864786137/56906051607532*x^3+11212111089290941/14226512901883*x^2+2085516025109922/14226512901883*x-104116164316257/14226512901883], x^20-49*x^18-3*x^17+1008*x^16+115*x^15-11336*x^14-1758*x^13+76077*x^12+13646*x^11-312262*x^10-56448*x^9+772280*x^8+118560*x^7-1088640*x^6-107392*x^5+772224*x^4+36608*x^3-193024*x^2-21504*x+2048];
E[871,5]=[[-6540651332421405221/38233036571187771392*x^22+14568422014183432055/19116518285593885696*x^21+320311590105163822351/38233036571187771392*x^20-1564944807581898016779/38233036571187771392*x^19-1558474124496811479147/9558259142796942848*x^18+35098055613654031960621/38233036571187771392*x^17+29660777730702769449771/19116518285593885696*x^16-106524940554514213118395/9558259142796942848*x^15-250487589391309170847407/38233036571187771392*x^14+379791195983848145674673/4779129571398471424*x^13-8362019737411256978463/4779129571398471424*x^12-3238749266300093515102117/9558259142796942848*x^11+2338906531471617376687901/19116518285593885696*x^10+8118041924358321044661215/9558259142796942848*x^9-2047148143342500305721807/4779129571398471424*x^8-2897806152958834669488891/2389564785699235712*x^7+669874897730917250439839/1194782392849617856*x^6+582683788639428233173161/597391196424808928*x^5-37059766998349185798239/149347799106202232*x^4-62985939534638456841595/149347799106202232*x^3+2657154603767897012/18668474888275279*x^2+1393490967340544149019/18668474888275279*x+287277696266040779045/18668474888275279,x,-1194387248558370147/19116518285593885696*x^22+2651239184228430163/9558259142796942848*x^21+58605139196858583967/19116518285593885696*x^20-284994115790576503985/19116518285593885696*x^19-572169597282472657785/9558259142796942848*x^18+6397799863436297470745/19116518285593885696*x^17+5481685223632898547821/9558259142796942848*x^16-38887528114467447904457/9558259142796942848*x^15-47274039059968676628313/19116518285593885696*x^14+138918514356722148961195/4779129571398471424*x^13-921926998478581948079/9558259142796942848*x^12-297060537423847942884817/2389564785699235712*x^11+406776316596171268464367/9558259142796942848*x^10+1496275742980133177033261/4779129571398471424*x^9-725594510202581026755145/4779129571398471424*x^8-537916700346125937634939/1194782392849617856*x^7+238514900104134524000147/1194782392849617856*x^6+218019375695277392263279/597391196424808928*x^5-13087463014917627314501/149347799106202232*x^4-11825983009555831376031/74673899553101116*x^3-84780236293734374757/74673899553101116*x^2+523286572353946592961/18668474888275279*x+109367953113042370602/18668474888275279,-4426188949357259443/38233036571187771392*x^22+9864625869410646113/19116518285593885696*x^21+216720207748419970281/38233036571187771392*x^20-1059607824086826559797/38233036571187771392*x^19-1054112507947598354077/9558259142796942848*x^18+23762909789177227845123/38233036571187771392*x^17+20048735327430530171433/19116518285593885696*x^16-72115195340398990285641/9558259142796942848*x^15-168973557305374514758881/38233036571187771392*x^14+257075909874500252047041/4779129571398471424*x^13-6097155019080669384155/4779129571398471424*x^12-2191828881603980875515269/9558259142796942848*x^11+1589202147173883318800651/19116518285593885696*x^10+5492268449599998573734409/9558259142796942848*x^9-1388301909676076533061329/4779129571398471424*x^8-979874096818665159831607/1194782392849617856*x^7+113447315614306540679657/298695598212404464*x^6+196977248919379944116051/298695598212404464*x^5-50118913774283707387121/298695598212404464*x^4-21297556877250475713409/74673899553101116*x^3-1011670875844559653/18668474888275279*x^2+942858060371305279191/18668474888275279*x+194903342793755682980/18668474888275279,483048695739837711/19116518285593885696*x^22-2152377115159524733/19116518285593885696*x^21-23686738330271929249/19116518285593885696*x^20+57844300904748219215/9558259142796942848*x^19+462010363333416395593/19116518285593885696*x^18-2597234263097809290741/19116518285593885696*x^17-4416456988666969801919/19116518285593885696*x^16+7894136178618909204653/4779129571398471424*x^15+18914163128199658126557/19116518285593885696*x^14-225642663143714957628921/19116518285593885696*x^13+1063211118077940434743/9558259142796942848*x^12+241334022895484049938553/4779129571398471424*x^11-167174260672019362985189/9558259142796942848*x^10-1216376320316945263874035/9558259142796942848*x^9+148089033191746887737207/2389564785699235712*x^8+218939506529954566827945/1194782392849617856*x^7-24264668520427460385587/298695598212404464*x^6-88959105716653509810067/597391196424808928*x^5+5298019747004767446245/149347799106202232*x^4+4841809829664249484135/74673899553101116*x^3+22022153988182316603/37336949776550558*x^2-214889518810237951967/18668474888275279*x-45147391272095348848/18668474888275279,1,-23269025868738553149/38233036571187771392*x^22+51766145787456254155/19116518285593885696*x^21+1140248810658234029463/38233036571187771392*x^20-5561888684988339051523/38233036571187771392*x^19-5553799028394043626313/9558259142796942848*x^18+124775517561418778087181/38233036571187771392*x^17+105933207288259715525339/19116518285593885696*x^16-378854286531747434409939/9558259142796942848*x^15-900856072116214320808079/38233036571187771392*x^14+168940555575251963653833/597391196424808928*x^13-21450853467251419196301/4779129571398471424*x^12-11535984457350608623768283/9558259142796942848*x^11+8188856186360095291232613/19116518285593885696*x^10+28957566150181751576677563/9558259142796942848*x^9-7209396152118056315440691/4779129571398471424*x^8-5179871733610087258325819/1194782392849617856*x^7+1180838442781246445591177/597391196424808928*x^6+1044256493256666509490089/298695598212404464*x^5-260348104201479664058491/298695598212404464*x^4-113053749094977266340899/74673899553101116*x^3-73179540372066761255/18668474888275279*x^2+5004764959603511402437/18668474888275279*x+1038237534728627090714/18668474888275279,-684116104746130165/4779129571398471424*x^22+754982846497096441/1194782392849617856*x^21+16817716527091446407/2389564785699235712*x^20-162386825178110528901/4779129571398471424*x^19-659067918357325495071/4779129571398471424*x^18+911911694086633894643/1194782392849617856*x^17+3179948917072207206921/2389564785699235712*x^16-44381223110848004987171/4779129571398471424*x^15-28038430253229872002851/4779129571398471424*x^14+158746034486214727639357/2389564785699235712*x^13+5638108204084237308593/4779129571398471424*x^12-680247304234611611103903/2389564785699235712*x^11+219266016345618558306921/2389564785699235712*x^10+859235921819883775094665/1194782392849617856*x^9-799118323239017279427079/2389564785699235712*x^8-620685487824117193867163/597391196424808928*x^7+8224038504819574284388/18668474888275279*x^6+252923244978647198953573/298695598212404464*x^5-28351378504090416741663/149347799106202232*x^4-13765198369374083447159/37336949776550558*x^3-118290520895794688384/18668474888275279*x^2+1219317419430281597333/18668474888275279*x+260923875853374366256/18668474888275279,-6202115118298510885/38233036571187771392*x^22+13750483563044098335/19116518285593885696*x^21+304314723397181544771/38233036571187771392*x^20-1477875684945104436851/38233036571187771392*x^19-742761837705544831757/4779129571398471424*x^18+33169594687503161440473/38233036571187771392*x^17+28465329324265469782339/19116518285593885696*x^16-25194062851695868023743/2389564785699235712*x^15-245555135757658168526951/38233036571187771392*x^14+359843591103551682648323/4779129571398471424*x^13-2113498538993826741567/9558259142796942848*x^12-3075824798777326292545549/9558259142796942848*x^11+2108211351357007214952997/19116518285593885696*x^10+7738122050509407868050771/9558259142796942848*x^9-470012667874521634898023/1194782392849617856*x^8-1388780067988618356512343/1194782392849617856*x^7+617500997475655064202269/1194782392849617856*x^6+280999946231198393574905/298695598212404464*x^5-16917069528154657474099/74673899553101116*x^4-15239059841459974939107/37336949776550558*x^3-221427569844208667487/74673899553101116*x^2+1349667231665371035790/18668474888275279*x+282669527208483073852/18668474888275279,17612505142249608073/38233036571187771392*x^22-39220195202834535185/19116518285593885696*x^21-862616009539023999931/38233036571187771392*x^20+4213216571199599912899/38233036571187771392*x^19+65590263048582725751/149347799106202232*x^18-94497762541444792380257/38233036571187771392*x^17-79919414107554712068853/19116518285593885696*x^16+286828951209832939461891/9558259142796942848*x^15+675634052260622786250595/38233036571187771392*x^14-2045478430245637280290995/9558259142796942848*x^13+5403173981105502092407/1194782392849617856*x^12+8723088573087349614913363/9558259142796942848*x^11-6285312665839399650419465/19116518285593885696*x^10-21870373507680153422789701/9558259142796942848*x^9+5506948772564072474521619/4779129571398471424*x^8+976212312450852501340665/298695598212404464*x^7-901547443876852024600217/597391196424808928*x^6-785455842190087650460611/298695598212404464*x^5+24959759512039676181135/37336949776550558*x^4+169818977897949256465879/149347799106202232*x^3-40812784511566954085/74673899553101116*x^2-7513227102623473591583/37336949776550558*x-773554975268808960188/18668474888275279], x^23-4*x^22-51*x^21+217*x^20+1062*x^19-4933*x^18-11512*x^17+61028*x^16+67947*x^15-447186*x^14-201188*x^13+1985836*x^12+186230*x^11-5291936*x^10+244520*x^9+8232128*x^8-51264*x^7-7197696*x^6-1144704*x^5+3128064*x^4+1121792*x^3-437248*x^2-288768*x-40960];
E[871,6]=[[-29/31*x^11+76/31*x^10+317/31*x^9-821/31*x^8-1100/31*x^7+2845/31*x^6+1309/31*x^5-3566/31*x^4-477/31*x^3+1400/31*x^2+4/31*x-28/31,x,-x^11+2*x^10+12*x^9-21*x^8-48*x^7+70*x^6+72*x^5-84*x^4-35*x^3+30*x^2,60/31*x^11-107/31*x^10-751/31*x^9+1100/31*x^8+3239/31*x^7-3527/31*x^6-5711/31*x^5+3938/31*x^4+4166/31*x^3-1245/31*x^2-965/31*x-34/31,177/31*x^11-249/31*x^10-2403/31*x^9+2532/31*x^8+11615/31*x^7-8013/31*x^6-24165/31*x^5+8855/31*x^4+21754/31*x^3-2363/31*x^2-6559/31*x-370/31,-1,3/31*x^11-72/31*x^10+119/31*x^9+830/31*x^8-1526/31*x^7-3188/31*x^6+5544/31*x^5+4726/31*x^4-7024/31*x^3-2581/31*x^2+2610/31*x+237/31,-119/31*x^11+97/31*x^10+1769/31*x^9-890/31*x^8-9415/31*x^7+2323/31*x^6+21547/31*x^5-1723/31*x^4-20800/31*x^3-499/31*x^2+6551/31*x+519/31,-197/31*x^11+295/31*x^10+2612/31*x^9-3002/31*x^8-12209/31*x^7+9509/31*x^6+24219/31*x^5-10550/31*x^4-20704/31*x^3+3088/31*x^2+6054/31*x+185/31,-166/31*x^11+202/31*x^10+2302/31*x^9-1979/31*x^8-11372/31*x^7+5851/31*x^6+24157/31*x^5-5714/31*x^4-22192/31*x^3+1011/31*x^2+6860/31*x+309/31], x^12-2*x^11-13*x^10+23*x^9+60*x^8-91*x^7-120*x^6+154*x^5+107*x^4-114*x^3-36*x^2+30*x+2];
E[893,1]=[[x,647/6265*x^17-1123/5012*x^16-79161/25060*x^15+139029/25060*x^14+250571/6265*x^13-1353473/25060*x^12-6792347/25060*x^11+1643122/6265*x^10+1328539/1253*x^9-16607951/25060*x^8-8584993/3580*x^7+10092147/12530*x^6+73715119/25060*x^5-1909672/6265*x^4-40208151/25060*x^3-350413/3580*x^2+3890843/25060*x-66709/5012,2073/12530*x^17+744/6265*x^16-27423/6265*x^15-36877/12530*x^14+589003/12530*x^13+181773/6265*x^12-665011/2506*x^11-917187/6265*x^10+10698493/12530*x^9+2551422/6265*x^8-2834921/1790*x^7-7933067/12530*x^6+20060543/12530*x^5+6557961/12530*x^4-4569102/6265*x^3-164693/895*x^2+404856/6265*x-13747/12530,-2613/6265*x^17+1994/6265*x^16+70366/6265*x^15-48277/6265*x^14-770627/6265*x^13+91050/1253*x^12+4439468/6265*x^11-2115919/6265*x^10-14545911/6265*x^9+5066121/6265*x^8+3898084/895*x^7-5866192/6265*x^6-27668737/6265*x^5+485321/1253*x^4+12654477/6265*x^3+19314/895*x^2-1255991/6265*x+133614/6265,919/5012*x^17+9469/25060*x^16-23025/5012*x^15-59212/6265*x^14+1140117/25060*x^13+2345227/25060*x^12-1419776/6265*x^11-2931884/6265*x^10+14932039/25060*x^9+6256071/5012*x^8-1398377/1790*x^7-42921283/25060*x^6+2428273/6265*x^5+25344387/25060*x^4+374051/25060*x^3-383269/3580*x^2+434997/25060*x-8499/6265,124/1253*x^17+3931/12530*x^16-7731/2506*x^15-50131/6265*x^14+492753/12530*x^13+1019383/12530*x^12-1651513/6265*x^11-5294509/12530*x^10+6238943/6265*x^9+1496996/1253*x^8-3784361/1790*x^7-11314346/6265*x^6+14799529/6265*x^5+8176254/6265*x^4-14323951/12530*x^3-562191/1790*x^2+665214/6265*x-26897/6265,291/2506*x^17-3264/6265*x^16-9895/2506*x^15+78628/6265*x^14+679971/12530*x^13-1476119/12530*x^12-2436361/6265*x^11+3415396/6265*x^10+9789181/6265*x^9-1624018/1253*x^8-6299937/1790*x^7+9276023/6265*x^6+52477321/12530*x^5-7241889/12530*x^4-13715416/6265*x^3-140297/1790*x^2+2845331/12530*x-232933/12530,-1,15847/25060*x^17-27983/25060*x^16-453459/25060*x^15+344201/12530*x^14+5345037/25060*x^13-6641111/25060*x^12-3361699/2506*x^11+7964116/6265*x^10+121975657/25060*x^9-79346209/25060*x^8-18315027/1790*x^7+95589167/25060*x^6+73384068/6265*x^5-38790021/25060*x^4-150607641/25060*x^3-995219/3580*x^2+14394463/25060*x-314407/6265,-7313/12530*x^17-5521/25060*x^16+348477/25060*x^15+141319/25060*x^14-799559/6265*x^13-1447127/25060*x^12+2813151/5012*x^11+3779679/12530*x^10-14580753/12530*x^9-21111483/25060*x^8+2685667/3580*x^7+7512321/6265*x^6+20539809/25060*x^5-8655471/12530*x^4-27843577/25060*x^3+69797/3580*x^2+3506031/25060*x-342051/25060], x^18-x^17-28*x^16+25*x^15+322*x^14-247*x^13-1971*x^12+1231*x^11+6953*x^10-3283*x^9-14235*x^8+4562*x^7+15962*x^6-2882*x^5-8159*x^4+606*x^3+890*x^2-179*x+9];
E[893,2]=[[x,96752320600101/120693165162312536*x^22+95127284487745/60346582581156268*x^21-1675786951325917/60346582581156268*x^20-7590237787685371/120693165162312536*x^19+49097918657195823/120693165162312536*x^18+128736218144420787/120693165162312536*x^17-395160035689362835/120693165162312536*x^16-604685378723788295/60346582581156268*x^15+944426200121034509/60346582581156268*x^14+6878180478217927257/120693165162312536*x^13-5314804866376915369/120693165162312536*x^12-12177847760403053777/60346582581156268*x^11+7594951677467661459/120693165162312536*x^10+6668575492798822807/15086645645289067*x^9-110245336660792130/15086645645289067*x^8-69720598667910738145/120693165162312536*x^7-12683595926704708675/120693165162312536*x^6+25094732967769371303/60346582581156268*x^5+15207319390146492023/120693165162312536*x^4-2078397229572896178/15086645645289067*x^3-2881664211212056523/60346582581156268*x^2+183244112744587679/15086645645289067*x+609578655547251863/120693165162312536,77675032981011/60346582581156268*x^22+286830763419769/15086645645289067*x^21-2945264023557493/30173291290578134*x^20-36074785179137495/60346582581156268*x^19+140951537839143579/60346582581156268*x^18+471330892394015929/60346582581156268*x^17-1658047429687503265/60346582581156268*x^16-831815561245062694/15086645645289067*x^15+5548143129307264477/30173291290578134*x^14+13852087477787289025/60346582581156268*x^13-44641900369932760189/60346582581156268*x^12-17513796884570906701/30173291290578134*x^11+109067689573446200659/60346582581156268*x^10+26907937403183700297/30173291290578134*x^9-79057852757072208157/30173291290578134*x^8-48869844216146302881/60346582581156268*x^7+127465873553206116791/60346582581156268*x^6+12170250434583489991/30173291290578134*x^5-49627341432088180431/60346582581156268*x^4-2769800597326146675/30173291290578134*x^3+3294623085315915467/30173291290578134*x^2+191551246836770925/30173291290578134*x-5069622043615911/60346582581156268,271149882805863/60346582581156268*x^22-812435142212447/30173291290578134*x^21-1586134710944376/15086645645289067*x^20+52151556987702507/60346582581156268*x^19+40615330781104527/60346582581156268*x^18-697658669858448157/60346582581156268*x^17+175250843149309867/60346582581156268*x^16+2526365138610564705/30173291290578134*x^15-963038844753807085/15086645645289067*x^14-21540336649691136977/60346582581156268*x^13+23199814238045736807/60346582581156268*x^12+13764330539035827972/15086645645289067*x^11-72552238424644319687/60346582581156268*x^10-41039821114064357815/30173291290578134*x^9+64597860263855144605/30173291290578134*x^8+64744135424729845459/60346582581156268*x^7-130057049670905154243/60346582581156268*x^6-9594725831183022295/30173291290578134*x^5+67934620891885255509/60346582581156268*x^4-815533819179485179/15086645645289067*x^3-3600812123878467646/15086645645289067*x^2+466960089104111387/15086645645289067*x+578162819201372807/60346582581156268,1348360536062687/120693165162312536*x^22-643211863275103/30173291290578134*x^21-11869460395969697/30173291290578134*x^20+87342180927286657/120693165162312536*x^19+713611499424850901/120693165162312536*x^18-1255408657672682265/120693165162312536*x^17-5997232983586328285/120693165162312536*x^16+1248334448221591876/15086645645289067*x^15+7758336722555493319/30173291290578134*x^14-48277714569570345695/120693165162312536*x^13-102768457837125396023/120693165162312536*x^12+36711386598559400945/30173291290578134*x^11+219627708019712155907/120693165162312536*x^10-70516439285707902195/30173291290578134*x^9-37295112397032664123/15086645645289067*x^8+335274804014383647761/120693165162312536*x^7+246969265493162141289/120693165162312536*x^6-117619549552449759585/60346582581156268*x^5-114547302185688636739/120693165162312536*x^4+44244466355213898525/60346582581156268*x^3+3181191411026966916/15086645645289067*x^2-6793899101417606707/60346582581156268*x-1888917425217646977/120693165162312536,1509119109662953/120693165162312536*x^22-2609454346801877/60346582581156268*x^21-12249948775672951/30173291290578134*x^20+177574446054652585/120693165162312536*x^19+670483552566340633/120693165162312536*x^18-2565069759669950863/120693165162312536*x^17-5071165669384774387/120693165162312536*x^16+10293981855538628489/60346582581156268*x^15+5871919346347622909/30173291290578134*x^14-100985019814924961335/120693165162312536*x^13-70319588517387192771/120693165162312536*x^12+78485144933369087545/30173291290578134*x^11+141302212613852136635/120693165162312536*x^10-310458382236365230977/60346582581156268*x^9-97535542867090441953/60346582581156268*x^8+761709658243243857049/120693165162312536*x^7+182955049112124958171/120693165162312536*x^6-271891399886069447899/60346582581156268*x^5-107684942240318286493/120693165162312536*x^4+49395236415843662343/30173291290578134*x^3+8230820994078664183/30173291290578134*x^2-6582562422813801243/30173291290578134*x-3514934108943554279/120693165162312536,-2696774953133227/120693165162312536*x^22+1637012187756051/60346582581156268*x^21+12079425644038213/