CoCalc Public Fileswww / papers / thesis / thesis.bblOpen with one click!
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
1
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2
\begin{thebibliography}{10}
3
4
\bibitem{agashe}
5
A.~Agash\'{e}, \emph{On invisible elements of the {T}ate-{S}hafarevich group},
6
C. R. Acad. Sci. Paris S\'er. I Math. \textbf{328} (1999), no.~5, 369--374.
7
8
\bibitem{agashe:phd}
9
A.~Agashe, \emph{The {B}irch and {S}winnerton-{D}yer formula for modular
10
abelian varieties of analytic rank~$0$}, U.\thinspace{}C. Berkeley Ph.D.
11
thesis (2000).
12
13
\bibitem{agashe-stein:manin}
14
A.~Agashe and W.\thinspace{}A. Stein, \emph{On the generalized manin constant
15
for quotients of \protect{$J_0(N)$}}, in preparation.
16
17
\bibitem{atkin-lehner}
18
A.\thinspace{}O.\thinspace{}L. Atkin and J.~Lehner, \emph{Hecke operators on
19
\protect{$\Gamma \sb{0}(m)$}}, Math. Ann. \textbf{185} (1970), 134--160.
20
21
\bibitem{birch:atkin}
22
B.~Birch, \emph{Atkin and the {A}tlas {L}ab}, Proceedings of the conference in
23
honor of A.\thinspace{}O.\thinspace{}L. Atkin held at the University of
24
Illinois, Chicago, IL, September 1995, Amer. Math. Soc., Providence, RI,
25
1998, pp.~13--20.
26
27
\bibitem{antwerpiv}
28
B.\thinspace{}J. Birch and W.~Kuyk (eds.), \emph{Modular functions of one
29
variable. {I}{V}}, Springer-Verlag, Berlin, 1975, Lecture Notes in
30
Mathematics, Vol. 476.
31
32
\bibitem{bloch-kato}
33
S.~Bloch and K.~Kato, \emph{\protect{${L}$}-functions and \protect{T}amagawa
34
numbers of motives}, The Grothendieck Festschrift, Vol. \protect{I},
35
Birkh\"auser Boston, Boston, MA, 1990, pp.~333--400.
36
37
\bibitem{neronmodels}
38
S.~Bosch, W.~L{\"u}tkebohmert, and M.~Raynaud, \emph{N\'eron models},
39
Springer-Verlag, Berlin, 1990.
40
41
\bibitem{magma}
42
W.~Bosma, J.~Cannon, and C.~Playoust, \emph{The {M}agma algebra system {I}:
43
{T}he user language}, J. Symb. Comp. \textbf{24} (1997), no.~3-4, 235--265,
44
\\\protect{\sf http://www.maths.usyd.edu.au:8000/u/magma/}.
45
46
\bibitem{breuil-conrad-diamond-taylor}
47
C.~Breuil, B.~Conrad, F.~Diamond, and R.~Taylor, \emph{On the modularity of
48
elliptic curves over \protect{$\Q$}, or {W}ild $3$-adic exercises}, (2000),
49
\\\protect{\sf
50
http://www.math.harvard.edu/HTML/Individuals/Richard\_Taylor.html}.
51
52
\bibitem{brumer:rank}
53
A.~Brumer, \emph{The rank of \protect{${J}\sb 0({N})$}}, Ast\'erisque (1995),
54
no.~228, 3, 41--68, Columbia University Number Theory Seminar (New York,
55
1992).
56
57
\bibitem{buzzard-stein:artin}
58
K.~Buzzard and W.\thinspace{}A. Stein, \emph{Modularity of some icosahedral
59
{G}alois representations}, in preparation.
60
61
\bibitem{cohen-oesterle:dimensions}
62
H.~Cohen and J.~Oesterl{\'e}, \emph{Dimensions des espaces de formes
63
modulaires}, (1977), 69--78. Lecture Notes in Math., Vol. 627.
64
65
\bibitem{coleman:monodromy}
66
R.~Coleman, \emph{The monodromy pairing}, Asian Math. Journal (1999).
67
68
\bibitem{cremona:gammaone}
69
J.\thinspace{}E. Cremona, \emph{Modular symbols for \protect{$\Gamma\sb
70
1({N})$} and elliptic curves with everywhere good reduction}, Math. Proc.
71
Cambridge Philos. Soc. \textbf{111} (1992), no.~2, 199--218.
