CoCalc Public Fileswww / papers / thesis-old / thesis.bblOpen with one click!
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
1
\newcommand{\etalchar}[1]{$^{#1}$}
2
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
3
\begin{thebibliography}{FpS{\etalchar{+}}99}
4
5
\bibitem[Aga99]{agashe}
6
A.~Agash\'{e}, \emph{On invisible elements of the {T}ate-{S}hafarevich group},
7
C. R. Acad. Sci. Paris S\'er. I Math. \textbf{328} (1999), no.~5, 369--374.
8
9
\bibitem[AL70]{atkin-lehner}
10
A.\thinspace{}O.\thinspace{}L. Atkin and J.~Lehner, \emph{Hecke operators on
11
\protect{$\Gamma \sb{0}(m)$}}, Math. Ann. \textbf{185} (1970), 134--160.
12
13
\bibitem[AS99]{stein:vissha}
14
A.~Agash\'{e} and W.\thinspace{}A. Stein, \emph{Visibility of
15
{S}hafarevich-{T}ate groups of modular abelian varieties}, preprint (1999).
16
17
\bibitem[BK75]{antwerpiv}
18
B.\thinspace{}J. Birch and W.~Kuyk (eds.), \emph{Modular functions of one
19
variable. {I}{V}}, Springer-Verlag, Berlin, 1975, Lecture Notes in
20
Mathematics, Vol. 476.
21
22
\bibitem[BK90]{bloch-kato}
23
S.~Bloch and K.~Kato, \emph{\protect{${L}$}-functions and \protect{T}amagawa
24
numbers of motives}, The Grothendieck Festschrift, Vol. \protect{I},
25
Birkh\"auser Boston, Boston, MA, 1990, pp.~333--400.
26
27
\bibitem[Bru95]{brumer:rank}
28
A.~Brumer, \emph{The rank of \protect{${J}\sb 0({N})$}}, Ast\'erisque (1995),
29
no.~228, 3, 41--68, Columbia University Number Theory Seminar (New York,
30
1992).
31
32
\bibitem[CM98]{cremona-mazur}
33
J.\thinspace{}E. Cremona and B.~Mazur, \emph{Visualizing elements in the
34
\protect{Shafarevich-Tate} group}, Proceedings of the Arizona Winter School
35
(1998).
36
37
\bibitem[Col99]{coleman:monodromy}
38
R.~Coleman, \emph{The monodromy pairing}, Asian Math. Journal (1999).
39
40
\bibitem[Cre92]{cremona:gammaone}
41
J.\thinspace{}E. Cremona, \emph{Modular symbols for \protect{$\Gamma\sb
42
1({N})$} and elliptic curves with everywhere good reduction}, Math. Proc.
43
Cambridge Philos. Soc. \textbf{111} (1992), no.~2, 199--218.
44
45
\bibitem[Cre97a]{cremona:algs}
46
J.\thinspace{}E. Cremona, \emph{Algorithms for modular elliptic curves}, second
47
ed., Cambridge University Press, Cambridge, 1997.
48
49
\bibitem[Cre97b]{cremona:periods}
50
J.\thinspace{}E. Cremona, \emph{Computing periods of cusp forms and modular
51
elliptic curves}, Experiment. Math. \textbf{6} (1997), no.~2, 97--107.
52
53
\bibitem[DI95]{diamond-im}
54
F.~Diamond and J.~Im, \emph{Modular forms and modular curves}, Seminar on
55
{F}ermat's {L}ast {T}heorem, Providence, RI, 1995, pp.~39--133.
56
57
\bibitem[Edi91]{edixhoven:eisen}
58
B.~Edixhoven, \emph{L'action de l'alg\`ebre de \protect{H}ecke sur les groupes
59
de composantes des jacobiennes des courbes modulaires est
60
``\protect{E}isenstein''}, Ast\'erisque (1991), no.~196--197, 7--8, 159--170
61
(1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988).
62
63
\bibitem[FpS{\etalchar{+}}99]{empirical}
64
E.\thinspace{}V. Flynn, F.~\protect{Lepr\'{e}vost}, E.\thinspace{}F. Schaefer,
65
W.\thinspace{}A. Stein, M.~Stoll, and J.\thinspace{}L. Wetherell,
66
\emph{Empirical evidence for the \protect{B}irch and
67
\protect{S}winnerton-\protect{D}yer conjectures for modular
68
\protect{J}acobians of genus 2 curves}, submitted (1999).