15086645645289067*x^20-111821446082405999/120693165162312536*x^19-1488962361646141963/120693165162312536*x^18+1628685128462105889/120693165162312536*x^17+12948837369967270213/120693165162312536*x^16-6638088391405451285/60346582581156268*x^15-17534580423963803799/30173291290578134*x^14+66844371937927023181/120693165162312536*x^13+246253212474821714661/120693165162312536*x^12-54103838875206605581/30173291290578134*x^11-564643110124817706025/120693165162312536*x^10+226801162028223840157/60346582581156268*x^9+414467241104477271871/60346582581156268*x^8-600029152770424734495/120693165162312536*x^7-738890434981854748977/120693165162312536*x^6+233574381374130875605/60346582581156268*x^5+358531653140538221655/120693165162312536*x^4-46030482419631838813/30173291290578134*x^3-9350898137000112583/15086645645289067*x^2+3187273283774828538/15086645645289067*x+3952775394384677877/120693165162312536,1,-89710921281949/120693165162312536*x^22+1384753682374747/30173291290578134*x^21-896288121818874/15086645645289067*x^20-179391945190852639/120693165162312536*x^19+278847636639054133/120693165162312536*x^18+2434059713555875215/120693165162312536*x^17-3885112067700447173/120693165162312536*x^16-2254077434649387738/15086645645289067*x^15+7074448574357857881/30173291290578134*x^14+79800360391558351321/120693165162312536*x^13-119628880085506788995/120693165162312536*x^12-27173350552905905301/15086645645289067*x^11+302268327291604639143/120693165162312536*x^10+45387812461580213428/15086645645289067*x^9-56524011054347557961/15086645645289067*x^8-357787874795467707131/120693165162312536*x^7+383156834116462301585/120693165162312536*x^6+94727474445392718763/60346582581156268*x^5-167766405829763133391/120693165162312536*x^4-21719855861370287483/60346582581156268*x^3+7790861085487220803/30173291290578134*x^2+1146798725603341619/60346582581156268*x-791479564615083465/120693165162312536,-857426092503661/120693165162312536*x^22+2266601816991475/60346582581156268*x^21+12356246259099977/60346582581156268*x^20-151422030742552405/120693165162312536*x^19-277011335593651011/120693165162312536*x^18+2134224845443670989/120693165162312536*x^17+1426320035284740947/120693165162312536*x^16-8281566684493580351/60346582581156268*x^15-1080722588167627913/60346582581156268*x^14+77474023541341960915/120693165162312536*x^13-11616017769176464347/120693165162312536*x^12-112369456558150973109/60346582581156268*x^11+66133298218992631093/120693165162312536*x^10+50037655460352270163/15086645645289067*x^9-17772078823188503158/15086645645289067*x^8-415322110019689669995/120693165162312536*x^7+149739205822343172007/120693165162312536*x^6+110106464458430164229/60346582581156268*x^5-72337503545721682671/120693165162312536*x^4-5185371796005662388/15086645645289067*x^3+5521048991725754715/60346582581156268*x^2-57847126256046158/15086645645289067*x+425547945366836421/120693165162312536], x^23-x^22-38*x^21+37*x^20+622*x^19-586*x^18-5746*x^17+5195*x^16+32986*x^15-28295*x^14-122210*x^13+97857*x^12+294219*x^11-214815*x^10-452516*x^9+290939*x^8+425340*x^7-227487*x^6-224027*x^5+88871*x^4+55896*x^3-11568*x^2-4727*x-315];
E[893,3]=[[x,5/3*x^15+7*x^14-20*x^13-331/3*x^12+166/3*x^11+1891/3*x^10+107*x^9-5006/3*x^8-663*x^7+2184*x^6+2735/3*x^5-4250/3*x^4-457*x^3+1217/3*x^2+74*x-115/3,-8/3*x^15-9*x^14+41*x^13+451/3*x^12-685/3*x^11-2815/3*x^10+607*x^9+8474/3*x^8-903*x^7-4396*x^6+2653/3*x^5+10475/3*x^4-532*x^3-3791/3*x^2+112*x+493/3,4*x^15+37/3*x^14-197/3*x^13-211*x^12+1217/3*x^11+1361*x^10-1248*x^9-12806/3*x^8+2149*x^7+20852/3*x^6-6509/3*x^5-5761*x^4+3548/3*x^3+6535/3*x^2-229*x-295,16/3*x^15+56/3*x^14-235/3*x^13-919/3*x^12+1201/3*x^11+5591/3*x^10-2719/3*x^9-16262/3*x^8+1055*x^7+24287/3*x^6-923*x^5-18521/3*x^4+1943/3*x^3+2154*x^2-472/3*x-814/3,-1/3*x^15-x^14+5*x^13+50/3*x^12-77/3*x^11-314/3*x^10+52*x^9+973/3*x^8-24*x^7-545*x^6-124/3*x^5+1519/3*x^4+42*x^3-712/3*x^2-8*x+113/3,-9*x^15-95/3*x^14+395/3*x^13+520*x^12-1997/3*x^11-9499/3*x^10+4372/3*x^9+27658/3*x^8-4577/3*x^7-41348/3*x^6+1111*x^5+31556/3*x^4-2243/3*x^3-3677*x^2+560/3*x+1376/3,-1,13*x^15+136/3*x^14-578/3*x^13-2243/3*x^12+999*x^11+4579*x^10-6910/3*x^9-40259/3*x^8+2659*x^7+20165*x^6-6179/3*x^5-46159/3*x^4+1260*x^3+16027/3*x^2-859/3*x-1988/3,-37/3*x^15-136/3*x^14+518/3*x^13+736*x^12-790*x^11-13208/3*x^10+3908/3*x^9+12480*x^8-284*x^7-53854/3*x^6-2162/3*x^5+13019*x^4+689/3*x^3-12773/3*x^2+41/3*x+488], x^16+4*x^15-13*x^14-65*x^13+47*x^12+390*x^11+4*x^10-1115*x^9-320*x^8+1639*x^7+618*x^6-1250*x^5-487*x^4+456*x^3+179*x^2-62*x-25];
E[893,4]=[[x,x^11-x^10-14*x^9+12*x^8+71*x^7-43*x^6-165*x^5+42*x^4+175*x^3+20*x^2-59*x-19,-x^11+x^10+13*x^9-13*x^8-59*x^7+53*x^6+116*x^5-76*x^4-99*x^3+24*x^2+28*x+3,x^11+x^10-12*x^9-11*x^8+49*x^7+43*x^6-78*x^5-66*x^4+39*x^3+26*x^2-5*x-1,-x^10-x^9+12*x^8+12*x^7-47*x^6-52*x^5+62*x^4+90*x^3-3*x^2-43*x-14,-3*x^11+41*x^9-x^8-203*x^7-4*x^6+451*x^5+52*x^4-441*x^3-104*x^2+142*x+47,-x^11+x^10+17*x^9-12*x^8-108*x^7+43*x^6+316*x^5-31*x^4-404*x^3-67*x^2+150*x+48,1,3*x^11-x^10-41*x^9+14*x^8+202*x^7-55*x^6-445*x^5+59*x^4+430*x^3+26*x^2-135*x-34,-x^11-3*x^10+9*x^9+35*x^8-15*x^7-141*x^6-56*x^5+216*x^4+164*x^3-77*x^2-72*x-11], x^12+x^11-15*x^10-14*x^9+84*x^8+76*x^7-213*x^6-196*x^5+225*x^4+229*x^3-49*x^2-83*x-17];
E[899,1]=[[2,1,2,5,-3,2,-3,-2,4,1], x-1];
E[899,2]=[[1,-2,1,2,0,2,-3,-5,-1,-1], x-1];
E[899,3]=[[x,-x^10-3*x^9+8*x^8+27*x^7-18*x^6-77*x^5+9*x^4+78*x^3+7*x^2-17*x-1,-2*x^10-7*x^9+14*x^8+64*x^7-18*x^6-188*x^5-32*x^4+202*x^3+60*x^2-52*x-12,x^10+3*x^9-8*x^8-28*x^7+16*x^6+84*x^5+4*x^4-90*x^3-26*x^2+21*x+4,-x^6-x^5+8*x^4+6*x^3-16*x^2-7*x+4,x^10+4*x^9-5*x^8-33*x^7-4*x^6+82*x^5+33*x^4-70*x^3-26*x^2+12*x+1,x^10+4*x^9-7*x^8-39*x^7+8*x^6+125*x^5+22*x^4-148*x^3-36*x^2+42*x+4,2*x^10+6*x^9-16*x^8-54*x^7+36*x^6+155*x^5-18*x^4-163*x^3-15*x^2+44*x+4,2*x^10+6*x^9-16*x^8-54*x^7+37*x^6+155*x^5-26*x^4-163*x^3+43*x+1,-1], x^11+4*x^10-5*x^9-35*x^8-9*x^7+95*x^6+68*x^5-87*x^4-86*x^3+9*x^2+21*x+3];
E[899,4]=[[x,701873/68866368*x^22-401849/34433184*x^21-26948597/68866368*x^20+2491363/5738864*x^19+446034749/68866368*x^18-240159451/34433184*x^17-1040799617/17216592*x^16+2180196259/34433184*x^15+24066763841/68866368*x^14-8188958137/22955456*x^13-11134840615/8608296*x^12+88848804683/68866368*x^11+26345060675/8608296*x^10-68775714583/22955456*x^9-102799455745/22955456*x^8+99797128325/22955456*x^7+258317039413/68866368*x^6-63848324455/17216592*x^5-4317554809/2869432*x^4+7065283027/4304148*x^3+599044619/4304148*x^2-592614677/2152074*x+12822916/358679,-2417393/8608296*x^22+29020025/68866368*x^21+729158221/68866368*x^20-171158865/11477728*x^19-5937082595/34433184*x^18+15572743207/68866368*x^17+109318866295/68866368*x^16-132343180435/68866368*x^15-625226035627/68866368*x^14+28847282261/2869432*x^13+2297502034045/68866368*x^12-2307287657161/68866368*x^11-1354336986749/17216592*x^10+204462080107/2869432*x^9+2644482137449/22955456*x^8-1083784911453/11477728*x^7-6690462688679/68866368*x^6+317990390057/4304148*x^5+114464990575/2869432*x^4-65778279889/2152074*x^3-19055396551/4304148*x^2+5412456302/1076037*x-229720990/358679,2008301/22955456*x^22-3422415/22955456*x^21-37368571/11477728*x^20+60161511/11477728*x^19+1201081675/22955456*x^18-1812142585/22955456*x^17-10913840035/22955456*x^16+15295125985/22955456*x^15+15409233927/5738864*x^14-79504786131/22955456*x^13-223841746525/22955456*x^12+16473274169/1434716*x^11+8158944608/358679*x^10-558717905205/22955456*x^9-378615007207/11477728*x^8+739890286597/22955456*x^7+158015930079/5738864*x^6-144961758057/5738864*x^5-63734495499/5738864*x^4+15012818985/1434716*x^3+395402050/358679*x^2-613518626/358679*x+80918740/358679,-24796723/68866368*x^22+36918143/68866368*x^21+234446083/17216592*x^20-219316999/11477728*x^19-15313997161/68866368*x^18+20118483553/68866368*x^17+141321466939/68866368*x^16-172570988509/68866368*x^15-404860612913/34433184*x^14+304107803803/22955456*x^13+2978689221361/68866368*x^12-1538298714041/34433184*x^11-1756177698443/17216592*x^10+2209898503353/22955456*x^9+856381437411/5738864*x^8-2970034816585/22955456*x^7-4319912595079/34433184*x^6+110448568619/1076037*x^5+292965352349/5738864*x^4-369470843089/8608296*x^3-11456003387/2152074*x^2+15229132879/2152074*x-335271520/358679,923521/1434716*x^22-5668855/5738864*x^21-17424745/717358*x^20+201357737/5738864*x^19+567990701/1434716*x^18-3066354899/5738864*x^17-5233332907/1434716*x^16+13092553979/2869432*x^15+14975941625/717358*x^14-137740868313/5738864*x^13-440488817771/5738864*x^12+230969671315/2869432*x^11+1038917683069/5738864*x^10-247373214021/1434716*x^9-1521136133917/5738864*x^8+1321598188867/5738864*x^7+1281150405575/5738864*x^6-1042209327941/5738864*x^5-65400446617/717358*x^4+108426439817/1434716*x^3+3469208864/358679*x^2-4458583909/358679*x+582358432/358679,36973855/68866368*x^22-58074803/68866368*x^21-697098689/34433184*x^20+85831495/2869432*x^19+22709225185/68866368*x^18-31314403189/68866368*x^17-209140348333/68866368*x^16+266818921711/68866368*x^15+149576868449/8608296*x^14-466580824989/22955456*x^13-4398923115781/68866368*x^12+292438947727/4304148*x^11+5187477937225/34433184*x^10-3328157475697/22955456*x^9-1265896568005/5738864*x^8+4426188427655/22955456*x^7+6396408006979/34433184*x^6-5212676013337/34433184*x^5-108797144487/1434716*x^4+540286800289/8608296*x^3+17294304779/2152074*x^2-22179516301/2152074*x+483437254/358679,-12555479/22955456*x^22+18926077/22955456*x^21+237113505/11477728*x^20-335731673/11477728*x^19-7736895429/22955456*x^18+10210231299/22955456*x^17+71362661521/22955456*x^16-87028323427/22955456*x^15-12778011281/717358*x^14+456724545633/22955456*x^13+1505175064083/22955456*x^12-190908836913/2869432*x^11-444319639973/2869432*x^10+3260099717955/22955456*x^9+2605886741837/11477728*x^8-4337577620879/22955456*x^7-1099500914511/5738864*x^6+426105973007/2869432*x^5+28189966723/358679*x^4-88530780063/1434716*x^3-6167123967/717358*x^2+3649703318/358679*x-470811980/358679,-7048175/22955456*x^22+11300579/22955456*x^21+66343035/5738864*x^20-200454865/11477728*x^19-4315618905/22955456*x^18+6096486413/22955456*x^17+39677217279/22955456*x^16-51974615841/22955456*x^15-113300431959/11477728*x^14+272884126621/22955456*x^13+831340464833/22955456*x^12-456613461325/11477728*x^11-489068515711/5738864*x^10+1951565706467/22955456*x^9+714136754153/5738864*x^8-2599701665487/22955456*x^7-1198431449243/11477728*x^6+510926797583/5738864*x^5+121505056047/2869432*x^4-13232244755/358679*x^3-3114841601/717358*x^2+2161538582/358679*x-285371010/358679,-1], x^23-2*x^22-37*x^21+72*x^20+589*x^19-1114*x^18-5272*x^17+9694*x^16+29077*x^15-52143*x^14-101680*x^13+179479*x^12+222656*x^11-395841*x^10-286995*x^9+544647*x^8+181121*x^7-439160*x^6-11748*x^5+181376*x^4-38720*x^3-26048*x^2+11328*x-1152];
E[899,5]=[[x,83284870230151/9311819596485248*x^24-213548178970949/9311819596485248*x^23-1631237676453857/4655909798242624*x^22+8565487073661555/9311819596485248*x^21+13566566412393713/2327954899121312*x^20-146860193601888105/9311819596485248*x^19-499994356275305709/9311819596485248*x^18+352206698038548227/2327954899121312*x^17+2792508873123410677/9311819596485248*x^16-4161165829611210943/4655909798242624*x^15-4857575453620574971/4655909798242624*x^14+15722783950191602401/4655909798242624*x^13+20711066462538462433/9311819596485248*x^12-2391242685715652051/290994362390164*x^11-12441630143544287009/4655909798242624*x^10+117612280982723682325/9311819596485248*x^9+11945087654815607339/9311819596485248*x^8-6772095222819694295/581988724780328*x^7+5050956284776391107/9311819596485248*x^6+26873875563043458851/4655909798242624*x^5-903021036459501325/1163977449560656*x^4-361738047393889029/290994362390164*x^3+14339263513217715/72748590597541*x^2+5989091528610811/72748590597541*x-1753434561425931/145497181195082,109712092950207/2327954899121312*x^24-228976090543577/2327954899121312*x^23-4358912495957865/2327954899121312*x^22+9134697265303237/2327954899121312*x^21+9234140260359587/290994362390164*x^20-77740881606620313/1163977449560656*x^19-21815565012165596/72748590597541*x^18+369213087975746963/581988724780328*x^17+2019367548257496203/1163977449560656*x^16-8607138150066346647/2327954899121312*x^15-7393200851701869243/1163977449560656*x^14+997666181970789637/72748590597541*x^13+34129405245771885975/2327954899121312*x^12-37870364173548942897/1163977449560656*x^11-47422573003159304219/2327954899121312*x^10+56214711527513379865/1163977449560656*x^9+8634361569421384715/581988724780328*x^8-24675115410960622423/581988724780328*x^7-3423592426319843259/1163977449560656*x^6+45677307221490648237/2327954899121312*x^5-584922601810321645/290994362390164*x^4-273913193211152209/72748590597541*x^3+208241039331548967/290994362390164*x^2+14832628291305233/72748590597541*x-3235686578793171/72748590597541,-626117827360635/9311819596485248*x^24+1182436562695965/9311819596485248*x^23+12522400786296225/4655909798242624*x^22-47165672283418083/9311819596485248*x^21-107036848777196747/2327954899121312*x^20+802459930950364381/9311819596485248*x^19+4091752671161767073/9311819596485248*x^18-1903908456277682977/2327954899121312*x^17-24024725910644652465/9311819596485248*x^16+22159387705100285323/4655909798242624*x^15+44858951136976480985/4655909798242624*x^14-82002029333525318699/4655909798242624*x^13-212896863052549381697/9311819596485248*x^12+48468256209913576213/1163977449560656*x^11+154403365014959133433/4655909798242624*x^10-572804133744002678117/9311819596485248*x^9-245295721976702464707/9311819596485248*x^8+124963421000613946515/2327954899121312*x^7+73110353338903837861/9311819596485248*x^6-115063794432619699777/4655909798242624*x^5+921283495133038425/581988724780328*x^4+1387965819034018555/290994362390164*x^3-243248068292011325/290994362390164*x^2-40156133242759847/145497181195082*x+8438795456671813/145497181195082,-228422580940267/9311819596485248*x^24+241782947050873/9311819596485248*x^23+4697347654739057/4655909798242624*x^22-9511077658823347/9311819596485248*x^21-10396375248560125/581988724780328*x^20+158600021620400161/9311819596485248*x^19+1662332724532553185/9311819596485248*x^18-45690661536401201/290994362390164*x^17-10337162196866638645/9311819596485248*x^16+4078325762089796099/4655909798242624*x^15+20803014689476187929/4655909798242624*x^14-14183658995136828287/4655909798242624*x^13-109211617834091006769/9311819596485248*x^12+15287639826498177643/2327954899121312*x^11+91684315947586756623/4655909798242624*x^10-78535825839238272033/9311819596485248*x^9-186902856054327071819/9311819596485248*x^8+6887618264699655309/1163977449560656*x^7+104343009291036595625/9311819596485248*x^6-8908852944933685961/4655909798242624*x^5-1665514397196569067/581988724780328*x^4+115654728425956933/581988724780328*x^3+83962677519689197/290994362390164*x^2-93379210505262/72748590597541*x-1451273069789755/145497181195082,-12129917385375/2327954899121312*x^24-16563801265001/2327954899121312*x^23+16584065963263/72748590597541*x^22+720589998156757/2327954899121312*x^21-5059490602556137/1163977449560656*x^20-13591491663954139/2327954899121312*x^19+110446807633457239/2327954899121312*x^18+72786726497757125/1163977449560656*x^17-762050363405207465/2327954899121312*x^16-243499188400396807/581988724780328*x^15+1731252236868679631/1163977449560656*x^14+2109387810571769353/1163977449560656*x^13-10460094630179204973/2327954899121312*x^12-5927784887871705329/1163977449560656*x^11+10351535866064150607/1163977449560656*x^10+21049809034130543831/2327954899121312*x^9-25779251291391654701/2327954899121312*x^8-11081244012859587329/1163977449560656*x^7+18713556862278042905/2327954899121312*x^6+3045112505259827217/581988724780328*x^5-863693086231642215/290994362390164*x^4-337677719764461549/290994362390164*x^3+31127671269171199/72748590597541*x^2+5587445769833929/72748590597541*x-1240084412062294/72748590597541,941531641637433/9311819596485248*x^24-1403594996398377/9311819596485248*x^23-19051363626469765/4655909798242624*x^22+55500670823955821/9311819596485248*x^21+330764769863228267/4655909798242624*x^20-933322828816309037/9311819596485248*x^19-6455653083446447847/9311819596485248*x^18+4359963996167228593/4655909798242624*x^17+39012061900386249769/9311819596485248*x^16-24841849908615957847/4655909798242624*x^15-75874332266068864465/4655909798242624*x^14+89338479364588724441/4655909798242624*x^13+382432196916209404175/9311819596485248*x^12-203234053077018203657/4655909798242624*x^11-76349196672875168517/1163977449560656*x^10+570258875457828927589/9311819596485248*x^9+581846622842652080597/9311819596485248*x^8-232497728369067170119/4655909798242624*x^7-289840836258996675705/9311819596485248*x^6+98437034031025997239/4655909798242624*x^5+6946430031890421127/1163977449560656*x^4-2183064500473608327/581988724780328*x^3-48558670188050853/290994362390164*x^2+15096935509312500/72748590597541*x-2622538470276693/145497181195082,284339333025465/9311819596485248*x^24-249601809970179/9311819596485248*x^23-5882287175715713/4655909798242624*x^22+9671857535665109/9311819596485248*x^21+52475290687541621/2327954899121312*x^20-158024153362764507/9311819596485248*x^19-2118381797594749591/9311819596485248*x^18+353981220945002719/2327954899121312*x^17+13341451994162409039/9311819596485248*x^16-3790247928262500055/4655909798242624*x^15-27291786589525147645/4655909798242624*x^14+12383478326847396683/4655909798242624*x^13+146313895403507333895/9311819596485248*x^12-376781690046747788/72748590597541*x^11-126187933599803372937/4655909798242624*x^10+51412844987923162975/9311819596485248*x^9+266507984604499138193/9311819596485248*x^8-2919613438621718477/1163977449560656*x^7-156299843106049045735/9311819596485248*x^6-141450734711772569/4655909798242624*x^5+5371936376959338559/1163977449560656*x^4+55920732803104507/290994362390164*x^3-145188067176111131/290994362390164*x^2-2176297306203311/145497181195082*x+2844178889332057/145497181195082,1307728627770161/9311819596485248*x^24-1857588441675267/9311819596485248*x^23-26581213521788357/4655909798242624*x^22+73674408331677429/9311819596485248*x^21+231986044560708345/2327954899121312*x^20-1243391556980081835/9311819596485248*x^19-9112268822083924535/9311819596485248*x^18+2916700575144551067/2327954899121312*x^17+55460286726142696783/9311819596485248*x^16-33407863916541334571/4655909798242624*x^15-108712994995816087625/4655909798242624*x^14+120872920549265181559/4655909798242624*x^13+552443769681167568839/9311819596485248*x^12-17305135662435731291/290994362390164*x^11-444714613100805919765/4655909798242624*x^10+782769435167568931399/9311819596485248*x^9+853713032208944034185/9311819596485248*x^8-20087403172663278445/290994362390164*x^7-428730110424096814271/9311819596485248*x^6+136453365491522646551/4655909798242624*x^5+10491645413974104461/1163977449560656*x^4-743976467700638747/145497181195082*x^3-101546530771659583/290994362390164*x^2+38171898416361913/145497181195082*x-1903658217401519/145497181195082,1], x^25-43*x^23-x^22+803*x^21+41*x^20-8552*x^19-705*x^18+57371*x^17+6615*x^16-252748*x^15-36904*x^14+739489*x^13+124981*x^12-1419906*x^11-250727*x^10+1726030*x^9+273427*x^8-1241767*x^7-126943*x^6+471802*x^5+1736*x^4-77984*x^3+7008*x^2+3968*x-576];