72
73
\bibitem{cremona:algs}
74
\bysame, \emph{Algorithms for modular elliptic curves}, second ed., Cambridge
75
University Press, Cambridge, 1997.
76
77
\bibitem{cremona:periods}
78
\bysame, \emph{Computing periods of cusp forms and modular elliptic curves},
79
Experiment. Math. \textbf{6} (1997), no.~2, 97--107.
80
81
\bibitem{cremona-mazur}
82
J.\thinspace{}E. Cremona and B.~Mazur, \emph{Visualizing elements in the
83
\protect{Shafarevich-Tate} group}, to appear in Experiment. Math.
84
85
\bibitem{darmon-bsd}
86
H.~Darmon, \emph{Wiles' theorem and the arithmetic of elliptic curves}, Modular
87
forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997,
88
pp.~549--569.
89
90
\bibitem{darmon-merel}
91
H.~Darmon and L.~Merel, \emph{Winding quotients and some variants of {F}ermat's
92
last theorem}, J. Reine Angew. Math. \textbf{490} (1997), 81--100.
93
94
\bibitem{diamond-im}
95
F.~Diamond and J.~Im, \emph{Modular forms and modular curves}, Seminar on
96
{F}ermat's {L}ast {T}heorem, Providence, RI, 1995, pp.~39--133.
97
98
\bibitem{dummigan:cp}
99
N.~Dummigan, \emph{Period ratios of modular forms}, to appear in Math. Annalen.
100
101
\bibitem{edixhoven:eisen}
102
B.~Edixhoven, \emph{L'action de l'alg\`ebre de \protect{H}ecke sur les groupes
103
de composantes des jacobiennes des courbes modulaires est
104
``\protect{E}isenstein''}, Ast\'erisque (1991), no.~196--197, 7--8, 159--170
105
(1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988).
106
107
\bibitem{empirical}
108
E.\thinspace{}V. Flynn, F.~\protect{Lepr\'{e}vost}, E.\thinspace{}F. Schaefer,
109
W.\thinspace{}A. Stein, M.~Stoll, and J.\thinspace{}L. Wetherell,
110
\emph{Empirical evidence for the \protect{B}irch and
111
\protect{S}winnerton-\protect{D}yer conjectures for modular
112
\protect{J}acobians of genus 2 curves}, Math. of Comp. (2000).
113
114
\bibitem{goldfeld:complexity}
115
D.~Goldfeld, \emph{On the computational complexity of modular symbols}, Math.
116
Comp. \textbf{58} (1992), no.~198, 807--814.
117
118
\bibitem{ganz-lario:manin}
119
J.~Gonz\'{a}lez and J-C. Lario, \emph{$\mathbf{Q}$-curves and their {M}anin
120
ideals}, preprint (2000).
121
122
\bibitem{gross-zagier}
123
B.~Gross and D.~Zagier, \emph{Heegner points and derivatives of
124
\protect{${L}$}-series}, Invent. Math. \textbf{84} (1986), no.~2, 225--320.
125
126
\bibitem{gross:central}
127
B.\thinspace{}H. Gross, \emph{${L}$-functions at the central critical point},
128
Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994,
129
pp.~527--535.
130
131
\bibitem{hatada:rationality}
132
K.~Hatada, \emph{Multiplicity one theorem and modular symbols}, J. Math. Soc.
133
Japan \textbf{33} (1981), no.~3, 445--470.
134
135
\bibitem{hijikata:trace}
136
H.~Hijikata, \emph{Explicit formula of the traces of \protect{H}ecke operators
137
for \protect{$\Gamma_0(N)$}}, J. Math. Soc. Japan \textbf{26} (1974), no.~1,
138
56--82.
139
140
\bibitem{katzmazur}
141
N.\thinspace{}M. Katz and B.~Mazur, \emph{Arithmetic moduli of elliptic
142
curves}, Princeton University Press, Princeton, N.J., 1985.
143
144
\bibitem{kohel:hecke}
145
D.\thinspace{}R. Kohel, \emph{Hecke module structure of quaternions}, preprint
146
(1998).
147
148
\bibitem{kolyvagin:mordellweil}
149
V.\thinspace{}A. Kolyvagin, \emph{On the {M}ordell-{W}eil group and the
150
{S}hafarevich-{T}ate group of modular elliptic curves}, Proceedings of the
151
International Congress of Mathematicians, Vol.\ I, II (Kyoto, 1990) (Tokyo),
152
Math. Soc. Japan, 1991, pp.~429--436.