69
70
\bibitem[Hij74]{hijikata:trace}
71
H.~Hijikata, \emph{Explicit formula of the traces of \protect{H}ecke operators
72
for \protect{$\Gamma_0(N)$}}, J. Math. Soc. Japan \textbf{26} (1974), no.~1,
73
56--82.
74
75
\bibitem[KL89]{kolyvagin-logachev:finiteness}
76
V.\thinspace{}A. Kolyvagin and D.\thinspace{}Y. Logachev, \emph{Finiteness of
77
the \protect{S}hafarevich-\protect{T}ate group and the group of rational
78
points for some modular abelian varieties}, Algebra i Analiz \textbf{1}
79
(1989), no.~5, 171--196.
80
81
\bibitem[Koh98]{kohel:hecke}
82
D.\thinspace{}R. Kohel, \emph{Hecke module structure of quaternions}, preprint
83
(1998).
84
85
\bibitem[Lan93]{lang:algebra}
86
S.~Lang, \emph{Algebra}, third ed., Addison-Wesley Publishing Co., Reading,
87
Mass., 1993.
88
89
\bibitem[Man72]{manin:parabolic}
90
J.\thinspace{}I. Manin, \emph{Parabolic points and zeta functions of modular
91
curves}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{36} (1972), 19--66.
92
93
\bibitem[Maz77]{mazur:eisenstein}
94
B.~Mazur, \emph{Modular curves and the \protect{Eisenstein} ideal}, Inst.
95
Hautes \'Etudes Sci. Publ. Math. (1977), no.~47, 33--186 (1978).
96
97
\bibitem[Maz78]{mazur:rational}
98
B.~Mazur, \emph{Rational isogenies of prime degree (with an appendix by {D}.
99
{G}oldfeld)}, Invent. Math. \textbf{44} (1978), no.~2, 129--162.
100
101
\bibitem[Maz99]{mazur:visthree}
102
B.~Mazur, \emph{Visualizing elements of order three in the {S}hafarevich-{T}ate
103
group}, preprint (1999).
104
105
\bibitem[Mer94]{merel:1585}
106
L.~Merel, \emph{Universal \protect{F}ourier expansions of modular forms}, On
107
{A}rtin's conjecture for odd \protect{$2$}-dimensional representations
108
(Berlin), Springer, 1994, pp.~59--94.
109
110
\bibitem[Mes86]{mestre:graphs}
111
J.-F. Mestre, \emph{La m\'ethode des graphes. \protect{Exemples} et
112
applications}, Proceedings of the international conference on class numbers
113
and fundamental units of algebraic number fields (Katata) (1986), 217--242.
114
115
\bibitem[Mil86]{milne:abvars}
116
J.\thinspace{}S. Milne, \emph{Abelian varieties}, Arithmetic geometry (Storrs,
117
Conn., 1984), Springer, New York, 1986, pp.~103--150.
118
119
\bibitem[Piz80]{pizer:alg}
120
A.~Pizer, \emph{An algorithm for computing modular forms on
121
\protect{$\Gamma\sb{0}({N})$}}, J. Algebra \textbf{64} (1980), no.~2,
122
340--390.
123
124
\bibitem[Shi59]{shimura:surles}
125
G.~Shimura, \emph{Sur les \protect{int\'egrales} \protect{attach\'ees} aux
126
formes automorphes}, J. Math. Soc. Japan \textbf{11} (1959), 291--311.
127
128
\bibitem[Shi73]{shimura:factors}
129
G.~Shimura, \emph{On the factors of the jacobian variety of a modular function
130
field}, J. Math. Soc. Japan \textbf{25} (1973), no.~3, 523--544.
131
132
\bibitem[Shi77]{shimura:onperiods}
133
G.~Shimura, \emph{On the periods of modular forms}, Math. Ann. \textbf{229}
134
(1977), 211--221.
135
136
\bibitem[Shi94]{shimura:intro}
137
G.~Shimura, \emph{Introduction to the arithmetic theory of automorphic
138
functions}, Princeton University Press, Princeton, NJ, 1994, Reprint of the
139
1971 original, Kan Memorial Lectures, 1.
140
141
\bibitem[Stu87]{sturm:cong}
142
J.~Sturm, \emph{On the congruence of modular forms}, Number theory (New York,
143
1984--1985), Springer, Berlin, 1987, pp.~275--280.
144
145
\bibitem[Tat95]{tate:bsd}
146
J.~Tate, \emph{On the conjectures of {B}irch and {S}winnerton-{D}yer and a
147
geometric analog}, S\'eminaire Bourbaki, Vol.\ 9, Soc. Math. France, Paris,
148
1995, pp.~Exp.\ No.\ 306, 415--440.
149
150
\end{thebibliography}
151