E[899,6]=[[x,-3/17*x^9+12/17*x^8+39/17*x^7-122/17*x^6-183/17*x^5+358/17*x^4+22*x^3-17*x^2-250/17*x-12/17,-11/17*x^9-24/17*x^8+126/17*x^7+244/17*x^6-450/17*x^5-716/17*x^4+30*x^3+34*x^2-78/17*x-44/17,-4/17*x^9-1/17*x^8+35/17*x^7+13/17*x^6-57/17*x^5-44/17*x^4-6*x^3+154/17*x+52/17,9/17*x^9+15/17*x^8-117/17*x^7-144/17*x^6+498/17*x^5+371/17*x^4-44*x^3-12*x^2+257/17*x-15/17,7/17*x^9+6/17*x^8-74/17*x^7-61/17*x^6+223/17*x^5+179/17*x^4-8*x^3-8*x^2-125/17*x-23/17,15/17*x^9+8/17*x^8-178/17*x^7-87/17*x^6+694/17*x^5+284/17*x^4-60*x^3-16*x^2+451/17*x+60/17,14/17*x^9-22/17*x^8-148/17*x^7+218/17*x^6+497/17*x^5-628/17*x^4-39*x^3+33*x^2+328/17*x-80/17,-18/17*x^9+4/17*x^8+200/17*x^7-35/17*x^6-707/17*x^5+74/17*x^4+55*x^3-2*x^2-429/17*x-21/17,1], x^10-12*x^8+48*x^6-75*x^4+38*x^2+3*x-1];
E[901,1]=[[-1,2,0,-4,0,2,-1,0,2,-2], x-1];
E[901,2]=[[0,1,-3,-4,6,5,1,-4,0,0], x-1];
E[901,3]=[[-1,0,0,2,-6,6,-1,4,-8,2], x-1];
E[901,4]=[[-2,-1,3,2,0,-7,1,0,-8,-10], x-1];
E[901,5]=[[-1,0,3,-1,0,3,1,1,4,-4], x-1];
E[901,6]=[[2,-3,1,-2,0,1,1,-4,-8,-6], x-1];
E[901,7]=[[-593882348860998347049089/31782985521185548507504852*x^12+1227997664844571973335331/15891492760592774253752426*x^11+11873976697340802644114280/7945746380296387126876213*x^10-113111401986923426457832493/15891492760592774253752426*x^9-1125143434188345137889675127/31782985521185548507504852*x^8+6687189779887320405406031989/31782985521185548507504852*x^7+5576708797696049976661353987/31782985521185548507504852*x^6-17019721375428270643203782588/7945746380296387126876213*x^5+12522907211162361642994572153/7945746380296387126876213*x^4+81859243009672153114923914003/15891492760592774253752426*x^3-195115725273815390596525672173/31782985521185548507504852*x^2-883872714337770609911970509/7945746380296387126876213*x+10589370342428517345650771672/7945746380296387126876213,-1467505982136744288982163/31782985521185548507504852*x^12+3036914144890130386386805/15891492760592774253752426*x^11+29340024232053703073650023/7945746380296387126876213*x^10-279700232431773471904124943/15891492760592774253752426*x^9-2779672969574925461502622813/31782985521185548507504852*x^8+16534478368768888909612397715/31782985521185548507504852*x^7+13757695584481211905548882773/31782985521185548507504852*x^6-42078984360048977982901689981/7945746380296387126876213*x^5+31008664225542477228388387773/7945746380296387126876213*x^4+202352600826847608531562076969/15891492760592774253752426*x^3-482764703930421384485923170419/31782985521185548507504852*x^2-2158933411440456869650355836/7945746380296387126876213*x+26195690795709387262380861667/7945746380296387126876213,-209414029877577867651829/15891492760592774253752426*x^12+427258296448931982877946/7945746380296387126876213*x^11+8378903105301230068527464/7945746380296387126876213*x^10-39414659253195349598814002/7945746380296387126876213*x^9-398050682613449258627310519/15891492760592774253752426*x^8+2332914845498829651476677195/15891492760592774253752426*x^7+2013571758862727629965906495/15891492760592774253752426*x^6-11884708646053626599833224953/7945746380296387126876213*x^5+8567678233989599771292749298/7945746380296387126876213*x^4+28614967607667293648652244553/7945746380296387126876213*x^3-67479421839071973373477422381/15891492760592774253752426*x^2-714402677507290749277281051/7945746380296387126876213*x+7316351748097612967314907246/7945746380296387126876213,-431649000140922664713153/31782985521185548507504852*x^12+898266235028978705028139/15891492760592774253752426*x^11+8633251293895502289131794/7945746380296387126876213*x^10-82666851753246481871886283/15891492760592774253752426*x^9-818152087010434084562757727/31782985521185548507504852*x^8+4884503850515222458898030725/31782985521185548507504852*x^7+4049004604448702433243190019/31782985521185548507504852*x^6-12431121836706306352036250087/7945746380296387126876213*x^5+9130975269324065062917976287/7945746380296387126876213*x^4+59876282129671772286693441545/15891492760592774253752426*x^3-141989619501076357132313160661/31782985521185548507504852*x^2-744194734651876384357343634/7945746380296387126876213*x+7673764124994029873176093705/7945746380296387126876213,381855479246968868234785/31782985521185548507504852*x^12-780850432824851785058881/15891492760592774253752426*x^11-7637294807501376069218709/7945746380296387126876213*x^10+72013315019623025906050299/15891492760592774253752426*x^9+725027118100595958590019619/31782985521185548507504852*x^8-4261189018620675456875441369/31782985521185548507504852*x^7-3646276023438677406291625943/31782985521185548507504852*x^6+10849477953461831504242630682/7945746380296387126876213*x^5-7878999339883256533028083089/7945746380296387126876213*x^4-52163040254422277273467275281/15891492760592774253752426*x^3+123727803231532466103632767233/31782985521185548507504852*x^2+541575650796314317265543370/7945746380296387126876213*x-6709457647406265947490129633/7945746380296387126876213,x,1,398417831008863673049473/15891492760592774253752426*x^12-818516882600774683525032/7945746380296387126876213*x^11-15935761741189198467773806/7945746380296387126876213*x^10+75450325683387893932201900/7945746380296387126876213*x^9+755933545706065105732547967/15891492760592774253752426*x^8-4463243767301471485234526749/15891492760592774253752426*x^7-3782066692501103205668128007/15891492760592774253752426*x^6+22728921348587291897242898419/7945746380296387126876213*x^5-16573619151597454582310305030/7945746380296387126876213*x^4-54705358469108728070387856763/7945746380296387126876213*x^3+129775508670389096894458059053/15891492760592774253752426*x^2+1344883727952218923000915193/7945746380296387126876213*x-14074614131210777710698595364/7945746380296387126876213,588042099812990616462769/31782985521185548507504852*x^12-1230647037898938371477007/15891492760592774253752426*x^11-11754812029918552937303258/7945746380296387126876213*x^10+113190240054077994745765355/15891492760592774253752426*x^9+1111930532289723299074013563/31782985521185548507504852*x^8-6684638197480304025683648609/31782985521185548507504852*x^7-5431048588507974560684361815/31782985521185548507504852*x^6+17002802873876568926563935019/7945746380296387126876213*x^5-12667540394760825967739501710/7945746380296387126876213*x^4-81749653149500190225160481889/15891492760592774253752426*x^3+195820569570679570436184279985/31782985521185548507504852*x^2+819699647811613259210569482/7945746380296387126876213*x-10631348523177355529191381041/7945746380296387126876213,1989309780084463884171771/15891492760592774253752426*x^12-4114026192389454491576785/7945746380296387126876213*x^11-79556602472542908769469035/7945746380296387126876213*x^10+378924589880210395910782027/7945746380296387126876213*x^9+3770155638560513170981685839/15891492760592774253752426*x^8-22401629744917837236742350207/15891492760592774253752426*x^7-18711919035381876054995967135/15891492760592774253752426*x^6+114034563305609519996437154745/7945746380296387126876213*x^5-83741934006357050798046937175/7945746380296387126876213*x^4-274321007726502613995217834117/7945746380296387126876213*x^3+652604763019843778699163483207/15891492760592774253752426*x^2+6138927642534789572071828360/7945746380296387126876213*x-70761969642144767741390126292/7945746380296387126876213], x^13-8*x^12-64*x^11+690*x^10+423*x^9-18583*x^8+34111*x^7+150966*x^6-527232*x^5+49798*x^4+1393785*x^3-1262290*x^2-94868*x+275192];
E[901,8]=[[1247683663970558333/99815126357278526542*x^11+21736031593049971467/99815126357278526542*x^10+46013526934431449765/49907563178639263271*x^9-146831560671486691484/49907563178639263271*x^8-2427278299769766690549/99815126357278526542*x^7+35488517388605314254/49907563178639263271*x^6+8894484311280034457135/49907563178639263271*x^5+3903146041022373315861/99815126357278526542*x^4-23358582454127612318393/49907563178639263271*x^3-2066878230403163140609/49907563178639263271*x^2+40295832779572907181729/99815126357278526542*x-4193481077217680280135/99815126357278526542,879341053394238541/199630252714557053084*x^11+15435974776036157671/199630252714557053084*x^10+33390601624416482221/99815126357278526542*x^9-99726490687739331669/99815126357278526542*x^8-1735347191770699690383/199630252714557053084*x^7-66964372816968603613/99815126357278526542*x^6+3131160342226723326255/49907563178639263271*x^5+3834498569268947466557/199630252714557053084*x^4-8121860562079286555363/49907563178639263271*x^3-2220001410205567825421/99815126357278526542*x^2+27751316544743706066575/199630252714557053084*x-3157011434659248255459/199630252714557053084,-3519742546979247981/199630252714557053084*x^11-61325755526188383183/199630252714557053084*x^10-129784760033593347123/99815126357278526542*x^9+414818338109781748195/99815126357278526542*x^8+6847267211930323215607/199630252714557053084*x^7-115026606374075981275/99815126357278526542*x^6-12537443801055550055912/49907563178639263271*x^5-10733972413481545640209/199630252714557053084*x^4+32767807376626527802682/49907563178639263271*x^3+5644435816627797830539/99815126357278526542*x^2-111858433433570955264543/199630252714557053084*x+11134714810726804201947/199630252714557053084,893355316412115049/99815126357278526542*x^11+15494776398325744305/99815126357278526542*x^10+32266849856496632192/49907563178639263271*x^9-108822314083787885236/49907563178639263271*x^8-1728426087394057884033/99815126357278526542*x^7+107179238859216979761/49907563178639263271*x^6+6439679599520919360331/49907563178639263271*x^5+1853800385083337936031/99815126357278526542*x^4-17090549575180544460746/49907563178639263271*x^3-843157890579484329473/49907563178639263271*x^2+29553811255106955865195/99815126357278526542*x-2843068876766273943183/99815126357278526542,24447748746575753/49907563178639263271*x^11+438679260303798189/49907563178639263271*x^10+2056455352708541563/49907563178639263271*x^9-4385496642537364508/49907563178639263271*x^8-49606116210030607354/49907563178639263271*x^7-31376401918928282878/49907563178639263271*x^6+322382494796435956019/49907563178639263271*x^5+300312245538129836034/49907563178639263271*x^4-733859316415141705364/49907563178639263271*x^3-606568344038928353835/49907563178639263271*x^2+549707848765107732796/49907563178639263271*x+209145604497659633747/49907563178639263271,x,-1,793482066024401665/99815126357278526542*x^11+13769705706237198509/99815126357278526542*x^10+28850143110421294308/49907563178639263271*x^9-94543292335960813197/49907563178639263271*x^8-1526875018727745852297/99815126357278526542*x^7+56901338217688054543/49907563178639263271*x^6+5584918155149542775303/49907563178639263271*x^5+2007217236316542125595/99815126357278526542*x^4-14393120281695235917538/49907563178639263271*x^3-1036246321801131490771/49907563178639263271*x^2+23826347535096657917619/99815126357278526542*x-2214016179147363602129/99815126357278526542,-287497523020517637/99815126357278526542*x^11-5135320093080229051/99815126357278526542*x^10-11668993427613846636/49907563178639263271*x^9+29432272641690158009/49907563178639263271*x^8+584664173938299717051/99815126357278526542*x^7+97827662258831131037/49907563178639263271*x^6-2024802249489588210500/49907563178639263271*x^5-2168865489547369532231/99815126357278526542*x^4+5071606960541701521414/49907563178639263271*x^3+1524618622014967619722/49907563178639263271*x^2-8732674476825555217227/99815126357278526542*x+586929157684153167829/99815126357278526542,-842042723974723343/99815126357278526542*x^11-14567779784089563873/99815126357278526542*x^10-29997100306946198595/49907563178639263271*x^9+105597193631750043794/49907563178639263271*x^8+1636046248156256746465/99815126357278526542*x^7-150411941277938231747/49907563178639263271*x^6-6235114370080525000260/49907563178639263271*x^5-1503366039574927725203/99815126357278526542*x^4+16979366940701902678742/49907563178639263271*x^3+936964485233313039383/49907563178639263271*x^2-29803723350779005568865/99815126357278526542*x+2086377656747399264691/99815126357278526542], x^12+16*x^11+49*x^10-340*x^9-1609*x^8+2819*x^7+14122*x^6-17107*x^5-41391*x^4+49378*x^3+36149*x^2-48120*x+4637];
E[901,9]=[[18836209269049311852890479962972506374611798870475/92173578827943036131511413452911087589247027569419328*x^19-14090129173185058809701585593124278560630539256179/92173578827943036131511413452911087589247027569419328*x^18-283170421952476570723315057968051156234638285386441/11521697353492879516438926681613885948655878446177416*x^17-45585679768081594352650444603762704768155316798597/11521697353492879516438926681613885948655878446177416*x^16+52924388136079657881582862546427775307078865869972053/46086789413971518065755706726455543794623513784709664*x^15+97961806642191344378670335842941380908383960386855103/92173578827943036131511413452911087589247027569419328*x^14-602418712122267957310892921837305067117754510435280105/23043394706985759032877853363227771897311756892354832*x^13-3652896103750170944711228261576909325320088570538541131/92173578827943036131511413452911087589247027569419328*x^12+27629260380620774232045440251377586046241668924872294079/92173578827943036131511413452911087589247027569419328*x^11+26960961906003765011633865535982581302631266604122792445/46086789413971518065755706726455543794623513784709664*x^10-147462702624160061991680218299923465996429264332569834191/92173578827943036131511413452911087589247027569419328*x^9-164015583670386840677678331304032896178847881370998720041/46086789413971518065755706726455543794623513784709664*x^8+154809701230360541923173780663928020723439249439462246789/46086789413971518065755706726455543794623513784709664*x^7+159228414809816909999310281006759800817590606248966401811/23043394706985759032877853363227771897311756892354832*x^6-464587447296624909046254643838191424976209026560149634011/92173578827943036131511413452911087589247027569419328*x^5-378775135912555388629048641432897097108487928919129765653/92173578827943036131511413452911087589247027569419328*x^4+42181758451404226331019595054754347445959181832821845149/11521697353492879516438926681613885948655878446177416*x^3-478211895966464332698604377970673102345776642949393469/11521697353492879516438926681613885948655878446177416*x^2-657181180607890150900961867341270900381605216810446745/1440212169186609939554865835201735743581984805772177*x+114967381956156619892601348793979067298429669348404218/1440212169186609939554865835201735743581984805772177,72945514005655149375246579253326746053286739056659/368694315311772144526045653811644350356988110277677312*x^19+2501721809026044007535860672857106419261168898537/368694315311772144526045653811644350356988110277677312*x^18-553026532054813372955839768999657686222271089606093/23043394706985759032877853363227771897311756892354832*x^17-2018603266155456390882893743706657512717741975787393/92173578827943036131511413452911087589247027569419328*x^16+206088560950765495529002475515986598843109047881104619/184347157655886072263022826905822175178494055138838656*x^15+681089172259964123498328279492051522486259486276147299/368694315311772144526045653811644350356988110277677312*x^14-2293432124469510161966820751486536860882644750521473579/92173578827943036131511413452911087589247027569419328*x^13-20759979436635543183802025310099890202388398621788451795/368694315311772144526045653811644350356988110277677312*x^12+98913387127428659107909679596302349175884393627463344279/368694315311772144526045653811644350356988110277677312*x^11+140108187780769256803978686845981412917979488359772812793/184347157655886072263022826905822175178494055138838656*x^10-443656838078773324770835796945404802040236322084570049791/368694315311772144526045653811644350356988110277677312*x^9-800511065640480734505279428847668788726341776763294032109/184347157655886072263022826905822175178494055138838656*x^8+220536814326827485488672000902523452169111957232252703067/184347157655886072263022826905822175178494055138838656*x^7+356088302075163485031546685717303908559834013640813727579/46086789413971518065755706726455543794623513784709664*x^6-581598149276474057318832184074544374090334604553266214935/368694315311772144526045653811644350356988110277677312*x^5-1700570995331342797847440802696802940488420500065204282253/368694315311772144526045653811644350356988110277677312*x^4+161789011464567296512438529939711726625104062958925740467/92173578827943036131511413452911087589247027569419328*x^3+17352258246929393618806470131846275854709834219521193779/46086789413971518065755706726455543794623513784709664*x^2-1341668184084059551477910494713515611780078019659006105/5760848676746439758219463340806942974327939223088708*x+151497072511834738532452107405703268470896640959503051/5760848676746439758219463340806942974327939223088708,-78182367218574148411451716516523751801483086584569/368694315311772144526045653811644350356988110277677312*x^19+55217406394190696215879223903111524738157769237573/368694315311772144526045653811644350356988110277677312*x^18+294364423060613459981233525780213075096752813557639/11521697353492879516438926681613885948655878446177416*x^17+464937583657517771075719471833007640430287630108115/92173578827943036131511413452911087589247027569419328*x^16-220436804413890795818787258538982340403572789593913905/184347157655886072263022826905822175178494055138838656*x^15-421389258035798938081773725514039193335742778790521705/368694315311772144526045653811644350356988110277677312*x^14+2513443310889187606214912320098135943820718825806814