153
154
\bibitem{kolyvagin:structureofsha}
155
\bysame, \emph{On the structure of {S}hafarevich-{T}ate groups}, Algebraic
156
geometry (Chicago, IL, 1989), Springer, Berlin, 1991, pp.~94--121.
157
158
\bibitem{kolyvagin-logachev:totallyreal}
159
V.\thinspace{}A. Kolyvagin and D.\thinspace{}Y. Logachev, \emph{Finiteness of
160
\protect{$\Sha$} over totally real fields}, Math. USSR Izvestiya \textbf{39}
161
(1992), no.~1, 829--853.
162
163
\bibitem{lang:algebra}
164
S.~Lang, \emph{Algebra}, third ed., Addison-Wesley Publishing Co., Reading,
165
Mass., 1993.
166
167
\bibitem{winnie:newforms}
168
W-C. Li, \emph{Newforms and functional equations}, Math. Ann. \textbf{212}
169
(1975), 285--315.
170
171
\bibitem{manin:parabolic}
172
J.\thinspace{}I. Manin, \emph{Parabolic points and zeta functions of modular
173
curves}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{36} (1972), 19--66.
174
175
\bibitem{mazur:symboles}
176
B.~Mazur, \emph{Courbes elliptiques et symboles modulaires}, S\'eminaire
177
Bourbaki, 24\`eme ann\'ee (1971/1972), Exp. No. 414, Springer, Berlin, 1973,
178
pp.~277--294. Lecture Notes in Math., Vol. 317.
179
180
\bibitem{mazur:eisenstein}
181
\bysame, \emph{Modular curves and the \protect{Eisenstein} ideal}, Inst. Hautes
182
\'Etudes Sci. Publ. Math. (1977), no.~47, 33--186 (1978).
183
184
\bibitem{mazur:rational}
185
\bysame, \emph{Rational isogenies of prime degree (with an appendix by {D}.
186
{G}oldfeld)}, Invent. Math. \textbf{44} (1978), no.~2, 129--162.
187
188
\bibitem{mazur:arithmetic_values}
189
\bysame, \emph{On the arithmetic of special values of ${L}$\ functions},
190
Invent. Math. \textbf{55} (1979), no.~3, 207--240.
191
192
\bibitem{mazur:visthree}
193
\bysame, \emph{Visualizing elements of order three in the {S}hafarevich-{T}ate
194
group}, preprint (1999).
195
196
\bibitem{mazur-sd}
197
B.~Mazur and P.~Swinnerton-Dyer, \emph{Arithmetic of {W}eil curves}, Invent.
198
Math. \textbf{25} (1974), 1--61.
199
200
\bibitem{merel:1585}
201
L.~Merel, \emph{Universal \protect{F}ourier expansions of modular forms}, On
202
{A}rtin's conjecture for odd 2-dimensional representations (Berlin),
203
Springer, 1994, pp.~59--94.
204
205
\bibitem{merel:weil}
206
\bysame, \emph{L'accouplement de {W}eil entre le sous-groupe de {S}himura et le
207
sous-groupe cuspidal de ${J}\sb 0(p)$}, J. Reine Angew. Math. \textbf{477}
208
(1996), 71--115.
209
210
\bibitem{mestre:graphs}
211
J.-F. Mestre, \emph{La m\'ethode des graphes. \protect{Exemples} et
212
applications}, Proceedings of the international conference on class numbers
213
and fundamental units of algebraic number fields (Katata) (1986), 217--242.
214
215
\bibitem{mestre-oesterle:crelle}
216
J.-F. Mestre and J.~Oesterl{\'e}, \emph{Courbes de {W}eil semi-stables de
217
discriminant une puissance \protect{$m$}-i\`eme}, J. Reine Angew. Math.
218
\textbf{400} (1989), 173--184.
219
220
\bibitem{milne:etale}
221
J.\thinspace{}S. Milne, \emph{\'{E}tale cohomology}, Princeton University
222
Press, Princeton, N.J., 1980.
223
224
\bibitem{milne:abvars}
225
\bysame, \emph{Abelian varieties}, Arithmetic geometry (Storrs, Conn., 1984),
226
Springer, New York, 1986, pp.~103--150.
227
228
\bibitem{milne:duality}
229
\bysame, \emph{Arithmetic duality theorems}, Academic Press Inc., Boston,
230
Mass., 1986.
