CoCalc Public Fileswww / papers / thesis / src / symbols.texOpen with one click!
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
1
% $Header: /home/was/papers/thesis/RCS/symbols.tex,v 1.3 2000/05/11 03:12:03 was Exp $
2
3
\mbox{}
4
\vspace{7ex}
5
\section*{\Huge List of Symbols}
6
\addcontentsline{toc}{chapter}{List of Symbols}
7
8
\begin{tabular}{llr}
9
{\bf \large Symbol} \hspace{4em} & {\bf \large Definition}
10
& {\bf \large Page}\\
11
&\vspace{-2ex}\\
12
$\Adual$ & dual to $A$ & \pageref{pg:dual}\\
13
$\sB_k(N,\eps)$ & module of boundary modular symbols & \pageref{def:boundarysymbols}\\
14
$c_A$ & Manin constant of~$A$ & \pageref{defn:maninconstant}\\
15
$m_A$ & modular degree & \pageref{defn:modulardegree}\\
16
$\e_i$ & $i$th winding element $X^{i-1}Y^{k-2-(i-1)}\{0,\infty\}$
17
&\pageref{defn:windingelement}\\
18
$\sM_k(N,\eps)$& module of modular symbols & \pageref{defn:modsym}\\
19
$\esM_k(N,\eps)$& module of extended modular symbols & \pageref{defn:extendedmodsyms}\\
20
$M[I]$ & $\intersect_{a\in I} \ker(a)$ & \\
21
$P(X,Y)\{\alp,\beta\}$ & higher weight modular symbol & \pageref{pg:higherweightmodsym}\\
22
$[P(X,Y),(u,v)]$ & higher weight Manin symbol & \pageref{defn:maninsymbols}\\
23
%$R[\eps]$ & $R(\{\eps(a) : a \in \Z/N\Z\})$ & \pageref{defn:keps}\\
24
$\sS_k(N,\eps)$& module of cuspidal modular symbols & \pageref{defn:cuspidalmodularsymbols}\\
25
$T_n$ & $n$th Hecke operator & \pageref{subsec:heckeonmanin}\\
26
$V_k$ & module of homogeneous polynomials of degree~$k$ & \pageref{defn:vk}\\
27
$W_d$ & $d$th Atkin-Lehner involution & \pageref{sec:atkin-lehner}\\
28
$\alp_t$, $\beta_t$ & degeneracy maps & \pageref{pg:degeneracymaps}\\
29
$\Theta_f$ & rational period mapping & \pageref{sec:ratperiod}\\
30
$\sigma$, $\tau$ & $\sigma=\abcd{0}{-1}{1}{\hfill 0}$,
31
$\tau=\abcd{0}{-1}{1}{-1}$ & \pageref{defn:sigmatau}\\
32
$\Phi_f$ & analytic period mapping & \pageref{defn:periodmapping}\\
33
$\Phi_{A,p}$ & component group of~$A$ at~$p$ & \pageref{defn:componentgroup}\\
34
$\Omega_A$ & real volume & \pageref{defn:omega}\\
35
$\langle \,\, , \, \rangle$ & integration pairing & \pageref{thm:perfectpairing}\\
36
$*$ & star involution & \pageref{sec:starinvolution}\\
37
\end{tabular}
38
39
40
41
42