945/92173578827943036131511413452911087589247027569419328*x^13+15491519555671584192862366217716614083697794288221561417/368694315311772144526045653811644350356988110277677312*x^12-115524964458641243611829895622883226813626917817434153685/368694315311772144526045653811644350356988110277677312*x^11-113957470661762897441095382247161331539837893220656495531/184347157655886072263022826905822175178494055138838656*x^10+618881309887386102309520086315353228572902406532434835341/368694315311772144526045653811644350356988110277677312*x^9+694649778981500361522201946910131007095823986992486871535/184347157655886072263022826905822175178494055138838656*x^8-654965816479288570258224852619296941984192436849148302401/184347157655886072263022826905822175178494055138838656*x^7-341585714072366635359843463002962457818115734583862059973/46086789413971518065755706726455543794623513784709664*x^6+1957834618281191330788859552083939179415819897669100609381/368694315311772144526045653811644350356988110277677312*x^5+1663066624441195481408355747630168770493598846619084624423/368694315311772144526045653811644350356988110277677312*x^4-353740722838465654001193857831392841132484939383413951917/92173578827943036131511413452911087589247027569419328*x^3-1231626347037947567761515301884926419855127271419381697/46086789413971518065755706726455543794623513784709664*x^2+2763041179470606618770460311463131660385595066786189959/5760848676746439758219463340806942974327939223088708*x-441634117310061457558112571241923707331119958499337425/5760848676746439758219463340806942974327939223088708,12023844112463180714785758843841052657242379240775/184347157655886072263022826905822175178494055138838656*x^19-12800059704013919147388328787637925702740229871793/184347157655886072263022826905822175178494055138838656*x^18-365472769061312029966043505013316357034661643308171/46086789413971518065755706726455543794623513784709664*x^17+4274944613661782710889924937896836749510219876297/2880424338373219879109731670403471487163969611544354*x^16+34877096272329612486766186614445538228499357588101697/92173578827943036131511413452911087589247027569419328*x^15+37696928619524389160699475998158228242062438815478103/184347157655886072263022826905822175178494055138838656*x^14-825884148473041087052564881621928055562487600245646193/92173578827943036131511413452911087589247027569419328*x^13-1776391538754449965234717531590232602836453393512657369/184347157655886072263022826905822175178494055138838656*x^12+20426752903981975907956359342428344737035269486840658155/184347157655886072263022826905822175178494055138838656*x^11+7210767059829709064043047998347223146659218411507794729/46086789413971518065755706726455543794623513784709664*x^10-127835993988488506820155058256461374090418587756726678001/184347157655886072263022826905822175178494055138838656*x^9-95819353526158087247472200908607016894322445811226739319/92173578827943036131511413452911087589247027569419328*x^8+190568347533614196877783209726135526092572043910711314259/92173578827943036131511413452911087589247027569419328*x^7+108930095658756516013875373605808534257870871697047643357/46086789413971518065755706726455543794623513784709664*x^6-633970071317839914315866755646576019259981630976272054631/184347157655886072263022826905822175178494055138838656*x^5-247425293445949330062102379469327911609145049695719875135/184347157655886072263022826905822175178494055138838656*x^4+108300265007549384504873949187751442014796656056720984539/46086789413971518065755706726455543794623513784709664*x^3-6927636531592479083389426725898583761034748950802676947/23043394706985759032877853363227771897311756892354832*x^2-830942581715045029358944429558742902076214717282492347/2880424338373219879109731670403471487163969611544354*x+198600344396323870278114703709692186213153357041323705/2880424338373219879109731670403471487163969611544354,-38257830748597223203374346623387549750734131894121/184347157655886072263022826905822175178494055138838656*x^19-8980817303788924901798231402235446964773725747883/184347157655886072263022826905822175178494055138838656*x^18+580980631044067781069314148936820907539397947091953/23043394706985759032877853363227771897311756892354832*x^17+1286599059250328655409039959878190679543409167617387/46086789413971518065755706726455543794623513784709664*x^16-108078231831707952767609499518399859401348092115663297/92173578827943036131511413452911087589247027569419328*x^15-399264866747369045530288981669787497568805032358028825/184347157655886072263022826905822175178494055138838656*x^14+1194090769676359344953679405634829514125238022217900517/46086789413971518065755706726455543794623513784709664*x^13+11829638427686967218370250234152293204775332311565282065/184347157655886072263022826905822175178494055138838656*x^12-50486079765192435435131169402354158229011850241029688205/184347157655886072263022826905822175178494055138838656*x^11-78732427971181499670781513804897322764674868154218874659/92173578827943036131511413452911087589247027569419328*x^10+211812911097895524183950540066109154387351638338182920085/184347157655886072263022826905822175178494055138838656*x^9+446065503510987021242390066435255960418745268505540154851/92173578827943036131511413452911087589247027569419328*x^8-52296505672068013379063155330014765371707272392201609745/92173578827943036131511413452911087589247027569419328*x^7-197574422840093843833397062871199307003750207833232059207/23043394706985759032877853363227771897311756892354832*x^6+64528867647108488688612609170355237873299864972377930933/184347157655886072263022826905822175178494055138838656*x^5+990164796027672613531329303549574974393711073556409955991/184347157655886072263022826905822175178494055138838656*x^4-45538315968800556110587460107444512923068022139908499319/46086789413971518065755706726455543794623513784709664*x^3-17482291670324916934534228711291950859591540548195157805/23043394706985759032877853363227771897311756892354832*x^2+389268309161748392156940199608351242317466103941942177/2880424338373219879109731670403471487163969611544354*x+52049481321567731935573019517629387482440906390275407/2880424338373219879109731670403471487163969611544354,x,-1,-11728749451427386650530548651411595265989192298697/46086789413971518065755706726455543794623513784709664*x^19+4268551167817642904638036441565580582625877827233/46086789413971518065755706726455543794623513784709664*x^18+710755070477918414199260868075619371339906679254157/23043394706985759032877853363227771897311756892354832*x^17+367417156873358097451617288794985731054254484916133/23043394706985759032877853363227771897311756892354832*x^16-2082326908770312390042359648330562094296922629465647/1440212169186609939554865835201735743581984805772177*x^15-83325268736425923436791824546277862270230796416779043/46086789413971518065755706726455543794623513784709664*x^14+755871487862850347011272121226560619899628680791921259/23043394706985759032877853363227771897311756892354832*x^13+2753658336564855022449765584171789192108971675550696781/46086789413971518065755706726455543794623513784709664*x^12-17084737073233310393513922598275644935914826964824633919/46086789413971518065755706726455543794623513784709664*x^11-9671242022757507608927425644208308060315428171389564615/11521697353492879516438926681613885948655878446177416*x^10+87689357419640740570361333665648510377536527538481184049/46086789413971518065755706726455543794623513784709664*x^9+28480121284932889871890435143597491194049320678414095133/5760848676746439758219463340806942974327939223088708*x^8-41535123966001699345559359076657672631099888838697675073/11521697353492879516438926681613885948655878446177416*x^7-211428611085282679783731923554988937291761114641364531697/23043394706985759032877853363227771897311756892354832*x^6+268295827575470518627040098383195196167696696813086932599/46086789413971518065755706726455543794623513784709664*x^5+235454528784469196192733033668353869105798522331139732681/46086789413971518065755706726455543794623513784709664*x^4-53783415937900323507341041661133757117105669650093599163/11521697353492879516438926681613885948655878446177416*x^3+1496682147613501693657499778569010766916752269907895211/5760848676746439758219463340806942974327939223088708*x^2+862917324377158270630716769591163409812787039720701155/1440212169186609939554865835201735743581984805772177*x-179621600979036833458801190983881204109806245637212592/1440212169186609939554865835201735743581984805772177,12865066653029465080332792588869357507463561569001/184347157655886072263022826905822175178494055138838656*x^19+6131519306857048713580142158520749315745350727735/184347157655886072263022826905822175178494055138838656*x^18-11979603473195702574010126072862864283674134970740/1440212169186609939554865835201735743581984805772177*x^17-549091789936426396721836320033108455263816134317337/46086789413971518065755706726455543794623513784709664*x^16+34522983970956088928236654899161528165298781495281365/92173578827943036131511413452911087589247027569419328*x^15+158566809607458091494236432111248200809939255122484617/184347157655886072263022826905822175178494055138838656*x^14-178985358428958777381379746322505913885901055792200795/23043394706985759032877853363227771897311756892354832*x^13-4533327509175250005183291130572582585823213100056267981/184347157655886072263022826905822175178494055138838656*x^12+12919674403737319888369389299639358155927411005385061885/184347157655886072263022826905822175178494055138838656*x^11+29185539084310317761020056815687295891761199488059626977/92173578827943036131511413452911087589247027569419328*x^10-23724372851785407314738366622378458811598093024553281497/184347157655886072263022826905822175178494055138838656*x^9-156640352517868778471312581902964361564037762105212378831/92173578827943036131511413452911087589247027569419328*x^8-110530300722890706654882189289467438370393443644327976495/92173578827943036131511413452911087589247027569419328*x^7+29641401612550880514857952309182867517608259689475063255/11521697353492879516438926681613885948655878446177416*x^6+464585801646081163129027585528304231150509974758216272339/184347157655886072263022826905822175178494055138838656*x^5-324398153963591277349355673578015875465155477557769427771/184347157655886072263022826905822175178494055138838656*x^4-65040418810353613959285534556853005296490656007856652601/46086789413971518065755706726455543794623513784709664*x^3+16313820264478926217291938849928784690479161433555544977/23043394706985759032877853363227771897311756892354832*x^2+465426782702837375283453760000807453510171782697011129/2880424338373219879109731670403471487163969611544354*x-206058569010586408476258603007736366197192994192059695/2880424338373219879109731670403471487163969611544354,10993428158764007056069664235700864134837816206417/46086789413971518065755706726455543794623513784709664*x^19-5591961227537314377722340794125196325833407028205/46086789413971518065755706726455543794623513784709664*x^18-166702551446574976260397763649339746458157854828707/5760848676746439758219463340806942974327939223088708*x^17-124490974144080791881134091121963942764237896141779/11521697353492879516438926681613885948655878446177416*x^16+31390772035983749961851868165114789566189135562436393/23043394706985759032877853363227771897311756892354832*x^15+69477314586020229332671262919684037958598788999769201/46086789413971518065755706726455543794623513784709664*x^14-359715094615140946640897275644476445190361636626357993/11521697353492879516438926681613885948655878446177416*x^13-2401992837386040402945456982122853921925497286798368969/46086789413971518065755706726455543794623513784709664*x^12+16620597401369603357673595656922069459858412928688673989/46086789413971518065755706726455543794623513784709664*x^11+17323430445549427595169302250246643876157659047907740955/23043394706985759032877853363227771897311756892354832*x^10-89835364511315631936076946996342127584912578897384869453/46086789413971518065755706726455543794623513784709664*x^9-105275959462924768716718922451806755797135831785298754195/23043394706985759032877853363227771897311756892354832*x^8+97738027622046468745792968301685918783231138319816624737/23043394706985759032877853363227771897311756892354832*x^7+52718073858787486713457424453450554433552891017064074457/5760848676746439758219463340806942974327939223088708*x^6-304189745649921934227077827424162312445294447350274734589/46086789413971518065755706726455543794623513784709664*x^5-260663039449691825674132199972104954615818883067815044271/46086789413971518065755706726455543794623513784709664*x^4+55707726461394305278951893971299884980518243188197691627/11521697353492879516438926681613885948655878446177416*x^3+158623523464132114363138724205326528963719737859564399/5760848676746439758219463340806942974327939223088708*x^2-852907863036293332554260463308707285178943256061524106/1440212169186609939554865835201735743581984805772177*x+140632361532886535147178218119209494538782437709809876/1440212169186609939554865835201735743581984805772177], x^20-121*x^18-108*x^17+5622*x^16+9275*x^15-124711*x^14-284725*x^13+1336016*x^12+3867263*x^11-5865527*x^10-22349231*x^9+4694844*x^8+41540018*x^7-3767109*x^6-29164520*x^5+5810385*x^4+6416556*x^3-1536920*x^2-433536*x+111424];
E[901,10]=[[19009600461775566121981137441021282183276475267/1893167512898556361037257854817402553087483434334352*x^17+150344558059518063942771242763521551200102015425/1893167512898556361037257854817402553087483434334352*x^16-1903870439553633877539472716802049575275152157247/1893167512898556361037257854817402553087483434334352*x^15-18576980147981327354743097883479390185698210757573/1893167512898556361037257854817402553087483434334352*x^14+19269988994108575944121914115095465933551492654225/631055837632852120345752618272467517695827811444784*x^13+148639952286532679429529770340772048265731815167299/315527918816426060172876309136233758847913905722392*x^12+108979235828111142532880514440139147006012034690951/1893167512898556361037257854817402553087483434334352*x^11-20465548589447172799745895012030172136966924481624031/1893167512898556361037257854817402553087483434334352*x^10-19644311192774882087125656933340876935899299851852893/946583756449278180518628927408701276543741717167176*x^9+211196722657356022093030157341517126012744873379832529/1893167512898556361037257854817402553087483434334352*x^8+761047617861478848319762838911045872338156154842059673/1893167512898556361037257854817402553087483434334352*x^7-142412392896529654838843209578179965999228558528691067/631055837632852120345752618272467517695827811444784*x^6-5000442387550585850773383858286089562804309456054270579/1893167512898556361037257854817402553087483434334352*x^5-5697471702241119903898274378126294261790235129944512609/1893167512898556361037257854817402553087483434334352*x^4+780970648530303085502731162817519887991502654634250781/315527918816426060172876309136233758847913905722392*x^3+6156233599322160198531806456275817430074127474943305977/946583756449278180518628927408701276543741717167176*x^2+713066539005536525613129023103139479151065113453003137/236645939112319545129657231852175319135935429291794*x-25861214749156585395825500626721197069310679979040215/118322969556159772564828615926087659567967714645897,26058336183837163012485770820714698534954157481/1893167512898556361037257854817402553087483434334352*x^17+12731630787738078023344319723885907395788016687/118322969556159772564828615926087659567967714645897*x^16-1315315961534588434389144806509801250329692461117/946583756449278180518628927408701276543741717167176*x^15-12600041273891924963151764736834813706370432923133/946583756449278180518628927408701276543741717167176*x^14+6817803676689264930261926611916330039369114088487/157763959408213030086438154568116879423956952861196*x^13+404116502946129641957443104945894413513408818687595/631055837632852120345752618272467517695827811444784*x^12+23980164618335339182306054034417415635166464794849/1893167512898556361037257854817402553087483434334352*x^11-13968940068632463869748923677041985854059537133265475/946583756449278180518628927408701276543741717167176*x^10-50826625901205353987787514484763802070988476850989047/1893167512898556361037257854817402553087483434334352*x^9+291580906546038852946411293076072485976857030676848803/1893167512898556361037257854817402553087483434334352*x^8+125876792461147017979898058656394871627359835632059899/236645939112319545129657231852175319135935429291794*x^7-54208642643101924340024660064567357699518271345987821/157763959408213030086438154568116879423956952861196*x^6-3342099141380069164921484982593875786213568592825502007/946583756449278180518628927408701276543741717167176*x^5-3648994811525997945894856778293101019623349102922080771/946583756449278180518628927408701276543741717167176*x^4+2158047472299410995537007662860520986633199656894926715/631055837632852120345752618272467517695827811444784*x^3+8028612931143999132387883591985391650125972423041720947/946583756449278180518628927408701276543741717167176*x^2+453388489876372265248402067164041569233298708823905897/118322969556159772564828615926087659567967714645897*x-33437111579908401931329951374454818136404486838638248/118322969556159772564828615926087659567967714645897,8433202851187732084017981869269327862206582607/631055837632852120345752618272467517695827811444784*x^17+65667744999469459541756891852115066480761912717/631055837632852120345752618272467517695827811444784*x^16-851693548822601259852380254625322281075704683453/631055837632852120345752618272467517695827811444784*x^15-8124644434828887549438849373381749510742024277567/631055837632852120345752618272467517695827811444784*x^14+26529636957803606664222423954654766659898554153789/631055837632852120345752618272467517695827811444784*x^13+97720441768702531295998087611072207883490322219559/157763959408213030086438154568116879423956952861196*x^12+4759988141627993056822185475804001334527998626325/631055837632852120345752618272467517695827811444784*x^11-9006457143320349019277817201691859180581923925067075/631055837632852120345752618272467517695827811444784*x^10-1022814337576464443798469068262835358043835193183046/39440989852053257521609538642029219855989238215299*x^9+93938184210095741011872711389