231
232
\bibitem{pizer:alg}
233
A.~Pizer, \emph{An algorithm for computing modular forms on
234
\protect{$\Gamma\sb{0}({N})$}}, J. Algebra \textbf{64} (1980), no.~2,
235
340--390.
236
237
\bibitem{ribet:modreps}
238
K.\thinspace{}A. Ribet, \emph{On modular representations of \protect{${\rm
239
{G}al}(\overline{\bf{Q}}/{\bf {Q}})$} arising from modular forms}, Invent.
240
Math. \textbf{100} (1990), no.~2, 431--476.
241
242
\bibitem{ribet:raising}
243
\bysame, \emph{Raising the levels of modular representations}, S\'eminaire de
244
Th\'eorie des Nombres, Paris 1987--88, Birkh\"auser Boston, Boston, MA, 1990,
245
pp.~259--271.
246
247
\bibitem{rubin:main-conjectures}
248
K.~Rubin, \emph{The ``main conjectures'' of {I}wasawa theory for imaginary
249
quadratic fields}, Invent. Math. \textbf{103} (1991), no.~1, 25--68.
250
251
\bibitem{rubin:book}
252
\bysame, \emph{{E}uler {S}ystems}, Princeton University Press, Spring 2000,
253
{A}nnals of {M}athematics {S}tudies {\bf 147}, \protect{\sf
254
http://math.Stanford.EDU/\~{ }rubin/weyl.html}.
255
256
\bibitem{scholl:motivesinvent}
257
A.\thinspace{}J. Scholl, \emph{Motives for modular forms}, Invent. Math.
258
\textbf{100} (1990), no.~2, 419--430.
259
260
\bibitem{scholl:kato}
261
\bysame, \emph{An introduction to {K}ato's {E}uler systems}, Galois
262
Representations in Arithmetic Algebraic Geometry, Cambridge University Press,
263
1998, pp.~379--460.
264
265
\bibitem{shafarevich:exp}
266
I.\thinspace{}R. Shafarevich, \emph{Exponents of elliptic curves}, Dokl. Akad.
267
Nauk SSSR (N.S.) \textbf{114} (1957), 714--716.
268
269
\bibitem{shimura:surles}
270
G.~Shimura, \emph{Sur les \protect{int\'egrales} \protect{attach\'ees} aux
271
formes automorphes}, J. Math. Soc. Japan \textbf{11} (1959), 291--311.
272
273
\bibitem{shimura:factors}
274
\bysame, \emph{On the factors of the jacobian variety of a modular function
275
field}, J. Math. Soc. Japan \textbf{25} (1973), no.~3, 523--544.
276
277
\bibitem{shimura:intro}
278
\bysame, \emph{Introduction to the arithmetic theory of automorphic functions},
279
Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971
280
original, Kan Memorial Lectures, 1.
281
282
\bibitem{sokurov:modsym}
283
V.~V. {\v{S}}okurov, \emph{Modular symbols of arbitrary weight}, Funkcional.
284
Anal. i Prilo\v zen. \textbf{10} (1976), no.~1, 95--96.
285
286
\bibitem{stein:hecke}
287
W.\thinspace{}A. Stein, \emph{\protect{{\tt HECKE}: The} modular symbols
288
calculator}, Software (available online) (1999).
289
290
\bibitem{stevens:thesis}
291
G.~Stevens, \emph{Arithmetic on modular curves}, Birkh\"auser Boston Inc.,
292
Boston, Mass., 1982.
293
294
\bibitem{sturm:cong}
295
J.~Sturm, \emph{On the congruence of modular forms}, Number theory (New York,
296
1984--1985), Springer, Berlin, 1987, pp.~275--280.
297
298
\bibitem{tate:bsd}
299
J.~Tate, \emph{On the conjectures of {B}irch and {S}winnerton-{D}yer and a
300
geometric analog}, S\'eminaire Bourbaki, Vol.\ 9, Soc. Math. France, Paris,
301
1995, pp.~Exp.\ No.\ 306, 415--440.
302
303
\bibitem{cime-1997}
304
C.~Viola, \emph{{Arithmetic theory of elliptic curves. Lectures given at the
305
3rd session of the {C}entro {I}nternazionale {M}atematico {E}stivo
306
\protect{(CIME)}.}}, Springer-Verlag, Berlin, 1997 (English).
307
308
\bibitem{zagier:parametrizations}
309
D.~Zagier, \emph{Modular parametrizations of elliptic curves}, Canad. Math.
310
Bull. \textbf{28} (1985), no.~3, 372--384.
311
312
\end{thebibliography}
313