362555495553884768208095/631055837632852120345752618272467517695827811444784*x^8+324700901928156198987758079705753892808637880032927677/631055837632852120345752618272467517695827811444784*x^7-208237296894388512612657695609685653474297307268394287/631055837632852120345752618272467517695827811444784*x^6-2155185822831799108599582394420910006399615529917696893/631055837632852120345752618272467517695827811444784*x^5-2364599543429798062597507498039335562257743523523637051/631055837632852120345752618272467517695827811444784*x^4+519156416530514870481046717951454945573275831828524381/157763959408213030086438154568116879423956952861196*x^3+1298994468729144414475722980232519615361258429933286607/157763959408213030086438154568116879423956952861196*x^2+147609433461263125055146358026011223986226148577609801/39440989852053257521609538642029219855989238215299*x-10786994008116100864396190540440204880817500981391512/39440989852053257521609538642029219855989238215299,19491355066554541383885263100830779791118592105/946583756449278180518628927408701276543741717167176*x^17+158309691684010165217983690886548079205453309961/946583756449278180518628927408701276543741717167176*x^16-970234935736436047871138568574522062125939685163/473291878224639090259314463704350638271870858583588*x^15-9765736653454435279236822046629264851054016293419/473291878224639090259314463704350638271870858583588*x^14+4805535855998896961837717967993163271744914642943/78881979704106515043219077284058439711978476430598*x^13+312071946078851358474181297384789760155864905992509/315527918816426060172876309136233758847913905722392*x^12+24742200503298261190562446429267872470285539652977/118322969556159772564828615926087659567967714645897*x^11-21441799844959968973091456941045640762411490628291559/946583756449278180518628927408701276543741717167176*x^10-42550168714096379785460355443320060909655203836312977/946583756449278180518628927408701276543741717167176*x^9+110207579340443832852663833147878601803043061794455169/473291878224639090259314463704350638271870858583588*x^8+810088850538166758193391008424395371919538485525235113/946583756449278180518628927408701276543741717167176*x^7-18009362260139603072806379631652222772449003659672482/39440989852053257521609538642029219855989238215299*x^6-661680963656315346824488594727533643563393734281736178/118322969556159772564828615926087659567967714645897*x^5-3033840538869259305221357035633949098478666400359298029/473291878224639090259314463704350638271870858583588*x^4+1652331924320210882737492297326743001690205936126431599/315527918816426060172876309136233758847913905722392*x^3+13051599354673188797518216229645541990395133049576483793/946583756449278180518628927408701276543741717167176*x^2+752755074698014528820103835096211049101176055739961604/118322969556159772564828615926087659567967714645897*x-55566522329181668186788866257373519635735760659860108/118322969556159772564828615926087659567967714645897,5157148733834482930716145232598906286590953117/118322969556159772564828615926087659567967714645897*x^17+160626882493443973405522523493801384838381280737/473291878224639090259314463704350638271870858583588*x^16-4159693418402880472489687742830176496087980480109/946583756449278180518628927408701276543741717167176*x^15-39745414174060471334785018464495949305478423978603/946583756449278180518628927408701276543741717167176*x^14+42997677953426108235161149482945385060110254759577/315527918816426060172876309136233758847913905722392*x^13+637203559156997714863847459137280318008236562168619/315527918816426060172876309136233758847913905722392*x^12+59466110695567752727227792334234170671197407331867/946583756449278180518628927408701276543741717167176*x^11-22005386827730644074381773318154328567679344901238671/473291878224639090259314463704350638271870858583588*x^10-80880697554221595737633333153775467156690819294890963/946583756449278180518628927408701276543741717167176*x^9+457949687445938918719693453536658325859245753557091495/946583756449278180518628927408701276543741717167176*x^8+798865057502561858599500640074077413103731247341684981/473291878224639090259314463704350638271870858583588*x^7-331555476429739870818397513179595432845565789242594943/315527918816426060172876309136233758847913905722392*x^6-10584181786526965115056012321034204139949178943106895179/946583756449278180518628927408701276543741717167176*x^5-11720210790570048827642404893997524888699928663283179859/946583756449278180518628927408701276543741717167176*x^4+3380089343537325894793001051598424983229295415410791009/315527918816426060172876309136233758847913905722392*x^3+25648979046911603217032562311994641230562441907932348191/946583756449278180518628927408701276543741717167176*x^2+1461878997510899737362492923588806345909903717608778252/118322969556159772564828615926087659567967714645897*x-106760872123245768947680579858652175322706583115278728/118322969556159772564828615926087659567967714645897,x,1,-56317480448005255279237749905697983281132994779/1893167512898556361037257854817402553087483434334352*x^17-449642745104702927357559469585194621389773851599/1893167512898556361037257854817402553087483434334352*x^16+5626643614108780970468517908128004641019641353235/1893167512898556361037257854817402553087483434334352*x^15+55519943266160059279319507205430770190819177627393/1893167512898556361037257854817402553087483434334352*x^14-56464031821156947960852066823385368405642018118429/631055837632852120345752618272467517695827811444784*x^13-443874440034891748570886041994918809680060220779323/315527918816426060172876309136233758847913905722392*x^12-422293267173058969720829982773999768378921021121109/1893167512898556361037257854817402553087483434334352*x^11+61043240996260982913696857638969032300506568250259053/1893167512898556361037257854817402553087483434334352*x^10+59489653537977080807551707060411682461627499542335609/946583756449278180518628927408701276543741717167176*x^9-628284518551042417182587386308661648253598845005665935/1893167512898556361037257854817402553087483434334352*x^8-2287997976993698015113759681427240010642949934892326855/1893167512898556361037257854817402553087483434334352*x^7+414187497143736999564370076770255777061840689303237623/631055837632852120345752618272467517695827811444784*x^6+14992822964086006693763393283685634112873882196391805739/1893167512898556361037257854817402553087483434334352*x^5+17209029319198779752494368289505680768431098098259247053/1893167512898556361037257854817402553087483434334352*x^4-2330900024688583574198939714812699162122638368812394707/315527918816426060172876309136233758847913905722392*x^3-2316332753368186654656562888733905828888990347031130725/118322969556159772564828615926087659567967714645897*x^2-1074963703824626174565898850641501249485494955860309279/118322969556159772564828615926087659567967714645897*x+79201329510924808780513605396922232205502302124529362/118322969556159772564828615926087659567967714645897,-30010270314348116083784023071258103431434044483/1893167512898556361037257854817402553087483434334352*x^17-27171638932761340007743797970062524830120249309/236645939112319545129657231852175319135935429291794*x^16+1542549616353351125061161374467271895502837060773/946583756449278180518628927408701276543741717167176*x^15+13515675687744255732627480455470508286915971569979/946583756449278180518628927408701276543741717167176*x^14-2119514081076387848783943560155899216563056335738/39440989852053257521609538642029219855989238215299*x^13-435991344216870776471645169420467294763280871417153/631055837632852120345752618272467517695827811444784*x^12+368482666817140447842525124894896212083382201618081/1893167512898556361037257854817402553087483434334352*x^11+15193185217930327305319913551178095288606321339939355/946583756449278180518628927408701276543741717167176*x^10+48285743492557434763774697122862167760031849360926173/1893167512898556361037257854817402553087483434334352*x^9-322626241704205535853777694625988565127282660388592973/1893167512898556361037257854817402553087483434334352*x^8-256908464271233552134268756183164828212660749603678075/473291878224639090259314463704350638271870858583588*x^7+67595886448131833058205106825761042719799707024302467/157763959408213030086438154568116879423956952861196*x^6+3492252682716655904166791587459872563875430179163037755/946583756449278180518628927408701276543741717167176*x^5+3623816076783695392743224387172712242792664806149876365/946583756449278180518628927408701276543741717167176*x^4-2323136251221856671611670786369070980000368341708776725/631055837632852120345752618272467517695827811444784*x^3-8202922370714099670059093206555526951690173039046648873/946583756449278180518628927408701276543741717167176*x^2-456303251760257260233336770202321152065269913224492269/118322969556159772564828615926087659567967714645897*x+32716010951878321131188088929621752072937072696562640/118322969556159772564828615926087659567967714645897,-7531470935582495155743201738939680525239629229/236645939112319545129657231852175319135935429291794*x^17-57578208941689828195779659065632680634195602939/236645939112319545129657231852175319135935429291794*x^16+762095665787223745027977997725167597009787601993/236645939112319545129657231852175319135935429291794*x^15+3565813798708222940284881708547323479377539072452/118322969556159772564828615926087659567967714645897*x^14-7976909903286648005797126397327757325747359122401/78881979704106515043219077284058439711978476430598*x^13-114463450134117575808000858657315707268387463799867/78881979704106515043219077284058439711978476430598*x^12+9800816163830214871169925777982511020957124766887/236645939112319545129657231852175319135935429291794*x^11+3958284047694247399165043342110827915452390816029073/118322969556159772564828615926087659567967714645897*x^10+14219973952879140142302179513328796890099013557445411/236645939112319545129657231852175319135935429291794*x^9-82580907812393454224283047921782554307523550809671829/236645939112319545129657231852175319135935429291794*x^8-142252917124403997493006566807301859320834605249901744/118322969556159772564828615926087659567967714645897*x^7+30411628321777190959261913457781325919099016166028969/39440989852053257521609538642029219855989238215299*x^6+1892229326138284177450671624874068768049233344515543765/236645939112319545129657231852175319135935429291794*x^5+1043335909697193356514860207748558964848461133786429139/118322969556159772564828615926087659567967714645897*x^4-302584940545320413377459429650600140606940511578646884/39440989852053257521609538642029219855989238215299*x^3-4582836601291867964554238176888418073482648542168236901/236645939112319545129657231852175319135935429291794*x^2-1045867707211704094231068974793380870060770822189290670/118322969556159772564828615926087659567967714645897*x+77804718516399718202611403281197527008481596357805210/118322969556159772564828615926087659567967714645897], x^18+12*x^17-68*x^16-1388*x^15-934*x^14+59487*x^13+196711*x^12-1059678*x^11-6454793*x^10+2816281*x^9+85456840*x^8+139334462*x^7-357393148*x^6-1366160472*x^5-956290865*x^4+1655736784*x^3+2911246368*x^2+1179800512*x-88282240];
E[913,1]=[[-1,0,0,-1,-1,1,0,2,-2,10], x-1];
E[913,2]=[[2,3,3,-4,-1,-2,-6,2,7,4], x-1];
E[913,3]=[[x,-240/5783*x^11+1251/5783*x^10-14/5783*x^9-13846/5783*x^8+33246/5783*x^7+27451/5783*x^6-193501/5783*x^5+96400/5783*x^4+288824/5783*x^3-205043/5783*x^2-65169/5783*x+36437/5783,-1691/5783*x^11+6718/5783*x^10+18166/5783*x^9-94135/5783*x^8-28447/5783*x^7+415892/5783*x^6-178415/5783*x^5-585331/5783*x^4+380875/5783*x^3+164686/5783*x^2-109949/5783*x-2759/5783,-1171/11566*x^11+6899/11566*x^10+2775/11566*x^9-89195/11566*x^8+59637/5783*x^7+163268/5783*x^6-373546/5783*x^5-196621/11566*x^4+1169997/11566*x^3-265251/11566*x^2-179551/5783*x+75399/11566,-1,-2307/11566*x^11+13977/11566*x^10+5793/11566*x^9-180949/11566*x^8+112874/5783*x^7+330980/5783*x^6-697140/5783*x^5-368747/11566*x^4+2059807/11566*x^3-687945/11566*x^2-240678/5783*x+190423/11566,3131/5783*x^11-8441/5783*x^10-46997/5783*x^9+125164/5783*x^8+239564/5783*x^7-615296/5783*x^6-493790/5783*x^5+1111484/5783*x^4+448050/5783*x^3-623064/5783*x^2-100469/5783*x+79070/5783,-412/5783*x^11+3015/5783*x^10+3253/5783*x^9-44395/5783*x^8+4447/5783*x^7+213771/5783*x^6-62207/5783*x^5-362694/5783*x^4+38572/5783*x^3+166841/5783*x^2+39352/5783*x-16195/5783,603/5783*x^11-3360/5783*x^10-1266/5783*x^9+43318/5783*x^8-66037/5783*x^7-158824/5783*x^6+417715/5783*x^5+104775/5783*x^4-667262/5783*x^3+94385/5783*x^2+176532/5783*x+5245/5783,1004/5783*x^11-2631/5783*x^10-15170/5783*x^9+38453/5783*x^8+78940/5783*x^7-189341/5783*x^6-165631/5783*x^5+358155/5783*x^4+134180/5783*x^3-230501/5783*x^2-31273/5783*x+23857/5783], x^12-2*x^11-20*x^10+38*x^9+145*x^8-260*x^7-444*x^6+749*x^5+470*x^4-778*x^3-7*x^2+169*x-29];
E[913,4]=[[x,-10/529*x^15+80/529*x^14+1176/529*x^13+1911/529*x^12-11648/529*x^11-32298/529*x^10+33918/529*x^9+155386/529*x^8-820/529*x^7-298523/529*x^6-110658/529*x^5+204226/529*x^4+93473/529*x^3-1014/23*x^2-3837/529*x+205/529,-303/529*x^15-1532/529*x^14+2223/529*x^13+20227/529*x^12+2595/529*x^11-98953/529*x^10-51256/529*x^9+228058/529*x^8+113545/529*x^7-271269/529*x^6-43403/529*x^5+184505/529*x^4-46846/529*x^3-115*x^2+15591/529*x+1117/529,-4/23*x^15-22/23*x^14+22/23*x^13+294/23*x^12+165/23*x^11-1453/23*x^10-1583/23*x^9+3323/23*x^8+198*x^7-3639/23*x^6-5631/23*x^5+1849/23*x^4+2955/23*x^3-344/23*x^2-453/23*x+38/23,-1,136/529*x^15+591/529*x^14-1315/529*x^13-7884/529*x^12+2689/529*x^11+38395/529*x^10+7331/529*x^9-83242/529*x^8-28592/529*x^7+76414/529*x^6+17755/529*x^5-20229/529*x^4+14274/529*x^3-155/23*x^2-10777/529*x+892/529,-113/529*x^15-108/529*x^14+3753/529*x^13+7424/529*x^12-32428/529*x^11-82049/529*x^10+102494/529*x^9+346247/529*x^8-80980/529*x^7-617443/529*x^6-125763/529*x^5+387585/529*x^4+142310/529*x^3-1013/23*x^2-3000/529*x-3514/529,28/23*x^15+135/23*x^14-261/23*x^13-1947/23*x^12+290/23*x^11+10756/23*x^10+3736/23*x^9-28872/23*x^8-13918/23*x^7+39134/23*x^6+16690/23*x^5-24471/23*x^4-5876/23*x^3+4604/23*x^2-330/23*x-14/23,-402/529*x^15-1499/529*x^14+6740/529*x^13+28743/529*x^12-38007/529*x^11-208842/529*x^10+67150/529*x^9+716204/529*x^8+86820/529*x^7-1163066/529*x^6-369420/529*x^5+755530/529*x^4+255124/529*x^3-4507/23*x^2-6132/529*x-1557/529,61/529*x^15-787/529*x^14-8089/529*x^13-7179/529*x^12+84471/529*x^11+170508/529*x^10-279727/529*x^9-867971/529*x^8+181251/529*x^7+1692280/529*x^6+504133/529*x^5-1145609/529*x^4-547505/529*x^3+5148/23*x^2+44913/529*x-2366/529], x^16+5*x^15-10*x^14-80*x^13+3*x^12+492*x^11+296*x^10-1442*x^9-1323*x^8+1982*x^7+2237*x^6-988*x^5-1401*x^4+x^3+179*x^2-5*x-2];
E[913,5]=[[x,-522/323*x^16+3949/323*x^15-2177/323*x^14-50556/323*x^13+107633/323*x^12+187985/323*x^11-700278/323*x^10-59312/323*x^9+1798774/323*x^8-913599/323*x^7-1892969/323*x^6+1567769/323*x^5+546872/323*x^4-41038/19*x^3+127311/323*x^2-7426/323*x+396/323,-942/323*x^16+7001/323*x^15-3178/323*x^14-90639/323*x^13+183451/323*x^12+348311/323*x^11-1210201/323*x^10-184850/323*x^9+3138022/323*x^8-1434263/323*x^7-3355175/323*x^6+2602345/323*x^5+1039201/323*x^4-1200902/323*x^3+180771/323*x^2+4171/323*x+9/323,-579/323*x^16+4690/323*x^15-4571/323*x^14-55838/323*x^13+148217/323*x^12+159960/323*x^11-897631/323*x^10+15995/19*x^9+2124738/323*x^8-1914861/323*x^7-1832416/323*x^6+2743356/323*x^5-6940/323*x^4-1134209/323*x^3+438398/323*x^2-33171/323*x-991/323,1,-362/323*x^16+2932/323*x^15-2467/323*x^14-36961/323*x^13+89456/323*x^12+130969/323*x^11-569611/323*x^10+2135/323*x^9+1468574/323*x^8-789900/323*x^7-1589124/323*x^6+1286655/323*x^5+524543/323*x^4-573184/323*x^3+71133/323*x^2+3737/323*x-412/323,1199/323*x^16-8999/323*x^15+4877/323*x^14+114069/323*x^13-14303/19*x^12-411259/323*x^11+1564651/323*x^10+42736/323*x^9-3921690/323*x^8+135571/19*x^7+3864756/323*x^6-3803940/323*x^5-752002/323*x^4+1656214/323*x^3-27933/19*x^2+39646/323*x+63/19,-1527/323*x^16+11138/323*x^15-3608/323*x^14-147501/323*x^13+277124/323*x^12+603853/323*x^11-1880766/323*x^10-563206/323*x^9+5021901/323*x^8-1627707/323*x^7-5689925/323*x^6+3439471/323*x^5+2175418/323*x^4-97574/19*x^3+68094/323*x^2+22112/323*x+1125/323,21/19*x^16-2731/323*x^15+2121/323*x^14+32276/323*x^13-79708/323*x^12-5267/19*x^11+478950/323*x^10-177964/323*x^9-1077025/323*x^8+1162634/323*x^7+44369/19*x^6-1644664/323*x^5+296801/323*x^4+666571/323*x^3-352576/323*x^2+1855/19*x+1639/323,-530/323*x^16+3693/323*x^15-63/323*x^14-51155/323*x^13+79811/323*x^12+234247/323*x^11-578758/323*x^10-372319/323*x^9+1630205/323*x^8-83973/323*x^7-2018062/323*x^6+645157/323*x^5+980437/323*x^4-366431/323*x^3-102214/323*x^2+13027/323*x+2762/323], x^17-9*x^16+15*x^15+91*x^14-345*x^13-66*x^12+1859*x^11-1804*x^10-3615*x^9+6684*x^8+1122*x^7-8208*x^6+3278*x^5+2853*x^4-2196*x^3+358*x^2-5*x-1];
E[913,6]=[[x,-x^4+x^3+4*x^2-2*x-1,-2*x^4+2*x^3+9*x^2-4*x-4,-x^2+x+3,-1,-x^4+7*x^2+2*x-8,-x^4+2*x^3+3*x^2-4*x,-2*x^4+4*x^3+8*x^2-10*x-5,x^4-5*x^2-x+3,2*x^4-3*x^3-9*x^2+9*x+4], x^5-x^4-5*x^3+3*x^2+4*x-1];
E[913,7]=[[x,-236/1473*x^14-1994/1473*x^13-943/491*x^12+18086/1473*x^11+17994/491*x^10-11064/491*x^9-80350/491*x^8-27236/491*x^7+412579/1473*x^6+87454/491*x^5-98850/491*x^4-68963/491*x^3+77810/1473*x^2+14823/491*x-3625/1473,327/491*x^14+2301/491*x^13+797/491*x^12-26046/491*x^11-41355/491*x^10+99468/491*x^9+221862/491*x^8-155080/491*x^7-456833/491*x^6+118506/491*x^5+419615/491*x^4-58819/491*x^3-158024/491*x^2+13118/491*x+19526/491,-1804/1473*x^14-3838/491*x^13+1122/491*x^12+146065/1473*x^11+148043/1473*x^10-679835/1473*x^9-979333/1473*x^8+1493476/1473*x^7+2362423/1473*x^6-1736215/1473*x^5-2522393/1473*x^4+1039085/1473*x^3+1107572/1473*x^2-213641/1473*x-54428/491,1,1699/1473*x^14+3871/491*x^13+566/491*x^12-137107/1473*x^11-190373/1473*x^10+569597/1473*x^9+1085434/1473*x^8-1062988/1473*x^7-2370394/1473*x^6+1079881/1473*x^5+2338811/1473*x^4-627236/1473*x^3-966635/1473*x^2+124193/1473*x+44422/491,1879/1473*x^14+4095/491*x^13-504/491*x^12-151201/1473*x^11-174623/1473*x^10+669986/1473*x^9+1077571/1473*x^8-1364749/1473*x^7-2456683/1473*x^6+1458214/1473*x^5+2441411/1473*x^4-821711/1473*x^3-966038/1473*x^2+155063/1473*x+42847/491,-1233/491*x^14-24317/1473*x^13+1121/491*x^12+101012/491*x^11+341888/1473*x^10-1376846/1473*x^9-2138824/1473*x^8+2950744/1473*x^7+4980230/1473*x^6-3428092/1473*x^5-5149193/1473*x^4+2119982/1473*x^3+2189302/1473*x^2-444116/1473*x-323320/1473,-1781/1473*x^14-11690/1473*x^13+467/491*x^12+144215/1473*x^11+55174/491*x^10-214368/491*x^9-339728/491*x^8+443704/491*x^7+2320456/1473*x^6-488164/491*x^5-768506/491*x^4+280536/491*x^3+897443/1473*x^2-51650/491*x-113683/1473,826/491*x^14+16027/1473*x^13-1637/491*x^12-69684/491*x^11-209854/1473*x^10+1010875/1473*x^9+1440023/1473*x^8-2322764/1473*x^7-3609082/1473*x^6+2784170/1473*x^5+3948475/1473*x^4-1682752/1473*x^3-1738121/1473*x^2+336106/1473*x+252875/1473], x^15+7*x^14+2*x^13-82*x^12-129*x^11+328*x^10+746*x^9-524*x^8-1707*x^7+286*x^6+1801*x^5+86*x^4-831*x^3-151*x^2+133*x+37];
E[923,1]=[[x,-3947/35158*x^15-17897/35158*x^14+39205/35158*x^13+128875/17579*x^12-30460/17579*x^11-681182/17579*x^10-193312/17579*x^9+3371103/35158*x^8+636583/17579*x^7-4140801/35158*x^6-418525/17579*x^5+1215415/17579*x^4-242095/17579*x^3-285472/17579*x^2+155319/17579*x-2743/35158,-1115/17579*x^15-2241/17579*x^14+53723/35158*x^13+116021/35158*x^12-229311/17579*x^11-1053791/35158*x^10+869803/17579*x^9+4332813/35158*x^8-1434551/17579*x^7-4201998/17579*x^6+635911/17579*x^5+6989281/35158*x^4+476770/17579*x^3-1736881/35158*x^2-141923/17579*x+60843/35158,-7673/35158*x^15-11203/17579*x^14+67117/17579*x^13+196501/17579*x^12-917091/35158*x^11-1330757/17579*x^10+3128139/35158*x^9+8801595/35158*x^8-2809451/17579*x^7-14726083/35158*x^6+5073547/35158*x^5+5812269/17579*x^4-1870961/35158*x^3-1762072/17579*x^2+195789/35158*x+208947/35158,5643/35158*x^15+12395/17579*x^14-32535/17579*x^13-192607/17579*x^12+190589/35158*x^11+1145427/17579*x^10+245511/35158*x^9-6768441/35158*x^8-1042952/17579*x^7+10695979/35158*x^6+3613225/35158*x^5-4376770/17579*x^4-2449267/35158*x^3+1515561/17579*x^2+502971/35158*x-208505/35158,-1,-6770/17579*x^15-64027/35158*x^14+60066/17579*x^13+912797/35158*x^12+46685/35158*x^11-4685939/35158*x^10-3072941/35158*x^9+10718175/35158*x^8+5062716/17579*x^7-5371017/17579*x^6-12311491/35158*x^5+3803641/35158*x^4+5464641/35158*x^3-450593/35158*x^2-798061/35158*x-12033/35158,-112/17579*x^15+374/17579*x^14+8723/35158*x^13-6051/35158*x^12-46872/17579*x^11-14835/35158*x^10+195225/17579*x^9+246049/35158*x^8-237543/17579*x^7-342009/17579*x^6-425624/17579*x^5+512351/35158*x^4+1133532/17579*x^3+57497/35158*x^2-535493/17579*x-42747/35158,2639/17579*x^15+10964/17579*x^14-63805/35158*x^13-333155/35158*x^12+111208/17579*x^11+1860245/35158*x^10-26153/17579*x^9-4677967/35158*x^8-446773/17579*x^7+2430011/17579*x^6+544895/17579*x^5-570111/35158*x^4-54689/17579*x^3-1421793/35158*x^2-29438/17579*x+276599/35158,-16033/17579*x^15-101987/35158*x^14+248213/17579*x^13+1638953/35158*x^12-2942537/35158*x^11-10057907/35158*x^10+8640321/35158*x^9+30046123/35158*x^8-6643462/17579*x^7-22724582/17579*x^6+9618181/35158*x^5+31810277/35158*x^4-1770905/35158*x^3-7413727/35158*x^2-198271/35158*x+98791/35158], x^16+4*x^15-13*x^14-64*x^13+52*x^12+391*x^11-28*x^10-1164*x^9-289*x^8+1761*x^7+715*x^6-1247*x^5-608*x^4+309*x^3+152*x^2-14*x-5];
E[923,2]=[[x,6/29*x^9+10/29*x^8-69/29*x^7-112/29*x^6+250/29*x^5+367/29*x^4-320/29*x^3-370/29*x^2+74/29*x+38/29,-22/29*x^9+2/29*x^8+253/29*x^7-5/29*x^6-936/29*x^5-2/29*x^4+1241/29*x^3-16/29*x^2-397/29*x+25/29,19/29*x^9-7/29*x^8-204/29*x^7+61/29*x^6+695/29*x^5-196/29*x^4-878/29*x^3+201/29*x^2+331/29*x-44/29,-1/29*x^9-21/29*x^8-3/29*x^7+212/29*x^6+84/29*x^5-617/29*x^4-169/29*x^3+574/29*x^2+36/29*x-74/29,1,51/29*x^9+27/29*x^8-543/29*x^7-285/29*x^6+1777/29*x^5+756/29*x^4-2053/29*x^3-622/29*x^2+484/29*x+62/29,-23/29*x^9+10/29*x^8+250/29*x^7-54/29*x^6-852/29*x^5-10/29*x^4+956/29*x^3+239/29*x^2-187/29*x-78/29,-22/29*x^9-27/29*x^8+253/29*x^7+256/29*x^6-936/29*x^5-611/29*x^4+1357/29*x^3+361/29*x^2-571/29*x-91/29,-20/29*x^9-43/29*x^8+201/29*x^7+441/29*x^6-553/29*x^5-1291/29*x^4+361/29*x^3+1272/29*x^2+256/29*x-291/29], x^10+x^9-11*x^8-11*x^7+38*x^6+35*x^5-49*x^4-39*x^3+18*x^2+11*x-1];
E[923,3]=[[x,844903/11950678*x^17-3622123/23901356*x^16-46814915/23901356*x^15+93978911/23901356*x^14+535050531/23901356*x^13-984350323/23901356*x^12-1631481673/11950678*x^11+1341912637/5975339*x^10+2848843772/5975339*x^9-4100450779/5975339*x^8-11239526515/11950678*x^7+7056995479/5975339*x^6+22599036003/23901356*x^5-6511888818/5975339*x^4-8506872297/23901356*x^3+10664861715/23901356*x^2-95771077/5975339*x-186616518/5975339,-25845333/23901356*x^17+62996619/23901356*x^16+681706197/23901356*x^15-1603610249/23901356*x^14-7345342753/23901356*x^13+8210051949/11950678*x^12+10457346835/5975339*x^11-43587442121/11950678*x^10-33806207958/5975339*x^9+64505986724/5975339*x^8+122284564205/11950678*x^7-427092386287/23901356*x^6-110249486299/11950678*x^5+375549320319/23901356*x^4+65953181569/23901356*x^3-73019968167/11950678*x^2+2777335858/5975339*x+2627682358/5975339,4422545/47802712*x^17-11063657/47802712*x^16-107736995/47802712*x^15+265420367/47802712*x^14+1041677523/47802712*x^13-625996481/11950678*x^12-640498139/5975339*x^11+5912588499/23901356*x^10+1706063368/5975339*x^9-7336310573/11950678*x^8-9696674821/23901356*x^7+36498435211/47802712*x^6+3449628757/11950678*x^5-19240843547/47802712*x^4-4972243991/47802712*x^3+293748855/5975339*x^2+332223269/11950678*x+1467600/5975339,-21327061/47802712*x^17+47931873/47802712*x^16+565940571/47802712*x^15-1226525423/47802712*x^14-6130440259/47802712*x^13+1583195254/5975339*x^12+4379340160/5975339*x^11-34076653187/23901356*x^10-14169682492/5975339*x^9+51486206925/11950678*x^8+102314318961/23901356*x^7-351045352807/47802712*x^6-22949612817/5975339*x^5+319544074415/47802712*x^4+52893253935/47802712*x^3-32088771573/11950678*x^2+2822827549/11950678*x+1169351265/5975339,-1,-6931479/23901356*x^17+19139453/23901356*x^16+180849723/23901356*x^15-488594375/23901356*x^14-1926006091/23901356*x^13+2508736067/11950678*x^12+2710468467/5975339*x^11-13351265773/11950678*x^10-8670865691/5975339*x^9+19775774590/5975339*x^8+31058005063/11950678*x^7-130576574565/23901356*x^6-27583682305/11950678*x^5+113774204337/23901356*x^4+15559775199/23901356*x^3-21776058033/11950678*x^2+842101319/5975339*x+799814430/5975339,2702487/11950678*x^17-5209513/11950678*x^16-74561459/11950678*x^15+131844133/11950678*x^14+848191897/11950678*x^13-668237481/5975339*x^12-2573378163/5975339*x^11+3489400693/5975339*x^10+8945168724/5975339*x^9-10072876690/5975339*x^8-17614541829/5975339*x^7+32310497133/11950678*x^6+17934442140/5975339*x^5-27719649513/11950678*x^4-14898781069/11950678*x^3+5296546594/5975339*x^2+306955268/5975339*x-283021324/5975339,-4781441/5975339*x^17+22289905/11950678*x^16+251748625/11950678*x^15-564391595/11950678*x^14-2704631521/11950678*x^13+5741534327/11950678*x^12+7670314147/5975339*x^11-15119914792/5975339*x^10-24687530244/5975339*x^9+44310294689/5975339*x^8+44552533048/5975339*x^7-72398367253/5975339*x^6-81025552041/11950678*x^5+62506799093/5975339*x^4+25866428803/11950678*x^3-47322180155/11950678*x^2+1435164475/5975339*x+1594837558/5975339,8789371/23901356*x^17-25112177/23901356*x^16-227601219/23901356*x^15+644877987/23901356*x^14+2396577313/23901356*x^13-1669011549/5975339*x^12-3315922293/5975339*x^11+17961025943/11950678*x^10+20676000839/11950678*x^9-27000322209/5975339*x^8-17746069310/5975339*x^7+181717062565/23901356*x^6+14359012330/5975339*x^5-161938228861/23901356*x^4-9329565101/23901356*x^3+15936747036/5975339*x^2-3872637839/11950678*x-1236950986/5975339], x^18-3*x^17-25*x^16+77*x^15+249*x^14-798*x^13-1256*x^12+4310*x^11+3296*x^10-13052*x^9-3694*x^8+22151*x^7-1086*x^6-19675*x^5+5971*x^4+7226*x^3-3768*x^2-160*x+240];
E[923,4]=[[x,24483608329334283/2558343256478322896*x^25-359833861911639809/2558343256478322896*x^24-17853933920725923/232576659679847536*x^23+13586254997574076769/2558343256478322896*x^22-12474195130450980563/2558343256478322896*x^21-109958736713676306749/1279171628239161448*x^20+153733929480666678879/1279171628239161448*x^19+1997894088683148088541/2558343256478322896*x^18-3259169968790152601135/2558343256478322896*x^17-11212407362945902716931/2558343256478322896*x^16+19787409974456848169253/2558343256478322896*x^15+10096648929014769318213/639585814119580724*x^14-37308208751837309382839/1279171628239161448*x^13-94131750145492248311007/2558343256478322896*x^12+179085624756368026413843/2558343256478322896*x^11+34926636248935666684707/639585814119580724*x^10-3095034173808026799267/29072082459980942*x^9-31352227807909773521069/639585814119580724*x^8+254817681638296618138809/2558343256478322896*x^7+29595868474016811417953/1279171628239161448*x^6-137417833425876082509219/2558343256478322896*x^5-7592441009027090024023/2558343256478322896*x^4+18657822854740276506091/1279171628239161448*x^3-860988433021587115705/639585814119580724*x^2-228853737789604365564/159896453529895181*x+44404899075328081055/159896453529895181,800463574898617/14536041229990471*x^25-8103192882127907/58144164919961884*x^24-119812999726209647/58144164919961884*x^23+304600395452311945/58144164919961884*x^22+1916305634901588213/58144164919961884*x^21-4906302403159957301/58144164919961884*x^20-4282272530583001830/14536041229990471*x^19+11079643631481216542/14536041229990471*x^18+94001985830915431651/58144164919961884*x^17-247019354593773045791/58144164919961884*x^16-328029355064171337429/58144164919961884*x^15+882524711568017802189/58144164919961884*x^14+364887875766737442655/29072082459980942*x^13-1019915971747904253969/29072082459980942*x^12-1006411442253327256561/58144164919961884*x^11+3018749053276363938107/58144164919961884*x^10+394145967997718385867/29072082459980942*x^9-693884855717547959463/14536041229990471*x^8-62755286867877032054/14536041229990471*x^7+1495200993505754693469/58144164919961884*x^6-15522695204488402961/14536041229990471*x^5-421810920604834459367/58144164919961884*x^4+58434207863998874733/58144164919961884*x^3+24535246547925597601/29072082459980942*x^2-1928723185726150682/14536041229990471*x-275664439164506082/14536041229990471,11769339662549209/639585814119580724*x^25-46365076184203481/1279171628239161448*x^24-84938502752805865/116288329839923768*x^23+1777887812929296525/1279171628239161448*x^22+16136602322676699975/1279171628239161448*x^21-29398445326820390703/1279171628239161448*x^20-39921149107263749881/319792907059790362*x^19+34376825638449842776/159896453529895181*x^18+1004961506127943029033/1279171628239161448*x^17-1606983436620230337821/1279171628239161448*x^16-4228557206955676488845/1279171628239161448*x^15+6123225237433048149777/1279171628239161448*x^14+6096082508580794943647/639585814119580724*x^13-1932876307315447805804/159896453529895181*x^12-24281404676781045763591/1279171628239161448*x^11+25856883135294865759455/1279171628239161448*x^10+1505004584827925199147/58144164919961884*x^9-7037901254807168776475/319792907059790362*x^8-14973178711952792998367/639585814119580724*x^7+19182635414608614722271/1279171628239161448*x^6+8368342012828847200867/639585814119580724*x^5-7549470294814560379603/1279171628239161448*x^4-4939722153881371379543/1279171628239161448*x^3+370090534207475102793/319792907059790362*x^2+123288328594442281393/319792907059790362*x-15925661025601067672/159896453529895181,-36274594036295583/2558343256478322896*x^25+139838679117344687/2558343256478322896*x^24+113464898590062529/232576659679847536*x^23-5296436124962427619/2558343256478322896*x^22-17573668007634882799/2558343256478322896*x^21+10767681590703375331/319792907059790362*x^20+63447280467933989645/1279171628239161448*x^19-788264219115017576841/2558343256478322896*x^18-452783804834212960891/2558343256478322896*x^17+4473816752323617971357/2558343256478322896*x^16+270769211219560153417/2558343256478322896*x^15-8204042892052280124119/1279171628239161448*x^14+2079673048058624699393/1279171628239161448*x^13+39426858227269992083779/2558343256478322896*x^12-17509626090017077152149/2558343256478322896*x^11-30902711655443937589317/1279171628239161448*x^10+766771699207976259495/58144164919961884*x^9+7713055012729436735487/319792907059790362*x^8-35409307759096830933625/2558343256478322896*x^7-4618144162335736698703/319792907059790362*x^6+19865243098470862235459/2558343256478322896*x^5+11393880066148891642153/2558343256478322896*x^4-1322458188360065289729/639585814119580724*x^3-135421270392242315543/319792907059790362*x^2+66239700002494716339/319792907059790362*x-1703040836851199136/159896453529895181,1,67325815329014251/1279171628239161448*x^25-533089189505321567/1279171628239161448*x^24-153360557831660745/116288329839923768*x^23+20196790721172851339/1279171628239161448*x^22+8973601644968116659/1279171628239161448*x^21-82109355813177690905/319792907059790362*x^20+72480754721464708391/639585814119580724*x^19+3002939249015500828853/1279171628239161448*x^18-2592976013335574561413/1279171628239161448*x^17-17006860040660340600613/1279171628239161448*x^16+18609428737042930759859/1279171628239161448*x^15+31040494740751792169019/639585814119580724*x^14-37937491084072955900111/639585814119580724*x^13-147674576156912668109371/1279171628239161448*x^12+189560859782358538600221/1279171628239161448*x^11+113253557989662055368593/639585814119580724*x^10-3339364286430557574025/14536041229990471*x^9-53910431250346652220741/319792907059790362*x^8+276353133916586143210325/1279171628239161448*x^7+14497828243178004238616/159896453529895181*x^6-148181771028281790948275/1279171628239161448*x^5-26696813366564512102529/1279171628239161448*x^4+9920683703007526086961/319792907059790362*x^3-216209241568418607229/319792907059790362*x^2-483054366231972023635/159896453529895181*x+77144609720880261408/159896453529895181,-132591912681184785/639585814119580724*x^25+323925105960898613/639585814119580724*x^24+459067955050147537/58144164919961884*x^23-12292937605244194121/639585814119580724*x^22-82712455652989979141/639585814119580724*x^21+50111896217001279176/159896453529895181*x^20+382115591229891002061/319792907059790362*x^19-1839806398223917178703/639585814119580724*x^18-4398384794637537763815/639585814119580724*x^17+10473223628414796275069/639585814119580724*x^16+16475731856167107837833/639585814119580724*x^15-9620909990485512272221/159896453529895181*x^14-20457508138543056216017/319792907059790362*x^13+92342326534881339967075/639585814119580724*x^12+67573857865792454867947/639585814119580724*x^11-35895690515196096090129/159896453529895181*x^10-1667513092509569242775/14536041229990471*x^9+70391331622616521743407/319792907059790362*x^8+50641671876686658023099/639585814119580724*x^7-20600001827653585552896/159896453529895181*x^6-20633128498012963541885/639585814119580724*x^5+26000707350893357239413/639585814119580724*x^4+1056694224487508474810/159896453529895181*x^3-919390240993972659451/159896453529895181*x^2-72949728519541603060/159896453529895181*x+46147320411403333240/159896453529895181,23512373535400562/159896453529895181*x^25-14095845169063633/319792907059790362*x^24-90596981402888542/14536041229990471*x^23+238831323366676108/159896453529895181*x^22+36898649566444937961/319792907059790362*x^21-3317500682440240891/159896453529895181*x^20-196053943362807769951/159896453529895181*x^19+47274046255472245281/319792907059790362*x^18+2644070265443954196549/319792907059790362*x^17-165574876107840650523/319792907059790362*x^16-5905522140073611920856/159896453529895181*x^15+87381128988917671463/319792907059790362*x^14+17717801968015745018210/159896453529895181*x^13+755255191082988862924/159896453529895181*x^12-70933212262485586106713/319792907059790362*x^11-5912794795666363255843/319792907059790362*x^10+4196796260899827735108/14536041229990471*x^9+4998107233581300742010/159896453529895181*x^8-37198215518989526462096/159896453529895181*x^7-3983278367331294433621/159896453529895181*x^6+17037344664769069083341/159896453529895181*x^5+1073669282587699833143/159896453529895181*x^4-7637119639406982172003/319792907059790362*x^3+373696725124456922901/319792907059790362*x^2+328401900097024025997/159896453529895181*x-52596367388222419446/159896453529895181,194981303094480541/2558343256478322896*x^25-94860936446128211/2558343256478322896*x^24-748143224107575793/232576659679847536*x^23+3443645485280241943/2558343256478322896*x^22+151754232595503703887/2558343256478322896*x^21-26511366581760783651/1279171628239161448*x^20-803542402488149638299/1279171628239161448*x^19+449503669382663113391/2558343256478322896*x^18+10808432111527964133695/2558343256478322896*x^17-2271415074848000602749/2558343256478322896*x^16-48214301553319291442633/2558343256478322896*x^15+1715012094034796545221/639585814119580724*x^14+72354970216570604473979/1279171628239161448*x^13-11386092123839234728485/2558343256478322896*x^12-290469923710073649707603/2558343256478322896*x^11+1698656361879520843483/639585814119580724*x^10+4320393434423735464985/29072082459980942*x^9+416868659605583317962/159896453529895181*x^8-308934634321841766908661/2558343256478322896*x^7-5399401125892988007921/1279171628239161448*x^6+142954667958886859692191/2558343256478322896*x^5+1955541919485575116291/2558343256478322896*x^4-16170207357566128460345/1279171628239161448*x^3+141824619192424452139/159896453529895181*x^2+348241611149954638079/319792907059790362*x-27718958342018463603/159896453529895181], x^26-3*x^25-39*x^24+119*x^23+659*x^22-2050*x^21-6346*x^20+20159*x^19+38611*x^18-125213*x^17-155933*x^16+513936*x^15+428618*x^14-1418685*x^13-809799*x^12+2630864*x^11+1043228*x^10-3216012*x^9-878901*x^8+2486222*x^7+428867*x^6-1126309*x^5-77770*x^4+259800*x^3-15120*x^2-22928*x+3840];
E[923,5]=[[0,3,2,0,0,-1,0,4,2,1], x-1];
E[943,1]=[[1,0,-2,2,2,6,8,-2,-1,2], x-1];
E[943,2]=[[x,-34413/517304*x^15-23614/64663*x^14+233089/517304*x^13+1329991/258652*x^12+434071/258652*x^11-14122671/517304*x^10-5253299/258652*x^9+36615149/517304*x^8+29447095/517304*x^7-12914307/129326*x^6-34298657/517304*x^5+37944715/517304*x^4+15428783/517304*x^3-5016053/258652*x^2-890559/517304*x+113821/517304,-769/129326*x^15-1827/64663*x^14+9801/129326*x^13+27503/64663*x^12-27659/64663*x^11-281247/129326*x^10+165425/64663*x^9+460003/129326*x^8-1909883/129326*x^7+188074/64663*x^6+5777459/129326*x^5-1276073/129326*x^4-7036845/129326*x^3+204814/64663*x^2+2428601/129326*x-66011/129326,95407/517304*x^15+73758/64663*x^14-417819/517304*x^13-4254749/258652*x^12-3312069/258652*x^11+46031461/517304*x^10+29122041/258652*x^9-118197343/517304*x^8-174165781/517304*x^7+38534367/129326*x^6+230827419/517304*x^5-101340001/517304*x^4-129673245/517304*x^3+16439223/258652*x^2+23645765/517304*x-4901951/517304,106399/517304*x^15+144681/129326*x^14-748623/517304*x^13-4075745/258652*x^12-1128013/258652*x^11+43093869/517304*x^10+14910103/258652*x^9-109790603/517304*x^8-82425117/517304*x^7+18544612/64663*x^6+92357735/517304*x^5-102183025/517304*x^4-42623697/517304*x^3+12766959/258652*x^2+6071261/517304*x-134451/517304,-53941/258652*x^15-70005/64663*x^14+487021/258652*x^13+2142593/129326*x^12+86041/129326*x^11-25164287/258652*x^10-7122575/129326*x^9+72161409/258652*x^8+54759507/258652*x^7-26857395/64663*x^6-86696673/258652*x^5+80696831/258652*x^4+61652267/258652*x^3-13873361/129326*x^2-15912807/258652*x+3445093/258652,75119/258652*x^15+439595/258652*x^14-112694/64663*x^13-3236533/129326*x^12-865910/64663*x^11+36236221/258652*x^10+36671959/258652*x^9-24677016/64663*x^8-116140729/258652*x^7+142423235/258652*x^6+81580973/129326*x^5-109969155/258652*x^4-25097294/64663*x^3+21061521/129326*x^2+20586251/258652*x-1491496/64663,33693/517304*x^15+59531/258652*x^14-681851/517304*x^13-1353011/258652*x^12+2291195/258652*x^11+22790743/517304*x^10-1283518/64663*x^9-90638439/517304*x^8-8911159/517304*x^7+89178437/258652*x^6+63165767/517304*x^5-168219607/517304*x^4-74317589/517304*x^3+32992221/258652*x^2+23686043/517304*x-7994215/517304,-1,-25119/129326*x^15-82802/64663*x^14+52075/129326*x^13+1120614/64663*x^12+1120762/64663*x^11-11356913/129326*x^10-7820353/64663*x^9+28648723/129326*x^8+39464655/129326*x^7-21686889/64663*x^6-45086953/129326*x^5+40388263/129326*x^4+23415405/129326*x^3-8844193/64663*x^2-4820483/129326*x+1747949/129326], x^16+7*x^15+x^14-91*x^13-144*x^12+405*x^11+995*x^10-661*x^9-2772*x^8+23*x^7+3671*x^6+938*x^5-2288*x^4-777*x^3+593*x^2+176*x-41];
E[943,4]=[[x,-1576973738303/8530672030816*x^23+331210082703/266583500963*x^22+21816685871707/8530672030816*x^21-140755302475327/4265336015408*x^20+24902392428507/2132668007704*x^19+3075344338684411/8530672030816*x^18-962563210806183/2132668007704*x^17-17735245895975365/8530672030816*x^16+16390659886493595/4265336015408*x^15+28552008578917217/4265336015408*x^14-17797518439072323/1066334003852*x^13-95986010260290915/8530672030816*x^12+27463387416669009/656205540832*x^11+48687621776902189/8530672030816*x^10-526614513801308749/8530672030816*x^9+5724921646646127/533167001926*x^8+23187653824943061/448982738464*x^7-40696541339258985/2132668007704*x^6-1152436266153015/52335411232*x^5+96543604547442847/8530672030816*x^4+28794366621440837/8530672030816*x^3-10221409355246177/4265336015408*x^2+1460116524766383/8530672030816*x+8054295145817/448982738464,140402878957/799750502889*x^23-3477721048381/3199002011556*x^22-2378449815409/799750502889*x^21+23727884546998/799750502889*x^20+5834924740459/1599501005778*x^19-89882494653842/266583500963*x^18+841954155348919/3199002011556*x^17+1653219871086296/799750502889*x^16-706566912060998/266583500963*x^15-3942082206539173/533167001926*x^14+6579672635761015/533167001926*x^13+24740378262069919/1599501005778*x^12-2667145149048041/82025692604*x^11-55696321880667967/3199002011556*x^10+40277505518055725/799750502889*x^9+10929829700617307/1599501005778*x^8-1881351906168844/42092131731*x^7+5239697660650957/1066334003852*x^6+33826702160166/1635481601*x^5-4596280744432289/799750502889*x^4-11882977998459275/3199002011556*x^3+5089210217589059/3199002011556*x^2-247153525393117/3199002011556*x-148289275055/14030710577,135698422295/25592016092448*x^23+22765239121/6398004023112*x^22-6349290934847/25592016092448*x^21-1027310826953/12796008046224*x^20+31282989982453/6398004023112*x^19+3787133349351/8530672030816*x^18-171647707556993/3199002011556*x^17+100510909785313/25592016092448*x^16+1548122882603155/4265336015408*x^15-299322431971091/4265336015408*x^14-420147411131972/266583500963*x^13+11478296401218835/25592016092448*x^12+2902458200037857/656205540832*x^11-40348206046873781/25592016092448*x^10-201062189485721207/25592016092448*x^9+10433677764162931/3199002011556*x^8+11261580268793995/1346948215392*x^7-4137872617615255/1066334003852*x^6-248693462205239/52335411232*x^5+61416939565554137/25592016092448*x^4+27813744768091415/25592016092448*x^3-7595051343803551/12796008046224*x^2-35082100941047/25592016092448*x+2300624967457/448982738464,-968911281675/8530672030816*x^23+394440490763/533167001926*x^22+14346191657103/8530672030816*x^21-83904898440795/4265336015408*x^20+8180858173373/2132668007704*x^19+1838165338920839/8530672030816*x^18-499413119793985/2132668007704*x^17-10669592405861569/8530672030816*x^16+8742106054274443/4265336015408*x^15+17467946836571385/4265336015408*x^14-2366140861377083/266583500963*x^13-61925263479685607/8530672030816*x^12+14339794206605933/656205540832*x^11+44014512467805937/8530672030816*x^10-265637805454292753/8530672030816*x^9+799862829197636/266583500963*x^8+11038101338343801/448982738464*x^7-16065872371758145/2132668007704*x^6-498235304848379/52335411232*x^5+37974712260493371/8530672030816*x^4+10260244526523985/8530672030816*x^3-3707139646533305/4265336015408*x^2+701924252214203/8530672030816*x+2822119570141/448982738464,-3973373720441/12796008046224*x^23+1641339752555/799750502889*x^22+57517099052669/12796008046224*x^21-350931545348737/6398004023112*x^20+46515494521493/3199002011556*x^19+2577949105490847/4265336015408*x^18-2259046689798869/3199002011556*x^17-45167713920392755/12796008046224*x^16+13193831874957263/2132668007704*x^15+24735424284361909/2132668007704*x^14-14581649751033343/533167001926*x^13-259665776188138741/12796008046224*x^12+22904377152183213/328102770416*x^11+157188698488836923/12796008046224*x^10-1346850252295105771/12796008046224*x^9+12726999293034103/799750502889*x^8+61052690993366627/673474107696*x^7-34769145436383897/1066334003852*x^6-1049439683217643/26167705616*x^5+265204234777239337/12796008046224*x^4+81479173050601603/12796008046224*x^3-29925376972593311/6398004023112*x^2+4947427478867561/12796008046224*x+6340016075061/224491369232,1009209231167/12796008046224*x^23-7573565167697/12796008046224*x^22-1172276008867/1599501005778*x^21+97371668127037/6398004023112*x^20-93969979510327/6398004023112*x^19-674236915109991/4265336015408*x^18+3863269121291891/12796008046224*x^17+667965434974444/799750502889*x^16-4912686182305069/2132668007704*x^15-595930200077751/266583500963*x^14+2526311777395853/266583500963*x^13+24505011079802467/12796008046224*x^12-3739667502187363/164051385208*x^11+60625554206445757/12796008046224*x^10+206016549778485605/6398004023112*x^9-93027804437338595/6398004023112*x^8-17150795541392399/673474107696*x^7+66328259019248429/4265336015408*x^6+16276531074488/1635481601*x^5-95252381737160083/12796008046224*x^4-3990623817547051/3199002011556*x^3+8507097295119887/6398004023112*x^2-1335992838131501/12796008046224*x-53448714090/14030710577,1212078040187/8530672030816*x^23-3574949638737/4265336015408*x^22-22438887432617/8530672030816*x^21+98586936470487/4265336015408*x^20+4941545297293/533167001926*x^19-2273959449647035/8530672030816*x^18+587069413727237/4265336015408*x^17+14248158140247527/8530672030816*x^16-7034715038041191/4265336015408*x^15-26364019637121571/4265336015408*x^14+8548181402180207/1066334003852*x^13+116979749145431119/8530672030816*x^12-14060930193295159/656205540832*x^11-148813712060040997/8530672030816*x^10+283555387565100195/8530672030816*x^9+22682760201208361/2132668007704*x^8-13153743816145341/448982738464*x^7-960736732295875/4265336015408*x^6+699277727827997/52335411232*x^5-24874651805966691/8530672030816*x^4-19628417704241639/8530672030816*x^3+4241565234607485/4265336015408*x^2-750843718126991/8530672030816*x-1143498570707/448982738464,1,-595895870993/6398004023112*x^23+2044096666441/3199002011556*x^22+8153715638903/6398004023112*x^21-55439065065727/3199002011556*x^20+5895818999752/799750502889*x^19+414560659646951/2132668007704*x^18-837721826415649/3199002011556*x^17-7414811060937541/6398004023112*x^16+2457352153798645/1066334003852*x^15+4144195328005573/1066334003852*x^14-5650532083740473/533167001926*x^13-43587759778022089/6398004023112*x^12+4723930965123799/164051385208*x^11+20410931611223027/6398004023112*x^10-302644728447719677/6398004023112*x^9+15081887365304893/1599501005778*x^8+15319817152264511/336737053848*x^7-19216428246270363/1066334003852*x^6-301107546682385/13083852808*x^5+79357740653256709/6398004023112*x^4+27943455741949537/6398004023112*x^3-9968766170890913/3199002011556*x^2+1309390986429881/6398004023112*x+2769163457231/112245684616], x^24-9*x^23+x^22+213*x^21-462*x^20-1885*x^19+6877*x^18+6549*x^17-47095*x^16+6084*x^15+179298*x^14-127891*x^13-393376*x^12+452990*x^11+471970*x^10-789081*x^9-237645*x^8+733769*x^7-52371*x^6-341822*x^5+101462*x^4+59331*x^3-28895*x^2+1832*x+171];
E[943,5]=[[x,59/41*x^12+342/41*x^11-64/41*x^10-3511/41*x^9-3956/41*x^8+278*x^7+19780/41*x^6-12214/41*x^5-33275/41*x^4-1898/41*x^3+17831/41*x^2+6587/41*x+437/41,-42/41*x^12-224/41*x^11+122/41*x^10+2343/41*x^9+2001/41*x^8-191*x^7-11153/41*x^6+8792/41*x^5+19326/41*x^4+971/41*x^3-10350/41*x^2-4573/41*x-432/41,83/41*x^12+470/41*x^11-122/41*x^10-4803/41*x^9-5158/41*x^8+377*x^7+25995/41*x^6-16172/41*x^5-43352/41*x^4-3349/41*x^3+22691/41*x^2+9329/41*x+801/41,-38/41*x^12-189/41*x^11+167/41*x^10+1991/41*x^9+1049/41*x^8-170*x^7-6557/41*x^6+9786/41*x^5+11025/41*x^4-4307/41*x^3-5768/41*x^2-590/41*x+107/41,69/41*x^12+409/41*x^11-54/41*x^10-4227/41*x^9-4942/41*x^8+335*x^7+24669/41*x^6-13993/41*x^5-41543/41*x^4-4638/41*x^3+21988/41*x^2+9554/41*x+739/41,-91/41*x^12-540/41*x^11+32/41*x^10+5425/41*x^9+6693/41*x^8-411*x^7-31948/41*x^6+15783/41*x^5+52041/41*x^4+7222/41*x^3-26730/41*x^2-12211/41*x-1141/41,-165/41*x^12-962/41*x^11+163/41*x^10+9928/41*x^9+11390/41*x^8-792*x^7-57278/41*x^6+35114/41*x^5+97185/41*x^4+5276/41*x^3-52498/41*x^2-18882/41*x-1293/41,1,-83/41*x^12-511/41*x^11-42/41*x^10+5172/41*x^9+7126/41*x^8-393*x^7-34113/41*x^6+14409/41*x^5+56759/41*x^4+8966/41*x^3-29784/41*x^2-12855/41*x-1129/41], x^13+6*x^12-60*x^10-78*x^9+183*x^8+370*x^7-154*x^6-601*x^5-120*x^4+300*x^3+157*x^2+23*x+1];
E[949,1]=[[x,-x+3,-2*x+3,3,2*x-3,1,0,3*x-2,-2*x+3,-x+6], x^2-3*x+1];
E[949,2]=[[x,-x+1,-2*x+1,1,2*x+3,1,4*x+4,-x+2,-2*x-1,5*x-2], x^2+x-1];
E[949,3]=[[x,175445/2459786*x^15+343631/1229893*x^14-1363442/1229893*x^13-932121/175699*x^12+6321860/1229893*x^11+95138707/2459786*x^10+40376/175699*x^9-168441757/1229893*x^8-162748655/2459786*x^7+594624393/2459786*x^6+64900501/351398*x^5-232645487/1229893*x^4-442242385/2459786*x^3+99524009/2459786*x^2+59059799/1229893*x+9008985/2459786,-355073/4919572*x^15-723173/2459786*x^14+1422065/1229893*x^13+1971657/351398*x^12-15139933/2459786*x^11-203529057/4919572*x^10+1654795/175699*x^9+184477305/1229893*x^8+105859541/4919572*x^7-1367755435/4919572*x^6-59341075/702796*x^5+299613985/1229893*x^4+413576511/4919572*x^3-375269319/4919572*x^2-59236467/2459786*x+5111193/4919572,130875/2459786*x^15+121049/2459786*x^14-3131829/2459786*x^13-326447/351398*x^12+30798637/2459786*x^11+8480882/1229893*x^10-11442121/175699*x^9-31952143/1229893*x^8+468387093/2459786*x^7+64336997/1229893*x^6-107093153/351398*x^5-129270427/2459786*x^4+289876561/1229893*x^3+55170097/2459786*x^2-150729861/2459786*x-6597916/1229893,-69670/1229893*x^15-241695/2459786*x^14+2933641/2459786*x^13+620229/351398*x^12-25374357/2459786*x^11-29822643/2459786*x^10+8450586/175699*x^9+50484668/1229893*x^8-160922389/1229893*x^7-182061275/2459786*x^6+36031826/175699*x^5+178807709/2459786*x^4-407829249/2459786*x^3-43937151/1229893*x^2+121871429/2459786*x+13156251/2459786,1,-7101/1229893*x^15-27543/1229893*x^14+111399/1229893*x^13+77013/175699*x^12-530602/1229893*x^11-4040051/1229893*x^10+1141/175699*x^9+14092769/1229893*x^8+7537349/1229893*x^7-20469212/1229893*x^6-3390237/175699*x^5+3297111/1229893*x^4+27713815/1229893*x^3+8757683/1229893*x^2-12956396/1229893*x+894774/1229893,-818799/4919572*x^15-469359/1229893*x^14+8680495/2459786*x^13+1314327/175699*x^12-37402244/1229893*x^11-280374125/4919572*x^10+24345287/175699*x^9+263676520/1229893*x^8-1764649261/4919572*x^7-2028382835/4919572*x^6+363544903/702796*x^5+911092695/2459786*x^4-1798346513/4919572*x^3-564073281/4919572*x^2+103782775/1229893*x+35302509/4919572,-129611/1229893*x^15-489219/1229893*x^14+2084231/1229893*x^13+1307030/175699*x^12-11026593/1229893*x^11-65470904/1229893*x^10+2054268/175699*x^9+226548311/1229893*x^8+62360601/1229893*x^7-387287903/1229893*x^6-34069308/175699*x^5+287506000/1229893*x^4+279118629/1229893*x^3-54925114/1229893*x^2-96454263/1229893*x-3838487/1229893,-615049/2459786*x^15-528502/1229893*x^14+6760669/1229893*x^13+1474568/175699*x^12-59716858/1229893*x^11-155432807/2459786*x^10+38956449/175699*x^9+285116078/1229893*x^8-1371729459/2459786*x^7-1050715363/2459786*x^6+265705599/351398*x^5+442276458/1229893*x^4-1210646121/2459786*x^3-248715615/2459786*x^2+128365445/1229893*x+14112779/2459786], x^16+x^15-24*x^14-20*x^13+234*x^12+157*x^11-1191*x^10-620*x^9+3367*x^8+1308*x^7-5160*x^6-1437*x^5+3799*x^4+732*x^3-937*x^2-133*x-1];
E[949,4]=[[x,6006/1685*x^15+15204/1685*x^14-109473/1685*x^13-267486/1685*x^12+778192/1685*x^11+1775217/1685*x^10-2780083/1685*x^9-1108940/337*x^8+1062934/337*x^7+8200696/1685*x^6-5178127/1685*x^5-5102701/1685*x^4+2000196/1685*x^3+1372509/1685*x^2-247844/1685*x-131716/1685,-474/337*x^15-1478/337*x^14+8364/337*x^13+26204/337*x^12-57262/337*x^11-175247/337*x^10+197150/337*x^9+550788/337*x^8-368267/337*x^7-814315/337*x^6+359761/337*x^5+492521/337*x^4-137945/337*x^3-119553/337*x^2+17459/337*x+9603/337,-3441/1685*x^15-8699/1685*x^14+63103/1685*x^13+153691/1685*x^12-452392/1685*x^11-1025962/1685*x^10+1633968/1685*x^9+646286/337*x^8-632102/337*x^7-4843841/1685*x^6+3096807/1685*x^5+3095981/1685*x^4-1166816/1685*x^3-876219/1685*x^2+133989/1685*x+86821/1685,2182/1685*x^15+6973/1685*x^14-37321/1685*x^13-123812/1685*x^12+241584/1685*x^11+832654/1685*x^10-753191/1685*x^9-531226/337*x^8+238500/337*x^7+4077332/1685*x^6-915079/1685*x^5-2713932/1685*x^4+248212/1685*x^3+736478/1685*x^2-21283/1685*x-63492/1685,1,329/337*x^15+814/337*x^14-6104/337*x^13-13962/337*x^12+44739/337*x^11+88146/337*x^10-167287/337*x^9-247161/337*x^8+336013/337*x^7+274269/337*x^6-326075/337*x^5-32736/337*x^4+87948/337*x^3-37599/337*x^2-2963/337*x+7623/337,-16297/1685*x^15-40513/1685*x^14+295901/1685*x^13+710267/1685*x^12-2088534/1685*x^11-4693784/1685*x^10+7369791/1685*x^9+2916817/337*x^8-2761575/337*x^7-21426822/1685*x^6+13045844/1685*x^5+13199537/1685*x^4-4790212/1685*x^3-3479733/1685*x^2+543713/1685*x+316192/1685,-15266/1685*x^15-36819/1685*x^14+279483/1685*x^13+644746/1685*x^12-1995317/1685*x^11-4251607/1685*x^10+7148888/1685*x^9+2630437/337*x^8-2730246/337*x^7-19129876/1685*x^6+13187537/1685*x^5+11477416/1685*x^4-4997276/1685*x^3-2892199/1685*x^2+591729/1685*x+249786/1685,-10031/1685*x^15-26489/1685*x^14+182608/1685*x^13+466871/1685*x^12-1299252/1685*x^11-3100792/1685*x^10+4665708/1685*x^9+1932803/337*x^8-1804278/337*x^7-14148756/1685*x^6+8913732/1685*x^5+8523826/1685*x^4-3407276/1685*x^3-2217249/1685*x^2+414914/1685*x+207171/1685], x^16+3*x^15-17*x^14-53*x^13+108*x^12+355*x^11-320*x^10-1132*x^9+440*x^8+1756*x^7-208*x^6-1219*x^5-68*x^4+363*x^3+62*x^2-37*x-9];
E[949,5]=[[x,-73425/473669*x^18+236126/473669*x^17+1747584/473669*x^16-5775986/473669*x^15-17112821/473669*x^14+57614666/473669*x^13+90336789/473669*x^12-301209462/473669*x^11-285989499/473669*x^10+881746067/473669*x^9+573515246/473669*x^8-1422567529/473669*x^7-723199359/473669*x^6+1136675558/473669*x^5+499557236/473669*x^4-325341789/473669*x^3-127220215/473669*x^2-4774579/473669*x-6128/473669,302065/947338*x^18-702815/947338*x^17-3796182/473669*x^16+8410932/473669*x^15+79323593/947338*x^14-81540824/473669*x^13-224592012/473669*x^12+821291867/947338*x^11+755007515/473669*x^10-1144523840/473669*x^9-1547522150/473669*x^8+3460618489/947338*x^7+1881278933/473669*x^6-1257666803/473669*x^5-1213056830/473669*x^4+283539542/473669*x^3+605996781/947338*x^2+64800063/947338*x-4671193/947338,-45281/473669*x^18-53713/473669*x^17+1561134/473669*x^16+1436497/473669*x^15-21954200/473669*x^14-16210289/473669*x^13+164062853/473669*x^12+100308517/473669*x^11-708414548/473669*x^10-369627474/473669*x^9+1794706694/473669*x^8+820838639/473669*x^7-2577297127/473669*x^6-1050046267/473669*x^5+1890942323/473669*x^4+685441732/473669*x^3-531907520/473669*x^2-164829142/473669*x+5504922/473669,-8961/473669*x^18-171933/473669*x^17+552793/473669*x^16+4357931/473669*x^15-9810261/473669*x^14-45490506/473669*x^13+80985788/473669*x^12+252423902/473669*x^11-356859978/473669*x^10-801268829/473669*x^9+867633520/473669*x^8+1453481653/473669*x^7-1136335400/473669*x^6-1411143732/473669*x^5+740912674/473669*x^4+630769127/473669*x^3-191157951/473669*x^2-91275715/473669*x+2676648/473669,-1,-466315/473669*x^18+1475841/473669*x^17+10680126/473669*x^16-35239395/473669*x^15-97859493/473669*x^14+341425216/473669*x^13+458339286/473669*x^12-1726640956/473669*x^11-1164791730/473669*x^10+4890467773/473669*x^9+1568056547/473669*x^8-7739513002/473669*x^7-958188733/473669*x^6+6383880621/473669*x^5+70133302/473669*x^4-2267030116/473669*x^3+125995834/473669*x^2+192547750/473669*x-5931122/473669,-275943/947338*x^18+1460273/947338*x^17+2669717/473669*x^16-17894094/473669*x^15-35900267/947338*x^14+179181026/473669*x^13+37919073/473669*x^12-1888160839/947338*x^11+90821778/473669*x^10+2808385707/473669*x^9-560994661/473669*x^8-9381658339/947338*x^7+957753910/473669*x^6+4073226867/473669*x^5-701211752/473669*x^4-1517646344/473669*x^3+426873537/947338*x^2+290988141/947338*x-12182689/947338,-194368/473669*x^18+699432/473669*x^17+4346178/473669*x^16-16834416/473669*x^15-38476271/473669*x^14+164745845/473669*x^13+171189478/473669*x^12-843625905/473669*x^11-401652511/473669*x^10+2425839182/473669*x^9+474081757/473669*x^8-3904283538/473669*x^7-218135410/473669*x^6+3274036169/473669*x^5-45208490/473669*x^4-1186024086/473669*x^3+64441865/473669*x^2+110525253/473669*x-2644280/473669,651768/473669*x^18-2317621/473669*x^17-14347320/473669*x^16+55548669/473669*x^15+123092881/473669*x^14-541102159/473669*x^13-510444938/473669*x^12+2758198519/473669*x^11+987696432/473669*x^10-7907257730/473669*x^9-452865837/473669*x^8+12758176608/473669*x^7-1240789803/473669*x^6-10884260201/473669*x^5+1824144857/473669*x^4+4154510609/473669*x^3-729001010/473669*x^2-449114804/473669*x+16324186/473669], x^19-4*x^18-21*x^17+96*x^16+165*x^15-937*x^14-556*x^13+4791*x^12+393*x^11-13804*x^10+2384*x^9+22463*x^8-6559*x^7-19460*x^6+6378*x^5+7664*x^4-2215*x^3-898*x^2+64*x-1];
E[949,6]=[[x,-12456185/269506693*x^17-14554192/269506693*x^16+331703802/269506693*x^15+378207502/269506693*x^14-3542397454/269506693*x^13-3876866609/269506693*x^12+19590930585/269506693*x^11+20086486017/269506693*x^10-60700370829/269506693*x^9-56197220690/269506693*x^8+106504495170/269506693*x^7+83629692567/269506693*x^6-101765324148/269506693*x^5-59947141234/269506693*x^4+47233150763/269506693*x^3+15196030832/269506693*x^2-7803382950/269506693*x+12478861/269506693,-67875374/269506693*x^17-171749079/269506693*x^16+1530345389/269506693*x^15+3696750779/269506693*x^14-14147167943/269506693*x^13-31612874236/269506693*x^12+70576153405/269506693*x^11+138941343483/269506693*x^10-208605157786/269506693*x^9-336542516966/269506693*x^8+374197247525/269506693*x^7+445319570599/269506693*x^6-396262875828/269506693*x^5-297506416441/269506693*x^4+224409158156/269506693*x^3+79406880995/269506693*x^2-51054862446/269506693*x-2259815360/269506693,-6586251/269506693*x^17+3845566/269506693*x^16+189888741/269506693*x^15-84713309/269506693*x^14-2194051808/269506693*x^13+805170418/269506693*x^12+13220283483/269506693*x^11-4373052490/269506693*x^10-45362537436/269506693*x^9+14223078430/269506693*x^8+90246421730/269506693*x^7-25809553292/269506693*x^6-100008333118/269506693*x^5+21605589330/269506693*x^4+54303753775/269506693*x^3-4949645262/269506693*x^2-10320892467/269506693*x-593515122/269506693,68744321/269506693*x^17+131450201/269506693*x^16-1626094479/269506693*x^15-2874146146/269506693*x^14+15635594739/269506693*x^13+24896689083/269506693*x^12-79375968712/269506693*x^11-109978974480/269506693*x^10+230467858243/269506693*x^9+264195985260/269506693*x^8-387242885916/269506693*x^7-340033225569/269506693*x^6+363503416605/269506693*x^5+216051352995/269506693*x^4-172697688692/269506693*x^3-53253841929/269506693*x^2+32232215768/269506693*x+619187972/269506693,-1,43797398/269506693*x^17+114438304/269506693*x^16-913700711/269506693*x^15-2278592024/269506693*x^14+7723265904/269506693*x^13+17600404172/269506693*x^12-35145376205/269506693*x^11-67996976724/269506693*x^10+95055965897/269506693*x^9+139907468315/269506693*x^8-154335733103/269506693*x^7-150184834279/269506693*x^6+138314699051/269506693*x^5+76416000992/269506693*x^4-55468291174/269506693*x^3-14571254697/269506693*x^2+5633676549/269506693*x+40551923/269506693,11199115/269506693*x^17+22619894/269506693*x^16-290201269/269506693*x^15-549088301/269506693*x^14+3110873256/269506693*x^13+5419137798/269506693*x^12-17897907599/269506693*x^11-28077322094/269506693*x^10+59772034095/269506693*x^9+81827211433/269506693*x^8-116975098831/269506693*x^7-132773868233/269506693*x^6+129180365955/269506693*x^5+110400215846/269506693*x^4-72851554723/269506693*x^3-37811552974/269506693*x^2+15514502243/269506693*x+1788381899/269506693,15514408/269506693*x^17+49889670/269506693*x^16-314339350/269506693*x^15-1102252935/269506693*x^14+2346627495/269506693*x^13+9572709674/269506693*x^12-7578801997/269506693*x^11-41754153323/269506693*x^10+7416458182/269506693*x^9+96418878839/269506693*x^8+11680241142/269506693*x^7-112933332638/269506693*x^6-24860683265/269506693*x^5+56328156016/269506693*x^4+8235152240/269506693*x^3-4343870113/269506693*x^2+1724951237/269506693*x-1837439126/269506693,-51325899/269506693*x^17-88240294/269506693*x^16+1257515141/269506693*x^15+1990847947/269506693*x^14-12659162143/269506693*x^13-18125771762/269506693*x^12+68202910791/269506693*x^11+86450309106/269506693*x^10-213850949182/269506693*x^9-232540949697/269506693*x^8+396620232442/269506693*x^7+349751140145/269506693*x^6-422767787543/269506693*x^5-268548645233/269506693*x^4+238742890889/269506693*x^3+81495042550/269506693*x^2-55934754972/269506693*x-2805354466/269506693], x^18+3*x^17-22*x^16-68*x^15+193*x^14+622*x^13-872*x^12-2985*x^11+2168*x^10+8148*x^9-2902*x^8-12815*x^7+1818*x^6+11232*x^5-216*x^4-4962*x^3-201*x^2+835*x+37];
E[979,1]=[[1,2,-2,-2,1,-2,-2,-6,2,6], x-1];
E[979,2]=[[x,333/328*x^16+1253/328*x^15-5593/328*x^14-23127/328*x^13+18457/164*x^12+170581/328*x^11-30511/82*x^10-159737/82*x^9+213919/328*x^8+317837/82*x^7-189587/328*x^6-1266713/328*x^5+49927/328*x^4+254123/164*x^3+10033/82*x^2-4722/41*x-1905/328,-53/82*x^16-381/164*x^15+455/41*x^14+7009/164*x^13-6241/82*x^12-25741/82*x^11+44193/164*x^10+191809/164*x^9-87739/164*x^8-189509/82*x^7+49281/82*x^6+374441/164*x^5-26845/82*x^4-149657/164*x^3+3125/164*x^2+12659/164*x-327/164,-311/328*x^16-1201/328*x^15+5141/328*x^14+22097/328*x^13-16573/164*x^12-162387/328*x^11+52867/164*x^10+151385/82*x^9-174987/328*x^8-598853/164*x^7+139439/328*x^6+1182387/328*x^5-18553/328*x^4-116411/82*x^3-5908/41*x^2+16067/164*x+2215/328,-1,-859/328*x^16-3115/328*x^15+14909/328*x^14+58063/328*x^13-51567/164*x^12-432271/328*x^11+45771/41*x^10+816219/164*x^9-719205/328*x^8-1634133/164*x^7+774251/328*x^6+3265569/328*x^5-361157/328*x^4-652923/164*x^3-19583/164*x^2+12207/41*x+2477/328,-88/41*x^16-1283/164*x^15+1521/41*x^14+23901/164*x^13-20919/82*x^12-44502/41*x^11+147021/164*x^10+673395/164*x^9-282653/164*x^8-338192/41*x^7+144811/82*x^6+1358441/164*x^5-29023/41*x^4-545553/164*x^3-28937/164*x^2+38407/164*x+1149/164,-461/164*x^16-843/82*x^15+1997/41*x^14+31535/164*x^13-13742/41*x^12-235751/164*x^11+192633/164*x^10+447437/82*x^9-183661/82*x^8-1803261/164*x^7+92600/41*x^6+1816787/164*x^5-142453/164*x^4-733551/164*x^3-10431/41*x^2+53043/164*x+1637/164,289/328*x^16+1067/328*x^15-4853/328*x^14-19509/328*x^13+16083/164*x^12+142057/328*x^11-54101/164*x^10-261179/164*x^9+200261/328*x^8+126240/41*x^7-207699/328*x^6-957103/328*x^5+100995/328*x^4+86265/82*x^3+3869/164*x^2-9187/164*x-639/328,527/328*x^16+1883/328*x^15-9221/328*x^14-35035/328*x^13+32439/164*x^12+260907/328*x^11-59253/82*x^10-494187/164*x^9+483421/328*x^8+995919/164*x^7-536219/328*x^6-2010397/328*x^5+245841/328*x^4+406673/164*x^3+16683/164*x^2-14653/82*x-3905/328], x^17+4*x^16-16*x^15-74*x^14+95*x^13+547*x^12-241*x^11-2054*x^10+141*x^9+4103*x^8+489*x^7-4118*x^6-966*x^5+1663*x^4+596*x^3-94*x^2-43*x-1];
E[979,3]=[[x,42/53*x^10+16/53*x^9-498/53*x^8-95/53*x^7+1887/53*x^6+66/53*x^5-2672/53*x^4+277/53*x^3+1141/53*x^2-342/53*x-107/53,71/53*x^10+22/53*x^9-857/53*x^8-177/53*x^7+3277/53*x^6+581/53*x^5-4469/53*x^4-858/53*x^3+1390/53*x^2+232/53*x-8/53,14/53*x^10+23/53*x^9-166/53*x^8-226/53*x^7+682/53*x^6+658/53*x^5-1244/53*x^4-632/53*x^3+928/53*x^2+204/53*x-71/53,1,-2/53*x^10+80/53*x^9+54/53*x^8-952/53*x^7-317/53*x^6+3563/53*x^5+738/53*x^4-4710/53*x^3-867/53*x^2+1364/53*x+207/53,-1/53*x^10-66/53*x^9-26/53*x^8+743/53*x^7+292/53*x^6-2538/53*x^5-1009/53*x^4+2839/53*x^3+1395/53*x^2-484/53*x-400/53,-113/53*x^10-38/53*x^9+1408/53*x^8+325/53*x^7-5747/53*x^6-1071/53*x^5+9102/53*x^4+1429/53*x^3-4704/53*x^2-261/53*x+433/53,49/53*x^10+54/53*x^9-634/53*x^8-632/53*x^7+2705/53*x^6+2462/53*x^5-4248/53*x^4-3325/53*x^3+1658/53*x^2+661/53*x-116/53,-44/53*x^10-95/53*x^9+499/53*x^8+1051/53*x^7-1780/53*x^6-3711/53*x^5+2085/53*x^4+4553/53*x^3-206/53*x^2-997/53*x-163/53], x^11+2*x^10-11*x^9-22*x^8+37*x^7+79*x^6-38*x^5-105*x^4-5*x^3+35*x^2+5*x-1];
E[979,4]=[[x,32181/970252*x^17-101205/970252*x^16-351343/485126*x^15+582262/242563*x^14+1475035/242563*x^13-21413563/970252*x^12-11502589/485126*x^11+100242937/970252*x^10+35103871/970252*x^9-252273609/970252*x^8+10489191/485126*x^7+166446435/485126*x^6-123103559/970252*x^5-107501555/485126*x^4+115844345/970252*x^3+16664731/242563*x^2-7536931/242563*x-2300034/242563,-1305151/970252*x^17+2228403/485126*x^16+27446207/970252*x^15-50726519/485126*x^14-55535770/242563*x^13+929477173/970252*x^12+846460441/970252*x^11-4397384165/970252*x^10-687681091/485126*x^9+2865801954/242563*x^8-31256521/970252*x^7-4066034970/242563*x^6+2646935439/970252*x^5+11654751501/970252*x^4-2500921533/970252*x^3-3608370881/970252*x^2+161017891/242563*x+85293329/242563,-927033/485126*x^17+6247607/970252*x^16+39181789/970252*x^15-71106827/485126*x^14-79971683/242563*x^13+651462717/485126*x^12+1241223233/970252*x^11-3082258957/485126*x^10-2132116159/970252*x^9+16070323421/970252*x^8+401220833/970252*x^7-11396841261/485126*x^6+792668693/242563*x^5+16305482525/970252*x^4-1592226003/485126*x^3-5019281485/970252*x^2+208871795/242563*x+117117660/242563,-1,-501981/970252*x^17+845015/485126*x^16+10612085/970252*x^15-9602669/242563*x^14-21690563/242563*x^13+351210635/970252*x^12+338215283/970252*x^11-1657382947/970252*x^10-147923058/242563*x^9+2152784241/485126*x^8+159423113/970252*x^7-3037701573/485126*x^6+763873041/970252*x^5+4305602755/970252*x^4-777671283/970252*x^3-1294925937/970252*x^2+100611041/485126*x+28763337/242563,21055/485126*x^17-38772/242563*x^16-428457/485126*x^15+913557/242563*x^14+1569454/242563*x^13-17402263/485126*x^12-8434771/485126*x^11+85937993/485126*x^10-3890920/242563*x^9-117387758/242563*x^8+90162407/485126*x^7+175695180/242563*x^6-179837605/485126*x^5-270382771/485126*x^4+138042045/485126*x^3+95095623/485126*x^2-17234261/242563*x-5935222/242563,-799849/485126*x^17+5258071/970252*x^16+34113057/970252*x^15-59809465/485126*x^14-70741606/242563*x^13+547584785/485126*x^12+1134296941/970252*x^11-2588745177/485126*x^10-2134573295/970252*x^9+13485110117/970252*x^8+1089774625/970252*x^7-9552681575/485126*x^6+438143255/242563*x^5+13636464417/970252*x^4-1074348161/485126*x^3-4160439497/970252*x^2+150508303/242563*x+93416392/242563,-2718163/970252*x^17+9029953/970252*x^16+14418172/242563*x^15-51328948/242563*x^14-118559222/242563*x^13+1878683513/970252*x^12+466906999/242563*x^11-8876783567/970252*x^10-3346007811/970252*x^9+23111683029/970252*x^8+280635318/242563*x^7-16375029369/485126*x^6+3997095861/970252*x^5+5856094637/242563*x^4-4326934955/970252*x^3-3609609271/485126*x^2+292354493/242563*x+168627800/242563,-494735/242563*x^17+3317367/485126*x^16+20893357/485126*x^15-75451911/485126*x^14-85145340/242563*x^13+345315038/242563*x^12+658205347/485126*x^11-1632142516/242563*x^10-558498994/242563*x^9+4250876773/242563*x^8+160053085/485126*x^7-12053657263/485126*x^6+880648363/242563*x^5+8634710197/485126*x^4-868460616/242563*x^3-1338201775/242563*x^2+452106167/485126*x+128092781/242563], x^18-4*x^17-19*x^16+90*x^15+124*x^14-811*x^13-225*x^12+3743*x^11-952*x^10-9378*x^9+5261*x^8+12404*x^7-9477*x^6-7697*x^5+7275*x^4+1621*x^3-2164*x^2+32*x+160];
E[979,5]=[[x,-59187274907/2427266328636*x^24+50650740191/1213633164318*x^23+3088325214393/3236355104848*x^22-15359850867895/9709065314544*x^21-78139281576149/4854532657272*x^20+20743725622249/809088776212*x^19+496613297916339/3236355104848*x^18-1127657562312887/4854532657272*x^17-2212265255060147/2427266328636*x^16+12547121105638919/9709065314544*x^15+11350999765383741/3236355104848*x^14-3697429687637433/809088776212*x^13-10692082367518621/1213633164318*x^12+33325130286860257/3236355104848*x^11+68849675460793093/4854532657272*x^10-140390969246683487/9709065314544*x^9-135429534874757023/9709065314544*x^8+58626907386253523/4854532657272*x^7+74555115347038363/9709065314544*x^6-3370991135395733/606816582159*x^5-6732587825938541/3236355104848*x^4+2953197990739511/2427266328636*x^3+141376811887049/606816582159*x^2-18134997778481/202272194053*x-2090325313304/202272194053,538460086997/7281798985908*x^24-1084913151515/9709065314544*x^23-10345350327607/3640899492954*x^22+117756567172021/29127195943632*x^21+76052434536173/1618177552424*x^20-1799051235623791/29127195943632*x^19-4263499119909731/9709065314544*x^18+1888174054123925/3640899492954*x^17+74518428885183325/29127195943632*x^16-19001240407636027/7281798985908*x^15-282049342228861441/29127195943632*x^14+39075865388183885/4854532657272*x^13+699989533295925053/29127195943632*x^12-435269834956927361/29127195943632*x^11-1118424089963671661/29127195943632*x^10+227892582730653305/14563597971816*x^9+1092214622317460873/29127195943632*x^8-231695092999030199/29127195943632*x^7-65760606865614709/3236355104848*x^6+11826845379795377/9709065314544*x^5+154401391502527783/29127195943632*x^4+2414138928799585/7281798985908*x^3-1125707771166625/2427266328636*x^2-161354562557737/1820449746477*x-3779049154001/606816582159,-916679202391/14563597971816*x^24+1219355897195/9709065314544*x^23+69105483271487/29127195943632*x^22-67420774057289/14563597971816*x^21-62002204704821/1618177552424*x^20+2113787464878595/29127195943632*x^19+1687156703681791/4854532657272*x^18-9206438068371299/14563597971816*x^17-56872209384096487/29127195943632*x^16+97854392275636075/29127195943632*x^15+25763460393459299/3640899492954*x^14-13693945992005423/1213633164318*x^13-486648799642085855/29127195943632*x^12+350701673830972387/14563597971816*x^11+736481934901956803/29127195943632*x^10-937053467664109207/29127195943632*x^9-339954240850357495/14563597971816*x^8+759354903058580441/29127195943632*x^7+4842172824864731/404544388106*x^6-118373852058625667/9709065314544*x^5-22015922695238707/7281798985908*x^4+42048910784613913/14563597971816*x^3+815598707861389/2427266328636*x^2-440873142611669/1820449746477*x-13889286078196/606816582159,1,7135907971159/58254391887264*x^24-1901980052525/6472710209696*x^23-266246017593469/58254391887264*x^22+638093074197137/58254391887264*x^21+1415482220951321/19418130629088*x^20-1268536843960771/7281798985908*x^19-12647589454329181/19418130629088*x^18+90084815912162381/58254391887264*x^17+209526556419382217/58254391887264*x^16-490814672406061847/58254391887264*x^15-746083336589943053/58254391887264*x^14+567733484554513541/19418130629088*x^13+217390153070566379/7281798985908*x^12-473680776402303665/7281798985908*x^11-2639812480779263803/58254391887264*x^10+5315453144540722733/58254391887264*x^9+316626566747528081/7281798985908*x^8-1126376347288730791/14563597971816*x^7-119804242787133629/4854532657272*x^6+356376753395728825/9709065314544*x^5+429031966763973509/58254391887264*x^4-62322631253473223/7281798985908*x^3-814631815187143/809088776212*x^2+2615298581378719/3640899492954*x+39020542905088/606816582159,-3314723203181/7281798985908*x^24+8778846700597/9709065314544*x^23+251063520015697/14563597971816*x^22-975146050284637/29127195943632*x^21-1359443551843261/4854532657272*x^20+15371067721102057/29127195943632*x^19+24841730755534067/9709065314544*x^18-8425675154666266/1820449746477*x^17-422553388527600523/29127195943632*x^16+361214798137903871/14563597971816*x^15+1549389391407620245/29127195943632*x^14-408367476169308005/4854532657272*x^13-3715074675914776391/29127195943632*x^12+5284061071479137213/29127195943632*x^11+5745190427559585047/29127195943632*x^10-889832373535678637/3640899492954*x^9-5485764076229660093/29127195943632*x^8+5763397936992267509/29127195943632*x^7+993320730547335659/9709065314544*x^6-292452197119630237/3236355104848*x^5-824199959856027391/29127195943632*x^4+37071332913242276/1820449746477*x^3+4154416746334711/1213633164318*x^2-2948945946408209/1820449746477*x-101263850807272/606816582159,-13953641707579/58254391887264*x^24+2976941068863/6472710209696*x^23+528738014289403/58254391887264*x^22-987411274033097/58254391887264*x^21-2865488772577589/19418130629088*x^20+7734875074623253/29127195943632*x^19+26216591542952221/19418130629088*x^18-134577088514087537/58254391887264*x^17-446858096120890103/58254391887264*x^16+713237232277781345/58254391887264*x^15+1643498169420040409/58254391887264*x^14-794048412472945361/19418130629088*x^13-1978752616282704317/29127195943632*x^12+1256768625328790737/14563597971816*x^11+6153305121682864273/58254391887264*x^10-6566064201597206423/58254391887264*x^9-1477533912565491979/14563597971816*x^8+2544264634255443365/29127195943632*x^7+268661321585487977/4854532657272*x^6-182775108376583045/4854532657272*x^5-886869786835483097/58254391887264*x^4+28691828146543459/3640899492954*x^3+1408346540605341/809088776212*x^2-1036295396492024/1820449746477*x-38653402455271/606816582159,-10765503905447/29127195943632*x^24+493228555036/606816582159*x^23+101091347198741/7281798985908*x^22-879660174508525/29127195943632*x^21-2167110419248841/9709065314544*x^20+13929900018237853/29127195943632*x^19+19546374489143345/9709065314544*x^18-122932316671619473/29127195943632*x^17-163596811088220833/14563597971816*x^16+166108073074404031/7281798985908*x^15+1176695857398135427/29127195943632*x^14-760175585377695517/9709065314544*x^13-2759252279723354957/29127195943632*x^12+1250087633200925771/7281798985908*x^11+1041878882450931803/7281798985908*x^10-3444386488780085903/14563597971816*x^9-973177029772137491/7281798985908*x^8+5733298381849201631/29127195943632*x^7+346808235148771987/4854532657272*x^6-299139016846655397/3236355104848*x^5-574815456485269699/29127195943632*x^4+156078804654982979/7281798985908*x^3+3122335020365497/1213633164318*x^2-3227466045220097/1820449746477*x-104800756170190/606816582159,-961168059835/58254391887264*x^24-598653333127/6472710209696*x^23+43486513743253/58254391887264*x^22+216931248926587/58254391887264*x^21-283198023669497/19418130629088*x^20-118059130447256/1820449746477*x^19+3127297149183901/19418130629088*x^18+37313119510554115/58254391887264*x^17-64339118281564469/58254391887264*x^16-230259653389732177/58254391887264*x^15+283279932433726793/58254391887264*x^14+307224662354931475/19418130629088*x^13-99878779252371695/7281798985908*x^12-600735995750793359/14563597971816*x^11+1395382458974821267/58254391887264*x^10+3984168663108035875/58254391887264*x^9-87408814104192175/3640899492954*x^8-496381480390788259/7281798985908*x^7+29039316728765107/2427266328636*x^6+359724422414252249/9709065314544*x^5-132303461574890765/58254391887264*x^4-140911802455080743/14563597971816*x^3-29491844274705/202272194053*x^2+3279797393108177/3640899492954*x+46834482576554/606816582159], x^25-4*x^24-34*x^23+150*x^22+472*x^21-2405*x^20-3367*x^19+21590*x^18+12144*x^17-119518*x^16-11478*x^15+424322*x^14-75545*x^13-975398*x^12+328509*x^11+1432194*x^10-602131*x^9-1290914*x^8+586606*x^7+662736*x^6-303037*x^5-172209*x^4+73684*x^3+18592*x^2-6016*x-672];
E[979,6]=[[0,2,3,0,-1,-1,6,4,0,7], x-1];